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1
Advances in Electronic Structure Methods
for Defects and Impurities in Solids
Chris G. Van de Walle and Anderson Janotti

1.1
Introduction

First-principles studies of point defects and impurities in semiconductors, insulators,
and metals have become an integral part of materials research over the last few
decades [1–3]. Point defects and impurities often have decisive effects on materials
properties. A prime example is doping of semiconductors: the addition of minute
amounts (often at the ppm level) of donor or acceptor impurities renders thematerial
n type orp type, enabling the functionality of electronic or optoelectronic devices [4, 5].
Control of doping is therefore essential, and all too often eludes experimental efforts.
Sometimes high doping levels required for low-resistivity transport are limited by
compensation effects; such compensation can be due to point defects that form
spontaneously at high doping. In other cases, unintentional doping occurs. For
instance,manyoxidesexhibitunintentionaln-typedoping,whichdueto itsprevalence
has often been attributed to intrinsic causes, i.e., to native point defects. Recent
evidence indicates, however, that the concentration of native point defects may be
lower than has conventionally been assumed, and that, instead, unintentional
incorporation of impurities may cause the observed conductivity [6]. Last but not
least,manymaterials resist attemptsat ambipolardoping, i.e., theycanbeeasilydoped
one type but not the other. Again, the oxides (or more generally, wide-band-gap
semiconductors) that exhibit unintentional n-type doping often cannot be doped
p-type.Thequestion then iswhether this isdue toan intrinsic limitation that cannotbe
avoided, or whether specific doping techniques might be successful.

Aside from the issue of doping, the study of point defects is important because they
are involved in the diffusion processes and act to mediate mass transport, hence
contributing to equilibration during growth, and to diffusion of dopants or other
impurities during growth or annealing [7–9]. In addition, an understanding of point
defects is essential for characterizing or suppressing radiation damage, and
for analyzing device degradation.

Experimental characterization techniques are available, but they are often limited
in their application [10–12]. Impurity concentrations can be determined using
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secondary ion mass spectrometry (SIMS), but some impurities (such as hydrogen)
are hard to detect in low concentrations. Point-defect concentrations are even harder
to determine. Electron paramagnetic resonance is an excellent tool that can provide
detailed information about concentrations, chemical identity, and lattice environ-
ment of a defect or impurity, but it is a technique that requires dedicated expertise and
possibly for that reason has few practitioners [12]. Other tools, such as Hall
measurements or photoluminescence, can provide information about the effect of
point defects or impurities on electrical or optical properties, but cannot by them-
selves identify their nature or character. For all these reasons, the availability of first-
principles calculations that can accurately address atomic and electronic structure of
defects and impurities has had a great impact on the field.

Obviously, to make the information obtained from such calculations truly useful,
the results should be as reliable and accurate as possible. Density functional theory
(DFT) [13, 14] has proven its value as an immensely powerful technique for assessing
the structural properties of defects [1]. (In the remainder of this article, we will use
the term �defects� to generically cover both native point defects and impurities.)
Minimization of the total energy as a function of atomic positions yields the stable
structure, including all relaxations of the host atoms, and most functionals
[including the still most widely used local density approximation (LDA)] all yield
results within reasonable error bars [15]. Quite frequently, however, information
about electronic structure is required, i.e., the position of defect levels that are
introduced in the band gap of semiconductors or insulators. SinceDFT in the LDA or
generalized gradient approximation (GGA) severely underestimates the gap, the
position of defect levels is subject to large error bars and cannot be directly compared
with experiment [16–18]. In turn, this affects the calculated formation energy of the
defect, which determines its concentration. This effect on the energy is still not
generally appreciated, since it is often assumed that the formation energy is a
ground-state property for which DFT should give reliable results. However, in the
presence of gap levels that can be filled with varying numbers of electrons
(corresponding to the charge state of the defect), the formation energy becomes
subject to the same type of errors that would occur when trying to assess excitation
energies based on total energy calculations with N or N þ 1 electrons. Recently,
major progress has been made in overcoming these inaccuracies, and the
approaches for doing so will be discussed in Section 1.2.

Another type of error that may occur in defect calculations is related to the
geometry in which the calculations are performed. Typically, one wishes to address
the dilute limit in which the defect concentration is low and defect–defect interac-
tions are negligible. Green�s functions calculations would in principle be ideal, but in
practice have proven quite cumbersome and difficult to implement. Another
approach would be to use clusters, but surface effects are almost impossible to
avoid, and quantum confinement effects may obscure electronic structure. Nowa-
days, point defect calculations are almost universally performed using the supercell
geometry, in which the defect is embeddedwithin a certain volume ofmaterial which
is periodically repeated. This has the advantage of maintaining overall periodicity,
which is particularly advantageous when using plane-wave basis sets which rely on

2j 1 Advances in Electronic Structure Methods for Defects and Impurities in Solids



Fast Fourier Transforms to efficiently move between reciprocal- and real-space
representations. The supercells should be large enough to minimize interactions
between defects in neighboring supercells. This is relatively straightforward to
accomplish for neutral defects, but due to the long-range nature of the Coulomb
interaction, interactions between charged defects are almost impossible to eliminate.
This problem was recognized some time ago, and a correction was suggested based
on a Madelung-type interaction energy [19]. It had been observed, however, that in
many cases the correction was unreliable or �overcorrected,� making the result less
accurate than the bare values [20]. Recently, an approach based on a rigorous
treatment of the electrostatic problem has been developed that outlines the condi-
tions of validity of certain approximations and provides explicit expression for the
quantities to be evaluated [21]. Issues relating to supercell-size convergence are
addressed in detail in the article by Freysoldt et al. [22] in this volume.

We note that it is not the intent of the present paper to provide a comprehensive
review of the entirety of this large and growing field. Rather, we attempt to introduce
the main concepts of present-day defect calculations illustrated with a few select
examples, anddonot aspire to cover the countless important contributions to thefield
by many different research groups.

1.2
Formalism and Computational Approach

The key quantities that characterize a defect in a semiconductor are its concentration
and the position of the transition levels (or ionization energies) with respect to the
band edges of the host material. Defects that occur in low concentrations will have a
negligible impact on the properties of the material. Only those defects whose
concentration exceeds a certain threshold will have observable effects. The position
of the defect transition levels with respect to the host band edges determines the
effects on the electrical and optical properties of the host. Defect formation energies
and transition levels can be determined entirely from first principles [1], without
resorting to any experimental data for the system under consideration.

1.2.1
Defect Formation Energies and Concentrations

In the dilute limit, the concentration of a defect is determined by the formation
energy Ef through a Boltzmann expression:

c ¼ Nsitesexpð�Ef=�Ef kBTÞ: ð1:1Þ

Nsites is the number of sites (including the symmetry-equivalent local configura-
tions) on which the defect can be incorporated, kB is the Boltzmann constant, and T
the temperature. Note that this expression assumes thermodynamic equilibrium.
While defects could also occur in nonequilibrium concentrations, in practicemost of
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the existing bulk and epitaxial film growth techniques operate close to equilibrium
conditions. Equilibration of defects is actually unavoidable if the diffusion barriers
are low enough to allow easy diffusion at the temperatures of interest. In addition,
even if kinetic barriers would be present, Eq. (1.1) is still relevant because obviously
defects with a high formation energy are less likely to form.

Defect formation energies can bewritten as differences in total energies, and these
can be obtained from first principles, i.e., without resorting to experimental para-
meters. The dependence on the chemical potentials (atomic reservoirs) and on the
position of the Fermi level in the case of charged defects is explicitly taken into
account [1, 5]. This is illustrated here with the specific example of an oxygen vacancy
in a 2þ charge state in ZnO. The formation energy of V2þ

O is given by:

Ef ðV2þ
O Þ ¼ EtotðV2þ

O Þ�EtotðZnOÞþ mO þ 2EF; ð1:2Þ

whereEtotðVq
OÞ is the total energyof the supercell containing thedefect, andEtotðZnOÞ

is the total energy of the ZnO perfect crystal in the same supercell. EF is the energy of
the reservoirwithwhichelectrons are exchanged, i.e., theFermi level. TheOatomthat
is removed is placed in a reservoir, the energy ofwhich is givenby the oxygenchemical
potential mO. Note that mO is a variable, corresponding to the notion that ZnO can in
principle be grown or annealed under O-rich, O-poor, or any other condition in
between. It is subject to an upper bound given by the energy of an O atom in an O2

molecule. Similarly, thezinc chemicalpotentialmZn is subject to anupperboundgiven
by the energy of a Zn atom in bulk Zn. The sum of mO and mZn corresponds to the
energy of ZnO,which is the stability condition of ZnO.Anupper bound onmZn, given
by the energy of bulk Zn, therefore leads to a lower bound on mO, and vice versa. The
chemical potentials thus vary over a range given by the formation enthalpy of the
material being considered. Formation enthalpies are generally well described byfirst-
principles calculations. For instance, the calculated formation enthalpy of �3.50 eV
for ZnO [8] is in a good agreement with the experimental value of �3.60 eV [23].

Note that it is, in principle, the free energy that determines the defect concentration,
and one should in principle take into account vibrational entropy contributions in
Eq. (1.1). Such contributions are usually small, on the order of a few kB, and there is
often a significant cancellation between vibrational contributions in the solid and in
the reservoir [1]. In rare instances, inclusion of vibration entropy has a distinct impact
on which configuration ismost stable for a given defect or impurity [24], but it hardly
ever has a significant effect on the overall concentration. The reader is referred to
Ref. [1] for a detailed discussion on the calculation of defect formation energies from
first principles.

1.2.2
Transition Levels or Ionization Energies

Defects in semiconductors and insulators can occur in different charge states. For
each position of the Fermi level, one particular charge state has the lowest energy for a
given defect. The Fermi-level positions at which the lowest-energy charge state
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changes are called transition levels or ionization energies. The transition levels are
thus determined by formation energy differences:

eðq=q0Þ ¼ Ef ðDq; EF ¼ 0Þ�Ef ðDq 0
;EF ¼ 0Þ

ðq0�qÞ ; ð1:3Þ

where Ef ðDq;EF ¼ 0Þ is the formation energy of the defect D in the charge state q for
the Fermi level at the valence-band maximum (EF¼ 0). These are thermodynamic
transition levels, i.e., atomic relaxations around the defect are fully included; for
Fermi-level positions below eðq=q0Þ the defect is stable in charge state q, while for
Fermi-level positions above eðq=q0Þ, the defect is stable charge state q0. The thermo-
dynamic transition levels are not to be confused with the single-particle Kohn–Sham
states that result from band-structure calculations for a single charge state. They are
also not to be confused with optical transition levels derived, for example, from
luminescence or absorption experiments. In this case, the final state may not be
completely relaxed, and the optical transition levels may significantly differ from the
thermodynamic transition levels, as discussed in Ref. [1].

For a defect to contribute to conductivity, it must be stable in a charge state that is
consistent with the presence of free carriers. For instance, in order to contribute to n-
type conductivity, the defectmust be stable in a positive charge state and the transition
level from the positive to the neutral charge state should occur close to or above the
conduction-band minimum (CBM). A defect is a typical shallow donor when the
transition level for a positive to the neutral charge state [e.g., the eðþ =0Þ level], as
definedbasedonformationenergies, lies above theCBM.In this case, aneutral charge
state inwhich the electron is localized in the immediate vicinity of thedefect cannot be
maintained if thecorrespondingelectronic level is resonantwith theconductionband;
instead, theelectronwill be transferred toextendedstates, butmaystill bebound to the
positive core of the defect in a hydrogenic effective-mass state. Similarly, shallow
acceptors aredefects inwhich the transition level fromanegative to theneutral charge
state [e.g., the eð�=0Þ level] is near or below the VBM. If the latter, the hole can be
bound to the negative core of the defect in a hydrogenic effective-mass state [1, 25].

1.2.3
Practical Aspects

The total energies in Eq. (1.2) are often evaluated by performing DFT calculations
within the LDA or its semi-local extension, the GGA [26, 27]. Defects are typically
calculated by using a supercell geometry, inwhich the defect is placed in a cell that is a
multiple of the primitive cell of the crystal. The supercell is then periodically repeated
in three-dimensional space. The use of supercells also has the advantage that the
underlying band structure of the host remains properly described, and integrations
over the Brillouin zone are replaced by summations over a discrete and relatively
small set of special k-points. Supercell-size corrections for charged defects are
addressed in Refs. [21] and [22]. Convergence with respect to the supercell size,
number of plane waves in the basis set, and the number of special k-points should
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always be checked, tomake sure that the quantities that are derived are representative
of the isolated defect.

The number of atoms or electrons in the calculations is limited by the available
computerpower.For typicaldefect calculations, supercells containing32,64,128,216,
and 256 atoms are used for materials with the zinc-blende structure, whereas super-
cells containg 32, 48, 72, and 96 atom cells are used for materials in the wurtzite
structure. These fairly large cell sizes call for efficient computational approaches.
Ultrasoft pseudopotential [28–30] and projector-augmented-wave [31] methods to
separate the chemically active valence electrons from the inert core electrons have
proven ideal for tackling such large systems. First-principlesmethods based onplane-
wave basis sets have been implemented in many codes such as the Vienna Ab initio
Simulation Program (VASP) [32–34], ABINIT [35, 36], and Quantum Expresso [37].

1.3
The DFT-LDA/GGA Band-Gap Problem and Possible Approaches to Overcome It

The LDA and the GGA in the DFT are plagued by the problem of large band-gap
errors in semiconductors and insulators, resulting in values that are typically less
than 50%of the experimental values [38–42]. It has often been assumed that the band-
gap problem is not an issue when studying defects in semiconductors, since each
individual calculation for a specific charge state of the defect could be considered to be
a ground-state calculation. However, this notion is not correct, in the same way that
the assumption that LDA calculations could yield reliable total-energy differences
between N-electron versus (N þ 1)-electron systems is not correct [16]. Indeed, the
change in the number of electrons elicits the issue of the lack of a discontinuity in the
exchange-correlation potential, which is at the root of the band-gap problem [38–42].
Similarly, the formation energy expressed in Eq. (1.2) involves changes in the
occupation of defect-induced states. In other words, if a specific charge state of a
defect involves occupying a state in the band gap, and the band gap is incorrect in
DFT–LDA/GGA, then the position of the defect state and hence the calculated total
energy will suffer from the same problem [8, 16]. Careful practitioners have always
been aware of this problem and refrained from drawing conclusions that might be
affected by these uncertainties. The problem is exacerbated, of course, in the case of
wide-band-gap semiconductors in which the band-gap errors can be particularly
severe; for example, in ZnO the LDA band gap is only 0.8 eV, compared to an
experimental value of 3.4 eV.

In the remainder of this section we address several approaches that have been, or
are being, developed to overcome these problems.

1.3.1
LDAþU for Materials with Semicore States

Many of the wide-band-gap materials of interest have narrow bands, derived from
semicore states, that play an important role in their electronic structure [43]. For
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example, in ZnO narrow bands derived from the Zn 3d states occur at �8 eV below
the valence-band maximum (VBM) and strongly interact with the top of the valence
band derived from O 2p states. Inclusion of the Zn d states as valence states (as
opposed to treating them as core states) is therefore important for a proper
description of the electronic structure of ZnO, as it affects structural parameters,
band offsets, and deformation potentials [44, 45]. The DFT–LDA/GGA does not
properly describe the energetic position of these narrow bands due to their higher
degree of localization, as compared to themore delocalized s and p bands. Oneway to
overcome this problem is to use an orbital-dependent potential that adds an extra
Coulomb interaction U for these semicore states, as in the LDAþU (or GGAþU)
approach [46, 47].

In the LDAþU the electrons are separated into localized electrons for which the
Coulomb repulsion U is taken into account via a Hubbard-like term in a model
Hamiltonian, and delocalized or itinerant electrons that are assumed to be well
described by the usual orbital-independent one-electron potential in the LDA.
Although this approach had been developed and applied for materials with partially
filled d bands [46, 47], it has been recently demonstrated that it significantly improves
the description of the electronic structure of materials with completely filled d bands
such as GaN and InN, as well as ZnO and CdO [44, 45].

An important issue in the LDAþU approach is the choice of the parameter U. It
has often been treated as a fitting parameter, with the goal of reproducing either the
experimental band gap or the experimentally observed position of the d states in the
band structure. Neither approach can be justified, because (a) LDAþU cannot be
expected to correct for other shortcomings of DFT-LDA, specifically, the lack of a
discontinuity in the exchange-correlation potential, and (b) experimental observa-
tions of semicore states may include additional (�final state�) effects inherent in
experiments such as photoemission spectroscopy. An approximate but consistent
and unbiased approach has been proposed in which the calculatedU for the isolated
atom is divided (screened) by the optical dielectric constant of the solid under
consideration [44]. Tests on a number of systems have shown that applying LDAþU
effectively lowers the energy of the narrowd bands, thus reducing their couplingwith
the p states at the VBM; simultaneously, it increases the energy of the s states that
compose the CBM, due to the improved screening by the more strongly bound d
states, leading to further opening of the band gap. Such improvements have been
described in detail in the case of ZnO, CdO, GaN, and InN [44, 45].

One can take advantage of the partial correction of the band gap by the LDAþU to
study defects. Based on an extrapolation of LDA and LDAþU results, one can obtain
transition levels and formation energies that can be directly compared with experi-
ments. Such extrapolation schemes have been applied in other contexts as well; they
are based on evaluation of defect properties for two different values of the band gap
followed by a linear extrapolation to the experimental gap. A number of empirical
extrapolation approaches were described by Zhang et al. [48], for instance based on
use of different exchange and correlation potentials or different plane-wave cutoffs.
Such extrapolation schemes are most likely to be successful if the calculations that
produce different band gaps are physically motivated, ensuring that the shifts in
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defect states that give rise to changes in formation energies reflect the underlying
physics of the system.

An extrapolation based on LDA and LDAþU calculations, as described in Refs. [8]
and [17], has been shown to be particularly suitable for describing defect physics in
materials with semicore d states. The LDAþU produces genuine improvements in
the electronic structure related to the energetics of the semicore states; one of these
effects is an increase in the band gap. The shifts in defect-induced states between
LDA and LDAþU reflect their relative valence- and conduction-band character, and
hence an extrapolation to the experimental gap is expected to produce reliable results.
Such an approach has led to accurate predictions for point defects in ZnO, InN, and
SnO2 [8, 49, 50]. Figure 1.1(a) shows the result of this extrapolation scheme for the

Figure 1.1 (online color at: www.pss-b.com)
Formation energy as a function of Fermi level for
an oxygen vacancy (VO) in ZnO. (a) Energies
according to the LDA/LDAþU scheme
described in Section 1.3.1. (b) Energies
according to the HSE approach [51].
The lower curve in each plot indicates

Zn-rich conditions, and the upper curve O-rich
conditions. The position of the transition level
e(2þ /0) is also indicated. (c) Charge density of
the V0

O gap state, which is occupied with two
electrons. The isosurface corresponds to 10%of
the maximum.
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case of oxygen vacancy in ZnO. The success of this approach can be attributed to the
fact that the defect states can in principle be described as a linear combination of host
states, under the assumption that the latter forma complete basis. Adefect state in the
gap region will have contributions from both valence-band states and conduction-
band states. The shift in transition levels with respect to the host band edges upon
band-gap correction reflects the valence- versus conduction-band character of the
defect-induced single-particle states. In the case of a shallow donor, the related
transition level is expected to shift with the conduction band, i.e., the variation of the
transition level is almost equal the band gap correction. For a shallow acceptor, the
position of the transition level with respect to the valence band is expected to remain
unchanged.

1.3.2
Hybrid Functionals

The use of hybrid functionals has been rapidly spreading in the study of defects in
solids. In particular, hybrid functionals have proven reliable for describing the
electronic and structural properties of defects in semiconductors. The method
consists of mixing local (LDA) or semi-local (GGA) exchange potentials with the
non-local Hartree–Fock exchange potential. The correlation potential is still
described by the LDAorGGA.Hybrid functionals have been successful in describing
structural properties and energetics of molecules in quantum chemistry, with
Becke�s three-parameter exchange functional (B3) with the Lee, Yang, and Parr (LYP)
correlation (B3LYP) being the most popular choice [52]. However, the use of B3LYP
for studying defects in solids has been limited due to its shortcomings in describing
metals and narrow-gap semiconductors [53]. This issue is particularly important
since formation enthalpies of metals usually enter the description of the chemical
potential limits in the defect-formation-energy expressions (cf. Eq. (1.2)).

The introduction of a screening length in the exchange potential byHeyd, Scuseria,
and Ernzerhof (HSE) [54, 55] and its implementation in a plane-wave code [56] have
been instrumental in enabling the use of hybrid functionals in the study of defects in
semiconductors. In the HSE the exchange potential is divided in short- and long-
range parts. In the short-range part, the GGA exchange of Perdew, Burke, and
Ernzerhof (PBE) [27] potential is mixed with non-local Hartree–Fock exchange
potential in a ratio of 75/25. The long-range exchange potential as well as the
correlation is described by the PBE functional. The range-separation is implemented
through an Error function with a characteristic screening length set to�10A

�
[55], the

variation of which can also affect band gaps [57]. The screening is essential for
describing metals and insulators on the same footing. The HSE functional has been
shown to accurately describe band gaps for many materials [56, 58]. We should note,
however, that since the Hartree–Fock potential involves four-center integrals its
implementation in plane-wave codes results in a high computational cost, and
currently hybrid functional calculations take at least an order of magnitude more
processing time than standard LDA calculations for systems with the same number
of electrons.
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As an example of hybrid functional calculations for defects in semiconductors, we
show in Figure 1.1(b) the formation energy as a function of Fermi level for the oxygen
vacancy (VO) in ZnO using the HSE functional [51]. These calculations were
performed by setting the mixing parameter to 37.5% so to reproduce the experi-
mental value of the band gap of ZnO.We note that the position of the transition level
e(2þ /0) with respect to the band edges is in remarkably good agreement with the
value obtained using the LDA/LDAþUapproach inFigure 1.1(a).On the other hand,
the absolute values of the formation energies are quite different, with theHSE results
being more than 2 eV lower than the LDA/LDAþU results. This difference can be
attributed to the effects of theHSEon the absolute position of theVBM inZnO. In the
LDA/LDAþU approach,U is applied only to the d states and the gap is corrected due
to the effects of the coupling between the O 2p Zn d states, and the improved
screening of the Zn 4s by the d states. Within this approach, it was assumed that the
LDAþU would result in a correct position of the VBM. The HSE results show,
however, that the position of the VBM on an absolute energy scale is affected by the
inclusion of Hartree–Fock exchange [59]. That is HSE also corrects (at least in part)
the self-interaction error in the LDA or GGA, which is still present in the LDAþU
results, and this correction is significant for the O 2p bands thatmake up the VBM in
ZnO. In Ref. [59] it was found that the VBM in ZnO is shifted down by 1.7 eV inHSE
calculations, compared to PBE.

Other examples of the use of HSE include calculations for Si and Ge impurities in
ZnO, which revealed that these impurities are shallow double donors when substi-
tuting on theZn sites inZnO,with relatively low formation energies [59]. Si can occur
as a background impurity in ZnO, and these results indicate that it may give rise to
unintentional n-type conductivity. Another example relates to p-type doping in ZnO.
It has been long believed that incorporatingN on theO site would lead to p-type ZnO.
However, the effectiveness of N as a shallow acceptor dopant has never been firmly
established. Despite many reports on p-type ZnO using N acceptors, the results have
been difficult to reproduce, raising questions about the stability of the p-type doping
and the position of the N ionization energy. Recent calculations for N in ZnO have
shown that N is actually a very deep acceptor with a transition level at 1.3 eVabove the
VBM [60]. Therefore, it has been concluded that N cannot lead to p-type ZnO. For
comparison and as a benchmark,HSE calculations correctly predicted that N inZnSe
is a shallow acceptor when substituting on Se sites, in agreement with experimental
findings.

Hybrid functional calculations have also been performed for oxygen vacancies in
TiO2. Despite the fact that oxygen vacancies have frequently been invoked in the
literature on TiO2, their identification in bulk TiO2 has remained elusive. First-
principles calculations based onLDAorGGA suffer fromband-gap problems and are
unable to describe the neutral or the positively charged vacancy (Vþ

O ) in TiO2 [61, 62].
In LDA or GGA, the Kohn–Sham single-particle states related to VO are above the
CBM, causing the electron(s) from V0

O or Vþ
O to occupy the CBM. Calculations based

on theHSE, on the other hand, show that locally stable structures of V0
O andVþ

O exist,
in which the occupied single-article states lie within the band gap and the defect wave
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functions are localized within the vacancy. However, the formation energies of V0
O

and Vþ
O are always higher in energy that of V2þ

O [62] as shown in Figure 1.2(a); The
atoms around V2þ

O relax outward as indicated in Figure 1.2(b). Thus, oxygen
vacancies are predicted to be shallow donors in TiO2. This is in contrast to GGAþU
calculations which indicate that VO is a deep donor with transition levels in the
gap [63]. The problem with GGAþU calculations for TiO2 is that the conduction
band in TiO2 is derived from the Ti d states. The LDA/GGAþU approach was
designed to be applied to narrow bands with localized electrons; hence its success
when applied to semicore d states. The d states that constitute the conduction band of
TiO2, in contrast, are fairly delocalized, as evidenced by the high conductivity of this
material. Applying LDA/GGAþU will always lead to an energy lowering of the
occupied states, since that was what the approach was designed to do. Therefore,
when the LDA/GGAþU approach is applied to a case in which electrons occupy the
conduction band of TiO2, localization will result. However, it is hard to distinguish
whether this is a real physical effect or an artefact due to the nature of the
LDA/GGAþU approach. We therefore feel that LDA/GGAþU should not
be applied in cases where the states are intrinsically extended states, such as the
d states that make up the conduction band of TiO2.

An important issue regarding the use of hybrid functionals is the amount of
Hartree–Fock exchange potential that ismixedwith theGGAexchange [64]. Although
a value of 25%was initially proposed, there is no a priori justification for this amount
and this single value is not capable of correctly describing all semiconductors and
insulators. For instance, in ZnO the experimental value of the band gap is obtained
withHSE only when amixing parameter of 37% is used. InGaN, amixing parameter
of 31% is necessary, and for MgO 32%. Since the position of transition levels in the
band gap depends on the band-gap value, quantitative predictions require that the
functional accurately describes band gaps, and an adjustment of the mixing param-
eter is the most straightforward way to achieve this.

Figure 1.2 (online color at: www.pss-b.com) (a) Formation energy as a function of Fermi level for
an oxygen vacancy (VO) in TiO2 in the Ti-rich limit, according to Ref. [62]. (b) Local lattice relaxations
around V2þ

O . The positions of the atoms in the perfect crystal are also indicated (faded).
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1.3.3
Many-Body Perturbation Theory in the GW Approximation

Quasiparticle calculations in theGWapproximation produce band structures that are
in close agreement with experiments [65]. However, at present the calculation of total
energies within the GW formalism [66] is still a subject of active research and
currently not available for studying defects in solids. We note that the GW quasi-
particle energies are defined as removal and addition energies. In the case of defects,
the GW quasiparticle energies that appear in the band gap correspond to the
transition levels, provided that the geometry of the defects remains unchanged. For
instance, the highest occupied quasiparticle state in a calculation for a defect in
charge state q represents the e(q þ 1/q) level, and the lowest unoccupied state
represents the e(q/q� 1) level for a fixed geometry of the defect. It is possible to
combine these transition levels determined from GW calculations with relaxation
energies from LDA or GGA calculations to extract thermodynamic transition levels
for defects in semiconductors and insulators. Recent GW calculations for the self-
interstitial in Si have demonstrated the effectiveness of this approach [67].

TheLDAorGGAunderestimates the formationenergyof the self-interstitial inSi by
more than 1 eV compared to values extracted from self-diffusion experiments.
Calculations based on Quantum Monte Carlo can yield more accurate formation
energies but are very expensive computationally. Calculating removal and addition
energies for Si self-interstitials in GW and combining with relaxation energies from
LDAcalculations lead to formationenergies that are ingood agreementwithQuantum
Monte Carlo results [69]. The only assumption was that LDA gives correct formation
energies for charge state configurations with no occupied states above the VBM, such
as the 2þ charge state of the Si self-interstitial in the tetrahedral configuration. A
similar approach has been used to study oxygen-related defects in SiO2 [68].

As a drawback in the GW approach, it has been recently argued that for systems
with semicore d states such as ZnO a very large number of unoccupied bands is
necessary for a proper description of the band structure [70]. This result, if confirmed,
indicates that GW calculations for defects in these systems may be prohibitivly
expensive in practice. This unusually large number of unoccupied states required is
likely related to the underbinding of the semicore d states which, as discussed in
Section 1.3.1, can make a significant contribution to the band-gap error.

1.3.4
Modified Pseudopotentials

In the pseudopotential formalism, once a separation between valence electrons and
the inert core electrons is adopted, there is still some flexibility in constructing the
ionic cores. Indeed, within this approach, there is no unique scheme for generating
pseudopotentials, and anumber of different generation schemeshave beenproposed
over the years, often aimed at creating computationally efficient, �softer� potentials
which can be described with a smaller plane-wave basis set. This flexibility can in
principle be exploited to generate potentials that produce a more accurate band
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structure. However, past attempts did not succeed in producing such improvements
while still maintaining a proper description of atomic structure and energetics [71].

A new approach was recently proven to be remarkably successful in describing
nitride semiconductors [72, 73]. It was based on a proposal by Christensen, first
implemented within the linearized muffin-tin orbital method [74], to add a highly
localized (delta-function-like) repulsive potential centered on the atomic nucleus of
each atom. Such a potential only affects s states, and since the CBM in compound
semiconductors has largely cation s character one expects an upward shift of the
corresponding eigenstates. At the same time, the highly localized character of the
added potential leads one to expect only minimal changes in other aspects of the
pseudopotential. These expectations were indeed borne out in the case of GaN and
InN, where the modified pseudopotentials produced atomic structures and ener-
getics that are as reliable as those obtained with standard potentials, but simulta-
neously producing band structures in very good agreement with experiment [73].
Even though the fitting procedure only aimed to produce the experimental value of
the direct gap, the modified potentials actually produced improvements for other
aspects of the band structure as well, including the position of higher-lying indirect
conduction-band minima as well as the position of semicore d states [73]. This leads
us to believe that the seemingly ad hoc modifications introduced by the repulsive
potential are capturing some essential physics, justifying the expectation that
similarly good results can be obtained for other materials. An application of the
modified pseudopotentials to the calculation of the electronic structure of nitride
surfaces produced results in very good agreement with experiment [72, 75].

1.4
Summary

We have discussed recent progress in first-principles approaches to study defects in
semiconductors and insulators. Emphasis was given to methods that overcome the
band-gap problem in traditional DFT in the LDA; such approaches include LDAþU,
hybrid functionals, GW, and modified pseudopotentials. While the LDAþU
approach is very efficient computationally, it should be limited to systems with
semicore states for which LDA provides a poor description. Furthermore, the
LDAþU only partially corrects the band gap, and futher extrapolation is needed.
The HSE hybrid functional on the other hand is general and has been demonstrated
to be a reliable method that result in accurate band gaps and seems to be describing
the properties of defects correctly. The HSE functional contains two parameters, the
Hartree–Fock mixing ratio and the screening length, which offer some flexibility in
obtaining correct band gaps; however, the consequences of changes in these para-
meters on the physics of the system has not been fully explored yet. TheGWmethod
offers a formal approach for describing excited-state properties and defect physics,
but its applicability is limited by the lack of an efficient way to extract total energies.
Combining GW excitation energies with LDA/GGA relaxation energies offers a
promising way to address thermodynamic transition levels. Finally, modified pseud-
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potentials is an ad hoc but remarkably reliable approach, which has been demon-
strated very effective at describing the properties of nitride semiconductors.
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2
Accuracy of Quantum Monte Carlo Methods for Point Defects
in Solids
William D. Parker, John W. Wilkins, and Richard G. Hennig

2.1
Introduction

Point defects, such as vacancies, interstitials and anti-site defects, are the only
thermodynamically stable defects at finite temperatures [1]. The infinite slope of
the entropy of mixing at infinitesimally small defect concentrations results in an
infinite driving force for defect formation. As a result, at small defect concentrations,
the entropy of mixing always overcomes the enthalpy of defect formations. In
addition to being present in equilibrium, point defects often control the kinetics
of materials, such as diffusion and phase transformations, and are important for
materials processing. The presence of point defects in materials can fundamentally
alter the electronic andmechanical properties of amaterial. Thismakes point defects
technologically important for applications such as doping of semiconductors [2, 3],
solid solution hardening of alloys [4, 5], controlling the transition temperature for
shape-memory alloys [6], and the microstructural stabilization of two-phase
superalloys.

However, the properties of defects, such as their structures and formation
energies, are difficult to measure in some materials due to their small sizes, low
concentrations, lack of suitable radioactive isotopes, etc. Quantum mechanical first-
principles, or ab initio, theories make predictions to fill in the gaps left by
experiment [7].

The most widely used method for the calculation of defect properties in solids is
density functional theory (DFT). DFT replaces explicit many-body electron interac-
tions with quasiparticles interacting via a mean-field potential, i.e., the exchange-
correlation potential, which is a functional of the electron density [8]. A universally
true exchange-correlation functional is unknown, and DFT calculations employ
various approximate functionals, either based on a model system or an empirical
fit. Themost commonly used functionals are based on diffusionMonte Carlo (DMC)
simulations [9] for the uniform electron gas at different densities, e.g., the local
density approximation (LDA) [10, 11] and gradient expansions, e.g., the generalized
gradient approximation (GGA) [12–16]. These local and semi-local functionals suffer

Advanced Calculations for Defects in Materials: Electronic Structure Methods, First Edition.
Edited by Audrius Alkauskas, Peter Deák, Jörg Neugebauer, Alfredo Pasquarello, and Chris G. Van de Walle.
� 2011 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2011 by Wiley-VCH Verlag GmbH & Co. KGaA.

j17



from a significant self-interaction error reflected in the variable accuracy of their
predictions for defect formation energies, charge transition levels, and band gaps [17,
18]. Another class of functionals, called hybrid functionals, include a fraction of exact
exchange to improve their accuracy [19, 20].

The seemingly simple systemof Si self-interstitials exemplifies the varied accuracy
of different density functionals and many-body methods. The diffusion and ther-
modynamics of silicon self-interstitial defects dominate the doping and subsequent
annealing processes of crystalline silicon for electronics applications [3, 21, 22]. The
mechanism of self-diffusion in silicon is still under debate. Open questions [23]
include: (i) Are the interstitial atoms the primemediators of self-diffusion? (ii) What
is the specific mechanism by which the interstitials operate? (iii) What is the value of
the interstitial formation energy? Quantum mechanical methods are well suited to
determine defect formation energies. LDA, GGA, and hybrid functionals predict
formation energies for these defects ranging from about 2 to 4.5 eV [24]. Quasipar-
ticlemethods such as theGWapproximation reduce the self-interaction error in DFT
and are expected to improve the accuracy of the interstitial formation energies.
Recent G0W0 calculations [25] predict formation energies of about 4.5 eV in close
agreement with HSE hybrid functional [24] and previous DMC calculations [24, 26].
Quantum Monte Carlo (QMC) methods provide an alternative to DFT and a
benchmark for defect formation energies [27, 28].

In this paper, we review the approximations that are made in DMC calculations
for solids and estimate how these approximations affect the accuracy of point defect
calculations, using the Si self-interstitial defects as an example. Section 2.2
describes the QMC method and its approximations. Section 2.3 reviews previous
QMC calculations for defects in solids, and Section 2.4 discusses the results of
our calculations for interstitials in silicon and the accuracy of the various
approximations.

2.2
Quantum Monte Carlo Method

QMC methods are among the most accurate electronic structure methods available
and, in principle, have the potential to outperform current computationalmethods in
both accuracy and cost for extended systems. QMC methods scale as O(N3) with
system size and can handle large systems. At the present time, calculations for as
many as 1000 electrons on 1000 processors make effective use of available compu-
tational resources [24]. Current work is under way to develop algorithms that extend
the system size accessible by QMC methods to petascale computers [29].

Continuumelectronic structure calculations primarily use twoQMCmethods [27]:
the simpler variational Monte Carlo (VMC) and the more sophisticated DMC. In
VMC, a Monte Carlo method evaluates the many-dimensional integral to calculate
quantummechanical expectation values. Accuracy of the results depends crucially on
the quality of the trial wave function, which is controlled by the functional form of the
wave function and the optimization of the wave functions parameters [30]. DMC
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removes most of the error in the trial wave function by stochastically projecting out
the ground state using an integral form of the imaginary-time Schr€odinger equation.

One of the most accurate forms of trial wave functions for QMC applications to
problems in electronic structure is a sum of Slater determinants of single-particle
orbitals multiplied by a Jastrow factor and modified by a backflow transformation:

YðrnÞ ¼ eJðrn;RmÞ
X

ci CSFiðxnÞ:

The Jastrow factor J typically consists of a low-order polynomial and a plane-wave
expansion in electron coordinates rn and nuclear coordinates Rm that efficiently
describe the dynamic correlations between electrons and nuclei. Static (near-degen-
eracy) correlations are described by a sumof Slater determinants. Symmetry-adapted
linear combinations of Slater determinants, so-called configuration state functions
(CSF), reduce the number of determinant parameters ci. For extended systems, the
lack of size consistency for a finite sum of CSF�s makes this form of trial wave
functions impractical, and a single determinant is used instead. Finally, the backflow
transformation rn ! xn allows the nodes of the trial wave function to bemoved,which
can efficiently reduce the fixed-node error [31]. Since the backflow-transformed
coordinate of an electron xn depends on the coordinates of all other electrons, the
Sherman–Morrison formula used to efficiently update the Slater determinant does
not apply, increasing the scaling of QMC toOðN4Þ. If a finite cutoff for the backflow
transformation is used, the Sherman–Morrison-Woodbury formula [32] applies, and
the scaling reduces to OðN3Þ.

Optimization of themany-body trial wave function is crucial because accurate trial
wave functions reduce statistical and systematic errors in bothVMCandDMC.Much
effort has been spent on developing improved methods for optimizing many-body
wave functions, and this continues to be the subject of ongoing research. Energy and
variance minimization methods can effectively optimize the wave function para-
meters in VMC calculations [30, 33]. Recently developed energy optimization
methods enable the efficient optimization of CSF coefficients and orbital parameters
in addition to the Jastrow parameters for small molecular systems, eliminating the
dependence of the results on the input trial wave function [30].

VMC and DMC contain two categories of approximation to make the many-
electron solution tractable: controlled approximations, whose errors can be made
arbitrarily small through adjustable parameters, and uncontrolled approximations,
whose errors are unknown exactly. The controlled approximations include the finite
DMCtime step, the finite number ofmany-electron configurations that represent the
DMC wave function, the basis set approximation, e.g., spline or plane-wave repre-
sentation, for the single-particle orbitals of the trial wave function and the finite-sized
simulation cell. The uncontrolled approximations include the fixed-node approxi-
mation, which constrains the nodes of the wave function in DMC to be the same as
those of the trial wave function, the replacement of the core electrons around each
atomwith a pseudopotential to represent the core–valence electronic interaction and
the locality approximation, which uses the trial wave function to project the nonlocal
angular momentum components of the pseudopotential.
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2.2.1
Controlled Approximations

2.2.1.1 Time Step
DMC is based on the transformation of the time-dependent Schr€odinger equation
into an imaginary-time diffusion equation with a source–sink term. The propagation
of the 3N-dimensional electron configurations (walkers) that sample the wave
function requires a finite imaginary time step, which introduces an error in the
resulting energy [34, 35].

Controlling the time step error is simply a matter of performing calculations for a
range of time steps, either to determine when the total energy or defect formation
energy reaches the required accuracy or to perform an extrapolation to a zero time
step using a low-order polynomial fit of the energy as a function of time step. Smaller
time steps, however, require a larger total number of steps to sample sufficiently the
probability space. Thus, the optimal time step should be small enough to add no
significant error to the average while large enough to keep the total number ofMonte
Carlo steps manageable. In addition, the more accurate the trial wave function is the
smaller the error due to the time step will be [35].

2.2.1.2 Configuration Population
In DMC, a finite number of electron configurations represent the many-body wave
function. These configurations are the time-dependent Schr€odinger equation�s
analogs to particles in the diffusion equation and have also been called psips [34]
andwalkers [27]. To improve the efficiency of sampling themany-bodywave function,
the number of configurations is allowed to fluctuate from time step to time step in
DMC using a branching algorithm. However, the total number of configurations
needs to be controlled to prevent the configuration population from diverging or
vanishing [35]. This population control introduces a bias in the energy. In practice
where tested [36], hundreds of configurations are sufficient to reduce the population
control bias in the DMC total energy below the statistical uncertainty.

The VMC and DMC calculations parallelize easily over walkers. After an initial
decorrelation run, the propagation of a larger number of walkers is computationally
equivalent to performingmore time steps. The variance of the total energy scales like

s2E / tcorr
NconfNstep

;

where Nconf denotes the number of walkers, Nstep the number of time steps, and
tcorr the auto-correlation time.

2.2.1.3 Basis Set
A sum of basis functions with coefficients represents the single-particle orbitals in
the Slater determinant. A DFT calculation usually determines these coefficients.
Plane waves provide a convenient basis for calculations of extended systems since
they form an orthogonal basis that systematically improves with increase in number
of plane waves that span the simulation cell. Increasing the number of plane waves
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until the total energy converges within an acceptable threshold in DFTcreates a basis
set that has presumably the same accuracy in QMC.

Since the plane-wave basis functions extend throughout the simulation cell, the
evaluation of an orbital at a given position requires a sum over all plane waves.
Furthermore, the number of plane waves is proportional to the volume of the
simulation cell. The computational cost of orbital evaluation can significantly be
reduced by using a local basis, such as B-splines, which replaces the sum over plane
waves with a sum over a small number of local basis functions. The resulting
polynomial approximation reduces the computational cost of orbital evaluation at a
single point from the number of plane waves (hundreds to thousands depending on
the basis set) to the number of non-zero polynomials (64 for cubic splines) [37]. The
wavelength of the highest frequency plane wave sets the resolution of the splines.
Thus, themost important quantity to control in the basis set approximation is the size
of the basis set.

2.2.1.4 Simulation Cell
Simulation cells with periodic boundary conditions are ideally suited to describe an
infinite solid but result in undesirable finite-size errors that need correction. There
are three types of finite-size errors. First, the single-particle finite-size error arises
from the choice of a single k-point in the single-particle Bloch orbitals of the trial
wave function. Second, the many-body finite-size error arises from the non-physical
self-image interactions between electrons in neighboring cells. Third, the defect
creates a strain field that results in an additional finite-size error for small
simulation cells.

The single-particle finite-size error is greatly reduced by averaging DMC calcula-
tions for single-particle orbitals at different k-points that sample the first Brillouin
zone of the simulation cell, so-called twist-averaging [38] Alternatively, the single-
particle finite-size error can also be estimated from the DFT energy difference
between a calculationwith a dense k-pointmesh and onewith the same single k-point
chosen for the orbitals of the QMC wave function.

For the many-body finite-size error, several methods aim to correct the fictitious
periodic correlations between electrons in different simulation cells. The first
approach, the model periodic Coulomb (MPC) interaction [39], revises the Ewald
method [40] to account for the periodicity of the electrons by restoring the Coulomb
interaction within the simulation cell and using the Ewald interaction to evaluate the
Hartree energy. The second approach is based on the random phase approximation
for long wavelengths. The resulting first-order, finite-size-correction term for both
the kinetic and potential energies can be estimated from the electronic structure
factor [41]. The third approach estimates the many-body finite-size error from the
energy difference between DFTcalculations using a finite-sized and an infinite-sized
model exchange-correlation functional [42]. This approach relies on the exchange-
correlation functional being a reasonable description of the system, whereas the
other two approaches (MPC and structure factor) do not have this restriction. The
MPC and structure factor corrections are fundamentally related and often result in
similar energy corrections [43].
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The defect strain finite-size error can be estimated at the DFT level using
extrapolations of large simulation cells. Also, since QMC force calculations are
expensive and still under development [44], QMC calculations for extended systems
typically start with DFT-relaxed structures. Energy changes due to small errors in the
ionic position aswell as thermal disorder are expected to be quite small because of the
quadratic nature of the minima and will largely cancel when taking energy differ-
ences for the defect energies.

2.2.2
Uncontrolled Approximations

2.2.2.1 Fixed-Node Approximation
TheMonte Carlo algorithm requires a probability distribution, which is non-negative
everywhere, but fermions, such as electrons, are antisymmetric under exchange.
Therefore, any wave function of two or more fermions has regions of positive and
negative value. For DMC to take the wave function as the probability distribution,
Anderson [34] fixed the zeros or nodes of the wave function and took the absolute
value of thewave function as the probability distribution. If the trial wave functionhas
the nodes of the ground state, then DMC projects out the ground state. However, if
the nodes differ from the ground state, thenDMCfinds the closest ground state of the
system within the inexact nodal surface imposed by the fixed-node condition. This
inexact solution has an energy higher than that of the ground state.

Three methods estimate the size of the fixed-node approximation: (i) In the
Slater–Jastrow form of the wave function, the single-particle orbitals in the Slater
determinant set the zeroes of the trial wave function. Since these orbitals come from
DFT calculations, varying the exchange-correlation functional in DFT changes the
trial wave function nodes and provides an estimate of the size of the fixed-node error.
(ii) L�opez R�ıos et al. [31] applied backflow to the nodes by modifying the interparticle
distances, enhancing electron–electron repulsion and electron–nucleus attraction.
The expense of the method has thus far limited its application in the literature to
studies of second- and third-row atoms, the water dimer and the 1D and 2D electron
gases. (iii) Because the eigenfunction of theHamiltonianhas zero variance inDMC, a
linear extrapolation from the variances of calculations with and without backflow to
zero variance estimates the energy of the exact ground state of the Hamiltonian.

2.2.2.2 Pseudopotential
Valence electrons play themost significant roles in determining a composite system�s
properties. The core electrons remain close to the nucleus and are largely inert. The
separation of valence and core electron energy scales allows the use of a pseudopo-
tential to describe the core-valence interaction without explicitly simulating the core
electrons. However, there is often no clear boundary between core and valence
electrons, and the core–valence interaction is more complicated than a simple
potential can describe. Nonetheless, the computational demands of explicitly sim-
ulating the core electrons and the practical success of calculations with pseudopo-
tentials in reproducing experimental values promote their continued use in QMC.
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Nearly all solid-state and many molecular QMC calculations to date rely on pseu-
dopotentials to reduce the number of electrons and the time requirement of
simulating the core–electron energy scales.

Comparing DMC energies using pseudopotentials constructed with different
energy methods [DFT and Hartree-Fock (HF)] provides an estimate of the error
incurred by the pseudopotential approximation. Additionally, the difference between
density functional pseudopotential and all-electron energies estimates the size of the
error introduced by the pseudopotential and is used as a correction term.

2.2.2.3 Pseudopotential Locality
DMC projects out the ground state of a trial wave function but does not produce a
wave function, only a distribution of point-like configurations. However, the pseu-
dopotential contains separate potentials (or channels) for different angular-momenta
of electrons. One channel, identified as local, does not require the wave function to
evaluate, but the nonlocal channels require an angular integration to evaluate, and
such an integration requires a wave function. Mit�a�s et al. [45] introduced use of the
trial wave function to evaluate the nonlocal components requiring integration. This
locality approximation has an error that varies in sign. While there are no good
estimates of the magnitude of this error, Casula [46] developed a lattice-based
technique that makes the total energy using a nonlocal potential an upper bound
on the ground-state energy. Pozzo and Alf�e [47] found that, in magnesium and
magnesium hydride, the errors of the locality approximation and the lattice-regu-
larizedmethod are comparably small, but the latticemethod requires amuch smaller
time step (0.05 vs. 1.00Ha�1 in Mg and 0.01 vs. 0.05Ha�1 in MgH2) to achieve the
same energy. Thus, they chose the locality approximation.

While all-electron calculations would, in principle, make the pseudopotential and
locality errors controllable, in practice, the increase in number of electrons, required
variational parameters and variance of the local energy makes such calculations
currently impractical for anything but small systems and light elements [48].

2.3
Review of Previous DMC Defect Calculations

To date, there have been DMC calculations for defects in threematerials: the vacancy
in diamond, the Schottky defect in MgO, and the self-interstitials in Si.

2.3.1
Diamond Vacancy

Diamond�shighelectron andholemobility and its tolerance tohigh temperatures and
radiation make it a technologically important semiconductor material. Diffusion in
diamond is dominated by vacancy diffusion [53], and the vacancy is also associated
with radiation damage [54]. Table 2.1 shows the range of vacancy formation and
migration energies calculated by LDA [50] andDMC [49]. DMCused structures from
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LDA relaxation and single-particle orbitals employing a Gaussian basis. A LDA
pseudopotential described the core electrons. The DMC calculations predict a lower
formation energy than LDA. The DMC value for the migration energy is an upper
bound on the actual number since the structures have not been relaxed in DMC.
Furthermore, DMCestimates the experimentally observed dipole transition [49]. The
GR1optical transition isnot a transitionbetweenone-electron states but between spin
states1Eand1T2.DMCcalculatesa transitionenergyof1.5(3) eVfrom1Eto1T2,close to
the experimentally observed value of 1.673 eV. LDA cannot distinguish these states.
For the cohesive energy, DMC predicts a value of 7.346(6) eV in excellent agreement
with the experimental result of 7.371(5) eV while LDA overbinds and yields 8.61 eV.

2.3.2
MgO Schottky Defect

MgO is an important test material for understanding oxides. Its rock-salt crystal
structure is simple, making it useful for computational study. Schottky defects are
one of the main types of defects present after exposure to radiation, according to
classical molecular dynamics simulations [55]. Table 2.1 shows that DMC predicts a
Schottky defect formation energy in MgO at the upper end of the range of
experimental values [51].

2.3.3
Si Interstitial Defects

Table 2.1 shows that DFT and DMC differ by up to 2 eV in their predictions of the
formation energies of these defects [24, 26]. We compare the DMC values with our
results including tests on the QMC approximations in Section 2.4.

2.4
Results

We specifically test the time step, pseudopotential and fixed-node approximations for
the formation energies of three silicon self-interstitial defects, the split-h110i
interstitial (X), the tetrahedral interstitial (T), and the hexagonal interstitial (H). The
QMC calculations are performed using the CASINO [56] code. Density functional
calculations in this work used the Quantum ESPRESSO [57] andWIEN2k [58] codes.
The defect structures are identical to those of Batista et al. [24]. The orbitals of the trial
wave function come from DFT calculations using the LDA exchange-correlation
functional. The plane-wave basis set with a cutoff energy of 1088 eV (60Ha)
converges the DFT total energies to 1meV. A 7� 7� 7 Monkhorst-Pack k-point
mesh centered at the L-point (0.5,0.5,0.5) converges the DFT total energy to 1meV. A
population of 1280 walkers ensured that the error introduced by the population
control is negligibly small. Due to the computational cost of backflow, we perform
the simulations for a supercell of 16(þ 1) atoms and estimate the finite-size
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corrections using the structure factormethod [41]. The final correctedDMCenergies
for the X, T, and H defects are shown in the bottom line of Table 2.2.

2.4.1
Time Step

Figure 2.1 shows the total energies of bulk silicon and the X defect as a function of
time step in DMC. A time step of 0.01Ha�1 reduces the time step error to within the
statistical uncertainty of the DMC total energy.

2.4.2
Pseudopotential

In our calculations, a Dirac-Fock (DF) pseudopotential represents the core electrons
for each silicon atom [59–61]. To estimate the error introduced by the pseudopo-
tential, we compare the defect formation energies in DFTusing this pseudopotential
with all-electron DFT calculations using the linearized augmented plane-wave
method [58]. This comparison gives corrections of 0.083, �0.168, and 0.054 eV for
the H, T, and X defects respectively.

2.4.3
Fixed-Node Approximation

The fixed-node approximation is the main source of error in DMC calculations. To
estimate the size of the error introduced by the fixed-node approximation, we
perform the calculations using the backflow transformation, which allows the nodes
of the trial wave function to be moved and reduces the fixed-node error [31]. We
estimate the error due to the fixed-node approximation by performing calculations
with and without the backflow transformation and by extrapolating the resulting
defect formation energies to zero variance.

Applying the backflow transformation to electron coordinates using polynomials
of electron-electron, electron-nucleus and electron–electron–nucleus separations,
we include polynomial terms to eighth-order for each spin type in electron–electron
separation, to sixth-order in electron-nucleus separation and to third-order for each
spin type in electron–electron–nucleus separation. Figure 2.2 shows the linear
extrapolation of the DMC energies for the Slater–Jastrow and Slater-Jastrow-
backflow trial wave function to zero variance. The total energy decrease for the
bulk and interstitial cells due to the backflow transformation ranges from 0.20(5) to
0.62(5) eV. The backflow transformation results in a significantly improved nodal
surface of the trial wave function, which is reflected in the reduced variance of the
local energy.

Table 2.2 list the Si interstitials formation energies in DMC for the Slater-Jastrow,
Slater-Jastrow-backflow wave function and the extrapolation. Applying the backflow
transformation reduces the formation energies for theX, T, andHinterstitials by 0.42
(5), 0.05(5), and 0.15(5) eV, respectively. The linear extrapolation provides a simple
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estimate of the remaining fixed node error. The extrapolation lowers the interstitial
formation energy by a negligible amount of 0.06(10), 0.00(10), 0.07(10) eV for the X,
T, andH interstitials, respectively. The resulting Si interstitial formation energies are
4.4(1), 5.1(1), and 4.7(1) eV for the X, T, and H interstitial, respectively, in close
agreement with recent G0W0 [25] and previous HSE and DMC calculations [24, 26].

2.5
Conclusion

QMCmethods present an accurate tool for the calculation of point defect formation
energies, provided care is taken to control the accuracy of all the underlying
approximations. Including corrections for the approximations yields DMC values
for the Si interstitial defects on par withGW and hybrid-functional DFTcalculations.
While backflow transformation and zero-variance extrapolation to remove the fixed-
node error modify the energies slightly, further work remains to carefully control for
finite-size effects known to plague defect supercell calculations.
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3
Electronic Properties of Interfaces and Defects from Many-body
Perturbation Theory: Recent Developments and Applications
Matteo Giantomassi, Martin Stankovski, Riad Shaltaf, Myrta Gr€uning, Fabien Bruneval,
Patrick Rinke, and Gian-Marco Rignanese

3.1
Introduction

Almost all electronic and optoelectronic devices (such as MOS transistors,
photovoltaic cells, semiconductor lasers, etc.) contain metal–semiconductor,
insulator–semiconductor, insulator–metal, and/or semiconductor–semiconductor
interfaces. The electronic properties of such heterojunctions determine the device
characteristics [1, 2]. The band gaps of the participating materials are usually
different, hence, at least one of the band edges is different. The energy of charge
carriers must then change when passing through the heterojunction. Most often,
there will be discontinuities in both the conduction and valence bands. These
so-called band offsets (BOs) are the origin of most of the useful properties of
heterojunctions.

Defects also play a critical role for the functionality of devices [3–5]. They can have
both positive aswell as detrimental effects. As dopants they provide charge carriers in
semiconductors, which can contribute to a current, but these carriers can also
recombine at defect sites and are then lost. Problems like flat-band and threshold
voltage shifts, carrier mobility degradation, charge trapping, gate dielectric wear-out,
and breakdown, as well as temperature instabilities are believed to mainly originate
from defects forming at (or close to) the heterojunction interface. A deep under-
standing of the defects concerned is thus highly desirable for the enhancement of
device performance.

However, experimental characterization of defect energy levels at interfaces is
often very difficult to achieve, so theoretical simulation can provide extremely
useful information for further improvement of devices. In this framework,
density functional theory (DFT) has been, and still is, widely used to investigate
the electronic properties of various defective interfaces. Unfortunately, the semi-
local approximations to DFT – such as the local density approximation (LDA) or
the generalized-gradient approximation (GGA) – suffer from a well-known
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substantial underestimation of band gaps, which hinders a precise prediction
of the energy-level alignment at interfaces. For this reason, hybrid density
functionals have recently increased in popularity [6–11]. These functionals, which
incorporate a fraction of Hartree-Fock (HF) exchange, lead to higher accura-
cies [12] and improved band gaps [13, 14] compared to corresponding results
using semilocal functionals. The fraction of HF exchange to be included cannot be
known in advance for all materials and its optimal value could even be property
dependent [15, 16]. Therefore the reliability of hybrid density functionals cannot
be assessed a priori [17].

In contrast, many-body perturbation theory (MBPT) [18–22] offers an approach for
obtaining quasiparticle (QP) energies in solids which is controlled and amenable to
systematic improvement. However, the cost of such calculations is generally higher
than that of their DFTcounterparts. Recently, considerable effort has been devoted to
finding reliable techniques to speed up MBPTcalculations and make them tractable
for the larger systems needed to simulate defects and interfaces.

In this chapter, we will review the recent developments in MBPTcalculations and
the results obtained for interfaces and defects. Section 3.2 is devoted to the theoretical
basis of MBPT. Hedin�s equations are presented in Section 3.2.1. The GW approx-
imation is introduced in Section 3.2.2, while approximations going beyond GW are
discussed in Section 3.2.3. Section 3.3 focuses on the practical implementation and
the recent developments of MBPT. In Section 3.3.1, we describe the perturbative
approach, that is usually employed to obtain QP energies. The methods used to take
into account the frequency dependence of the self-energy operators are presented in
Section 3.3.2. In order to allow for a reduction of thenumber of unoccupied states that
need to be included explicitly in the calculations, the extrapolarmethod is introduced
in Section 3.3.3.We discuss the combination ofMBPTwith the projector-augmented
wave (PAW) method in Section 3.3.4. Sections 3.4 and 3.5 are dedicated to MBPT
results obtained for BOs at interfaces and for defects, respectively. Special emphasis
is put on the caveats of the methods.

3.2
Many-Body Perturbation Theory

3.2.1
Hedin�s Equations

A rigorous formulation for the properties of QPs is based on a Green�s function
approach [18]. The QP energies EQP

i and wavefunctions yQP
i are obtained by solving

the QP equation:

�
� 1
2
r2 þVextðrÞþVHðrÞ

�
y

QP
i ðrÞþ

ð
S
�
r; r0;EQP

i

�
y

QP
i ðr0Þdr0 ¼ EQP

i y
QP
i ðrÞ;

ð3:1Þ

34j 3 Electronic Properties of Interfaces and Defects from Many-body Perturbation Theory



where Vext and VH are the external and Hartree potentials, respectively. In this
equation, the exchange and correlation effects are described by the electron self-
energy operator Sðr; r0;EQP

i Þ which is non-local, energy dependent, and non-
Hermitian. Hence, the eigenvalues EQP

i are generally complex: their real part is
the energy of the QP, while their imaginary part gives its lifetime.

The main difficulty is to find an adequate approximation for the self-energy
operator S. Hedin [23] proposed a perturbation series expansion in the fully
screened (as opposed to bare) Coulomb interaction. The Green�s function, G0,
of a �zeroth-order� system of non-interacting electrons is first constructed
from the one-particle wavefunctions yi and energies Ei of the �zeroth-order�
Hamiltonian, as:

G0ðr; r0;EÞ ¼
X

i

yiðrÞy�
i ðr0Þ

E�Ei þ igsgnðEi�mÞ ; ð3:2Þ

where m is the chemical potential and g is a positive infinitesimal. The exact one-
body Green�s function G is thus written using the Dyson equation:1)

Gð12Þ ¼ G0ð12Þþ
ð
G0ð13ÞSð34ÞGð42Þdð34Þ: ð3:3Þ

Here, the self-energyS is obtained by self-consistently solvingHedin�s closed set of
coupled integro-differential equations:

Cð12; 3Þ ¼ dð12Þdð13Þ

þ
ð
dSð12Þ
dGð45ÞGð46ÞGð75ÞCð67; 3Þdð4567Þ;

ð3:4Þ

Pð12Þ ¼ �i
ð
Gð23ÞGð42þÞCð34; 1Þdð34Þ; ð3:5Þ

Wð12Þ ¼ vð12Þþ
ð
Wð13ÞPð34Þvð42Þdð34Þ; ð3:6Þ

Sð12Þ ¼ i
ð
Gð14ÞWð1þ3ÞCð42; 3Þdð34Þ; ð3:7Þ

where P is the polarizability, W the screened and v the unscreened Coulomb
interaction and C the vertex function, which describes higher-order corrections to

1) In Section 3.1, Hedin�s simplified notation 1 � ðx1; s1; t1Þ is used to denote space, spin, and time
variables and the integral sign stands for summation or integration of all of these where appropriate.
1þ denotes t1 þ gwhere g is a positive infinitesimal in the time argument. Atomic units are used in
all equations throughout this paper.
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the interaction between quasiholes and quasielectrons. The self-consistent iterative
process is illustrated in the left panel of Figure 3.1.

The most complicated term in these equations is C, which contains a functional
derivative and hence cannot in general be evaluated numerically. The vertex is the
usual target of simplification for an approximate scheme.

3.2.2
GW Approximation

Hedin�s GWmethod [23] is the most widely used approximation for the self-energy,
S. The approximation is defined by neglecting the variation of the self-energy with
respect to the Green�s function dSð12Þ=dGð45Þ ¼ 0 in Eq. (3.4), leading to:

Cð12; 3Þ ¼ dð12Þdð13Þ: ð3:8Þ

Thus, the polarizability in Eq. (3.5) is given by:

Pð12Þ ¼ �iGð12þÞGð21Þ; ð3:9Þ

which corresponds to the random phase approximation (RPA) for the dielectric
matrix. The self-energy in Eq. (3.7) becomes simply a product of theGreen�s function
and the screened Coulomb interaction:

Sð12Þ ¼ iGð12ÞWð1þ2Þ; ð3:10Þ

where the Green�s function used is consistent with that returned by Dyson�s
equation.

Since the self-energy depends on G, this procedure should be carried out
iteratively, beginning with G ¼ G0, until the input Green�s function equals the
output one. This yields the self-consistent GW approximation, in which the self-
consistent cycle is restricted to Eqs. (3.3), (3.9), (3.6), and (3.10), as illustrated in the
right panel of Figure 3.1.

Figure 3.1 Graphical illustration of the self-
consistent process required to solve the
complete set of Hedin�s equations (left panel)
and the four coupled integro-differential

equations resulting from theGW approximation
(right panel). The so-called G0W0

approximation consists of performing the loop
only once starting from G ¼ G0.
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In practice, it is customary to use the first iteration only, often called one-shot
GW or G0W0, to approximate the self-energy operator. Here, W0 is perhaps the
simplest possible screened interaction, which in terms of Feynman diagrams
involves an infinite geometric series over non-interacting electron–hole pair
excitations as in the usual definition of the RPA.2) This approximation for W,
although tremendously successful for weakly correlated solids, is not free of self-
screening errors [24, 25].

When using only a single iteration, it is important to make that one as accurate as
possible, so an initial G0 calculated using Kohn–Sham DFT is normally used. The
logic is that the Kohn–Sham orbitals should produce an inputG0 much closer to the
self-consistent solution, thus rendering a single iteration sufficient. This choice ofG0

has in the past produced accurate results for QP energies (i.e., the correct electron
addition and removal energies, in contrast to the DFT eigenvalues [26]) for a wide
range of s–p bonded systems [27]. However, because this choice ofG0 corresponds to
a non-zero initial approximation for S0, there is no longer a theoretical justification
for the usual practice of setting the vertex to a product of delta functions before the
decoupling. Also, different choices for the exchange-correlation functional may lead
to different Green�s functions [28, 29], making G0W0 results dependent on the
starting point.

3.2.3
Beyond the GW Approximation

SinceG0 is often constructed fromDFTorbitals, the self-energy and its derivative are
not zero for the first iteration. Using the static exchange-correlation kernel, Kxc,
(which is the functional derivative of the DFT exchange-correlation potential, Vxc,
with respect to density, n) Del Sole et al. [30] demonstrated how G0W0 may be
modified with a vertex function to make S consistent with the DFT starting point.
They added the contribution of the vertex – decoupled after the first evaluation of
dSð12Þ=dGð45Þ in Eq. (3.4) – into both the self-energy, S (3.7), and the polarization,
P (3.5). The result is a self-energy of the form G0W0C. Instead, the G0W

�
0 approx-

imation is obtained when the vertex function is included in P only. As commented by
Hybertsen and Louie [31] and Del Sole et al., both these results take the form of GW,
but with W representing the Coulomb interaction screened by the test-charge-
electron dielectric function and the test-charge-test-charge dielectric function,
respectively, and with electronic exchange and correlation included through a
time-dependent DFT (TDDFT) kernel.

Using the LDA for the exchange-correlation potential and kernel, Del Sole et al.
found thatG0W0C yields final results almost equal to those ofG0W0 for the band gap
of crystalline silicon and that the equivalent results from G0W

�
0 were shown to close

the gap slightly compared to standard G0W0. However, in this previous study the

2) In contrast to the common use of the RPA, there is no integration over the interaction strength, since
the perturbation expansion itself takes care of the switching on of interactions.
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PPM approximation was utilized for modeling the frequency-dependence of W,
which may have affected the resulting QP energies.

3.3
Practical Implementation of GW and Recent Developments Beyond

3.3.1
Perturbative Approach

Often, it is more efficient to obtain the QP energies from Eq. (3.1) rather than solving
the Dyson equation (Eq. 3.3) and searching for the poles of the Green�s function. The
approach consists of using perturbation theory with respect to the results of DFT.
Despite some fundamental differences, the formal similarity is striking between the
QP equation and the Kohn–Sham equation:

�
� 1
2
r2 þVextðrÞþVHðrÞ

�
yDFT

i ðrÞþVxcðrÞyDFT
i ðrÞ ¼ EDFT

i yDFT
i ðrÞ;

ð3:11Þ

where Vxc is the DFT exchange-correlation potential.3) In many cases, the DFT
energies EDFT

i already provide a reasonable estimate of the band structure and are
usually in qualitative agreement with experiment. Furthermore, in the simple
systems for which the true QP amplitudes yQP

i have been calculated, it was found
that the DFTwave functions yDFT

i are usually very close to the QP results [31, 32].
In silicon, for instance, the overlap between DFT-LDA and QP wave functions has
been reported to be close to 99.9%, but for certain surface [33, 34] and cluster
states [35, 36] the overlap is far less (see also Ref. [37] for comments and
criticisms). This indicates that in the basis of Kohn–Sham wave functions, the
self-energy can be considered a diagonally dominant matrix with negligible off-
diagonal elements.

Hence, EDFT
i andyDFT

i for the ith state are used as a zeroth-order approximation for
their QP counterparts. The QP energy EQP

i is then calculated by adding to EDFT
i the

first-order perturbation correction which comes from replacing the DFT exchange-
correlation potential Vxc with the self-energy operator S:

EQP
i ¼ EDFT

i þ �
yDFT

i jSðEQP
i Þ�VxcjyDFT

i

�
: ð3:12Þ

To solve Eq. (3.12), the energy dependence of Smust be known analytically, which
is usually not the case. Under the assumption that the difference between QP and
DFTenergies is relatively small, the matrix elements of the self-energy operator can

3) Note that Vxc can be seen as a static, local, and hermitian approximation to Sð12Þ.
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be Taylor expanded to first-order around EDFT
i in order to be evaluated at EQP

i :

S
�
EQP
i

� � S
�
EDFT
i

�þ �
EQP
i �EDFT

i

�qSðEÞ
qE

����
E¼EDFT

i

: ð3:13Þ

In this expression, the QP energy, EQP
i , can be solved for:

EQP
i ¼ EDFT

i þZi yDFT
i jSðEDFT

i Þ�VxcjyDFT
i

� �
; ð3:14Þ

where Zi is the renormalization factor defined by:

Z�1
i ¼ 1��

yDFT
i jqSðEÞ

qE

����
E¼EDFT

i

jyDFT
i

�
: ð3:15Þ

The principle is illustrated in Figure 3.2.

Figure 3.2 (online color at: www.pss-b.com)
Schematic illustration (adapted from Ref. [38])
of the perturbative approach to finding the QP
correction. In principle, the self-energy matrix
element, SiiðEÞ ¼ hyDFT

i jSðEÞ�VxcjyDFT
i i, and

the true QP correction, SðEQP
i Þ, is found from

the solution of E�EDFTi ¼ SiiðEÞ, i.e., at the
crossing of the dashed black line and SiiðEÞ in

the circular zoom-in. In practice, the
perturbative approach exploits the fact that it is
more computationally feasible to use the Taylor
expansion around SðEDFTi Þ [Eqs. (3.14)
and (3.15)], and find an approximate value for
the QP correction at the crossing of the red and
black dashed lines.
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3.3.2
QP Self-Consistent GW

The procedure described above has proven very efficient [27], but several questions
inevitably arise: Howmuch does theG0W0 result depend on the starting point?What
happens if the starting DFT band structure is qualitatively wrong4)? A self-consistent
GW self-energy calculation should be free of such concerns.

However, performing self-consistency in GW is everything but straightforward,
since S, being non-Hermitian and energy-dependent, should have non-orthogonal
and energy-dependent left and right eigenvectors. In practice, for large systems, the
solution of this Hamiltonian is not tractable without approximations. Furthermore,
fully self-consistentGWcalculations have been shown to worsen results compared to
the standard one-shot G0W0 method [39–41].

A different solution to the self-consistency issue is the so-called QP self-consistent
GW approximation (QSGW) developed by Faleev et al. [42] and co-workers [43, 44].
For a set of trial QPenergies and amplitudes fEi;yig (for instance, the eigensolutions
of the DFTorHartree problem), the one-particle Green�s function,G, and in turn the
GW self-energy can be calculated. These authors proposed to constrain the dynamical
GW self-energy to be static andHermitian and as close as possible to the one-shot self-
energy (G0W0) of a non-interacting reference system. Their model QSGW self-
energy S

�
reads:

yijS
�
jyj

D E
¼ 1

2
H½hyijSðEiÞjyjiþ hyjjSðEjÞjyii�; ð3:16Þ

where H means that only the Hermitian part of the matrix is considered.
The approximated self-energy matrix, S

�
, is diagonalized yielding a new set of

orthogonalQPamplitudes and real-valuedQPenergies. From this new set of orbitals,
a new density nðrÞ and the corresponding Hartree potential is generated, a new S

�
is

constructed and the procedure is iterated to self-consistency. Ideally, the final result
shouldnot depend on the initialHamiltonian, thoughnofirmmathematical proof for
this has been reported so far. TheQSGWapproach improves theG0W0 results, giving
band gaps very close to experiments with errors that are small and highly
systematic [43].

Following the same spirit, Bruneval et al. [37] proposed using an alternative
Hermitian and static approximation to the GW self-energy: the COHSEX approx-
imation, derived by Hedin in 1965 [23]. COHSEX is a simple approximation which
consists of two terms, the COulomb Hole part and the Screened EXchange part:

SCOHSEXðr; r0Þ ¼ SCOHðr; r0Þ þSSEXðr; r0Þ
SCOHðr; r0Þ ¼ dðr; r0Þ½Wðr; r0;v ¼ 0Þ�vðr�r0Þ�
SSEXðr; r0Þ ¼ �

X

v

yvðrÞy�
vðr0ÞWðr; r0;v ¼ 0Þ:

ð3:17Þ

4) For example, if DFT erroneously predicts a system to be metallic, when it is not.

40j 3 Electronic Properties of Interfaces and Defects from Many-body Perturbation Theory



These terms do not involve any summation over empty states (v runs only over
occupied states). Performing self-consistency for the COHSEX approximation is
hence more tractable than for the QSGW self-energy of Faleev and coworkers,
although SCOHSEX may be a cruder approximation than S

�
.

An alternative is to constrain theQPamplitudes inS
�
to their DFTcounterparts and

only update the QP energies until convergence. This method is referred to as the
eigenvalue-only QSGW (e-QSGW).

3.3.3
Plasmon Pole Models Versus Direct Calculation of the Frequency Integral

In the frequency domain, the GW self-energy is given by the convolution

Sðr; r0;vÞ ¼ i
2p

ð
eiv

0gGðr; r0;vþv0ÞWðr; r0;v0Þdv0; ð3:18Þ

where g is a positive infinitesimal. Evaluating this expression requires, in principle,
the knowledge of the full frequency dependence of Wðr; r0;v0Þ. Moreover a fine
frequency grid would be required, since Gðr; r0;vÞ and Wðr; r0;vÞ exhibit a fairly
complex and rapidly changing frequency dependence on the real axis. There are,
however, two different and more efficient techniques to evaluate Eq. (3.18): (i)
integration with a PPM and (ii) integration through contour deformation (CD). In
the former case, the frequency dependence of e�1ðvÞ is modeled with a simple
analytic form, and the frequency convolution is carried out analytically.

In the latter approach, the integral is evaluated numerically by extending the
functions into the complex plane, where the integrand is smoother. Since the fine
details of Wðr; r0;vÞ are integrated over in Eq. (3.18), it is reasonable to expect that
approximated models, able to capture the main physical features of Wðr; r0;vÞ,
should give sufficiently accurate results at considerably reduced computational
effort. This is the basic idea behind the PPM, in which the frequency dependence
of Wðr; r0;v0Þ is modeled in terms of analytic expressions. The coefficients of the
model are derived from first principles, i.e., without any adjustable external para-
meters, either by enforcing exact relations or by anchoring the scheme on quantities
that are calculated ab initio.

It is more convenient to Fourier transform all quantities to a frequency and wave-
vector basis using the following convention:

Wðr; r0;vÞ ¼
X

qGG 0
eiðqþGÞ � rWGG 0 ðq;vÞe�iðqþG 0Þ � r0

; ð3:19Þ

where G is a reciprocal lattice vector and q is a vector in the first Brillouin zone. The
screened interaction is related to the dielectric matrix by:

WGG 0 ðq;vÞ ¼ e�1
GG 0 ðq;vÞvðqþG0Þ; ð3:20Þ
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where the Fourier transform of the bare Coulomb interaction takes the usual form
vðqÞ ¼ 4p=ðVjqj2Þ, V being the crystal volume. Adopting this formalism, the
components with G 6¼ G 0 generate the local fields.

Finally, when the vertex is neglected as in Eq. (3.8), the dielectricmatrix is related to
the polarizability, P, by:

eGG 0 ðq;vÞ ¼ dGG 0�vðqþGÞPGG 0 ðq;vÞ; ð3:21Þ

which is nothing but the usual RPA when Eq. (3.9) is used to compute P.
In the PPMs ofGodby andNeeds [45] (GN) andHybertsen and Louie [31] (HL), the

imaginary part of e�1
GG 0 ðq;vÞ is approximated in terms of a delta function centered at

the plasmon frequency v�
GG 0 ðqÞ with amplitude AGG 0 ðqÞ, i.e.:

`½e�1
GG 0 ðq;vÞ� ¼ AGG 0 ðqÞ � ½dðv�v�

GG 0 ðqÞÞ�dðvþv�
GG 0 ðqÞÞ�: ð3:22Þ

The real part can then obtained by means of a Kramers–Kronig relation, and
becomes:

´½e�1
GG 0 ðq;vÞ� ¼ dGG 0 þ V2

GG 0 ðqÞ
v2�v�

GG 0 2ðqÞ : ð3:23Þ

where V2
GG 0 ðqÞ ¼ �AGG 0 ðqÞv�

GG 0
2 ðqÞ.

The approximation given by Eq. (3.22) is quite reasonable, since experiments and
first-principles analysis reveals that `½WG;G 0 ðq;vÞ� is generally characterized by a
sharp peak in correspondence to a plasmon excitation at the plasmon frequency, at
least for low momentum transfers, q.

At this point, one defines a set of physical constraints to determine the parameters
entering Eqs. (3.22) and (3.23). The GN and HL PPMs differ in the choice of the
particular physical properties or exact relations they aim to reproduce.

In the GN approach, the parameters of the model are derived so that eGG 0 ðq;vÞ
is correctly reproduced at two different frequencies: the static limit (v ¼ 0) and an
additional imaginary point located at the Sommerfeld plasma frequency ivp,
where vp ¼

ffiffiffiffiffiffiffiffiffi
4pr

p
with r the number of electrons per volume [46]. After some

algebra, the following set of equations defining the plasmon-pole coefficients can
be derived:

AGG 0 ðqÞ ¼ e�1
GG 0 ðq;v ¼ 0Þ�dGG 0

v�
GG 0
2 ¼ v2

p
AGG 0 ðqÞ

e�1
GG 0 ðq;v ¼ 0Þ�e�1

GG 0 ðq; ivpÞ�1

2
4

3
5

V2
GG 0 ðqÞ ¼ �AGG 0 ðqÞv�

GG 0
2 ðqÞ

:

8
>>>>><

>>>>>:

ð3:24Þ

In the HL model, the PPM parameters are calculated so as to reproduce the static
limit exactly and to fulfill a generalized f-sum rule relating the imaginary part of the
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exact e�1
GG 0 ðq;vÞ to the plasma frequency and the charge density [47, 48]. The final

expression for the PPM parameters are:

V2
GG 0 ðqÞ ¼ v2

p

ðqþGÞ � ðqþG 0Þ
jqþGj2

nðG�G 0Þ
nð0Þ

v�
GG0
2 ðqÞ ¼ V2

GG 0 ðqÞ
dGG0�e�1

GG0 ðq;v ¼ 0Þ

AGG 0 ðqÞ ¼ �p

2
VGG 0 ðqÞ
v�

GG 0 ðqÞ :

8
>>>>>>>>><

>>>>>>>>>:

ð3:25Þ

Models based on Eqs. (3.22) and (3.23) have a number of undesirable features,
despite their success. For instance, for some elements with G 6¼ G0, the plasmon
poles v�

GG0 ðqÞ can become very small or even imaginary which is somewhat
unphysical [31].

Two more recent PPM approaches due to Von der Linden and Horsch [49] (vdLH)
and Engel and Farid [50] (EF) are expected to be more accurate. The vdLH PPM is
derived starting from the spectral decomposition of the symmetrized inverse
dielectric matrix:

e
�
GG 0
�1ðq;vÞ ¼ jqþG 0j

jqþGj e
�1
GG 0 ðq;vÞ; ð3:26Þ

by assuming that the frequency dependence is solely contained in the eigenvalues
(seeRef. [49]). The disadvantage of the vdLHapproach is that it satisfies the f-sum rule
only for the diagonal elements. In the EF PPM, the eigenvalues and the eigenvectors
are frequency dependent, and derived from an approximation to the reducible
polarizability which is exact both in the static- and high-frequency limit. For further
details on this plasmon-pole technique, see Ref. [50].

Since the frequency convolution in Eq. (3.18) can be carried out analytically once
the plasmon-pole parameters are known, the PPM technique is an ideal tool for initial
convergence studies. It usually proves to be accurate to within 0.1–0.2 eV for states
close to the Fermi level, when compared to results obtained with a costly numerical
integration of S [27]. On the other hand, the accuracy worsens for states far from
the gap, especially for low-lying states. To analyze physical properties depending on
these, it is necessary to avoid PPMmethods, and calculate the frequency dependence
of W explicitly.

A straightforward numerical evaluation of Eq. (3.18) is problematic due to the
fact that G and W both have poles infinitesimally above and below the real axis.
Therefore, a straightforward integration algorithm along the real axis would need
evaluations of the integrand precisely in the region where it is ill-behaved.
An alternative route to evaluating Eq. (3.18) traces back to the earliest GW
calculations for the homogeneous electron gas [51]. The Green�s function G and
the screened Coulomb interaction W are analytic functions (except along the real
axis) and can consequently be analytically continued to the full complex plane.
The strategy is to use a deformation of the contour of integration in order to avoid
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having to deal with quantities close to the real axis as much as possible. Instead of
evaluating the integral along the real axis, one evaluates the integral along the
imaginary axis, and then adds the residues arising from the poles enclosed in the
contour depicted in red in Figure 3.3.

3.3.4
The Extrapolar Method

GW calculations are computationally very demanding. Two major steps in these can
be distinguished: the calculation of the polarizability and the evaluation of matrix
elements of the self-energy. The quantities involved are not only non-local (two plane-
wave indices), but also involve summations over all states (occupied and empty).
Recently, Bruneval and Gonze [52] proposed an acceleration scheme to improve the
convergence with respect to the number of states. The main idea is to replace the
poles arising from the eigenvalues of empty high-energy states with a single (average)
pole, which carries all the spectral weight above a certain cutoff for states. Note that
the extrapolar technique was first introduced in the optimized effective potential
framework [17] and in a preconditioning scheme [53].

Both in the polarizability and in the self-energy, the expressions to be evaluated
contain a sum over wavefunctions in a numerator and energy differences in a
denominator. If wewere able to factor a simple commondenominator out of the sum,
it would be straightforward to eliminate the wavefunctions in the numerator, above
some cutoff band index, Nb, by using the closure relation:

X

b>Nb

jbihbj ¼ 1�
X

b	Nb

jbihbj: ð3:27Þ

Figure 3.3 (online color at: www.pss-b.com) Schematic representation of the contour of
integration in the complex v0 plane used to evaluate SðvÞ. The poles of the integrand are shown
as circles. Only the poles due to Green�s function that lie inside the path contribute to the final
result.
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Treating the denominator of the remainder (now dependent on all states b 	 Nb) is
the delicate part, which requires careful consideration.

3.3.4.1 Polarizability with a Limited Number of Empty States
Using time-reversal symmetry, the truncated expression for the independent-particle
polarizability in reciprocal and frequency space reads

P0GG0 ðq;vÞ ¼ 2
NkV

X

k

X

Nv<b	Nb

v	Nv

Mbv
k ðqþGÞ½Mbv

k ðqþG0Þ��

�
	

1
v�ðevk�ebk�qÞ�ig

� 1
v�ðebk�q�evkÞþ ig



;

ð3:28Þ

whereV is the volume of the unit cell, g is a positive infinitesimal,Nv is the number
of valence states, Nk is the number of k-points in the Brillouin zone, and the index
k runs over the k-points of the Brillouin zone. The matrix elements:

Mbb0
k ðqþGÞ ¼ hybk�qje�iðqþGÞ � rjy

b
0
k
i; ð3:29Þ

are the so-called oscillator strengths.
The extrapolar method proposes that the empty states above the truncation index,

Nb, all have the same energy. In this case, the dependence with respect to index b is
removed in the denominator and one can apply the closure relation to the numerator
in order to get rid of any dependence on this index. This procedure adds a term to the
usual truncated expression for P0. The correction consists of two terms:

DGG0 ðq;vÞ ¼ 2
NkV

X

k

X

v	Nv

hyvkjeiðG
0�GÞ � rjyvki

�
	

1
v�ðevk�eP0Þ�ig

� 1
v�ðeP0�evkÞþ ig




� 2
NkV

X

k

X

b	Nb

v	Nv

Mbv
k ðqþGÞ½Mbv

k ðqþG0Þ��

� 1
v�ðevk�eP0Þ�ig

� 1
v�ðeP0�evkÞþ ig;

ð3:30Þ

which are now free of any dependence on states above Nb. Instead they contain an
�average� energy eP0 which represents the omitted part of the eigenvalue spectrumby
a mean value. The best value for eP0 can be easily determined by a trial-and-error
procedure or in a more elegant manner by considering the fulfillment of the f-sum
rule for P0ðvÞ.
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3.3.4.2 Self-Energy with a Limited Number of Empty States
An analogous procedure can be applied to the correlation part of the self-energy:

hybkjScðebkÞjybki ¼
i

2pNkV

ð X

b0 	Nb

X

qGG0
½WGG 0 ðq;v0Þ�dGG 0vðqþGÞ�

�Mbb0
k ðqþGÞ½Mbb0

k ðqþG0Þ��
v0�eb0k�q þ ebk 
 ig

dv0;

ð3:31Þ

where g is a positive infinitesimal. The sign in front of g is plus when the state b0 is
empty, and minus otherwise.

Unlike for the polarizability, a PPM becomes necessary for the self-energy tomake
the extrapolar correction tractable. In this context, the PPM is a very good approx-
imation. The final correction reads:

Dbk ¼ 1
NkV

X

qGG0

V2
GG 0 ðqÞvðqþGÞ

2v�
GG0 ðqÞ½v�GG0 ðqÞþ eS�ebk�ig�

�
�
hybkjeiðG

0�GÞ � rjybki�
X

b 0	Nb

Mbb0
k ðqþGÞ

h
Mbb0

k ðqþG0Þ
i��

:

ð3:32Þ

Again, it consists of two terms that do not depend on any state above Nb. The
introduced average energy eS in the denominators can safely be taken to be equal to
the previously introduced eP0 .

3.3.5
MBPT in the PAW Framework

Thanks to the excellent agreement obtained with respect to experiments, pseudopo-
tential (PP)-basedmethods have for several decades represented a de facto standard for
MBPT calculations. In recent years, however, results obtained with all-electron (AE)
approaches [44, 54] have revealed that a fully consistent treatment of the electronic
degrees of freedom produces GW band gaps that are systematically smaller than PP
results, thusworsening theagreementbetweenG0W0 andexperiments.Thesefindings
have led toquitean intensedebate in thescientific literatureconcerning the reliability of
the PP approach for MBPTcalculations (see, for instance, Refs. [55–58]).

Systems with shallow cores or localized d- or f-electrons present severe challenges
to PP GW calculations [28, 56, 58–60]. Core-valence exchange is large in these
systems, due to the large overlap of the localized d or f-states (or semicore states) with
lower-lying core states in the same atomic shell. To treat core-valence exchange
consistently it is therefore either important to let the exchange part of the GW self-
energy act on all electrons of one shell [56, 58, 59] – which can be very expensive
computationally – or to build the exchange interaction into the PP [28, 29].

The PAW formalism introduced by Bl€ochl in 1994 [61] presents a flexible and
efficient alternative to PPs inGWcalculations. It combines the PP frameworkwith an
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AE description and allows for results on a par with AE accuracy at considerably
reduced computational cost. The method takes advantage of several ideas and
techniques developed in the past decades both in the PP and in the AE community.
From the PP approach [62] it inherits the idea of substituting the true Kohn–Sham
wave functionyðrÞwith a pseudized imagey

�ðrÞwhich can be efficiently expanded in
an extended basis set (e.g., plane-waves). Similar to many AE approaches, PAW
employs atomic orbitals to describe the AE wave function yðrÞ inside non-over-
lapping atom-centered spheres, thus retaining information about the correct nodal
structure of electronic orbitals.

The mapping between the true wave function, jyi, with its complete and complex
nodal structure around the nuclei, and the fictitious smooth pseudo wave functions,
jy�i, is defined by the linear transformation: jyi ¼ T̂ jy�i. T̂ is given by the identity
operator plus a sum of localized terms, T̂ a, only acting within the atomic spheresVa

centered on atomic sites a:

T̂ ¼ 1̂þ
X

a

T̂ a: ð3:33Þ

A schematic representation of the division of the unit cell employed in the PAW
method is shown in Figure 3.4.

The linear transformation within each augmentation region Va is defined by
specifying a set of functions, fwa

i g, which form a complete basis set within Va.
This set of functions serves as a basis set for the expansion of the true electronic wave
function in each augmentation region with coefficients cai :

jyi ¼
X

i

cai jwa
i i in Va: ð3:34Þ

A possible and natural choice for the basis set fwa
i g are the solutions of the radial

Schr€odinger equation for the isolated atom. In this case the index i is a contracted
notation for the atomic position Ra, the angular momentum quantum numbers
ðl;mÞ, and an additional index n used to label solutions with different energy.
The final expression for the linear transformation is given by [61, 63]

T̂ ¼ 1̂þ
X

a

X

i

ðjwa
i i�jw�i

aiÞhp�i
aj: ð3:35Þ

Figure 3.4 (online color at: www.pss-b.com) Schematic representation of the division of the unit
cell employed in the PAW method.
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where the auxiliary pseudo partial waves jw�i
ai equal the AE counterparts jwa

i i beyond
the radius rac of the PAWsphere, and are used to expand the pseudized function jy�i
inside the augmentation sphere. The atom-centered projector functions j p�i

ai are
strictly localized inside the spheres and obey the orthogonality property:

hp�i
ajw� j

ai ¼ dij: ð3:36Þ

The matrix elements of a local or semilocal operator Â between two AE wave
functions can be efficiently and accurately evaluated by employing the linear
transformation T̂ given in Eq. (3.35). After some algebra one obtains:

hyjÂjyi ¼ hy� jÂjy�iþ
X

ij

hy� jp�ii½hwijÂjwji�hw� ijÂjw
�
ji�hp

�
jjy

�i: ð3:37Þ

The first term in Eq. (3.37) has the samemathematical structure as the expression
present in the PP formalism. As it involves only the �smooth� part of the wave
function, it can be evaluated either in real or reciprocal space, depending on the
nature of Â, by changing representation through fast Fourier transform techniques.
The second term involves the onsite matrix elements of the Â operator between AE
and pseudo partial waves. It can be evaluated either by employing radial and angular
meshes in real space or by expanding the operator Â in terms of angular momenta.

Within the PAW formalism, the oscillator strengths, – i.e., the basic ingredients
required to evaluate P0ðvÞ, and the matrix elements of SðvÞ – can be obtained by
means of the following equation [64]:

hybk�qje�iðqþGÞ � rjyb0ki ¼ hy� bk�qje�iðqþGÞ � rjy� b0kiþ
X

ij

hy� bk�qjp�iihp�jjy
�
b0kie�iðqþGÞ �Ri

�
h
hwije�iðqþGÞ � ðr�riÞjwji�hw� ije�iðqþGÞ � ðr�riÞjw� ji

i

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�4p
X

lm

ð�iÞlYl
mð qþG
cÞGlm

limiljmj

ð
jlðjqþGjrÞðwni liwnj lj�w

�
nili
w
�
nj lj Þdr ; ð3:38Þ

where the plane wave has been expressed in terms of Bessel functions jlðxÞ and real
spherical harmonicsYl

mðĜÞ via theRayleigh expansion. The symbolGlm
limiljmj

is used to
denote the Gaunt coefficient [65], defined by:

Glm
limiljmj

¼
ð
Y li

mi
Y l

mY lj
mjdV: ð3:39Þ

3.4
QP Corrections to the BOs at Interfaces

In the DFT approach, the valence and conduction band offsets (VBO and CBO,
respectively) are conveniently split into two terms:

VBO ¼ DEDFT
v þDV ; ð3:40Þ
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CBO ¼ DEDFT
c þDV : ð3:41Þ

The first term DEDFT
v (resp. DEDFT

c ) on the right-hand side of Eq. (3.40) [resp.
Eq. (3.41)] is referred to as the band-structure contribution. It is defined as the
difference between the valence band maximum (VBM) (and the conduction band
minimum (CBM), respectively) relative to the average of the electrostatic potential in each
material. These are obtained from two independent standard bulk calculations on the
two interface materials. Alternatively, these can be obtained from an analysis of the
local density of states [66]. The second term DV , called the lineup of the average of the
electrostatic potential across the interface, accounts for all the intrinsic interface
effects. It is determined from a supercell calculation with a model interface.

Despite the limitations of DFT in finding accurate eigenenergies, the VBOs are
often obtained with a very good precision, in particular for semiconductors [67]. This
has opened an indirect route to computing the CBOs through the experimental band
gaps using:

CBO ¼ DEexp
g þVBO: ð3:42Þ

Note that this equation is equivalent to applying a scissor correction to the
conductionbands onboth sides of the interface, as canbe seenby insertingEqs. (3.40)
and (3.42):

CBO ¼ DEDFT
c þDV þ �

DEexp
g �DEDFT

g

�
; ð3:43Þ

and then comparing with Eq. (3.41).
The first QP calculation of the band-offsets (BOs) goes back to the work of Zhang

et al. [68] who were investigating the VBO at the AlAs�GaAs(001) interface. They
assumed that the lineup of the potential DV is already well described within DFT,
arguing that QP corrections would not affect DV since it only depends on the long
range electrostatic potentials. The latter are well-known functions of the electronic
densities, which are given quite accurately by DFT.

Recently, the many-body effects on DV have been explicitly investigated [69].
This was done by comparing the electronic density and the resulting
DV calculated within DFT and QSGW for a small model of the Si/SiO2 interface
illustrated in Figure 3.5(a). It was found that the QSGW results differ only slightly
from DFT. The change in planar average of the electronic density, r, was at most 1
me/a.u. in the interface region, as illustrated in Figure 3.5(b). This lead to a
variation in the macroscopic average of the local potential V [Figure 3.5(c)] smaller
than 45meV in that region. However, the net difference between the bulk
materials, which is relevant for the lineup of the potential DV , was less than
12meV. It was thus concluded that the interfacial charge density and, conse-
quently, the associated dipole moments are well described within DFT, justifying
the assumption that the lineup of the potential can be taken to be the same as in
DFT. For metal-insulator or metal-semiconductor interfaces, this assumption still
needs to be carefully checked.
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Assuming thatDV can be taken fromDFT, only the band-structure contribution is
modified by QP corrections:

VBO ¼ DEQP
v þDV ¼ DEDFT

v þDðdEvÞþDV ; ð3:44Þ

CBO ¼ DEQP
c þDV ¼ DEDFT

c þDðdEcÞþDV ; ð3:45Þ

where dEv ¼ EQP
v �EDFT

v (resp. dEc ¼ EQP
c �EDFT

c ) is the QP correction at the VBM
(resp. CBM) and DðdEvÞ [resp. DðdEcÞ] is the corresponding difference between the
twomaterials. It is important to stress that these corrections, which are obtained from
bulk calculations, are the only additional ingredients that are required when DFT
calculations of the VBO and CBO already exist.

Interestingly, for various semiconductor interfaces, theQP corrections of the band
edges are found to be almost the same on both sides [68, 70] leading to DðdEvÞ 	
0.2 eV in Eq. (3.44). As a result of this cancellation of errors, DFT is quite successful

Figure 3.5 (online color at: www.pss-b.com)
Small model of the Si/SiO2 interface (upper
panel) used in Ref. [69] to compute the
difference between DFT and QSGW for the
planar average of the electronic density r

(middle panel) and the macroscopic average of
the local potential V (lower panel). The density
and the potential are expressed in me/a.u. and
in meV, respectively.
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for these interfaces [67] with errors ranging from 0.1 to 0.5 eV, despite the limitations
mentioned above. This relative success ofDFTexplainswhy it has beenwidely used to
predict the VBO for a wide range of interfaces. And, when needed, the CBOwas also
predicted using a simple scissor operator to correct the band gap to the experimental
value. This assumption was further motivated by the fact that MBPT calculations
going beyondGW by including an approximate vertex correction (GWC) showed that
the VBM remained at its DFTvalue for silicon, with the whole correction going to the
conduction bands [30, 71].

However, when it comes to semiconductor–insulator or insulator–insulator inter-
faces, it appears that the errors to the VBO can be much more important in
DFT. For instance, for the Si/SiO2 interface, the VBOs are calculated to be
2.3–3.3 eV [66, 72–74] in noticeable disagreement with the experimental results of
4.3 eV [75, 76]. In contrast, for the Si/ZrO2 and Si/HfO2 interfaces, the calculated
VBOs for the stable insulating O-terminated interfaces are around 2.5–3 eV [77–81],
in reasonable agreement with experiment (2.7–3.4 eV) [82–90]. For these interfaces,
scissor-corrected DFT has also been used to predict CBOs of about 1.7–2.2 eV, which
compare quite well with the experimental values (1.5–2 eV) [87–90]. It seems that the
cancellation of errorsmay vary strongly fromone system to another, emphasizing the
need to go beyondDFTby includingQP corrections. Interestingly, hybrid functionals
have been shown to give very goodVBOs andCBOs compared to experiment for both
the Si/SiO2 and Si/HfO2 interfaces by tuning the fraction of HF exchange for each
bulk component to reproduce the experimental value of the band gap [9, 10].

For the Si/ZrO2 interface, a QP correction of about 1.1 eV to the VBOs has been
extracted from GW calculations for Si [70] and ZrO2 [91] and used together with the
experimental band gap to correct DFT BOs in several works [92, 93]. For the Si/HfO2

interface, the same correction as for Si/ZrO2 has been adopted [94] since there were
noGW calculations available for HfO2. Such an assumption seems quite reasonable
given the analogous electronic structure of ZrO2 and HfO2. However, for both Si/
ZrO2 and Si/HfO2 interfaces, the VBOs obtained by applying this correction are too
large (and as a consequence the CBOs too small) with respect to the available
experiments [92–94].

This discrepancy can be traced back to the fact that, while the QP corrections to
the gap dEg are not very sensitive to the choice of the PPM [64], the absolute values of
dEv and dEc may vary from one PPM to another, as reported in Refs. [69, 95]. The
results of Ref. [69] for Si and c-SiO2 and those of Ref. [95] for c-ZrO2 are
summarized in Table 3.1. Since a precise knowledge of the QP corrections at
the band edges is required for BO calculations, it is necessary to go beyond PPMs, by
taking the frequency dependence ofW into account explicitly. This can be done by
using the CDmethod (see Section 2.3). The comparison between the CD and PPM
results for a given system allows one to validate a PPM for further study of similar
systems. Interestingly, the PPM proposed by GN [45] seems to lead to QP
corrections in excellent agreement with those of the CD method (see Table 3.1),
at variance with the other PPMs. Further investigation is still required to generalize
this finding.

3.4 QP Corrections to the BOs at Interfaces j51



It is important to note that, rigorously, the QP corrections on the BOs should be
calculated using the same PPs and the same exchange-correlation approximation as
for the interface calculations. Indeed, the QP corrections aremuchmore sensitive to
theseapproximationsthanthebandgap.Therefore,extremecautionshouldbeapplied
when the QP corrections to DFT BOs are not calculated using the same approxima-
tions (e.g., in the PP, the exchange-correlation approximation, and the PPM).

Once this is carefully taken into account, the QP corrections can be calculated. It
is also interesting to analyze the effect of including vertex corrections. The results
reported in Ref. [69] for Si and c-SiO2, and in Ref. [96] for c-HfO2, are summarized
in Table 3.2. While e-QSGW leads to a lowering of the VBM of Si compared to the
DFTresult (dEv 	 0), the inclusion of vertex corrections brings it back to roughly its
original value with a small shift upwards of 0.1 eV, with all of the QP correction
being on the conduction band. A similar result was also found previously [30, 71].
For HfO2, the vertex correction acts in the same way though in this case the shift to
the VBM is slightly larger (0.2 eV downwards). The results for Si and c-HfO2 give
some motivation to the use of a scissor operator to compute the CBO within DFT.
However, for c-SiO2, the results are very different. First, the VBM is also raised
when including the vertex, but it definitely does not regress to the DFT level. This
indicates that in Si and c-HfO2, the recovery of the DFT VBM with the vertex is a
coincidence. It also definitely rules out the use of a simple scissor operator for the
computation of the BOs, unless further checks or refinements are made.

Finally, using Eqs. (3.44) and (3.45), the BOs can be computed within MBPT at
the GW and GWC levels. The results reported in Refs. [69, 95] compare very well
with the experimental ones. Within e-QSGW the agreement is excellent for both
the VBO and CBO (less than 0.3 eV difference). The effect of the vertex correction
is less than 0.1 eV on the BOs. This results from a cancellation of the effects on
each side of the interface. Indeed, in Eqs. (3.44) and (3.45), it is the difference
between the QP corrections in both materials [DðdEvÞ and DðdEcÞ] that matters. As

Table 3.1 QP corrections (in eV) at the VBM (dEv), at the CBM (dEc), and for the band gap (dEg) for
Si, c-SiO2 (fromRef. [69]), and c-ZrO2 (fromRef. [95]). The corrections are calculatedwithin e-QSGW
using the PPMs proposed by HL [31], vdLH [49], GN [45], EF [50], and without PPM using the CD
method.

HL GN vdLH EF CD

Si dEv �0.6 �0.4 �0.6 �0.6 �0.4
dEc þ 0.1 þ 0.2 þ 0.1 þ 0.1 þ 0.2
dEg þ 0.7 þ 0.6 þ 0.7 þ 0.7 þ 0.6

c-SiO2 dEv �2.6 �2.0 �2.5 �2.3 �1.9
dEc þ 1.3 þ 1.5 þ 1.1 þ 1.2 þ 1.5
dEg þ 3.9 þ 3.5 þ 3.6 þ 3.5 þ 3.4

c-ZrO2 dEv �1.1 �0.5 – – �0.7
dEc þ 1.3 þ 1.4 – – þ 1.4
dEg þ 2.4 þ 1.9 – – þ 2.1
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can be seen in Table 3.2, this difference is typically less than 0.1 eV for the couples
Si/SiO2 and Si/HfO2.

The effect of the vertex correction is very small compared to standard GW
calculations. For the homogenous electron gas and atomic systems, it has been
shown [97] that the local vertex correction of Del Sole et al. generally causes a large
unphysical upward shift in the absolute values of band energies (and total energies).
However, the relative changes in the QP energies obtained using G0W0C are very
small compared to G0W0 results. The large shift can be attributed to an unphysical
feature of the spectral function of the self-energy, which can come to have the wrong
sign after a given energy. In the absence of non-trivial external electromagnetic fields,
the spectral function of S should be strictly positive (negative) definite for frequen-
cies below (above) the Fermi energy. A demonstration of this failure for the
homogenous electron gas is given in Figure 3.6.

Table 3.2 QP corrections (in eV) at the VBM (dEv), at the CBM (dEv), and for the band gap (dEg) for
Si, c-SiO2 (from Ref. 69), and c-HfO2 (from Ref. [96]). The corrections are calculated using e-QSGW
and e-QSGWC (the e-QS are omitted below).

Si c-SiO2 c-HfO2

GW GWC GW GWC GW GWC

dEv �0.4 þ 0.1 �1.9 �1.3 �0.6 �0.2
dEc þ 0.2 þ 0.7 þ 1.5 þ 1.8 þ 1.1 þ 1.6
dEg þ 0.6 þ 0.6 þ 3.4 þ 3.1 þ 1.7 þ 1.8

Figure 3.6 (online color at: www.pss-b.com)
The imaginary part of the self-energy in jellium
for rs ¼ 2:0 and k ¼ 0:5kF . This is the spectral
function of S. Plotted in this way, it should be
positive definite everywhere. The curve for

G0W0C fails to bepositive definite from the inset
arrow onwards, after which it goes to a negative
minimum and then slowly decays back to zero.
The spectral function from G0W

�
0, in contrast,

has no such behavior and has the proper limit.
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In contrast, as can also be seen from Figure 3.6, there is no such failure for the
implementation of the vertex only in the screened interaction, i.e.,G0W

�
0. Ironically,

this is actuallymore time-consuming to implement in any existing code, as it requires
an extra matrix multiplication before the calculation of the dielectric matrix. How-
ever, the bandwidth of metals compares better to experiments with this implemen-
tation, and it has also recently been used in Bethe-Salpeter calculations onmolecules
andmetal clusters to good effect [98, 99]. These results indicate that theG0W

�
0 vertex

might yield better BOs, and the utility of this type of simple vertex correction certainly
merits further study.

3.5
QP Corrections for Defects

Despite the methodological advancements discussed in previous sections it is still
computationally challenging to compute total energies in GW and MBPT and no
calculation for a defect has been reported so far.

Theconventionalwayofobtainingdefect formationenergies,namelybycalculating
the total energy difference between the defective and a reference system [100], is
therefore unavailable. Defect formation energies become accessible in GW again by
realizingthatQPenergiescorrespondtoelectronadditionandremovalenergies.Since
the ionization potential and the electron affinity can be expressed in terms of total
energy differences the formation energy of a defect can be formally rewritten as the
successive charging of a lower (or if more convenient, higher) charge state [101, 102].

The formation of a neutral and a positive from a 2þ charge state is depicted
schematically in Figure 3.7. For the example of the positive charge state this process
reads mathematically

Ef
Dðþ ; eFÞ¼ D

�þ ;RD
þ ;RD

2þ ÞþAð2þ ;RD
2þ

�

þE f
Dð2þ ; eF ¼ 0Þþ eF ;

ð3:46Þ

Figure 3.7 (online color at: www.pss-b.com) Formation of the neutral Sii from the 2þ charge state.
Aþ and A2þ are short for the electron affinities Aðþ ;R0Þ and Að2þ ;R2þÞ (see text), respectively,
and Rq denotes the atomic positions in charge state q.
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where Ef
Dðþ ; eFÞ and Ef

Dð2þ ; eF ¼ 0Þ are the formation energies of the þ and 2þ
and eF the Fermi energy. RD

q denotes the atomic coordinates of defect D in charge
state q. Að2þ ;RD

2þ Þ defines the vertical electron affinity of the 2þ state
Eðþ ;RD

2þ Þ�Eð2þ ;RD
2þ Þ (step 1 in Figure 3.7), referenced to the top of the valence

band,whereasDðþ ;RD
þ ;R

D
2þ Þgives the subsequent relaxation energy in thepositive

charge state Eðþ ;RD
þ Þ�Eðþ ;RD

2þ Þ (step 2). The formation energy of higher charge
states follows analogously.

Having split the formation energy into an electron addition and a lattice part, the
most suitable computational technique can be employed for each part. For electron
affinities (change in charge state at fixed geometry) we apply the GW approach. For
relaxation energies (change of geometry in the same charge state)we retainDFT. Since
the schemehas to be anchored on the formation energy of at least one charge state that
cannot be corrected by GW (the 2þ in our example) the GW-correction approach
depends on the quality of this formation energy and its associated valence band
maximum (the reference for the Fermi energy). This is a weakness of the scheme and
implies that relative formation energies (i.e., charge transition levels for which this
dependence cancels exactly) are more accurate than absolute formation energies.

Applied to the self-interstitial in silicon the GW scheme corrects the DFT-LDA
formation energy of different neutral configurations (see Figure 3.8) by �1.1
eV [102] in good agreement with diffusion Monte Carlo calculations [103, 104].
For the þ ! 0 charge transition level of a phosphor vacancy at the InP(110) surface
the GW-corrected value of 0.82 eV is in much better agreement with the experi-
mental value of 0.75
 0.1 eV than the DFT-LDA charge transition level of

Figure 3.8 (online color at: www.pss-b.com) (a) Split <110>, (b) hexagonal, (c) C3v, and (d)
tetrahedral configuration of the Sii. Defect atoms are shown in red and nearest neighbors in gray.
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0.47 eV [101]. A long-standing problem was solved for silicon dioxide, where DFT-
LDA favors the diffusion of charged oxygen interstitials, in clear disagreement with
available experimental results. Agreement with experiment is recovered by apply-
ing the G0W0-correction approach, which substantially increases the formation
energies of the negatively charged interstitials, leaving as dominant self-diffusion
mechanism the neutral one [105].

The decomposition presented in the previous paragraphs supposes that the
electronic states calculated in GW correspond to total energy differences. At present
this assumption is not verifiable numerically, because GW total energies cannot be
calculated for the defect systems at hand. The lowest excitation energies can, however,
be expressed in two different ways. The electron affinities that enter in our discussion
above can alternatively be seen as the ionization potential of a system with one extra
electron:

I0 ¼ EDðþ Þ�EDð0Þ ¼ Aþ : ð4:47Þ

While excitation energies calculated with the exact self-energy would satisfy
Eq. (4.47) those from approximate self-energies – like GW – do not. This is shown
in Figure 3.9 for the C split interstitial in silicon carbide (3C-SiC) in the neutral
geometry. The first red dashed line is the electron affinity of the interstitial in the 2þ
charge state (A2þ ), while the second red dashed line corresponds to the ionization
potential of the þ charge state (Iþ ). If Eq. (4.47) was satisfied in these GW defect
calculations the two lines would be equal. Instead they differ by 0.19 eV [106]. The
excitationsAþ and I0 (represented by the orange dashed lines) differ by 0.25 eV. This
is not much, but noticeable.

Figure 3.9 (online color at: www.pss-b.com)
Defect level position for C split interstitial in 3C-
SiC evaluated within GW for different charge
states (2þ , þ , and 0). The atomic structure is
fixed to the geometry of the neutral state (see

inset). The occupied levels are depicted as a
dotted line, the empty ones as a dashed line, and
their mid values as a solid line. The transition
energy is indicated in red for 2þ /þ and in
orange for þ /0.
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How can we reconcile this discrepancy? Slater [107] already identified this issue
in the 1970s in DFTand HF calculations. He proposed to consider the total energy
as a continuous function of electron number and to expand up to second order
between integral numbers of electrons. The total energy difference in Eq. (4.47)
can then be written as the energy of the highest occupied (or lowest unoccupied)
state at half occupation. Equivalently, one could write this as the mean value
between the energy of the highest occupied state of the neutral system and the
energy of the lowest unoccupied state of a positively charged system. Since GW
calculations at half occupation are not straightforward, the latter is more appli-
cable. For the point defect from Figure 3.9 this then gives the following transition
energies EGWð2þ =þÞ ¼ Ev þ 0:53 eV and EGW ðþ =0Þ ¼ Ec�0:80 eV¼Ev þ 1:39
eV. We see that the last equality only holds when performing the mean value
technique, which reconciles the slight discrepancy between total energies and QP
levels that exists in the GW formalism.

3.6
Conclusions and Prospects

The improvements discussed in this review are now available in several popular
simulation packages, and have increased the speed of MBPTcalculations. This has
enabled the study of larger systems and more complex problems, such as
interfaces and defects. We have illustrated this by presenting some recent MBPT
results, while trying to highlight the main difficulties and caveats. It is to be
expected that many more calculations on interfaces and defects relying on MBPT
will follow.

As afinal remark, it should bementioned that DFT (or popularflavors ofDFT)may
fail to predict the correct geometry of certain interfaces or defects. In such cases, the
energy levels (be it the VBM, the CBM, or defect levels) computed fromMBPTcould
also be wrong. In order to avoid such problems, it is highly desirable to be able to
compute the energy and the forces self-consistently from many-body theories for
supercells ranging from 100 to 200 atoms. This is an important aim of future
developments in MBPT implementations.
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4
Accelerating GW Calculations with Optimal Polarizability Basis
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and Stefano Baroni

4.1
Introduction

Density-functional theory (DFT) has grown into a powerful tool for the numerical
simulation of matter at the nanoscale, allowing one to study the structure and
dynamics of realistic models of materials consisting of up to a few thousands atoms,
these days [1]. The scope of standard DFT, however, is limited to those dynamical
processes that do not involve electronic excitations. Moreover, its time-dependent
extension [2], which has been conceived to cope with such processes, still displays
conceptual and practical difficulties.

Themost elementary excitation is the removal or the addition of an electron from a
system originally in its ground state. These processes are accessible to direct/inverse
photo-emission spectroscopies and can be described in terms of quasi-particle (QP)
spectra [3]. In insulators, the energy difference between the lowest-lying quasi-
electron state and thehighest-lying quasi-hole state is theQPband gap, a quantity that
is severely (and to some extent erratically) underestimated by DFT [4].

Many-body perturbation theory (MBPT), in turn, provides a general, though
unwieldy, framework for calculating QP properties and other excitation (such as
optical) spectra [3]. A numerically viable approach to QP energy (QPE) levels (known
as the GW approximation, GWA) was introduced in the 1960s [5], but it took two
decades for a realistic application of it to appear [6, 7], and even today the numerical
effort required by MBPT is such that its scope is usually limited to systems of a few
handfuls of inequivalent atoms. The two main difficulties are the necessity to
calculate and manipulate large matrices representing the charge response of the
system (electron polarizabilities or polarization propagators) [8], on the onehand, and
that of expressing such response functions in terms of slowly converging sums over
empty one-electron states [8, 9–11], on the other hand. Recently, we addressed both
problems. In a first work [8] we introduced a method to significantly reduce the
computational and memory loads of GWA calculations through the introduction of
optimal basis sets for representing polarizability operators built upon Wannier-like
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orbitals [12–14]. Then, in a following communication [15], we proposed an approach
to obtain fully converged GWA calculation avoiding at the same time any sum over
empty states. In the sameworkwe explainedhow also optimal polarizability basis sets
can be constructed without explicitly evaluating empty states.

In this review, we present the strategy we have conceived for obtaining optimal
polarizability basis sets and for calculating QPE levels, still considering sums over
empty states. Thepaper is organized in thisway: in Section 4.2we briefly introduce the
GW approximation, in Section 4.3 we describe our method for constructing optimal
polarizability basis sets and for performingGWAcalculations in isolated and extended
systems, in Section 4.4 we validate ourmethod by considering the benzenemolecule,
crystalline silicon, and amodel of vitreous silica, in Section 4.5 we use ourmethod for
studyingtheelectronicpropertiesofamodelofquasi-stoichiometricamorphoussilicon
nitride and of its point defects. Conclusion and perspectives are drawn in Section 4.6.

4.2
The GW Approximation

QP energies and QP amplitudes (QPA) are eigenvalues and eigenvectors of a
Schr€odinger-like equation (QPEq), which is similar to theDFTKohn–Shamequation
with the exchange-correlation potential, Vxc(r), replaced by the non-local, energy-
dependent, and non-Hermitian self-energy operator, S~ ðr; r0;EÞ (a tilde indicates the
Fourier transform of a time-dependent function):

� 1
2
DþVext þVH þ S

�
ðEnÞ

� �
jn ¼ EnjnðrÞ; ð4:1Þ

where we are using atomic units (�h ¼ 1, m¼ 1, and e¼ 1) and Vext is the external
(ionic) potential,VH is theHartree potential, andEn and jn are then-thQPE andQPA,
respectively. It is worth noting that the Hartree–Fock equation can be obtained from
Eq. (4.1) by setting:

S
�
ðr; r0;EÞ ¼ �e2

rðr; r0Þ
jr�r0j ; ð4:2Þ

where r is the one-particle density matrix and e is the elementary charge.
The next level of approximation is the GWA [5] where S is the product in time of

the one-electron propagator, G, and of the dynamically screened interaction, W:

SGWðr; r0; tÞ ¼ iGðr; r0; tþ gÞWðr; r0; tÞ; ð4:3Þ

where g is a positive infinitesimal andW is expressed in terms of the bare Coulomb
interaction uðr; r0Þ and of the reducible polarizability operator Pðr; r0; tÞ:

W ¼ uþ u �P � u; ð4:4Þ

where we indicate with a dot the product of two operators, such as in
u � xðr; r0; tÞ ¼ Ð

dr00uðr; r00Þxðr00; r0; tÞ.
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Then, the reducible polarizability operator is obtained from the irreducible
polarizability operator P through the following Dyson�s equation:

P ¼ ð1�P � uÞ�1 �P: ð4:5Þ
Finally, the irreducible polarizability is given from the product in time of one-

electron propagators:

Pðr; r0; tÞ ¼ �iGðr; r0; tÞGðr0; r;�tÞ: ð4:6Þ
The GWA alone does not permit to solve the QPEq, unless G and W are known,

possibly depending on the solution of the QPEq itself.
One of the most popular further approximations is the so-called G�W� approx-

imation, where the one-electron propagator G is obtained from the eigenfunctions
yn(r) and eigenenergies en of a one-electron (usually a Kohn–Sham) Hamiltonian:

G
� ðr; r0; tÞ ¼ i

X

u

yuðrÞy*
uðr0Þ e�ieutqð�tÞ

�i
X

c

ycðrÞy*
c ðr0Þ e�iectqðtÞ;

ð4:7Þ

where, referred to the Fermi energy, u and c suffixes indicate valence states below and
conduction states above the Fermi energy, respectively, and q is the Heaviside step
function. Now, using the definition of G� in Eq. (4.6) is equivalent to calculating the
irreducible polarizability within the random-phase approximation (RPA) which we
indicate withP�. Then, fromEqs. (4.5) and (4.4), we obtain the approximate reducible
polarizability operator P� and dynamically screened Coulomb operator W�. Finally,
the approximate self-energy operator in the G�W� scheme is calculated through:

SG�W� ðr; r0; tÞ ¼ iG
� ðr; r0; tþ gÞW � ðr; r0; tÞ: ð4:8Þ

A further approximation, usually referred to as the diagonal approximation, is
introduced for solving the QPEq: the QPAs are approximated directly with the non-
interacting eigenfunctions:

jnðrÞ � ynðrÞ: ð4:9Þ
This permits to find the QPEs by solving the following self-consistent one-variable

equation:

En � en þhS~ G�W� ðEnÞin�hVXCin; ð4:10Þ
where hAin ¼ hynjAjyni.

The apparently simple G�W� approximation still involves severe difficulties,
mainly related to the calculation and manipulation of the polarizability that enters
the definition of W�. These difficulties are often addressed using the so-called
plasmon-pole approximation [6], which however introduces noticeable ambiguities
and inaccuracies when applied to inhomogeneous systems [16]. A well-established
technique to address QP spectra in real materials without any crude approxima-
tions on response functions is the space–time method (STM) by Godby and cow-
orkers [17]. In the STM the time/energy dependence of the G�W� operators is
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represented on the imaginary axis, thus making them smooth (in the imaginary
frequency domain) or exponentially decaying (in the imaginary time domain). The
various operators are represented on a real-space grid, a choice which is straight-
forward, but impractical for systems larger than a few handfuls of inequivalent
atoms. In the STM, the self-energy expectation value in Eq. (4.10) is obtained by
analytically continuing to the real frequency axis the Fourier transform of the
expression:

hSG�W� ðitÞin ¼ �
X

l

eelt
ð
ynðrÞylðrÞylðr0Þynðr0ÞW

� ðr; r0; itÞ dr dr0; ð4:11Þ

where the upper (lower) sign holds for positive (negative) times, the sum extends
below (above) the Fermi energy, andQPAs are assumed to be real. For simplicity, in
the rest of the paper, one-particle wavefunctionswill be always considered to be real,
which is always possible for time-symmetric systems. By substituting u for W,
Eq. (4.11) yields the exchange self-energy, whereas u �P � u yields the correlation
contribution, SC, whose evaluation is the main size-limiting step of GW
calculations.

4.3
The Method: Optimal Polarizability Basis

Let us suppose that a small, time-independent, orthonormal basis set {Wm(r)} exists
for representing polarizability operators:

Pðr; r0; itÞ �
X

mn

PmnðitÞWmðrÞWnðr0Þ: ð4:12Þ

Then, the correlation contribution SC to the self-energy is given by Eq. (4.11):

hSCðitÞin � �
X

lmn

eeltPmnðitÞSnl;mSnl;nqðE1
C�elÞ; ð4:13Þ

where E1
C is an energy cutoff that limits the number of conduction states to be used in

the calculation of the self-energy and:

Snl;n ¼
ð
ynðrÞylðrÞ

e2

jr�r0jWnðr0Þ dr dr0: ð4:14Þ

Then a convenient representation of the polarizability would thus allowQPEs to be
calculated from Eq. (4.10), by analytically continuing to the real axis the Fourier
transform of Eq. (4.13). Our goal is to shrink the dimension of the polarizability basis
set {Wm(r)} without loss of accuracy. Therefore, an optimal polarizability basis would
allow fast and accurate GW calculations.

We construct an optimal representation in three steps:

i) we first express the Kohn–Sham orbitals, whose products enter the definition of
P�, in terms of localized, Wannier-like, orbitals,
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ii) we then construct a basis set of localized functions for the manifold spanned by
products of Wannier orbitals,

iii) finally, this basis is further restricted to a set of approximate eigenvectors of P�,
corresponding to eigenvalues larger than a given threshold.

Let us start from the RPA irreducible polarizability:

~P
�ðr; r0; ivÞ ¼

X

cu

W� cuðrÞW� cuðr0Þ x�cu
� ðivÞ; ð4:15Þ

where

x
�
cu
� ðivÞ ¼ 2Re

1
iv�ec þ eu

� �
; ð4:16Þ

and

W� cuðrÞ ¼ ycðrÞyuðrÞ: ð4:17Þ
We express valence and conduction QPAs in terms of localized, orthonormal

maximally localized Wannier functions [12, 14]:

usðrÞ ¼
X

u

UusyuðrÞqð�euÞ

usðrÞ ¼
X

c

VcsycðrÞqðecÞqðE2
C�ecÞ;

ð4:18Þ

whereE2
C � E1

C is a second energy cutoff that limits a lower conductionmanifold (LCM)
to be used only in the construction of the polarizability basis and theU andVmatrices
are unitary.

We then reduce the number of product functions from the product, which scales
quadratically with the system size, between the number of valence and the number of
conduction states, to a number that scales linearly. Indeed, we have transformed the
problem of calculating products in real space of delocalized (usually Kohn–Sham)
orbitals in that of calculating products in real space of localized Wannier functions.
We express the �W�s as approximate linear combinations of products of the u�s u�s:

�WcuðrÞ �
X

rs

Ocu;rsWrsðrÞqðjWrsj2�s1Þ; ð4:19Þ

where:

Ocu;c0u0 ¼ Uuu0 Vcc0 ; ð4:20Þ
and the products in real space are given by:

WrsðrÞ ¼ urðrÞusðrÞ; ð4:21Þ
and jWcuj is the L2 normofWrs(r), which is arbitrarily small when the centers of the ur
and us functions are sufficiently distant, and s1 is an appropriate threshold.

The number of basis functions can be further reduced on account of the non-
orthogonality of the W�s. Indeed it is possible to obtain an orthonormal basis for
representing theW�s whose dimension can be significantly smaller that the number
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of retained W�s. This is done through a procedure analogous to a singular value
decomposition. We first define the overlap matrix:

Qrs ¼
ð
WrðrÞWsðrÞ dr; ð4:22Þ

where the r and s indices stand for pairs of rs indices. Then, we calculate the
eigenvalues {qv} and eigenvectors fUng of the matrix Q. It should be noted that the
matrixQ is always positive definite. Themagnitude of the eigenvalues is ameasure of
the relevance of their corresponding eigenvectors. Indeed an orthonormal basis set
which spans the space of the {Wr} is given by the states W:

WnðrÞ ¼ 1
ffiffiffiffiffi
qn

p
X

r

UnrWrðrÞ: ð4:23Þ

An optimal polarizability basis can be obtained by retaining thoseW�s for which qv
is larger than a given threshold, s2. We can now write:

W� cuðrÞ �
X

r0n0
Ocu;r0

ffiffiffiffiffiffi
qn0

p Un0r0 Wn0 ðrÞ; ð4:24Þ

where the indices r0 and n0 run only over the elements which have been retained
according to the thresholds s1 and s2, respectively.

It is worth noting that the optimal polarizability basis vectors {Wv} are the
(approximate) eigenvectors of the polarizability operator P0 at zero time constructed
with empty states only from the LCM:

P0ðr; r0Þ ¼
X

uc0
W� uc0 ðrÞW� uc0 ðr0Þ; ð4:25Þ

where c0 indicates the empty states belonging to the LCM. As the U and V matrices
are unitary, it holds:

P0ðr; r0Þ �
X

r0
Wr0 ðrÞWr0 ðr0Þ: ð4:26Þ

From this equation and from Eq. (4.24), it is easy to show that:
ð
dr0P0ðr; r0ÞWnðr0Þ � qnWnðrÞ: ð4:27Þ

This means that the construction of the polarizability basis selects the most
important eigenvectors of the polarizability at least at zero time. We have verified,
however, that the manifold spanned by the most important eigenvectors of P� in the
(imaginary) time domain depends very little on time, which permits the use of a same
basis at different frequencies. We have also verified that although the polarizability
basis has been constructed only with empty states from the LCM, it behaves very well
also for representing polarizability operators constructed with much more complete
sets of empty states.
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It should be noted that equivalent optimal polarizability basis sets could be
constructed by choosing s1¼ 0 and by considering directly products of Kohn–Sham
orbitals without trasforming them into localized Wannier functions. Going through
Wannier functions and discarding small overlaps permits only to speed up the
construction of the polarizability basis set. Indeed, this results into a O(N3) process
instead of a O(N4) process. This means that also for systems presenting delocalized
orbitals it will always be possible to obtain optimal polarizabilty basis sets. However,
in the limit case in which Kohn–Sham orbitals are simply plane waves, the optimal
polarizability basis will be simply a basis of plane-waves. Hence, we expect to find
larger benefits from the use of optimal polarizability basis sets in the case of isolated
materials and in that of extended insulators, while in the limit of small gap extended
systems we do not expect to find significant improvements with respect to the use of
plane-waves basis sets.

Once an optimal basis set has been identified, an explicit representation for the
irreducible polarizability,

~P
�ðr; r0; ivÞ ¼

X

mn

~Pmn
� ðivÞWmðrÞWnðr0Þ; ð4:28Þ

is obtained. By equating Eq. (4.15) to Eq. (4.28) and taking into account the
orthonormality of the W�s, one obtains:

~P
�
nmðivÞ ¼

X

cu

Tcu;mTcu;n~x
�
cuðivÞqðE1

C�ecÞ; ð4:29Þ

with

Tcu;m ¼
ð
W� cuðrÞWmðrÞ dr; ð4:30Þ

where the index c runs over all the empty states defined by the cutoff E1
C. Finally, a

representation for P is obtained by simple matrix manipulations.
While isolated system can be easily treated by applying in Eq. (4.14) a truncated

form of the Coulomb potential [18], extended ones require some additional steps
which we briefly introduce here. Note that in the present work the Brillouin zone is
generally sampled at the C-point only. First, it is convenient to introduce the
frequency dependent symmetric dielectric matrix [19]:

~esymðivÞ ¼ 1�u1=2 � ~P�ðivÞ � u1=2; ð4:31Þ
where u is the Coulomb interaction. From esym the screened Coulomb interactionW
is given by:

~W
�ðivÞ ¼ u1=2 �~e sym;�1ðivÞ � u1=2: ð4:32Þ

Because of the long-range character of the Coulomb interaction, the long-wave-
length components, the �head� (G ¼ G0 ¼ 0) and �wings� (G¼ 0, G0 6¼ 0), of
~esymðivÞ cannot be neglected. As the optimal polarizability basis is orthogonal to
the G¼ 0 component, we calculate esym(iv) on the representation of the optimal
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polarizability basis plus the G¼ 0 vector. This is done by calculating the head and
wings terms at frequency iv using a linear response approach [20], where optionally
the Brillouin zone can be sampled with denser meshes of k-points [21], and by
projecting the wings over the polarizability basis functions. Then, we extract fromW~

the long-range part behaving as u:

~W
�ðivÞ ¼ ~e

sym;�1
G¼0 G0¼0ðivÞu

þ
X

mn

u1=2jWmið~esym;�1
mn ðivÞ�dm;n~e

sym;�1
G¼0G0¼0ðivÞÞhWnju1=2:

ð4:33Þ

The contribution to SC due to the long-range part of W is then given by:

hSlr
CðitÞin��

X

l

ð
drdr0e2

ynðrÞylðrÞylðr0Þynðr0Þ
jr�r0j �ðesym;�1

G¼0G0¼0ðitÞ�1ÞeeltqðE1
C�elÞ:

ð4:34Þ

As the calculation of such terms closely resembles the evaluation of exchange
terms, we calculate themusing the scheme introduced in Ref. [22], optionally using a
denser sampling of the BZ. Finally, the contribution to SC due to the short-range part
of W is given by:

hSsr
C ðitÞin � �

X

lmn0mn0
eeltSnl;mSnl;nqðE1

C�elÞ

� u
�1=2
mm0 ðesym;�1

m0n0 ðitÞ�dm0;n0e
sym;�1
G¼0G0¼0ðitÞÞu

�1=2
n0n ;

ð4:35Þ

where the operator u is calculated first on the polarizability basis:

umn ¼ hWmjujWni: ð4:36Þ
The evaluation of Eq. (4.36) does not present any difficulty as the polarizability

basis functions W�s are orthogonal to the G¼ 0 vector.

4.4
Implementation and Validation

Our scheme has been implemented in the QUANTUM-ESPRESSO density functional
package [23], for norm-conserving as well as ultra-soft [24] pseudopotentials, result-
ing in a newmodule called gww.xwhich uses a Gauss–Legendre discretization of the
imaginary time/frequencies half-axes, and that is parallelized accordingly. In the
following examples, DFT calculations were performed using the energy functional
from Ref. [25] and pseudo-potentials have been taken from the Quantum-Espresso
tables [23]. We used an imaginary time cutoff of 10 a. u., an imaginary frequency
cutoff of 20Ry, and grids of 80 steps in both cases. The self-energy was analytically
continued using a two poles formula [17].

68j 4 Accelerating GW Calculations with Optimal Polarizability Basis



4.4.1
Benzene

We first illustrate our scheme by considering an isolated benzene molecule in a
periodically repeated cubic cell with an edge of 20 a.u. using a first conduction
energy cutoff E1

C ¼ 56:7 eV, corresponding to 1000 conduction states, and a
threshold on the norm of Wannier products s1¼ 0.1 a.u. We used the norm-
conserving pseudopotentials: C.pz-vbc and H.pz-vbc. The wavefunctions and the
charge density were expanded on plane waves, defined by kinetic energy cutoffs
of 40 and 160Ry, respectively. In Figure 4.1 we display the dependence of the
calculated ionization potential (IP) on the second conduction energy cutoff used
to define the polarization basis, E2

C, and on the threshold on the eigenvalues of
the overlap matrix between Wannier products, s2. Convergence within 0.01 eV is
achieved with a conduction energy cutoff E2

C smaller than 30 eV (less than 300
states) and a polarizability basis set of only �400 elements. The convergence of
other QPEs is similar.

In Figure 4.2, we display the convergence of the IP with respect to E1
C, which turns

out to be quite slow. These data can be accurately fitted by the simple formula:

IPðE1
CÞ ¼ IPð1Þþ A

E1
C

; ð4:37Þ

resulting in a predicted ionization potential IP(1)¼ 9.1 eV, in good agreement with
the experimental value of 9.3 eV [26].

Figure 4.1 (online color at: www.pss-b.com)
Calculated ionization potential of the benzene
molecule (solid lines, left scale) and dimension
of the polarization basis (dashed lines, right
scale) versus the s2 threshold. The polarization

basis has been constructed with a conduction
energy cutoff E2C ¼ 16:7 eV (red-grey, 100
states), E2C ¼ 28:6 eV (green-light grey, 300
states), and E2C ¼ 38:3 eV (blue-black, 500
states).
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4.4.2
Bulk Si

In order to demonstrate our scheme for extended systems, we consider crystalline
silicon treated using a 64-atom simple cubic cell at the experimental lattice constant
and sampling the corresponding Brillouin zone (BZ) using the C-point only. This
gives the same sampling of the electronic states as would result from six points in the
irreducible wedge of the BZ of the elementary 2-atom unit cell. We used an norm-
conserving pseudopotential: Si.pz-rrkj. The wavefunctions and the charge density
were expanded on plane waves, defined by kinetic energy cutoffs of 18 and 72Ry,
respectively. Then, the GW calculations were performed using E1

C ¼ 94:6 eV (corre-
sponding to 3200 conduction states) and E2

C ¼ 33:8 eV (corresponding to 800 states
in the LCM), s1¼ 1.0 a.u. and two distinct values for s2 (0.01 and 0.001). For
calculating the head and wing terms of the symmetric dielectric matrix we used a
4� 4� 4 grid for sampling the BZ of the 64-atom cubic cell. Then, for calculating the
long-range contribution to the self-energy given in Eq. (4.34), we used a 2� 2� 2
grid. In Table 4.1 we summarize our results and compare them with previous
theoretical results, as well as with experiments. An overall convergence within a few
tens meV is achieved with a s2 cutoff of 0.001 a.u., corresponding to a polarizability
basis of �6500 elements. The residual small discrepancy with respect to previous
results [17] is likely due to our use of a supercell, rather than themore accurate k-point
sampling used in previous works.

4.4.3
Vitreous Silica

Our ability to treat large supercells give us the possibility to deal with disordered
systems that could hardly be addressed using conventional approaches. In Figure 4.3

Figure 4.2 (online color at: www.pss-b.com) Calculated ionization potential as a function of the
overall conduction energy cutoff, E1C. Black line: experimental value; red line: fit to the calculated
values (green triangles); blue line extrapolated value. See text for more details.
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we show theQPEdensity of states (DOS) as calculated for a 72-atommodel of vitreous
silica [27].We used a norm-conserving pseudopotential for Si (Si.pz-vbc) and an
ultrasoft [24] one (O.pz-rrkjus) for O. The wavefunctions and the charge density were
expanded on plane waves, defined by kinetic energy cutoffs of 24 and 200Ry,
respectively. We used E1

C ¼ 48:8 eV (corresponding to 1000 conduction states),
E2
C ¼ 30:2 eV (corresponding to 500 states in the LCM), s1¼ 1 a.u. and s2¼ 0.1

a.u. (giving rise to a polarization basis of 3152 elements). We checked the conver-
gence with respect to the polarization basis by considering s2¼ 0.01 a.u. which leads
to a basis of 3933 elements. Indeed, the calculatedQPEsdiffer in average by only 0.01,
eV with a maximum discrepancy of 0.07 eV. The QP band-gap resulting from our
calculations is 8.5 eV, to be compared with an experimental value of �9 eV [28] and
with a significantly lower value predicted by DFT in the local-density approximation
(5.6 eV).

Table 4.1 QPEs (eV) calculated in crystalline silicon and compared with experimental (as quoted in
Ref. [17]) and previous theoretical results [17].

Th1 Th2 prev th expt

NP 4847 6510

C1u �11.45 �11.49 �11.57 �12.5	 0.6
X1u �7.56 �7.58 �7.67
X4u �2.79 �2.80 �2.80 �2.9, �3.3	 0.2
C0
25c 0. 0. 0. 0.

X1c 1.39 1.41 1.34 1.25
C0
15c 3.22 3.24 3.24 3.40, 3.05

C0
2c 3.87 3.89 3.94 4.23, 4.1

�Th1� and �Th2� indicate calculationsmadewith s2¼ 0.01 and s2¼ 0.001 a.u., respectively, whileNP is
the dimension of the polarization basis.

Figure 4.3 Electronic density of states for a model of vitreous silica: LDA (dashed line) and GW
(solid line). A Gaussian broadening of 0.25 eV has been used. The top of the valence band has been
aligned to 0 eV.
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4.5
Example: Point Defects in a-Si3N4

Amorphous silicon nitride (a-Si3N4) is being widely studied as its mechanical and
electronic properties lead to a wide range of applications [29] In microelectronics,
amorphous silicon nitride (a-Si3N4) is used to fabricate insulating layers in triple
oxide-nitride-oxide structures [30]. In particular, because of its high concentration of
charge traps, a-Si3N4 is employed as charge storage layer in non-volatile memory
devices [31]. Moreover, silicon nitride based materials are nowadays proposed for
optoelectronic devices [32]. Due to the non-trivial nature of its structures, first-
principles methods become very important for investigating its properties at the
atomistic scale [33].We review here how our gwwmethod permitted to investigate the
electronic structure of quasi-stoichiometric a-Si3N4 addressing a 152-atoms model
structure [33].

4.5.1
Model Generation

In a-Si3N4 silicon atoms are fourfold coordinated forming almost regular SiN4

tetrahedra. The latter are connected by corners in such a way that each N atom is
shared by three tetrahedra. Nitrogen atoms are threefold coordinated,with the silicon
neighbors arranged at the vertexes of a planar triangle. This results in a quite rigid
network structure. Furthermore the a-Si3N4 network is supposed to contain not only
corner-sharing but also edge-sharing SiN4 tetrahedra [33, 34].

We generated a model of a-Si3N4 through first-principles molecular dynamics
using the DFT approach and the exchange and correlation functional of Ref. [25].
Core-valence interactions were described through ultrasoft pseudopotentials [24] for
N and H atoms and through a normconserving pseudopotential for Si atoms. The
electronic wavefunctions and the charge density were expanded using plane waves
basis sets defined by energy cutoffs of 25 and 200Ry, respectively. The Brillouin�s
zone was sampled at the C-point. The model structure was generated through first-
principles molecular dynamics starting from a diamond-cubic model of crystalline
silicon which was changed into Si3N4 by addition of N atoms at intermediate
distances between Si–Si neighbors. The initial model structure contained 64 Si and
86N atoms in a periodically repeated cubic cell. A composition ratio r¼ [N]/[Si] of
1.34 was chosen slightly differing from the ideal stoichiometry in order to trigger the
formation of defects.We set up the density to the experimental value of 3.1 g/cm3 [35].
Car and Parrinello [36] molecular dynamics runs were then performed for obtaining
the model of a-Si3N4. First the system was thermalized at the temperature of 3500K
for 12 ps using a Nos�e–Hoover thermostat [37]. Successively, the sample was
quenched for 5 ps down to 2000K below the theoretical melting point. Finally, the
structural geometry was further optimized by a dampedmolecular dynamics run. As
themodel presented an empty state close to the top of the valence band, we passivated
it by adding to the structure twoHatoms in proximity of the two Si atomswhichwere
threefold coordinated [38]. After structural relaxation, the H atoms moved close to
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two near N sites. We note that the structural and electronic properties of our model
were only marginally affected by the addition of the two H atoms.

4.5.2
Model Structure

We report a picture of the final model structure in Figure 4.4. The main structural
parameters are reported in Table 4.2. The average Si–N bond length equals to 1.730A

�

with a standard deviation (std) of 0.060A
�
. This value is found to be in excellent

agreement with the experimental bond length of 1.729A
�
[39]. The structure shows

well-defined SiN4 tetrahedral units. The average N–Si–N angle equals 109.1� with a
standard deviation of 13�. This is very close to the ideal angle of 109.47� for regular
tetrahedra. Moreover our structure shows also well-defined quasi-planar NSi3 units.
The average Si–N–Si angle equals 117.2� with a standard deviation of 15�. This is
consistent with the value of 120� for regular planar NSi3 units.

The amount of SiN4 tetrahedra and NSi3 triangular units is reported in Table 4.3
where we give the coordination numbers in the first-neighbor shells of Si and N
atoms, together with the relative Si–Nbond length averages. Themajority of Si atoms
is fourfold coordinated and shows an average Si–N bond length of 1.73A

�
. Few Si

Figure 4.4 (online color at: www.pss-b.com)
Balls-and-sticks picture of the a-Si3N4 model. Si
atoms and N atoms are colored with dark and
light gray, respectively. Threefold and fivefold

coordinated Si atoms are colored in purple and
yellow, respectively. Twofold and fourfold
coordinated N atoms are colored in red and
green. Hydrogen are colored in pink.
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atoms are three- or fivefold coordinated. Correspondingly, almost all nitrogen atoms
are bound to three silicon atoms and only a few show two- or fourfold coordination.
Consequently, ourmodel shows at short-rangehigh topologic and chemical order.We
want now to understand the role of the point defects on the electronic structure.

4.5.3
Electronic Structure

For obtaining the polarizability basis we used a cutoff E2
C ¼ 30 eV, corresponding to

750 empty states in the LCM, and thresholds s1¼ 2. a.u. and s2¼ 0.1. This gave rise to
a polarization basis of 5867 elements. Then for the obtaining the self-energywe chose
a cutoff E1

C ¼ 45 eV, corresponding to 1500 empty states.
We show in Figure 4.5a the electronic DOS for our model calculated with the GW

approach together with the partial densities of s and p states for the Si and N atoms.
The lowest part of the valence band mainly arises from N 2s states. While the low-
energy side of the upper part of the valence band results from the Si–Nbonds, formed
by Si sp3 and N 2p orbitals, the high-energy side, which defines the top of the valence
band, consists of N 2p lone pairs. The low-energy side of the conduction bandmainly

Table 4.3 Composition of first-neighbor shells in our model of a-Si3N4.

composition nSi dSiN

Si[3] 2 1.64 (0.05)
Si[4] 59 1.73 (0.05)
Si[5] 3 1.81 (0.09)

composition nN dSiN

N[2] 3 1.61 (0.03)
N[3] 79 1.73 (0.05)
N[4] 2 1.85 (0.09)
NSi3H 2 1.78 (0.02)

Coordination numbers of Si andNatoms are indicated by the superscript number in square brackets.
The number of Si and N atoms found in ourmodel for each coordination are indicated by nSi and nN.
Average Si–N bond length dSiN (A

�
) together with its standard deviation (in parenthesis) is given for

each composition. We used cutoff radii of 2.2A
�
.

Table 4.2 Structural properties of our model of a-Si3N4 and reference values: average Si–N–Si and
N–Si–N angles, and average bond length dSiN.

ff Si–N–Si ffN–Si–N dSiN (A
�
)

model 117.2� (15.1�) 109.1� (13.0�) 1.73 (0.06)
ref. 120� -a) 109.47� -a) 1.729b)

The respective standard deviations are given in parenthesis.
a) Ideal bonding geometry.
b) Expt. (Ref. [39]).
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consists of antibonding states associated to the Si–N bond. We note that the origin of
the bands is analogous to the cases of SiO2 (Ref. [40]) and GeO2 (Ref. [41]), reflecting
the common type of short-range arrangement of atoms based on the tetrahedral unit.
Similar conclusions were obtained for the electronic DOS calculated through an
approximate density-functional scheme [42] and through a tight binding
approach [43]. Moreover, the calculated valence band is consistent with photoemis-
sion spectra [44].

We focus now on the role played by the defects in the DOS. In Figure 4.6a we give
the partial DOS obtained by projecting the electronic states onto the 1s orbitals of the
two H atoms of our model structure. The partial DOS of H atoms constitutes a very
small contribution to the total DOS of Figure 4.5. In Figure 4.6b and c we show the
partial DOS obtained by projecting the electronic states onto the 2p and 2s orbitals of
the N[2] and N[4] atoms and of the Si[3] and Si[5] atoms. The partial DOS of N[4] atoms
and Si[5] atoms do not show features localized near the band edges. At variance, the
partial DOS of the N[2] atoms shows a sharp peak at the top of the valence band, while
the partial DOS of Si[3] atoms exhibits sharp peaks close to the bottom of the
conduction band [45]. As Figure 4.6 illustrates, these peaks are originated by N and
Si 2p orbitals of N[2] and Si[3] atoms, respectively. Furthermore, the topmost occupied
electronic state and the first empty electronic state are spatially localized around aN[2]

atom and around a Si[3] atom, respectively. By excluding these two defect states, we

Figure 4.5 (online color at: www.pss-b.com)
(a) Electronic density of states (black) and
partial DOS obtained by projecting electronic
states onto N 2s (blue/dotted), N 2p (red/
dot-dashed), Si 2s (purple/dashed), and Si 2p

(green/double dot-dashed). The highest
occupied state is aligned at 0 eV. Gaussian
broadening of 0.25 eV is used. GW energies are
used. (b) Inverse participation ratio (IPR) of
electronic states in silicon nitride.
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found a HOMO–LUMO band gap of 4.42 eV in excellent agreement with the
experimental value of 4.55 eV of the optical band gap of sputtered a-Si3N4 given in
Ref. [46]. However, we note that the band gap is quite sensitive to the adopted
production method and for CVD samples is about 5.3 eV [46]. Yet, the GWmethod
appears to correctly describe the electronic DOS where simpler LDA calculations fail
giving for ourmodel structure aHOMO–LUMOband-gap of only 2.9 eV, as typical for
LDA calculations in silicon nitride [38, 42].

Wenowanalyze thedegreeof localizationof theelectronic states.The localizationof
an electronic stateyn canbequantifiedby the inverse participation ratio (IPR) [38, 47]:

IPRn ¼ V

Ð
drjynðrÞj4

j Ð drjynðrÞj2j2
; ð4:38Þ

Figure 4.6 Partial DOS obtained by projecting
the electronic states onto (a) 1s orbitals of H
atoms, (b) 2p and 2s orbitals of twofold (solid)
and fourfold (dotted) coordinated N atoms,
(c) 2p and 2s orbitals of threefold (solid) and

fivefold (dotted) coordinated Si atoms.
The highest occupied state is aligned at 0 eV.
Gaussian broadening of 0.25 eV is used.
GW energies are used.
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whereV is the volume of the simulation cell. The larger the IPR themore localized is
the electronic state, so that highly localized/delocalized states showa large/small IPR.
For completely delocalized states the IPR is equal to unity. In Figure 4.5bwe show the
IPR for the electronic states of our model of silicon nitride. We note that the states
close to the band edges corresponding to N[2] and Si[3] defects result much more
localized than the other electronic states. These results are consistent with the IPR
data previously calculated for a-SiNx in Ref. [38].

4.6
Conclusions

We have shown how the use of optimal basis sets for representing the polarizability
operator permits to achieve a significant speed up of GW calculations, allowing the
study of large model structures up to a few hundreds of atoms. Therefore it is
appealing to use such scheme for investigating the electronic structure of defects as
density-functional approaches result not to be adequate. The main limitation still
present in our approach is the need of summing over a large number of empty states.
For a discussion of this point and the presentation of a solution we indicate to the
reader Ref. [15].
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5
Calculation of Semiconductor Band Structures and Defects
by the Screened Exchange Density Functional
S. J. Clark and John Robertson

5.1
Introduction

The local density approximation (LDA) is an efficient method to solve the eigenvalue
equation of the many-body electronic Hamiltonian. The simplicity of LDA is to
represent the exchange–correlation energy Exc as a functional of the electron density,
not the wave function. However, DFTunder estimates the band gap of semiconduc-
tors and insulators [1]. Typically, the error is 30%, but the error can be 70% in cases
like ZnO or even negative gaps in cases like InAs. This causes severe problems in the
treatment of point defects and for heterojunction interfaces.

Various methods can be used to correct the band gap problem of the LDA and
generalized gradient approximations (GGA). The first method is the scissors
operator [2], in which the conduction band is just rigidly shifted upwards to fit the
experimental band gap. This is not suitable for defect calculations.

Another correction method is the self-interaction correction (SIC) method of
Perdew and Zunger [3] but this is still difficult to implement [4]. The GWmethod is
widely used to provide accurate band structures [5–10], but it is very expensive, is
usually too costly for defect calculations using supercells, and it cannot be used
variationally to find geometries.

The LDA þ U method has been used to correct band structures in open shell
systems, where an on-site repulsion energyU is used to open up a gap between spin-
up and spin down electrons [11, 12].However, thismethod is only valid for open-shell
systems. It is not valid for the standard closed shell semiconductors and insulators.
For semiconductors with shallow core states such as ZnO, the LDA þ U method
can be used to partly correct the band gap, by forcing the Zn 3d states down, and thus
reducing their repulsion from below on the valence band maximum state [13]. Any
use of LDA þ U to fit the band gap of closed shell systems will require an unphysical
value of U.

The local exchange and correlation functionals of LDA andGGA lead to a spurious
electronic self-interaction. TheHFmethoduses a non-local exchange, so that it can be

Advanced Calculations for Defects in Materials: Electronic Structure Methods, First Edition.
Edited by Audrius Alkauskas, Peter Deák, Jörg Neugebauer, Alfredo Pasquarello, and Chris G. Van de Walle.
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self-interaction free, but HF lacks electronic correlation, and its exchange is unre-
alistically long-ranged due to an absence of screening.

In the late 1990s, it was realized that mixing in a fraction of Hartree–Fock
exchange into the LDA exchange–correlation energy could be used to correct the
band gap error andmake the eigenvalues of the Kohn–Sham equations equal to the
quasi-particle energies. Becke [14] gave arguments based on an adiabatic linkage of
the HF and LDA limits that 25% is an appropriate amount of HF exchange to mix
into the local exchange–correlation functional. This gave rise to the so-called
hybrid functionals, such as B3LYP [14] and the PBEh [15] hybrid, formerly known
as PBE0, in which 25% of Fock exchange is substituted into the LDA of Exc. Muscat
et al. [16] found that B3LYP gave good values for the band gaps of various
semiconductors. The PBEh also mixes in 25% of HF exchange, and gives
reasonable band gaps [17].

TheHF exchange is unrealistically long-range due to an absence of screening, and
is divergent for a planewave basis. This led to the development of the screened hybrid
functionals of Heyd–Scuseria–Erzenhof (HSE) [18–21] by separating the non-local
HF exchange into long and short-range parts, and replacing a fraction (again,
a¼ 0.25) of the short-range parts of the LDA exchange with HF exchange. This is
based on the notion that the exchange and correlation terms cancel at long range.
The retention of only short-range HF exchange allows faster calculations. HSE is
a variational functional that can be used for energy minimization. HSE was
implemented for a local orbital basis and it has been tested on various molecules
and solids [20, 21], and later for a plane wave basis with projector augmented
waves [22].

Earlier and in a similar way, Bylander and Kleinman [23] proposed a similar
separation of long and short ranged parts of the screened exchange (SX) [5]. They
represented the exchange interaction by a Thomas–Fermi screened Coulomb
potential, and use the LDA correlation. It has similar attributes to HSE. Seidel
et al. [24] realized that SX was a variational functional, and so it was suitable for
geometry optimization. Previously, Freeman and coworkers [25, 26] have used SX
extensively to calculate the band structures of semiconductors, some oxides and
their optical properties. It was not used for energy minimization, which is done
here.

5.2
Screened Exchange Functional

The non-local XC potential of SX is similar in form to the HF potential, but it also
incorporates the effects of correlation by screening the long-range interactions of
exchange [23]. The non-local contribution to the total energy of the system is

ESX
nl ¼ � 1

2

X

ij;kq

ð ð
y�

ikðrÞyikðr 0Þexp ð�ksjr�r 0jÞy�
jqðr 0ÞyjqðrÞ

jr�r 0j dr dr 0; ð5:1Þ
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where i and j label electronic bands, k and q the k-points and ks is a Thomas–Fermi
screening length.

In order to maintain the exact expression for the homogeneous electron
gas (HEG), a local (loc) contribution is also required, so that the total exchange–
correlation energy in the screened-exchange method is

ESX ¼ ESX
nl þESX

loc ;

where ESX
loc is this additional contribution which is parameterized using Perdew�s

expression for the LDA [3]. Thus the local contribution to the exchange and
correlation energy density is

eSXlocðrÞ ¼ eHEG
loc ðrÞ�eHEG

nl ðrÞ; ð5:2Þ

where the local eHEG
loc ðrÞ is the same as the LDA (HEG). The second term is obtained

by applying the non-local functional to the HEG, which is given by

eHEG
nl ðrÞ ¼ VHEG

X ðrÞFðrÞ; ð5:3Þ

where Vx is the pure HF exchange of the HEG, FðrÞ is a screening function given in
Eq. (5.3) in Bylander and Kleinman [23]. Thus the total exchange–correlation energy
within the screened-exchange formalism is

ESX ¼ ESX
nl þEHEG

loc �
ð
VHEG
X ðrÞFðrÞrðrÞ dr: ð5:4Þ

This is analogous to theHSE termwhere the first term represents the �a¼ 0.25� of
HF, the second term is the long-ranged exchange and the final term is similar to the
short-ranged-screened local PBE exchange of HSE. An important factor is that SX
reproduces the correct asymptotic limits of XC in both the free electron gas and the
HF limit.

The SX method has been implemented in the CASTEP code [27], a plane wave
pseudopotential code. It uses norm-conserving pseudopotentials. In many cases,
more transferable pseudopotential was generated using the Opium code [28]. The
Thomas Fermi (TF) screening parameter is found from the valence electron
density by ks¼ 2(kF/p)

1/2 where kF is the Fermi wavenumber. There are two
options, either ks is set to the average valence electron density of the system, or
it is given by a fixed value, such as the natural density of the HEG. In cases of
shallow d core states, these can be included in the valence states, but those core
electrons are not counted in the TF parameter. Non-local stresses are evaluated by
the scheme of Gibson et al. [29], which now allows the efficient geometry
optimization of the unit cell.

SX is efficient, so that it can be used to carry out the full geometry relaxations in
realistic-sized defect supercells, andnot just as a post-processing of geometries found
by LDA or GGA. It is expected to have similar efficiency to HSE, but this depends on
the implementation and the screening lengths used.
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5.3
Bulk Band Structures and Defects

Table 5.1 compares the calculated SXband gapswith those calculated byGGAand the
experimental values. It can be seen that there is a significant improvement. These are
also shown in Figure 5.1. Notable cases are for Si the band gap improves from 0.69 to

Table 5.1 Comparison of the calculated GGA and SX bands gap to the experimental values are
given. Also presented are the calculated GGA and SX lattice constants, which are compared to the
experimental values.

compound PBE band
gap (eV)

SX band
gap (eV)

exp band
gap (eV)

GGA lattice
constant (A

�
)

SX lattice
constant (A

�
)

exp lattice
constant (A

�
)

diamond 4.27 5.38 5.5 3.537 3.501 3.567
Si 0.69 1.07 1.12 5.401 5.397 5.431
Ge 0.59 0.69 0.7 5.478 5.414 5.657
c-SiC 1.47 2.25 2.42 4.320 4.262 4.348
AlP 1.66 2.21 2.45 5.438 5.386 5.451
AlAs 1.58 2.30 2.24 5.640 5.581 5.62
AlSb 1.57 1.83 1.70 6.063 6.021 6.13
GaP 1.70 1.85 1.9 5.502 5.374 5.45
GaAs 0.87 1.47 1.45 5.707 5.570 5.66
GaSb 1.00 1.13 0.82 6.066 5.905 6.09
ZnO(zb) 0.89 3.43 3.44 4.583 4.586 4.51
ZnO (wz) 0.8 3.41 3.44 3.268/5.299 3.27/5.25 3.25/5.21
ZnS 2.15 3.74 3.80 5.606 5.421 5.41
ZnSe 1.68 2.71 2.82 5.875 5.569 5.67
ZnTe 1.81 2.34 2.39 6.280 6.025 6.089
CdS 1.59 2.38 2.42 5.983 5.865 5.818
CdSe 1.33 1.88 1.84 6.245 6.113 6.05
CdTe 1.67 1.71 1.60 6.652 6.486 6.48
MgS (rs) 2.77 3.70 3.7 5.210 5.167 5.20
MgS (zb) 3.37 4.84 4.8 5.659 5.599 5.66
MgSe (zb) 2.95 3.91 4.0 5.949 5.893 5.91
CdO �0.60 0.98 0.9 4.708 4.670 4.69
MgO 3.60 7.72 7.8 4.223 4.126 4.21
LiF 9.24 13.27 13.7 4.093 4.032 4.017
SiO2 6.05 8.74 9 4.909/5.402 4.855/5.371 5.01/5.47
a-Al2O3 6.25 8.64 8.8 4.76/13.00 4.70/12.97 4.76/12.99
SnO2 0.93 3.66 3.6 4.738/3.149 4.692/3.136 4.737/3.186
In2O3 0.90 3.03 2.9 10.118 10.016 10.12
Cu2O 1.04 2.11 2.12 4.359 4.315 4.27
TiO2 1.86 3.1 3.2 4.691/2.994 4.608/2.920 4.59/2.96
c-HfO2 3.74 5.60 5.8 5.161 5.037 5.11
c-ZrO2 3.43 5.76 5.7 5.131 5.022 5.07
SrTiO3 1.93 3.28 3.2 3.971 3.874 3.905
PbTiO3 1.71 3.43 3.4 3.983 3.904 3.96
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1.07 eV compared to 1.19 eV experimentally. For GaAs, the band gap increases from
0.87 eV in GGA to 1.47 eV in SX. For insulators, SiO2, the gap improves from 6.0 eV
in GGA to 8.74 eV in SX, very close to the 9.0 eV experimental value. For wide gap
insulators such as LiF, the gap is 13.27 eV in SX, 9.24eV in PBE, compared to 13.7 eV
experimentally. It has been used before onHfO2 and themultiferroic BiFeO3 [30–32].

The improvement is most significant for the transparent conducting oxides such
as ZnO, In2O3 and SnO2. These band structures are characterized by a single, broad
conduction band minimum at C. The minimum gap of SnO2 is 0.9 eV in GGA, and
this becomes 3.66 eV in SX, compared to 3.6 eV found experimentally. The reason is
that direct gap atC is unrepresentative of the averaged gap. The average gap opens up
by the typical 20%, but this translates into a very large fractional change at C.

5.3.1
Band Structure of ZnO

ZnO is an important semiconductor, which is widely used as a phosphor, for
transparent electrodes in solar cells, and for ultraviolet light emission, spintronics,
nanowires and for its high electronmobility [33–39]. It can be easily doped n-type but
it is difficult to dope p-type [35]. This has been attributed to the nature of its intrinsic
defects which cause a self-compensation of free carriers [40] and also to that common
acceptors are deep [41]. It is therefore important to understand the energetics of its
intrinsic defects.

There have been numerous first-principles studies of the bulk electronic structure
of ZnO [13, 42–48] and its defect energies [49–63].The LDA þ U method has been
used to improve theGGAband structure, by shifting the Zn 3d band downwards [13].
The SIC method has been used to find the band structure of ZnO [44]. Various
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types of GW methods have been used for ZnO [45–47]. The HSE hybrid has been
used [47, 48, 52, 56, 61].

Defect calculations generally find that the O vacancy is the defect with lowest
formation energy but it is deep, while the Zn interstitial is shallow but has higher
formation energy. Nevertheless, there is a lack of consistency between the various
results. This arise partly because of the band gap error of LDA and also sometimes
because charge state corrections were not correctly included.

Patterson [54] used the B3LYP functional and localized orbitals to calculate the
defect eigenvalues, but he did not calculate the defect formation energies from the
total energies. Oba et al. [52] used the HSE functional to provide a complete set of
defect formation energies, and tested the corrections for supercell size. Superficially,
this is awell-defined calculation.However, it was necessary to increase theHFmixing
parameter a from a¼ 0.25 to 0.375 in order to empirically fit the experimental gap.
Agoston et al. [56] produced a valuable comparison of GGA and HSE results for
O vacancies for all three conducting oxides.

Recently, we applied the SXmethod to the intrinsic defects of ZnO [61]. For our SX
calculations, ks is determined from the valence electron density, and for those
elements like Zn with shallow filled d states, it is for s, p electrons only. The
kTF¼ 2.27A�1 for ZnO. A plane-wave cut-off energy of 800 eV is used, which
converges total energy differences to better that 1meV/atom. Integrations over the
Brillouin zone are performed using the k-point sampling method of Monkhorst and
Pack with a grid that converges the energies of the bulk unit cell to a similar accuracy.
Geometry optimizations are performed self-consistently using a minimization
scheme and the Hellmann–Feynman forces, and are converged when forces are
below 0.04 eV/A

�
.

Table 5.2 shows the converged lattice parameters of ZnO, which are within 0.5% of
experiment, whereas GGA (PBE) values are 1% too large. The free energy of ZnO per
formula unit is found to be only 0.3 eV less than experiment, a 60% improvement
over the PBE result.

Figure 5.2 shows the calculated band structure of bulk ZnO in the wurtzite and
zincblende structure. The minimum gap is calculated to be 3.41 eV, and is very close
to the 3.44 eV found experimentally [35]. Our value ismuch closer to experiment than
HSE with the normal a parameter (2.87 eV) [48], or even with the expensive GW [45]
which gets 2.7 eV.

Table 5.2 Bulk properties of wurzite ZnO, calculated compared to experiment.

GGA SX exp

a (A
�
) 3.286 3.267 3.2495

c (A
�
) 5.299 5.245 5.2069

free energy (eV) �2.82 �3.31 �3.63
direct gap (eV) 0.9 3.41 3.44
Zn 3d (eV) �4.8 �7.0 �7.3
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Part of the LDA band gap error in ZnO arises from the Zn 3d (t2g) levels lying too
high, and their upwards repulsion of the C15 valence band maximum states. In SX,
the Zn 3d states now lie at�7.0 below the VBmaximum, very close to where they are
found experimentally by angle-resolved photoemission [64, 65].

5.3.2
Defects of ZnO

The defect calculations are carried out using a 120 atom supercell, whose size is fixed
at that of the defect-free cell, and the defect created. The internal geometry is relaxed
within SX, using a single special k-point of (1/4, 1/4, 1/3) for Brillouin zone
integrations, which converges the quantities faster than the C point with respect
to supercell size [66].
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The total energy (Eq) is calculated for the defect cell of charge q, for the perfect
cell (EH) of charge q, and for a perfect cell of charge 0. This allows us to calculate
the defect formation energy, Hq, as a function of the relative Fermi energy (DEF)
from the valence band edge EV and the relative chemical potential (Dm) of
element a [60],

HqðEF; mÞ ¼ ½Eq�EH� þ qðEV þDEFÞþ
X

a

na
�
m0a þDma

�
;

where q(EV þ DEF) is the change in energy when charge q is added to the system at
the Fermi level and na is the number of atoms of species a. Essentially, this is the
shift in the average electrostatic potential due to the charge of the system with
respect to the uncharged system. The corrections for the background charge, band
filling, etc., are included as described in Ref. [58]. The oxygen chemical potential
(m0) is referred to that of the O2 molecule, taken as zero, which is the O-rich limit.
The O-poor limit corresponds to the Zn/ZnO equilibrium and is m(O)¼�3.31 eV
(the heat of formation of ZnO).

Figure 5.3a and b shows the calculated formation energies of the four intrinsic
defects of ZnO in theO-rich andO-poor limits.We see that theO vacancy (VO) has the
lowest formation energy over a wide range of EF, lower than the Zn interstitial. VO is
a deepdefect and it has a transition state between its neutral anddoubly positive states
E(0/2þ ) at 2.20 eV. The þ 1 state is never stable, so the O vacancy has a negative
effective correlation energy (U), as found by others. We findU¼�2.0 eV, the energy
difference between the metastable 0/þ and þ /2þ transitions in Figure 5.4. The
negativeU arises because of the strong lattice relaxation with changing charge state,
with the Zn-vacancy distance changing from 1.84A

�
for V0, to 2.16A

�
for Vþ to 2.46A

�

for V2þ , compared to a bulk Zn–O distance of 1.95A.
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These relaxations are seen in Figure 5.5a–c. Note that the relaxed structures found
by SX are similar to those foundbyGGA, so in fact in this case, we could have used SX
post-processing on GGA structures to find the defect formation energies.

We find that the Zn interstitial IZn is a shallow defect, with a slightly higher
formation energy thanVO. Its transition state (0/2þ ) lies at 3.32 eV, essentially at the
conduction band edge, consistent with experiment [37], and it has a U¼ 0 eV.
However, its neutral state has a large formation energy in O� poor conditions.

The other two intrinsic defects IO and VZn are more stable in O-rich conditions
(compared to VO and IZn), and have higher formation energies. They are both deep
defects, and show two charge states in the gap, corresponding to positiveUbehaviour.
The IO forms the usual dumb-bell structure of O interstitials in its 0 and � charge
states, while the IZn sits in the octahedral site as seen by others [50].

Figure 5.6 compares our formation energies of theO vacancy to those calculated by
others. The calculated formation energy of V0 of þ 0.85 eV in SX is similar to that
found by Lany and Zunger [59], slightly less than the 1.0 eV found by Oba et al. [52],
and similar to that found by Agoston et al. [56]. However, it is much less than the
formation energy given by Janotti and van de Walle [50]. The þ 0.85 eV formation
energywould correspond to a frozen-in vacancy concentration of 1019 cm�3 at 700 �C,
which is consistent with the concentration found experimentally [67, 68]. However,
being deep, it is not a source of free electrons. The large formation energy of neutral
Zn interstitial means that this cannot be the source of free electrons in ZnO, as its
concentration would be too low [69]. Thismeans that in the absence of hydrogen, the
source of free electrons must be a donor complex.

Our (0/2þ ) transition energy of 2.20 eVabove the valence band top is the same as
that found by Janotti and vandeWalle [50, 51], byOba et al. [52], andAgoston et al. [56],
but higher than found by Lany in corrected GGA [59]. The metastable (0/þ )
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charge states of the oxygen vacancy in ZnO under oxygen poor conditions.
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transition lies at 0.9 eV and this is consistent if the ODMR transition observed by
Vlasenko andWatkins [70] is from valence band to the defect level. Thus, overall there
is now a reasonable convergence in formation energies and transition energies
between some of the calculations.

Figure 5.5 (online colour at: www.pss-b.com)
In (a), (b) and (c), the electronic density of the
defect state found in the band gap of ZnO is
shown for the oxygen vacancy for the neutral,

þ 1 and þ 2 charge states, respectively. In (d),
the defect state of the Zn vacancy is shown and
is found to be a p-like state locatedon only oneof
the adjacent oxygen atoms.
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It is interesting that for the oxygen vacancy, the SX and GGA relaxed atomic
positions and wave functions are similar.

Figure 5.7 shows our calculated eigenvalues of the oxygen vacancy. We see that
the eigenvalue of the neutralVO lies at þ 0.16 eVabove the VB top. InGGA, it lies in
the lower gap. This is why VO is able to display three charges even in GGA
calculations despite the severe under-estimate of the gap. However, it does show
that the calculated eigenvalues of VO have little relationship to the transition
energies in ZnO, due to the strong lattice relaxations. Hence the result of the
B3LYP calculation of Patterson [54] is not particularly relevant, as it only gives
transition energies.

Finally, the LDA is known to under-estimate the localization of hole states. For
example, the trapped hole state of AlSi in SiO2 (smoky quartz) is well known to be
trapped on a single oxygen, but LDA finds it localized on all four neighbouring
oxygens [71]. There are other recent examples [71, 72]. Figure 5.5d shows the
calculated SX charge density of the single trapped hole state of the Zn vacancy
VZn . We find it to be localized on one oxygen neighbour in SX, not four. In this case,
the charge density in SX differs considerably from that of GGA. This is consistent
with its spin resonance signature [73, 74]. Even LDA þ U cannot localize it on one
oxygen [51]. On the other hand, the wave functions of the three states of VO are
localized over all four Zn neighbours, consistent with a simple symmetric vacancy
(Figure 5.5a–c). The localization is driven by distortion. Thus, in this case, the SX and
GGA geometries are different, we could not have found defect formation energies by
post-processing GGA geometries in SX.

5.3.3
Band Structure of MgO

Figure 5.8 shows the SX band structure of the clasicalmetal oxideMgO. Its calculated
band gap is 7.7 eV,which is close to the experimental value of 7.8 eV. The valence band
is formed of O 2p states and the conduction band is formed of Mg 3s states.
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5.3.4
Band Structures of SnO2 and CdO

The three transparent conducting oxides ZnO, CdO and SnO2 are good tests of band
structuremethods. ZnO has been treated already. CdO fails badly in GGA, where it is
found to have a negative indirect band gap. In SX, the band gap is now positive, and
0.9 eV. This is close to the experimental value (Table 5.1). Note that CdO has an
indirect gap from L toC, due to the effect of Cd d states on the upper valence band. Its
conduction band is the standard free-electron like band, formed from Cd s states
(Figure 5.9).
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SnO2 has a simpler band structure, with a 3.6 eVdirect-forbidden gap.However, in
GGA the gap is typically only 0.9 eV. Figure 5.10 shows the calculated SX band
structure, where the calculated gap is 3.6 eV, the experimental value. The band gaps
between O 2p valence states and Sn s conduction band states.

5.3.5
Band Structure and Defects of HfO2

Wehave carried out a SX calculations on various other oxides. HfO2 is an important
oxide in microelectronics as it is now used as the gate oxide in modern FETs. It is
a closed shell transition metal oxide with a high dielectric constant. Figure 5.11
shows the band structure of cubic HfO2 (fluorite structure) calculated by the SX
functional [30]. The calculated band gap is slightly indirect and is 5.6 eV, which is
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Figure 5.11 Band structure of cubic HfO2 calculated by the SXmethod. The calculated band gap is
5.6 eV, compared to 5.8 eV experimentally.
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close to the experimental value of about 5.8 eV, whereas it is about 3.4–3.7 eV in
LDA or GGA.

Defects are an important consideration in such oxides, as they lead to charge
trapping, and an instability in the gate threshold voltage. The principle defect is now
known to be the oxygen vacancy. FromGGA calculations, it was unclear which defect
was predominant, becauseGGAplaced the vacancy levels either too low in the gap, or
too high in the gap [75, 76], depending onwhich correction schemewas applied to the
energy levels for the band gap error. SXplayed a critical role in resolving this question,
as it was the first calculation of the oxygen vacancy levels which placed the energy
levels correctly [30], and close to the experimental values observed by charge injection
and optical absorption [77–81]. It was then realized that the oxygen vacancy was
likely to be the main defect, as this is consistent with its behaviour in similar oxides
such as ZrO2.

Figure 5.12 shows the calculated SX formation energy of the oxygen vacancy versus
the Fermi energy. The local structure was relaxed by SX. The lines represent the
different charge states of the vacancy, and the transition states are where lines cross.

Figure 5.12 shows that theO vacancy is a negativeU defect for both the�2 and þ 1
states. The calculated values are similar to those found by Gavartin et al. [82] and
Broqvist and Pasquarello. [83] using the B3LYP and PBEh methods.

5.3.6
BiFeO3

BiFeO3 is the architypal multiferroic oxide, which shows both ferroelectric and
antiferromagnetic properties. The interest arises from the possible electric field
control ofmagnetic properties and vice versa. It is highly studied since it wasmade in
thin film form on Si [84]. It has the R3c structure in its ferroelectric phase, which is
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a small distortion of the cubic. It is a semiconductor whose band gap lies in the Fe 3d
states of opposite spin (Figure 5.13).

There is no band gap in the LSDA method, even in the distorted structure. The
simplest way to create a band gap is to use the LDA þ Umethod, which does produce
a band gap, as in the calculation of Neaton et al. [85]. However, theU parametermust
be empirically chosen, which is unsatisfactory. We recently calculated the band
structure of BFOby the SXmethod for the experimental structure, with no adjustable
parameters [86, 87]. This gave a band gap of 2.7 eV, which was the first available value
of the gap. It agrees with subsequent experimental evaluations [88, 89].

5.4
Summary

The SX method has been reviewed as a method to produce band structures of
insulators and semiconductorswithmore accurate band gaps. SXbehaves as a hybrid
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density functional, which can be used for energy minimization. Some examples
of the used of SX, particularly in oxides, are given.
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6
Accurate Treatment of Solids with the HSE Screened Hybrid
Thomas M. Henderson, Joachim Paier, and Gustavo E. Scuseria

6.1
Introduction and Basics of Density Functional Theory

Theoretical predictions of electronic properties offer a clear complement to exper-
imental investigations. However, these theoretical predictions are only as useful as
they are accurate. Ideally, first-principles calculations of electronic properties in
periodic systems would use some high level many-body technique such as coupled-
cluster theory; however these methods are horrifically expensive and therefore have
restricted applicability in practice. While simpler many-body methods such as GW
theory are significantly less expensive, the computational burden they impose
nevertheless restricts their scope. Therefore, we often must perforce resort to
single-particle descriptions, which are less computationally expensive but of course
also less reliable.

One important single-particle reference is theHartree–Fock (HF)method. TheHF
density matrix variationally minimizes the HF energy, given by

EHF ¼ hWjT jWiþ
ð
dr nðrÞuextðrÞþ 1

2

ð
dr1dr2

nðr1Þnðr2Þ
r12

þEHF
x ½c�; ð6:1Þ

where n is the density, c the density matrix, r12 ¼ jr1�r2j, and EHF
x ½c� is the nonlocal

Fock exchange energy

EHF
x ½c� ¼ � 1

2

ð
dr1dr2

cðr1; r2Þcðr2; r1Þ
r12

: ð6:2Þ

That is, HF takes the usual one-body terms and the Coulomb interaction between
electrons and adds a (known) functional of the density matrix to describe exchange.
We construct the wave function jWi, density and density matrix from HF orbitals,
obtained from a reference system of noninteracting electrons in which the external
potential is augmented by the Hartree potential

uHðr1Þ ¼
ð
dr2

nðr2Þ
r12

; ð6:3Þ
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and by an additional nonlocal potential uHF
x which accounts for the effects of the

exchange interaction on the orbitals. This nonlocal potential is the functional
derivative of the exchange energy EHF

x with respect to the density matrix

dEHF
x

dcðr2; r1Þ ¼ hr1juHF
x jr2i ¼ � cðr1; r2Þ

r12
; ð6:4Þ

so that matrix elements of uHF
x between two single-particle functions are

hwjuHF
x jyi ¼

ð
dr1dr2hwjr1ihr1juHF

x jr2ihr2jyi ¼�
ð
dr1dr2w

�ðr1Þyðr2Þcðr1; r2Þr12
:

ð6:5Þ

HFhas some advantages which should not be forgotten. It is exact for one-electron
systems and has no one-electron self-interaction. It also forms a variationally optimal
starting point for many-body methods. The orbital energies in HF have a clean
interpretation as ionization potentials and electron affinities (i.e., Koopmans� the-
orem holds), which justifies the use of HF band energy differences to predict the
fundamental band gap (the difference between the ionization potential and electron
affinity of the system). Numerically, however, theHFband energy difference is a poor
predictor of the fundamental gap.

Unfortunately, the advantages of HF are generally outweighed by disadvantages.
Because it neglects electron correlation effects entirely, HF is insufficiently accurate
formost applications. It has an innate tendency to overly favor electronically localized
states, a manifestation of its form ofmany-electron self-interaction [1–3]. Calculating
the nonlocal exchange interaction is computationally demanding in solids. The
nonlocal exchange interaction also prevents HF from describing metallic
behavior [4].

For all of these reasons, the single-particlemethod of choice is usually Kohn–Sham
(KS) density functional theory (DFT) [5–7], in which the energy is given by

EKS ¼ hWjT jWiþ
ð
drnðrÞuextðrÞþ 1

2

ð
dr1dr2

nðr1Þnðr2Þ
r12

þEKS
xc ½n�: ð6:6Þ

In other words, KS-DFT includes the usual one-body terms and Coulomb
interaction between electrons and describesmany-body exchange–correlation effects
with a functional EKS

xc ½n� of the density alone. The density is obtained from a reference
system of noninteracting electrons in which the external potential is augmented by
the Hartree potential and by an additional local potential uKSxc which accounts for the
effects of the exchange and correlation interactions on the orbitals. This local
potential is the functional derivative of the exchange–correlation energy EKS

xc with
respect to the density.

In principle, the exchange component of EKS
xc can be taken directly from HF, with

the sole distinction being that the density matrix should be constructed from KS
orbitals. The functional derivative to build uKSx would then yield the optimized
effective potential (OEP) [8, 9] which is in some sense the best local variant of uHF

x .
However, numerical computation of the OEP can be challenging, particularly in
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a gaussian basis set [10]. Numerous approximations to OEP can solve this prob-
lem [11–16], but all remain computationally quite demanding in extended systems
because they must construct the nonlocal exchange operator. In practice, HF-type
exchange is almost never used in a genuine KS calculation.

The chief difficulty in KS-DFT is the need to approximate EKS
xc and uKSxc in

practical calculations. Typical density functional approximations (DFAs) include
the local density approximation (LDA) and generalized gradient approximations
(GGAs) such as the functional of Perdew, Burke, and Ernzerhof (PBE) [17]. These
are examples of what we shall term semilocal functionals, in which the
exchange–correlation potential and energy density at a point depend only on the
density and possibly its derivatives at that point. In effect, they expand the
exchange–correlation energy around the homogeneous electron gas result, though
they include a rather general dependence on the density gradient which allows
them to satisfy known constraints on EKS

xc that the second-order gradient expansion
violates. Alternatively, one can view GGAs as curing the second-order gradient
expansion�s violations of known constraints on the exchange–correlation hole
[18, 19]. Meta-GGAs such as the TPSS functional of Tao, Perdew, Staroverov, and
Scuseria [20] add dependence on the local kinetic energy density, but are also
semilocal in character.

For simple solids, these semilocal functionals are reasonably accurate, presum-
ably because their electron densities tend to be slowly varying and the homoge-
neous electron gas is thus a reasonable starting point. This accuracy, however, does
not extend to the description of the band gap, which is severely underestimated.
For more complicated systems which may include localized electronic states,
magnetic effects, rapidly varying densities, or other complicating factors, semilocal
functionals are generally inadequate. Alternative semilocal functionals such as
PBEsol [21] and revTPSS [22] can be constructed, but while these yield better lattice
parameters and bulk moduli than their parents (respectively, PBE and TPSS), they
do not remedy the failures of semilocal DFT in systems with the foregoing
features, nor do they yield correct band gaps. Formally, this is largely because
semilocal functionals do not include the derivative discontinuity of exact KS (see
below) [23].

One possible solution which is very successful in molecular systems is to use a
global hybrid functional [24, 25], which mixes a fraction of nonlocal HF-type
exchange with conventional semilocal exchange:

Ehybrid
xc ¼ EDFA

xc þ cHFðEHF
x �EDFA

x Þ: ð6:7Þ

Common hybrids include the three-parameter B3LYP hybrid [26] and the non-
empirical [27] PBEh global hybrid [28, 29]. It should be emphasized that hybrid
calculations are almost always done in what is called the generalized Kohn–Sham
(GKS) sense [30], in which the nonlocal exchange energy yields a nonlocal exchange
interaction.

Unfortunately, as already mentioned, nonlocal exchange is problematic in solids.
Therefore, Heyd, Scuseria, and Ernzerhof introduced theHeyd–Scuseria–Ernzerhof
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(HSE) screened hybrid [31–35]. InHSE, the electron–electron interaction is split into
a short-range part and a long-range part, as

1
r12

¼ erfcðvr12Þ
r12|{z}
SR

þ erf ðvr12Þ
r12|{z}
LR

; ð6:8Þ

with a screening parametervwhich in the latest (HSE06) variant of the functional is
numerically v ¼ 0:11a�1

0 in terms of the Bohr radius a0. The short-range part is
treated as in the PBEh global hybrid – that is, it uses 25% short-range exact exchange
and 75% short-range PBE exchange – while the long-range part is treated purely by
PBE. Asv goes to 0, the short-range part dominates and HSE reduces to PBEh; asv
goes to infinity, the short-range part vanishes andHSE reduces to PBE. By screening
the electron–electron interaction in this way, one vastly reduces the expense of
calculating the exact exchange interaction. Note that while the exchange interaction is
short range in nature, the range over which exact exchange is included is approx-
imately 1/ve9a0, allowing delocalization to nearest and next-nearest neighboring
atoms,which admits some formof nonlocality into themodel without including all of
it. It is also worth noting that Savin introduced the concept of range-separation in
DFT [36–38], though he suggested the use of nonlocal exchange in the long range
where HSE includes it instead in the short range.

Remarkably, this simple adjustment to the PBEh global hybrid leads to a com-
putationally affordable functional which is accurate for a wide variety of properties of
solids. It is our purpose here to summarize what we believe are the key features of
HSE and explain roughly why the functional works; for a more detailed review of the
successes and failures of HSE, see Ref. [39]. We begin by discussing what is perhaps
themost notable success ofHSE (its ability to predict band gaps) in Section 6.2 before
stepping back to more carefully consider the physics of screened exchange (SX) in
Section 6.3. Section 6.4 discusses several applications of HSE, and we offer a few
concluding remarks in Section 6.5.

6.2
Band Gaps

Probably the most important success of HSE is its ability to predict semiconductor
band gaps from its band energy differences. Here, we want to rationalize this success
and set up the discussion for what follows. Before we begin, however, we had best be
precise about what we mean when we say that HSE accurately predicts band gaps.

The fundamental band gap of the system deals with the energy required to add or
remove electrons. We define it as

DEfgðNÞ ¼ EðN þ 1Þþ EðN�1Þ�2EðNÞ; ð6:9Þ

where E(N) is the energy of theN-electron system. The optical gap instead measures
the energy required to excite an electron, and is just the lowest electronic excitation
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energy of the system.The optical gap is lower than the fundamental gap by the exciton
binding energy,which represents the interactionbetween the excited electron and the
hole created upon excitation.

InHF,Koopmans� theorem tells us that theHFfundamental gap is just equal to the
HF band energy difference. The HF optical gap can be computed from the time-
dependent (TD) linear reponse (generally just known as TDHF) and is lower than the
HF fundamental gap; in other words, HF predicts a nonzero exciton binding
energy [40, 41]. Due to self-interaction in the unoccupied energy levels, the HF
fundamental gap severely overestimates the experimental fundamental gap, at least
for semiconductors and typical insulators.

In exact KS, we do not have Koopmans� theorem. However, we can use the
Janak–Slater theorem instead [42]. We obtain the well-known result that the exact KS
fundamental gap is

DEKS
fg ðNÞ ¼ eKSNþ 1ðNÞ�eKSN ðNÞþDxcðNÞ; ð6:10Þ

where DxcðNÞ arises from the discontinuity in uKSxc as a function of N at integer N
[43, 44]. Standard semilocal functionals and hybrid functionals in the generalized KS
sense do not exhibit this discontinuity [23], so their prediction for the fundamental
gap is

DEDFA
fg ðNÞ ¼ eDFANþ 1ðNÞ�eDFAN ðNÞ; ð6:11Þ

where the superscript �DFA� means a conventional density functional
approximation.

The appropriate framework for the prediction of the optical gap in exact KS is its TD
linear response (i.e., TDKS) [45, 46]. Exact KSmust predict the optical gap to be below
the fundamental gap, in agreement with experiment, simply by virtue of being a
formally exact theory. For semilocal functionals, the optical gap turns out to be [47–50]

DESL
og ðNÞ ¼ eSLNþ 1ðNÞ�eSLN ðNÞ: ð6:12Þ

In other words, semilocal functionals do not describe excitons, and predict the
optical gap and fundamental gap to be the same. Onemust therefore not be dogmatic
in claiming that the semilocal band energy difference constitutes a prediction for only
one of the optical gap or fundamental gap. Due to self-interaction error, the occupied
bands in semilocal DFTare too high in energy, and the semilocal optical gap severely
underestimates the experimental optical gap. Thanks to the their nonlocal exchange
component, global hybrids predict a nonzero exciton binding energy, and the quality
of their prediction for the experimental optical or fundamental gap depends on the
amount of nonlocal exchange they incorporate.

BecauseHSE is done in the generalized KS sense, theHSE band energy difference
is the HSE fundamental gap. As a practical matter, the HSE band energy differences
correspond better with the experimental optical gap than they do with the experi-
mental fundamental gap, especially as the gap gets larger. Therefore in practice we
claim that the HSE band energy difference should be understood as a prediction of

6.2 Band Gaps j101



the experimental optical gap; because the optical and fundamental gaps are so close in
semiconductors, for these systems the HSE band energy difference can also be used
as a predictor of the experimental fundamental gap. As the gap gets larger, HSE band
energy differences more dramatically underestimate the experimental fundamental
gap, and as they get larger still, the HSE band energy difference becomes a poor
predictor even for the experimental optical gap.

The success of HSE band energy differences can be rationalized quite straight-
forwardly, once one knows a few properties of the parent semilocal global hybrid
(PBEh) and its underlying GGA (PBE) [51]. As is typically the case for semilocal
functionals, PBE band energy differences underestimate the gap. For semiconduc-
tors, the PBEh band energy differences overestimate the gap. One can think of HSE
as an interpolation between PBE and PBEh; as the range-separation parameter v
varies between 0 and 1, HSE varies between PBEh and PBE. Thus, there is some
nonzero value of v for which the HSE band energy difference reproduces the
experimental gap. Schematically, this is illustrated in Figure 6.1. Note that because
HSE includes a fraction of screened exact exchange, it has only a small exciton
binding, so the TD HSE optical gap should not differ much from the band
energy difference.

While it is reasonably clear that there should exist a value ofv that gives the correct
gap for a given system, it is not so clear that thisv should be universal. In fact, it is not
(see Ref. [52]). Nonetheless,v ¼ 0:11a�1

0 as used in HSE06 seems to be a reasonable
system-averaged value across a wide variety of systems. The HSE band energy
difference accurately reproduces the optical gap in semiconductors, but severely
underestimates the gap in insulators, and the HSE band width inmetallic systems is
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Figure 6.1 (online color at: www.pss-b.com)
Schematic illustration of thev-dependent band
energy difference in HSE. The x-axis indicates
that v ¼ 0 corresponds to PBEh and v!1
corresponds to PBE. The y-axis shows that the

experimental gap lies between the PBE and
PBEh band energy differences, so that
there is some vC whose band energy
difference reproduces the experimental gap.
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generally too large [53, 54]. The failures ofHSE for insulators andmetals canbe traced
to the breakdown of the assumption that the PBE gap is too small and the PBEh gap is
too large.

6.3
Screened Exchange

In this section we briefly outline a few important relations between the GW
approximation, the closely related Coulomb-hole screened exchange (COHSEX)
method, and screened hybrid functionals. The pragmatic justification for hybrid
functionals is clear (HF and KS-DFT tend to err in opposite directions), as is the
pragmatic justification for the use of screened hybrids (theymake the calculation less
expensive, and are more accurate in solids). There is, however, also a formal
justification for screened hybrid DFT: the presence of the other electrons in the
systems reduces the full, unscreened exchange used in HF to a certain (material-
dependent) extent. We will shortly see that this screening is a direct consequence of
the Coulomb correlation between the electrons. For a more rigorous discussion, we
refer the reader to Ref. [55].

As explained in Section 6.1, the HFmethod neglects Coulomb correlation entirely
and therefore suffers from several shortcomings. This problem can be overcome by
explicitly including correlation corrections. The GW approximation introduced by
Hedin [56] in the context of many-body perturbation theory may help. Its name
follows from the basic equation defining the frequency dependent self-energy SðvÞ
in terms of the interacting, frequency-dependent Green function GðvÞ and the
frequency-dependent screened Coulomb interaction WðvÞ:

SðvÞ ¼ ihGWiðvÞ; ð6:13Þ
where hGWi indicates a convolution over the frequency v 0. Both G and W are
nonlocal quantities. The physics is clearly seen by rewriting the screened Coulomb
interaction:

WðvÞ¼ e�1ðvÞ� ¼ �
1þ �xðvÞ��

¼ �þWpolðvÞ
ð6:14Þ

using the dielectric function e�1ðvÞ ¼ ð1þuxðvÞÞ. The dielectric function in turn
depends on the polarizability xðvÞ and the �bare� (i.e., unscreened) Coulomb kernel
u ¼ 1=jr1�r2j. The screened Coulomb interactionW can therefore be separated into
an unscreened term u and the screened or polarizable termWpol ¼ uxu, stemming
from polarization of the electron density due to a small external potential [48].
Inserting Eq. (6.14) into Eq. (6.13) readily leads to

SðvÞ ¼ iGuþ ihGWpoliðvÞ ¼ Sx þScðvÞ; ð6:15Þ

demonstrating that the GW approximation goes beyond HF by inclusion of both
exchange and correlation effects in the self-energy.

6.3 Screened Exchange j103



As suggested byHedin (see Ref. [56]), ignoring the frequency dependence ofS and
taking care of a dependence on virtual orbitals in Wpol leads to the so-called static
COHSEX approximation. The GW approximation is based on the random phase
approximation (RPA) for e�1, which essentiallymeans a diagrammatic ring or bubble
graph expansion for the dielectric function [57]. For the homogeneous electron gas
system, the static limit of RPA is the Thomas–Fermi (TF) approximation.1) In Fourier
space, the well known effective TF interaction is

Wðq;v ¼ 0Þ ¼ 4pe2

q2 þ k2TF
; k2TF � rsk

2
F ; ð6:16Þ

where rs is known as the Wigner–Seitz radius and the Fermi wave-vector
kF ¼ ð3p2nÞ1/3 (n is the electron density). Note that the TF interaction in real-space
corresponds to the Yukawa potential ðe2/rÞ e�kTFr , where the effective screening
length is determined by k�1

TF. Atfirst glance this can be seen as a route back tomotivate
the realization of a screened hybrid functional like HSE. Of course, the physics of
metals does not directly apply to the physics of semiconductors and insulators. In
insulators screening is �weaker� and the effective interaction has a more slowly
decaying asymptotic behavior. However, closely related to the spirit of LDA, TF
screening is commonly applied in so-called �screened exchange LDA� (SX-LDA)
calculations using screened nonlocal exchange and LDA correlation potentials (see
Ref. [30] and references therein). For further discussions and comparisons between
the aforementioned SX calculations following Bylander and Kleinman [58] andHSE,
we refer to Ref. [39].

6.4
Applications

Now that we have discussed some formal aspects of screened hybrid functionals like
HSE, let us briefly touch on its performance for a variety of problems.

The success of HSE in the prediction of band gaps is well documented. As an
example, Heyd et al. [59] considered a set of 40 solids of which 35 were semicon-
ductors. After removing those solids for which the experimental gaps were either
unavailable or larger than 4 eV, 28 semiconductors remain. Table 6.1 shows the
predictions of HSE, LDA, PBE, and TPSS for the band gaps in the semiconductors in
that set; the HSE numbers here use HSE06 and differ from those in Ref. [59]. While
the semilocal functionals considerably underestimate the gap, HSE is quite accurate.
Figure 6.2 shows a scatter plot of the HSE band gaps versus the experimental gaps
(most of which are fundamental gaps, and which HSE generally underestimates
slightly). These results were confirmed in plane-wave basis by Paier et al. [54] who
also pointed out that HSE apparently includes too much exact exchange in metals
(where it tends to overestimate band widths) [53] and too little in wide gap

1) For small and large wave-vectors q in the high density limit; see, for example, Ref. [6].
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insulators, where it tends to underestimate the gap. As we have discussed, this is
because HSE adopts a single, system-independent screening parameter v which is
most accurate for semiconductors. These same studies also demonstrated that HSE
accurately predicts semiconductor lattice constants and gives improved estimates of
bulk moduli.

Batista et al. [60] carried out a study on silicon, comparing several functionals
(including HSE) to diffusion Monte Carlo (DMC), focusing on predictions for the
formation energies of interstitial defects and on the relative stabilities of the diamond
and b-tin phases. They found that LDAunderestimates the defect formation energies
by about 1.5 eV relative to theDMCresults, while PBE underestimates themby about
1.0 eV. TheTPSSmeta-GGA is essentially no improvement onPBE. In sharp contrast
to these semilocal functionals, HSE underestimates theDMCresults by only 0.25 eV.
Similar results are found for the relative stabilities of the diamond and b-tin phases;
LDA, PBE, and TPSS underestimate the relative stability by roughly a factor of 2, but
HSE is quite close to DMC (and in fact the two agree within the uncertainty of the
DMC result). Figure 6.3 illustrates these results graphically.
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Figure 6.2 (online color at: www.pss-b.com) HSE band gap versus experimental band gap in the
SC40 test set.

Table 6.1 Mean error (ME) andmean absolute error (MAE) in the semiconductor band gaps for the
SC 40 test set of Heyd et al. Results reported at the optimized geometry for each functional.

functional ME (eV) MAE (eV)

LSDA �1.01 1.01
PBE �0.98 0.98
TPSS �0.83 0.83
HSE �0.20 0.28
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In addition to these accurate results for semiconductors, HSE has properly
described Mott insulators. Kasinathan et al. [61] showed that HSE correctly predicts
the pressure-dependent Mott transition in MnO.

Lanthanide and actinide systems can be particularly challenging, since the f
electrons are sometimes itinerant and other times localized. The balance between
these possibilities leads to a multitude of possible ground states and phases.
Semilocal functionals are not generally well suited for these systems because they
do not properly describe localized states; this causes them to often give qualitatively
incorrect results for band gaps andmagnetic properties. On the other hand, HSE has
had considerable success in describing rare earth systems, since its inclusion of
screened exact exchange allows it treat itinerant and localized states in a balancedway.
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functionals for the formation energy of X, H, and T interstitial defects (top panel) and for the relative
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Prodan et al. [62] studiedUO2, PuO2, andb-Pu2O3. They showed that LDA andPBE
incorrectly predict all three systems to be metallic, and TPSS is scarcely better,
predicting the antiferromagnetic phases of PuO2 and b-Pu2O3 to have a gap on the
order of 0.05 eV. In contrast, HSE is qualitatively correct and provides reasonable
gaps.While PBE andTPSS give reasonable lattice constants,HSEpredicts essentially
the exact result. The semilocal functionals predict that all three systems are ferro-
magnetic, while HSE correctly predicts that UO2 and Pu2O3 are antiferromagnetic.
Themagnetic ordering of PuO2 is controversial, but it is definitely not ferromagnetic
and could be, as HSE predicts, antiferromagnetic.

Separate studies by Hay et al. [63], Da Silva et al. [64], and Ganduglia-Pirovano and
coworkers [65] showed that HSE is particularly accurate for the structures of CeO2

and Ce2O3, offering significant improvements over semilocal functionals. Semilocal
functionals predict the ground state of Ce2O3 to be ferromagnetic, while HSE
correctly predicts it to be antiferromagnetic. While HSE overestimates the gap for
both CeO2 and Ce2O3, it is significantly more accurate than are the semilocal
functionals.

Another area where HSE has had considerable success is in the description of
carbon nanotubes and graphene nanoribbons. Investigations have shown that HSE
accurately predicts the optical excitation spectra ofmetallic nanotubes [66], and is also
quite accurate for optical transitions in semiconducting nanotubes [67]. Additionally,
HSE has been used to study the work function of nanotubes [68], as well as their
polarizability [69, 70]. The electronic structure of graphene nanoribbons has also
been considered [71, 72], and yield predictions that have been experimentally
confirmed [73, 74].

Recently, Paier et al. [75] applied HSE and TD HSE to the potential photovoltaic
material Cu2ZnSnS4. Their HSE results compare very favorably to experimental data
for the lattice constants and the band gap, and the HSE band structure has been
validated using the more expensive G0W0 quasiparticle calculations. Note that both
HSE and previous absorptionmeasurements coincide and predict the band gap to be
on the order of 1.5 eV. This is in excellent agreement with an independent recent
investigation by Chen et al. [76]. Note that HSE is much closer to experiment than
PBE, the latter predicting a gap of 0.1 eV [75].

TheHSE functional clearly outperforms conventional semilocal functionals for the
description of defect transition levels. One important example is localizing acceptor
levels in Cu2O [77]. Chemical intuition suggests a localizedCu(I) ! Cu(II) oxidation
when creating an electron hole in the system. Semilocal functionals artificially
delocalize the defect state, whereas HSE gives a very good description and produces
defect transition levels in good agreement with experiment.

6.5
Conclusions

SX approximations are very powerful tools for density functional treatments of
condensed systems. TheHSE screened hybrid functional provides a computationally
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efficient treatment of lattice parameters, bulk moduli, and band gaps of semicon-
ductors and insulators, while incorporating only a single-empirical parameter.
Interestingly, while this parameter was optimized for molecular atomization ener-
gies [31], it appears to contain universal information, as the same parameter yields
semiconductor band gaps in excellent agreement with experiment. Because it
includes a portion of nonlocal exchange and thereby partially alleviates the self-
interaction error of semilocal functionals, HSE more correctly describes localized
states. This is particularly relevant in the consideration of defects, where semilocal
functionals will tend to incorrectly favor delocalized behavior.

The formal aspects of range-separated DFT exchange have been extensively
investigated over decades, but several intellectually stimulating questions remain.
One is to further elucidate the entanglement between correlation and exchange
effects, or in other words, the mechanisms by which many-body correlations screen
the exchange interaction. In particular, insights frommany-body perturbation theory
should help devise more effective screening models which can be applied to DFT. A
single range-separation parameter seems sufficient to describe most of the physics
we need for semiconductors, but additional flexibility seems to be important if the
same functional is also to describemetals or insulators. A straightforward way to add
this flexibility is to add additional ranges in what we would term a multirange
hybrid [78, 79]. In order tomore completely incorporate the physics of SX, onemight
consider position-dependent fractions of exact exchange [80–87] or position-depen-
dent range separation [88, 89] in successors to HSE. Nonempirical treatments of
these quantities are desirable, and should be provided by connections to many-body
theory.
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7
Defect Levels Through Hybrid Density Functionals:
Insights and Applications
Audrius Alkauskas, Peter Broqvist, and Alfredo Pasquarello

7.1
Introduction

Defects strongly affect properties ofmaterials. For example, doping a semiconductor
with a small number of impurity atoms leads to a significant change of its
conductivity making such materials useful for technological applications. Similarly,
optical transitions involving electronic states of defects can induce a coloration of
the otherwise transparent solid, a frequently encountered phenomenon in natural
crystals. Also, the mechanical properties and the long-term stability of materials are
largely controlled by point and line defects.

It is therefore not suprising that the theoretical study of point defects in solid
materials has a long history [1]. Many properties of defects are nowadays well
understood. These include for instance the nature of hydrogenic impurities in
elemental semiconductors and the energy splittings resulting fromlocal crystalfields.
However, these kinds of defects represent just a small class of all possible defects.

Technological developments, particularly in the areas associated to energy and
information, lead to the consideration of a vast variety of novel and complex
materials. A nonexhaustive list of applications includes solar cells [2], novel metal–
oxide–semiconductor field-effect transistors [3], longer-serving batteries [4], solid-
state light-emitting diodes [5], and solid fuel cells. The behavior of such devices is
generally influenced or governed by a myriad of defects that form in the bulk or at
the interfaces between the different materials. Those defects are often deep, i.e., they
are characterized by localized electronic states which bare little resemblance to the
electronic states of the host material and possess ionization energies much larger
than typical thermal energies. The experimental characterization of such defects is
often very difficult, and thus theoretical studies are not only valuable but also
essential. However, because of their deep nature, the theoretical description of the
associated electronic states is beyond the reach of simple models. This explains the
continuous efforts deployed in the theoretical studies of defects [6].

To study localized defects with deep energy levels, it is necessary to treat the atomic
and the electronic structure in a self-consistent way. In the last decades, density

Advanced Calculations for Defects in Materials: Electronic Structure Methods, First Edition.
Edited by Audrius Alkauskas, Peter Deák, Jörg Neugebauer, Alfredo Pasquarello, and Chris G. Van de Walle.
� 2011 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2011 by Wiley-VCH Verlag GmbH & Co. KGaA.

j111



functional theory (DFT) has been the workhorse for such calculations. Since the
exchange–correlation energy, a crucial ingredient in the theory, is not available in an
exactform,practicalcalculationsgenerallyrelyonapproximateexpressions,suchasthe
local density approximation (LDA) or the generalized gradient approximation (GGA).
Though largely successful, these standard approximations to DFTsuffer from several
shortcomings. The most serious one for the study of defect levels is the infamous
�band-gap problem.� Band gaps calculated in the LDA and the GGA are significantly
smaller than experimental ones. In some cases, a vanishing band gap is obtained
for materials which possess a finite one. In the present paper, we mainly focus on
formationenergiesofdefects indifferentchargestatesandontheassociatedelectronic
transitionlevels.Thedefectchargestatedependsontheelectronchemicalpotential, for
which thebandgapis therelevantenergyscale.Therefore,a correct reproductionof the
bulk band gap is imperative for achieving a successful theoretical description [7–15].

There exist manymethods which go beyond semilocal approximations to DFTand
which alleviate the �band-gap problem.� Examples of the application of different
theoreticalmethods,somespecific tothedefectproblem,canbefoundinRefs. [16–35].
Inthisreviewarticle,wefocusonhybriddensityfunctionals.Thesefunctionalsemploy
the correlationpotential fromsemilocal approximations, but admix a small fractionof
nonlocal exchange to theexchangedescribedwithin theGGA[36–38].Sincebandgaps
are underestimated with semilocal density functionals and overestimated with full
Hartree–Fock exchange, they are naturally improved through the use of hybrid
functionals [39, 40]. We here limit the discussion to hybrid functionals based on bare
Coulomb exchange. Recently, a variety of hybrid functionals have been proposed,
including screenednonlocalexchange[41,42],spatiallyvaryingmixingcoefficients,and
range-separated functionals. For an overview, we refer the reader to Ref. [43].

The present review article is organized as follows. In Section 7.2 we describe the
computational toolbox employed in our calculations, and then discuss the quantities
that need to be calculated. The hybrid functionals used in the present work are
introduced and their performance is discussed. The comparison between defect
energy levels calculated with semilocal functionals on the one hand and with hybrid
functionals on the other hand provides some fundamental insight into the properties
of deep defects. These are presented and discussed in Section 7.3. In order to improve
the description of the band gap in hybrid functionals, it has become commonpractice
to adjust the fraction of admixed nonlocal exchange. In Section 7.4, several argu-
ments supporting this empirical procedure are discussed. In Section 7.5we apply our
theoretical scheme to two defect systems and compare our results with available
experimental data. Finally, in Section 7.6 we discuss shortcomings and advantages of
the proposed scheme, and draw conclusions.

7.2
Computational Toolbox

The calculations in this work were performedwithin the plane-wave pseudopotential
scheme. Defect systems and interfaces are modeled through large supercells. The
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ionic cores are described with soft norm-conserving pseudopotentials [44]. Through-
out this study, we used a kinetic energy cutoff of 70Ry, sufficiently high to converge
the properties of all the pseudopotentials in this work, including Hf, O, and C. As
reference GGA functional, we adopted the functional proposed by Perdew, Burke,
and Ernzerhof (PBE) [45]. Pseudopotentials were generated at the PBE level andwere
used unmodified in calculations with hybrid functionals. Although this is not
formally justified, this approach gives a very good description for systems with
first-row elements, as can be inferred from comparisons with all-electron calcula-
tions [46]. However, for heavier elements this approximationmay admittedly involve
errors [47]. The Brillouin zone was sampled at the sole C-point in most calculations,
but denser k-point meshes were used when necessary, for example in the determi-
nation of accurate band-edge shifts. Further technical details about specific systems
are given below. Structural relaxations were carried out at the PBE level. We used the
codes CPMD [48, 49] and Quantum-ESPRESSO [50].

7.2.1
Defect Formation Energies and Charge Transition Levels

The principal quantity that needs to be calculated is the formation energy ED;q
f of the

defect D in its charge state q as a function of the electron chemical potential EF [51]:

ED;q
f ðEFÞ ¼ ED;q

tot �Ebulk
tot �

X

a

nama þ qðEV þEFÞ: ð7:1Þ

In this expression ED;q
tot is the total energy of the defect system, Ebulk

tot the total energy of
the unperturbed host, na the number of extra atoms of species a needed to create the
defect D, and ma is the corresponding atomic chemical potential. The electron
chemical potential is referred to the valence band maximum (VBM) EV. It varies
between zero and the band-gap Eg. Charge transition levels correspond to specific
values of the electron chemical potential for which two charge states have equal
formation energies. Let us for example consider charge states q and q0. Equating the
expressions of the formation energies defined in Eq. (7.1);, we obtain the value for the
charge transition level eðq=q0Þ:

eðq=q0Þ ¼ ED;q
tot �ED;q0

tot

q0�q
�EV: ð7:2Þ

For example, the charge transition level eð0=þÞ is given via:

eð0=þÞ ¼ ED;0
tot �ED;þ

tot �EV: ð7:3Þ
The total energies of charged systems appearing in Eq. (7.1) need to be corrected to

speed up the convergence with respect to the supercell size. First, the total energy is
corrected by a term qDV , DV being the potential difference needed to align the
potential far from the neutral defect to that of the unperturbed bulk. Second, the total
energy is corrected for the spurious electrostatic interaction due to the periodic
boundary conditions, for which we use the electrostatic correction of Makov and

7.2 Computational Toolbox j113



Payne [52]. These two corrections are always used unless otherwise stated. While the
Makov–Payne correction is known to fail in some specific cases, it is generally
quite accurate in the case of extremely localized defects. For instance, for defects in
SiO2, the charge transition levels are already converged for moderate supercell
sizes (72 atoms) when this electrostatic correction is included. When accurate quan-
titative results are needed, it is recommended to use either careful extrapolation
schemes [53–55] ormoreelaboratemethods for correcting theelectrostatic interactions
inthesupercell [14,56].Wenotethatinthisrespectthepresentworkismostlyconcerned
with the comparisonbetween results obtainedwithdifferent functionals, forwhich the
electrostatic corrections are nearly the same and thus do not represent an issue.

Since the electron chemical potential in experiments is generally referred to the
VBM, eðq=q0Þ defined in Eq. (7.2) is the relevant physical quantity. However, we
find useful in Section 7.3 to consider charge transition levels �eðq=q0Þ referred to an
appropriately defined average local potential w in the supercell rather than to the
VBM:

e�ðq=q0Þ ¼ ED;q
tot �ED;q0

tot

q0�q
�w: ð7:4Þ

7.2.2
Hybrid Density Functionals

While a number of hybrid functionals have been proposed, we focus in this paper
only on one-parameter hybrid functionals based on the bare Coulomb exchange, in
which a fraction a of nonlocal exact exchange is admixed to the exchange described
within the GGA. By nonlocal exact exchange we here refer to the orbital-dependent
expression for exchange appearing in the Hartree–Fock theory [57]. This leads to
a generalized Kohn–Sham scheme in which the exchange potential is different for
each electronic state the non-local part of which is defined asVb i yi ¼ qEexact

x =qyi. The
exchange energy is thus given by

Ehybrid
x ¼ aEexact

x þð1�aÞEGGA
x : ð7:5Þ

The correlation potential is usually taken unmodified from the GGA. When the
fraction a ¼ 0:25 is used together with the PBE approximation for the semilocal
part [38], the hybrid functional is referred to as the PBE hybrid. We here use the
notation PBE0, but other notations such as PBEh or PBE1PBE are also in use. The
value of a ¼ 0:25 has been rationalized in case of molecular systems and is
considered to be a good compromise for many systems [38]. However, there is no
firm theoretical justification for this choice and the optimal mixing coefficient is
admittedly system or even property dependent [38, 58].

For many materials, the PBE0 provides an improved description of the energetic
and structural properties when compared to the PBE [40, 59]. Lattice constants,
formation energies, and bulkmoduli of semiconductors and insulators are generally
in a better agreement with experimental data [59]. A similar improvement is also
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observed for molecules. However, for metallic systems the use of exact exchange
gives rise to unphysical derivative discontinuities at the Fermi level.

Even more importantly than the improvement in structure and energetics, the
PBE0 substantially improves the calculated band gaps [40]. This is shown in
Figure 7.1. The improvement is especially evident for materials such as Ge or InN
which have a vanishing or even negative band gap in semilocal approximations.
However, it is also evident that the improvement of the PBE0 over the PBE is not
systematic. In the PBE0, band gaps are overestimated for low band-gapmaterials and
underestimated for large band-gap ones. The best agreement is thus for intermediate
band-gap materials. It is also clear why the fraction a ¼ 0:25 is just a good
compromise rather than a universal parameter. In fact for both the PBE and the
PBE0 the dependence of the theoretical gap on the experimental one is approximately
described by a concave function. For PBE0 (a ¼ 0:25), the concave function crosses
the diagonal defined byEth

g ¼ Eexpt
g at about 5 eV.Hence, the theoretical band gaps are

overestimated for some materials and underestimated for others. This behavior
applies to hybrid functionals with any other reasonable mixing coefficient a.

7.2.2.1 Integrable Divergence
In calculations based on plane-wave basis sets and periodic boundary conditions,
exact exchange poses one more challenge due to the long-range nature of the
Coulomb interaction. In Fourier space this interaction is proportional to 1=q2, and
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Figure 7.1 (online color at: www.pss-b.com)
Calculated versus measured single-particle
band gaps for 15 different materials. PBE: open
disks, PBE0: filled disks. Results for GaAs, C,
MgO, NaCl, and Ar are taken from Ref. [40];

results for InN andZnO are taken fromRef. [60];
the result for SnO2 is taken from Ref. [33];
the result for TiO2 (anatase form) is taken from
Ref. [61]; results for Si, SiC (4H polytype), HfO2,
CdTe, and SiO2 are from our calculations.
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thus diverges at small q. The singularity is integrable, but its straightforward
calculation would require very dense k-point meshes. Gygi and Baldereschi [62]
proposed a method to treat this singularity. In the matrix element of the exchange
operator, they normalized the integrand by substracting an auxiliary function which
admits an analytical integration over the Brillouin zone. This method is suitable to
be adapted to much sparser k-point samplings, including those limited to the sole
C-point [46]. The effect of the singularity of the exchange potential can be cast into
a correction to theG ¼ 0 term of the potential [46, 63]. The Fourrier transformWðGÞ
of the exchange interaction is then given by

WðGÞ ¼
1
V

4p
G2

for G 6¼ 0;

x for G ¼ 0;

8
<

: ð7:6Þ

whereV is the volume of the supercell and the singularity correction x is expressed as

x ¼ lim
c! 0

1
ffiffiffiffiffiffi
pc

p � 4p
V

X

G

e�cG2

G2

" #
: ð7:7Þ

The total energy of a system ofNel electrons is thus corrected by a term�axNel=2,
where a is the fraction of exact exchange used in the hybrid functional. In Figure 7.2,
we give the total energies of Si and SiO2 as a function of the supercell size and/or the
density of the k-point mesh for both PBE and PBE0 functionals [46]. In the latter
case, the total energies are given with and without the singularity correction. When

Figure 7.2 Total energies of (a) Si and (b)
a-quartz SiO2 per formula unit versus 1/NkNat,
where Nk is the total number of k-points
and Nat the total number of atoms in the
supercell. Results obtained in the PBE and
the PBE0 are reported in left and right panels,

respectively. For PBE0, closed and open
symbols indicate values obtained with the
singularity correction turned on and off,
respectively. Arrows show data points
which were also obtained with C-point
sampling.
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the correction is included, the convergence properties of PBE0 calculations closely
resemble those of PBE calculations. Without the singularity correction the conver-
gence properties clearly deteriorate.

The singularity correction also affects the single-particle eigenvalues. Eigenvalues
of unoccupied states remain unchanged, while those of occupied ones shift by �ax.
This is demonstrated in Figure 7.3 for the cases of Si and SiO2. When the singularity
correction is included, hybrid-functional calculations converge as fast as those based
on semilocal functionals. This equally holds for calculations with k-point samplings
restricted to the C-point. Singularity corrections apply equivalently to both deloca-
lized bulk-like states and localized defect or molecular states [46].

Furthermore, singularity corrections are particularly useful in the case of elon-
gated supercells, which may otherwise show an unphysical convergence behav-
ior [46]. Even in the case of screened hybrid functionalswhich donot show any formal
singularity, an analogous treatment of the q ¼ 0 limit may lead to a speed up of the
convergence with k-point sampling [46].

7.3
General Results from Hybrid Functional Calculations

As shown above, hybrid functionals containing a fixed fraction of exact exchange,
such as the PBE0 functional, do not bring theoretical band gaps in agreement with
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experimental ones for all materials. Thus, while their straightforward application to
the determination of defect levels is expected to lead to an improvement with respect
to semilocal functionals, the comparison with experiment remains ambiguous.
Nevertheless, we can gain insight into how calculated and measured defect levels
should be compared by performing a comparative study between defect energy levels
calculated with semilocal and hybrid density functionals. Such a study is expected to
reveal how defect levels shift as the description of the band gap improves [13, 64, 65].

To this end, we find useful to refer charge transition levels calculated with different
functionals to a common reference potential w. We denote such charge transition
levels by�eðq=q0Þ (cf. Eq. 7.4). In our pseudopotential supercell approach,w is obtained
from the supercell average of the sum of the local pseudopotential and of theHartree
potential. We argue in the following that this alignment is a convenient choice for
determining energy-level shifts induced by the hybrid functional with respect to
a reference semilocal calculation.

7.3.1
Alignment of Bulk Band Structures

In this section, we focus on the alignment of bulk band structures obtained with
semilocal and hybrid functionals. To simplify the reasoning, let us assume that
the same supercell parameters and the same pseudopotentials are used in the two
calculations [66]. In this case, the pseudopotential contribution tow is the same in the
two calculations, and the adopted alignment consists in aligning the average
electrostatic potential in the two theoretical schemes. This alignment allows one to
position band edges in the hybrid calculation with respect to those in the semilocal
one, i.e., to determine the shift of the VBMDEV and the conduction band minimum
(CBM) DEC on a common energy scale, as shown in Figure 7.4.

To analyze the significance of the adopted alignment scheme, it is convenient to
conceptually refer to the band offset at the interface between two materials, A and B.
The band offset is a well-defined physical property that can be measured. Following
the scheme introduced by Van de Walle and Martin [67], band offsets can be
determined by three calculations, namely an interface calculation from which one
extracts the line-up of the local average electrostatic potential across the interface and
two bulk calculations of materials A and B which allow one to locate the band edges
with respect to the respective average electrostatic potential in each material. This
procedure can separately be carried out for the semilocal and for the hybrid scheme.

Alternatively but equivalently, the band alignment in the hybrid scheme can also be
obtained from the alignment in the semilocal scheme by the consideration of three
sources of difference. By comparing the charge densities in the interface calculations
performed at the semilocal and hybrid levels, one can extract the difference in line-up
of the average electrostatic potential. Such a difference directly results from the
dipoles associated to the difference between the charge densities in the semilocal and
in the hybrid schemes. The two other sources of difference can be achieved by
separately comparing semilocal and hybrid calculations for bulk materials A and B.
The required differences correspond precisely to the shifts undergone by the band
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edges when aligned with respect to the average electrostatic potential. This reasoning
thus illustrates that the band offsets in the hybrid scheme would be obtained by
combining information that can only be extracted from charge density variations as
derived from interface calculations with information that can be derived by aligning
the energy scales of periodic bulk calculations as proposed.

In the particular case in which material B is the vacuum, we are concerned with a
surface system. In this case, it is more natural to adopt the vacuum level at a large
distance from the interface as the common reference level for the semilocal and
hybrid calculations. From the reasoning in the previous paragraph, it appears clearly
that this alignment scheme is not equivalent to the one proposed in thiswork. Indeed,
the alignment to the vacuum level explicitly includes the consideration of a surface
and correspondingly charge density differences between the two theoretical schemes
might lead to different line-up terms, which would in turn determine a different
alignment. Hence, we stress once again that the alignment adopted here is concep-
tually particularly convenient because it highlights effects of the different theoretical
formulations as they result from bulk calculations, without the need for an explicit
treatment of interface or surface systems. However, the connection withmeasurable
properties such as work functions and band offsets cannot be made unless such an
explicit treatment is considered.

When the charge density is invariant in the two theoretical schemes under
comparison, the difference in line-up term vanishes and relative shifts in the

Figure 7.4 (online color at: www.pss-b.com)
Charge transition levels calculated within a
semilocal and a hybrid functional scheme,
aligned to a common reference level w. e is
the charge transition level referred to the
respective VBM (Eq. 7.2), �e is the charge

transition level referred to the level w (Eq. 7.4).
DEV and DEC are the shifts of the VBM and
of the CBM in the hybrid-functional
calculation with respect to the respective
edges in the semilocal calculation. Adapted
from Ref. [13].
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presence of an aligned electrostatic potential also acquire direct physical significance.
In practical calculations involving semilocal and hybrid calculations, this condition is
very close to being satisfied, as demonstrated for both interface [68] and surface
systems [69]. In such cases, the relative band-edge shifts determined through an
alignment of the average electrostatic potential give the dominant contribution to the
variations undergone by the band offsets [68]. In the case of invariant charge
densities, the alignment with respect to the average electrostatic potential is fully
equivalent to the alignment with respect to a an external vacuum level achieved
through the consideration of a surface.

7.3.2
Alignment of Defect Levels

Once the bulk band structures in the two theories are aligned as described in
Section 7.3.1, the alignment of charge transition levels is trivial. This is shown in
Figure 7.4. Hitherto, the common reference w was taken to be the average electro-
static potential, but it can for convenience be shifted to coincide with the VBM in the
hybrid calculation. In this case �ehybðq=q0Þ ¼ ehybðq=q0Þ, and �esemilocðq=q0Þ ¼
esemilocðq=q0Þ þDEV,DEV being the shift of the valence band in the hybrid calculation
with respect to that in the semilocal one.

In Figure 7.5, we compare charge transition levels �eðq=q0Þ calculated with a
semilocal functional (PBE) with corresponding ones obtained with a hybrid func-
tional (PBE0) for a large set of deep defects in four differentmaterials [13]. The chosen
materials show band gaps covering a wide range of values: Si (with an experimental
band gap of 1.17 eV), 4H–SiC (3.3 eV),monoclinicHfO2 (5.75 eV), anda-quartz SiO2

(8.9 eV).
Let us first focus on the defects in SiO2 [64]. Due to the very different band gap of

SiO2 in PBE (5.4 eV) and in PBE0 (7.9 eV), charge transition levels referred to the
respective valence band maxima differ significantly. At variance, when the charge
transition levels of these defects are referred to the average electrostatic potential,
they are very close in the two theoretical schemes. Themean deviation from the ideal
alignment is only 0.14 eV. This value is only indicative since it depends on the adopted
set of defects. Nevertheless, the alignment of charge transition levels is surprisingly
good over a large range of energies. The same alignment property approximately also
holds for other materials. For example, in HfO2 the defect set includes oxygen
vacancies and interstitials and the correspondence is similarly very good, with mean
deviation of 0.16 eV. The departure from the ideal alignment [�ehybðq=q0Þ ¼
�esemilocðq=q0Þ] is only slightly larger in SiC and in Si, with a mean deviation of 0.19 eV
in both cases.

A detailed inspection reveals that defect levels in the upper part of the band gap
tend to shift upwards while those in the lower part tend to shift downwards as the
band gap is opened. It was found numerically that the deterioration from the ideal
alignment correlates with the increase of the average spread of defect wave func-
tions [13]. In this respect, SiO2 is an optimal case, because the defect states in this
material are characterized by very localized wave functions.
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These results can be understood by drawing an analogy between charge transition
levels of defect states and ionization potentials or electron affinities of atoms and
molecules [13]. The latter quantities can be expressed as total-energy differences and
are already well described in semilocal approximations [70, 71], as demonstrated by
extensive quantum chemistry calculations [72]. Typical mean deviations of about
0.2 eVare found between calculated and experimental results. Through the use of the
Slater–Janak transition-state theory [73, 74], the total energy difference appearing in
Eq. (7.4), i.e., ED;q

tot �ED;q0
tot , can be related to a matrix element of the defect state at half

occupation, which can then be rationalized to carry the same properties as atomic or
molecular states insofar its wave function is sufficiently localized [13, 64]. The ideal
alignment �ehybðq=q0Þ � �esemilocðq=q0Þ is therefore expected to hold best for atomically
localized defects and to deteriorate with the extension of the defect wave function.

The correspondence between energy levels in semilocal and hybrid functional
schemes does not hold for single-particle eigenvalues of extended bulk-like states, as
can be inferred fromFigure 7.5 for variousmaterials.We stress that this effect should
be explained by invoking the delocalized nature of these states rather than a different
behavior of eigenvalues and total-energy differences. In fact, the energy of the VBM
EV (and likewise for EC), appearing in the definition of the charge transition level in

Figure 7.5 (online color at: www.pss-b.com)
Comparison between charge transition levels
calculated with a semilocal (�esemiloc) and a
hybrid (�ehyb) functional for a variety of defects in
Si, SiC, HfO2, and SiO2. The energy levels
corresponding to the VBM and CBM are also

shown (squares). All energies are referred to
a common reference levelw (see text), shifted to
coincide with the VBM in the hybrid scheme for
convenience. For each material, D is the r.m.s.
error with respect to the ideal alignment
(dashed). Adapted from Ref. [13].
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Eq. (7.2), can also be expressed through a total-energy difference: EV ¼ Ebulk;0
tot

�Ebulk;þ
tot . However, for delocalized states, in sharp contrast to localized ones, this

total-energy difference is subject to large variations when calculated in semilocal and
hybrid functional schemes, reflecting the effect of the �band-gap problem� in the
sameway as single-particle eigenvalues do. This is themain reasonwhy defect charge
transition levels in different theoretical schemes differ so much when referred to
their respective valence band maxima.

The use of the unknown exact functional [75, 76] would in either case lead to a
correct description of the total energies of localized and extended states. The different
description of localized and extended states can be related to specific properties of the
approximate functional adopted [70, 71, 77, 78]. The success of approximate func-
tionals in describing total energies of localized systems is related to their fulfillment
of the sum rule for the exchange–correlation hole [70]. This stringent criterion is
fulfilled at integer electron numbers, yielding accurate total energy differences in
calculations for atomic and molecular systems [72]. However, such approximate
energy functionals fail in reproducing the linear behavior of the exact functional for
fractional electron numbers [75, 76]. As has recently been shown by Mori-S�anchez
et al. [78], this failure is at the origin of the incorrect description of single-particle
eigenvalues and total energies of delocalized systems. Thereby, these theoretical
results establish a clear relation between the �band-gap problem� of approximate
density functionals and the delocalized or localized nature of electronic states [78].
Over which length scales the transition takes place between localized and delocalized
states is at present still a matter of debate. For an interesting discussion on this issue,
we refer to Ref. [71].

The results of this section have provided useful indications concerning the way the
�band-gap problem� affects energy levels of deep defects. Defects localized on an
atomic scale appear to be alreadywell described at the semilocal levelwhen referred to
the average electrostatic potential. In particular, this implies that energy separations
between such defect levels are accurately described at the semilocal level and barely
affected by the �band-gap problem.� The calculations indicate that when the defect
state becomes more extended this ideal alignment tends to deteriorate. The short-
coming due to the �band-gap problem� only affects delocalized states such as the
valence and conduction band edges.While this of course hinders the correct location
of defect levels within the band gap, it nevertheless provides significant insight into
the way corrections should be made.

7.3.3
Effect of Alignment on Defect Formation Energies

The fact that charge transition levels of deep defects calculated at different levels of
theory tend to be aligned when referred to the average electrostatic potential has
important implications for the formation energies of charged defects.

In Figure 7.6,we give a diagramwhich schematically shows the formation energies
of a defect in the positive and the neutral charge state as a function of the electron
chemical potential, when calculated with a semilocal (dashed lines) or with a hybrid
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(solid lines) functional. The formation energy of a positively charged defect has a
positive slope, while that of a neutral defect has a zero slope. The charge transition
level corresponds to the value of the electron chemical potential at which the two
charge states have equal formation energies. In Figure 7.6a, the transition levels in
the two approaches are aligned with respect to the average electrostatic potential as
discussed in Section 7.3.1. Let us assume that for the specific defect in Figure 7.6 the
charge transition levels in the two theories are indeed very close when referred to
the average electrostatic potential. The formation energy of the neutral defect does
not depend on the electron chemical potential and we here additionally assume that
this energy is quite similar when calculated with semilocal and hybrid functionals.
Consequently, this also implies that the formation energies of the positively charged
defect are also similar in the two calculations, provided they are taken at the same
value of the electron chemical potential referred to the average electrostatic potential.
However, since the position of theVBM is different in the two theoretical approaches,
the formation energies of the positively charged defect are different when the
electron chemical potential is referred to the respective VBM. Thus this clearly
illustrates that when the electron chemical potential is found at the VBM as, e.g., for
a p-type material, the formation energy of the positively charge defect depends on
the location of the VBM relative to the average electrostatic potential. The position of
band edges with respect to the average electrostatic potential will be discussed in the
next section.

For comparison, we also discuss an alternative alignment scheme which has often
been adopted in the literature and which consists in aligning the VBM in the two
theoretical approaches, as schematically shown in Figure 7.6b. This alignment
scheme assumes that the band-gap problem originates from the wrong placement
of the CBM. With this alignment, the charge transition levels are no longer aligned,

Figure 7.6 (online color at: www.pss-b.com)
Formation energies of a point defect as a
function of the electron chemical potential EF
calculated with a semilocal (dashed lines) and
with a hybrid functional (solid lines). The
positive and neutral charge states of the defect
are considered. (a) The semilocal and the hybrid

calculations are aligned through the average
electrostatic potential as in Fig. 7.4; DEV and
DEC are the corresponding shifts in the VBM
and in the CBM. (b) The VBM of the two
calculations are aligned; DEg is the band-gap
underestimation in the semilocal calculation
with respect to the hybrid one.
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and the formation energies of the positively charged defect differ for any value of the
electron chemical potential. Under the assumption that the VBM are aligned, it
appears contradictory that two theoretical approaches that bear similar total energies
for the neutral state would instead differ systematically for the positive charge state,
especially when such a charge state results from the absence of electrons in the defect
state.

7.3.4
�The Band-Edge Problem�

In this section, we elaborate on the �band-gap problem� in relation with the
determination of defect levels and argue that it is more appropriate to refer to
a �band-edge problem.� For this purpose, let us consider two different theories, I and
II, which both yield a theoretical band gap in agreement with the experimental one,
but different positions of band edges when referred to the average electrostatic
potential, as schematically shown in Figure 7.7. For illustration, we consider three
kinds of defects. The defect of kind (a) corresponds to an atomically localized defect,
for which the energy level does not undergo a significant shift, in accord with our
observations in Section 7.3.2. On the other extreme, defect (c) corresponds to
a shallow hydrogenic-like impurity which is known to shift with the band edge to
which it is tied. We also consider a defect level (b) of intermediate extension, which
follows the band edges only to a limited extent.

Figure 7.7 clearly illustrates that reproducing the correct band gap is not
a sufficient condition to achieve a correct descriptionof defect levels.When calculated
defect levels are compared with experimental ones, the VBM and CBM are natural
reference levels. Indeed, the charge transition levels of defects (a) and (b) referred to
their respective theoretical VBM are different despite the fact that the two theories
correctly reproduce the experimental band gap! This is a direct consequence of the
analysis in Section 7.3.2. For the specific case of the oxygen vacancy in ZnO, such
considerations explain to a large extent the scatter of calculated charge transition

Figure 7.7 (online color at: www.pss-b.com)
�The band-edge problem.� Comparison of two
electronic structure methods, theory I and
theory II, for calculations of energy levels of
different types of defects: (a) an atomically
localized defect; (b) a defect of intermediate

extension; (c) a shallow hydrogenic-like
defect. The two theories yield the same
band gap but different absolute positions
of the band edges when referred to the
average electrostatic potential. Adapted
from Ref. [65].
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levels found in the literature [65]. Indeed, different band-gap correction schemes lead
to different band-edge positions, while the defect level is generally well defined when
referred to the average electrostatic potential [65].

7.4
Hybrid Functionals with Empirically Adjusted Parameters

The comparison of defect charge transition levels calculated with semilocal and
hybrid functionals provides insight into the way energy levels of deep defects shift as
the description of the band gap improves. The analysis suggests that such defect
levels are generally well described at the semilocal level when referred to the average
electrostatic potential. Hence, the positioning of the defect levels within the band gap
mainly depends on the accuracy by which the adopted functional determines the
band edges with respect to this alignment scheme.

As stressed above, a hybrid functional scheme based on the use of a fixed mixing
coefficient a does not always yield band gaps in good agreement with experiment.
In this section, we address the issue whether band edges determined by hybrid
functionals are accurately positioned with respect to the average electrostatic poten-
tial, when the mixing coefficient a is tuned to reproduce the experimental band gap.
While such an empirical approach is currently in use in the literature, it is ultimately
not satisfactory and higher levels of theory will be required to improve the description
of the band edges. Nevertheless, the band-gap tuning approach offers a practical
scheme in which defect levels are positioned within a band gap of the right value
and which can completely be treated within a hybrid functional formulation. It is
also based on the well-documented assumption that the structural parameters are
generally only moderately affected when the mixing coefficient varies [16, 40, 79],
unless the electronic structure itself undergoes important modifications.

As shown in Figure 7.8 for a selected set of materials, semilocal functionals
systematically underestimate the experimental band gap. Hybrid functionals gen-
erally yield band gaps increasing linearly with themixing coefficient a [68].Hence, an
optimal mixing coefficient can generally be found for any material:

aopt ¼
Eexpt
g �Esemiloc

g

k
; ð7:8Þ

where k ¼ dEg=da is the derivative of the band gap with respect to the mixing
coefficient. The linear dependence results from the fact that the electron wave
functions associated to the band edges do not change significantly with a. Further-
more, this property also signifies that the nature of the band edge states does not
change. Indeed, the energy levels of different bands generally behave differently as
a varies. Thus, a departure from linearity is expected when the character of the VBM
or the CBM changes, as might occur, for example, when sp and d bands cross.

We can provide some support for the tuning of the parameter a by invoking the
reasoning of Gygi and Baldereschi [80] in their construction of an approximate GW
scheme. Let us consider the nonlocal exchange–correlation potential provided by the
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hybrid density functional as a certain approximation to the many-electron exchan-
ge–correlation self-energy in the GW approximation, and more particularly to its
frequency-independent form, the COHSEX approximation. In this approximation,
the long-range interaction is described by screened exchange (SEX), which asymp-
totically approaches �1=e1ðjr�r0jÞ. In the hybrid functional formulation, the
semilocal part of the exchange–correlation is short-ranged [81] and the long-range
part is therefore entirely described by the fraction a of exact exchange:�a=jr�r0j. The
assumption that the hybrid functional correctly describes the long-range limit, gives
the following relation for the optimal mixing coefficient:

aopt � 1
e1

: ð7:9Þ

For metals e1 ¼ 1, and thus aopt ¼ 0, which is a correct and intuitive result. In
a metal any fraction of exact exchange would produce unphysical derivative dis-
continuities (e.g., qek=qk) at the Fermi level. The present discussion is also fully
consistent with the reasoning of Fiorentini andBaldereschi [82], who showed that the
error in the semilocal band gap approximately scales like 1=e1. Indeed, the smaller
the difference between the semilocal and the experimental band gap, the larger the
required fraction aopt of exact exchange in the optimal hybrid functional.

In Figure 7.9a, we show the optimal mixing coefficient aopt versus e1 for various
materials. Despite some scatter, a clear correlation between aopt and 1=e1 is indeed
apparent. The most evident �out-liers,� Ge, GaAs, and ZnO, all possess semicore 3d
states. This suggests that the long-range screening is not the only property affecting
the band gap, and that there is also an effect associated to the s–d coupling [84], which
cannot be captured by tuning a to 1=e1. Other reasons for the data scatter are that
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Figure 7.8 (online color at: www.pss-b.com)Dependenceof the theoretical band gapon themixing
coefficient a (Eq. 7.5) for several materials. For each material, there is an optimal mixing coefficient
aopt for which the hybrid functional reproduces the experimental band gap.
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hybrid functionals with aopt ¼ 1=e1 might inappropriately describe the short-range
limit, completely lack the frequency-dependence of the many-body self-energy, and
do not account for the anisotropy of the long-range screening when present.
Nevertheless, the correlation in Figure 7.9 suggests that the dominant physics is
given by the long-range exchange behavior. This is further supported by the good
correlation with e1 shown in Figure 7.9b for the quantity k ¼ dEg=da, i.e., the
derivative of the band gap with respect to the mixing coefficient. The latter quantity
essentially corresponds to EHF

g �Esemiloc
g , i.e., the difference between the band gap

calculated in the Hartree–Fock and in the semilocal scheme.
Once the band gap is tuned to the experimental one, the hybrid functional scheme

also provides the shifts of the valence and conduction bands, DEV and DEC. These
shifts result from the alignment of the semilocal and hybrid schemes through the
average electrostatic potential (cf. Section 7.3.1). They indicate to what extent
the conduction and valence bands contribute to the band-gap opening. In a hybrid
functional formulation, their relative contributions solely depend on the effect of the
nonlocal exact exchange operator. The values of these shifts are critical for a correct
placement of defect levels within the band gap. The issue that concerns us here is to
what extent exact exchange is reliable for the evaluation of such shifts.

In principal, the accuracy of calculated band-edge shifts can be assessed through
the consideration of surface systems. Given a well-defined surface structure, the
ionization potential and the electron affinity with respect to the vacuum level could be
calculated. However, photoemission data for semiconductor and insulator surfaces
might be affected by charging effects and by the occurrence of defects and impurities
influencing the electrostatics. Therefore, we here prefer to consider band offsets at
semiconductor–oxide interfaces, where such electrostatic effects appear better
controlled. For a specific interface system, the band offsets can be achieved through
themethod of Van deWalle andMartin [67]. The band offsets in the hybrid functional
scheme canbe derived from those in the semilocal scheme through the consideration
of the variation of the electrostatic potential offset and through the application of the
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(a) Optimal mixing coefficients aopt and (b) the
derivative of the band gap k ¼ dEg=da versus
the dielectric constant e1 for various
materials. The data for the band gaps are

taken from the results in Fig. 7.1 and a
linear dependence of the band gap on the
mixing coefficient a is assumed. For e1,
we used experimental data from
Ref. [83].
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shifts DEV and DEC [68, 85]. On either side of the interface, the theoretical band-gap
matches the experimental one by construction. Such a scheme generally requires the
use of different aopt for the two bulk components of the interface and is applicable
owing to the weak dependence of the interfacial dipole on the mixing parameter
a [68]. The comparison between calculated andmeasured band offsets then provides
a sensitive test for the accuracy of band edges as obtained in hybrid functional
schemes. In Table 7.1, we present band offsets calculated for three interface model
systems: Si/SiO2 (Refs. [86, 87]), SiC/SiO2 (Ref. [88]), and Si/HfO2 (Ref. [28]). When
the hybrid functionals are tuned to match the experimental band gaps of the two
interface components (cf. �mixed� in Table 7.1), the calculated band offsets are found
to agree with experiment within only 0.1 eV [89–91]. Despite the limited number of
studied systems, the good agreement in Table 7.1 is very encouraging and suggests
that hybrid functionals may be relied upon for positioning band edges. This would
also imply that nonlocal exchange is the primary cause determining the relative size
of band-edge shifts.

Another way of validating the shifts of the band edges obtained from the hybrid
functional calculation is through comparison with those calculated with a theory of
higher level, such as for instance the GWmany-body perturbation theory. Recently,
Shaltaf et al. [92] performedGWcalculations focusing on such shifts. In Table 7.2, we
compare shifts in band edges as obtained with a hybrid functional with those
obtained by Shaltaf et al. [92] for Si and SiO2. The band gaps in the hybrid functional
calculations with a tuned mixing coefficient are by construction exactly equal to the
experimental ones, whereas this is not necessarily the case for the various GW
approaches. It is therefore more useful to compare relative shifts in the valence and
conduction band, i.e., DEV=DEg and DEC=DEg as obtained in various theoretical
schemes. One observes that results obtained with the hybrid functional and with the
various GW schemes differ by approximately the same amount as the various GW
schemes differ among themselves. This suggests that the quality of the VBM and
CBM shifts provided by the hybrid functional scheme is comparable to that achieved
with GW methods.

It should be stressed that the study of Shaltaf et al. [92] also showed that in GW
schemes these shifts are more difficult to converge than the band gap, requiring

Table 7.1 Valence (DEV) and conduction (DEC) band offsets at the Si/SiO2, SiC/SiO2, and Si/HfO2

interfaces calculated in PBE, PBE0, and themixed scheme (Ref. [68]), in which themixing coefficient
a is different for the two interface components. Experimental band offsets are fromRefs. [89, 90] and
[91], respectively.

interface PBE PBE0 mixed expt.

Si/SiO2 DEv 2.5 3.3 4.4 4.4
DEc 2.3 2.7 3.4 3.4

SiC/SiO2 DEv 1.4 2.0 3.0 2.9
DEc 1.7 2.0 2.6 2.7

Si/HfO2 DEv 2.3 3.1 2.9 2.9
DEc 1.5 1.9 1.7 1.7
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a very high number of empty states in the calculation of the response functions.
Furthermore, these shifts are sensitive to various ingredients of the calculation, such
as the plasmon pole approximation, the level of self-consistency of the GW approx-
imation, and the vertex corrections [92]. These considerations limit the amount of
materials for which such shifts have hitherto been obtained in a reliable way at the
GW level.

7.5
Representative Case Studies

In this section, we illustrate the application of hybrid functionals to the study of
defects through two case studies.

7.5.1
Si Dangling Bond

The first case study concerns the Si dangling bond. This defect corresponds to the
atomic structure of the Pb center, which has clearly been observed at interfaces
between silicon and its oxide [93]. The dangling bond wasmodeled by removing four
neighboring atoms in a bulk supercell of 216 silicon atoms [29]. Nine of the ten
dangling bonds generated in this way were then passivated with H atoms. The core
structure of the model is identical to that used in Ref. [23] for modeling the Ge
dangling bond.

The relevant charge states of the dangling bond are the positive, the neutral, and
the negative charge states. Charge transition levels were calculated in the PBE (the
mixing coefficient a ¼ 0), the PBE0 (a ¼ 0:25), and with a hybrid functional defined
by an intermediate mixing coefficient a ¼ 0:10. The evolution of the charge tran-
sition levels as well as that of the band edges are shown in Figure 7.10a as function
of a [29]. The band structures are aligned through the average electrostatic potential.
All displayed levels shift linearly with a. The largest shifts are observed for the band
edges. The shifts of the charge transition levels eþ =0 and e0=� are more moderate,
in agreement with general findings [13]. The charge transition levels reported in

Table 7.2 Relative shifts of the valence band (DEV) and the conduction band DEC with respect to
the change in the band gap DEg for Si and SiO2, as determined with a hybrid functional (PBE0),
aGW, and a quasiparticle self-consistentGW (QSGW) scheme. The latter two results are taken from
Ref. [92].

material quantity hybrid GW QS GW

Si DEV=DEg �0.54 �0.67 �0.75
DEC=DEg 0.46 0.33 0.25

SiO2 DEV=DEg �0.69 �0.56 �0.68
DEC=DEg 0.31 0.44 0.32
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Figure 7.10a include the electrostatic Makov–Payne correction. For the present
supercell calculation, the application of this correction yields converged values for
the charge transition levels [29].

A hybrid functional calculation with a mixing coefficient a ¼ 0:11 precisely
reproduces the experimental value of the Si band gap, Eg ¼ 1:17 eV. For this value
of a, we obtained charge transition levels at eþ =0 ¼ EV þ 0:2 eV and e0=� ¼ EV þ 0:8
eV.We compare these values in Figure 7.10b to the experimental density of interfacial
traps at the Si–SiO2 interface as obtained from C=V measurements [93]. The
calculated charge transition levels are found to closely correspond to the two
experimental peaks at EV þ 0:26 eV and EV þ 0:84 eV, generally assigned to Si
dangling bonds. The good agreement in Figure 7.10b provides support to the practice

Figure 7.10 (online color at: www.pss-b.com)
(a) Dependence of Si band edges and of the
charge transition levels eþ =0 and e0=� of the Si
dangling bond defect on the mixing coefficient
a. The vertical energy scale is referred to the
VBM in the PBE calculation. Adapted
from Ref. [29]. (b) Density of interfacial
traps at the Si–SiO2 as measured by the

low-frequency C=V technique in Ref. [93] (solid
line). The two pronounced peaks at 0.26 and
0.84 eV originate from Pb defects and
correspond to the charge transition levels eþ =0

and e0=�. The charge transition levels
obtained through a hybrid functional
calculation with a ¼ 0:11 are represented
by vertical bars.
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of using a mixing coefficient a that brings the theoretical band gap obtained within
the hybrid functional scheme in accord with the experimental one.

7.5.2
Charge State of O2 During Silicon Oxidation

The second case study concerns the charge state of the O2 molecule during silicon
oxidation. The silicon oxidation process has attracted considerable interest because of
its key role in the manufacturing of Si-based microelectronic devices. Our present
understanding relies to a large extent on the oxidation model proposed by Deal and
Grove [94]. In this model, the growth of SiO2 proceeds by (i) the adsorption of the O2

molecule on the oxide surface, (ii) the diffusion ofmolecularO2 through the bulk-like
oxide, and (iii) its subsequent reaction at the semiconductor–oxide interface. Sim-
ulation techniques based on DFT have been instrumental for achieving an atomic-
scale description of the involved processes [95], such as, e.g., the diffusion mech-
anism of O2 in amorphous SiO2 [96], the oxidation reaction [97], etc. However, one
aspect that has longbeendifficult to address is the charge state of the diffusing oxygen
molecule. The difficulty of providing a clear answer to this issue stems from the
�band-gap problem� of semilocal approximations to DFT [30, 98].

In bulk SiO2, the oxygenmolecule is stable in the neutral and in thenegative charge
states [96]. The charge state of the O2 in the vicinity of the Si/SiO2 interface is
determined by the position of the ð0=�Þ charge transition level with respect to silicon
band edges. It is assumed that the molecule is close enough to the interface to allow
for charge equilibration with the silicon substrate, yet remaining far from the
suboxide region where the oxidation reaction takes place. Thus, the ð0=�Þ charge
transition level of the O2 molecule is first determined in a bulk-like amorphous SiO2

environment and then positioned with respect to Si band edges through the band
alignment at the Si/SiO2 interface. In Figure 7.11, we show the result of such an
alignment procedure as obtained within three different theoretical schemes [30]:
(i) the semilocal (PBE) functional; (ii) the hybrid (PBE0) functional; (iii) a mixed
scheme, inwhich the fractionof exact exchange is tuned for each interface component,
following the prescription for the calculation of band offsets given above [68].

All three theoretical schemes consistently indicate that the ð0=�Þ charge transition
level locates above the Si CBM (Figure 7.11), providing convincing evidence that for
electron chemical potentials in the Si band gap the neutral charge state is thermo-
dynamically favored. The three schemes show only small quantitative differences.
The separation between the ð0=�Þ charge transition level and the Si CBM is 1.1 eV in
the PBE and in the mixed scheme, and reduces to 0.8 eV in the PBE0.

To obtain such a level of qualitative agreement between different theoretical
schemes, charge transition levels and band offsets were obtained consistently within
each scheme. This should be contrasted with the practice of determining transition
levels with respect to the oxide band edges within PBE and using the experimental
band offsets for alignment with respect to the Si band edges. Such an alignment
procedure implicitly takes the erroneous assumption [68, 92] that the band-gap
correction is achieved by the sole displacement of the conduction band. In the case of
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the O2molecule in SiO2, this approach results in the opposite conclusion that it is the
negative charge state which is thermodynamically favored [98].

7.6
Conclusion

Our investigation indicates that hybrid functional schemes offer a viable theoretical
tool for determining the location of energy levels of deep defects with respect to the
band edges of the bulk material. The issue is conveniently addressed by separately
aligning the defect level and the band edges with respect to the average electrostatic
potential. In this way, the determination of the defect level can to a large extent be
decoupled from the determination of bulk band edges.

As far as the defects are concerned, it appears that their energy levelswith respect to
the average electrostatic potential are already well described at the semilocal level and
that the hybrid-functional description does not lead to any significant modification.
In the case of ionization potentials of molecular systems, a similar agreement is
recorded and the comparison with experiment shows that an accurate description is
achieved. In analogy with the molecular case, this therefore suggests that the energy
separation between the defect level and the average electrostatic potential is in many
cases already accurately determined at the semilocal and hybrid functional level.

At variance, the position of the band edges is highly sensitive to the fraction of
exact exchange considered in the hybrid functional calculation. The use of any fixed
fraction of exact exchange does not lead to a systematic improvement of the band-gap
description, thereby hindering the use of a hybrid-functional scheme as a predictive
tool. It is therefore necessary to resort to an electronic structure method of higher
accuracy to identify the position of the band edges. It should be noted that such

Figure 7.11 (online color at: www.pss-b.com)
The alignment of the ð0=�Þ charge transition
level of the O2 molecule at the Si/SiO2 interface
is obtained within three different theoretical
schemes: a semilocal functional (PBE), a hybrid

functional (PBE0), and the mixed
scheme. The Si band gap, the Si/SiO2 band
offsets, and the separation between the
defect level and the silicon CBM are given
in eV. From Ref. [30].

132j 7 Defect Levels Through Hybrid Density Functionals: Insights and Applications



a method would be applied in the absence of the defect and could therefore take
computational advantage of the full translational symmetry of the hostmaterial. This
analysis allows us to reformulate the band-gap problem in terms of a band-edge
problem, highlighting the importance of a reliable description of bulk bands relative
to the average electrostatic potential.

Ourwork also explored the route of determining band-edge shifts while remaining
within the hybrid functional approach. This is done at the cost of empirically
adjusting the mixing coefficient a to reproduce the experimental band gap. While
such an approach does not offer an ideal solution, several supporting arguments can
nevertheless be invoked. In particular, the accuracy of the determined band edges can
be assessed either by comparison with electronic-structure theories of higher
accuracy or by direct comparison with experimental band offsets. In both cases,
available data indicate that the agreement is very encouraging. The present descrip-
tion achieved with hybrid functionals constitutes a noticeable step forward with
respect to the case of semilocal functionals in which any conclusion is heavily biased
by the band-gap problem.

A generalized use of hybrid functional schemes still requires further work. One
important issue is the shift in the band edges with respect to the average electrostatic
potential. The validity of shifts determined within hybrid functional schemes should
further be investigated by extending the comparisonwith experiment to a larger set of
semiconductor–semiconductor and semiconductor–oxide band offsets. In addition,
a more systematic comparison with theoretical schemes of higher accuracy, such as
many-body perturbation schemes based on the GW approximation, would be
invaluable for further supporting the shifts obtained with hybrid functionals. In
particular, such comparisons should also provide insight into whether it is concep-
tually reasonable to expect that exact exchange dominates the relative value of
conduction and valence band shifts.

The use of hybrid functionals with tuned mixing coefficients is clearly unsatis-
factory. In the inhomogeneous case of an interface between two materials with very
different band gaps, the mixed scheme is advantageous for achieving a good
description of band offsets [68]. However, the use of different functionals for the
two interface components precludes the study of the transition region and defects
therein. Since the optimal mixing coefficients are different on both sides of the
interface, a reliable description of the evolution of band edges is not possible with any
fixed value of a. Accordingly, the mixing coefficient should depend on the coordinate
perpendicular to the interface. This is not practical when plane-wave basis sets are
used, but could in principal be achieved in the case of localized basis functions.
However, such an approach is conceptually not appealing since the variation across
the interface would remain ad hoc.

Another problem is related to localized electronic states, such as d and f orbitals, for
which self-interaction errors of semilocal density functionals are high. For instance,
in many transition metal oxides, such as ZnO, the fraction a required to correctly
position the semicore 4s with respect to VBM is not necessarily equal to the value of
a reproducing the band gap. This results in a serious deficiencywhen the role of these
d states cannot be neglected. The role of self-interaction errors might be even more
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significant in the description of very localized defect states affected by strong
polaronic effects, such as Al substitutional to Si in SiO2 [99, 100], Li substitutional
to Zn in ZnO [101–103], the self-trapped hole in NaCl [104], defect-trapped and self-
trapped electrons and holes in TiO2 [105], or theMg vacancy inMgO [106]. Semilocal
density functionals yield excessively delocalized electron densities resulting in
inaccurate defect geometries. Hybrid functionals generally improve upon this.
However, themixing coefficient a required for reproducing correct defect geometries
can be very different than the value optimizing the band gap [103]. This implies that
a single value of a cannot concurrently reproduce the bulk band edges and the
ground-state geometries of specific defects. Such an ad hoc fixation of the hybrid-
functional parameters is clearly disturbing.

In conclusion, hybrid functionals certainly represent a powerful tool for the study
of defect levels, but problematic aspects persist requiring great caution in their
application. In this work, we restricted the discussion to the class of hybrid
functionals based on bare nonlocal exchange, in which the mixing coefficient is
allowed to vary. Hybrid functionals based on screened exchangemight offer greater
flexibility, but it is anticipated that even such functionals would not lead to a
universally effective tool when used with fixed parameters [107]. In this context, the
approach discussed in this work provides useful insights and guidelines for the
theoretical determination of defect levels.
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8
Accurate Gap Levels and Their Role in the Reliability
of Other Calculated Defect Properties
Peter De�ak, Adam Gali, B�alint Aradi, and Thomas Frauenheim

8.1
Introduction

Bulk defects and surfaces give rise to characteristic fingerprints in the electrical,
optical, and magnetic spectra of non-metallic crystals, critically influencing their
functionality in applications. The task of defect theory is to establish the equilibrium
concentration of conceivable defects (without or in the presence of other defects)
and to calculate their properties for comparison with the experimental spectra. The
information gained from the joint efforts of defect theory and spectroscopy serves as
database for defect engineering, which has become an integral part of technology
design in electronics, optoelectronics, and photovoltaics, but also serves the under-
standing of surface processes like heterogeneous catalysis.

From the viewpoint of the electrical and optical properties of the bulk, as well as of
the chemical reactivity of surfaces, band gap states are of paramount importance in
non-metallic solids. Their position with respect to the band edges determines the
electrical and optical spectra but contributes also dominantly to the formation energy.
Calculating defect level positions has been the toughest challenge for defect theory,
because its �work horse� in the past decades [1], density functional theory (DFT) in its
standard implementations – the local density approximation (LDA) and the semi-
local generalized gradient approximation (GGA) – leads to a serious underestimation
of the band gap (sometimes to no gap at all), and to big uncertainties in the defect level
positions in it. For a long time, this deficiency has been regarded as a relativelyminor
problem, hampering only the comparison of the calculated spectra with the exper-
imental ones but, in fact, it has serious implications for the formation energy [2], and
so for the relative stability of different defect configurations. In this paper we will
demonstrate this and review our experience with different correction schemes for
calculating defect properties free of the gap error.

Before doing so, however, let us consider the ways of calculating electrical and
optical spectra. Usually, what is being measured is the energy promoting an electron
from the valence band maximum (VBM) to a defect level (acceptors), or to the
conduction band minimum (CBM) from a defect level (donors). Of course, internal
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excitation of the defect is also possible, and the reverse (recombination) processes can
also be measured. In some experiments, the measured energy absorption or
emission corresponds to the change in the electronic energy alone, while in others
to the change in the total energy. With reference to a Franck–Condon diagram, the
former are called vertical transitions, while the latter, where the ions have time to
relax, are called adiabatic. Since (except for internal excitations) the charge state of
the defect itself changes, these transition energies are often referred to as �optical� or
�thermal� charge transition levels of the defect, respectively. In principle, an
excitation energy should be calculated as the total energy difference between the
ground and excited states, but DFT can be applied only to the former. However,
excitations energies can also be deduced by comparing the ground state energies of
different charge states. Using charge transition energies of the perfect and the
defective crystal, as shown in Figure 8.1, one can obtain the energies of the required
electronic transitions from/to the band edges to/from the defect level. For vertical
(optical) transitions, the total energy differences have to be taken at the geometry of
the initial state, while for adiabatic (thermal) transitions at the respective equilibria
of the final and initial states. Actually, the charge transition energies with respect to
the vacuum level correspond to the ionization energies and electron affinities of the
systems. (N.B.: the electron affinity is the ionization energy of the negative state.) In
DFT, if the applied functional was exact, the negative of the highest occupied
Kohn–Sham (KS) level would be exactly equal with the ionization energy [3, 4]. In
supercell calculations the vacuum level is not defined but the common reference level
of Figure 8.1 does not appear in the required ionization energy differences. So, e.g.,
for the infinite system, IC�AC¼ eCB� eVB¼Eg [2]. The standard local and semi-
local approximations of the exchange functional introduce a spurious electron self-
interaction which leads to the �band gap error,� irrespective of which way one
calculates it (assuming that proper band-filling corrections were applied in the total
energy calculated at special k-points) [2]. Also,while the total energy should be a linear
function of the occupation number (between integer values), in the standard

Figure 8.1 (online color at: www.pss-b.com)
Transition energies as ground state energy
differences. Lines denoted with the Greek letter
e represent (Kohn–Sham) one-electron
levels, arrows denoted with Latin E
correspond to transition energies between
the charge states given in parentheses for the

perfect (C) and the defective (D) crystal. I and
A are the corresponding ionization energies
and electron affinities, respectively. Arrows with
dashed lines (red) are the donor and
acceptor transitions, while the dotted (green)
one is the fundamental absorption (Eg) of
the bulk.
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approximations this function has a positive curvature. This leads to the improper
placement of the KS levels of the defect with respect to the band edges [4].

�Historically,� the first attempts to remedy the gap problem were aimed at
correcting the KS levels of the standard approximations. In Section 2wewill consider
the most common methods and conclude that, save for many-body calculations on
the defect containing solid, the applicability of themall are restricted to special defects
even within one host material.

The �gap error,� however, does not only concern the calculation of the defect level
positions – it also appears in the formation energy of the defect, influencing the
correct prediction of the ground state and the activation energies for diffusion or
reactions. In Section 3 we will demonstrate this on a few examples. In Section 4 we
will also show that total energy corrections based on the KS level corrections can only
be applied in special cases.

Obviously, the whole �gap problem� could be solved by applying GWor Quantum
Monte Carlo methods. The difficulty is, that – while simplified (G0W0) techniques
can be applied to large supercells [5] to provide a posteriori quasiparticle (QP)
corrections – self-consistent GW calculations [6] are still rather costly, restricting
the size of the supercell presently, e.g., to 64–72 atoms for tetrahedral semiconduc-
tors (at the very limit), and calculation of the total energy is as yet not possible even for
these. Cost factors limit Quantum Monte Carlo calculations even more, mostly
forbidding even to take into account relaxation effects [7]. Therefore, in the time
being, we think that the best way of dealing with the gap problem is to turn to
a generalized Kohn–Sham scheme, based on approximate non-local exchange
functionals [8]. There are many possibilities available (see, e.g., Refs. [9–14]). In
Section 5 we will investigate the performance of the screened hybrid exchange
functional of Heyd, Scuseria, and Ernzerhof [15, 16] for a set of well chosen defects.
Our conclusion is that carefully tested semi-empirical, range-separated hybrids
are presently the best tools for economically feasible studies of both defect spectra
and energetics, with transferability within a class of hosts of similar bonding and
irrespective of the nature of the defect.

8.2
Empirical Correction Schemes for the KS Levels

First attempts for correcting the consequences of the gap error for defects have
concentrated on the gap levels. Since calculated effective masses were acceptably
accurate, the assumption was that (semi)local approximations to DFTdescribed both
bands accurately, just the energy difference between the VBM and the CBM was too
small [17]. This has led to the idea of taking the VBMas reference, open up the gap to
its experimental value, and scale the energy difference of the defect level to the VBM
accordingly. Needless to say that this procedure has no justification whatsoever. A
more intelligent approach was to consider whether the defect state was VB or CB
related and – as afirst approximation – apply the same shift (w.r. to theVBM) as for the
CBM in the latter case, or no shift at all in the former. Mostly, however, no clear-cut
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decision is possible. This was taken into account by the �scissor operator,� introduced
by Baraff and Schl€uter [18] for the case of a vacancy. Since the wave function of the
defect can be expanded on the basis of the perfect crystalline states, they assumed that
the amount of necessary shifting for a defect level can be determined by the weight of
the conduction-band states in the expansion. Therefore, the shift necessary for the
CBM to reproduce the experimental gap is to be scaled by the sum of overlaps
between the defect wave function and all CB states of the perfect crystal. In principle,
the scissor operator can be applied self-consistently, but most often it was applied a
posteriori, which made sense only if the too low-lying CBM in the LDA or GGA
calculation did not mask the localized defect level [2]. (Otherwise the calculation
would lead – incorrectly – to an effectivemass like state and a full shift with theCBM.)

In our experience, the scissor operator has worked reasonably well for substitu-
tional defects and split-interstitials but for interstitial defects in the low electron
density region of the crystal the results seemed to be problematic. Therefore, we
carried out a case study using hydrogen as a probe in silicon and silicon carbide [19].
The hydrogen interstitial in Si has established configurations both in the high and
low electrondensity regions of the crystal [20]. In the neutral charge state, it intercepts
a Si–Si bond. At this, so-called bond-center (BC) site the hydrogen is a donor. There
exists, however, a metastable site behind a Si–Si bond, in the so-called antibonding
(AB) position (near to the tetrahedral interstitial site T). Here the hydrogen acts as an
acceptor. This provides a unique opportunity to check how the validity of the scissor
correction depends on the position of the defect. In SiC the interstitial H is always an
acceptor at the AB site, behind a silicon atom. Comparing that to the case ofHAB in Si
can show how the scissor correction works in materials with very different gaps. In
our study we have used standard local (spin) density approximation, and compared
the scissor correction to the QP-correction of a G0W0 calculation. (Details are
described in Ref. [19].)

The results are shown in Table 8.1. The scissor correction is close to the G0W0

result for HBC. This corroborates the experience obtained with substitutional defects
that the scissor operator works well in the high electron density region of the crystal.

Table 8.1 Comparison of the scissor- and the G0W0 QP-corrections [in (eV)] to the KS levels
obtained by LDA for interstitial H in Si and SiC. (Also corrections predicted by a one-parameter
hybrid functional are given).

levela) scissor G0W0 hybrid

Si: CBM 0.61 0.66 0.61
Si : H0

BC 0.53 0.44 0.47
Si : H�

AB 0.44 0.17 0.12

SiC:CBM 1.08 1.17 1.12
SiC : H�

AB 0.90 0.12 0.04

a) The position of the CBMhas been set according to the experimental gap in the case of the scissor
operator. The mixing parameter of the hybrid functional has been fitted to reproduce the lattice
parameter, cohesive energy, bulk modulus, and the band gap.
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In contrast the scissor yields a gross overcorrection for HAB in both materials. (The
error increases in 4H–SiC, relative to Si, by about the same amount as the increase in
the gap correction.) The explanation lies in the different nature of the defect state at
BC andAB. At BC in Si it is essentially an antibonding combination of the sp3 hybrids
on the Si neighbors, i.e., clearly conduction band derived. Therefore, it can very well
be described by a linear combination of the CB states of the perfect crystal. The defect
state of H at the AB site (i.e., near the tetrahedral interstitial site T) is a good example
for an 1s effective-mass state. However, in this interstitial �hole� of the tetrahedrally
bonded semiconductors, the electron density is small, so only CB states can be
involved in the expansion of even such an essentially valence state [21]. As a result,
the scissor gives a correction almost as big as that of the CBM, being increasingly
wrong with increasing gap. Obviously, the basic assumption of the scissor operator
works only in the high electron density region of the perfect crystal, and not if the
defect resides in a low electron density region where the VB states of the perfect
crystal do not provide an adequate basis for expanding a strongly localized defect
state.

Anotherway of dealingwith the gap problem is to correct the host band structure of
a standard (semi)local DFTapproximation. One possibility for that is the application
of an a posteriori alignment scheme [22, 23]. It has been observed that the QP-
corrections work like a symmetric scissor, pushing the VBM down and the CBMup,
and – at least for somedefects – the position of the gap levels, with respect to a suitable
chosen �external� reference, hardly changes [23]. This would allow to correct the
positions of the VBM and the CBM, based on – say GW – calculations done on
the small unit cell of the perfect system,which ismuch less costly to carry out than for
the defective super cell. Unfortunately, however, this idea works only for defects with
well localized mid-gap levels [23], and provides no way of correcting the total energy
(see next section). A self-consistent but empirical way of correcting the host band
structure is offered by the use of the LDA þ U (or GGA þ U) methods, and/or by
applying non-local empirical pseudopotentials (NLEP) for correction, as described in
Ref. [4]. One problem with this procedure is that the adjustment of the KS levels is
often accompanied by the deterioration in the ground state properties of the system
(e.g., ionicity and lattice constant). The other problem is that a reasonably justified
choice of the empirical parameters can only be made for the host system but not for
an impurity. Our attempt, in the latter case, to choose parameters by enforcing the
equality of the ionization energies, calculated either as total energy difference or as
the negative of the highest occupied KS level, has failed.

8.3
The Role of the Gap Level Positions in the Relative Energies of Various
Defect Configurations

While themethodsmentioned in the previous Section can be used – at least for some
defects – to obtain spectra comparable to experiment, the consequences of the gap
error in the total (and formation) energy still remain. Here we would like to recall two
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examples in silicon [24], which demonstrate how the error in the gap level position
directly influences the relative energy of different configurations. We compare here
calculations with pure GGA exchange to those with a one-parameter hybrid func-
tional. The mixing parameter of Hartree–Fock and GGA exchange in the latter have
been chosen to optimize the lattice constant, the cohesive energy, the bulk modulus,
and its derivative, as well as the widths of the VB and the fundamental gap [25]. With
this optimal value, also higher bulk excitations are well reproduced and, as shown in
Table 8.1, the level positions ofH in Si are very near to the ones obtained byGW. Later,
in Section 8.5, we will show that hybrid functionals can really be used as reference,
providing not only correct gap level positions but also total energy differences free of
the gap error.

Thefirst example is interstitial oxygen in silicon, in its ground stateOi, as puckered
BC interstitial, and in the so called OYconfiguration, which is the saddle point along
the diffusion path (Figure 8.2). The activation energy for diffusion is well established
experimentally: 2.53 eV in the 270–700 �C range [26]. In a theoretical calculation at
0 K, one should expect a somewhat higher value. Based on the observed Si–O–Si
stretch frequency of �1100 cm�1, the zero-point energy in the ground state can be
estimated to be 0.07 eV, so the 0K theoretical barrier should be above 2.6 eV. It is
known, that well converged LDA or GGA calculations underestimate this activation
energy: our GGA calculation in a 64 atom supercell resulted in 2.37 eV. In contrast,
the hybrid functional gave 2.69 eV, which is well in line with experiment. For both
functionals, the increase of the total energy follows the emergence of a gap level from
the VB, when going from the electrically inactive Oi configuration toward the saddle
point at OY, where the central Si atom has a p-type dangling bond, doubly occupied
due to electron transfer from the trivalent oxygen atom.Considering that the gap level
is doubly occupied, the 0.14 eV difference in the level positions between the hybrid
and the pure GGA calculation at the saddle point seems to explain most of the
deviation of the activation energy, 0.32 eV. Although the numerical agreement is
somewhat accidental (as shown in the next Section), this finding indicates that the
error of GGA in predicting the activation energy is related to the gap error.

The other example is the complex of substitutional boron with a self-interstitial,
BSi þ Sii. This defect gives rise to the charge transition level shown in Table 8.2, is
paramagnetic in the neutral charge state and, according to the observed hyperfine
interactions, it has C1h symmetry [27]. LDA and GGA studies result in a metastable
configuration with such a symmetry but give also a more stable one with C3v

Figure 8.2 (online color at: www.pss-b.com)
Thediffusionpath of interstitial oxygen in silicon
(Oi) from ground state to ground state through
theOY transition state. The undercoordinated Si

in the latter is indicated by the lone pair p
state. This state gives rise to a level in the
gap. The oxygen atom is the dark
(red in color) sphere.
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symmetry, as shown in Figure 8.3 (see Ref. [25] and references therein). This has
always been suspected to be a consequence of the gap problem [28]. Calculation with
the hybrid functional proves that, resulting the C1h configuration lower in energy
than the C3v one. The reason is that in the C1h configuration, which is nearly a [110]
split-interstitial, a different kind of orbital is occupied than in the C3v configuration,
where practically the boron is an on-center substitutional and Sii is near the
tetrahedral interstitial site. The gap level position is shifted up between the GGA
and the hybrid calculation much more in the C3v case, than in the C1h. This
difference brings about a larger increase of the total energy for the C3v configuration
than for the C1h, leading to a reversal in the stability sequence. This is clearly a case
where LDA and GGA both fail to predict the correct ground state of a system
because of the gap error.

These examples show, that the error in the gap level position directly influences the
relative energies of defects and, without appropriate correction, this can lead to
serious quantitative and qualitative errors in the predictions based on (semi)local
approximations of DFT. Note, that the error of the gap level positions increases with
the width of the gap (see Table 8.1), and can easily cause catastrophic problems for
defects in wide band gap materials.

Table 8.2 (þ /0) charge transition levels in silicon [with respect to the perfect crystal VBM in (eV)],
calculated by an LDA functional, and after correcting the total energies according to Eq. (8.1), based
on a calculation by G0W0 or by a one-parameter hybrid functional.

E(þ /0) w.r. VBM with corrections based on
level positions in

LDA G0W0 hybrid exptl.

HBC 0.54 0.98 0.98 0.94a)

BSi þ Sii 0.66 0.94 0.99b)

a) Ref. [29],
b) Ref. [27]

Figure 8.3 (online color at: www.pss-b.com) The C1h (left) and C3v (right) configurations of the
BSi þ Sii complex in silicon. The boron atom is the dark (green in color) sphere. Also shown are
the defect level positions in the gap, as obtained by a pure GGA and a hybrid functional.
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8.4
Correction of the Total Energy Based on the Corrected Gap Level Positions

The examples described in the previous section suggest a possibility of correcting
the total energy. The latter can always be given as the sum of the band energy and of
double-counting terms, and the band energy can be split into the contribution of the
occupied defect level in the gap and that of the valence band:

Etot ¼ EBE þ Edc ¼ nDeD þ
XVB

i

niei þEdcðrÞ ð8:1Þ

where eD, ei denote KS levels in the gap and in the VB, respectively, and nD, ni are the
corresponding occupation numbers. Equation (8.1) clearly shows that an error in the
first term of the right-hand side will influence the total energy, since the double-
counting term depends only on the electron density r(r), which – according to GW
calculations – are quite well described by the (semi)local approximations, and there is
no reason to expect compensation by the second term. Based on Eq. (8.1), we have
used the following correction scheme for the total energy:

Ecorr:
tot ¼ Etot þ nDDeD; ð8:2Þ

DeD ¼ ½ecorr:D �ecorr:VBM��½euncorr:D �euncorr:VBM � ð8:3Þ
Table 8.2 shows the results for the two donors discussed above in silicon, using the

gap level position obtained in the hybrid calculation for correction [24]. In the first
case the correction is also given based on a G0W0 calculation [19]. As can be seen the
corrected results compare favorably to experiment. This correction scheme has
recently been proposed again using GW data in Eq. (8.3) [30, 31].

Actually, we have been using this correction scheme for quite some time, initially
with the scissor correction for the gap levels [32], later with the level positions
obtained from one-parameter hybrid functional calculations [33]. Our experience
about its success was, however, somewhat mixed, so we have examined [24] the
working of Eqs. (8.2) and (8.3) on the energy difference (i) between the BC and AB
sites (in the same charge state) for interstitial Si:Hi, (ii) between the ground state and
saddle point configurations of Si:Oi, and (iii) between two possible configurations of
a silicon vacancy in SiC, as shown in Figure 8.4. (The obvious VSi configuration can
transform into a VC þ CSi one [34]). Assuming that the hybrid calculation provides
both gap level positions and self-consistent total energies free of the gap error, the
corrections (with respect to a pure GGA calculation) to each term in Eq. (8.1) can be
calculated separately. (The corrections to Etot and EBE can be calculated directly, while
that of Edc is their difference.) These are compared in Table 8.3 with the approximate
correction based on Eqs. (8.2) and (8.3). As can be seen, the agreement between the
first and last row is good in only one case. Looking at the contributions from EBE and
Edc, however, it is clear that even this agreement is the result of a lucky compensation
effect, which does not occur in the other two. How can this be understood in light of
the success with the charge transition levels in Table 8.2?
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In each of the three cases examined in Table 8.3, there is considerable change in
the bonding. Hydrogen at the BC site in silicon has a singly occupied gap level near
theCB edge, while at theAB site it has a doubly occupied resonance just below theVB
edge. No correction for the latter has been taken into account in the last row, but is
included in the first. (Apparently the two corrections happen to cancel each other
accidentally to a high degree.) The oxygen atom in its interstitial position in silicon is
divalent, with two tetravalent Si neighbors. At the saddle point of its motion it
becomes trivalent and one Si neighbor becomes undercoordinated. Obviously, very
different VB resonances correspond to the two cases and the change in EBE is
considerably more than just the correction coming from the appearance of the gap
level. (Still, the error in the latter does influence the total energy significantly.)
Between the two different configurations the electron density, and so Edc changes as
well. ForH in Si this seems to compensate the change inEBE, forOonly theVBpart of
the latter. In the case of the vacancy in SiC there is no compensation at all. The
approximate correction covers the change from three dangling bonds on Si to three
on C, but at the same time three Si–C bonds are replaced by three C–C bonds, so
a non-self-consistent correction is obviously meaningless.

Table 8.3 The difference between a hybrid and a GGA calculation [24] in the relative energy of two
defect configurations, a and b, split according to the various terms of Eq. (8.1). The last row gives
the approximate total energy corrections based on Eqs. (8.2) and (8.3).

a� b Si SiC

HBC�HAB OY�Oi VSi�VC þ CSi

DðEa
tot�Eb

totÞ þ 0.01 þ 0.32 �0.75
DðEa

BE�Eb
BEÞ �0.04 þ 0.51 þ 1.08

DðEa
dc�Eb

dcÞ þ 0.05 �0.19 �1.83
naDðeaD þDeaDÞ�nbDðebD þDebDÞ þ 0.19 þ 0.28 �1.89

Figure 8.4 (online color at: www.pss-b.com) VSi (left) and its isomer VC þ CSi (right) in SiC. The
carbon atoms are the dark (blue) spheres. The dangling bonds are schematically indicated.
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In contrast to these cases, the simple change in the occupation of a gap level may
shift it a little, but VB resonances will hardly be affected and little change will occur in
Edc – at least in the cases mentioned here. However, in case of bistable defects, the
charge transitionmay induce a substantial relaxation of thenuclei and a very different
bonding. Therefore, the a posteriori corrections scheme of Eqs. (8.2) and (8.3) should
be used with utter care.

8.5
Accurate Gap Levels and Total Energy Differences by Screened Hybrid Functionals

Considering all the problems with correcting the results of the (semi)local exchange
functionals on the one hand, and the unfeasibility of applyingmany-body theories to
large supercells on the other, generalized KS (gKS) schemes with approximate non-
local exchange functionals seem to offer the solution in the time being. Such
approximations are the hybrid functionals. Based on the adiabatic connection
formula Becke has suggested [35, 36] an approximation to the exact DFT exchange
energy by mixing GGA and Hartree–Fock (HF) exchange. The mixing parameter of
these hybrid functionals were chosen semi-empirically to optimize thermochemical
data of molecules. The optimal choice of 25% HF-exchange can also be justified
theoretically [37]. It has been observed early on that hybrid functionals systematically
improve the gKS gap of semiconductors [38]. Encouraged by that, we have deter-
mined materials-specific mixing parameters for crystalline Si [25], SiC [33] and
SiO2 [39], by fitting ground state properties as well as the gap to experimental values,
asmentioned earlier. Table 8.4 shows the band gaps obtained.Although these hybrids
have proved themselves in several applications (see, e.g., Refs. [33, 39–42]), their lack
of transferability from one material to another is a severe restriction, especially for
interface studies.

More recently, a new class of hybrid functionals has been introduced [15], where
the mixing is done only for the short range part of the electron–electron interaction.
This corresponds to screened non-local exchange (screened hybrids). The screening
parameter introduces an additional degree of freedom, and optimizing these can give
excellent gaps for a wide range of semiconductors (but not for all). The first version

Table 8.4 Band gaps obtained by a one-parameter hybrid exchange functional. Values in Italics in
each column were obtained by the mixing parameter optimized for ground state properties and the
gap of the given material. The experimental values are shown in parentheses. All values are in (eV).

HF-part fundamental gap (eV)

SiO2 (9.5) Si (1.17) 3C-SiC (2.36) C (5.48)

12% 1.17
20% 9.0 1.44 2.42 5.12
28% 9.5
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(HSE03) of this screened hybrid by Heyd–Scuseria–Ernzerhof [15] has shown
substantial improvement of the band gap over a one-parameter hybrid with 25%
HF-part (termed PBE0 in Ref. 9) and, above all, the same quality in similarly bonded
materials. It is important to emphasize that at the same time also the reproduction of
the basic ground state properties (lattice constant, heat of formation, and bulk
modulus) have also improved [43].

In Table 8.5 we show this for the Group IV semiconductors, diamond, SiC, Si, and
Ge, using the revisedHSE06 version [16]. (The screening parameter is set to 0.2 A

� �1 ,
keeping the 25% admixture of HF-exchange to 75%GGA exchange calculated by the
Perdew, Burke, and Ernzerhof – or PBE – functional [44].) We would like to point out
that details of the band structure, like width of the VB or the first allowed direct
transition at C, which have not been included into the fitting procedure, agree also
well with experiment. The band gaps are reproduced in all these materials with the
samehigh accuracy. This is even true forGe (taking into account the lack of spin-orbit
coupling in our calculation, which would lower the fundamental gap), for which
the PBE calculation gives no gap at all. The transferability ofHSE06 inmaterials with
similar bonds is encouraging, provided it pertains also to defect levels. In a recent
paper we have found that HSE06 works extremely well for the inner excitation of
a defect in diamond [45].We have, therefore, also investigated the transition energies
between the band edges and defect states in a systematic manner [46].

Table 8.5 Comparison of PBE andHSE06 results [46] for the lattice constant (a, c), cohesive energy
(Ecoh), bulk modulus (B0), fundamental (indirect) gap (Eg), first allowed direct transition at the
Brillouin-zone center (C25

0 ! C2
0), and valence band width (VB) with experimental data [47, 48] in

case of the Group IV semiconductors.

method a (A
�
) c (A

�
) Ecoh (eV) B0 (GPa) Eg (eV) C25

0 !
C2

0 (eV)
VB (eV)

diamond PBE 3.574 7.85 425 4.21 13.3 21.5
exptl. 3.567 7.37 443 5.48 15.3 24.2
HSE06 3.544 7.58 464 5.42 15.7 23.8

4H-SiC PBE 3.091 10.116 6.51 2.22
exptl. 3.073 10.053 3.23
HSE06 3.069 10.045 6.37 3.21

3C-SiC PBE 4.375 6.51 209 1.37 6.1 15.3
exptl. 4.360 6.34 224 2.36 7.4 17.
HSE06 4.345 6.37 230 2.25 7.7 17.1

silicon PBE 5.468 4.62 88 0.61 3.14 11.8
exptl. 5.429 4.63 99 1.17 4.15 12.5
HSE06 5.434 4.54 98 1.17 4.33 13.3

germanium PBE 0.00
exptl. 5.658 3.88 0.74 0.90 13.0
HSE06 5.670 3.66 0.84 0.88 13.9
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Fromtheviewpointofdefects, theapproximatenon-localexchangefunctional in the
gKS scheme is expected to remedy both the gap problem and the inappropriate
dependenceof the totalenergyontheoccupationnumber,or inotherwords: toprovide
both total energyandgKSlevelsof thedefect freeof thegaperror.Tocheck this,wehave
compared the band$ defect transitions computed (cf. Figure 8.1) as differences of
self-consistenttotalenergies(DSCFmethod)tovaluesobtainedasdifferencesbetween
highestoccupiedgKSlevels (DKSmethod).Theaveragepotentialsbetween theperfect
crystal and the defective supercell have been aligned using the method suggested in
Ref. [1]. Charged supercells were calculated assuming a jellium charge of opposite
sign.This leads toanerror,dependentonthesupercell size,both inthe totalenergyand
in thegKSlevels [31]. Ingeneral, theerroralsodependsonthenatureof thedefect state,
requiringnon-trivial correctionprocedures [49].Thereforewehavechosenfairly large,
512-atom supercells (in theC approximation) tominimize all size effects, and applied
65%of themonopolecorrection forchargedsupercells, assuggested inRef. [2]. Incase
of acceptors both the DKS and DSCF transitions need correction, and we assumed
them to be approximately equal for a single negative charge.

In Table 8.6 we compare the DKS and DSCF vertical transitions for a series of
donors and acceptors in diamond, silicon, and germanium. For Si, the defects have
been chosen to scan the whole width of the gap by their gap levels. With one
exception, the agreement is within 0.1 eV, irrespective of the gap width of the host, or
the shallow or deep nature of the defect.

Table 8.7 shows the comparison of the calculated adiabatic transition energies to
the experimental ones. The adiabatic �DKS� values have been obtained by adding
the relaxation energy of the charged state (with respect to the neutral one) to the
verticalDKS transition. The values obtained this way are in stunning agreement with
experiment. (N.B. the defects in this study have been chosenby the criterion of having
accurate experimental values beyond doubt.) The same is true for the DSCF results,
except for the case of the iron interstitial in silicon (Si:Fei), the �odd guy out� also in
Table 8.6. Comparison of the two Tables show that the error is in the calculatedDSCF

Table 8.6 Vertical transition energies [in (eV)] calculated by comparing highest occupied levels
(DKS) or total energies (DSCF) according to Figure 8.1. The E(þ /0) transition levels of donors are
given with respect to the VBM, the E(þ /0) transitions levels of acceptors with respect to the CBM.

donors acceptors

E(þ /0) w.r. CBM DKS DSCF E(0/�) w.r. VBM DKS DSCF

C512:PC �0.6 �0.6 C512:BC þ 0.3 þ 0.4
Si512:SSi �0.3 �0.3 Si512:InSi þ 0.2 þ 0.2
Si512 : Sþ

Si �0.6 �0.6 Si512:OSi þ 0.9 þ 1.0
Si512:Fei �1.0 �0.7
Si512:AuSi �0.9 �0.8
Si512:Ci �1.0 �0.9 Si512:Ci þ 1.0 þ 1.0
Ge512:SGe �0.4 �0.3 Ge512:OGe þ 0.4 þ 0.4
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vertical transition. Thismay be partly an error of the simplified charge correction, but
definitely not entirely. (The error is bigger than the whole monopole correction.) Si:
Fei has a gap state which is highly localized on a Fe 3d orbital, i.e., compared to the
other defects, has the least contribution form host derived states. (In all other cases
the gap state is either effectivemass like or a combination of host dangling bonds. The
donor state of Si:Ci is a pure p orbital on C.) Therefore, a possible explanation for the
error might be that the screened hybrid can mimic the accurate non-local exchange
functional in every respect only for states characteristic to the class of hosts for which
the parameters have been chosen. For other states the dependence of the total energy
on the occupation number is still seemingly correct, but not the absolute value.

If the above analysis is correct, the defect energetics obtained by a screened hybrid
can only be fully trusted if the defect state is dominantly host-related. Still, the
position of the gap level seem to be supplied by high accuracy in every case. This has
three advantages: (i) the experimental spectrum can be predicted, (ii) comparison
of the DKS and DSCF vertical transition energies provides a convenient way of
assessing the reliability of the energetics, and (iii) the transition energies can be
calculated without the need for a charge correction.

8.6
Summary

We have considered, how the �gap error� of the standard (semi)local DFT approx-
imations influences both the spectra and relative energies of defects, and investigated
several ways of correction. We conclude that from the point of view of the spectrum,

i) the scissor operator is a reasonably accurate and very convenient method of
correcting the gap level position, if the defect is in the high electron density
region of the perfect crystal, but fails outside of that.

Table 8.7 Adiabatic DKSa) and DSCF transition energies compared to experiment. Experimental
values are from Ref. [50].

donors acceptors

E(þ /0) w.r. CBM DKS DSCF exptl. E(0/�) w.r. VBM DKS DSCF exptl.

C512:PC �0.5 �0.5 �0.6 C512:BC þ 0.3 þ 0.4 þ 0.4
Si512:SSi �0.3 �0.3 �0.3 Si512:InSi þ 0.2 þ 0.2 þ 0.2
Si512:SSi

þ �0.5 �0.5 �0.6 Si512:OSi þ 0.8 þ 0.9 þ 0.9
Si512:Fei �0.8 �0.5 �0.8
Si512:AuSi �0.8 �0.8 �0.8
Si512:Ci �0.9 �0.8 �0.9 Si512:Ci þ 0.9 þ 1.0 þ 1.0
Ge512:SGe �0.3 �0.3 �0.3 Ge512:OGe þ 0.3 þ 0.3 þ 0.3

a) The relaxation energy of the charged state (with respect to the neutral one) was added to the
vertical DKS transition.
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ii) Methods of correcting the KS levels of the host work only for a certain class of
defects even in one material.

iii) Gap level positions in semi-empirical screened hybrid calculations are just as
accurate as the gap for which they have been parameterized, independent of the
nature of the defect. The parameters are transferable within a class of materials
with similar bonding.
From the view point of calculating the relative energy of different defect

configurations (or charge states) we conclude that
iv) Different kind of gap states and VB resonances in the two configurations lead to

different errors in the band energy, and so to a substantial error in the relative
energy. The latter increases with the gap error (�gap width) and can lead to
reversal of the stability ordering. Therefore, in such cases the LDA or GGA total
energy has to be corrected for the �gap error� as well.

v) Correcting the band energy for the gap level alone is only sufficient if the
relaxation upon changing the defect state is small.

vi) The total energy supplied by semi-empirical screened hybrids seems to be largely
free of the consequences of the �gap error� for defect states with the character of
the orbitals in those materials for which the parameters have been optimized.

It appears that, in the time being, well parameterized semi-empirical
screened hybrids are the preferred method for calculating relative energies and
electronic transitions for defects. Although much less expensive than GW or
Quantum Monte Carlo calculations, their computational cost is still about an order
of magnitude higher than for LDA or GGA. Therefore, a careful check of (iv) is
recommended.
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9
LDA þ U and Hybrid Functional Calculations for Defects
in ZnO, SnO2, and TiO2

Anderson Janotti and Chris G. Van de Walle

9.1
Introduction

Defects and impurities greatly influence the optical and electrical properties of
semiconductors. Control of their concentration and their effects is essential for
enabling the utilization of a semiconductormaterial for electronic and optoelectronic
device applications [1–3]. As examples, ZnO, SnO2, andTiO2 are promisingmaterials
for light emitters, transparent contacts, and photocatalysis; nevertheless, their use in
devices has been hindered by the inability to control their electrical and optical
properties, which are strongly affected by the presence of native defects and
background impurities [4–8]. ZnOhas a direct band gap of 3.4 eVand shows excellent
luminescence and carrier-transport properties, but the lack of p-type conductivity
prevents the use of ZnO in LEDs and lasers. Better control over the n-type
conductivity would also improve its prospects as a transparent electrical contact
[4–6]. SnO2 has a band gap of 3.6 eV and has been considered as an alternative to the
transparent conducting oxide Sn-doped In2O3 (ITO) [7]. Similar to ZnO, SnO2would
greatly benefit froman improved control over doping anddefect concentrations. TiO2

has a band gap of 3.0 eVand its expanded use in photocatalysis and photoelectrolysis
depends on engineering its band gap for extending its activity to the visible spectrum,
as well as on controlling carrier transport and unwanted carrier recombination [8].
These properties are again strongly influenced by impurities andnative point defects.

Calculations based on the density functional theory (DFT) within the local density
approximation (LDA) or its semilocal extensions, such as the generalized gradient
approximation (GGA), form the standard approach for studying defects in semi-
conductors and insulators [10]. The problemwith the DFT-LDA or GGA is the severe
underestimation of band gaps [9], which impart typically large errors in the calculated
formation energies and the position of transition levels [10, 11]. Empirical correc-
tions, such as applying a scissors operator, have been proposed over the years, with
conclusions varying qualitatively from one research group to another [10, 12].
Recently, the use of LDA þ U [13] and the development of screened hybrid func-
tionals [14] have led to significant progress toward a quantitative description of
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defects in semiconductors. In particular, a systematic approach based on LDA þ U
has been proposed and applied for defects in ZnO [11]. The extra Coulomb potential
Uhas been added to improve the description of theZn semi-core d states in a justified
physical manner. As a consequence, the interaction between the Zn d states and O p
states that compose the upper valence band states, and the position of theZn 4s states
are also affected, leading to a partial correction of the band gap in ZnO [15, 16]. An
extrapolation based on LDA and LDA þ U results was then performed and corrected
transition levels and formation energies for all native point defects have been
obtained [11, 17, 18]. As a main result, it has been predicted that oxygen vacancies
are not responsible for the unintentional n-type conductivity in ZnO since it is a deep
donor. These results have been favorably compared to recent experimental measure-
ments on high quality ZnO single crystals [19, 20].

The use of LDA þ U for studying defects is limited to materials with semicore d
states such as the d-bands inZnO, SnO2, or InN [11, 21, 22]. In our opinion, the use of
LDA þ U for states that are more appropriately described as delocalized or itinerant
bands is unwarranted and may lead to spurious results. For instance, applying
LDA þ U to the Ti d states of TiO2 and relatedmaterials, or to the O p states in any of
these oxides is not physically justified, since these states clearly lead to extended states
in the band structure. The advent of screened hybrid functionals [14] and its
implementation with periodic boundary conditions has allowed overcoming this
limitation [23]. Mixing a fraction of non-local Hartree–Fock exchange with the GGA
exchange potential [24] and imposing a screening length leads to an improved
description of the electronic properties of a wide range of materials. By adjusting the
mixing parameter it is possible to accurately describe band gaps. The imposition of a
screening length is essential for describing semiconductors and metals on the same
footing [25], which is necessary for determining formation energies inwhichmetallic
phases enter as references for reservoir energies. Based on Heyd, Scuseria, and
Ernzerhof (HSE) is has been possible to describe the different charge states of the
oxygen vacancy in TiO2 [26].

In the present work, we discuss the results for native defects in ZnO and SnO2

using the LDA/LDA þ U extrapolation and the HSE hybrid functional. We address
the advantages and limitations of these two methods, and draw comparisons with
experimental data where available. We also present results for oxygen vacancies in
TiO2 based on HSE, shedding light on the differences among the wide range of
results and conclusions reported in the literature.

9.2
Methods

Formal definitions of formation energies and transition levels are given in the paper
by Janotti and Van deWalle in this volume [27] and will not be repeated here. Instead,
we focus on the uncertainties introduced by the use of DFT. The standard approach
based onDFT-LDA or GGA for calculating defects in semiconductors fails to provide
quantitative predictions of transition levels and formation energies. This failure can
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be largely attributed to the band-gap error in semiconductors and insulators. LDA
and GGA underestimate band gaps by more than 50%, and the errors are usually in
the position of both valence and conduction bands. As a consequence, calculated
transition levels that describe transitions between charge states of the defect carry
uncertainties that can be as large as the band-gap error [10, 11]. Transition levels are
defined as total energy differences between adding an electron and/or removing an
electron from defect-induced gap states. This is analogous to the definition of the
band gap as an energy difference between adding an electron to the conduction band
and removing an electron from the valence band. Thus, transition levels suffer from
the same error as band gaps in the LDA or GGA [9].

Anoften-overlookedproblem is the error in formation energies due to the band-gap
underestimation in the LDA/GGA [11]. It is often assumed that the formation energy
of a neutral defect is a ground-state property that is well described withinDFT-LDA or
GGA. However, if the defect induces single-particle states in the band gap that are
occupied with electrons, the error in the energetic position of these levels will also
affect the formation energy. As the band gap is corrected by going beyond the LDA/
GGA approximations, the defect-induced states shift with respect to the valence-band
maximum, resulting in changes in the defect formation energy. As an extreme
example, in the case of shallow acceptors, the defect-induced states are expected to
shift with the valence band and the correction in the formation energy of the acceptor
when the Fermi level is at the valence-band maximum is directly related to the
correction in the position of the valence-band maximum on an absolute energy
scale [12]. In the case of deep acceptors (or donors), the correction to the formation
energies results fromboth the shift in theoccupied single-particle states in thegap and
the correction in the valence-band maximum (or conduction-band minimum) [11].

Various approaches to correct defect formation energies have recently been
developed, including the LDA þ U, hybrid functionals, and GW [11, 26, 28, 29].
In this paper we discuss the first two. The LDA þ U has been applied to defects in
materials with semicore d states such as ZnO, SnO2, and InN [11, 21, 22]. An external
Coulombpotential is added to the semicore d electrons of themetal atom, leading to a
downshift of the d bands, which becomemore localized and narrower, and indirectly
affects both the valence-band and conduction-band edges. It affects the states at the
top of the valence band through the couplingwith theOp states. As the ionic cores are
more screened by the localization of the d states, it shifts the s states of the metal
atoms, which compose the conduction-bandminimum in thesematerials, upward in
energy. These two effects lead to an opening of the band gap [15, 16]. Note that
LDA þ U provides only a partial correction to the band gap, through the correction of
the semicore d states, since the LDA/GGAproblem associated with the discontinuity
of the exchange-correlation potential as a function of the number of electrons still
persists [9]. Since the LDA þ U improvements affect the position of the band edges,
defect states which are derived from valence- and conduction-band states are also
affected. Hence, one can perform calculations based on LDA and LDA þ U, and
inspect how defect transition levels change in response to a partial band-gap
correction. Based on this information, one can extrapolate transition levels and
correct formation energies, as described in Refs. [11, 18]. The extrapolation scheme
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has a physics basis, since the states of the host crystal form a complete basis set for
expressing the defect-related states. Therefore, by going from LDA to LDA þ U, the
defect-related single-particle states in the gap change according to their conduction-
versus valence-band character.

The advent of hybrid functionals, in particular the screened formproposed byHSE
represents a significant improvement in the predictive power of defect calculations in
semiconductors and insulators [14]. By adding a fraction of Hartree-Fock exchange
to the GGA exchange only within a fixed radius (screening length), the HSE has
been successful in describing the structure and electronic properties of many
materials [14, 23, 25]. However, there are now two adjustable parameters, namely
the fraction ofHartree–Fock exchange and the screening length. No rigorous ab initio
procedures exist to determine the choice of these parameters, although a screening
length of 10A

�
and a mixing parameter of 0.25 are frequently assumed. It is to be

expected that the screening length and the amount of Hartree–Fock exchange may
vary from material to material. A common approach has been to fix the screening
length at 10A

�
and to vary the fraction ofHartree–Fock exchange in order to reproduce

the band gap of a given material. This is acceptable in the absence of rigorous
prescriptions, but prudence dictates that the sensitivity of the results to the value of
the mixing parameter be examined. In our own work, we always ensure that the
qualititative conclusions of our studies are independent of the precise value of the
mixing parameter.

In the following we will discuss the results of LDA þ U and HSE applied to
the study of selected defects in ZnO, SnO2, TiO2. Formation energies as a
function of chemical potentials and Fermi level position are calculated as described
in Refs. [10, 11].

9.2.1
ZnO

With a direct band gap of 3.4 eV, an exciton binding energy of 60meV, and being
available as large single crystals, ZnO is a promising material for light emitting
diodes, laser diodes, and high-power transistors. Since optical transitions from the
lowest conduction band to the next available conduction-band states involve photons
with energies in the UV range, ZnO has also been considered as transparent
electrode. However, the development of ZnO for these applications has been
hindered by a lack of understanding and difficulties in controlling the electrical
conductivity [4–6]. ZnO in bulk and thin-film forms is almost always n-type, the cause
of which has been highly debated. p-Type ZnO has been reported by many authors,
but reliability and reproducibility are questionable [4–6].

The unintentional n-type conductivity in ZnO has long been attributed to the
presence of native point defects such as oxygen vacancies or zinc interstitials [4].
However, the identification of such defects in as-grown (as opposed to irradiated)
material has been elusive, and the evidence of their relation to the observed
conductivity has always been indirect, e.g., based on the variation of conductivity
with O2 partial pressure in the annealing environment. In the absence of reliable
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experiments, first-principles calculations can provide direct insight in the role played
by native point defects. The conclusion is that neitherO vacancies nor Zn interstitials
can explain the observed n-type conductivity in ZnO [11]. Recent experiments on
high-quality bulk single crystals indeed agree with the conclusions based on first-
principles calculations [19, 20].

In Figure 9.1(a) we show the formation energy versus Fermi-level position for
donor-type native point defects in ZnO, in theZn-rich limit. These results were based
on an extrapolation of LDA and LDA þ U calculations as described in Refs. [11, 18].
As a main result, it has been found that the oxygen vacancy is a deep donor with a
transition level (2þ /0) at about 1 eV below the conduction band. Therefore, VO

cannot explain the observed n-type conductivity in ZnO. The zinc interstitial is a
shallow donor, but it is unstable. With a migration barrier of only 0.6 eV [11], Zn
interstitials are mobile even below room temperature. Zinc antisites (ZnO) are also
shallow donors, stable in the 2þ charge state for Fermi-level positions near the
conduction band. The large off-site displacement of the Zn atom indicates that Zn2þ

O

is actually a complex of V0
O and Zn2þ

i . The high formation energy in n-type ZnO
indicates that Zn2þ

O is unlikely to play a role in the observed unintentional conduc-
tivity in as-grown or annealed materials, unless Zn2þ

O is created by non-equilibrium
processes such as irradiation. The transition levels related to higher charge states,
Zn3þ

O and Zn4þ
O , are not shown in Figure 9.1.

Note that LDA þ U applied to the Zn d states only results in a partial correction to
the band gap (1.5 eV forU¼ 4.7 eV vs. 0.8 eV fromLDA). Further opening of the band
gap in order to recover the experimental value of 3.4 eVcan in principle be obtained by
applying very large values ofU (Us¼ 43.5 eV) to the Zn s states [30]. Such large values

Figure 9.1 (online colour at: www.pss-b.com)
Formation energy as a function of Fermi level for
donor-type native point defects in ZnO: oxygen
vacancies (VO), zinc interstitials (Zni), and zinc
antisites (ZnO). (a) Energies according to the

LDA/LDA þ U method [11]. (b) Energies
according to the HSE approach, after Oba
et al. [28]. Both plots represent Zn-rich
conditions. The Fermi level is referenced to the
valence-band maximum.
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ofU lead to unphysical effects, e.g., an artificially increased electron effective mass. It
also explains the observed downward shift in defect transition levels of the oxygen
vacancy [30]. The vacancy-related states in the gap are composed of Zn dangling
bonds, which have s and p character. Contrary to the case inwhichU is only applied to
the Zn d states, Us therefore acts directly on the defect states themselves. If these
defect states are occupied (such as in the case of the neutral charge state of an oxygen
vacancy), the state will shift downwards, resulting in a lowering of the (2þ /0)
transition level. In our opinion it is unclear whether this effect of applyingUs reflects
the correct physics.

In Figure 9.1(b) we show the results ofHSE hybrid functional calculations for donor
defects in ZnO [28]. These HSE calculations were performed with an adjusted mixing
parameter of 37.5% in order to reproduce the experimental value of the band gap of
ZnO.We note that the positions of the transition levels with respect to the band edges
are in remarkable agreement with the results obtained with extrapolation of LDA and
LDA þ U results [Figure 9.1(a)].However, the formation energies themselves for these
donor defects are lower in theHSEapproach, although themainconclusions regarding
their relation to the unintentional n-type conductivity in ZnO are unchanged. That is,
the oxygen vacancy is a deep donor, and zinc interstitials and zinc antisites are shallow
donors but have very high formation energies under n-type conditions and are hence
unlikely to be responsible for the observed n-type conductivity.

It is interesting to note that forV2þ
O andZn2þ

i the difference in formation energies
in Figures. 9.1(a) and (b) is roughly equal to twice the valence-band offset of 1.4 eV
between LDA þ U andHSE estimated fromRef. [15, 31]. That is, we can attribute the
formation-energy difference largely to a downward shift of the valence-band max-
imum on an absolute energy scale. In the LDA/LDA þ U approach, no further
correction was assumed for the valence-band-maximum beyond the effects of U on
the Zn d states. It has now become clear that, in fact, further corrections to the
valence-band positions are necessary. Such corrections are included in the HSE [31].

It is important to note that the results for VO using LDA or GGA are qualitatively
different from those using the LDA/LDA þ U approach and the HSE. In the LDA/
GGA the (2þ /0) transition level is within 0.2 eV from the conduction-band min-
imum [11], implying that VO could be a source of conductivity in ZnO. In contrast,
according to the LDA/LDA þ U or HSE results the (2þ /0) level is �1 eV below the
conduction-bandminimum, ruling out the possibility of VO contributing electrons to
the conduction band by thermal ionization.

9.2.2
SnO2

Tin dioxide is a wide-band-gap semiconductor of high interest for transparent
electrodes [7]. It crystallizes in the rutile structure and has a band gap of 3.6 eV [32].
The ease of making it n-type, its highly dispersive conduction band (small effective
mass), and the large energy difference between the conduction-band minimum and
the next-higher conduction band at C contribute to SnO2 supporting high carrier
concentrations while still maintaining a high degree of optical transparency [7].

160j 9 LDA þU and Hybrid Functional Calculations for Defects in ZnO, SnO2, and TiO2



SnO2 can bemade n-type by adding impurities such as Sb or F, which incorporate
on Sn and O sites, respectively. In addition, it has been widely believed that oxygen
vacancies are also a source on n-type conductivity. In analogy toZnO, the evidence for
oxygen vacancies has been based on the correlation between electron concentrations
and oxygen partial pressure in annealing experiments: increasing the oxygen partial
pressure leads to lower conductivities [7]. However, the attribution of conductivity to
oxygen vacancies is not supported by recent first-principles calculations [21].

In Figure 9.2 we show the calculated formation energies of donor native point
defects in SnO2. These results were obtained from a combination of LDA and
LDA þ U calculations as described in Ref. [21]. Similarly to ZnO, the oxygen vacancy
is a deep donor, and the Sn interstitial is unstable with very high formation energy if
the Fermi level is positioned near the conduction-band minimum. The Sn antisite
has even higher formation energy and is also an unlikely source of conductivity in
SnO2. Therefore, the unintentional n-type conductivity is probably caused by the
presence of impurities. For example, hydrogen in either the interstitial form or
substituting for oxygen has been predicted to act as a shallow donor in SnO2 [21, 33].

9.2.3
TiO2

Titania ismost stable in the rutile crystal structure, with a band gap of 3.1 eV [32]. The
upper part of the valence band is composed of O 2p states, and the lower part of the

Figure 9.2 (online colour at: www.pss-b.com)
Formation energy as a function of Fermi level for
donor-type native defects in SnO2 obtained by
the LDA/LDA þ U approach [21]. For Fermi-

level positions near the conduction band VO is
stable in the neutral charge state whereas Sni
and SnO are stable in the 4þ charge state.
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conduction band of Ti 3d states [26]. TiO2 can be made n-type by incorporation of
shallow donor impurities (e.g., Nb, F, and H), and by annealing in reducing
environments [8]. Because its conductivity varies with O2 partial pressure, it is often
argued that oxygen vacancies and/or titanium interstitials are sources of conductivity
in TiO2 [8].

In Figure 9.3 we show the calculated formation energies for oxygen vacancies in
TiO2 according to theHSEhybrid functional [26]. These results were corrected for the
effects of using a finite-size supercell by performing GGA calculations for V2þ

O and
V þ

O using supercells of 72, 216, and 576 atoms and extrapolating to the dilute limit.
We conclude that oxygen vacancies are shallow donors, with V þ

O and V0
O higher in

energy than V2þ
O for any value of the Fermi level within the band gap [26].

The formation energy of V2þ
O in the extreme Ti-rich limit is relatively low even

when the Fermi level is positioned near the conduction-band-minimum. This might
lead us to conclude that oxygen vacancies are the cause of conductivity in vacuum-
annealed TiO2. However, care should be taken, since the extreme Ti-rich limit is
probably not experimentally accessible since it corresponds to very low oxygen partial
pressures. We also need to keep in mind that impurities that act as shallow donors,
such as hydrogen, also likely contribute to the observed conductivity [34].

The use of the HSE hybrid functional is essential for describing the neutral and
positive charge states of VO in TiO2. In the LDA and GGA the single-particle state
induced byV0

O andV þ
O is above the conduction-bandminimum, so that these charge

states cannot be stabilized [26, 35, 36], prohibiting drawing reliable conclusions about
the relative energetic stability of the various charge states. In HSE, the neutral and

Figure 9.3 (online colour at: www.pss-b.com) Formation energy as a function of Fermi level for
the oxygen vacancy (VO) in TiO2 in the Ti-rich limit using the HSE hybrid functional. V2þ

O is lower in
energy than V þ

O and V0
O even for the Fermi level positioned at the conduction-band minimum.
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positive charge states can be explicitly calculated and their energy comparedwith that
of the 2þ charge state [26].

9.3
Summary

We have discussed the results of calculations that go beyond the LDA and GGA
approximations to describe defects in oxide semiconductors. The LDA/GGA defi-
ciency in describing band gaps leads to large errors in transition levels and formation
energies, and corrections or methods that overcome the band gap problems are
necessary for quantitative predictions. We argue that an extrapolation of LDA and
LDA þ U calculations for systemswith semicore d states (such asZnOandSnO2) is a
reliable method for predicting transition levels, while formation energies depend on
how well LDA þ U describes the absolute position of the valence-band maximum.
The HSE hybrid functional approach is more general but also much more compu-
tationally demanding. It has been shown to be promising for describing the structural
and electronic properties of defects in semiconductors and insulators. HSE can
describe all possible charge states of the oxygen vacancy in TiO2, resulting in a
physical picture that is much closer to what is expected experimentally than that
provided by the LDA and GGA.

Acknowledgements

We acknowledge fruitful collaborations and discussions with J. Lyons, J. Varley, A. K.
Singh, P. Rinke, N. Umezawa, and G. Kresse. This work was supported by the NSF
MRSECProgramunder AwardNo.DMR05-20415, by theUCSBSolid State Lighting
and Energy Center, and by the MURI program of the Army Research Office under
Grant No. W911-NF-09-1-0398. It made use of the CNSI Computing Facility under
NSF grant No. CHE-0321368 and Teragrid.

References

1 Lannoo, M. and Bourgoin, J. (1981) Point
Defects in Semiconductors I: Theoretical
Aspects (Springer-Verlag, Berlin 1983); Point
Defects in Semiconductors II: Experimental
Aspects (Springer-Verlag, Berlin 1983).

2 Pandelides, S.T. (ed.) (1992) Deep Centers
in Semiconductors: A State-of-the-Art
Approach, second ed. (Gordon and Breach
Science, Yverdon.

3 Stavola, M. (ed.) (1999) Identification of
Defects in Semiconductors, Semiconductors

and Semimetals, vol. 51A, 51B (Academic,
San Diego.

4 Look,D.C. (2001)Mater.Sci.Eng.B,80, 383.
5 Janotti, A. and C.G. Van de Walle (2009)

Rep. Prog. Phys., 72, 126501.
6 McCluskey, M.D. and Jokela, S.J. (2009) J.

Appl. Phys., 106, 071101.
7 Dawar, A.L., Jain, A.K., Jagadish, C., and

Hartnagel, H.L. 1995) Semiconducting
Transparent Thin Films (Institute of
Physics, London.

References j163



8 Linsebigler, A.L., Lu, G., and Yates, J.T., Jr.
(1995) Chem. Rev., 95, 735.

9 Perdew, J.P. and Levy, M. (1983) Phys. Rev.
Lett., 51, 1884.

10 C.G. Van de Walle and Neugebauer, J.
(2004) J. Appl. Phys., 95, 3851.

11 Janotti, A. and C.G. Van de Walle (2007)
Phys. Rev. B, 76, 165202.

12 Zhang, S.B., Wei, S.H., and Zunger, A.
(2001) Phys. Rev. B, 63, 075205.

13 Anisimov, V.I., Aryasetiawan, F., and
Liechtenstein, A.I. (1997) J. Phys.:
Condens. Matter, 9, 767.

14 Heyd, J., Scuseria,G.E., andErnzerhof,M.
(2003) J. Chem. Phys., 118, 8207; J. Chem.
Phys., 124, 219906 (2006).

15 Janotti, A., Segev, D., and Van de Walle,
C.G. (2006) Phys. Rev. B, 74, 045202.

16 Janotti, A. and Van de Walle, C.G. (2007)
Phys. Rev. B, 75, 121201.

17 Janotti, A. and Van de Walle, C.G. (2005)
Appl. Phys. Lett., 87, 122102.

18 Janotti, A. and Van deWalle, C.G. (2006) J.
Cryst. Growth, 287, 58.

19 Vlasenko, L.S. and Watkins, G.D. (2005)
Phys. Rev. B, 71, 125210.

20 Wang, X.J., Vlasenko, L.S., Pearton, S.J.,
Chen, W.M., and Buyanova, I.A. (2009) J.
Phys. D, Appl. Phys., 42, 175411.

21 Singh, A.K., Janotti, A., Scheffler, M., and
Van de Walle, C.G. (2008) Phys. Rev. Lett.,
101, 055502.

22 Janotti, A. and Van de Walle, C.G. (2008)
Appl. Phys. Lett., 92, 032104.

23 Paier, J., Marsman, M., Hummer, K.,
Kresse, G., Gerber, I.C., and �Angy�an, J.G.,
(2006) J. Chem. Phys., 124, 154709.

24 Perdew, J.P., Burke, K., and Ernzerhof, M.
(1996) Phys. Rev. Lett., 77, 3865.

25 Marsman, M., Paier, J., Stroppa, A., and
Kresse, G. (2008) J. Phys.: Condens. Matter,
20, 064201.

26 Janotti, A., Varley, J.B., Rinke, P.,
Umezawa, N., Kresse, G., and Van de
Walle, C.G. (2010) Phys. Rev. B, 81,
085212.

27 Van de Walle C.G. , and Janotti, A. (2010)
Phys. Status Solidi B, published online, doi:
10.1002/pssb.201046290

28 Oba, F., Togo, A., Tanaka, I., Paier, J.,
and Kresse, G. (2008) Phys. Rev. B, 77,
245202.

29 Rinke, P., Janotti, A., Scheffler, M., and
Van de Walle C.G. (2009) Phys. Rev. Lett.,
102, 026402.

30 Paudel, T.R., andW.R.L. Lambrecht (2008)
Phys. Rev. B, 77, 205202.

31 Lyons, J.L., Janotti, A., and Van de Walle,
C.G. (2009) Phys. Rev. B, 80, 205113.

32 Dean, J.A. (ed.) 1992) Lange�sHandbook of
Chemistry, fourteenth ed. (McGraw-Hill,
Inc. New York.

33 Varley, J.B., Janotti, A., Singh, A.K., and
Van deWalle, C.G. (2009) Phys. Rev. B, 79,
245206.

34 DeFord, J.W. and Johnson, O.W. (1983) J.
Appl. Phys., 54, 889.

35 Sullivan, J.M. and Erwin, E.C. (2003) Phys.
Rev. B, 67, 144415.

36 S. Na-Phattalung, Smith, M.F., Kim, K.,
Du, M.H., Wei, S.H., Zhang, S.B., and
Limpijumnong, S. (2006) Phys. Rev. B, 73,
125205.

164j 9 LDA þU and Hybrid Functional Calculations for Defects in ZnO, SnO2, and TiO2



10
Critical Evaluation of the LDA þ U Approach for Band Gap
Corrections in Point Defect Calculations: The Oxygen Vacancy
in ZnO Case Study
Adisak Boonchun and Walter R. L. Lambrecht

10.1
Introduction

The local density approximation (LDA) is well known to underestimate band gaps
in semiconductors. In a recent paper, Paudel and Lambrecht [1] (PL), discussed
this problem for the oxygen vacancy VO in ZnO. The problem appears to be rather
dramatic in this case as different authors do not even agree on whether the
relevant defect level, the 2þ /0 transition level lies in the upper or the lower half of
the band gap. Discrepancies also exist between different authors on the magni-
tude of the energy of formation of the defect and on the positions of the one-
electron levels. At the time that paper was written, previous work had addressed
the gap corrections mostly in a posteriori fashion [2–7]. The point of the PL paper
was to use an adjusted Hamiltonian and total energy functional that gave the
correct band gap for the host and then apply it to the defect transition levels.
In particular, they used the LDA þ U approach with U Coulomb interactions not
only for the d states of Zn but also the s orbitals. The idea behind this unorthodox
application of LDA þ U is explained below. Since that work and even before, the
problem has been investigated by several others by a variety of approaches, hybrid
functionals [8–10], the GWmethod [9], and screened exchange (Chapter 5, [11, 12]).
Here, we critically re-examine the results of PL and explore the LDA þ U model
further with additionalUi parameters, which overcome some of the shortcomings of
the previous Ud þUs model. We compare the results from various groups for this
benchmark case and look for what consensus can be reached and what remain open
questions.

We first briefly remind the reader of the nature of the LDA þ Umethod. Then we
discuss some side issues, such as the potential alignment and image charge
corrections. We then present the results of a new LDA þ U potential and end with
an overview of the various results on the oxygen vacancy in ZnO.
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10.2
LDA þ U Basics

The LDA þ U approach was originally introduced to deal with electrons in localized
orbitals for which the standard density functional approach [13, 14] in the local (spin)
density approximation (L(S)DA) is not sufficient. The main emphasis was on open-
shell systems such as transition metal compounds and rare-earth metals and
compounds. The original versions were strictly LDA þ U rather than LSDA þ U
with all the magnetic effects arising from the Hubbard like on-site Coulomb terms
that were added to the LDA Hamiltonian [15, 16]. A key aspect of LDA þ U is that
since LDA already contains some exchange and correlation in an orbital-independent
way, a double counting correction is required when explicitly adding the Coulomb
and exchange effects for these localized orbitals. While the first version [15] used an
aroundmean-field approach in which the LDA is supposed to give the right answer for
equal occupation of all the d orbitals, the more often used version is the so-called
�fully localized limit,� (FLL). In this initial discussion, we refer to the orbitals for
which U effects are added as the d orbitals although we later will generalize this. In
the FLLwe assume that the LDA gives the correct total energy for the atomic limit of
integer occupations of the specific di orbitals. They are either fully occupied or empty.
What the LDA þ U framework provides in that case, is how starting from such an
atomic limit the interaction with the other bands, modifies these occupation
numbers and may lead to orbital ordering. A key aspect of the LDA þ U model
is that the total energy is treated as a functional of the electron density as well as
separately as a function of the occupation numbers of d orbitals, E½nðrÞ; ni�. In its
simplest form [16] it is given by

ELDAþU ¼ ELDA �UNðN � 1Þ=2þU
X

i;j

ninj: ð10:1Þ

The potential for the i-th orbitalVi ¼ dE=dniðrÞwithniðrÞ ¼ jyiðrÞj2 then becomes

Vi ¼ VLDA þU
1
2
� ni

� �
: ð10:2Þ

Thus the one-electron levels

ei ¼ qE/qni ¼ eLDAi þU
1
2
�ni

� �
ð10:3Þ

are shifted from the LDA even though the LDA þ U total energy in the limit of
integer ni remains in principle the same as the LDA total energy.

The version we presently use starts from LSDA and besidesU, contains in general
non-spherical Coulomb terms written in terms of the Slater Fk integrals and
Clebsch–Gordan coefficients, specific to which spherical harmonic di orbitals are
occupied. Also since those orbitals depend on the coordinate system, the method is
formulated in a rotationally invariant form in terms of densitymatrices nij. This form
of the LSDA þ Umethod is described by Liechtenstein et al. [17]. It comes down to a
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Hartree–Fock like treatment of the localized orbitalswith a parametrized treatment of
their Coulomb and exchange interactions, in particular using a screened Coulomb
interaction U. Hence, one can expect some similarities between the results of this
approach and hybrid functionals.

Our calculations are all carried out within a full-potential linearized muffin–tin
orbital (FP-LMTO)method [18, 19]. Thismethod uses smoothedHankel functions as
envelope functions, which are augmented inside muffin–tin spheres (in terms of w
and w

� ¼ dw=dE functions, with w solutions of the radial Schr€odinger equation), as
usual in linearmethods.We use a double-k basis set with optimized smoothing radii
and radial decay constants k including spdf functions in the basis set for the first k
and sp for the second one. In addition, we treat Zn-3d orbitals as valence bands and
add 4d-local orbitals for a better description of the conduction bands. For the
augmentation we use an angular momentum cut-off of lmax ¼ 4. We use a 127 atom
supercell for which C-point sampling of the Brillouin zone is adequate. While the
basis set corresponds to a muffin–tin potential, it should be emphasized that the full
non-spherical potential inside the spheres and non-constant potential in the inter-
stitial region is treated. Forces are calculated analytically and allow us to optimize the
structure.

For the present purpose, dealing with ZnO, the semicore 3d states are completely
filled, so the LDA þ U treatment simply results in a downward shift of those orbitals
byUd=2. At the same time, we note that ifUs is applied to the s orbitals of Zn, which
primarily constitute the conduction bandminimum and are thus almost empty, they
will shift up approximately byUs=2. So, in a strictly empirical manner, we can adjust
Ud so as to shift the d-levels down to where they are found by photoemission andUs

so as to open the correct gap at C.
It should be kept in mind that the justification for adding Us is different than for

the d orbitals. The physics of the d-states, is indeed that they are strongly localized and
have strongCoulomb interactions. This in part opens the gap because of the resulting
reduced p–d hybridization with the O-2p orbitals constituting the valence band
maximum (VBM).On the other hand, the remainder of the gap is not due to localized
atomic effects. Quite to the contrary, analysis of the GW approximation (see below)
shows that the long-range or at least medium range 1=r behavior of the (dynamically
screened) exchange is crucial [20]. The same could also be concluded from hybrid
functionals (chapter 6, [21]). Nonetheless, in aGW approach, the difference between
quasiparticle and Kohn–Sham eigenvalues is the expectation value of
hycjSGW

xc � vLDAxc jyci with SGW
xc the self-energy operator and yc the conduction band

minimumwave function. To the extent that the conduction band wave functionyc is
dominated by the Zn-s orbitals, it amounts to a shift of the latter in the Hamiltonian.
Thus in a strictly pragmatic sense, the Us shift mimics this effect. Now, in practice,
one should realize that a rather large and seemingly unphysical Us is required, both
because the occupation of the Zn-s orbitals is not zero and because the conduction
band minimum is not purely Zn-s like. Finally, we note that the two shifts are not
independent of each other. A shift in Zn-s through the self-consistently leads to a
more ionic bond and this in turn affects the d-states, but ultimately, the PL model
leads to a band gap and a d-band position that agree with experiment.
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Wealsonote thatwhile the original idea behindLDA þ U is that the addedU terms
should not destroy the already good agreement of LDA for total energies but merely
adjust the one-electron levels, this does not imply that the LDA part of the energy
would not change. The LDA term in the energy is indirectly affected because
changing the Hamiltonian modifies the wave functions, charge density, etc. through
the self-consistency. In fact, we find that we cannot directly use the LDA þ U total
energy functional for defect formation energies when applied to non-localized
orbitals. In particular, we cannot apply the same LDA þ U total energy functional
to the free atoms or the reference systems that enter in defining the formation
energies. In fact, this would not make sense because U is supposed to contain
system specific screening and is not transferable from one system to another.
While the Ud may be more or less transferable between different solid state
environments, Us in PL is designed to adjust the band gap specifically of ZnO and
thus of course has nothing to do with the position of the Zn-s levels in for example
metallic Zn. PL thus calculated the energy formation of the neutral charge state in
LDA and only used the full LDA þ U functional for the difference between different
charge states. In the present work with even more U parameters, we decided to use
only the LDA-part of the functional, without the added Hubbard-U and double
counting terms. The onlyway inwhich LDA þ U then enters is through themodified
one-electron potential. Thismay seemstrange andmay seem tobreak the consistency
of our one-electron levels and the total energy functional, e.g., by invalidating Janak�s
theorem [22]. However, it should be kept in mind that the Hubbard-U and
double counting terms of the FLL LDA þ U are primarily designed to deal with
the open shell orbital ordering within the set of localized orbitals. For closed shell
systems, these terms should vanish.

To complete our discussion of LDA þ U we note that the actual operator entering
the calculations is a non-local projection potential jwiiVihwij, in which wiðrÞ is a local
partial wave in the muffin–tin sphere at the LMTO linearization energy en. As such it
depends on the sphere radius. This is not important for well-localizedwave functions
like d states, but when applied to s orbitals, as we will do here, it is sphere radius
dependent.

10.3
LDA þ U Band Structures Compared to GW

The band structures of ZnO obtained with the LDA, LDA þ Ud, and LDA þ Ud þ
Us potential were shown inPL. To further scrutinize them,wehere compare the band
structure of that model with a GW calculation [23, 24] in Figure 10.1.

More precisely, because the latter usually overestimates the band gap slightly we
compare with a 20% LDA, 80% quasiparticle self-consistent GW (QSGW) band
structure, which almost exactly reproduces the band gap of 3.4 eV at room temper-
ature. Strictly, speaking we should use a zero temperature gap corrected for
spin–orbit splitting of the VBM, zero-point motion corrections, and exciton
effects [23] of 3.6 eV but for easy comparison to experiment, we here prefer a gap
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of 3.4 eV. In the QSGW approach, the independent particle Kohn–Sham equations
from which the GW self-energy, schematically S ¼ iGW, with G the one-electron
Green�s function andW the screened Coulomb interaction, is calculated, contains a
non-local exchange correlation potential

VQSGW
xc ¼ 1

2

X

nm

jym

�
RfSmnðemÞþSmnðenÞg

�
ynj; ð10:4Þ

adjusted self-consistently in terms of the self-energy S. Here, R means taking the
Hermitean part, and yn are the eigenstates of the Hamiltonian with this potential.
In other words, it forms the best starting point for a single-shot perturbation theory
calculation of S and leads to Kohn–Sham equations that equal the quasiparticle
excitation energies.

In retrospect, one might raise three criticisms of the PL LDA þ Ud þ Us model.
First, the band gap shift induced by the Us occurs mainly at the C-point only. Thus,
instead of a rigid shift, the gaps at K,M, and L are not raised asmuch and this leads to
an overall wrong curvature of the lowest conduction band, with an overestimated
effective mass (EM). In particular, since the VO defect levels are deep, one might
expect that their wave function contains contributions from several host band
conduction band states at different k-points when a decomposition of the defect
state in host states is attempted. One might expect that thus the defect level is not
sufficiently raised along with the gap correction.

Second, Alkauskas et al. [25, 26] recentlymade the observation that localized defect
levels with respect to the average electrostatic potential are much less sensitive to
computational model than with respect to the band-edges. Thus, to place the defect
levels correctly with respect to the band-edges requires additional care in calculating
the proper band edges relative to the electrostatic potential. It thus appears important
that not only the band gap but also the individual band-edges agree betweenGW and
the LDA þ U model. Thus, unlike the usual practice of plotting the bands relative
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Figure 10.1 (online color at: www.pss-b.com) Band structure of ZnO in �0.8 QSGW�
approximation (red dashed line) compared to the PL LDA þ Ud þ Us model (blue solid line).

10.3 LDA þ U Band Structures Compared to GW j169



to the VBM, we here plot the bands relative to the average electrostatic potential as
zero. We can see that the PL LDA þ Ud þ Us significantly overestimates both the
VBM and CBM.

Third, onemight worry whether the LDA þ Ud þ Us model provides correct total
energies. This point for example was raised by Lany and Zunger [27] who found that
LDA þ U potentials includingUs may lead to too ionic bonding which leads to the h-
MgO structure becoming more stable. In that structure, c=a is notably reduced and
u � 0:5 and the system becomes effectively five-fold instead of four-fold coordinat-
ed [28]. The latter is closely related to the rocksalt structure. Thus, we here also
examine the rocksalt to wurtzite energy difference. From the results in Table 10.1 we
can see that indeed the PL model leads to an increase in lattice constant and a
reduction of c=a compared to the LDA results. However, the deviation from the
experimental wurtzite structure is only minor. Wurtzite stays lower in energy than
rocksalt although their energy difference is reduced significantly.

10.4
Improved LDA þ U Model

In order to remedy the first two of these problems, we constructed a new LDA þ U
potential, including additional parameters U on Zn-p, O-s, and O-p. Our goal is to
obtain as close agreement as possible with the aboveGW band structure and then to
explore how these potentials behave for the defect states. The role of the UOp, UOs

which aremostly occupied is to shift the corresponding upper and lower VBMdown.
The UZnp further allows us to adjust the lowest conduction band at K, M and L. The
old and new LDA þ Umodel parameters are summarized in Table 10.2.Wenote that
compared to the previous model UZns is significantly reduced. We also show the
actual shift potentials Vi [according to Eq. (10.2)] that result from them for bulk ZnO
with the self-consistently determined density matrices as well as the average
occupation numbers (averaged over the different p and d orbitals). These correspond
to more reasonable shift potentials than theUi values, perhaps with the exception of
Zn-s in the PL model. For example, we see that because O-p orbitals have an
occupation close to 0.5 one needs a large U to achieve a reasonable shift. One still
needs to keep in mind that all actual bands have mixed atomic orbital character by

Table 10.1 Structural and total energy properties of wurtzite in various LDA þ Umodels, in-plane
lattice constant a (A

�
), c=a ratio and internal parameter u, energy difference between rocksalt and

wurtzite structure in eV/pair. PL [1], BL (this work) defined in Table 10.2.

LDA PL BL expt.

a (A
�
) 3.20 3.31 3.30 3.25

c=a 1.603 1.598 1.57 1.6018
u 0.3811 0.3811 0.3872 0.382
DERS�WZ 0.223 0.062 0.026 > 0
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forming bonding and antibonding states and that the above occupation numbers are
sphere size dependent. Note also that the shifts may vary near the defects when their
occupation numbers change. This is in fact what distinguishes LDA þ U from non-
local external potentials.

The band structure of our new LDA þ U model compared to GW is shown in
Figure 10.2. The newmodel can be seen to adjust the conduction bands not only at C
but also its EM at C and dispersion all the way to K and M. The position of the VBM
relative to the average electrostatic potential is also improved. The model still
somewhat underestimates the band width of the O-2p like valence bands and
overestimates the valence band EM. Higher conduction bands at C are still slightly
off and the low lying O-2s like valence band has too low binding energy.

Unfortunately, the newermodel gives slightlyworsewurtzite structural properties.
Still the lattice constant is only 1.5% overestimated, c=a only 2% underestimated and
u stays far from 0.5. The total energy difference between rocksalt and wurtzite
obtained in both LDA þ Umodels is significantly lower than in LDA.Our LDA result
is close to the results by Schleife et al. [29] of 0.29 eV. At least, we can be reassured that
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Figure 10.2 (online color at: www.pss-b.com) Band structure of ZnO in �0.8 QSGW�
approximation (red dashed line) compared to the present LDA þ U model (blue solid line).

Table 10.2 ParametersUi of the LDA þ Umodels, resulting self-consistent occupation numbers ni
and shift potential Vi in eV. PL [1], BL (present work).

i Ui ni Vi

PL BL PL BL PL BL

Znd 3.4 4.9 0.947 0.960 �1.56 �2.18
Zns 43.5 13.60 0.039 0.097 19.75 5.48
Znp 0 27.21 0.023 12.98
Os 0 21.77 0.795 �6.47
Op 0 39.45 0.642 �5.65
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thewurtzite structure remains the lower energy structure andwe are nowhere near h-
MgO-like c=a and u.

We note that this adjustment of the LDA þ U potentials is by no means unique.
One might also contemplate adding empty sphere shift potentials to adjust the
potential in the interstitial region. This might actually more readily mimic a shift of
the delocalized conduction band states than Zn-p but has not yet been attempted
here.

10.5
Finite Size Corrections

Before proceeding to the results of the LDA þ U models for the defect, we need to
address two side issues which influence the results. The first of those is the finite size
correction. PL examined the size convergence in different size supercells but
concluded that no clear 1=L behavior was seen. Furthermore, the expected behavior
of the image charge correction [30, 31] q2=Le to be proportional to q2 was not
observed. They therefore did not include the image charge corrections, but instead
used scaling versus 1=V which led to a rather small extrapolation from the largest
supercells used (192 atoms). In retrospect, this failure to obtain the 1=L behavior is
probably in part due to the use of relaxed structures, mixing up the 1=V elastic effects
as well as possibly problems in sufficiently accurately determining the alignment
potential and mostly the limited range of supercell sizes investigated whichmakes it
difficult distinguishing between 1=L and 1=L3 behavior. Such effects can dominate
the result especially for relatively small cells. Only for cells larger than say 200 atoms,
the purely electrostatic terms q2=L becomedominant. This can for instance be seen in
Figure 7 of Lany and Zunger [27].

We now believe that even for relatively delocalized defect electron densities, the
image point charge correction is important because the latter contains always point
like contributions from the ionic charge change introduced by the defect. When we
add the image point charge correction, or rather 2/3 of it as recommended by Lany
and Zunger [27] to mimic the additional quadrupole term, to the results of PL for the
largest cell, wefind that the eð2þ =0Þ transition level shifts becomes 0.64 eVabove the
VBM the eðþ =0Þ level 0.72 eV, and the eð2þ =þÞ level 0.57 eV. The defect formation
energies as function of Fermi level are shown in Figure 10.3.

The quadrupole background interaction term / Qq=eL3 identified by Makov and
Payne [31] should strictly speaking not include the screening charge density. It is the
latter that leads to an effective Q / L2 behavior which turns the 1=L3 into 1=L
behavior and allows one to combine it with the point charge term [27]. But since the
screening charge is due at least in part to the background density itself, it is not clear
one should include this correction. Without the factor 2/3, the levels would shift
down even further to 0.53, 0.66, and 0.40 eV, respectively.

The defect then becomes a positiveUeff defect rather than negativeU type.Wenote
that PL already foundmuch less negativeUeff behavior in otherwords a smaller jUeff j
than the LDAcalculations or LDA þ Ud only. Here,Ueff should not be confused with

172j 10 Critical Evaluation of the LDA þ U Approach for Band Gap Corrections in Point



the LDA þ U parameters but is defined as Ueff ¼ eðþ =0Þ � eð2þ =þÞ This result
in fact is consistent with Lany and Zunger�s slightly different LDA þ Ud þ Us

model [27]. To be sure, these authors did not propose this to be their favorite approach
for dealing with the gap correction. They used it for illustrative purposes and
compared a Us-only, Us þUd, and Ud-only model. In their Ud þUs model they
obtain 2þ =0 at 0.61 and þ =0 at 0.79 eV and 2þ =þ at 0.43 eV, very close to ours
when including the factor 2/3 in the image point charge correction.

10.6
The Alignment Issue

Another important issue is how to align the VBM of the perfect crystal with that of
the defect cell. The defect formation Gibbs free energy (at zero temperature) is
defined as

DGf ðD; qÞ ¼ EðD; qÞ�EðXÞ�
X

i

miDni þ qme; ð10:5Þ

where EðD; qÞ is the total energy of the supercell with the defect in the charge state q,
compensated by a neutralizing homogeneous background charge density,EðXÞ is the
total energy of the perfect crystal calculated in the same size supercell to avoid k-point
convergence issues, mi is the chemical potential of the elements whose occupation
changes by the defect, and me is the chemical potential of the electrons. The latter
represents the energy of the electrons in the perfect crystal reservoir me ¼ evbm þ eF
with the Fermi level eF measured relative to the VBMand evbm determined relative to
the average electrostatic potential. To determine evbm we use a local reference
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potential Vloc mark on an atom far away from the defect where the potential
presumably becomes bulk like, and add ebulkvbm � Vbulk

loc where the latter is calculated
in the perfect crystal primitive cell.

To do this accurately, one needs to average over a few atoms far away from the
defect and make sure that the cell is large enough that the local potential marker
indeed becomes constant over the region far away from the defect. In PL this
alignment potential was determined for the neutral charge state only and then used
for the other charge states. This avoids possible long-range contributions of the defect
potential for the charged states.

In Figure 10.4 we plot the potential at the muffin–tin radii as function of distance
from the oxygen vacancy for all three charge states. We see that sufficiently far from
the defect, this potential becomes indeed constant apart from some small oscillations
and is nearly the same for the three charge states.

10.7
Results for New LDA þ U

Here, we used supercells of 128 atoms in the wurzite structure. We summarize
the results of our new LDA þ U potentials compared with those of PL for the
same size cell in Table 10.3. The image point charge correction added was taken
as ð9=10Þq2=eR with R the radius of a sphere with the same volume as the
supercell. This image charge correction amounts to 0.18 eV for q ¼ 1 using a
dielectric constant e ¼ 10 and a four times larger value for q ¼ 2. This does not
include the correction factor of 2/3 for the quadrupole term for the reasons
explained earlier. Note that for the 1þ charge state, the one-electron levels are
spin-polarized. The lower one is occupied, the higher one of minority spin is
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empty. The results for the energies of formation as function of Fermi level
position are shown in Figure 10.5 In Table 10.3 the second row uses the same
LDA þ Ud þ Us model but instead of using the full LDA þ U functional as PL
did, we use our present approach of only using the LDA part of the total energy,
using effectively only the Vi shifts. Image point charge corrections are the same as
before. Note that this leads to about the same 2þ =0 level but changes the Ueff

value to become negative.

10.8
Comparison with Other Results

In Table 10.3 we have added selected information from the literature, focusing on
the latest results. Unfortunately, not all authors give values for all quantities shown
here. Some are estimated from figures to the best of our ability or energies of
formation were converted from Zn-rich to O-rich using an energy of formation of
ZnO of �3:1 eV.

We can see that in the present LDA þ U model, the one-electron level in the
neutral charge state lies somewhat higher above the VBM than in PL. The one
electron levels in the 1þ and 2þ charge states also lie significantly higher in the gap
but still below theCBMeven for the 2þ charge state. Clearly, this is as expected by the
fact that in our new LDA þ Umodel the VBMdrops down relative to the electrostatic
potential and the gap is opened not only at C but throughout the lowest conduction
band at other k-points.

Lany and Zunger [9] recently pointed out that one-electron levels require a
finite-size correction for the effects of image point charges and the background
charge density. We estimate this effect as follows. If we approximate the cells by
spheres, neighboring cells do not give any contribution and the correction
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Figure 10.5 (online color at: www.pss-b.com)Energies of formationofVO in different charge states
as function of Fermi level in the oxygen rich limit calculated in present LDA þ U model.
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amounts to the potential due the constant background charge density. This is
readily calculated to be

wðrÞ�wðRÞ ¼ q
2e

1
R
� r2

R3

� �
: ð10:6Þ

The question is now how localized the defect wavefunction is. If it is a d-function at
the origin, the upward shift is q=ð2eRÞ. If it is spread uniformly over thewhole cell, we
need to average the above potential over the sphere, which gives ð1=5Þq=ðeRÞ. For a
128 atom cell ZnO cell, these amount to 0.1 and 0.04 eV providing upper and lower
bounds. Averaging, the correction is estimated to be a downward shift of order
0.07 eV for q ¼ 1 and proportional to q. Our results in Table 10.3 do not include this
negligible correction.

The defect formation energies here correspond to the oxygen rich limit. Our value
of about 3.24 eV for the neutral charge state is somewhat lower than Paudel�s result
and Lany and Zunger [3], Oba et al. [8], and Clark et al. [12] but significantly smaller
than that of Janotti andVan deWalle [2]. In theZn-rich limit, the energies are lowered
by 3.1 eV and theDGf ð0Þ becomes less than 1 eV, supporting the idea that this could
be an abundant defect. It will, however, not be a large source of free electrons because
it is a deep donor.

The transition levels move to significantly higher values, in fact even higher
than Janotti and Van de Walle�s and we find back a relatively strongly negative
Ueff ¼ �1:0 eV. This ismainly a result of the different relaxations in the 2þ (outward
by 15.6%), 1þ (inward by 0.3%) and neutral (inward by 4.4%) charge states.

We note that the results by Janotti and Van de Walle [2] using an extrapolated
Ud correction as well as the Lany and Zunger results from 2005 [3] without
extrapolation are both based on LDA results with a posteriori corrections only. The
VBM was simply shifted down by the LDA þ Ud shift in pure ZnO. In that case,
the position of the 1þ one-electron level is above the CBM and this leads to
erroneous occupation of the CBM instead of the defect level. In that sense the
position of the 1þ level is not well defined and that makes the Ueff untrust-
worthy. While most of the discrepancy between Janotti and Van de Walle [2] and
Lany and Zunger [3] arises from their choice of extrapolating or not extrapolating
the shifts induced by LDA þ Ud, part also arises from the fact that Janotti and Van
de Walle did not apply the image charge correction. GGA and LDA also slightly
differ in lattice constants and this also contributes to the confusion [6, 7]. Actual
GGA þ Ud or LDA þ Ud calculations applied to the defect place the transition
levels closer to the VBM than simply adding a LDAþUd induced downward shift
of the VBM a posteriori to the LDA results. For example, Lany and Zunger [9] show
that GGA þ U gives eð2þ =0Þ ¼ 0:98 eV, while their 2005 result [3] just shifting
the VBM down a posteriori gave 1.60 eV. Erhart et al. [6, 7] used a different way of
extrapolating to infinite cells and used GGA þ U instead of LDA þ U and
reported the results either with or without the Janotti–Van de Walle type of
extrapolation [6, 7] leading to somewhat intermediate results. The work by Zhang
et al. [4] used smaller cells and other ways to estimate the gap correction effects.
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Recently, several hybrid functional calculations have been carried out. The oldest
one is the B3LYP calculation of Patterson [10]. It finds transition levels even closer to
the VBM but also finds defect levels in the gap for all charge states, including the 2þ
charge state. Oba et al. [8] used theHSE [32] hybrid functional but with the fraction of
Hartree–Fock adjusted so as to get the correct band gap. That gives a eð2þ =0Þ at
2.2 eV similar to Janotti and Van de Walle [2]. Unfortunately, Oba et al. [8] do not
mention the þ /0 or Ueff values nor do they show the band structure in the 1þ
charge state. Their band structure in the neutral charge state finds a defect level in the
usual place, about 1 eV above the VBM, while the 2þ charge state shows no level in
the gap.

A similar high energy location of the eð2þ =0Þ is obtained using screened
exchange by Clark et al. [12] at 2.2 eV. Again, they do not mention the position of
the single plus charge state levels. Lany and Zunger [9, 12] recently also applied the
HSE functional but with the standard Hartree–Fock mixing fraction of 1/4 and that
calculation places the defect level at 1.67 eV. They also used HSE and GGA þ U as
starting point for a GW calculation. They use an approach originally introduced by
Rinke et al. [33] in which the vertical transition energies between charge states in a
Franck–Condon coordination diagram are calculated as quasiparticle excitations. In
otherwords, the transition from theneutral to the 1þ charge state is considered to be
a transition of an electron from the defect level to the CBM at frozen geometry of the
neutral charge state and this energy difference is first calculated as a difference
between quasiparticle levels in GW. Afterward, the relaxation energy in each charge
state is added as calculated either in HSE or in GGA þ U. The comparison is a bit
complicated because these authors use a smaller zincblende cell and hence find it
necessary to correct the one-electron levels for finite size corrections as already
mentioned above. They find a eð2þ =0Þ at 1.36 eV in the GGA þ U þ GW approach
and at 1.66 eV in the HSE þ GW approach, still significantly lower than the other
results. Their jUeff j is also significantly smaller than the LDA values or our present
value.

10.9
Discussion of Experimental Results

Finally, we should discuss the connection of all these results to experiment. Two
experiments are particularly relevant to the present discussion. The first is the
electron paramagnetic resonance (EPR) experiment by Evans et al. [34]. They observe
the appearance of theV þ

O charge state from the neutral start state under excitation of
light with hn > 2:1 eV. Interpreting this as an optical transition from the neutral V0

O

one-electron level to the conduction band, andneglecting excitonic effects, this places
the neutral defect�s one-electron level at 1.3 eV above the VBM. In fact, this could be
viewed as anupper limit taking in to account the exciton binding energy. This appears
consistent with most calculations placing this level in the lower half of the band gap
given the uncertainties on the experimental determination.Our present value for this
one-electron level at 1.5 eV seems a bit high.
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The second experiment is by Vlasenko and Watkins [35]. Using optically detected
EPR (ODEPR) they provide evidence for a process of the type

V þ
O þEM0 !V0

O þEMþ ; ð10:7Þ

in which an electron is transferred from an EM type donor to the oxygen vacancy in
the single positive charge state, thereby quenching its EPR signal. Since the EM and
ODEPR signal (L3) associated with theV þ

O are positive in a photoluminescence band
with estimated zero phonon line at 2.48 eV, this could indicate that the empty
(minority spin) one-electron eigenvalue of the V þ

O charge state lies 2.48 eV below
the EM level or roughly the same amount below the CBM or at about 1 eV above the
VBM if this photoluminescence is directly a result of the electron capture. There is
still considerable uncertainty on this experimental value. The peak of this photo-
luminescence occurs at 600 nm or closer to 2.0 eV. On the other hand, an alternative
explanation of this process is that the positive photoluminescence results from
subsequent recombining of the (radiatonlessly) captured electron with a hole from
the VBM. If we assume that this happens before the defect has time to relax to the
neutral ground state and still reflects the geometry of the single positive charge state,
then it means that the empty one-electron level lies at about 2.0–2.5 eV above the
VBM.This result is qualitatively consistentwithLany andZunger�sGWcalculation [9]
who find that the occupied level of the V þ

O charge state shifts along with the VBM
while the empty state shifts along with the CBM when theGW self-energy shifts are
applied. The values for these levels in Table 10.3 are estimated from their figure. We
find similarly that the 1þ charge stateminority spin level lies in the upper part of the
gap at 1.86 eV, supporting the second interpretation of the Vlasenko Watkins
experiment. Our value is a bit on the low side. This was the interpretation proposed
by Janotti and Van de Walle [2] although they based it on the position of the þ /0
transition state in the gap.

We conclude that neither of the two experiments provides direct evidence for the
location of the thermodynamic transition levels. Instead they provide information on
the one-electron eigenvalues in the neutral and 1þ charge state, respectively.

10.10
Conclusions

In summary, the LDA þ U approach as applied to band gap correction for defects
was reviewed. Shortcomings in an earlier application of the approach by PL [1]
were identified and corrected. The LDA þ U approach was applied to Zn-s, p, d and
O-s, p orbitals with Ui values adjusted so as to reproduce as closely as possible the
band structure of ZnO in the QSGW approach. Not only band gaps but also
dispersions and the position of the levels relative to the electrostatic reference
potential were adjusted. This new LDA þ Umodel leads to transition levels close to
(but slightly higher than) the recent hybrid functional and screened exchange
calculations. In addition, the position of the empty minority spin level in the
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1þ charge state is argued to support an explanation of theODEPRdata byVlasenko
and Watkins in terms of a two step capture þ recombination with valence band
hole model. The position of the one-electron level in the neutral charge state is
consistent with EPR optical activation of the V þ

O signal. The energy of formation of
the oxygen vacancy is found to be relatively low, supporting the notion that this
could be an abundant defect in Zn-rich material.
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11
Predicting Polaronic Defect States by Means of Generalized
Koopmans Density Functional Calculations
Stephan Lany

11.1
Introduction

In semiconductors and insulators, non-isovalent atomic substitution critically con-
trols the electrical behavior by introduces carriers (electrons or holes), and the
utilization of such �doping� [1] lies at the heart ofmodern semiconductor technology.
The dopants are generally classified into two categories, �shallow� and �deep� [2]:
Shallow donor or acceptor states, respectively, can be thermally excited into the
conduction band minimum (CBM) or the valence band maximum (VBM) thereby
releasing the carriers that give rise to n- or p-type conductivity. Deep states, in
contrast, are often undesired, since they can cause carrier trapping and recombina-
tion. In order to theoretically model a doped semiconductor it is, therefore, indis-
pensable to be able to predict whether an impurity or defect acts as a shallow or as
a deep center and to predict accurately the energy levels relative to the respective
band edges (CBM or VBM). (In the following, we will use the term �semiconductor�
in the wider sense as comprising also wide-gap materials and insulators). In this
paper, we review recent work on a particular class of deep defects, i.e., the impurity- or
defect-bound small polarons [3], which are atomically localized and strongly bound
defect states that create large lattice distortions.

The modeling of isolated point defects in semiconductors requires to treat in the
order of 100 atoms, e.g., in a supercell method, which necessitates rather efficient
electronic structure methods. Thus, most total-energy calculations for defects
in semiconductors have so far been performed using density functional theory
(DFT) [4, 5] in its standard local density approximation (LDA) [6–8] for exchange and
correlation, or gradient corrected versions thereof (GGA) [9–11]. However, in many
cases, these density functional approximations (DFA) fail even qualitatively in the
prediction of defect stateswith localizedwavefunctions. For example, experiment has
shown that acceptor-bound holes in many oxides are deep centers having wavefunc-
tions that are centered at single oxygen atoms, e.g., SiO2:Al [12], ZnO:Li [13], or the
singly charged Zn vacancy (V�

Zn) in ZnO [14, 15] and ZnSe [16]. In contrast, DFA
predicts in all these cases that the hole-wavefunction is distributed over the equivalent
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O atoms neighboring the defect [17–21]. All these cases are characterized by an open-
shell electronic configuration of the bound state, e.g., the a21 t

5
2 configuration of LiZn in

ZnO (using the notation of the approximate Td point group symmetry of LiZn). The
wrong wave-function localization can be understood as resulting from the residual
self-interaction error of DFA, leading to an insufficient energy splitting between
occupied andunoccupied states [18, 19]. Thewave-function localization and resulting
structural properties can be corrected by a range of theoretical methods, such as
Hartree–Fock (HF) [17, 22], hybrid functionals [21, 23–25], screened exchange [26],
DFA þ U applied to O-p orbitals [27–30], self-interaction correction [31, 32], or our
recently introduced hole-state potential [19, 20] which, although related to DFA þ U,
is constructed such to avoid the rather uncontrolled modification of the defect-free
host-bandstructure when DFA þ U is applied to the anion p-states [19].

For illustration, we compare in Figure 11.1 the calculated spin–density of the Li0Zn
center in ZnO in DFA and after applying the correction of Ref. [19]. (Note that the
spin–density isosurface shown in Figure 11.1 closely resembles the wave-function-
square of the unoccupied acceptor state.We prefer to show the spin–density, because
this quantity is probed in magnetic resonance experiments [13].) We see that in DFA
the acceptor state is not only delocalized over the neighboring oxygen atoms, but
spreads over the entire supercell. This behavior is clearly that of a shallow state,
similar to what onewould expect from effective-mass theory [33, 34]. Accordingly, the
acceptor ionization energy is relatively small in DFA, around 0.1–0.2 eV [35, 36].
However, both the delocalization over many atomic sites (Figure 11.1a) and the
shallow acceptor level are inconsistent with experiment, which shows localization on
a single O atom [13] and an much deeper acceptor state around 0.8 eV [37, 38].
Applying the hole-state potential of Ref. [19], the acceptor state becomes localized on a
singleO atom leading to a localmagneticmoment at this O site, and strong structural
relaxations occur which break the (approximate) tetrahedral (Td) local symmetry
around the Li impurity (see Figure 11.1). Alternatively, the mixing of Fock exchange
into the DFA Hamiltonian, as done in hybrid-functionals [39–41] has very

Figure 11.1 (online colour at: www.pss-b
.com) Spin–density isosurface (green) of the
LiZn acceptor in ZnO. In standard DFA (a), the
acceptor wavefunction is effective-mass
like and the structure is symmetric

(dLi–O¼ 2.02 A
�
). (b) After correction by the

onsite potential Vhs the acceptor state is
localized on a single O atom, and the
structure is symmetry broken (d?¼ 1.91A

�
;

d||¼ 2.71 A
�
) (Ref. [19]).
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similar effects on the defect geometry and the localization of the acceptor state [21, 24]
of LiZn.

By phasing in the on-site correction for O-p orbitals, we found in Ref. [19] that the
geometry, the wavefunction localization, and the local magnetic moment exhibit
an almost �digital� behavior, i.e., the change from the situation of Figure 11.1a to that
of Figure 11.1b occurs abruptly above a critical value of the on-site potential and then
changes very little when further increasing the potential strength parameter. Sim-
ilarly, hybrid-functional calculations of the AlSi center in SiO2 using the B3LYP
functional [39] with 20% Fock exchange did not restore the localization of the hole on
a single oxygen site [17, 18], but the localization kicks in when the fraction of Fock
exchange is increased [23]. Therefore, a guiding principle is desired that helps to
determine appropriate parameters for such methods. Whereas the correct descrip-
tion of the structural and magnetic properties mostly require that the parameterized
DFA correction (U, Vhs, Fock-exchange, etc.) is sufficient to stabilize the localized
solution above the critical threshold, an accurate determination of these parameters
is even more important when one is interested in energy differences between the
localized and delocalized states to determine, for instance, acceptor binding energies
in oxides, because these change continuously with the strength of the parameterized
correction, e.g., the on-site potential Vhs [19]. Indeed, different parameterizations
of hybrid-functionals have also led to rather different ionization energies for Li in
ZnO [21, 24]. We now formulate a generalized Koopmans condition [19] that can
serve as such a guiding principle to determine appropriate parameters for DFA
corrections.

11.2
The Generalized Koopmans Condition

The Hohenberg–Kohn theorem [4] of DFT can be extended to fractional electron
numbers N, describing a separated open system with fluctuating electrons [42, 43].
The exact total energy is then a piecewise linear function E(N) with a discontinuous
slope at integerN. In DFA, however, E(N) is generally a convex function [43, 44], due
to the approximate nature of the local density formalism. In order to relate the
curvature of E(N) to the behavior of Kohn–Sham (KS) single particle energy ei when
changing the occupation 0� ni< 1 of the state i, we employ Janak�s theorem [45, 46],

dEðniÞ=dni ¼ ei; ð11:1Þ
and find that the convexity of E(N) is caused by a shift of ei to higher energies during
the occupation of state i in DFA, i.e.,

d2E ðniÞ=dn2i > 0; or

deiðniÞ=dni > 0;
ð11:2Þ

(Note that we assume that the density functional does not have an explicit discon-
tinuity [47, 48], which is the case for all methods considered here).
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For illustration, Figure 11.2 shows the single particle energy scheme for electron
removal from or electron addition into a partially occupied state. This situation
occurs, e.g., in case of the p5 configuration of the isolated F atom [43, 49], where the
three F-p (say, px, py, and pz) orbitals of the spin-down channel are occupied by only
two electrons. As illustrated in Figure 11.2a, the energy gap between the occupied and
the unoccupied orbitals is usually rather small (or even vanishes) in DFA. For
example, we obtained a gap of only 0.7 eV for the F-atom in its non-spherical,
symmetry-brokenDFAground state [49].When an electron is added, the energy of all
three states increases, and the gap closes due to energetic degeneracy when all states
are occupied (Figure 11.2a). Conversely, when an electron is removed, the energy of
all states is lowered. Whereas the change of the single particle energy of one state due
to the electron addition into another state reflects simply the increased Coulomb
repulsion, the energy change of the highest state i following the change of its own
occupation reflects a spurious self-interaction effect of DFA, which gives rise to
erroneous convexity of E(N), cf. Eq. (11.2). Indeed, the correct situation that leads to
the linearity of E(N),

d2EðniÞ=dn2i ¼ 0; or

deiðniÞ=dni ¼ 0;
ð11:3Þ

requires that the energy of the state i (i.e., the onewhose occupation changes) remains
constant during electron addition or removal, as shown in Figure 11.2b. If theDFA is
corrected such to fulfill this requirement, we obtain for the electron addition energy
(negative of the electron affinity A)

EðN þ 1Þ � EðNÞ ¼ eiðNÞ; ð11:4Þ
by integration of Janak�s theorem, or, equivalently,

EðN�1Þ�EðNÞ ¼ �eiðNÞ; ð11:5Þ
for the electron removal energy (ionization potential I). In this case, the KS
eigenvalue ei of the state i acquires the meaning of a quasi-particle energy. Since,
the index i refers to the state whose occupancy changes, ei(N) is either the lowest
unoccupied state of theN electron system in case of electron addition [Eq. (11.4)], or it

N-1 N-1 N+1N+1 NN

(b) Koopmans corrected (a) DFA

Figure 11.2 (online colour at: www.pss-b.
com) Schematic illustration of the single
particle energy shifts upon electron
addition or removal in DFA (a) and after

enforcing the generalized Koopmans
condition (b). In (b), the state whose
occupancy is changed (red arrows) maintains
a constant energy.
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is the highest occupied state system of the N electron system in case of electron
removal [Eq. (11.5)] (see Figure 11.2). Thus, if the conditions (4) and (5) are met, the
single-particle gap equals the quasi-particle gap I�A, which, e.g., in case of the above
mentioned example of the F-atom is 14 eV,much larger than the 0.7 eVsingle-particle
energy gap in DFA [49] (cf. Figures 11.2a and b).

Equation (11.4) [and the equivalent Eq. (11.5)] resembles the Koopmans theorem
which states an approximate equality in HF theory [50]. We emphasize, however, that
here it has instead the meaning of a condition that has to be made fulfilled for
parameterized corrections of DFA, such as the on-site potentials defined in Ref. [19],
or the appropriate fraction of Fock-exchange in hybrid-functionals (see below). To
clarify the relation between Eq. (11.4) and the Koopmans theorem, we consider that
the electron addition energy – for a fixed structural geometry – can be expressed
as [45, 51]

EðNþ 1Þ�EðNÞ ¼ eiðNÞþPi þSi: ð11:6Þ
Here,Pi is the SI energy after electron addition to the orbital i under the constraint of
the wave-functions being fixed at the initial-state, and Si is the energy contribution
arising due to wave-function relaxation. The original Koopmans theorem [50] was
formulated for HF theory, wherePi: 0 holds rigorously, as an approximationwhich
is good only when relaxation effects are small. In solids, however, the (negative)
relaxation energy Si< 0 is usually not negligible, in particular because dielectric
screening leads to a significant charge rearrangement (requiring wave-function
relaxation) following the electron addition into the state ei. Indeed, by comparing
Eqs. (11.4) and (11.6)we see that due toSi< 0, theHFeigenenergy ei(N) of the initially
unoccupied state is higher than the electron addition energy, just opposite to the
situation in DFA. Accordingly, HF calculations exhibit the well-known [43, 44]
concave behavior d2EðniÞ=ðniÞdn2i < 0, opposite to the convex behavior of DFA.
The correct linearity of E(N) [Eq. (11.3)] is obtained in between the DFA and HF
limits, when the SI energy Pi and the relaxation energy Si cancel each other, i.e.,
Pi þSi ¼ 0.

11.3
Adjusting the Koopmans Condition using Parameterized On-Site Functionals

By avoiding the necessity to evaluate linearity of the function E(N) explicitly, the
generalized Koopmans condition, Eqs. (11.4) and (11.5) serve as a convenient tool to
restore the correct behavior of the functional upon variation of the occupation. In
order to compensate for the convex shape of E(N) in DFA, one needs a suitable,
parameterized perturbation of the DFA Hamiltonian that allows to make Eqs. (11.4)
or (11.5) satisfied by adjustment of the parameter. Based on the observation that
DFA and HF theory show opposite curvatures of E(N), one obvious possibility is mix
DFA and the Fock exchange in hybrid-functionals, so to balance the two opposite
behaviors. A computationally less expensive method is DFA þ U [52], which has
indeed been successful in restoring the correct localization of the AlSi defect in
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SiO2 [27]. However, the application of DFA þ U to anion-p states, as needed for
the treatment of, e.g., O-localized holes (cf. Figure 11.1b), is somewhat problematic:
the DFA þ U potential, e.g., in its simplified form of Ref. [53],

VU ¼ ðU�JÞ 1
2
�nm;s

� �
; ð11:7Þ

depends on the atomic orbital projected occupancy nm,s for them-sublevels of spin s.
On the other hand, the anion-p states are generally much less localized than d-states
onwhichDFA þ U is typically applied, and the respective occupancy, e.g., of anO-site
in defect free environment of a pure oxide host is therefore considerably smaller than
the nominal full occupancy nm,s¼ 1 expected for O(�II) anions, and it depends on
the integration radius used for DFA þ U. For example, we found [19] for the O-p
occupancy in pure, defect-free ZnO, nm,s¼ 0.4–0.7 depending on the size of the
integration radius associated with different pseudopotentials. Considering the form
of the DFA þ U potential, Eq. (11.7), we see that DFA þ U for O-p has a rather
uncontrolled effect on the O-p host states, creating either an attractive (if nm,s> 0.5)
or a repulsive (if nm,s< 0.5) potential causing a significant and uncontrolled
distortion of the band structure of the pure oxide, even in the absence of any defect
or impurity. For example, application of DFT þ U to the defect-free oxide would
decrease or increase the band gap (by shifting the O-p states down or up) depending
on the choice of the pseudopotential.

In order to avoid the uncontrolled side effects of DFA þ U, we defined in
Ref. [49, 54] a �hole-state potential� of the form

Vhs ¼ lhsð1�nm;s=nhostÞ; ð11:8Þ
which can be created by superposition of the occupation dependent DFA þ U
potential, Eq. (11.7), and the occupation-independent non-local external potential of
Ref. [55]. Here, the reference occupation nhost is taken as the occupancy in the defect-
free oxide host, so that the Vhs vanishes for all normally occupied O-p orbitals in the
pure host. The parameter lhs controls the strength of the hole-state potential and will
be adjusted so tomatch theKoopmans condition. If now ahole polaron is trapped at an
O-site, thiswill cause amuch lower occupancynm,s for the sublevel hosting thehole (e.
g., the O-pz orbital shown in Figure 11.1b), creating a repulsive potential for this level,
and therefore stabilizing the localized hole. The effect of Vhs is illustrated schemat-
ically in Figure 11.3, showing for the Li acceptor in ZnO the O-p orbital energies
(minority-spin, s¼#) for the O neighbor that has the hole trapped. Since these O-p
orbitals occur as resonant states centered at energies below the VBM, the small
splitting between the occupied and unoccupied sub-levels in DFA (cf. Figure 11.2) is
not enough to lift the unoccupied level into the gap. Consequently, the hole relaxes to
the VBM, and occupies the shallow effective-mass like level, as shown in Figure 11.1a.
The increased splitting between the occupied and unoccupied sublevels due to the
hole-state potentialVhsmoves the localized hole state into the gap, thereby creating an
acceptor state that is localized on a single O-atom (Figure 11.1b).

From the level diagram shown in Figure 11.3, one can expect that a minimum
strength of Vhs [controlled via the strength parameter lhs, see Eq. (11.8)] is needed to
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lift the unoccupied O-p state into the gap and to stabilize the polaronic hole state.
Indeed, when we phase-inVhs, we observe that beyond a critical value lhs> lcrhs of the
hole state potential, the symmetry breaking occurs and a strong local magnetic
moment develops at the O-site at which the hole is localized, as shown in
Figure 11.4a. In this calculation, in which we used the exchange-correlation func-
tional of Ref. [11] for the underlying DFA, the condition Eq. (11.4) is fulfilled
for llinhs ¼ 4.3 eV [19] (see Figure 11.4b), at which point the correct linear behavior
[cf. Eq. (11.3)] is recovered. Since, llinhs lies well above the critical value l

cr
hs required to

stabilize the polaronic state (see Figure 11.4b), the polaron state is predicted to be the
physically correct state. Note that when Eqs. (11.4) or (11.5) are employed to
determine the appropriate value for the parameterized functional (e.g., lhs for the
on-site potentialVhs), one has to correct for supercellfinite-size effects that affect both
total energies E(N) (see Refs. [49, 54]) and single-particle energies e(N) [56] in case the
electron number N corresponds to a charged defect state.

11.4
Koopmans Behavior in Hybrid-functionals: The Nitrogen Acceptor in ZnO

While HF theory was successful in describing qualitatively correctly the localization
of holes on single oxygen sites, e.g., for the AlSi defect in SiO2 (smoky quartz) [17, 18],
or LiMg in MgO [22], it does not provide a quantitative description: e.g., it predicts
much too large band gaps and exceedingly large hole binding energies, e.g., the hole
state bound at an O-neighbor of LiMg in MgO was found roughly 10 eV above the
valence band in Ref. [22]. Accordingly HF predicts often polaronic carrier trapping

CBM

VBM

ZnO:LiZn

shallow

deep

DFA DFA+Vhs

Figure 11.3 (online colour at: www.pss-b.
com) Schematic illustration of the occupied and
unoccupied single particle energies for the
oxygen hole due to LiZn in ZnO. InDFA (left), the
localized hole at the O-site is unstable and

relaxes into the shallow effective-mass state
just above the VBM. Applying the hole-state
potential Vhs (right) increases the splitting
which stabilizes the localization of the hole
in one O-p sub-orbital (cf. Figure 11.1).
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even in cases where it should not [57]. However, a reasonable compromise may be
achieved by mixing only a fraction of the non-local Fock exchange into the DFA
Hamiltonian. The non-local exchange potential in such hybrid-functionals has the
general form

Vnl
x ðr; r0Þ ¼ �a

X

i

y�
i ðr0ÞyiðrÞ
jr�r0j f ðjr�r0jÞ; ð11:9Þ

where the parameter a and the attenuation function f vary among different formula-
tions of hybrid-functionals, e.g., B3LYP [39] (a¼ 0.2, f¼ 1), PBEh [40] (a¼ 0.25, f¼ 1),
HSE [41] [a¼ 0.25, f¼ erfc(m|r� r0|)], or screened exchange [58–60] [a¼ 1, f¼ exp
(�kTF|r� r0|)]. For suitable parameters, such hybrid-functional calculations give
reasonable band gaps, and therefore are increasingly applied for the prediction of
defects in semiconductors [61–64]. (Note that the mentioned functionals further
differ in the amount of semi-local gradient corrections for exchange and correlation,
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which has, however, only minor effects on the band-structure properties). Hybrid-
functionals have also been used to describe anion-localized hole states for defects in
various oxides, i.e., those cases where standard DFA fails even qualitatively, like AlSi
in SiO2 [23], AlTi in TiO2 [65], and LiZn in ZnO [21, 24].

Since, as discussed above, HF theory exhibits the opposite E(N) non-linearity
(concave) of DFA (convex), the mixture of DFA and Fock exchange can in principle
also be used to cancel the non-linearity of E(N), i.e., to make the generalized
Koopmans condition, Eq. (11.4), fulfilled. Typically, however, hybrid-functional
parameters are either taken from the pre-defined standards of the respective
hybrid-functional formulation [21, 66] or are adjusted to match the experimental
band gap [24, 64], and neither choice guarantees that the cancellation of non-linearity
is complete. Indeed, some previous hybrid-functional calculations showed deviation
fromexperimentally established facts, either quantitatively (ZnO:Li, Ref. [21]) or even
qualitatively (SiO2:Al, Refs. [17, 18]). The ability of hybrid-functionals to match the
generalized Koopmans condition was recently addressed for defects in elemental
semiconductors [67], and for the case of the NO acceptor in ZnO [68].

Acceptor-doping of ZnO with nitrogen is subject of a controversy in the exper-
imental literature [69].While substitutional NOdopants are often considered as being
shallow acceptors, magnetic resonance experiments found a strongly localized hole-
wavefunction [70, 71] that is inconsistent with the picture of a shallow effective-mass
acceptor.

As shown in Figure 11.5a, the NO acceptor state is already at the DFA level more
localized than an effective-mass state, in contrast to LiZn (Figure 11.1). In DFA, the
hole-state has pxy character (p-orbitals perpendicular to the crystal c-axis), stemming
from a half-occupied eg symmetric state. As seen in Table 11.1, the all four N�Zn
nearest neighbor distances are almost identical. When applying the on-site potential
Vhs to N-p orbitals (in addition toVhs for the O-p orbitals as above), using a parameter
lhs such to satisfy the Koopmans condition, Eq. (11.4), [72] the hole becomes largely
localized within a single N-pz orbital, stemming from an unoccupied a1 symmetric
state. Thenearest neighbor distances are nowstrongly anisotropic, theZn atomalong
the c-axis having an �0.2A

�
larger distance from N than the Zn atoms in the basal

plane (Table 11.1). Thus, in Koopmans-corrected DFT the partial occupancy is lifted,
which leads to a Jahn–Teller relaxation, in accord with experimental interpreta-
tions [70, 71]. Comparing the effect of non-local Fock exchangewith that of the on-site
potential Vhs, we see that both methods predict very similar acceptor wave-functions
(Figure 11.5) and defect geometries (Table 11.1).

Whereas the structural properties and the wavefunction localization of ZnO:Li
showed an almost digital switching between the symmetric delocalized and the
symmetry-broken localized configurations with variation of the potential strength
parameter lhs (Figure 11.4a) the vertical acceptor ionization energy showed a more
continuous variationwith lhs (Figure 11.4b). A similar sensitivity on the details of the
parameterized functional can be expected for the thermal (relaxed) acceptor ioniza-
tion energy. Therefore, we examined the relation between the Koopmans behavior
and the depth of the NO acceptor level [68]: standard DFA calculations predicted
the acceptor level 0.4 eVabove the VBM [36].Whenwe apply DFA þ U to account for
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the too high Zn-d orbital energy and the resulting exaggerated p–d repulsion [49], we
get already a quite deep acceptor level at 0.7 eVabove the VBM (see Table 11.1). This,
however does not yet address the Koopmans behavior of the N–p like hole state.
Indeed, whenwe calculate the non-Koopmans energyDnK¼E(N þ 1)�E(N)� ei(N)
[cf. Eq. (11.4)], we find a large positive value DnK¼ þ 0.6 eV (Table 11.1) [72]
originating from the convex E(N) behavior of DFA.When the generalized Koopmans
conditionDnK¼ 0 is restored bymeans of the on-site potential Vhs, the acceptor level
lies even much deeper at 1.6 eV above the VBM.

We further tested the Koopmans behavior of NO in the HSE hybrid functional,
comparing twodifferent values for the parametera [see Eq. (11.9)], i.e., the �standard�
value a¼ 0.25 [40, 41], and an increased fraction of Fock exchange a¼ 0.38, chosen
such to reproduce the experimental band gap of ZnO [63]. We find that for a¼ 0.25
the Koopmans condition is quite well fulfilled, although the band gap is still
underestimated by about 1 eV. The acceptor level at 1.4 eV is close to the prediction
with the on-site potential Vhs. A similar acceptor level was also found in a recent
hybrid-functional study [64], although for a rather different parameter a¼ 0.36. For
the gap-corrected valuea¼ 0.38, wefind a negative valueDnK¼� 0.4 eV (Table 11.1),
indicating concave E(N) behavior, i.e., overcorrection relative to the underlying DFA.
Therefore, the corresponding acceptor level at 2.1 eV is most likely unrealistically
deep. From the cancellation of the E(N) non-linearity in different functional, as
summarized in Table 11.1, we can conclude on theoretical grounds that shallow
acceptor states that have been reported in ZnO [74–76] cannot originate from
substitutional NO impurities, and must have other causes. One recent suggestion
is that the shallow levels are related to stacking faults, possibly decorated with
additional defects or impurities [77].

11.5
The Balance Between Localization and Delocalization

In Ref. [78], we described two fundamentally different behaviors an electrically active
defect (i.e., a donor or an acceptor) can assume: (i) the primary defect-localized state
(DLS), which results from the atomic orbital interaction between the defect atom and

Table 11.1 Properties of the neutral NO acceptor in ZnO in differentmethods: the nearest neighbor
N–Zn distances d|| and d? (cf. Figure 11.1), the acceptor level e(0/1� ), and the non-Koopmans
energy DnK.

d||/d? (A
�
) e(0/1� ) (eV) DnK (eV)

DFAa) 1.93/1.95 EV þ 0.74 þ 0.62
DFAa) þ Vhs 2.18/1.94 EV þ 1.62 0
HSE (a¼ 0.25) 2.16/1.96 EV þ 1.40 �0.05
HSE (a¼ 0.38) 2.16/1.96 EV þ 2.05 �0.40

a) see Ref. [73].
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its ligands, forms a resonance inside the continuum of host bands. In this case of
a shallow defect, the carriers (electrons or holes) occupy a secondary perturbed host
state (PHS) with a delocalized, band-like wavefunction and an energy close to the
band edge. (ii) TheDLS lies inside the band gap. This is the signature of a deep defect
state, and the wavefunction is usually localized at the site of the defect and its ligands.

Even though Li is clearly a deep acceptor in ZnO on account of its large ionization
energy and the localized nature of the bound hole [19], it is an interesting observation
that the charged Li�Zn acceptor does not show a quasi-particle energy state inside the
band gap, as shown in Figure 11.6a, and therefore shows the signature of the case (i)
of a shallow state. In its equilibrium structure, the ionized Li acceptor exhibits no
symmetry breaking, and all nearest neighbor are practically equal (dLi–O¼ 2.0 A

�
) as

expected from the approximate local Td symmetry in the wurtzite lattice [79]. The
large anisotropy in the NN-distances (cf. Figure 11.4a) occurs only after a hole is
bound on one of the four initially equivalent O neighbors. One can, therefore, raise
the �Chicken or egg� like questionwhether the hole localization causes the symmetry
breaking of the atomic structure, or whether the symmetry breaking drives the hole
localization. The answer to this question depends on whether the hole localizes on
a singleO-site even in the absence of the lattice distortion, or, in other words, whether
there exists an energy barrier in the configuration coordinate diagram that causes
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Figure 11.6 (online colour at: www.pss-b
.com) Density of states (DOS) for the ionized
and charge-neutral LiZn and NO acceptor states
in ZnO, calculated in DFA þ Vhs (see Ref. [73]).

The local DOS is projected on the O-pz andN-pz
orbitals which host the bound hole in case of the
charge-neutral acceptors (cf. Figures 11.1b
and 11.5b, respectively).
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a local minimum for the symmetric structure. Indeed, in the special situation that
one defect, depending on its charge state, can assume both behaviors (i) and (ii)
above, there exists generally an energy barrier between the two structural config-
urations. Such a barrier in the configuration coordinate diagram leads often to
a range of experimentally observable metastability effects [78, 80, 81]. As seen in
Figures 11.6a and b, the Li acceptor inZnO indeed exhibits a change between shallow
(i) and deep (ii) behavior being associated with a change of the charge state, which
hints toward the presence of metastability effects.

Due to the energy of the Li-inducedDLSbelow theVBM(Figure 11.6a), a free a hole
can become bound at the Li acceptor in a effective-mass like (VBM-like) state without
occupying the localized defect state. This shallow state of Li is, however only
a transient state [82], because the energy can be lowered by the activated lattice
relaxation and ensuing localization of the hole (Figure 11.1b) in a deep gap state
(Figure 11.6b). Even though the transient shallow state is not suited to produce p-type
conductivity, it could be observed for a short time after photo-excitation, thereby
explaining the experimental observation of both a shallow and a deep state of the Li
acceptor in photoluminescence [83, 84]. We recently [82] found a similar duality also
for the metal-site acceptors in GaN, where Mg-doping has led to the observation of
two distinct acceptor states in optical experiments [85] and of both effective-mass like
and non-effective mass like hole wavefunctions in magnetic resonance experi-
ments [86, 87]. We found that the ground state of the divalent acceptors Be, Mg,
and Zn in GaN has always a localized hole wavefunction, akin to that of Li in ZnO
(Figure 11.1b), which is indicative of a deep acceptor. However, MgGa represents
the unique case where the ionization energy of the deep state exceeds only slightly
(by 0.03 eV) that of the ideal effective mass state, and is therefore still small enough
for effective p-type doping. This explains the exceptional success of Mg-acceptor
doping in GaN [88].

More generally, in regard of the balance between localization and delocalization,
and the existence of an energy barrier, one can distinguish a total of four different
cases, as illustrated in Figure 11.7. We now describe each case briefly with a specific
example:

Shallow ground stateDeep ground state

E
ne

rg
y

Configuration coordinateConfiguration coordinate

(a) (c) (d)(b)
sy sysb sb sysb sy sb

Figure 11.7 (online colour at: www.pss-b
.com) Schematic configuration coordinate
diagrams for acceptor states in
semiconductors, illustrating the four different

cases resulting from the energy ordering
of the symmetry-broken (sb) and symmetric
(sy) configurations, and from the existence
or non-existence of an energy barrier.
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i) Deep ground state with barrier (Figure 11.7a, e.g., ZnO:Li). In the symmetric
structure of the ionized LiZn acceptor, there is no defect induced quasi-particle
state inside the band gap (Figure 11.6a). Thus, the neutral Li acceptor has a locally
stable symmetric configuration with a delocalized effective-mass like
wavefunction (PHS). Only after an activated symmetry breaking and large
lattice relaxation, the localized O-pz like hole state (cf. Figure 11.1b) occurs as
a deep quasi-particle state (DLS) inside the band gap (Figure 11.6b). Examples
include ZnO:LiZn, GaN:MgGa [82], and ZnTe:VZn [20].

ii) Deep ground state without barrier (Figure 11.7b, e.g., ZnO:N). The symmetric,
ionizedNO acceptor (cf. Table 11.1) has its quasi-particle defect state already deep
inside the band gap (Figure 11.6c). When forming the neutral acceptor state by
removing an electron, the resulting hole immediately occupies the deep defect
state (DLS), leading to the relaxation into the symmetry-broken configuration (cf.
Table 11.1)without barrier.During relaxation, theDLSmoves deeper into the gap
(Figure 11.6c). Examples include ZnO:NO [68] and ZnO:VZn [20].

iii) Shallow ground state with barrier (Figure 11.7c, e.g., ZnTe:Li). So far, we have
considered only acceptor states whose (charge neutral) ground states are
symmetry broken and have a localized hole state. Of course, there exist also
acceptors in semiconductors where the ground state is symmetric with a band
like effective-mass wavefunction. Considering LiZn in ZnTe, we can utilize an
initial lattice distortion to obtain a symmetry-broken state where the hole is
located at only one of the four equivalent Te ligands, akin to the state shown in
Figure 11.1b for ZnO. The parameter lhs¼ 3.1 eV for Te-p is then calculated
analogous to the case of ZnO (Figure 11.4). However, we find that the Td
symmetric ground state with a delocalized effective-mass like hole wave-
function (PHS) lies 0.3 eV lower in energy than the symmetry-broken
configuration. Thus, the generalized Koopmans formalism correctly predicts
thewell established effective-mass behavior of LiZn inZnTe, and the calculated Li
acceptor ionization energy of 0.08 eV reflects the shallow effective-mass acceptor
level (experiment: 0.06 eV [89]).

iv) Shallow ground state without barrier (Figure 11.7d, e.g., GaAs:MgGa). For the Mg
acceptor in GaAs, we find that the symmetry broken configuration cannot be
stabilized even for large values of lhs for As-p (we can estimate lhs¼ 2.7 eV by
evaluating the Koopmans condition for a constrained lattice distortion). Thus,
theMgGa acceptor inGaAs has only one energyminimum, i.e., theTd symmetric,
shallow effective-mass state.

11.6
Conclusions

The physical condition of the piecewise linearity of the total energy E(N) as a function
of the fractional electron number plays an important role for the prediction of
the structural configuration, the wave-function localization, and in particular, the
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ionization energies of acceptors in wide-gap semiconductors. Based on DFT this
condition may be achieved via on-site potentials or by mixing of non-local Fock
exchange. When the bias of standard DFT toward symmetrical and delocalized
solutions is overcome in such Koopmans corrected calculations, a symmetry broken
solution often emerges as the ground state, usually leading to a deep non-conductive
state (with the notable exception of GaN:Mg). The symmetry breaking of the defect
wavefunction can either be the result of an initial breaking of the structural symmetry,
or be purely electronically driven, corresponding to the existence or non-existence,
respectively, of an energy barrier in the configuration coordinate diagram. In smaller-
gap semiconductors with heavier anions the tendency toward hole localization is
reduced, leading to shallow effective mass like states of substitutional acceptors.
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12
SiO2 in Density Functional Theory and Beyond
L. Martin-Samos, G. Bussi, A. Ruini, E. Molinari, and M.J. Caldas

12.1
Introduction

From a theoretical point of view, amorphous silica is considered one of the most
typical strong glasses belonging to the category of disordered tetrahedral networks.
From a technological point of view, silica is widely used in different fields such as
microelectronic industry (for metal-oxide-semiconductor devices), optical fiber
technologies, and nanoimprint lithography. During the manufacturing process, a
large variety of defects may be generated in the samples, which modifies the
performances of the silica-based devices. Furthermore, when used in harsh envir-
onments, these pre-existing defects can act as precursor sites for the generation of
new defects, or new defects can directly arise through ionization or knock-on
processes making the defect assortment even wider and the device performances
unpredictable. In the recent past, with the advent of nanodevices, the reduced
dimensions of the oxide layers and the required abruptness of the interface demand
for an atomic-scale understanding of themicroscopic processes governing electronic
performances, such as the carrier mobility and energy levels.

At the atomic scale, defects influence the electrical and optical properties of
materials by adding localized states into their band structure. The main impact of
such defect states occur when they are located in the band gap. Therefore, it would be
of fundamental relevance to provide a reliable description of the gap surroundings.
However, even for crystalline phases, the ab initio evaluation of the band gap is a hard
task. In fact, the most celebrated approach for the calculation of the electronic
properties for the ground-state is based on the density functional theory (DFT), but it
is in principle unqualified for the description of excited state properties, at least in its
usual formulation, and consequently for a correct prediction of the band gap; on the
other hand, the application of appropriate and sophisticated approaches based on the
many-body-perturbation theory is often hindered by the huge computational effort
that is required for realistic systems.Moreover, the analysis of the electronic structure
of amorphous systems implies a deep understanding of the impact of disorder– in its
different possible manifestations – on the electronic properties of the system.

Advanced Calculations for Defects in Materials: Electronic Structure Methods, First Edition.
Edited by Audrius Alkauskas, Peter Deák, Jörg Neugebauer, Alfredo Pasquarello, and Chris G. Van de Walle.
� 2011 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2011 by Wiley-VCH Verlag GmbH & Co. KGaA.
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In this chapter, we discuss the possibility of defining a consistent criterium to
univocally define the electronic gap of amorphous systems, and we calculate it from
first principles for silica using different theoretical schemes. The results of our
systematic investigations allow us to trace back the electronic structure of the system
to the specific kinds of disorder present in the target system. Our findings are also
discussed in relation to the Anderson model, which predicts the formation of
localized band tails at the band edges of disordered systems.

12.2
The Band Gap Problem

Let us first recall that the energy difference between photo-emission and inverse
photo-emission signals is the difference between the N þ 1 excitation (-electron
affinity) and the N� 1 excitation (-ionization potential), where N is the number of
electrons in the ground state. Themost commonfirst-principles theoretical approach
applied to study the electronic structure of solids is the density DFT. InDFT [1, 2], the
exact ground-state density and energy for a given system are obtained by minimi-
zation of an energy functional which depends on the external potential and some
�Universal Functional� of the density. As such �Universal Functional� is unknown,
one has to face its practical realization: the building of a functional is not unique,
which may lead to uncontrolled approximations and transferability issues. In
the Kohn–Sham formalism the functional becomes the exchange–correlation
functional. The oldest and most widely used approximation is the local density
approximation (LDA) and the classicalmethod to correct LDA is the explicit inclusion
of inhomogeneity effects via gradient expansions, i.e., generalized gradient approx-
imation (GGA). It is well known that DFT, declined in any of its two flavors (LDA or
GGA), has reached a great success for modeling material properties such as
equilibrium cell parameters, phonon spectra, etc. However, experimental band gap
values are underestimated by about 30–40%. Even if in principle every excited state
energy can be considered as a functional of the ground-state density, there remains
the question on how such functionals can be realized in more explicit terms. The
main lacks of LDA and GGA are their locality, energy independence, continuity with
the adding or removing of electrons, and wrong long-wavelength limit which does
not cancel the self-interaction (SI) part in the Hartree potential. Recently, functionals
with a fraction of Hartree–Fock exchange (hybrid-functionals) have been build [3–6],
in order to compensate for part of the above mentioned lacks (i.e., SI and
discontinuity issue).

TheGW approximation offers a valuable parameter-free alternative to such ad hoc
building of new exchange–correlation functionals. GW has its roots in the work by
Hedin and Lundqvist [7, 8]. In its first formulation, an approximated form for the
electron self-energy (exchange–correlation self-energy) was obtained through an
expansion in terms of the screened Coulomb potential. This procedure can be
interpreted as a generalization of the Hartree–Fock method, where the expansion is
based on the screened rather than the bare Coulomb potential. Inmore recent times,
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see among others [9–16], the GWmethod has been used on top of DFTcalculations,
often within the LDA for the exchange–correlation functional. This combined
approach (called one-shot GW or G0W0) allows for great improvement on the
agreement of electronic band structures with experimental results, and is presently
becoming the state-of-the-art for the ab initio prediction of electronic properties in
extended systems. Themain ingredient thatmakesGW so successful is related to the
fact that it contains most of the SI cancellation, and that the self-energy is non-local
and energy dependent.Moreover, in theGW framework, as inHartree–Fock through
Koopman�s Theorem, theHOMO (and each occupied band) is by definition theN� 1
electronic excitation (whereN is the number of electrons) and the LUMO (and each
unoccupied band) is the N þ 1 excitations, i.e., the self-energy is discontinuous.

Let us concentrate on the self-energy. Within the Hartree–Fock approximation the
self-energy can be written as:

S � Sxð12Þ ¼ ivð1þ 2ÞGð12Þ; ð12:1Þ
where v is the bare Coulomb potential and G is the Green function. Indexes 1 and 2
are generalized coordinates plus spin and time (1� x1, t1; 2� x2, t2). As the poles of
theGreen function are theN þ 1 andN� 1 excitations, theHartree–Fock self-energy
contains the discontinuity. In the long wavelength limit it is easy to prove that the
q¼ 0 term compensates the SI coming from the Hartree potential. However, as v
depends only on |r� r0|, it is still a local and energy independent function.

In the GW approximation the self-energy takes the form of a �dressed� Hartree–
Fock:

Sð12Þ ¼ iWð1þ 2ÞGð12Þ; ð12:2Þ
whereW is the screened Coulomb interaction that is calculated through a Dyson-like
equation with a random-phase approximation (RPA) irreducible polarizability. The
W term contains the response of the electronic system when non-interacting
electron–hole pairs are created, which is a function of (r� r0), (r00 � r000) and the
energy. The polarizability is also a function of (r� r0) and (r00 � r000), and its calculation
usually needs a summation on all possible transitions (from occupied to unoccupied
states). It is easy to understand why even if the equations are known since the sixties,
only recently, with some additional approximations, we manage to computationally
afford systems with tens of atoms. One of the approximations of great success has
been the Coulomb hole and screened exchange approximation [17] (COHSEX). The
COHSEX formula is obtained from the generalGW self-energy by imposing a static
W before the energy convolution. The COHSEX approximation has the advantage of
being independent of the unoccupied states summation in the self-energy. The first
term (SEX) is a screenedHartree–Fock, where the screening is the staticW, while the
second (COH) is just a static local potential.

After COHSEX, different multipole expansions have been proposed to include,
without explicitly performing the energy convolution, the energy dependence inW.
The most popular is the plasmon pole approximation [17–19], where the energy
dependence in W is replaced by an interpolation through a single pole (at some
plasmon energy).
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In order to highlight the effect of inclusion of off-diagonal elements, also called
local-field effects (with explicit dependency on (r� r0) and (r00 � r000)) on the descrip-
tion of the gap, we have performed four calculations on alpha-quartz and on an a-SiO2

model (for details on the generation of the amorphous sample we refer the reader to
Ref. [20]) within the four different approximations DFT–LDA, HF, COHSEX (from
LDA), andG0W0 (from LDA), see Table 12.1. For more details on theGW calculation
see Ref. [21, 22].

As expected,DFTunderestimates the gap,HFoverestimates it, whileCOHSEXand,
in particular,G0W0 give the closest values to experimental outcomes – that range from
8.8 to 11.5 eV [23–25]. From a careful comparison between the gap values for quartz
and a-SiO2 (see Table 12.1) we can note that the gap size for quartz is larger than for the
a-SiO2 phase within DFTand HF, while the experiments suggest that, if a difference
exists, it is smaller than the experimental accuracy. Local-field effects taken into
account byW in the COHSEX and GW self-energy enhances the opening of the gap
due to the disorder, bringing the a-SiO2 gap closer to that of quartz. This enhancement
is not related to the SI and discontinuity issues, already corrected (or not inserted) in
HF. This behavior implies that, for disordered materials, it is fundamental to treat
correlations through non-diagonal objects. Indeed, it is unlikely that any ad hoc choice
of local functionals, whatever fraction of Hartree–Fock exchange it contains, would be
able to reproduce the whole effect of disorder on the electronic structure.

12.3
Which Gap?

In a crystalline semiconductor/insulator the fundamental gap/band gap is a well
defined quantity, i.e., the energy difference between the bottom of the conduction
band and the top of the valence band.When one deals with a disorderedmaterial, the
definition of �gap� is not straightforward. Indeed, following the ideas presented in
the pioneering works of Anderson, Mott and Cohen [26–29], disorder induces the
formation of localized band tails (flat bands) at each band edge, creating boundary
regions (mobility edges) and opening the so-called �mobility gap�, see Figure 12.1.
Conceptually, the mobility gap for a disordered system is equivalent to the band gap
for a crystal. In addition to themobility gap, one could also define a �HOMO–LUMO�
gap (following simply an occupied/unoccupied criterium), which is smaller, by
definition, than the mobility gap.

Table 12.1 Fundamental/Homo–Lumo gap (eV) for alpha-quartz and amorphous SiO2 within
different approximations, DFT–LDA, one-shot HF, one-shot COHSEX and one-shot GW on top of
DFT–LDA.

DFT–LDA HF COHSEX GW

alpha-quartz 5.9 16.9 10.1 9.4
a-SiO2 5.6 16.2 10.1 9.3
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For semiconductors such as a-Si/H, the density of states in themobility gap region
has been intensively investigated [30, 31]. However, in the SiO2 case, there is no
experimental evidence of localized band tails between valence and conduction bands.
Moreover, experiments do not see anymarked difference between the quartz and the
a-SiO2 electronic structure. The effect of disorder has been theoretically studied
mostly by addressing model systems through simplified Hamiltonians, that contain
parametrized terms to account for the disorder contribution (see, e.g., in Ref. [32]).
With respect to the band gap of a perfectly ordered system, a low degree of disorder
produces a closure of themobility gap, while strong disorder opens it. The electronic
structure of amorphous SiO2 obtainedwithin ab initioDFT is usually compared to the
electronic properties of crystalline alpha quartz, and suggest a small closure of the
mobility gap [33]. Amorphous SiO2 and other low pressure crystalline phases of SiO2,
such as quartz and cristobalite, are constituted by �well-connected� SiO4 networks: at
the short range scale differences between the crystals and the amorphous samples
come from bond-angle and bond-length fluctuations, while the medium-range
structure is governed by the connectivity of the SiO4 network itself [34] which is
different in all these phases. Given the fact that a low degree of disorder acts by
producing bond angle and bond length variation while a topology change is expected
to be produced by strong disorder, the reason why DFTresults in a small gap closure
of the amorphous versus the crystalline system, instead of an opening, is to be
clarified. This could be traced back to several reasons, such as to the specific
amorphous model used in the simulations, or to the specific theoretical approach,
or to the absence �strong� disorder for a-SiO2, or to the fact that the mobility gap has
not been compared to the correct reference crystal. Indeed, the density of a-SiO2 is
around 2.2 g/cm3 while the density of quartz is around 2.6 g/cm3. It is well known
that the gap increases with the density in tetrahedral networks. Therefore the

Figure 12.1 Schematic representation of the density of states close to the top of the valence band
and the bottom of the conduction band, in a disordered semiconductor/insulator compared to the
representative crystal.
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electronic structure of a-SiO2 has to be compared with the crystal phase that exhibits
the most similar density, i.e., cristobalite.

We have performed DFTcalculations on two 108 atoms amorphous SiO2 models,
WQ2 andFQ1generated at two different quench rate 2.6� 1013 K/s and 1.1� 1015 K/
s, respectively (where WQ and FQ stay for �well-quenched� and �fast-quenched� to
distinguish between the two quench rates, seeRef. [20] for further details), and on two
192 atoms cristobalite models (Fd3-m), one at T¼ 0K (C0) and one at T¼ 300K
(C300). Here, we use the temperature as a way to add to the system a small stochastic
disorder. Calculations have been performed at the C point, with a wave function cut-
off of 70Ry and norm-conserving pseudopotentials. Hundred and eight atoms
supercell is big enough for having a system-size convergency within 0.1 eV at the
self-energy level. In Figure 12.2, we have plotted the density of states and the
localization of each state as a function of the energy for the two amorphous models
as well as for the perfectly ordered cristobalite, which we use as crystal reference. The
localization is described bymeans of the normalized SI, obtained by dividing the SI, i.
e., the Coulomb interaction between an electronic state and itself, as generally
defined by the following equation:

SI ¼ 1
V

ð ð
j�
sðrÞj�

sðrÞj�
sðr 0Þj�

s ðr 0Þ
jj r�r 0 jj d3r d3r 0; ð12:3Þ

by the SI of a plane wave normalized in the corresponding cell (which generalizes the
SI tool, extensively used in the quantum chemical community for findingmaximally
localized basis sets, for the description of extended systems that aremodeled through
periodic boundary conditions [21]): normalizing the SI allows for a quantitative,

Figure 12.2 (online color at: www.pss-b.com)
Upper panel: DFT–LDA energy density of states
for two a-SiO2 models WQ2 and FQ1, obtained
by quenching from a melt with two different
quench rates, 2.6� 1013 and 1.1� 1015 K/s,
respectively, and a perfectly ordered crystobalite

(Cristobalite 0 K). Lower panel: states
localization by means of their |SI|. Each |SI|
point has been calculated by averagingwithin an
energy interval of 0.09 eV. The DOS have been
aligned maximizing the overlap between deep
valence levels.
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energy-independent estimate of localization for systems with different unit-cell
volumes (the boundaries being |SI|¼ 1 for a fully delocalized state, i.e., a plane
wave, and divergent |SI| for a completely localized state, i.e., a Delta function)]. We
observe signatures of localization almost exclusively at valence edges, while the
bottomof the conduction band exhibits a perfectly delocalized character. As expected,
the increase of the quench speed increases the localization, and we see at the
neighborhood of the valence band top for the FQ1model states highly localized, that
can be considered as localized band tail states. It is also easy to see that the cristobalite
gap is smaller than the mobility gap of the disordered systems. If we compare the
fundamental gap of the perfectly ordered cristobalite, 5.4 eV, with the system
perturbed just by thermal disorder, 5.3 eV [21], it is clear that a small degree of
disorder induces a small closure of the gap. Therefore, we recover completely the
Anderson, Mott, and Cohen picture [26–29], i.e., small disorder degree close the gap
while a strong disorder degree widen it.

The widening of the gap due to strong disorder is particularly enhanced when
moving toGW, as it includes non-diagonal screening, as explained above. Indeed, the
GW gap for cristobalite is 8.9 eV while the mobility gap for a-SiO2 is 9.4–9.2 eV for
WQ2 and FQ1, respectively (for a more extended discussion see Ref. [21]).

12.4
Deep Defect States

Defect levels (donor or acceptor) and formation energies of charged defects are
difficult to describe quantitatively within DFT [35]. Indeed, they are related to
ionization potentials (N� 1 excitation)/electron affinities (N þ 1 excitation) of the
defect state [36, 37]. Some attempts have been made to try to circumvent the need of
going beyond DFT [38, 39]. However, it is unlikely that one can find semi-empirical
rules that work in a general case, and for defects in the already disordered structure of
an amorphous system this is even more critical. To illustrate the complexity of the
problem, we can compare results for the well-quenched model we showed above, to
the results of a model with connectivity defects.

We have performed DFT–LDA and G0W0 (on top of LDA) on an amorphous SiO2

model with two point defects: a non-bridging oxygen NBO (coordination 1) and a tri-
coordinated silicon (the simulation parameters are the same as in Ref. [21]). These
two atomic defects have produced five strongly localized defect states, a dangling
bond (Figure 12.3a), two occupied oxygen 2p non-bonding orbitals (Figure 12.3b and
c), and two unoccupied silicon non-bonding orbitals (Figure 12.3d and e).

The corresponding defect levels are located inside the gap (single lines in
Figure 12.4). Comparing the level alignment in the neighborhood of the gap, DFT,
andGW, it is evident that neither an ad hoc band stretching nor a rigid energy shift can
locate correctly the states from their DFT–LDA relative position, even if one tries to
treat separately theoccupied andunoccupied states. In the caseof thehighest localized
states, such as the O dangling bond of the NBO, themany-body corrections even alter
their position relative to theband tails, precluding scissor shift approximations. Even if
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this kind of approximation has been successfully applied to ideal crystalline systems, it
is fundamental to include the exact many-body correction for quantitative studies
when treating states with markedly different characters. A qualitatively correct
ordering of localized states with a different nature is already provided at the
Hartree–Fock level, indicating that the inclusion of exact-exchange is mandatory for
a sound description of dangling bonds.However, theweight of the exchange part with
respect to the correlationpart is different fromstate to state andnosemi-empirical rule
can be extrapolated from the results. It is also interesting to note the increase in the
energy difference between the two 2p non-bonding orbitals, which are seen almost
degenerate within DFT–LDA. The sensitivity to local field effects inGWenhances the
energy difference, which is due to the different orientation of the orbitals. As for the
two unoccupied (and more delocalized) defect states, they maintain almost the same
relative position, andare just deeper in thegap,more detached from themobility edge.
We also observe that the sensitivity of defect states to a proper treatment ofmany-body
effects is in agreement with a very recent paper [40], where the application of theGW
scheme to the analysis of a carbon vacancy in 4H-SiC turned out to be decisive to
correctly account for electron–electron correlations.

12.5
Conclusions

We have shown that the inclusion of local field effects may be relevant even just for a
correct quantitative evaluation of the gap size. The example of the deep defects in

Figure 12.4 (online color at: www.pss-b.com)
Electronic structure of a 108 atoms a-SiO2

system with defects introduced by one non-
bridging oxygen and one tri-coordinated silicon,
within DFT (upper panel) and G0W0 (lower
panel). Shaded blue and red bands represent,
respectively, delocalized states and localized
tails due to disorder. Calculation for the defect
system was also performed through norm-

conserving pseudopotentials and C-point
sampling; an energy cutoff of 70 Ry was used for
the wave-functions and Fock operator. Single
gray lines stay for the strongly localized defect
states (occupied oxygen non-bonding and
unoccupied silicon non-bonding states). The
single red line shows the position of the oxygen
dangling bond level. Energies have been aligned
to the top of the valence mobility edge.
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amorphous silica shows how it could be difficult to try to extract general semi-
empirical models to circumvent the needs of going beyond DFT. Unfortunately, the
way to a bi-univocal modeling of the electronic properties in the gap neighborhood is
still under an active debate [36–38]. Indeed, the computational effort needed by a full
GW calculation, or GW including vertex-corrections, free from pseudo-potential
effects, precludes its application to realistic systems [41, 42], forcing the research
community to find shortcuts, that need to be more extensively tested: pseudo-
potentials, approximations to the screening, one-shot GW starting from different
wave-functions and energies [42]. It is of fundamental relevance to systematically
explore all this shortcuts and give complete benchmarks.
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13
Overcoming Bipolar Doping Difficulty in Wide Gap
Semiconductors
Su-Huai Wei and Yanfa Yan

13.1
Introduction

Application of semiconductors as electric and optoelectronic devices depends
critically on their dopability. Failure to dope a material, i.e., to produce enough free
charge carriers beyond a certain limit atworking temperature, is often the singlemost
important bottleneck for advancing semiconductor-based high technology. Wide
band gap (WBG) semiconductors, such as diamond, AlN, GaN,MgO, and ZnO, have
unique physical properties that are suitable for applications in short-wavelength and
transparent optoelectronic devices [1–9]. To realize these applications, the formation
of a high-quality homo p–n junction is essential. In other words, high-quality bipolar
(p- and n-type) doping are required for the samematerial. Unfortunately, mostWBG
semiconductors experience a serious doping asymmetry problem, i.e., they can easily
be doped p- or n-type, but not both [10]. For example, diamond can be doped relatively
easily p-type, but not n-type [1–3]. On the other hand, ZnO can easily be made high-
quality n-type, but not p-type [7–9]. Formaterials with very large band gap such asAlN
andMgO, both p- and n-type doping are difficult [11]. The doping difficulty also exists
in nanostructure semiconductors where the band gaps increase due to the quantum
confinement [12, 13]. These doping problems have hindered the potential applica-
tions of many WBG and nanostructure materials.

Extensive research has been done to understand the origin of the bipolar doping
difficulties inWBGandnanostructure semiconductors and tofind possible solutions
to overcome the doping difficulty. In the past, we have proposed various approaches
to overcome the bipolar doping difficulty inWBGsemiconductors. These approaches
have been tested by the systematical calculation of defect formation energies and
transition energy levels of intrinsic and extrinsic defects in various WBG and
nanostructure semiconductors using first-principles density-functional theory
[14–23]. In this paper, we review the origins of the bipolar doping difficulty and
describe our approaches for overcoming the doping bottleneck in WBG semicon-
ductors.The paper is organized as follows. Section 13.2 discusses the salient features
of calculating defect properties, in which the issues related to the finite size of the
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supercell and the band gap errors are discussed. Section 13.3 analyzes symmetry
and occupation of defect levels. Section 13.4 describes what causes the bipolar
doping difficulty in WBG semiconductors and the origin of the doping limit rules.
Section 13.5 describes our proposed approaches to overcome the bipolar doping
difficulties, focusing mostly on ZnO and other WBG semiconductors. Section 13.6
briefly summarizes the paper andprovides an outlook for future research in thisfield.

13.2
Method of Calculation

We performed the band structure and total energy calculations using the first-
principles density-functional theory with local density approximation (LDA) or
general gradient approximation (GGA) [24, 25]. We used the supercell approach in
which the defects or defect complexes are put at the center of a supercell and the
periodic boundary condition is applied. For quantum dots (QDs) the surface are
passivated by hydrogen or pseudohydrogen [12, 13]. In all calculations, all the atoms
are allowed to relax until the Hellman–Feynman forces acting on them become
negligible. For charged defects, a uniform background charge is added to keep the
global charge neutrality of the supercells [19].

To determine the defect formation energy and defect transition energy levels, one
needs to calculate the total energyE(a, q) for a supercell containing defecta in charge
state q, the total energy E(host) of the same supercell without the defect, and the
total energies of the involved elemental solids or gases at their stable phases. It is
important to realize that the defect formation energy depends on the atomic chemical
potentials mi and the electron Fermi energy EF. From these quantities, the defect
formation energy, DHf(a, q), can be obtained by:

DHf ða; qÞ ¼ DEða; qÞþ
X

nimi þ qEF; ð13:1Þ

whereDE(a, q)¼E(a, q)�E(host) þ P
niE(i) þ qeVBM(host). EF is referenced to the

valence bandmaximum(VBM) of the host.mi is the chemical potential of constituent i
referenced to elemental solid/gas with energyE(i); ni is the number of elements and q
is the number of electrons transferred from the supercell to the reservoirs in forming
the defect cell. The transition energy ea(q/q0) is the Fermi energy at which the
formation energy of defect a at charge state q is equal to that at charge state q�. Using
Eq. (13.1), the transition energy level with respect to the VBM can be obtained by

eaðq=q0Þ ¼ DEða; qÞ � DEða; q0Þ
q0 � q

� eVBMðhostÞ: ð13:2Þ

Typically, for finite supercell, the Brillouin zone integration for the charge density
and total energy calculations is performed using special k-points or equivalent
k-points in the superstructures. This approach gives better convergence on the
calculated charged density and total energy. However, it usually gives a poor
description on the symmetry and energy levels of the defect state, as well as the
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VBMand conductionbandminimum(CBM) states, and the results could be sensitive
to the k-points sampling because the band edges are determined by the k-point
sampling. To avoid this problem, aC-point-only calculation is often used to determine
the total energy and transition energy level because the symmetry of the defect and
the band edge states are well defined at C, and both the shallow and deep levels are
correctly described (see Figure 13.1). However, for small supercell, C-point-only
approach may give poor total energy convergence. Here, we propose to use a hybrid
scheme to combine the advantages of both special k-points and C-point-only
approaches [14, 19]. In this scheme, we first calculate the transition energy level
with respect to VBM, which is given by

eð0=qÞ ¼ eCDð0Þ � eCVBMðhostÞþ
Eða; qÞ � ðEða; 0Þ � qekDð0ÞÞ

�q
: ð13:3Þ

For donor level (q> 0), it is usually more convenient to reference the ionization
energy level to the CBM, i.e., we can rewrite Eq. (13.3) as

eCg ðhostÞ � eð0=qÞ ¼ eCCBMðhostÞ � eCDð0Þþ
Eða; qÞ � ðEða; 0Þ � qekDð0ÞÞ

q
;

ð13:4Þ
where a positive number calculated from Eq. (13.4) indicates the distance of the
transition energy level below the CBM. In Eqs. (13.3) and (13.4) ekDð0Þ and eCDð0Þ are
the defect levels at the special k-points (weight averaged) and at the C-point,
respectively; and eCVBM(host) and eCCBM(host) are the VBM and CBM energies,
respectively, of the host at the C-point. eCg (host) is the band gap at the C-point. The
first term on the right-hand side of Eqs. (13.3) or (13.4) give the single-electron defect
level at the C-point. The second term determines the relaxation energyU (including
both the Coulomb contribution and the atomic relaxation contribution) of the
charged defects calculated at the special k-points, which is the extra cost of energy

Figure 13.1 (online colour at:www.pss-b.com)Schematic plot of the defect levelwith respect to the
band edge. It is shown that in a supercell calculation, the energy level determined at the C-point is
correct for both shallow and deep levels.
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after moving (�q) charge to the neutral defect level with E¼ ekDð0Þ. Afterwards, the
formation energy of defect a at charge state q can be obtained by

DHf ða; qÞ ¼ DHf ða; 0Þ � qeð0=qÞþ qEF; ð13:5Þ

where DHf(a,0) is the formation energy of the charge-neutral defect and EF is the
Fermi level with respect to the VBM. This new approach has been used successfully
for studying defects in various semiconductors.

We want to point out that in writing down Eqs. (13.1)–(13.4), we assumed that the
common reference energy level is used in the calculation of defect a in different
charge states. Because in a periodic supercell calculation the zero potential energy is
not well defined, therefore, we have to lineup the potential using a common
reference. This is usually done by lineup core level of an atom far away from the
defect center. In the case where core level is not available, average potential around
the atom can also be used.

In the formula above, we also assumed that the VBMenergy position is given by its
eigenvalue eVBM(host). For small supercell, however, the Koopman�s theorem may
not hold that is

dE ¼ eVBMðhostÞ � ½Eðhost;NÞ � Eðhost;N � 1Þ� ð13:6Þ

is not zero, especially for VBM with localized electron states. Similar situation may
also exist for the CBMenergy position. In this case, the correction term dE should be
added to determine the VBM or CBM energy level.

It the supercell calculation, the periodic boundary conditions introduces a spu-
rious Coulomb interaction between the charged defects in different cells. To estimate
the magnitude of this interaction, point charges immersed in neutralizing jellium
are usually assumed. Attempts to including higher-order terms are difficult, because
the higher-order multipoles of the defect charge are not uniquely defined in the
supercell approach [26]. However, in reality, the charged defect does not have a delta-
function-like distribution, especially for shallow defects, which have a relatively
uniform charge distribution. Therefore, direct application of the Makov and
Payne [26] correction using only point charge often overestimates the effect [19].
Thus, for shallow low charge state defects we usually assume the Makov and Payne
correction are not important. However, this correction term could be large if the
defect level is localized or the defect is in a small QD.

Another issue that leads to uncertainty in defect calculation is caused by the fact
that LDA or GGA calculations underestimate the band gap of a semiconductor. One
way to correct this error is to project the defect level to the CBM and VBM states, and
shift the defect level accordingly when the band edges are shifted to correct the band
gap error [27]. Another way to correct this error is using high level DFT calculation
such asGWapproach [28].However, currently, this type of full scale calculation is still
formidable. Recently, more empirical hybrid density-functional method [29, 30]
which mixes certain amount of Hartree–Fock potential with the GGA potential is
used for defect calculation. Although this kind of approach can correct the band gap
in some empirical way, the symmetry breaking caused by theHartree–Fock potential
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and the accuracy of the calculated defect levels, in our opinion, still needs experi-
mental verification.

13.3
Symmetry and Occupation of Defect Levels

It is often very useful to know the symmetry and character of the single-particle defect
level beforewe start the calculation, because it can help us identify the defect level and
because defects with different symmetry and character will behave differently.
Moreover, to modify defect states or correct the band gap error, it is also important
to know the symmetry of the state. For example, although both anion vacancy and
cation interstitial have the same a1 defect levels in II–VI semiconductors [23], anion
vacancy has the av1 character derived from the valence band or cation dangling bond
states, whereas cation interstitial has instead the ac1 character derived from the
conduction band. Thus, the energy level of the cation interstitial is expected to follow
closely with the CBM, whereas the energy level of anion vacancy state will not.

For simple extrinsic impurities, one can predict in principle whether a dopant is
a donor with a single-particle energy level close to the CBM or an acceptor with
a single-particle energy level close to the VBM by simply counting the number of the
valence electrons of the dopants and the host elements. For example, inCdTe, one can
expect that group-I elements substituting on the Cd site, XI

Cd create acceptors,
whereas group-VII elements substituting on the Te site, YVII

Te creates donors.
Generally speaking, to produce a shallow acceptor, it is advantageous to use a more
electronegative dopant, whereas to produce a shallow donor, it is advantageous to use
a less electronegative dopant.

For intrinsic defects, the situation is more complicated. Figure 13.2 shows the
single-particle energy levels of tetrahedrally coordinated charge-neutral defects in
CdTe [23]. Generally speaking, when a high-valence atom is replaced by a low-valence

Figure 13.2 (online colour at: www.pss-b.com) Single-particle defect levels for the tetrahedrally
coordinated neutral intrinsic defects in CdTe. The solid (open) dots indicate the state is occupied
(unoccupied).
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atom (e.g., CdTe) or by a vacancy VCd and VTe, defect states are created from the host
valence (v) band states that move upward in energy. The defect states consist of a low-
lying singlet av1 state and a high-lying threefold-degenerate t

v
2 state. Depending on the

potential, both av1 and tv2 can be above the VBM. These states are occupied by the
nominal valence electrons of the defect plus the valence electrons contributed
from the neighboring atoms (e.g., in CdTe, six electrons if the defect is surrounded
by four Te atoms or two electrons if it is surrounded by four Cd atoms). For example,
for charge-neutral VCd, the defect center has a total of 0 þ 6¼ 6 electrons. Two of
them will occupy the av1 state and the remaining four will occupy the tv2 states just
above the VBM, so VCd is an acceptor. On the other hand, if a low-valence atom is
replaced by a high-valence atom (e.g., TeCd), or if a dopant goes to an interstitial site
(e.g., Cdi and Tei), the av1 and tv2 are pulled down and will remain inside the valence
band. Instead, the defect states ac1 and tc2 are created from the host conduction band
states thatmove down in energy. Depending on the potential, both the ac1 and t

c
2 states

can be in the gap. For example, for charge-neutral TeCd, 6 þ 6¼ 12 electrons are
associated with this defect center. Eight of them will occupy the bonding av1 and tv2
states, two will occupy the ac1 state, and the remaining two will occupy the tc2 state.
Since the partially occupied tc2 state is close to the CBM, TeCd is also a donor. For the
interstitial defect, Cdi has two electrons that will fully occupy the ac1 state and is thus
expected to be a donor. The Tei defect center has six electrons. Two will occupy the ac1
state and the remaining four will occupy the tc2 states. Since the partially occupied tc2
states are closer to the VBM, Tei is expected to be a deep acceptor.

13.4
Origins of Doping Difficulty and the Doping Limit Rule

In general, there are three main factors that could cause the doping limit in
a semiconductor material [10, 14, 19, 22, 23]: (i) the desirable dopants have limited
solubility; (ii) the desirable dopants have sufficient solubility, but they produce deep
levels, which are not ionized at working temperatures; and (iii) there is spontaneous
formation of compensating defects. The first factor depends highly on the selected
dopants and growth conditions. The second factor only depends on the selected
dopants. Thus, these two factors can sometimes be suppressed by carefully selecting
appropriate dopants and controlling the growth conditions. The third factor is an
intrinsic problem for semiconductors; thus, it is the most difficult problem to
overcome, especially forWBG semiconductors. This is because the formation energy
of charged compensating defects depends linearly on the position of the Fermi level,
EF [see Eq. (13.1)]. When a semiconductor is doped, the Fermi level shifts, which can
lead to spontaneous formation of the compensating charged defects. For example,
when a semiconductor is doped p-type, EFmoves close to the VBM. In this case, the
formation energy of the charged donor defects decreases because they will donate
their electrons into the Fermi reservoir (Figure 13.3). In WBG semiconductors with
lowVBM, the formation energy decrease of donor defects can be so large that at some
Fermi energy EF¼ epin

(p) the formation energy of certain donor defect becomes zero,
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i.e., it can form spontaneously, so further shift of the Fermi energy is not possible.
Moreover, low VBM also leads to high ionization energy. Therefore, a semiconductor
with low VBM is difficult to be doped p-type. The trend for n-type doping is similar, i.e.,
a semiconductor with high CBM is difficult to be doped n-type. This doping limit rule
explains why a semiconductor with large band gap usually cannot be doped one type
or even both types under equilibrium thermodynamic growth conditions. It also
provides a general guideline about whether amaterial can be doped p- or n-type if we
know the band alignment between different compounds. For example, Figure 13.4

Figure 13.3 (online colour at: www.pss-b
.com) Schematic plot of the dependence of the
formation energy of charged defects on
the Fermi energy position. The p-type

pinning energy epin
(p) is the Fermi

energy EF at which the formation energy of
donor A has zero formation energy.

Figure 13.4 (online colour at: www.pss-b.com) Band alignment and n- and p-type pinning energy
of II–VI and I–III–VI semiconductors (Ref. [10]).
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shows the calculated band alignment for II–VI and I–III–VI semiconductors [10].We
see that ZnO has very low CBM and VBM, so it can be easily doped n-type, but not
p-type. On the other hand, ZnTe with high VBM energy can be easily doped p-type,
but not n-type. For I–III–VI compounds, CuInSe2 can be doped both p- and n-type,
but for CuGaSe2, n-type doping will be difficult.

Based on the above understanding, we will search for corresponding solutions to
overcome the doping limit. We will focus on the following approaches: (i) increase
defect solubility by �defeating� bulk defect thermodynamics using non-equilibrium
growth methods such as extending the achievable chemical potential through
molecular doping or raising the host energy using surfactant; (ii) reduce defect
ionization energy level by designing shallow dopants or dopant complexes; and (iii)
reduce defect compensation and ionization level by modifying the host band
structure near the band edges. As examples, we will discuss doping in some
representative WBG semiconductors such as n-type doping in ZnTe and diamond
and p-type doping in ZnO. The principles discussed here are general and are
applicable to other WBG semiconductors.

13.5
Approaches to Overcome the Doping Limit

13.5.1
Optimization of Chemical Potentials

13.5.1.1 Chemical Potential of Host Elements
As Eq. (13.1) indicates, the formation energy of a defect, which determines the
solubility of dopants, depends sensitively on the atomic chemical potentials of both
the host elements and the dopants [14, 19]. Thus, optimization of the growth
conditions and dopant source is critical to enhance the doping ability. So far,
computational results and analysis have focused on the dependence of formation
energies on host-element chemical potentials [27, 31]. For example, N substituting O
(NO) is expected to be a p-type dopant for ZnO. The formation energy of NO depends
on the chemical potentials of Zn, O, and N. Under thermal equilibrium growth
conditions, there are some thermodynamic limits on the achievable values of the
chemical potentials. First, to avoid precipitation of the elemental dopant and host
elements, the chemical potentials are limited by

mZn � mðZnmetalÞ ¼ 0; ð13:7Þ
mO � mðO2 gasÞ ¼ 0; ð13:8Þ
mN � mðN2 gasÞ ¼ 0: ð13:9Þ

Second, mZn and mO are limited to the value of maintaining ZnO. Therefore,

mZn þ mO ¼ DHf ðZnOÞ: ð13:10Þ
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Here, DHf(ZnO) is the formation energy of bulk ZnO. The calculated value is
about�3.5 eV. Finally, to avoid the formation of theZn3N2 secondary phase,mN is also
limited by

3mZN þ 2mN � DHf ðZn3N2Þ: ð13:11Þ
The calculated formation energy of Zn3N2 is about �1.2 eV. Using the equations

above, the achievable chemical potential region is shown in Figure 13.5.
Figure 13.6 shows the calculated formation energies of charge neutral defects as

a function of the O chemical potential. Here, mN is derived fromN2 gas. It is seen that
the formation energy of NO is lower at the O-poor condition, but higher at the O-rich

Figure 13.5 The achievable chemical potential region for N doped ZnO under equilibrium growth
condition.

Figure 13.6 (online colour at: www.pss-b.com) Calculated formation energies of charge-neutral
defects as a function of O chemical potential. The dashed line indicates the growth condition at
which (left region) Zn3N2 will precipitate.
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condition. Thus, to enhance the solubility of N, ZnO films should be synthesized at
O-poor conditions. It should be noted that the formation energies of other intrinsic
defects also depend on the growth conditions. At O-poor conditions, the formation
energies for �acceptor-killer� defects, such as Zn interstitials (Zni) and O vacancies
(VO), are decreased. Thus, there is an intrinsic problem for enhancing the p-type
doping using N as the dopant. In Section 13.5.4, we will discuss how this dilemma
may be eliminated by selecting appropriate dopants.

The left region of the dashed line indicates the growth condition at which Zn3N2

will precipitate under equilibrium growth. This indicates that the O chemical
potential should not go into this region so as to avoid the precipitation of Zn3N2.
Thus, the precipitation of a secondary phase can limit the solubility of dopants. To
overcome this, it has been shown that the precipitation of a secondary phase can be
suppressed through epitaxial growth [32]. For example, the calculated thermody-
namic solubility of N in bulk GaAs is only [N]< 1014 cm�3 at T¼ 650 �C due to the
formation of a fully relaxed, secondary GaN phase. However, single-phase epitaxial
films grown at T¼ 400–650 �Cwith [N] as high as�10% have been reported. Zhang
and Wei [32] found that if coherent surface strain is considered, the formation of
the secondary GaN phase could be suppressed during epitaxial growth. As a result,
the solubility of N can be enhanced significantly. A similar approach could be used to
avoid forming Zn3N2 in ZnO:N.

Avoiding the formation of secondary phase can also lead to some unexpected
consequences. For example, substituting Zn by Al for n-type doping in ZnO,
the formation energy of AlZn depends on (mZn� mAl), thus one may expect that the
formation energy of AlZn should reach minimum under Zn-poor condition. How-
ever, to avoid the formation of Al2O3, we need to satisfy the following condition:

2mAl þ 3mO � DHf ðAl2O3Þ: ð13:12Þ
Combine Eqs. (13.10) and (13.12), we have

ðmZn � mAlÞ �
mO þ 2DHf ðZnOÞ � DHf ðAl2O3Þ

2
: ð13:13Þ

That is, in the achievable chemical potential region, AlZn has the lowest formation
under O-poor or Zn-rich condition.

13.5.1.2 Chemical Potential of Dopant Sources
Although the dependence of doping efficiency on the host element�s chemical
potential has been studied extensively, the dependence of doping efficiency on
dopant chemical potential has not attracted much attention because normally there
are no significant alternative dopant sources. However, for the case of N doping of
ZnO (or other oxides), there is a unique and unusual opportunity. There are at least
four different gases, namely N2, NO, NO2, and N2O that can be used as the dopant
source. If these molecules arrive intact at the growing surface, their chemical
potentials will determine the doping efficiency. We found that the N solubility can
be enhanced significantly when metastable NO or NO2 gases are used as the dopant
sources [15]. A key feature that underlies our idea of doping with NO or NO2 is that
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these molecules can supply single N atoms by breaking only the weak N–O bonds,
whereas one has to break the strong N–N bonds to obtain desirable single-N defects
whenN2 andN2Oare used. For example, when theNO,N2O, orNO2molecules arrive
intact at the growing surface, the formation energy of a charge-neutral NO defect is
given by

DHf ðNO; 0Þ ¼ EðNO; 0Þ � EðhostÞþ 2mO � mNO ð13:14Þ
or

DHf ðNO; 0Þ ¼ EðNO; 0Þ � EðhostÞþ 1:5mO � mN2O

2
; ð13:15Þ

DHf ðNO; 0Þ ¼ EðNO; 0Þ � EðhostÞþ 3mO � mNO2
: ð13:16Þ

Our calculated formation energy is about 0.9, 0.2, and�0.2 eV for NO,N2O, andNO2

molecules, respectively. The NO and NO2molecules may simply be supplied as such
or they may be produced by a reaction in the gas phase. For example, NO molecules
can be created by N2O,NO þ N. In this case, mNO¼mN2O – mN. Figure 13.7 shows
the calculated formation energy of charge-neutral NO for four different gases. The
difference between N2/N2O and NO/NO2 is very clear, i.e., the use of NO/NO2 leads
to significantly reduced formation energies for NO because it does not entail any
energy to break the N�N bonds. The negative formation energies of NO at Zn-rich
conditions indicate that NO or NO2molecules can be incorporated spontaneously to
formNO defects, if thesemolecules are intact before they are incorporated into ZnO.

However, in practical growth conditions, to avoid the precipitation of the secondary
phases such as Zn3N2, besides satisfying

mO þ mN ¼ mNO for NO gas as dopant; ð13:17Þ

2mO þ mN ¼ mNO2
for NO2 gas as dopant; ð13:18Þ

mO þ 2mN ¼ mN2O for N2O gas as dopant; ð13:19Þ

we also need to satisfy Eqs. (13.10) and (13.11), which set a low limit for the achievable
O chemical potential. In Figure 13.7, the left, middle, and right dashed vertical lines
indicate the low limits for O chemical potentials for N2O, NO, and NO2 molecules,
respectively.

13.5.2
H-Assisted Doping

As we discussed above, the solubility of both the dopants and compensating defects
depend sensitively on the position of the Fermi level. If we can control the Fermi level
at a desirable position, then we may enhance the solubility of dopants and suppress
the formation of compensating defects. Electron or hole injection could be a method
to control the position of the Fermi level during film growth. Another popular
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approach is passivating the dopants by H atoms. For example, inMg-doped GaN, the
introduction of H can prevent such a shift. As a result, the concentration of Mg can
be enhanced [34]. After film growth, H can be annealed out to achieve p-type
conductivity.

For N-doping in ZnO (also other oxides), the co-existence of H can, in addition to
preventing the Fermi level shift, directly passivateNdopants, forming amolecularNH
complex on O site [(NH)O]. The binding energy for (NH)O is 2.9 eV. The (NH)O
complexes electronically mimic O atoms and cause smaller lattice distortion than NO.
Thus, the concentrationof (NH)O inZnOcanbemuchhigher thanNO [14]. Figure13.8
shows the calculated formationenergy for (NH)Oas a functionofOchemical potential.
For comparison, the formation energies of NO and some hole-killer defects are also
shown. It is seen that the formation energy of (NH)O is lower than any other defects in
the O-poor condition. In addition, the existence of H also pins the Fermi energy level,
so the formation of compensating defects enhanced by a shifted Fermi level is also
suppressed. Therefore, p-type doping could be achieved after subsequently driving out
the hydrogen atoms from the sample by thermal annealing.

13.5.3
Surfactant Enhanced Doping

To lower the defect formation energy, which is the total energy difference between the
final doped state and the initial state, we can either increase the initial dopant energy,
as discussed in the previous section, or increase the energy of the host. Recently, we
have shown that this can be done by introducing an appropriate surfactant during

Figure 13.7 (online colour at: www.pss-b.com) Calculated formation energy of charge-neutral
NOwith fourdifferent dopant sources:N2,N2O,NO, andNO2. The left,middle, and rightdashed lines
indicate the low limits for achievable O chemical potentials for N2O, NO, and NO2molecule doping.
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epitaxial growth [35]. The general concept for enhancing dopant solubility via
epitaxial surfactant growth is schematically described in Figure 13.9. It is known
experimentally that the surfactants in epitaxial growth float on the top surface of the
growth front. The enhancement of dopant solubility initiates in the sublayers below
the surface. For p-type doping, dopants introduce acceptor levels with holes near the
VBMof the host system.On the other hand the surfactants on the growth surface will
introduce surfactant levels. If the surfactant levels are higher in energy than the
acceptor levels and have electrons available, the surfactants will donate the electrons
to the acceptors and consequently leads to a Coulombbinding between the surfactant
and the dopant. Such charge transfer reduces the energy of the system and
consequently leads to effective reduction on the formation energy of dopant incor-
poration in the host. The formation energy reduction is large if the energy level

Figure 13.8 (online colour at: www.pss-b.com) Calculated formation energy of (NH)O in ZnO.

Figure 13.9 (online colour at: www.pss-b.com) Schematic plot of the mechanism of surfactant
enhanced doping during epitaxial growth.
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difference between the surfactant and acceptor levels is large. The same principle
holds for n-type doping, except that the charge transfer is from dopant level to empty
surfactant level. In this case, the positions of dopant levels are close to the CBM and
the surfactant levelsmust be lower in energy than the dopant levels. Thus, the key for
this concept is how to ensure that the surfactant levels are higher (lower) in energy
than the dopant levels and there are indeed electrons (holes) in the surfactant levels in
p-type (n-type) doping. We have calculated the formation energy for substitutional
AgZn in the sublayer of ZnO ð000 1�Þ surface and found that the formation energy is
lowered by 2.3 eV with S as surfactant as compared to that without surfactant.

13.5.4
Appropriate Selection of Dopants

There are two general rules for choosing an appropriate dopant to produce shallow
defect levels. First, an appropriate dopant should favor the growth conditions that will
suppress the formation of compensating defects. Aswe discussed in Section 13.2, the
solubility of dopants and concentration of intrinsic defects depend sensitively on the
growth conditions. It is highly desirable to have a growth condition that enhances
the dopant solubility and suppresses the formation of intrinsic compensating
defects. This may be achieved by identifying the compensating defects and choosing
suitable dopants. For example, the major defects that compensate acceptors in ZnO
are Zni and VO. Figure 13.6 shows that to suppress the formation of these hole-killer
defects, an O-rich growth condition is preferred. Of course, this condition is not
preferred for N incorporation. However, such a growth condition is preferred for
doping at cation sites.

Second, dopants at cation sites in compound semiconductors generally produce
shallower acceptor levels than dopants at anion sites. This is because for most
cation–anion compound semiconductors, the valance bands are derivedmainly from
the anion atoms. Dopant substituting at cation site would, in general, cause smaller
perturbation than dopants at anion sites on the anion-derived valance band. Thus,
theoretical studies have found that Group-I elements such as Li and Na have low
acceptor levels, whereas Group-V elements such as N, P, As, and Sb have deep
acceptor levels inZnO [33]. The large ionization energy forGroup-Vacceptors inZnO
can be understood as follows: The acceptor level, especially the shallow acceptor level,
has a wave-function character similar to that of the VBM state, which consists mostly
of anion p, and small amounts of cation p and cation d orbitals. Therefore, to have
a shallow acceptor level, the dopant should be as electronegative as possible, that is, it
should have low p orbital energy. For example, because the atomic p orbital energy
level of N is the lowest (Figure 13.10), i.e., most electronegative, among the Group-V
elements, N has been the preferred acceptor dopant for II–VI semiconductors
because it produces the lowest acceptor levels compared to the other Group-V
dopants. However, due to the low VBM of the oxides, the level of NO in ZnO is
still relatively deep [19, 33] at about 0.4 eVabove theVBM,making acceptor ionization
difficult. The other Group-V elements are less electronegative than the N atom;
therefore, they havemuch larger ionization energy than NO [33]. This explains why it
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is difficult to achieve anion site shallow acceptors for the oxides. Recent experiments,
however, have demonstrated good p-type conductivity for As, as well as p-dopedZnO.
However, theoretical studies revealed that As impurities actually occupy Zn antisites,
forming AsZn þ 2VZn complexes [36]. The real contribution to the p-type conduc-
tivity is from VZn. The ionization energy is reduced due to the interaction between
VZn and AsZn.

According to the above discussion, Group-Ia (Li, Na) and Group-Ib (Cu, Ag)
elements may be better choices for producing p-type ZnO. So far, only doping with
Group-Ia elements has been studied extensively. There are very few studies ondoping
of ZnO with Group-Ib elements. However, very few p-type ZnO films have been
achieved using Group-Ia elements as dopant. Theoretical studies have revealed the
possible reasons for the difficulty. Substitutional Group-Ia elements (Li and Na) at Td
sites are indeed shallow acceptors [33]. However, when the Fermi energy is close to
the VBM, Group-Ia elements prefer to occupy the interstitial sites in ZnO, which are
electron donors. As a result, Group-Ia elements fail to dope ZnO p-type. The reason
why Li andNa prefer the interstitial sites rather than substitutional sites is largely due
to the low ionization energies of the valence s electron and large sizemismatch of ions
of the Group-Ia elements. Such mismatches are much less for Group-Ib elements.
Thus,Group-Ib elementsmay be better candidates thanGroup-Ia elements for p-type
ZnOdoping. Therefore, we have studied the doping effect withGroup-Ib elements in
ZnO.

Our electronic structure calculations have revealed that Cu, Ag, or Au occupying
a Zn site creates a single-acceptor state above the VBM of ZnO. Our calculated GGA
transition energies e(0/�) are at about 0.7, 0.4, and 0.5 eV above the VBM for CuZn,
AgZn, and AuZn, respectively [20]. These results indicate that (i) the acceptor level

Figure 13.10 (online colour at: www.pss-b.com) LDA-calculated valence p and d energy levels of
neutral atom to show the general chemical trends.
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created by AgZn is shallower than the acceptor levels created by Cu andAu and (ii) the
transition energies for the substitutional Group-Ib elements are much deeper than
that of the substitutional Group-Ia elements. The reason for (ii) can be understood
as the following: The substitutional elements induced acceptor level is derivedmostly
from the VBM state, which has the anion p and cation d characters. For Group-Ib
elements, their occupied d orbital energies are near the oxygen p level. Because both
the O, p and the Group-Ib d orbitals have the same t2 symmetry in the tetrahedral
environment, there is strong p–d repulsion between the two levels, pushing the
acceptor levels higher. On the other hand, Group-Ia elements have no active valence d
orbitals, so their defect levels are shallower than the Group-Ib substitutional defects.
Among the three Group-Ib elements, Ag has the largest size and lowest atomic d
orbital energy, so the p–d repulsion is the weakest. This explains why AgZn has the
lowest transition energy level among the three Group-Ib elements.

As we discussed above, although the Group-Ia substitutional acceptor levels are
shallower, the Group-Ia elements prefer to occupy interstitial sites in p-type ZnO
samples, forming shallow donors. In this case, p-type ZnO cannot be realized due to
strong self-compensation. Thus, we have also calculated the formation energy of the
Group-Ib dopants at interstitial sites. Figure 13.11 shows the defect formation
energies as a function of the Fermi level calculated under the oxygen-rich condition
for Group-Ib elements at different sites. The solid dots indicate the transition energy
level positions for substitutional Cu, Ag, and Au. We find that the self-compensation
is very small with Group-Ib elements in ZnO. This is because Group-Ib elements do
not prefer to occupy the interstitial sites, even when the Fermi level is close to the

Figure 13.11 (online colour at: www.pss-b.com) Calculated formation energies as a function of
Fermi level for Group-Ib elements in ZnO.
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VBM. Our calculations reveal that Group-Ib elements may be better candidates than
the Group-Ia elements for p-type doping of ZnO.

Our calculations revealed that the acceptor levels created by Group-Ib elements are
not very shallow. However, because the formation energies of the substitutional
Group-Ib elements inZnOare very low at theO-rich conditions, a high concentration
of dopants can be easily achieved. At this growth condition, the compensation by
intrinsic donor defects can be effectively suppressed. Therefore, p-type doping
in ZnO could still be achieved with these elements, especially for Ag doping. It is
important to point out that the calculated (0/�) transition energy level for AgZn is
comparable to the calculated (0/�) transition energy forNO, which is currently one of
the most favorable dopants for p-type doping in ZnO. For N doping, ZnO thin films
should be grown under an O-poor condition to incorporate N efficiently at O sites.
This growth condition also promotes the formation of hole-killer defects, such as O
vacancies and Zn and N interstitials. On the other hand, for incorporating Ag at Zn
sites, the growth should be done at an O-rich condition, which suppresses the
formation of major hole-killer defects. In addition, self-compensation can also be
avoided for Ag doping. Therefore, our results suggest that Agmay be a better dopant
than N for p-type doping in ZnO, especially when it is combined with passivating
donors to form defect complexes (see Section 13.5.5 below). Our conclusion is
supported by recent experiment results on p-type ZnO thin films with Ag and Cu
dopants [37].

13.5.5
Reduction of Transition Energy Levels

To reduce the acceptor transition energy level inZnO, co-doping or cluster dopinghas
been proposed [38]. In conventional co-doping, two single acceptors (e.g., NO) are
combined with a single donor (e.g., GaZn) to form an acceptor defect complex. It is
expected that through donor–acceptor level repulsion, shallow acceptor levels can be
created. However, detailed theoretical analyses show that for direct-band gap semi-
conductors such as ZnO, the reduction of this type of conventional co-doping on the
ionization energy is rather small. This is because the donor and acceptor levels
usually have different symmetries and wave-function characters: the donor state has
the s-like a1 character, whereas the acceptor has the p-like t2 character. Furthermore,
in the case of two acceptors plus one donor (e.g., 2NO þ GaZn), because the two
acceptors are forced to be fcc (or hcp in the wurtzite structure) nearest neighbors, the
acceptor–acceptor level repulsion can even raise the ionization energy [23].

To avoid the problem discussed above, we have explored a different and novel idea
in which a fully occupied deep donor is used to attract a second partially occupied
donor to lower its ionization energy [16]. In particular, we studied a double donor
(either Si, Ge, or Sn on the Zn site) paired with a single donor (either F, Cl, Br, or I on
the Te site) in ZnTe. Different from the Coulomb binding that exists in charged
donor–acceptor complexes in the co-doping approach the binding between the two
donors results from the level repulsion between the two donor states (Figure 13.12).
The level repulsion significantly reduces the energy of the fully occupied lower level,
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stabilizing the donor–donor pair, while it increases the energy of the partially
occupied upper level, thus reducing the ionization energy. Notice that because the
doubly occupied a1

IV-derived state is charge neutral, there is no Coulomb repulsion
between the two nominally donor impurities. Furthermore, because the two donor
states have the same symmetry and atomic character the level repulsion is very
efficient. For example, we find that the formation of a BrTe–SnZn pair in ZnTe is
exothermicwith a binding energy of 0.9 eV. It lowers the electron ionization energy of
BrTe by a factor of more than three from 240 to 70meV, resulting in an effective
shallow donor. Similar idea has also been proposed to enhance n-type doping in
diamond [17]. Recently Kim and Park [18] have also suggested that the same idea can
be applied to explain oxygen vacancy assisted n-type doping in ZnO by forming
Zni–VO paire to lower the formation energy and transition energy levels of Zni
in ZnO.

We have also proposed two approaches to reduce the ionization energy in p-type
doping of ZnO [21]. The proposals are based on the following considerations: (i) as
discussed in the previous section, to lower the ionization level, one should find
a dopant with low valence p orbital energy (more electronegative), preferably at
the anion site. Because the wave function of the VZn has a large distribution on the
neighboring O atomic sites (Figure 13.13a), replacing one of the neighboring O
atoms by the more electronegative F (the F 2p level is 2.1 eV lower in energy than the
O2p level, see Figure 13.10) is expected to reduce the energy level of VZn. The binding
energy between the FO single donor and theVZn double acceptor is also expected to be
large. Furthermore, this defect complex pair VZn þ FO contains only one acceptor, so
there will be no acceptor–acceptor repulsion to raise the ionization level; and (ii) we
notice that one of the reasons that the NO defect level is deep in ZnO is because the
N 2p level strongly couples to the nearest-neighbor Zn 3d orbitals (Figure 13.13c),

Figure 13.12 (online colour at: www.pss-b.com) Illustration of the interaction between the single
donor and the double donor states associated with BrTe and SnZn in the formation of complexes
BrTe–SnZn in ZnTe.
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which both have t2 symmetry in this tetrahedron environment. If we can replace the
Zn atomby an isovalentMg atom that has a similar atomic size as Zn but no occupied
d orbital, the defect transition energy level of NO þ nMgZn should be lower than that
of NO in ZnO. The effect should be most efficient for n¼ 4, when the tetrahedral
environment around NO is preserved and no level splitting occurs.

Figure 13.13b shows the charge density plot of the VZn þ FO defect level. When F
is introduced, it creates defect levels inside the valence band, removing one of the
oxygen dangling-bond contributions to the acceptor level and making the transition
energy lower. The calculated (0/�) transition energy level of VZn þ FO is 0.16 eV,
which ismuch smaller than the corresponding (�/2�) transition energy level of VZn

at 0.34 eV. It is also lower in energy than the (0/�) transition energy level of VZn at
0.18 eV. The calculated VZn þ FO binding energy is �2.3 eV, indicating that the
defect pair is very stable with respect to the isolated defects. This large binding energy
can be understood by noticing that to form the defect complex, FO donates one of its
electrons to VZn, which results in a large Coulomb interaction between V�

Zn and Fþ
O .

Based on this study, we believe that adding a small amount of F in ZnO to form
a VZn þ FO defect pair is beneficial to p-type doping in ZnO. However, we also want
to point out that FO itself is a donor, so toomuch FO (more than the amount of VZn) in
the sample can over compensate the acceptors.

Figure 13.13d shows the defect level charge density of NO þ 4MgZn. Compared to
NO þ 4ZnZn, we see that the cation d character is removed and the defect level is
more localized on the N atomic site. The calculated (0/�) transition energies are
0.29 eV for NO þ MgZn and 0.23 eV for NO þ 4MgZn eV, shallower than that for NO.

Figure 13.13 (online colour at: www.pss-b.com) Charge density plot of defect levels in ZnO:
(a) VZn, (b) VZn þ FO, (c) NO, and (d) NO þ 4MgZn.
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However, the calculated binding energy for NO þ MgZn is positive at 0.3 eV,
indicating that N does not like to bind with Mg in ZnO. This is because the N�Zn
bond is stronger than the N�Mg bond. Our calculations show that both N�Zn and
Mg�O bonds are shorter than the Zn�O bond, but the N�Mg bond length is longer
than the Zn�O bond length. However, for ZnMgO alloys with relatively high Mg
concentrations, the opportunity to form NO þ nMgZn is reasonably high due to the
entropy contribution. Furthermore, the VBM of the ZnMgO alloys is similar to that
of ZnO, because the wave function is more localized on the ZnO region. This may
explain why some ZnMgO alloys can be doped p-type [39]. Further lowering of the
acceptor transition energy level is expected if we replace Mg by Be, because the Be
2p orbital energy is much lower than the 3p orbital of Mg (Figure 13.10). Indeed, we
find that the (0/�) transition energy levels of NO þ BeZn andNO þ 4BeZn are at 0.22
and 0.12 eV, respectively.

Other successful co-doping schemes include the one demonstrated by
Limpijumnong et al. [36] who show that AsZn–2VZn in ZnO creates relatively shallow
acceptor levels. In this complex, the shallow acceptor level is realized because the two
VZn acceptors are connected by the AsZn (or PZn) antisite donor through a cation
sublattice; so the separation between the two VZn is large and the level repulsion
between them is weak.

13.5.6
Universal Approaches Through Impurity-Band Doping

We recently proposed a universal approach to overcome the long-standing doping
polarity problem for WBG semiconductors [22]. The approach is to reduce the
ionization energies of dopants and the spontaneous compensation from intrinsic
defects by creating a passivated impurity band, which can be achieved by introducing
passivated donor–acceptor complexes or isovalent impurities. In this case, the
ionization energy is reduced by shifting the band edge through the impurity band,
which is higher than the VBM or lower than the CBM, rather than through the
shifting of defect energy levels.When the same element is used to create the impurity
band and as dopant, the ionization energy is always small. Furthermore, due to
a smaller Fermi level shift, charge compensation is also reduced. Our density-
functional theory calculations demonstrate that this approach provides excellent
explanations for the available experimental data of n-type doping of diamond and
p-type doping of ZnO, which could not be understood by previous theories. In
principle, this universal approach can be applied to any WBG semiconductors, and
therefore, it will open a broad vista for the use of these materials. Our concept agrees
well with the observation by Kalish et al. [40], who suggested that impurity bands
could play a role in co-doped diamond.

We first demonstrate our approach for n-type doping in diamond. It is known that
n-type doping of diamond is extremely difficult because the donor levels are usually
0.6 eV or deeper below the CBM for most dopants such as N and P [41, 42]. Some
n-type diamonds have been reported by usingNandPas dopants and themechanism
has been studied theoretically. However, themost exciting n-type doping of diamond
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in the last few years is the co-doping of B with deuterium. It is reported that through
this co-doping, n-type diamond has been realized with an activation energy of about
0.2–0.3 eV [3].

We now explain how and why our new concept can explain the experimental
results of n-type doping by deuteration of B-doped diamonds. It is reported that the
deuteration of B-doped diamond undergoes two clear steps: (i) the passivation of
B acceptors by deuterium and (ii) the excess deuterium doping that leads to the
formation of shallowdonors. The experiments suggest strongly that (B,D) complexes
are responsible for the shallow donors; here, D indicates deuterium. In our
calculation, we use H for deuterium. Our calculation shows that the ionization
energy level for an isolated H in diamond is about 2.8 eV below the CBM, which is
consistent with the calculated results reported by others [43]. Isolated B þ 2H
complexes in diamond have also been found theoretically to be deep donors [44].
Our calculations reveal that the passivated (B þ H) complexes generate fully unoc-
cupied impurity bands, which lie about 1.0 eV below the host CBM. An isolated H
atom in diamond has two low-energy sites: bond center (C�H�C) or anti-bond
(C�C�H) sites. When B atoms are available in diamond, H atoms preferentially
bond to B atoms, because in their mutual presence, B atoms are negatively charged
and H atoms are positively charged. The energy of the bond-center configuration is
lower than the anti-bond configuration because an Hþ ion prefers to sit at a high
electron-density site. Figure 13.14 shows the calculated total density of states (DOS)
for pure diamond host (green curve) and a supercell containing a (B þ H) complex
(red curve), with the B–H–C configuration. It reveals clearly that the formation of
a passivated (B þ H) complex does not change the basic electronic structure, but
only generates an unoccupied impurity band below the CBM. Our results, therefore,

Figure 13.14 (online colour at: www.pss-b.com) Calculated DOS for pure diamond host (green
curve) and a supercell containing a (B þ H) complex (red curve), with the B–H–C configuration.
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suggest that thefirst step of the deuteration of B-doped diamonds is to passivate the B
acceptors, and create the fully unoccupied impurity bands below the CBM.

When excess deuterium/H atoms are available after the first step, they will start
to dope the passivated system, i.e., they effectively dope the new host with the
unoccupied impurity band, rather than the original conduction band. Thus, in
calculating the ionization energy, the term eCCBM(host) in Eq. (13.4) should now be
replaced by the impurity-band minimum (IBM), eCIBM. In other words, the transition
now occurs between the H defect levels and the unoccupied impurity bands, rather
than the original conduction bands. As a result, the transition energy can be reduced
dramatically.

For H doping in the (B þ H)-passivated diamonds, the excess H atoms bind to
the (B þ H) complexes, forming (H–B–H) triplets. For charge-neutral H atoms, the
lowest energy configuration is shown in Figure 13.15a, where the excess H is at the
B antibonding site. We call this configuration (H–B–H)–AB. When the excess H
atom is positively charged (q¼ þ 1), the fully relaxed structure is shown in
Figure 13.15b. We see in Figure 13.15b that the Hþ ion at the antibonding site
becomes energetically unstable, and it moves to a bond-center site with high
electron density to lower the Coulomb energy. This atomic displacement results
in significant bond rearrangements and a large energy lowering of the charged
defect (�1.8 eV), which leads to significant reduction of the ionization energy [see
Eq. (13.4)]. The calculated e(0/þ ) transition energy level is 0.3 eV below the
unoccupied impurity-band edge. We also studied a metastable (H–B–H)–BC triplet
defect, where both H atoms are at the puckered B–C bond-center sites. The atomic
configurations for neutral and charged defect complexes are shown in Figure 13.15c
and d, respectively. This configuration is about 0.6 eV higher in energy than the
(H–B–H)–AB complex due to strong Hþ–Hþ Coulomb repulsion; but the calcu-
lated transition energy level is 0.2 eV, which is 0.1 eV lower than that for the
(H–B–H)–AB complex due to less crystal-field splitting.

The calculated transition energies agree very well with the experimentally mea-
sured ionization energies, suggesting that the second step of deuteration of B-doped
diamond is to effectively dope the (B þ H) impurity bands. This new concept,
therefore, explains why (B, H) co-doping can create shallow donors in diamonds.
It should be noted that to form the impurity bands and have reasonable transport
properties, a critical concentration threshold is needed. Furthermore, the edge of the
impurity band depends on the concentration of B atoms. The higher B concentration
results in a more-broadened (B þ H) impurity band. Consequently, the ionization
energy will be reduced. This explains another experimental observation, i.e.,
diamonds with a higher B concentration exhibit shallower donor levels.

Our approach can also be applied to explain p-type doping of ZnO. As discussed
above, p-type doping of ZnO is difficult. However, Ga and N co-doping has produced
good p-type ZnO [8, 9]. The dopingmechanism is not well understood. Most reliable
theoretical calculations predicted that the ionization energy for N acceptors in ZnO is
about 0.4� 0.1 eV above the VBM [21, 33, 42]. But the experimentally measured N
acceptor ionization energy in p-type ZnO is much shallower, only 0.1–0.2 eV above
the VBM [6, 7]. The conventional co-doping concept cannot explain the discrepancy
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because the calculated ionization level of an isolatedGa þ 2N impurity is still deep, at
about 0.4 eV.

Here, we show that to successfully use Ga and N co-doping to obtain p-type ZnO,
the first step is to form passivated stoichiometric (Ga þ N) complexes, and create
a fully occupied impurity band above the VBM of ZnO. Ga and N bind together
strongly in ZnO because they passivate each other. Figure 13.16 shows the calculated
total DOS for pure ZnO host (blue curve) and a system containing a (Ga þ N)
complex (red curve). It reveals clearly that the formation of a passivated (Ga þ N)
complex does not change the basic electronic structure, but only generates an
additional fully occupied band above the VBM. When excess N atoms are available,

Figure 13.15 (online colour at: www.pss-b
.com)Relaxed structures for B þ 2Hcomplexes
in diamond with charge-neutral and þ 1
charged states. The blue balls are C atoms. The
red balls are B atoms. The green balls are H

atoms. (a) Neutral state for complex
(H–B–H)–AB, (b) þ 1 charged state for
complex (H–B–H)–AB, (c) neutral state
for complex (H–B–H)–BC, and (d) þ 1
charged state for complex (H–B–H)–BC.
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they will dope the passivated system. The transition will occur between the N defect
levels and the fully occupied impurity bands, rather than the original valence bands.
Thus, the term eCVBM(host) in Eq. (13.3) should now be replaced by the impurity-band
maximum, eCIBM.

Previous calculations suggested that for the Ga þ 2N complexes, the first N
occupies the first nearest-neighboring O site of the Ga, which occupies a Zn site [34].
The second N occupies the second nearest-neighboring O site. This N atom does not
bind directly to the Ga atom. We call this configuration (N–Ga–N)–A. However, our
calculations reveal that the excess N atoms bind to the (Ga þ N) sites, forming

Figure 13.16 (online colour at: www.pss-b.com) CalculatedDOS for pure ZnO (green curve) and a
supercell containing a (Ga, N) complex.

Figure 13.17 (online colour at: www.pss-b.com) Relaxed structures for (a) configuration A and (b)
configuration B.
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a (N–Ga–N)–B complexwith bothN atoms occupying the first nearest-neighboringO
sites of the Ga atom. The relaxed structures for A and B configurations are shown in
Figure 13.17a and b, respectively. The B configuration is about 0.5 eV lower in energy
than theAconfiguration.Wehave calculated the acceptor ionization energies for both
configurations, considering effective doping of the passivated (Ga þ N) impurity
bands. The calculated ionization energies are 0.2 and 0.1 eV for configurations A and
B, respectively. Our results, therefore, are able to explain the puzzling experimentally
measured ionization energies for N acceptors. Again, we want to point out that to
form (Ga þ N) impurity bands and have reasonable transport properties, critical Ga
andNconcentrations are needed. The transition energy is also expected to be reduced
in the ZnO with higher Ga concentration.

With our approach, we are able to explain experimentally observed B and H co-
doped n-type diamonds and Ga and N co-doped p-type ZnO, which could not be
understood by previous theories. The physical principle behind this new concept is
clear; that is, we can first create a fully passivated impurity band and then dope the
impurity band. This approach can be applied, in principle, to any WBG semicon-
ductors to overcome the doping polarity problems found in thesematerials. It should
be pointed out that to be successful, the concentration of the defects inducing the
impurity band must exceed a certain percolation limit, so that reasonable transport
properties can be achieved. The small band gap reduction caused by forming an
impurity band can also be easily adjusted by alloying with other elements. For
example, adding a small amount of Mg or Be in ZnO can easily open the band gap
without changing the doping property [45, 46].

13.6
Summary

We have reviewed three main origins for the doping limit in WBG semiconductors,
i.e., (i) low dopant solubility; (ii) deep ionization energy levels; and (iii) spontaneous
formation of compensating defects.Wehave also proposed solutions to overcome the
doping bottlenecks, which include (i) increase defect solubility by defeating bulk
defect thermodynamics using non-equilibrium growth methods such as extending
the achievable chemical potential throughmolecular doping or rasing thehost energy
using surfactant; (ii) reduce defect ionization energy level by designing shallow
dopants or dopant complexes; and (iii) reduce defect compensation and ionization
level by modifying the host band structure near the band edges. The issues related to
the defect calculations are discussed. We believed that the band gap correction is an
important issue in computational defect physics and more studies are needed.
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14
Electrostatic Interactions between Charged Defects in Supercells
Christoph Freysoldt, J€org Neugebauer, and Chris G. Van de Walle

14.1
Introduction

Theoretical calculations have revolutionized our understanding of the doping
behavior in semiconductor materials for electronic and optoelectronic devices
[1, 2]. The advent of density-functional theory (DFT), and, more recently, ab initio
approaches beyond it such as many-body perturbation theory in the GW approxi-
mation [3] or quantum Monte-Carlo methods [4], has enabled us to study the
microscopic details of point defects with almost no a priori assumptions. These
calculations complement experiment in various ways: they not only help to interpret
experimentalfindings and link them to an atomisticmodel of the relevant defects, but
also provide additional data such as formation energies, geometric structures, or the
character of the wavefunctions that cannot be obtained with present-day experimen-
tal methods.

The work-horse of these calculations has been DFT with local or semilocal
functionals [1, 2]. The defect is usually modeled in a supercell, consisting of the
defect surrounded by a few dozen to a few 100 atoms of the host material, which is
then repeated periodically throughout space. This allows to employ the highly
efficient and thoroughly tested computer codes developed for periodic solids [5].
Recent advances in the theoretical framework tend to maintain the supercell models
for the same reason [3, 4]. However, it must be kept inmind that the use of supercells
implies that the isolated defect is replaced by a periodic array of defects. Such a
periodic array contains unrealistically large defect concentrations, resulting in
artificial interactions between the defects that cannot be neglected. These interac-
tions include overlap of the wavefunctions, elastic interactions, and – in the case of
charged defects – electrostatic interaction. The focus of this contribution are the
electrostatic interactions which typically dominate.

A large variety of approaches to control electrostatic artifacts exists in the literature,
as has been reviewed recently by Nieminen [6]. Our aim is not to compare the
different approaches, but to work out explicitly all assumptions that are made to
estimate defect–defect interactions. This allows – at least in principle – to verify each

Advanced Calculations for Defects in Materials: Electronic Structure Methods, First Edition.
Edited by Audrius Alkauskas, Peter Deák, Jörg Neugebauer, Alfredo Pasquarello, and Chris G. Van de Walle.
� 2011 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2011 by Wiley-VCH Verlag GmbH & Co. KGaA.
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of them for any defect ormaterial under consideration, thereby greatly enhancing the
reliability of the method.

Supercell calculations for formally charged systems must always include a
compensating background charge, since the electrostatic energy of a system with
a net charge in the unit cell diverges [7, 8]. It is most common to include a
homogeneous background, which is equivalent to setting the average electrostatic
potential to zero. By increasing the supercell lattice constant L, the isolated defect
limit can be recovered in principle for L ! 1. Nevertheless, the defect energy
converges only slowly with respect to L. The origin of this effect lies in the unphysical
electrostatic interaction of the defect with its periodic images and the background,
decaying asymptotically as q2/L, where q is the defect charge [7, 8]. Its magnitude can
be estimated from the Madelung energy of an array of point-charges with neutral-
izing background [7]. Makov and Payne [8] proved for isolated ions that the
quadrupole moment of the charge distribution gives rise to a further term scaling
like L�3. For realistic defects in condensed systems, however, such corrections, scaled
by the macroscopic dielectric constant e to account for screening, do not always
improve the convergence [9–11]. Therefore, the prefactors have often been regarded
as parameters to be obtained from fitting a series of supercell calculations [6, 9–12].
Unfortunately, such �scaling laws� require large supercells and may include higher
order L�n terms with not well defined physical significance. While it is relatively
straightforward to determine the most slowly decaying terms of the relevant inter-
actions (which give the leading terms in a 1/L expansion), higher-order terms can
have a variety of functional forms. Focussing on electrostatic interactions only,
contributions beyond the 1/L asymptotic limit arise from finite overlap of the defect
charge densities (which have an asymptotically exponential decay), details of the
microscopic screening (which decay faster than 1/L2, but exhibit oscillatory behav-
ior), non-linear effects, and higher-order moments of the charge distributions. They
can however not be separated from the remaining wavefunction overlap errors
(asymptotic exponential decay) and the cell-shape variations usually present in
�scaling law� approaches to increase the number of available supercells. Represent-
ing all these contributions by one L�n term (or a few of them) is clearly a very strong
reduction of the underlying complexity and and removes any physical meaning from
the L�n prefactor even if individual contributions exhibit such an asymptotic limit.
The loss of significance is apparent already for the L�n term in the standard scaling
law approach: the fitted prefactor usually deviates from the predictions of macro-
scopic electrostatic theory, which – at least in the limit of sufficiently large supercells –
is the physically correct limit for any localized defect.

Recently, amodified version of theMakov–Payne corrections has beenproposed by
Lany and Zunger [13, 14]. The approach has been employed very successful in
practice.Apotential drawback is that the approachproposed inRef. 14doesnot always
recover the asymptotic 1/L limit ofMakov–Payne theory. Significant efforts have been
undertaken to assess the applicability of the existing correction schemes, but no clear
picture regarding applicability and limitations has emerged so far [9–11, 15, 16].

As an alternative to the homogeneous-background approaches, several authors
suggested to modify the computation of the electrostatic potential in the DFT
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calculation itself to remove the unwanted and unphysical interactions [17–20]. These
approaches can also be regarded as the introduction of a neutralizing surface charge
at the boundary of the supercell instead of the homogeneous background when the
potential is calculated. Complications arise if the boundary cuts through thematerial,
since the material will try to screen away the electric-field discontinuities.

Recently, we have proposed a scheme that accounts for the electrostatic screening
of the defect right from the beginning. A major advantage is that all approximations
are well defined and easily verified by the actual calculations. The aim of this paper is
to provide a careful discussion of the underlying assumptions, provide examples how
the approach can be used in practice, and analyze its performance with respect to
supercell size convergence. The aim is not to give a detailed overview over all the
alternative approaches, since this would go well beyond the scope of the present
paper. A recent overview on alternatives can be found in Ref. [6].

The remainder of this chapter is organized as follows. In Section 14.2, electro-
statics and screening in real materials is discussed. We will then summarize in
Section 14.2.1 the key steps to derive an explicit and exact expression for the
electrostatic artifacts in the supercell approach and discuss tractable approximations
that yield a parameter-free correction scheme for these artifacts. Results for two
model point defects that have been used already by other groups to study supercell
size convergence, namely theGa vacancy inGaAs and the vacancy in diamondwill be
discussed in Section 14.3.

14.2
Electrostatics in Real Materials

When a localized charge q(r) (total charge q) is introduced into condensed matter, it
attracts a screening charge of opposite sign that reduces its long-range potential to q

er
where r is the distance from the localized charge.1) It immediately follows that the
amount of the screening charge is ð1� 1

eÞq. For a finite system, the total charge q is
conserved, but the screening charge is expelled to the surface. In an infinite system,
on the other hand, the screening charge is almost homogeneously taken from the
host material, modulated only by the underlying atomic structure. It is worthwhile to
note that in the idealized case of an isolated charge in an infinite covalently bound
semiconductor, the total screening charge inside any finite distance is non-zero, or in
other words the screening process does not conserve charge in any finite region. This
surprising result is a direct consequence of the quantum-mechanical, truly non-local
nature of screening in condensed matter [21, 22]. In an ideal ionic material with
separated polarizable ions, the screening is effectuated by induced dipoles. Even
though the charge on each ion is conserved, there is a net flow of charge along the
radial axis. For large distances, the spherically averaged charge distribution, which is
relevant for the distance-dependence of screening, approaches the one of an ideal

1) In the following, we will define the center of the charge such that the dipole moment of ðqðrÞ�qdðrÞÞ
becomes zero.
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homogeneous (jellium-like) semiconductor. The reason is that no matter how well
the ions are separated in three-dimensional space, since the radial spacing between
the ionic shells becomes arbitrarily small with increasing distance, they will neces-
sarily overlap when projected onto the radial coordinate.

In a periodic array of defects the screening charge is taken from the supercell. In
consequence, the average electron density far from the defect is shifted from its bulk
value by qðe�1Þ

eV where V denotes the volume of the supercell. This effect is indeed
visible in defect calculations in the framework of DFT.We illustrate the difference in
the defect charge before and after screening inFigure 14.1 for the vacancy indiamond
in the 2 – charge state. The unscreened charge density

qðrÞ ¼ 2jydðrÞj2 ð14:1Þ
results from filling the sixfold degenerate defect state yd with two additional
electrons. It is clearly localized. The screened charge density is obtained from the
change in the self-consistent charge density with respect to the neutral state, and
includes all screening effects. It is completely delocalized and indeed approaches the
homogeneous limit qðe�1Þ

eV far from the defect.
In order to understand the quantum-mechanical nature of screening in a real

material in more detail, it is illuminative to decompose the supercell error in the
defect formation energy into the energy terms of the underlying electronic-structure
calculation such as Hartree energy, kinetic energy, exchange–correlation energy, etc.
We report such an analysis in Appendix A for a model system that avoids the
electronic-structure complications of real defects. It reveals that the electrostatic effects
are not restricted to the energy contributions formally associated with electrostatics, but are
distributed to all parts of the total energy due to self-consistency. Recovering the
electrostatic energy from the self-consistent electron density employing density-
based expressions for electrostatic interactionsmight therefore be very difficult if not

Figure 14.1 (online color at: www.pss-b.com)
Comparison of defect charges before and after
screening (see text) for the 2� vacancy in
diamond in a 64-atom supercell. The defect is

located at z¼ 0 with a periodic image at
z¼ 13.3 bohr. The limit of a homogeneously
distributed screening charge is indicated by the
black dash-dotted line.
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even impossible. We therefore provide in the following a rigorous and computa-
tionally highly efficient scheme that is based on a recently developed approach [23].

14.2.1
Potential-based Formulation of Electrostatics

In view of the aforementioned difficulties when working with the electron density, it
turns out to be advantageous to express electrostatic interactions in terms of the
unscreened charge density q(r) and the electrostatic potential VðrÞ. To be more
specific, let us consider the interaction of a single defect qðrÞ with one of its periodic
images qRðrÞ ¼ qðr�RÞ. Figure 14.2 depicts this situation graphically. The electro-
static interaction is given by

E ¼
ð
d3rqðrÞV ½qR�ðrÞ: ð14:2Þ

Here, V ½qR� is the potential due to the presence of the charge qR including all the
screening effects. At a sufficient distance from the defect center, the potential
approaches its macroscopic value of 1=er. At which length scale the macroscopic
behavior is reached, depends on the localization of the charge and the characteristic
screening length of the material under consideration. The potential is further
modulated by the effects of microscopic screening (local field effects), in particular
due to the underlying atomic structure. However, for the electrostatic energy
according to Eq. (14.2) the microscopic details tend to average out. The same is
true for the details of the charge distribution if the potential is sufficiently smooth.
Note that the modulation amplitude decays faster than 1/r. The potential therefore
becomes smoother as the distance is increased. The electrostatic energy due to the
unphysical interaction of the defect charge with its periodic image can then be
estimated to good accuracy from a simplified model of the charge density and the
long-range potentialVlr. The key advantage of this view on electrostatic interactions is
that reasonable approximations to the charge distribution and the long-range

Figure 14.2 (online color at: www.pss-b.com)
Potential-based formulation of defect–defect
interactions (schematically). Dashed lines
indicate the unscreened defect density of a
defect (left) and its periodic image (right). The

true potential (black solid line) of the image
includes local-field effects (wiggles). The major
part of the interaction can be captured by
simplified models (thin red lines).
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potential are easily found.Moreover, the electrostatic potential is a byproduct of aDFT
calculation and therefore available at no additional computational cost.

Neglecting the influence of microscopic screening, which typically takes place at a
length scale of a few bond lengths, the long-range potential is given by

V lrðrÞ ¼
ð
d3r

qmodelðr0Þ
ejr�r0j : ð14:3Þ

It remains to choose an appropriate model charge density qmodel. For strongly
localized defects, a point charge or a Gaussian with a small width (�1 bohr) is for
most cases a reasonable choice. For very delocalized states, amore advancedmodel is
needed and will be discussed in Section 14.3.2.

In addition to the interaction of the defect with its periodic images, also the
interaction with the homogeneous backgroundmust be taken into account. For this,
the potential-based expressions for the electrostatic energy are ideally suited. There is
no need to introduce approximations here since the homogeneous background
density and the defect-induced potential are known exactly. However, the defect
images and the background cannot be considered separately as the individual energy
contributions would diverge. Instead, we will separate all interactions into a long-
range part, that is treated at the model level, and a remaining short-range part. The
corresponding expressions will be derived in the following.

14.2.2
Derivation of the Correction Scheme

In this section, tractable expressions are derived for the electrostatic interactions
introduced by the supercell approximation. The key idea is to exploit that long-range
interactions can be captured with a simplified model as described in Section 14.2.1,
and correct for the short-range interactions beyond this in a consistent way.

We start from the defect-induced potential

V ¼ Velsðcharged defectÞ�VelsðreferenceÞ: ð14:4Þ
Here, Vels denotes the DFTelectrostatic potential, i.e., the sum of the external (ionic)
local potential and the Hartree potential. The scheme can of course be applied to any
other electronic-structure method that provides the electrostatic potential. We will
start with the neutral defect as reference and discuss the transition to the bulk
reference below.

V can be formally split into a long-range and short-range part, i.e.,

V ¼ V lr þV sr; ð14:5Þ
which implicitly defines Vsr from V and Vlr. The long-range potential Vlr is obtained
from the model charge density qmodel via Eq. (14.3). If qmodel is well chosen and the
supercell is largeenough,Vsrdecays tozerowithin thesupercell. In thiscase, theshort-
range energy of the defect charge does not differ between the isolated defect and the
periodic array of defects. For strongly localized defects, a Gaussian model charge is
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usually sufficient toensurea fastdecayofVsr.However, theperiodicarrayalso includes
a neutralizing background n¼� q/V, with a short-range interaction energy

ð
d3rnV srðrÞ ¼ �q

1
V

ð
d3rV srðrÞ

� �
; ð14:6Þ

between the background and the defect.
The long-range potential for the periodic array (including the background) is

obtained from the Fourier transform of Eq. (14.3) as

~V lrðG 6¼ 0Þ ¼ 4pqmodelðGÞ
ejGj2 ; ~V

lrð0Þ ¼ 0: ð14:7Þ

Note that the homogeneous background does not induce local-field effects; its only
role is to cancel the divergence of the G¼ 0 term [23]. The long-range interaction
energy can then be estimated from the screened lattice energy (Madelung energy) of
the model charge [23]. For spherical charge densities, it can be easily computed in
reciprocal space via

Elat½qmodel� ¼ 2p
eV

XjGj�Gcut

G 6¼0

fqmodelðjGjÞg2
jGj2 � 1

pe

ðGcut

0

dgfqmodelðgÞg2; ð14:8Þ

where G runs over the reciprocal lattice vectors. The first term in Eq. (14.8) is the
energy of the periodic array in its own potential, with a prefactor of 1

2 to account for
double counting. The second term removes the electrostatic interaction energy of the
model charge with itself, that is contained in the first term.

With these ingredients, the formation energy of a charged defect in a supercell can
be expressed as [23]

Eq
f ¼ E0

f þDEisoðqÞþElat½qmodel��qD; ð14:9Þ

whereE0
f denotes the formation energy of theneutral defect in the same supercell and

DEisoðqÞ the difference in formation energy between an isolated charged defect and
the neutral one. The alignment-like term

D ¼ 1
V

ð
d3rV srðrÞ ð14:10Þ

is obtained from the short-range potential

V sr ¼ ~VelsðchargedÞ�~V
elsðneutralÞ�~V

lr þDV ; ð14:11Þ
where the alignment constant DV is chosen such that Vsr decays to zero in between
the defects [23]. We demonstrate the alignment in Figure 14.3 for the Ga 3 – vacancy
in GaAs referenced to the bulk potential (the change of reference from the neutral
defect to the bulk is discussed below). For this, the potentials were averaged over the
xy plane and plotted as a function of z. The defect-induced potential shows a parabolic
shape in between the twodefects [23]. This shape iswell reproduced by the long-range
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model, in this case a 1 bohr wide Gaussian. The difference between the two reaches a
plateau at C ¼ �DV ¼ 0:03eV. The appearance of the plateau clearly demonstrates
that themodel has correctly reproduced the long-range tail of the defect potential. Any
remaining curvature (apart from the unavoidable modulation due to the underlying
atomic structure and/or the screening response) would indicate that the long-range
modeling should be improved, e.g., by choosing a model charge that is derived from
the actual defect wave function. It should be emphasized that the main approxima-
tion in the scheme lies in the neglect of the details ofmicroscopic screening and their
coupling to the details of the actual unscreened charge distribution beyond qmodel for
the long-range interactions. These neglected details are by definition cast intoVsr. The
validity of the central approximation can therefore be easily controlled and checked by
verifying that Vsr is well behaved.

We now proceed to replacing the neutral defect reference by the bulk, which
constitutes the reference of interest in most practical applications. As shown in
Appendix B, the potential alignment constantDV and the energy alignment constant
D are related via

D ¼ DV : ð14:12Þ
For the neutral defect reference discussed up to now, this can be seen as follows:

the inclusion of the homogeneous background in the Hartree energy by setting
VðG ¼ 0Þ to zero implies that the average potential does not change between the
neutral and the charged defect. Likewise, the average Vlr vanishes in this alignment
convention. Eq. (14.12) then immediately follows from Eq. (14.11). Equation (14.12)
remains valid if the neutral defect reference is replaced by another one, notably the
bulk, even if the average alignment changes. The reason is that the alignment of the
potentials reflects the dependence of the total energy (and derived quantities) when
the formal charge is changed. In contrast to the original formulation [23], where it was
incorrectly stated that Eq. (14.10) was to be used for any reference potential, using
Eq. (14.12) for the alignment guarantees full internal consistency as outlined
in Appendix B.

Figure 14.3 (online color at: www.pss-b.com)Potentials (see text, averaged along x, y) for aV3�
Ga in a

3� 3� 3 cubic GaAs supercell. The defect is located at z¼ 0 bohr with a periodic image at
z¼ 31.38 bohr.
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The formation energy of an isolated defect with charge q then becomes

Eiso
f ¼ EDFTðdefectþ bulkÞ�EDFTðbulkÞ�Elat½qmodel�

þ qDV�
X

nsms þ qðEFermi þ evbmÞ; ð14:13Þ

where we also included the reference chemical potentials for the chemical species s
added (ns> 0) or removed (ns< 0) to form the defect. EFermi is the Fermi energy
relative to the valence bandmaximum (vbm), and evbm is the valence bandmaximum
as obtained from the bulk reference calculation.

14.2.3
Dielectric Constants

The long-rangemodeling requires the dielectric constant e of thematerial at hand. To
be consistent with the theoretical framework, the dielectric constant must be
computed. This can be done by perturbation theory [24, 25], or by a direct
approach [22, 26]. The direct approach is straightforward to apply. For this purpose,
a sawtooth potential Vsaw is applied to an elongated cell [22, 26], typically a 1� 1� 6
supercell of the simple-cubic bulk cell. The change in the effective potential DVSCF

then also shows a sawtooth-like shape, however reduced by the dielectric constant,
see Figure 14.4. By comparing the slope of the applied and effective potentials
between the turning points, the dielectric constant can be determined as

e ¼ qV saw=qz
qDVSCF=qz

: ð14:14Þ

The direct approach has the advantage to provide immediate insight into the
linearity and the screening length of the perturbation applied. It yields very accurate

Figure 14.4 (online color at: www.pss-b.com) Determination of the dielectric constant of GaAs.
Applying a (smoothened) sawtooth potential Vsaw (blue) to the material induces a changeDVSCF in
the self-consistent potential (red). The dielectric constant is given by qVsaw

qz = qDVSCF

qz � 12:7.
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results (only 1–2% scatter between different cells and different amplitudes) if the
following points are observed: (i) The total height of the sawtooth potential must not
exceed the bandgap to avoid a dielectric breakdown, i.e., transfer of valence electrons
from near the top of the potential to conduction band states near the bottom of the
potential. (ii) The sawtooth potential must be adapted to the symmetry of the system.
In particular, turning points should lie on symmetry planes to avoid the induction of
additional dipoles at the turning points. If this is not observed, the rising and falling
parts of the sawtooth potentialmay yield different apparent dielectric constants (even
negative ones). (iii) The induced potential fluctuations are very soft modes. There-
fore, the convergence criteria for the self-consistent field calculations must be very
tight to yield accurate results. A helpful check is to compare the dielectric constants of
the rising and falling parts of the potential. (iv) The induced potentials aremodulated
by the underlying atomic structure. In order to average out the modulations (also
known as local-field effects), the slopesmust be determined over full periods of these
modulations. We also note from Figure 14.4 that there are deviations from the
macroscopic screening behavior close to the turning pointswhich extend over a range
of a0/2. The deviations reflect the finite screening length, and must of course be
excluded from the slope fitting.

If ionic relaxations are taken into account for the defect calculation, the
dielectric constant employed for the correction scheme must also reflect ionic
screening. In the sawtooth approach, this implies that ionic relaxation must be
included [27].

14.3
Practical Examples

In the following, we discuss the application and performance of the correction
scheme for two representative examples. Specifically, wewill consider theGa vacancy
in GaAs as a deep, well localized defect, and the carbon vacancy as a shallow, rather
delocalized defect state to test and discuss the limits of the corrections. The
calculations were performed in the framework of DFT in the local-density approx-
imation, employing plane waves and normconserving pseudopotentials as imple-
mented in the SPHInX code [28]. Aplane-wave cutoff of 20Ry for GaAs and 40Ry for
Cwas found to yield sufficient accuracy. In order to disentangle the electrostatic from
strain effects, the ions were not relaxed. The supercell artifacts due to wavefunction
overlap, on the other hand, cannot be avoided, but were minimized by a constant
occupation scheme [2].

14.3.1
Ga Vacancy in GaAs

The first example is the Ga vacancy in GaAs. It shows a deep level in the band gap
that supports – in its unrelaxed geometry – charge states between 0 and 3–. The
corrections are obtained from a 1 bohr wide Gaussian model charge. The calculated
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formation energies for the four charge states are displayed in Figure 14.5 for a series
of supercells. The uncorrected formation energies show a strong dependence on the
supercell size. Since electrostatic interactions scale with q2, it is most prominent for
the q¼� 3 case shown in Figure 14.5a. This dependence is largely removed by
including the correction energies according to Eq. (14.13). The remaining scatter in
the data is �0.1 eV, see Figure 14.5b. It does not scale with the charge state and is
present even in the neutral state. This suggests that other than electrostatic effects
are responsible. Since strain effects have been excluded by not considering ionic
relaxation, it is probably caused by the overlap of the wavefunctions and the
resulting Pauli repulsion. Clearly, corrections aiming at electrostatic interactions
cannot and should not capture such effects.

Figure 14.5 (online color at: www.pss-b.com) Formation energies of theGa vacancy for a variety of
supercells. The Fermi energy is set to the valence band maximum. (a) Comparison of uncorrected
and corrected value for q¼� 3. (b) Corrected values for q¼ 0. . .�3.
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Figure 14.6 (online color at: www.pss-b.com)
Localization analysis of the carbon vacancy.
Shown is the xy-plane average of (a) the defect
wavefunction, and (b) the defect-induced
potentials. The defect is located at z¼ 0 with a
periodic image at z¼ 26.6.(a) Shape of the
defect state jyðrÞj2 for two different charge

states averaged over the Brillouin zone and the
three defect bands (solid lines). (b) Comparison
of the defect-induced potential for the 2þ case
without long-range corrections (black line), with
long-range corrections from a 1 bohr wide
Gaussian (red dashed), and from the fitted
exponential-tail model (green).

14.3.2
Vacancy in Diamond

The second example is the vacancy in diamond. This defect has been used previously
to study finite-size effects in supercells by Shim et al. [10]. The authors found that the
2� charge state is easily corrected by a Makov–Payne-like scheme, while the 2þ
charge state shows a completely different behavior. This discrepancy was tentatively
attributed to a qualitatively different screening for the two cases [10]. Such defect-
induced changes in the electrostatic screening, however, are expected to converge
proportional to the inverse volume of the supercell if the defect can be regarded as an
impurity with a changed polarizability compared to the host material.
When the correction scheme of Section 14.2.2 is applied to the 2þ case, the

alignment procedure immediately indicates problems to reproduce the long-range
potential, see Figure 14.6b. The �short-range� potential shows a significant over-
correction when a Gaussian charge model is employed. In order to derive an
improved charge model, let us analyze the defect states. In the long-distance limit,
every defect state shows an exponential decay behaviorwith increasing distance of the
defect center. Indeed, as shown in Figure 14.6a, the shape of the 2þ and 2� defect
states of the diamond vacancy reveals a significant contribution of this exponential
tail to the overall wavefunction. While the states show a close match near the defect
center, the exponential decay differs significantly for the two states. This can be
attributed to the position of the levels in the band gap. The 2� Kohn–Sham level is
located around midgap (cf. Figure 14.7, the Kohn–Sham level lies half-way between
the –/2� and 2�/3� transition levels of the corresponding supercell). The state thus
decays very quickly. The 2þ level is close to the valence band, and the associated state
then starts to hybridize with the valence band states, leading to a delocalization that is
sizeable and cannot be neglected even at the boundaries of the supercell.

252j 14 Electrostatic Interactions between Charged Defects in Supercells



Figure 14.7 (online color at: www.pss-b.com) Charge transition levels for the unrelaxed vacancy in
diamond as obtained from different supercells (size of 64, 216, 512 atoms) without correction
compared to the corrected ones (1).

To take the exponential tail into account, the defect charge can be modeled by the
radial ansatz

qðrÞ ¼ qxNce
�r=c þ qð1�xÞNbe

�x2=b2 : ð14:15Þ

Nb andNc denote the normalization constants for the exponential and the Gaussian,
respectively. The decay constant c and the tail weight x is obtained by fitting the
wavefunctions of the 4� 4� 4 (512 atom) cell. The exact value of b turns out to be
relatively unimportant as long as the Gaussian stays localized; here, a value of 2 bohr
was used. To ensure that this ansatz can be generally applied, we used it for all charge
states, even though a Gaussian-only model works reasonably well for the more
localized mid-gap states 1 � q � �2. Interestingly, all states have essentially the
same tail weight (x¼ 54–60%). The decay constants, on the other hand, sensitively
depend on the energetic distance to the valence or conduction band edge. They are
listed in Table 14.1 along with the uncorrected and corrected values for cubic
supercells of 64, 216, and 512 atoms. It is apparent that the exponential-tail model
can be equally applied to all charge states. The supercell corrections reduce the errors
in the calculated formation energies from up to 7 eV (4�, 64 atoms) to �0.1 eV. The
charge transition levels derived from the supercells without the corrections as well as
from the extrapolated values for the isolated defect are visualized in Figure 14.7. It is
noteworthy that the corrections push the transition levels to high charge states into
the valence band (2þ /þ ) and the conduction band (2�/3� and 3�/4�), respec-
tively. The occurence of high charge states thus turns out to be an artifact of the small
supercells. This tendency to push the charged levels away from the neutral one is a
general feature of supercell corrections whenever the Madelung term dominates.
The examples shown here illustrate the importance of supercell corrections for

predicting the correct position of defect levels, sometimes even qualitatively. The
charge correction scheme presented here is able to remove the dominating electro-
static artifacts from finite-size supercell calculations. In combination with the
constant-occupation scheme, the agreement between different supercells is typically
on the order of 0.1 eV, and thus considerably smaller than the errors that arise from
the DFT framework employed. We therefore expect that major improvements over
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the present state-of-the-art in defect calculations will come from the application of
advanced electronic-structure methods in the supercell approach.

14.4
Conclusions

In this paper, we have presented an analysis of supercell artifacts in charged point
defect calculations arising fromelectrostatic interactions. For the electrostatics in real
materials, an exact, potential-based formulation overcomes the limitation of previous
correction schemes that rely on a priori simplifications such as the restriction to
macroscopic screening and point-like charge densities. A new correction scheme
emerges from this analysis. The scheme itself requires no empirical parameters or
fitting procedures, and requires only a single supercell calculation. It employs certain
simplifications to model the long-range interaction, but in contrast to other
approaches, the validity of these approximations can be verified immediately by
visually inspecting the short-range potential. If needed, the underlying chargemodel
can be refined in a straightforward manner. It should be emphasized that the
correction schemedoesnot rely onDFT, but canbe applied to any electronic-structure
theory that provides the electrostatic potential.Webelieve that this approachmayhelp
to reduce the errors induced by approximate correction schemes and thus extend the
applicability of advancedmethods to chargeddefects, even if the supercells that canbe
afforded with these methods introduce significant electrostatic interactions.
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Appendix
(A) Energy Decomposition of Electrostatic Artifacts in DFT
In order to understand the screening behavior inmore detail, let us consider amodel
system that avoids the electronic-structure complications of real defects. For this
purpose, a Gaussian charge is placed in an interstitial site in GaAs. (As anti-bonding,
tetrahedrally surrounded byAs.) Acharge of�1 ensures that thismodel charge repels
the surrounding electrons, preventing the formation of any localized electronic
bounding states. We then calculated the self-consistent total energy within DFT in 22
different supercells using norm-conserving, non-local pseudopotentials. The calcu-
lated defect formation energy

Ed ¼ EtotðdefectÞ�EtotðbulkÞ ð14:16Þ
depends on the supercell. Figure 14.8 shows a decomposition of how the error in the
formation energy is related to the various contributions to the Kohn–Sham func-
tional. For this, we plot the change in each energy contribution with respect to the
corresponding bulk as a function of the error of the defect formation energy with
respect to the isolated case, i.e., the supercell error. We note that positive supercell
errors occur for elongated cells, negative for cubic supercells. The energy of
the isolated case was obtained with the defect correction scheme described in
Section 14.2.2. If a single energy contribution were responsible for the supercell
error, it would appear as a straight line of slope m¼ 1. It becomes apparent that the
energy contributions vary non-linearly with the supercell error. The electrostatic part

Figure 14.8 (online color at: www.pss-b.com)
Decomposition of the defect formation energy
into the various energy contributions to the
Kohn–Sham functional for different supercells:
kinetic (kin), Hartree þ long-range
pseudopotential (elstat), short-range local
pseudopotential (loc pp), non-local
pseudopotential (nl pp), exchange–correlation

(xc). The supercell error corresponds to the sum
of all contributions (red line), shifted by the
isolated defect limit. The solid curves are
polynomial fits to highlight the trends. Perfect
correlation between an energy contribution and
the supercell error corresponds to a line of slope
m¼ 1.
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of the Kohn–Sham functional can be identified with the sum of Hartree and local
pseudopotential contributions. This sum varies almost linearly with the supercell,
but with a slope of onlym¼ 0.8. In otherwords, the electrostatic part of the functional
accounts for only 80% of the electrostatic supercell error. This highlights that the
electrostatic effects are not restricted to the energy contributions formally associated with
electrostatics, but are distributed to all parts of the total energy due to self-consistency.

(B) Alignment Issues in Supercell Calculations
Depending on the computer code implementation at hand, the treatment of the local
pseudopotential may influence the potential alignment and thus the total energy for
charged systems. It is common practice to split off the long-range part of the
pseudopotential by subtracting the potential of a compensation charge (e.g., a
Gaussian), adding the compensation charge to the charge density used for the
Hartree energy, and correcting for the added self-energy of the compensation
charges [29]. The remaining short-range pseudopotential may now be used for the
electron density only [29] (which is also the case for the SPHInX pseudopotential
code [28] employed for the examples in Section 14.3) or for the neutral �Hartree
density� including the compensation charges, with a corresponding correction term
for each atom [30]. In the latter case, one may alter the alignment of the periodic
superposition of the short-range potentials, and in particular set its average to zero
and thus include the neutralizing background. Only in this alignment convention,
the energy of a charged system becomes independent of the choice of the compen-
sation charge. Otherwise the potential shift acting on the electrons is only compen-
sated in part by the self-energy of the compensation charges.

In this general case, Dmust be determined as follows. The alignment convention
of setting the average of the periodic Hartree potential to zero is the consistent way to
include a neutralizing background in theHartree energy. For the neutral reference,D
then becomes identical to DV : the Hartree alignment convention implies that the
average potential does not change between the neutral and charged defect (the
pseudopotentials and compensation charges are the same in both cases). Likewise,
the average ~V

lr
vanishes in this alignment convention. The identity D ¼ DV

(Eq. (14.12)) then immediately follows from Eq. (14.11). Using Eq. (14.12), we may
now replace the neutral defect reference by any other, notably the bulk, even if the
alignment changes. The crucial point is that the alignment is not changed arbitrarily,
but consistent with the total-energy expressions and quantities derived from it. For
instance, a change in the bulk alignment by an amount A will change DV by þA,
which compensates the shift in the valence band energy evbm ¼ qE

qfvbm
(fvbm is the

occupation number of the valence band maximum) appearing in Eq. (14.13) by
qelectronA ¼ �A. On the other hand, a shift of B in the defect potential (due to altered
compensation charges) will changeDV by�B, but also the total energy of the charged
defect calculation by qB.

Moreover, Eq. (14.12) as the general definition of D allows for changing the ~V
lr

alignment convention defined by Eq. (14.7). In Eq. (14.7), the G¼ 0 component was
set to zero, consistent with excluding theG¼ 0 component in Eq. (14.8). This choice

256j 14 Electrostatic Interactions between Charged Defects in Supercells



corresponds to including the interaction of the model charge with the compensating
background in the lattice energy. The lattice energies of non-overlapping charge
densities therefore depend on the actual shape of the charge distribution. This is
compensated for by a corresponding change in the depth of the short-range potential
according to Eq. (14.11), and thus the �qD term in Eq. (14.9). An alternative is to
modify the definition of theMadelung energy [Eq. (14.8)] and the associated potential
[Eq. (14.7)] consistently. Using the analytic limit

V0 ¼ lim
G! 0

VðGÞ ¼ 2p
e

q2qmodelðgÞ
qg2

����
g¼0

; ð14:17Þ

for the alignment convention, the modified definitions are

~V lrðG ¼ 0Þ :¼ V0; ð14:18Þ

Elat :¼ Elat½Eq:ð15:8Þ� þ qV0: ð14:19Þ
The lattice energy of Eq. (14.19) is corrected for the interaction with the back-

ground density and coincides with the lattice energy of an array of point charges
(provided that the model charges do not overlap in the periodic array). Using
Eqs. (14.18) and (14.19) instead of Eqs. (14.7) and (14.8) removes the shape
dependence of the individual contributions (lattice energy and alignment term) to
the defect energy correction in the non-overlapping case. The realignment nicely
highlights the need for a consistent treatment of energies and potentials in this
context, but is not needed in the practical approach.
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15
Formation Energies of Point Defects at Finite Temperatures
Blazej Grabowski, Tilmann Hickel, and Jörg Neugebauer

15.1
Introduction

A crucial quantity for the ab initio study of point defects is the defect formation
free energy F f(V,T) as a function of volume V and temperature T. The dominant
contribution to F f is due to the zero temperature formation energy Ef ðVÞ ¼
Ff ðV ;T ¼ 0KÞ, which can be calculated at a relatively low computational cost. The
calculation of higher order contributions such as quasiharmonic excitations (¼non-
interacting harmonic vibrations þ effect of thermal expansion; Section 15.2.2.3) and
anharmonic excitations (¼ interacting vibrations; Section 15.2.2.4) significantly
increases the required computational resources. Since these effects are also expected
to yield only a comparatively small contribution to F f they are typically neglected.
Indeed, it is expected that their influence on defect properties in semiconducting
materials is far smaller than the inaccuracies resulting from the band gap problem.
Thus, the majority of defect studies in semiconductors (see Ref. [1] for a recent
review) are based on Ef with only a few exceptions [2, 3].

The situation is likely to change in the near future. Recent progress in the
development of new exchange-correlation functionals [4, 5] and methods going
beyonddensity functional theory (DFT) [6, 7] allows for a highly accurate prediction of
band structures. At present, such calculations are computationally too expensive to be
routinely applicable to total energy calculations of defects. However, the steady
progress in methodological development and hardware components will soon close
this gap. Then, the determination of the abovementioned higher order contributions
will become critical.

For metals which do not suffer from the band gap problem, the situation is
different. The highly efficient screening in metallic materials removes a large part of
the self-interaction error which is mainly responsible for the band gap problem in
semiconductors. As a consequence, significantly more accurate defect formation
energies are obtained even with common local or semi-local exchange-correlation
functionals such as the local density approximation (LDA) or the generalized gradient
approximation (GGA). Thus, in order to reach the next accuracy level in defect

Advanced Calculations for Defects in Materials: Electronic Structure Methods, First Edition.
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calculations, the inclusion of finite temperature contributions to Ff is already now of
importance. Indeed, a review of the related literature clearly reveals such efforts
(Table 15.1): starting in the late 1980s with the seminal work by Gillan [8], DFT-based
studies of point defects were limited to the T¼ 0K contribution Ef . This situation
persisted roughly until the beginning of the new century, when studies [13, 14] of
the electronic contribution to F f – of crucial importance for some metallic materi-
als [19] – appeared. In 2000 and 2003, Carling et al. [15, 16] provided a first ab initio
based assessment of the quasiharmonic contribution to the vacancy of aluminum. To
make such a study feasible at that time, the authors had to restrict the dynamics of the
system to the first shell around the vacancy, i.e., to the atomic shell which experiences
the largest effect as compared to the perfect bulk. An ab initio based evaluation of
the anharmonic contribution was computationally prohibitive at that time, which
made it necessary to resort to empirical potentials. Major methodological improve-
ments and the boost in computer power provide now the opportunity to study all
relevant free energy contributions of defect formation in a rigorous ab initiomanner
(cf. Table 15.1).

In the present paper, we review the methodology required to compute defect
concentrations from ab initio including the electronic, quasiharmonic, and anhar-
monic contributions to the formation free energy (Section 15.2.2). For their correct
evaluation and interpretation it is important to correctly treat the strain induced by
the periodic array of defects in a supercell approach, since an improper treatment

Table 15.1 Representative ab initio studies of
point defect calculations in unary metals for the
specific case of vacancies. The abbreviations
are: 3d/4d/5d: respective transition elements;
xc: exchange-correlation functional; LDA: local
density approximation; GGA: generalized
gradient approximation; PWps: planewaves
with pseudopotentials; FP-LMTO: full potential
linearized muffin tin orbitals; PW-PAW:

planewaveswith projector augmented waves;V:
rescaled volume approach;P: constant pressure
approach; volOpt: volume optimized approach
(Section 15.2.1.1); Ff : defect formation free
energy; Ef : (T ¼ 0 K) contribution to Ff ; el/qh/
ah: electronic/quasiharmonic/anharmonic
contribution to Ff ; 1s: first shell (around the
defect) contribution to the dynamical matrix;
emp: empirical potential approach.

year ref. elements methodology contributions to Ff

xc potential strain Ef el qh ah

1989 [8] Al LDA PWps V x
1991 [9] Li LDA PWps V x
1993 [10] Al,Cu,Ag,Rh LDA FP-LMTO V x
1995 [11] 3d,4d,5d LDA FP-LMTO V x
1997 [12] Al LDA PWps P x
1998 [13] W LDA PWps P x x
1999 [14] Ta LDA PWps P x x
2000 [15] Al LDA/GGA PWps P x x1s xemp

2003 [16] Al LDA/GGA PWps P x x1s xemp

2009 [17] Fe GGA PW-PAW V x x
2009 [18] Al LDA/GGA PWps/PW-PAW volOpt/P x x x x
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may lead to errors of the same order of magnitude. We therefore review first the
possible strategies and available correction schemes (Section 15.2.1). We then
present results demonstrating the quality and performance of the methods (Sec-
tion 15.3). The focus will be on point defects in aluminum since this material system
can be produced with high chemical purity and crystalline quality, thus providing
accurate experimental data as needed for a critical comparison. On the theoretical
side, a good performance of available exchange-correlation functionals can be
expected due to the free electron character of Al. All these aspects render aluminum
to be a particularly attractive system for evaluating the performance of ab initio
simulations of point defects. Indeed, as shown in Table 15.1 most theoretical studies
focused on this system.

15.2
Methodology

15.2.1
Analysis of Approaches to Correct for the Spurious Elastic Interaction
in a Supercell Approach

In the literature, two major approaches have been proposed and employed to correct
for the artificial strain fields in a supercell approach arising from a collective interplay
of all periodic images: (i) the rescaled volume and (ii) the constant pressure approach.
Within the rescaled volume approach [8], the volume of the supercell containing the
defect is rescaled such as to account for the volume of the missing atom. In contrast,
within the constant pressure approach [12], the volume of the defect supercell is
adjusted such as to correspond to the same pressure as is acting on the perfect bulk
supercell (commonly zero pressure is assumed). In the limit of asymptotically large
supercell sizes both approaches will converge to the same result. For realistic finite
sized ab initio supercells the two approaches give different results. It is commonly
accepted that the constant pressure method is superior to (more accurate than) the
rescaled volume one. This is due to the fact that the latter imposes additional
constraints on the system while the constant pressure approach allows the system
to relax along all degrees of freedom including the shape of the supercell. A
disadvantage of the constant pressure approach is that additional relaxations are
needed, which significantly increase computational effort. This fact is illustrated in
Table 15.1: early calculations of defect properties, when computer powerwas severely
limited, were solely based on the rescaled volume approach. Only at the end of the
1990s one was able to achieve the next level of accuracy and employ the constant
pressure approach. For the accurate calculation offinite temperature contributions to
the defect formation energy employing the more accurate constant pressure
approach is mandatory. Recently a more general approach, the volume optimized
scheme, was proposed [18]. It takes higher order terms in the concentration
dependence of Ff into account thus going beyond the constant pressure treatment.
A consequence is that the formation free energy becomes concentration dependent.
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Approximating to first order in the defect concentration, the constant pressure
approach is obtained. Performing an additional approximation in the volume of
defect formation, the rescaled volume approach can be derived. The relation and
hierarchy between these approaches is discussed in the following.

15.2.1.1 The Volume Optimized Aapproach to Point Defect Properties
The central quantity, which contains all thermodynamic information about the
system such as e.g., the defect concentration, is the free energy surface
FðV;T ;N; nÞ of a macroscopic crystal. In general, it depends on the crystal volume
V (we reserve the symbolV for the atomic volume introduced below), temperature T,
the number of atomsN, and thenumber of defectsn. For the following discussion,we
consider a large fictitious supercell (Born–von Karman cell) representing this
macroscopic crystal (Figure 15.1).

The termfictitious refers to the fact that an actual calculation of this supercell is not
feasible (and as will be discussed not necessary). The basic assumption is that the
presence of defects leads to two kinds of effects: (i) strong distortions of the atoms
close to the defect away from their ideal perfect bulk positions and (ii) long ranged
volumetric distortions affecting only the lattice constant. Around each defect, a
cell/box is constructed which we call defect cell. The defect cell needs to be large
enough to cover the first kind of effect but not necessarily the second kind since this
will be accounted for by the volume optimization introduced below. The defect cell
contains Nd atoms, has a volume Vd, and a free energy Fd ¼ FdðVd;T ;NdÞ.
According to this construction, the crystal outside the defect cells can be described

F( ,T;N,n)Ω

Ω

ΩΩ
Ω

n times

F n ,T;N-nN
p d d

( - )

...
F ( ,T;N )

d d d

p
N

p

Figure 15.1 Schematic illustration of the
concept to compute the free energy
FðV; T;N; nÞ of a macroscopic crystal with
defects. The larger box represents a supercell of
volumeV at temperature T containingN atoms
and n defects. A light-gray shaded box with
a white circle represents a cell of volume Vd,

containing Nd atoms, exactly one defect, and
having the free energy FdðVd; T;NdÞ. The dark-
gray shaded region represents the perfect crystal
without defects, with volume Vp ¼ V�nVd,
Np ¼ N�nNd atoms, and free energy
FpðVp; T ;NpÞ. The dashed lines indicate
periodic boundary conditions.
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by a perfect crystal with volumeVp ¼ V�nVd,Np ¼ N�nNd atoms, and free energy
Fp ¼ FpðVp;T ;NpÞ. The free energy of the fictitious supercell is then given by

FðV;T ;N; n;Vd;NdÞ ¼ FpðVp;T ;NpÞþ nFdðVd;T ;NdÞþFconf ðT ;N; nÞ;
ð15:1Þ

where we have also explicitly indicated the dependence of F on the volume of the
defect cell Vd and the number of atoms in the defect cell Nd. These dependencies
and their treatment will be discussed in the following. Further in Eq. (15.1), Fconf is
the configurational free energy of the defects in the dilute limit. It is approximated
using Stirling�s formula by [20] Fconf � �kBT ½n�nlnðn/NÞ�, with the Boltzmann
constant kB. The volume optimized approach [18] is based on the key observation
that in equilibrium the total free energy F is minimal with respect to changes in the
volume of the defect cell,

qF/qVd � 0; ð15:2Þ
so that the volume of the perfect crystal and of the defect cells will adjust self
consistently, i.e., until the optimum volume for both is achieved whenminimizing F.
The actual result of the minimization procedure will depend on the free energy
volume curves of the perfect crystal and of the defect cell.

Equation (15.1) can be further transformed. The free energy of the perfect crystal
Fp scales with the number of atoms due to its extensivity property,

FpðVp;T ;NpÞ/Np ¼ FpðVp;T ; 1Þ
¼: FpðVp;TÞ ¼ Fp

�
V�cVd

1�cNd
;T

�
; ð15:3Þ

with

Vp ¼ Vp

Np
¼ V�cVd

1�cNd
; ð15:4Þ

where we have defined the volume per atom V ¼ V/N and the concentration of
defects c ¼ n/N. Using this property to rewrite Eq. (15.1) yields

FðV;T ;N; n;Vd;NdÞ/N ¼ ð1�cNdÞFpðVp;TÞ

þ cFdðVd;T ;NdÞþFconf ðT ; cÞ ¼: FðV ;T ; c;Vd;NdÞ; ð15:5Þ
where the configurational free energy depends now on the concentration as
Fconf ðT ; cÞ ¼ �ckBTð1�lncÞ. Equation (15.5) is independent of N and defines the
free energy per atom FðV ;T ; c;Vd;NdÞ of the full supercell consisting of the perfect
crystal and the defect cells. Now, a formation free energy Ff can be defined, which
turns out to be concentration dependent

Ff ðV ;T ; c;Vd;NdÞ ¼ FdðVd;T ;NdÞ�NdFpðVp;TÞ; ð15:6Þ
and thus:
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FðV ;T ; c;Vd;NdÞ ¼ FpðVp;TÞþ cFf ðV ;T ; c;Vd;NdÞþ Fconf ðT ; cÞ: ð15:7Þ
Applying next the equilibrium condition with respect to the defect
concentration, qF/qc � 0, to Eq. (15.7) yields an equation for the equilibrium defect
concentration ceq

�kBT lnc
eq ¼ Ff ðV ;T ; ceq;Vd;NdÞ� vfPp

ceqNd�1
; ð15:8Þ

where the volume of defect formation vf ¼ Vd�NdV and the pressure inside the
perfect bulk Pp ¼ �qFp/qVp have been defined. It is straightforward to show that
the latter equals the external pressure P ¼ �qF/qV :

P ¼ � qF
qV

¼ �ð1�cNdÞ qF
p

qVp

qVp

qV
¼ � qFp

qVp
¼ Pp: ð15:9Þ

Further, it follows from Eq. (15.2) that

qF
qVd

¼ ð1�cNdÞ qF
p

qVp

qVp

Vd
þ c

qFd

qVd

¼ c

�
qFd

qVd
� qFp

qVp

�
¼ cð�Pd þPpÞ � 0;

ð15:10Þ

with Pd ¼ �qFd/qVd the pressure inside the defect cell. Hence, the equilibrium
defect cell volumeVd;eq is obtained when the pressure inside the defect cells equals
the pressure inside the perfect cell which, according to Eq. (15.9), equals the external
pressure, i.e., Pd ¼ Pp ¼ P.

Using Vd;eq and Eqs. (15.8, 15.9), Eq. (15.7) can be transformed to the final
expression for the free energy of a crystal at (atomic) volumeVand temperatureTand
with an equilibrium concentration of thermally excited defects:

FðV ;TÞ ¼ FðV ;T ; ceq;Vd;eq;NdÞ

¼ Fp

�
V�ceqVd;eq

1�ceqNd
;T

�
þ ceqv fP

ceqNd�1
�ceqkBT :

ð15:11Þ

The parameter Nd is determined by the specific supercell used for the
defect calculation and has to be checked for convergence. Note that Eq. (15.8)
[and thus Eq. (15.11)] cannot be solved for ceq in closed form due to the dependence
of Ff on c. The actual equilibrium defect concentration must be thus solved self
consistently.

15.2.1.2 Derivation of the Constant Pressure and Rescaled Volume Approach
Employing well defined approximations, the constant pressure and rescaled volume
approaches can be easily derived from the volume optimized approach. Let us first
show the relation to the constant pressure approach.We therefore Taylor expand F in
Eq. (15.5) as a function of c around c¼ 0:
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FðV ;TÞ ¼ FpðV ;TÞþ c½FdðVd;T ;NdÞ�NdFpðV ;TÞþPvf � þFconf ðT ; cÞþOðc2Þ;
ð15:12Þ

where Eq. (15.9) has been used. Retaining only the terms linear in c, the expression
for the free energy within the constant pressure approach is obtained [21]:

F V ;Tð Þ � Fp V ;Tð ÞþF conf T ; cð Þþ c ½FdðVd;T ;NdÞ�NdFpðV ;TÞþPvf �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼Ff

P ; formation free energy at const: pressure:

:

ð15:13Þ
The term in the square brackets defines the defect formation free energy at constant
pressure, since Vd needs to be chosen such as to satisfy the pressure equality,
Eq. (15.10). The term correctly includes the enthalpic Pvf contribution. This
contribution has been intensively discussed over many years in literature: in their
textbook, Varotsos and Alexopoulos [21] stress that it has been frequently ignored in
point defect studies. For a correct description at nonzero pressure it needs however
to be included. Based on the above derivation, we can straightforwardly analyze the
necessity of this contribution. It naturally arises from the Taylor expansion in
Eq. (15.12) and needs to be taken into account since it is part of the first order
term. Physically, the Pvf term reflects the fact that the work needed to form a defect
depends on the pressure and likewise on the volume changes it induces. Equa-
tion (15.13) can be simplified in a standard way [21] by using the defect equilibrium
condition qF/qc � 0 to yield FðV ;TÞ � FpðV ;TÞ�kBTceqðV ;TÞ, with the equilibri-
um defect concentration ceqðV ;TÞ ¼ exp½�Ff

PðV ;TÞ/ðkBTÞ�.
The rescaled volume approach can be easily derived fromEq. (15.12).We therefore

note that FdðVd;T ;NdÞ is the zeroth order term of a Taylor expansion of
FdðVd þ vf ;T ;NdÞ in the volume of defect formation vf around vf ¼ 0:

FdðNdV ;T ;NdÞ ¼ FdðVd þ vf ;T ;NdÞ
¼ FdðVd;T ;NdÞþPvf þOð½vf �2Þ:

ð15:14Þ

In the above equation the first equality follows from the definition of the volume of
defect formation. Further, �qFd/qVd ¼ P due to Eqs. (15.9) and (15.10) has been
used. Approximating to first order in vf , rearranging with respect to FdðVd;T ;NdÞ,
and plugging into Eq. (15.13) yields:

F V ;Tð Þ � Fp V ;Tð ÞþFconf T ; cð Þþ c ½FdðNdV ;T ;NdÞ�NdFpðV ;TÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼Ff

V ; formation free energy at rescaled volume:

ð15:15Þ
The quantity in square brackets is the formation free energy of the rescaled volume
approach [8]. To make this even more apparent, the extensivity property of Fp can be
used to write Ff

V as

Ff
V ðV ;T ;NdÞ ¼ FdðNdV ;T ;NdÞ� Nd

Nd � 1
Fpð½Nd � 1�V ;T ;Nd � 1Þ; ð15:16Þ
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with the plus (minus) sign referring to vacancies (self interstitials). As for the
constant pressure case, Eq. (15.15) can be simplified to FðV ;TÞ � FpðV ;TÞ�
kBTceqðV ;TÞ, with the equilibrium defect concentration given now by
ceqðV ;TÞ ¼ exp½�Ff

V ðV ;TÞ/ðkBTÞ�.
The preceding derivations show that the two standard approaches arise as natural

approximations of the volume optimized method. In particular, a hierarchy of
approximations can be identified: first, the constant pressure approach arises by
terminating the Taylor series in the defect concentration in Eq. (15.12) after the first
order term. The rescaled volume approach needs a further approximation by
terminating the Taylor series in the volume of defect formation in Eq. (15.14)
likewise after the first order term. For practical purposes we note the following:
The approximation in the defect concentration, Eq. (15.13), is well motivated, since
the basic assumption of non interacting defects, i.e., the dilute limit, is valid only for
lowdefect concentrations.We therefore recommend to employ the constant pressure
approach, also because of numerical instabilities in the volume optimized method
when approaching ceqNd � 1 due to the denominator in Eq. (15.11). In contrast, the
approximations needed to derive the rescaled volume approach are not appropriate
for realistic supercell sizes and will result in sizeable errors even for low defect
concentrations (see e.g., Figure 15.7).

15.2.2
Electronic, Quasiharmonic, and Anharmonic Contributions to the Formation
Free Energy

Let us now focus on the methodology needed to compute the electronic, quasihar-
monic, and anharmonic contribution to the free energy surface. For a defect
calculation, we need both the free energy of the defect cell FdðV ;TÞ and the free
energy of the perfect bulk FpðV ;TÞ as a function of volume and temperature as
outlined in the previous section. In the following we will derive the necessary steps
with particular emphasis on numerical efficiency. The latter issue is crucial to allow
a full ab initio determination of all contributions, specifically including the anhar-
monic one. Except for the remark at the end of Section 15.2.2.3 all considerations
refer to both free energy surfaces (Fd and Fp) and we therefore use generically the
symbol F.

15.2.2.1 Free Energy Born–Oppenheimer Approximation
Starting point is an expression for the free energy surface in which the ionic
and electronic degrees of freedom are decoupled quantum mechanically (Born–
Oppenheimer approximation), but which still contains the effect of thermodynamic
electronic excitations on the ionic vibrations. For that purpose, the �standard�
Born–Oppenheimer approximation [22] needs to be extended to the so called
free energy Born–Oppenheimer approximation which was introduced by Cao and
Berne [23] in 1993.

Within the standard Born–Oppenheimer approximation, the free energy F of
a system consisting of electrons and ions is written as:
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F ¼ �kBT ln Z where Z ¼
X

n;m

e�bEnuc
n;m ; ð15:17Þ

with

Enuc
n;m ¼ hLn;mjðT

^ nuc þ 1
^
Eel
n ÞjLn;mi; ð15:18Þ

and b ¼ ðkBTÞ�1. In Eq. (15.17), we have defined the partition function Z of the
system in which the sums run over an electronic quantum number n and an ionic
quantum number m. The energy levels Enuc

n;m and eigenfunctionsLn;m are solutions to
the nuclei Schr€odinger equation with the Hamiltonian ðT̂ nuc þ 1̂Eel

n Þ, in which T̂
nuc

is the ionic kinetic energy operator, 1̂ is the identity operator, and Eel
n are potential

energy surfaces generated by the electronic system, i.e., the solutions to the electronic
Schr€odinger equation (cf. Figure 15.2). (As commonly done, we include the nucleus–
nucleus interaction into Eel

n .) We can transform the partition function as

Z ¼
X

n;m

e�bhLn;m jðT̂ nuc þ 1̂Eel
n ÞjLn;mi

¼
X

n;m

hLn;mje�bðT̂ nuc þ 1̂Eel
n ÞjLn;mi;

ð15:19Þ

sincetheLn;m areeigenfunctionsofðT̂ nuc þ 1̂Eel
n Þ. Itwouldbenowdesirable tofactorize

the exponential to separate the Eel
n . This factorization needs however to be performed

Figure 15.2 (online colour at: www.pss-b.
com) Key equations to compute the free energy
Born–Oppenheimer surface. Here, yn are
electronic wave functions and
ðT̂ el þ V̂

el þ V̂
nuc þ V̂

e�nÞ is the electronic
Hamiltonian with the electronic kinetic energy

operator, electron–electron repulsion operator,
nucleus–nucleus repulsion operator,
and electron–nucleus attraction operator,
respectively. The remaining quantities
are defined in Section 15.2.2.1.
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with caution since T̂
nuc

and 1̂Eel
n are non-commuting operators (both depend on the

ionic coordinates). Therefore, we have to apply the so-called Zassenhaus formula [24]:

e�bðT̂ nuc þ 1̂Eel
n Þ ¼ e�bT̂

nuc

e�b1̂Eel
n eb

2/2½T̂ nuc
;1̂Eel

n � e�b3/6ð2½1̂Eel
n ;½T̂

nuc
;1̂Eel

n �� þ ½T̂ nuc
;½T̂ nuc

;1̂Eel
n ��Þ…:

ð15:20Þ
Here, the dots denote exponentials corresponding to higher orders in b and with
increasingly nested commutators. An explicit formula for the higher order terms is
given in Ref. [24]. In Ref. [23], it is shown that exponentials corresponding to orders b2

and higher will be small if me � M (me ¼ electron mass, M¼nucleus mass), i.e.,
under the same condition as assumed in the standard Born–Oppenheimer approx-
imation. It is therefore justified to approximate

e�bðT̂ nuc þ 1̂Eel
n Þ � e�bT̂

nuc

e�b1̂Eel
n ; ð15:21Þ

in any case in which the Born–Oppenheimer approximation is justified. Using

Eq. (15.21), the fact that ðe�bT̂
nuc

e�b1̂Eel
n Þ corresponds to a block diagonal matrix and

the invarianceproperty of the trace (which allows to choose the samebasis fordifferent
m, e.g., n ¼ v0; with a fixed v0;) yields:

Z ¼
X

v;m

Lv;m e�bT̂
nuc

e�b1̂Ee1
v

���
���Lv;m

D E

¼
X

v;m

Lv0;m e�bT̂
nuc

e�b1̂Ee1
v

���
���Lv0 ;m

D E

¼
X

m

Lv0;m e�bT̂
nuc X

m

e�b1̂Ee1
v

 !�����

�����Lv0;m

* +

¼
X

m

Lv0;m e�bT̂
nuc

e�b1̂Fe1
���

���Lv0;m

D E
;

ð15:22Þ

with the electronic free energy defined by:

Fel :¼ �kBT ln
X

n

exp½�Eel
n /ðkBTÞ�: ð15:23Þ

In order to recombine the exponentials again, we need to apply the Baker–Campbell–
Hausdorff formula which reads [24]:

e�bT̂
nuc

e�b1̂Fel ¼ e�bðT̂ nuc þ 1̂FelÞ�b2

2 ½T̂
nuc

;1̂Fel���b3

6 ½½T̂
nuc

;1̂Fel�;1̂Fel�T̂
nuc�…: ð15:24Þ

The terms in the exponential of order b2 and higher correspond again to terms
which are small if me � M, thus justifying the following approximation:

e�bT̂
nuc

e�b1̂Fel � e�bðT̂ nuc þ 1̂FelÞ: ð15:25Þ
In fact, as shown in Ref. [23] the terms neglected in Eq. (15.25) lead to contributions
which are of the same order as the contributions from the neglected terms in
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Eq. (15.21) having however the opposite sign. Therefore, the approximations
performed in Eqs. (15.21) and (15.25) partially compensate each other.
Inserting Eq. (15.25) into Eq. (15.22) yields for the partition function and thus the
free energy:

F ¼ �kBT lnZ; ð15:26Þ
with

Z ¼
X

m

hLmje�bðT̂ nuc þ 1̂FelÞjLmi: ð15:27Þ

We can rewrite this to a more convenient notation as

F ¼ �kBT ln
X

m

e�b~E
nuc
m ; ð15:28Þ

with
�
T̂

nuc þ 1̂FelðfRIg;V ;TÞ
�
~Lm ¼ ~Em

nuc ~Lm; ð15:29Þ

wherewehavedefinedan effectivenuclei Schr€odinger equationwith eigenfunctions ~Lm

andeigenvalues ~Em
nuc. InEq. (15.29),wehave also explicitlywritten thedependenceofFel

on the set of nuclei coordinatesfRIg and the crystal volumeVwhich is a consequence of
the fact that each of the electronic potential energy surfaces Eel

n depends on fRIg andV.
The key equations summarizing the preceding derivation are collected in Figure 15.2.

The central step which allows for a separation into an electronic, quasiharmonic,
and anharmonic part is a Taylor expansion of Fel in Eq. (15.28) in the fRIg around the
T ¼ 0 K equilibrium positions fR0

Ig:

Fel ¼ Fel
0 þ 1

2

X

k;l

ukul

�
q2Fel

qRkqRl

�

fR0
I g
þOðu3Þ: ð15:30Þ

Here, the zeroth order term is abbreviated as Fel
0 ðV ;TÞ :¼ FelðfR0

Ig;V ;TÞ, k and l
run over all nuclei of the systemand additionally over the three spatial dimensions for
each nucleus, and uk ¼ Rk�R0

k is the displacement out of equilibrium. The expan-
sion does not contain a first order term, since such a term relates to the atomic forces
that are absent in an equilibrium structure. Each of the other terms in Eq. (15.30)
corresponds to a different excitation mechanism as emphasized in Figure 15.3. The
exact derivations are given in the following sections.

15.2.2.2 Electronic Excitations
It is convenient to decompose the electronic part Fel

0 ðV ;TÞ in Eq. (15.30) into
a temperature independent part Eel

g;0ðVÞ, which corresponds to the ground state of
the potential energy surfaces Eel

n at fR0
Ig, and a remainder ~F0

elðV ;TÞ carrying the
temperature dependence of the electronic system, i.e., the electronic excitations:
Fel
0 ðV ;TÞ ¼ Eel

g;0ðVÞþ ~F0
elðV ;TÞ. The reason for this separation is that ~F0

elðV ;TÞ can
be accurately described with low order polynomials, while Eel

g;0ðVÞ can be parame-
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trized using standard equations-of-state. To calculate the latter a standard DFT
approach is sufficient. For the calculation of ~F0

el, one needs instead to employ the
finite temperature extension of DFT as originally developed by Mermin [25]. This
approach is implemented in typicalDFTcodes and it amounts to using a Fermi–Dirac
occupation distribution for the Kohn–Sham electronic energy levels,

~F0
elðV ;TÞ � kBT/2

X

i

½ fi lnfi þð1�fiÞ ln ð1�fiÞ�; ð15:31Þ

with self consistently determined Kohn–Sham occupation numbers fi ¼ fiðV ;TÞ.
Note that Eq. (15.31) is only approximately valid since there is a small contribution
from the kinetic energy term, which is however fully accounted for in an actual finite
temperature DFT calculation.

While the inclusion of Fel
0 is important for metals at realistic temperatures, for

semiconductors it is negligible except for narrow band gap semiconductors, where
also partial occupations fi may occur. In metals, ~F0

el can become significant partic-
ularly if the density of states shows a peak close to the Fermi energy as found for
instance for d-states in Pt, Pd, Rh, or Ir [19].

15.2.2.3 Quasiharmonic Atomic Excitations
Neglecting for themoment the higher order terms in Eq. (15.29), the quasiharmonic
approximation results. The necessary steps to compute this contribution are

Dk;lðV ;TÞ :¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
MkMl

p
�
q2FelðfRIg;V ;TÞ

qRkqRl

�

fR0
I g

! DðV ;TÞwi ¼ v2
i ðV ;TÞwi

! Eqh
fnigðV ;TÞ ¼ Fel

0 ðV ;TÞþ
X

i

�hviðV ;TÞ
�
ni þ 1

2

�
;

ð15:32Þ

with ni the number of phonons in state i. In Eq. (15.32), the dynamicalmatrixD (with
elements Dk;l) has been defined, which corresponds to the second derivative of Fel

scaled by themassesMk of thenuclei. The eigenvalue equation ofDwith eigenvectors
wi and eigenvalues v2

i defines the phonon frequencies vi. The energy Eqh
fnig for

a certain fixed phonon occupation configuration fnig is given by a sum over the
frequencies weighted by the corresponding occupation numbers. Note the important
point that the phonon frequencies are not only volume dependent (quasiharmonic)
but also explicitly temperature dependent through the temperature dependence
of Fel. This temperature dependence does not correspond to an anharmonic atomic
(i.e., phonon–phonon) interaction. To make this point explicit, we will use the
notation T el for this temperature, while the temperature determining the thermo-
dynamics of the nuclei will be denoted by Tnuc. In fact, to speed up numeric
convergence, T el and Tnuc can be varied independently of each other. Of course,
at the end of the calculation both have to be ensured to be equal to the actual external
temperature, i.e., Tel ¼ Tnuc ¼ T .

The final step of the quasiharmonic approximation is to approximate the eigen-
values ~Em

nuc in Eq. (15.28) by the quasiharmonic energy Eqh
fnig which yields (the tilde in
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~F indicating the approximation at this stage)

~FðV ;TÞ ¼ ½~FðV ;T el;T nucÞ�Tel¼Tnuc¼T ; ð15:33Þ
with

~F ðV ;T el;TnucÞ � �kBT ln
X

fnig
e�b~E qh

fni g ¼ … ¼ Fel
0 ðV ;TelÞþFqhðV ;Tel;TnucÞ;

ð15:34Þ
where the dots denote a series of straightforward transformations (see e.g., Ref. [26])
and with

Fqh V ;T el;Tnuc

 � ¼ 1

N

X

i

½ �h
2
vi V ;T

el

 �

zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{
Tnuc¼0K
zero point contr:

þ Tnuc kBln 1�exp �b�hvi V ; T
el


 �� � �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

negativeð Þ entropic contribution:

�:
ð15:35Þ

Here, N is an appropriately chosen scaling factor which is, e.g., the number of
sampled frequencies divided by three (number of spatial dimensions) if Fqh should
refer to a �per atom� quantity. Note that Fqh fully contains quantum mechanical
effects (e.g., zero point vibrations) in contrast to a free energy obtained froma classical
molecular dynamics run.

The quasiharmonic equations presented above are general and equally well
applicable to defect and bulk cells. In practice, the calculation of the quasiharmonic
free energy contribution of the defect cell requires special attention to ensure
a consistent treatment with the corresponding perfect bulk cell. The reason for this
is the break of translational symmetry introduced by the presence of the defect. As
a consequence, the commonly applied [19] Fourier interpolation to generate dense
wave vector meshes in the Brillouin zone cannot be employed to the defect cell.
To nonetheless profit from the advantage of a Fourier interpolation for the perfect
bulk (e.g., a significantly improved description of the low temperature free energy)
a correction scheme as e.g., proposed in Ref. [18] should be used.

15.2.2.4 Anharmonic Atomic Excitations: Thermodynamic Integration
Let us now consider the higher order terms in Eq. (15.30). An intuitive and
straightforward approach to include these terms would be an ab initio based classical
molecular dynamics run. The fact that a direct computation of the free energy
employing conventional molecular dynamics is not feasible (the free energy is an
entropic quantity [27]) could be circumvented by calculating the inner energy and
integrating it with respect to temperature. It turns out that such a �naive� phase space
sampling leads to infeasibly long computational times [18]. Therefore, the develop-
ment and application of highly efficient sampling strategies to perform the ther-
modynamic averages is crucial.
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A fundamental concept is thermodynamic integration. The key idea is to start from
a reference with an analytically known free energy or with a free energy that can be
obtained numerically extremely fast. This reference is coupled adiabatically to the
true ab initio potential energy surface and only the difference in free energies is
sampled. Such an approach will be efficient, if one manages to construct a reference
which closely approximates the true ab initio potential energy surface thus yielding
a small free energy difference.

A good reference to perform thermodynamic integration is the quasiharmonic
potential energy surface. Therefore, a systemwith free energy Fl is introducedwhich
couples the electronic þ quasiharmonic system [having the free energy ~F as given in
Eq. (15.34)] to the full system (having free energy F) by the adiabatic switching
parameter l. The boundary conditions are defined to be

½Fl�l¼1 ¼ F and ½Fl�l ¼ 0 ¼ ~F ; ð15:36Þ
so that the anharmonic free energy is given by

Fah ¼ F�~F ¼ ½Fl�l¼1�½Fl�l¼0: ð15:37Þ
In principle, methods based on the quantum-classical isomorphism exist allowing
to perform thermodynamic integration including quantum mechanical effects [28].
Unfortunately, their actual application requires very large computational efforts
and at present only investigations employing empirical potential energy surfaces
can be afforded [28]. In practice, a quantum mechanical treatment of Fah is not
expected to be necessary since the quasiharmonic free energy contains the major
part of quantum mechanical effects (as derived in the previous section). The
reason for this is that at low temperatures, where quantum effects are important,
the quasiharmonic approximation is excellent thus fully accounting for such
effects, while at high temperatures where the quasiharmonic approximation fails
and anharmonicity becomes significant quantum effects become small/negligible.
The anharmonic contribution can therefore be calculated in the classical limit
(superscript �clas;� note that correspondingly a classical quasiharmonic reference
is used):

Fclas;ah :¼ Fclas�ðFel
0 þFclas;qhÞ ¼ ½Fclas

l �l¼1�½Fclas
l �l¼0 ¼

ð1

0
dl

qFclas
l

ql

¼#
Eq: ð15:39Þ ð1

0
dl

*
qFel

l

ql

+

T ;l

¼#
ergodicity
hypothesis ð1

0
dl

*
qFel

l

ql

+

t;l

:

ð15:38Þ
Here, Fel

l is the l dependent electronic free energy surface determining the classical
motion of the nuclei in the coupled system, h � iT ;l denotes the thermodynamic, and
h � it;l the time average at a given l. To obtain thefirst equality in the third line, wehave
used:
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qFclas
l

ql
¼ 1

Zclas
l

ð
dRI

Vph
e�bFel

l
ðfRIgÞ qF

el
l

ql

¼
*
qFel

l

ql

+

T ;l

;

ð15:39Þ

with the standard definitions of a classical free energy Fclas, partition function Zclas,
and phase space volumeVph. Besides the fixed boundary conditions, Eq. (15.36), any
type of coupled system can be chosen. In practice, a simple linear coupling to the
quasiharmonic reference (restoring the explicit notation for the volume and tem-
perature dependencies),

Fel
l ðfRIg;V ;T elÞ ¼ lFelðfRIg;V ;TelÞ

þ ð1� lÞ
�
Fel
0 ðV ;T elÞþ

X

k;l

ffiffiffiffiffiffiffiffiffiffiffiffi
MkMl

p
2

ukulDk;lðV ;TelÞ
�
;

ð15:40Þ

yields computationally efficient results. Finally, the anharmonic free energy reads:

Fclas;ahðV ;T el;TnucÞ ¼
ð1

0
dl

�
FelðV ;TelÞ� Fel

0 ðV ;TelÞ

�
X

k;l

ffiffiffiffiffiffiffiffiffiffiffiffi
MkMl

p
2

ukulDk;lðV ;T elÞ
�

t;l

: ð15:41Þ

Note that the dependence of Fclas;ah on Tnuc is hidden in the time average
�
:
�
t which

needs to be obtained e.g. from a molecular dynamics simulation. Combining the
various contributions, the free energy of the system is given by:

F ¼ Eel
g;0 þ eF

el
0 þFqh þFclas;ah

¼ ½Eel
g;0ðVÞþ eF

el
0 ðV ;TelÞþFqhðV ;Tel;TnucÞ

þFclas;ahðV ;T el;TnucÞ�Tel¼Tnuc¼T : ð15:42Þ
We stress that the dominant part of quantummechanical effects contributing to F is
accounted for by Fqh. For the case of (wide band gap) semiconductors the
influence of T el will be small (cf. Section 15.2.2.2) and the free energy can be
approximated by:

FðV ;TÞ � ½Eel
g;0ðVÞþFqhðV ; 0K;TnucÞþFclas;ahðV ; 0K;TnucÞ�Tnuc¼T : ð15:43Þ

15.2.2.5 Anharmonic Atomic Excitations: Beyond the Thermodynamic Integration
While the thermodynamic integration approach boosts the efficiency by a few orders
of magnitude as compared to conventional molecular dynamics simulations, the
calculation of a full free energy surface FðV ;TÞ from ab initio is still a formidable task
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even on today�s high performance CPU architecture. Therefore, there are currently
active efforts at exploring new methods to reduce computational time [18, 29, 30].

Wu and Wentzcovitch [29], e.g., developed a semi empirical ansatz based on
a single adjustable parameter to describe anharmonicity. To explain their approach, it
is useful to note first that already the quasiharmonic frequencies v

qh
i contain an

implicit temperature dependence due to thermal expansion: vqh
i ¼ v

qh
i ðVeqðTÞÞ.

Here, VeqðTÞ denotes the thermal expansion, i.e., the equilibrium volume as
a function of temperature T (for a fixed pressure). The thermal expansion is itself
determined by the v

qh
i so the problem must be solved self consistently.

The ansatz of Wu and Wentzcovitch [29] is to modify the implicit temperature
dependence. Specifically, the following transformation to a renormalized frequency
vrenorm

i is proposed:

v
qh
i

�
V eqðTÞ

�
!vrenorm

i ðTÞ :¼ v
qh
i

�
V

0 ðTÞ
�
; ð15:44Þ

with a modified thermal expansion

V
0 ðTÞ ¼ VeqðTÞ 1�C

VeqðTÞ�Veq
0

Veq
0

� �� �
; ð15:45Þ

where C is an adjustable parameter and Veq
0 ¼ VeqðT ¼ 0KÞ. The renormalized

frequencies vrenorm
i replace then the quasiharmonic frequencies in the quasihar-

monic free energy expression Eq. (15.35). The resulting free energy surface includes
therefore anharmonicity in an approximative manner and can be used to derive
anharmonic thermodynamic quantities such as thermal expansion or defect con-
centrations. In the original work [29], C is adjusted by fitting to experimental data.
In a more recent work [30], it was shown how the parameter can be obtained using
ab initio based thermodynamic integration. The main advantage of the approach is
its effectiveness, since to determine C and thus to generate a complete anharmonic
free energy surface only a single thermodynamic integration run at fixed V and T
suffices. The disadvantage is however that the vrenorm

i (and thus the anharmonic
free energy) are assumed to have a certain temperature dependence, specifically that
they scale linearly with the quasiharmonic thermal expansion. This assumption has
been shown to work well for diamond and MgO [30] up to high temperatures, it
cannot be however a priori assumed in general and further evaluations are
necessary.

An alternative approach that is able to account for the full anharmonic free energy
surface without assuming any specific temperature dependence was developed
recently in Ref. [18] and termed upsampled thermodynamic integration using
Langevin dynamics (UP-TILD) method. The key ideas are as follows. In a first step,
a usual thermodynamic integration run for discrete values of l is performed:

*
qFel

l

ql

+low

t;l

¼
*
FelðV ;T elÞ�Fel

0 ðV ;T elÞ�
X

k;l

ffiffiffiffiffiffiffiffiffiffiffiffi
MkMl

p
2

ukulDk;lðV ;T elÞ
+low

t;l

:

ð15:46Þ
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A critical insight gained in Ref. [18] is that instead of employing fully converged DFT
parameters (e.g., with respect to basis set or electronic k sampling) computationally
much less demanding DFT parameters can be used (indicated by the superscript
�low�). In particular, they need to be chosen such that the corresponding phase space
distribution (termed RIf glowt in the following) closely resembles the phase space
distribution RIf ghight as would be obtained from fully/highly converged parameters.
As a consequence of using the low converged parameters, the thermodynamic
integration is computationally very efficient and speed up factors of � 30 are
achievable. Applying this approach makes it therefore possible to sample various
l, V, and T values even on modest computer resources. The resulting free energy
surface, i.e., hqFel

l /qlilowt;l , needs however to be corrected in a second step. The actual
correction step is straightforward, provided that the above stated condition RIf glowt

close to RIf ghight holds. In such a case, a typically small set of NUP uncorrelated
structures RIf glowt (indexed with tu) is extracted from RIf glowt and the upsampling
average hDFeliUP

l is calculated as:

DFelh iUP
l ¼ 1

NUP

XNUP

u

Fel;low RIf glowtu

� �
�Fel;low R0

I

� 
 �

� Fel;high RIf glowtu

� �
�Fel;high R0

I

� 
 �h i
:

ð15:47Þ

Here,Fel;low (Fel;high) refers to theelectronic freeenergy calculatedusing the low (high)
converged set of DFT parameters. The l dependence of hDFeliUP

l is hidden in the
trajectory RIf glowt ,which is additionallydependent on thevolumeand temperature. In
the last step, the quantity of interest, the converged hqFel

l /qlihight;l is obtained

qFel
l /ql

� �high
t;l ¼ qFel

l /ql
� �high

t;l � DFel
� �UP

l
;

and thus the anharmonic free energy:

Fclas;ah ¼
ð1

0
dlhqFel

l /qlihight;l : ð15:48Þ

The efficiency of the UP-TILD method is a direct consequence of the fact that the
upsamling average hDFeliUP

l , which involves the computation of the CPU time con-
sumingwellconvergedDFTfreeenergiesFel;high,convergesextremelyfastwithrespectto
the number of uncorrelated configurations. In practice, less than 100 configurations are
found to be sufficient to achieve an accuracy of better than 1meV/atom in the free
energy [18].Thissmallnumberof configurationshas tobecomparedwith thenumberof
moleculardynamicsstepsneededtoconvergea thermodynamicintegrationrunwhichis
in therangeof several thousands, i.e., twoordersofmagnitude larger.Anotheradvantage
is that in many cases the l dependence is invariant with respect to the upsampling
procedure allowing to calculate the shift inEq. (15.48) for a singlel valueonly.Using this
invariance reduces computational costs further as illustrated in Figure 15.4.

The various methods needed to compute the electronic, quasiharmonic, and
anharmonic contributions to the free energy surface are summarized in Figure 15.5.
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15.3
Results: Electronic,Quasiharmonic, andAnharmonicExcitations inVacancyProperties

To discuss the performance of the methodology described in Section 15.2, we
consider point defects in aluminum. The focus will be on vacancies, since self

Figure 15.5 (online colour at: www.pss-b.
com) Schematic illustration of the overall
approach and its key equations to derive finite
temperature contributions to the free energy
presented in this article. The free energy surface
FðV ; TÞ refers here either to the defect cell free

energy surface FdðV ; TÞ or the perfect bulk free
energy surface FpðV ; TÞ as used in
Section 15.2.1. The corresponding methods for
each component are indicated. Definitions are
given in Sections 2.2.2–2.2.4.
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interstitials are practically absent due to their high formation energy (3.4 eV) [31].
Computational details of the results presented in the following can be found in
Refs. [18, 26].

Before applying the approach to defect properties, we will first consider bulk
properties. This will allow a careful inspection and evaluation of the accuracy of the
approach and the underlying exchange-correlation functionals. For the following
discussion, we restrict on two properties that are highly sensitive to an accurate
description of the free energy surface: The thermal expansion coefficient and the
isobaric heat capacity. These quantities are first or higher order derivatives of the free
energy surface being thus affected even by small changes in the free energy. As
a consequence, to guarantee an unbiased comparison with experiment the error bar
in the free energy has to be systematically kept < 1meV/atom. This error bar is
significantly lower than what is typically targeted at in defect calculations (� 0:1 eV)
and particularly challenging to achieve at high temperatures. A major advantage of
reaching this numerical accuracy is that the remaining discrepancy with experiment
can be unambiguously related to deficiencies in the exchange-correlation functional.
For the case considered here, fcc bulk aluminum, both of themost popular exchange-
correlation functionals, the LDA and the GGA, show an excellent agreement with
experiment for the expansion coefficient up to the melting point (Figure 15.6a) and
for the heat capacity up to � 500K (Figure 15.6b). Above this temperature, the
experimental scatter in the heat capacity becomes too large and prevents an unbiased
comparison. Nonetheless, the ab initio results indicate a lower bound to experiment
hinting at additional and apparently so far not controllable by experiment excitation
mechanisms in the sample and/or experimental setup.

Having demonstrated the accuracy achievable by the method to describe bulk
properties at finite temperatures, let us now turn to defect properties. Applying the
same formalism as for the bulk and the constant pressure approach, the temperature
and volume dependent isobaric defect formation free energy Ff

PðV ;TÞ can be
calculated (see Section 15.2.1.2). Using it, the equilibrium defect concentration
ceqðT ;PÞ ¼ exp½�Ff

PðVeqðT ;PÞ;TÞ/ðkBTÞ� is obtained. Here, VeqðT ;PÞ is the equi-
librium volume at temperature T and pressure P. The computed concentrations at
finite temperatures and for zero pressure (the influence of atmospheric pressure is
negligible) are shown together with available experimental data in Figure 15.7.

As can be seen, an excellent agreement is obtained. This agreement is particularly
impressive when considering that errors in the defect formation free energy scale
exponentially in the concentration. An important finding is that LDA and GGA
provide an upper and lower bound to the experimental data and may thus be used as
empirical (but ab initio computable) error bars. This interesting and highly useful
behavior is not restricted to Al but has been systematically observed for a wide range
of metals when considering temperature dependent material properties [19]. Fig-
ure 15.7 provides also a direct insight into the relevance of effects due to thefinite size
of practical supercells as discussed in Section 15.2.1. As can be seen, correcting these
effects using the constant pressure approach increases the defect concentration by
almost an order of magnitude. Therefore, the application of the constant pressure
approach is critical to achieve the desired accuracy. A further extension of the
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methodology to the volume optimized approach has a negligible effect on the vacancy
concentration shown in Figure 15.7.

To analyze the temperature dependence of the defect concentration inmore detail,
it is convenient to express the formation free energy in terms of the T ¼ 0K enthalpy
and the entropy of formation. To provide a direct comparison with experimental data
where only a rather small temperature window is available, we restrict on the
experimental temperature interval and obtain both quantities from a linear regres-
sion in the log-1/T plot (Figure 15.7). The results are summarized in Table 15.2. A
surprising finding is that including anharmonicity has a major effect on the entropy
and enthalpy: For LDA the entropy of formation increases from 0:2kB (quasiharmo-
nic) to 2:2kB (anharmonic) and the enthalpy from 0:65 to 0:78 eV. These numbers are
in excellent agreement with experimentally derived data of 2:4kB and 0:75 eV.

It is interesting to note that the substantial deviations due to anharmonic effects
have little consequence on the absolute defect concentrations (see Figure 15.7). The
changes in entropy and enthalpy largely compensate each other in this quantity. An
important conclusion from this result is that the defect formation enthalpy derived
fromhigh temperature data (the only regionwhere experimental data is available) can
be substantially different from the true T ¼ 0K formation enthalpy. For the system
considered here the difference is � 0:1 eV. To guarantee an accurate comparison
between theory and (high temperature) experimental data it is therefore critical to not
restrict to the formation enthalpy (as usually done) but to use also the experimental
entropy to compute and compare defect concentrations.
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Figure 15.7 (online colour at: www.pss-b.
com) Equilibrium vacancy concentration at zero
pressure of aluminum as a function of the
inverse temperature multiplied by the melting
temperature Tm. Results for the rescaled
volume and constant pressure approach are
shown. The volume optimized approach yields
concentrations which are identical to the

constant pressure results on the shown scale.
The electronic contribution yields a negligible
contribution (indicated by the parenthesis). The
squares indicate experimental values from
Ref. [55] (differential dilatometry). The
diamonds/circles indicate experimental values
from Ref. [56] (differential dilatometry/positron
annihilation).
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15.4
Conclusions

In this paper, we gave a brief overview about the challenges one encounters when
including temperature effects in defect calculations beyond configurational entropy.
The paper outlines strategies to compute all relevant free energy contributions
arrising due to electronic and vibronic (quasiharmonic and anharmonic) excitations.
Amajor focus has been devoted to numerical performance since even on todaysmost
powerful supercomputers such calculations quickly approach the limits of available
resources when attempting a full ab initio description. As an example which
numerical accuracy can be achieved, a simple yet instructive defect system has been
considered: vacancies in fcc bulk Al. The results nicely illustrate that both bulk and
defect properties in the absence of any band gap problem can be described with
a surprising accuracy and predictive power. An interesting result of this study is that
anharmonic contributions have a rather small effect on the vacancy concentration in
the experimentally accessible temperature window, but have a drastic effect on the
averaged/extrapolated entropy and enthalpy of formation. To achieve an accuracy of
better than 0:1 eV the inclusion of anharmonic contributions is mandatory. With the
advent of powerful approaches to overcome the band gap problem in semiconductor
defect calculations, we believe that inclusion offinite temperature effects (possibly on
the LDA/GGA level) becomes critical.

Table 15.2 The extrapolated formation energy
Ef and averaged entropy of formation Sf for
various approaches and combinations of the
free energy contributions used for the
calculation of vacancy properties of aluminum.
ai/ep indicates values for the coupled ab initio-

empirical potentials approach from Ref. [16].
The further values (also the experimental) are
obtained by fitting the vacancy concentrations
over the temperature range given in Figure 15.7
to the function exp½�ðEf�TSf Þ/ðkBTÞ�. The
notation is as in Figure 15.7.

Ef (eV) Sf (kB)

LDA GGA LDA GGA

constP; qh 0.65 0.58 0.2 0.1
constP; qh þ el 0.65 0.58 0.2 0.1
constP; qh þ ah þ el 0.78 0.68 2.2 1.5
volOpt; qh þ ah þ el 0.78 0.68 2.2 1.5
constV; qh þ ah þ el 0.85 0.75 2.5 1.9
ai/ep [16] 0.78 0.61 1.6 1.3
experiment 0.75 2.4
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16
Accurate Kohn–Sham DFT With the Speed of Tight Binding:
Current Techniques and Future Directions in Materials Modelling
Patrick R. Briddon and Mark J. Rayson

16.1
Introduction

The Kohn–Sham formalism [1] of density functional theory [2] (KSDFT) is one of the
most widely used tools in the ab initio theoretical investigation of the properties of
materials. Its success at providing quantitative comparison with experiment—given
only atomic positions and species as input—combined with its favourable algorith-
mic prefactor and complexity accounts for this widespread usage and intensive
efforts to improve the algorithms at the heart of KSDFT codes.

Here we describe how recent algorithmic advances in the computational kernel at
the heart of one of these codes,Ab InitioModelling PROgram (AIMPRO), will enable
a new scale of calculation to be performed on inexpensive hardware. The modern
algorithmic kernel, functionality, current advances and future perspectives will be
discussed. In short, the aim of this work is to show how full KSDFTcalculations can
be performed in a time comparable to current tight binding implementations and
further, to open a route to reaching the basis set limit in these calculations, essentially
delivering plane wave accuracy in a time comparable to a tight binding calculation. In
the following discussions we define the Kohn–Sham kernel as the calculation of
energies and forces, leading to minimum energy structures (including lattice
optimisation). Any other calculated quantity will be referred to as functionality.
Readers interested in the details of algorithmsused in theAIMPRO suite of codes are
referred to Refs. [3–9].

As well as a description of the algorithms we also wish to address the wider
audience of applications specialists. By discussing recent advances in terms of both
their methodological context and relevance to the practitioner we hope this work will
be of interest to a wide audience.

This chapter is organised as follows, Section 16.2 discusses the use of Gaussian
orbitals and briefly describes the conventional AIMPRO kernel, Section 16.3 gives a
brief overview of the functionality currently available, Section 16.4 describes recent
improvements to the AIMPRO kernel and Section 16.5 discusses future research
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Edited by Audrius Alkauskas, Peter Deák, Jörg Neugebauer, Alfredo Pasquarello, and Chris G. Van de Walle.
� 2011 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2011 by Wiley-VCH Verlag GmbH & Co. KGaA.

j285



directions and perspectives based on recent advances. Readers familiar with
conventional Gaussian algorithms, or those interested primarily in recent advances
in the kernel, can skip straight to Section 16.4.

16.2
The AIMPRO Kohn–Sham Kernel: Methods and Implementation

In this sectionwe briefly outline themajor steps involved in a conventional electronic
structure code, introducing notation that is needed when new innovations are
introduced later.

The standard approach is to expand the Kohn–Sham levels in terms of basis
function, wiðrÞ:

ylðrÞ ¼
XN

l¼1

cilwiðrÞ; ð16:1Þ

which enables the Kohn–Sham equations to be recast in matrix form:
X

j

Hijcjl ¼ el
X

j

Sijcjl or Hc ¼ ScL; ð16:2Þ

where Lll0 ¼ eldll0 .
In thisway the electronic structure problem is reduced into three components. The

first is essentially one of quadrature, determining the Hamiltonian and overlap
matrices:

Hij ¼
ð
w*
i ðrÞH

^
wjðrÞdr;

Sij ¼
ð
w*
i ðrÞwjðrÞdr:

ð16:3Þ

The second problem is the solution of the generalised eigenvalue problem (GEP)
[Eq. (16.2)]. This will occupy discussion for the majority of this chapter, being the
most computationally expensive part of the calculation. Thefinal ingredient, which is
not discussed in this chapter, is a method of iterating to self-consistency.

16.2.1
Gaussian-Type Orbitals

Uncontracted Cartesian Gaussian functions

wiðrÞ ¼ ðx�RixÞnx ðy�RiyÞny ðz�RizÞnzexp½�aiðr�RiÞ2�
are used to form our primitive set. For each atom, we typically use four different
exponents ai and we multiply each Gaussian function exp½�aiðr�RiÞ2� by the
Cartesian prefactors, including all combinations of nx, ny and nz such that
nx þ ny þ nz � ‘. This produces four functions for ‘¼ 1 and ten functions for ‘¼ 2.
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In our notation, exponents are arranged from lowest to highest (most diffuse
Gaussian first) and the standard nomenclature is used to define the angularmomen-
tum. So, for example a ddpp basis has four exponents with 10 þ 10 þ 4 þ 4¼ 28
functions. Such a basis set applied to carbon or silicon would be considered large
for a routine quantum chemistry application.

We now consider the advantages and disadvantage of using Gaussian orbitals.
Advantages:

i) Memory. The size of the primitive basis is small, typically only 20–40 functions
per atom. Furthermore, the storage of a primitive basis function requires only 3
integers and 2 double precision numbers.

ii) Adaptive. Basis functions can be placed where they are most needed.
iii) Gaussian functions are localised in both real and Fourier space and careful use

of this fact enables matrix elements of the Hamiltonian to be found extremely
efficiently (see Section 16.2.2).

iv) The integration error is independent from basis error leading to an internally
consistent calculation. That is, even with a large basis error thematrix elements
of the Hamiltonian are still evaluated to high precision. This is important when
considering relative energies.

Adaptivity, coupled with rapid matrix element evaluation, allows chemical species
with hard potentials to be treated almost as easily as species with soft potentials.
Therefore, a single oxygen or hydrogen (typically having hard pseudopotentials)
embedded in, say, a unit cell containing 1000 atoms of silicon (which has a fairly soft
pseudopotential) would take a similar time to 1000 atoms of silicon.

Disadvantages:

i) Basis set superposition error (BSSE).
ii) Difficulty in running codes—a degree of experience is currently needed to

choose a suitable basis set.
iii) Difficulty in proving convergence.

The main disadvantage is related to the relative complexity of the Gaussian basis
set and the less obvious way in which basis sets can be augmented to move towards
convergence in energy or some other property. Large basis sets generated to
minimise the energy of a system can develop numerical linear dependencies as
convergence is approached, with the result that a certain level of skill and experience
is needed to work in this regime. The work in this chapter provides a first step to
removing this as a legitimate concern.

It is important to note the effect of BSSE depends on the quantity of interest.When
interested in relative energies the degree of difference between the systems must be
considered. Therefore, two very different systems will suffer most from BSSE when
considering their relative energy. Not quite as challenging is a calculation such as the
formation energy of a vacancy—here the systems are fairly similar—though the
vacancy calculation has fewer degrees of freedom, therefore this is a problem of
intermediate difficulty. However, a slight perturbation of an atom (such as a
numerical force calculation) will suffer far less from BSSE, this will be discussed
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further and demonstrated in Section 16.4.2. Since the large majority of computer
time is spent in structural relaxations (and other quantities where derivatives of the
energy are of paramount importance) a significant amount of computer time can be
saved by correctly assessing the relevant impact ofBSSEon a calculation. Although, at
present, much of this must be done by the user, in principle, it can be automated.
We will discuss work in this direction in Section 16.5.

16.2.2
The Matrix Build

The building of the Hamiltonian is achieved using standard techniques. The overlap
matrix, and the matrix elements of kinetic energy and the non-local pseudopotential
may be found analytically using recurrence relations reported in Ref. [10]. Thematrix
elements of the Kohn–Sham potential are found as described in Refs. [6] and [11].

An important difference between our approach and standard methods of
quantum chemistry is our avoidance of four centre integrals. Our approach of
quadrature using a set of equally spaced grids [6] has linear scaling with an
acceptable prefactor. In doing this the charge density and the potential are expressed
on an equally spaced grid in real space which, in plane wave parlance would have an
exceptionally high cutoff—typical values would be 80 Rydbergs (silicon) and 300
Rydbergs (carbon). This is feasible as this expansion is done only for the charge
density, and not for each individual Kohn–Sham level. A consequence is that the
Hamiltonian matrix is determined essentially free of integration error, with
arbitrarily high accuracy being achievable at modest cost. Timings for this are
presented in passing in Section 16.4.1 when it is noted that this is a negligible
contribution to run-times for large systems, being only 3min when run in serial on
a single core even for a system of 4096 atoms.

16.2.3
The Energy Kernel: Parallel Diagonalisation and Iterative Methods

Once the primitive Hamiltonian and overlap matrices—H and S respectively—have
been evaluated these are then converted from sparse storage to a dense block-cyclic
parallel distribution. The N�N GEP

Hc ¼ ScL; ð16:4Þ
is then solved (ScaLAPACK diagonalisation) to calculate the output density

nðrÞ ¼
X

ij

bijwiðrÞwjðrÞ; ð16:5Þ

where

bij ¼
Xm

l

f ðLllÞcilcjl; ð16:6Þ
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andm is the number of occupied states. A charge density mixing scheme [12] is used
to iterate (the �SCF cycle�) towards the self-consistent density.

As well as diagonalisation, especially when theN/m ratio is high and good parallel
scaling is important, an iterative algorithm—based on the direct inversion of the
iterative subspace (DIIS)—is also used [5].

16.2.4
Forces and Structural Relaxation

It is occasionally argued that the determination of forces is more complex and time
consuming with Gaussian orbitals as a consequence of the Pulay forces associated
with atom centred basis functions. This, in fact, is not the case in reality. In fact,
viewing Pulay forces as an approximation to incompleteness forces (see Section II C
of Ref. [6] for a detailed discussion) it is more accurate to say that rather than being a
burden, the ability to calculate Pulay forces (rather than their presence) is a distinct
advantage as significant efficiencies can be obtained (see Section 16.4 for a more
detailed discussion).

Forces are determined from the Hellmann–Feynman theorem as adapted for
localised basis functions [3]:

qE
qRa

¼
X

ij

qHij

qRa
bij�

X

ij

qSij
qRa

wij;

where wij is the energy weighted density matrix

wij ¼
Xm

l

f ðLllÞLllcilcjl: ð16:7Þ

The first term, qHij

qRa
bij, is trivially evaluated in time scaling linearly with system size.

Indeed the time for this is only marginally greater than the construction of the
Hamiltonian itself, only �45 s for a 1000 atom cell (see discussion of timings in
Section 16.4.1). The construction of wij is likewise straightforward. Evaluating
Eq. (16.7) directly using OðN3Þ dense matrix operations imposes a negligible
overhead—and, in principle, since only elements of wij that have corresponding
non-zero elements in the Hamiltonian are required this step can be performed in
OðN2Þ. In conclusion then, force determination is possible in a small fraction of the
time for a single SCF step.

Movement of the atoms to attain equilibrium is then achieved using any standard
scheme. We commonly use the conjugate gradient method [13], BFGS [13] and
G-DIIS methods [14].

16.2.5
Parallelism

AIMPRO is parallelised using the message passing interface library (MPI). A library
to handle the creation and destruction of multiple worlds—and levels of worlds—is
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also implemented. A typical arrangement of these worlds for the calculation of the
dynamical matrix is given in Figure 16.1. Each �Energy world� could, for example,
calculate a row of the dynamical matrix, furthermore within each energy calculation
the calculation can further be split into separate �k-point worlds�. Such flexible
infrastructure such as this enables extra �embarrassingly parallel� functionality to be
included in the main algorithm itself.

16.3
Functionality

Although in this chapter, the emphasis is on the kernel of the calculation, and how
thismay be improved both in terms of speed and accuracy, the great utility of ab initio
calculations over the last two decades has been their ability to link to an increasingly
broad range of experiments, producing quantitatively accurate values formeasurable
quantities. In this section, we illustrate this by outlining some of the functionality
incorporated into the AIMPRO code and the problems tackled.

16.3.1
Energetics: Equilibrium and Kinetics

The fundamental property given by these calculations is, of course, the total energy.
In terms of defect physics, this is of outstanding importance with the formation
energy controlling the equilibrium concentrations of defects. The energy barrier to
motion of a defect through a material, gives information about kinetic motion and is
as important as the formation energy in understanding the behaviour of defects in a
material. For example, the result that the diffusion barrier of hydrogen in ZnO is
under 0.5 eV has demonstrated that isolatedH cannot be responsible for the residual
n-type conductivity of this material [15] as had previously been thought. On the other
hand, the fact we can show that H binds strongly to other impurities to produce
thermally stable complexes can provide alternative explanations for this phenome-
na [16] and can also have important technological implications for other doping
issues [17].

Figure 16.1 Schematic of parallel worlds (see text for details).
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It is frequently the energetics of defects at the high temperatures at whichmaterial
processing occurs that can determine the defects seen in materials. As such a free
energy of formation should be calculated at the temperature at which the material
is processed. Calculations of this requires treatment of vibrational modes for all
atoms in a unit cell, once demanding but now becoming amore common calculation.
It can often happen that a binding energy changes sign at high temperature leading to
some defect complexes being absent in samples [18].

16.3.2
Hyperfine Couplings and Dynamic Reorientation

An accurate knowledge of the electron spin density enables the coupling with the
magnetic moment of certain nuclei to be calculated, enabling a comparison with
experimentally measured hyperfine coupling tensors. In the simplest case a com-
parison with experiment can be a powerful tool enabling the characterisation of
defect centres [19]; in more complex cases low symmetry defects can re-orient
dynamically at room temperature appearing experimentally as having a higher
symmetry. In this case the ability to calculate both the energy barrier and the averaged
hyperfine tensor is key [19]. The physics here is quite rich in variety with quantum
tunnelling of hydrogen also being demonstrated [20].

16.3.3
D-Tensors

Defects with electron spin, S> 1 exhibit a zero field splitting, measured experi-
mentally as the D-tensor. A method to calculate the first order contribution to the
zero-field splitting tensor was presented in Ref. [9]. Again comparison of calculated
tensors [21–25] with experiment aids in the characterisation of defect centres.
The ability to perform a quantitative calculation has also shown that conclusions
drawn from the phenomenological point dipole model frequently used to interpret
the size of the D-tensor are not always reliable [21].

16.3.4
Vibrational Modes and Infrared Absorption

The vibrational modes associated with defects are readily measured experimen-
tally, and may be calculated from the second derivatives of the energy surface.
These modes have been some of the most fruitful methods of characterising
defects [26, 27].

16.3.5
Piezospectroscopic and Uniaxial Stress Experiments

Calculation of piezospectroscopic (energy–stress) tensors of defects also provides a
direct link with experiment [28]. The response of vibrational frequencies to uniaxial
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stress is also a valuable tool in the experimental determination of defect symmetry
and these shifts can be calculated accurately from total energy calculations, providing
a further aid in characterisation studies [29].

16.3.6
Electron Energy Loss Spectroscopy (EELS)

The simplest treatment of energy loss spectroscopies is based on the dipole matrix
elements between Kohn–Sham states. This is an approximate model, but in many
instances is sufficiently accurate for features in experimental spectra to be correlated
with electronic states associatedwith regions of defects, particularly extended defects.
Both low-loss [30, 31] and core–electron energy loss spectroscopy (EELS) experiments
(or the theoretically similar XPS experiment [32]) can be modelled.

16.4
Filter Diagonalisation with Localisation Constraints

We now turn to the main topic of this chapter, namely, recent advances in the
KSDFT kernel that enable such calculations to be performed in a time comparable
to a tight binding calculation. The conventional AIMPRO kernel described in
Section 16.2 has been dramatically improved upon recently [6]. The filter diag-
onalisation method with localisation constraints promises to allow calculations with
larger primitive sets, thereby approaching the basis set limit, while the fundamental
density matrix is only the size of a minimal (or tight binding like) basis density
matrix. For a detailed account of the method and algorithmic details the interested
reader is referred to Refs. [6, 7]. Here, we summarise the method to elucidate later
discussions, however, it is the broader impact of the filtration algorithm we wish to
concentrate upon.

Rather than a direct diagonalisation in the full primitive basis a subspace
eigenproblem is constructed in a small basis of filtered functions, defined in terms
of the primitive basis set {wi} as

WIðrÞ ¼
X

i

kiIwiðrÞ: ð16:8Þ

For silicon, for example, using the pseudopotential approximation this reduces
the size of the kernel eigenproblem from, say, �28 (if using the ddpp basis
described in Ref. [6]) functions per atom to only four functions per atom—a
significant saving. The step that performs this reduction in basis size will be
referred to as the filtration algorithm. A filtration radius (rcut) is defined and the
filtered basis on an atom at Ra constructed using basis functions that lie on atoms
at Rb where jRa�Rbj < rcut. Henceforth, filtered basis sets will be referred to
using the notation fWðrcutÞg. A schematic of the filtration region for an atom if
shown in Figure 16.2.
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The filtration step, as outlined in Ref. [6], consists of the following operations on a
trial function j t~i

j k
~
i ¼ cf ðLÞcTSj t~i; ð16:9Þ

to obtain the vector of contraction coefficients j k~i. The remaining quantities are
defined by the GEP

Hc ¼ ScL; ð16:10Þ
where, here, H and S matrices only consisting of a subset of the rows and columns
of the Hamiltonian and overlap matrix formed in the large primitive basis (see
Ref. [6]). In other words they are theH and Smatrices associated with the primitive
functions within the filtration region (Figure 16.2). The filtration function f used in
Ref. [6] and throughout this work is a high temperature (kT� 3 eV) Fermi-Dirac
function, which has the desired effect of removing the unnecessary high eigenspace
of the Hamiltonian. The GEP [Eq. (16.10)] can be transformed to an ordinary
eigenproblem

�Hd ¼ L�1HL�Td ¼ dL; ð16:11Þ

Figure 16.2 (online colour at: www.pss-b
.com/) Schematic of the filtration region. Filled
circles represent atoms and unfilled their
periodic images. The green circle represents an

atom for which filtered functions are to be
calculated and the yellow circles represent
atoms whose primitive functions will contribute
to these filtered functions.
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where L is a lower triangular matrix and

S ¼ LLT and d ¼ LTc: ð16:12Þ
From this we can express Eq. (16.9) as

j k
~
i ¼ L�Tdf ðLÞdTLT j t~i ¼ L�T f ð �H�ÞLT j t~i: ð16:13Þ

The primitive space ! subspace transformation is performed using the following
sparse matrix multiplications;

H
~ ¼ kTHk and S

~ ¼ kTSk: ð16:14Þ
From this one obtains the subspace GEP

H
~
c
~ ¼ S

~
c
~
L
~
: ð16:15Þ

Since the dimension of this eigenproblem is small—essentially the size of a tight
binding Hamiltonian—it is, at present, solved with standard direct diagonalisation.
However, it must be stressed that due to the filtered functions being localised this
matrix will be sparse for large systems, and therefore alternatives to diagonalisation
may be considered. After the solution of this eigenproblem is obtained the subspace
density matrix is constructed

b~IJ ¼
X

l

f ðLllÞ�cIl�cJl; ð16:16Þ

after which the subspace ! primitive space transformation is performed

b ¼ k b~kT; ð16:17Þ

and the calculation proceeds as normal. For calculations in silicon and similar
materials we have used four functions produced using trial functions of s, and p type
symmetry. The resulting functions j k~i are plotted in Figure 16.3.

We should note that, although the number of functions we are using (four) has an
obvious chemical significance for silicon, this is in no way a restriction of the
algorithm. Indeed, we may choose to use more or less functions, with full conver-
gence to the primitive basis being obvious as more functions are added. Using fewer
than four functions can also give good results, but only if thefiltration is performed at
a low-enough temperature to permit this. Indeed, zero temperature filtration can
produce an exact result with only two filtered functions per silicon atom, although
this would not be practical as the functions would lose their localisation (in general),
thereby removing any advantage of this method.

16.4.1
Performance

We now detail the performance of the current algorithm including latest devel-
opments [7] and also some very encouraging preliminary results from further
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optimisations of the algorithm. As a model system we look at unit cells of silicon
created by forming n� n� n arrays of the eight atom conventional unit cell, where
2� n�8. It must be stressed, however, that the algorithm is not limited to wide-
gap systems and is equally applicable to metals [6, 33]. The calculations use
gamma point sampling and are performed on a single core of a 2.8GHz Intel
Xeon CPU.

Table 16.1 gives timings using an approximate filtration strategy—still good
enough to give only a�10�4 A

�
error in relaxed final structures (see Section 16.4.2).

Times are given for a single self-consistent iteration. For this system, SCF cycles

Table 16.1 Timings (s) of components of a self-consistent iteration for n3 (simple cubic) cells of
silicon (n ¼ 2; . . . ; 8) on a single 2.8GHz Intel Xeon core. The first row gives the number of atoms in
each cell. See Sections 16.2 and 16.4 for a description of the algorithmic components. These
calculations correspond to the approximate filtration scheme (see Table 16.2).

64 216 512 1000 1728 2744 4096

matrix build 2.79 9.38 22.99 45.05 76.48 133.99 185.11
potential calculation 0.07 0.22 0.58 1.15 2.11 3.44 4.84
filtration kernel 2.00 6.74 16.00 31.19 53.94 85.97 128.12
primitive ! subspace 0.48 3.82 12.41 27.61 48.76 77.71 116.10
subspace diagonalisation 0.03 0.47 7.73 52.58 270.63 1057.98 3740.67
density matrix build 0.00 0.07 0.86 6.11 31.88 124.13 414.33
subspace ! primitive space 0.11 0.96 5.35 24.88 72.30 138.89 213.17
calculation of real space density 0.43 1.53 3.75 7.42 12.75 21.97 30.51
overhead 0.11 0.70 1.85 3.20 7.56 11.59 19.14
total 6.02 23.89 71.52 199.19 576.41 1655.67 4851.99

Figure 16.3 (online colour at: www.pss-b.com) Filter functions from trial functions of s, px, py and pz
(clockwise from top-left) symmetry.
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require fewer than ten iterations to converge the Hartree energy associated with
the difference of input and output densities to less than 10�5Ha. The most notable
detail in the table is the bottom line. This shows that on a single core a self-
consistency step for a 1000 atom system takes just 200 s and a 1728 atom system
less than 10min. Therefore initial total energies of these systems can be found in
�30min and �1.6 h respectively. Clearly, even modest parallelism over the 8
cores, which may typically be in a commodity dual processor PC, reduces these to
remarkably small values, and enable even complex structural relaxations on
inexpensive hardware.

Clearly for small systems (e.g. 216 atoms) the dominant time is that of the matrix
build [Eq. (16.3)] together with the filtration kernel [Eq. (16.9)]. These have O(N)
complexity and are clearly unimportant for larger systems where theO(N3) subspace
diagonalisation begins to dominate. One somewhat surprising feature of the timings
is that the primitive to subspace transformation [Eq. (16.14)] and its inverse
[Eq. (16.17)] are not significant at any system size, occupying at most 20% of the
total time (in 216 atoms) and gradually reducing for larger systems. This is a
consequence of the sparsity of k, H and S being well exploited together with
reasonably efficient code (which achieves �25% of peak performance) to perform
the block-multiplications.

As a final comment, it is seen that for the 1728 atom system, approximately half of
the total time is spent solving the subspacematrix eigenvalue problem. As the size of
this matrix is the same as in a tight binding calculation it may be supposed that an
accurate full DFTcalculation on this system size may be performed in twice the time
of a tight binding calculation. The difference however diminishes to just 20% for the
4096 atom system and asymptotically will vanish entirely, if direct diagonalisation is
used in both.

16.4.2
Accuracy

We now analyse the accuracy of the filtration method by comparing formation
energies and relaxed structures to the parent primitive basis. The filtration algorithm
has been previously shown to produce energies and forces which are in close
agreement with those produced by the conventional algorithm [6]. We have subse-
quently looked at a variety of different systems including metals and wide band gap
materials [33]. In this section some further results are given focusing particularly
on the accuracy of equilibrium structures and the impact of filtration on the atomic
co-ordinates.

We first present a comparison of the structures of single interstitial atoms in
silicon. Three structures are presented: the 110 defect in which a pair of Si atoms
straddle a lattice site, displaced from it in h110i directions; an atom placed at a
tetrahedral interstitial site (Td in the table below), and a hexagonal interstitial site,
labelledH in the tables. The calculations were performed in unit cells containing 217
silicon atoms, using a ddpp primitive basis, the pseudopotentials of Hartwigsen
et al. [34] and k-point sampling corresponding to 2� 2� 2Monkhorst–Pack grid [35].
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Structures were optimised until all components of forces on atoms were less than
5� 10�5 a.u.

Two filtration conditions were chosen. The first uses a cutoff radius of 12 a.u., our
standard converged value for silicon as used in previous work [6]. For this, Table 16.2
illustrates the minimal impact filtration has on equilibrium structure, with maxi-
mum deviations from the unfiltered results of order 10�4 A

�
or less. To further

illustrate the insensitivity of the structures produced by filtration, a second filtration
strategy was adopted which used a smaller localisation radius (10 a.u.) together with
an more approximate filtration kernel. This more approximate approach shifts the
total energy of the system by 0.3Ha, an immense change but the corresponding
changes to equilibrium structure are still seen from Table 16.2 to be much less
than 10�3 A

�
. The relative energies of the defects are also changed by only 20meV by

this. This is a clear demonstration of the arguments regarding BSSE given in
Section 16.2.1. We find this result to be a general feature of our procedure.

Also shown in Table 16.2 are the relative energies of the different structures. It is
seen that the error associated with filtration is <10meV and even the approximate
filtration invokes errors of only 20meV. These results are typical of a number of
systemswe have looked at. Although in an application of this inmaterials science, we
would not consider publishing the relative energy from the approximatefiltration but
include it here to illustrate an important behaviour of the filtration (indeed, atom
centred localised basis set calculations in general)—even if an approximation is used
which produces gross (of order 10 eV) shifts in the absolute energy of structures, the
relative energies remain converged and the structure is almost unchanged, indeed if
bond lengths are published to three decimal places, they would appear unchanged.
This can be exploited if desired as a means of accelerating structural optimisation,
which typically consumes the majority of computing time in a research project.

As a second example,we have considered the binding of an interstitial oxygen atom
Oi to a vacancy oxygen VO centre in silicon:

VOþOi !VO2;

Table 16.2 Relative energies (DE) and errors in relaxed structures (Dr)—both mean (avg) and
maximum (max) errors—of various defects in silicon (see text for details).

DE (eV) Dr
max (mA

�
) Dr

avg (mA
�
)

110 structure unfiltered 0.000 — —

standard filtration 0.000 0.16 0.01
approx. filtration 0.000 0.68 0.06

Td structure unfiltered 0.149 — —

standard filtration 0.143 0.06 0.006
approx. filtration 0.162 0.41 0.05

H structure unfiltered 0.107 — —

standard filtration 0.104 0.06 0.009
approx. filtration 0.125 0.28 0.046
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where theVO2 centre consists of twoOatoms in a vacancy, each forming bonds to two
of the silicon atoms andpassivating the dangling bonds. In a calculationusingCpoint
sampling of the Brillouin zone, the binding energy is found to be 1.355 eV for the
conventional algorithm and 1.354 eV for the filtered calculation, again showing a
remarkable but nevertheless characteristic level of agreement between the two
calculations.

Finally, we consider a defective metallic system, namely the ideal vacancy in
aluminium. A 33 cell (108 atoms) with a relatively large primitive basis (pddpp) was
usedwith a 103 uniform grid of points to perform integration over the Brillouin zone.
To converge the formation energy to within �0.01 eV required only �50min on a
single core. We will shortly publish an extensive study of the accuracy of filtration
algorithm for defects in a variety of systems.

16.5
Future Research Directions and Perspectives

In this section we wish to expand on previous discussions, assess their impact on
thefield and to address likely outcomes of on-going research in this exciting area. As
well as significant improvements to speed and memory requirements, recent
advances have presented a rich array of new questions and research directions
that impact a very broad range of methods and applications. As this is a very rapidly
evolving area we will spend sometime to discuss the impact of current research in
the near-term.

There are some points that are immediately clear from thework presented or likely
to be realised in the near-term:

i) Tight binding calculations, which use conventional O(N3) diagonalisation
methods, are only marginally faster than the full-DFT algorithm presented
here.

ii) Calculations involving structural relaxation or saddle-point location on systems
containing �10 000 electrons are now comfortable on a single core.

iii) The fact that the size of the primitive basis is decoupled from the size of the
filtered basis allows for larger, and therefore more accurate, primitive sets to be
used. On-going improvements to this procedure are likely to enable
calculations—essentially at the basis set limit—at a cost comparable to tight
binding.

The possibility of using low-complexity [a subset of these approaches are more
commonly referred to as �linear-scaling� or �OðNÞ�] subspace kernels (such as the
recursive bisection density matrix method [36]) rather than diagonalisation leaves
open the question as to the ultimate relative performance of tight binding approaches
compared to a full KSDFTcalculation in the limit of a large number of atoms. This is
due to a complex range of factors, such asmatrix sparsity and spectral width, and their
relation to accuracy.
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16.5.1
Types of Calculations

Now, we shall discuss some broad types of calculations not only to highlight the
progress that has been made but also to emphasise challenges that remain.

16.5.1.1 Thousands of Atoms on a Desktop PC
The ideal computational limit for the use of Gaussian orbitals combined with
localised filter diagonalisation is large systems on a small number of cores due to
memory efficiency and low operation count. As quad-core processors are currently
rather common we are already at the stage where �2000 silicon atoms can com-
fortably be handled on a single processor. Further algorithmic improvements
coupled with the expected release of 8þ core processor promises to facilitate
�4000þ atom calculations on suchmachines in the near future. This computational
limit also provides the perfect framework for calculations involving many indepen-
dent subspace kernel calls, such as for separate k-points or calculation of the
dynamical matrix. These can be effectively parallelised to allow the calculation of
vibrational frequencies of �1000 atom systems.

16.5.1.2 One Atom Per Processor
The opposite limit to performing large calculations on an inexpensive desktop
machine is the �one atomper processor� limit, inwhichwe are interested in obtaining
energies/forces of systems extremely rapidly by way of outstanding parallel scaling.
Here, the interest is in using large capability supercomputing facilities to perform
many interdependent calculations—the classic example being long time-scale
molecular dynamics. As supercomputing facilities and architectures are leading to
a rapid growth in the number of cores available to a calculation this is an important
area of research. The current filter diagonalisation approach still has a direct
diagonalisation kernel and therefore is not suited to this computational limit.
However, virtually all other aspects of the calculation scale very well. Alternative
algorithms for the subspace kernel will have to be developed to tackle this important
class of problems.

At larger system sizes, the use of low-complexity methods, which inherently scale
well, will largely tackle the problem of scaling. However, the size of the systemwhere
this will become realistically advantageous is not clear, and there will likely be an
intermediate size range (up to several thousand atoms) where other strategies will be
needed.

16.5.2
Prevailing Application Trends

We now turn to the impact discussions in the Section 16.5.1 are likely to have on the
prevailing types of calculations performed by users of KSDFTmethods.
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In a recent work [7] it was shown that for silicon—a difficult example due to the
fairly high atom/electron number ratio—the filtration algorithm was competitive
with the conventional algorithm (using an accurate filtration radius of 12 a.u.) at 216
atoms. Indeed, with more approximate filtration (typically acceptable for force
calculations) the filtration algorithm is essentially faster at any system size
(Table 16.1).

We would consider the modelling of a defect in a 216 atom unit cell to be a fairly
small calculation, but such calculations can rapidly become large. For example, some
defects can have surprisingly long ranged strain effects and the use of cells of this size
has produced erroneous conclusions (see for example Ref. [37]). Even though atoms
far from a defect typically do not relax far from their perfect lattice site the number of
such atoms in a shell of a given radius is large and therefore they have an effect on
formation and migration energies and the like [38].

However, even point defect calculations can become demanding when tests of cell
size convergence are required—doubling the distance between point defects in a 216
atom systemwould require the use of the 1728 atom until cell discussed earlier. This
would usually be regarded as a very �large� (read �time consuming�) calculation by
today�s standards. However, a glance back at Table 16.1 and we see that such a
calculation is tractable, with approximate filtration, on a single core. In the cases of
certain types of problem (e.g. charged defects) correction schemes [39–41] have been
popular to avoid performing large calculations (i.e. to avoid reaching the cubic
bottleneck). Such schemes should be viewed as complementary to performing large-
scale calculations not a replacement for them.

Maybe the ease at which �1000–2000 atoms calculations can now be performed
will lead to a re-evaluation of many point defect problems where questions remain
over the size of supercell used.Moving away frompoint defects to extended defects—
the need for a few thousand atoms becomes even more necessary. The performance
improvements here will enable a far greater complexity of problem to be treated, for
engineering problems associated with imperfect interfaces; the interaction of defects
with complex environments; a more accurate treatment of dislocations; their motion
and interactionwith one another and other defects. So, one could seemethods able to
perform accurate calculations containing several thousand atoms as opening the
afore mentioned systems to the same level of scrutiny presently reserved for point
defects.

16.5.3
Methodological Developments

The filtration algorithm represents a significant shift, indeed a sea change, in the
speed and convenience of accurate KSDFTcalculations for a range of systems sizes—
but especially for large systems. It is evident that, in many respects, calculations
involving a few thousand electrons present a comparable challenge—in terms of
computational burden—per SCF iteration to a tight binding calculation.

However, we wish to stress, these implementations are still rather new. A great
deal of scope exists, provided by these recent developments, for further optimisa-
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tions. Also, due to the recent dramatic advances [6] parts of the code that
previously were insignificant, therefore did not warrant particular attention from
the point of view of further optimisation (such as the matrix build) have once again
become an issue and work is being done to address these topics.

From a methodological development standpoint—just as conventional algo-
rithms have aided the development of OðNÞ and low-complexity algorithms—
these new methods will, in turn, be of significant use in the development of new
multi-length-scale approaches, such as hybrid QM/MM modelling and the
like [42–44], as direct theory to theory comparisons will be possible. It remains
to be seen whether current hybrid approaches will be successfully, in most cases,
verified or whether a �length scale drift� will occur [as has certainly been the case
for many OðNÞ methods] and in a few years we may be using full KSDFT for
calculations now seen as the purview of more approximate methods. Certainly
where important questions remain with such approaches—such as (i) How does
one link the QM and MM regions and decide their respective boundaries?, (ii)
How does one treat highly complex structures with no obvious reference point for
MM such as the prefect crystal?, (iii) How does one cope with a system where the
QM region becomes very large?, (iv) How does one assess the propagation of
errors as one drifts from the �Kohn–Sham surface�? and (v) What is the chemical
potential of the complete QM/MM system? In other words, how does one generate
the correct QM state?—the use of a single, robust and tried and tested framework
is certainly attractive, and worth striving for.

The fact that 1000 atom calculations are becoming comfortable in serial should, at
once, put an end the oft expressed sentiment that Kohn–Sham density functional
theory can only handle �a few hundred atoms at most�.

Although the use of low-complexity methods certainly will become important, it is
clear that for realistic calculations the much commented upon crossover point—
where a low-complexity algorithm becomes quicker than a conventional approach—
is significantly larger than suggested by the early optimism in the literature. In fact, it
is, to a large extent, nonsense now to talk of a crossover point between low-complexity
and conventional approaches—we have already seen (in Section 16.4) a cubically
scaling algorithm benefit hugely from the inclusion of ideas from low-complexity
methodologies.

We now return to the issue of BSSE and the impact of the filtration algorithm on
this problem. Clearly, in the large system limit the subspace diagonalisation as the
final remaining OðN3Þ operation dominates the calculation. As this diagonalisation
is independent of the size of the primitive set, in the large system limit, large
primitive sets—previously not used because of their severe impact onperformance—
can be used. This will increase the effort required in the filtration step, but this is
currently insignificant (for large enough systems), scaling linearly with system size
and taking just 3% of the total time for the 4096 atom system considered earlier.
On-going improvements in this part of the algorithm, already well in hand, will
reduce the system size at which this becomes an issue and should enable these
calculations with localised orbitals to be (almost) systematically converged, even in
routine runs. The fact that, inmany respects, plane-wave accuracy for the cost of tight
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binding seems to be achievable, and possibly even transparently to the user, makes
this an exciting possibility.

16.6
Conclusions

Apresentation of current and on-going developments in the AIMPRO code has been
presented. The speed of KSDFT calculations using the latest state-of-the-art algo-
rithms is comparable to a tight binding calculation. Even considering the extra
memory and operations specimen examples such as 1000 silicon atoms on a single
core are becoming comfortable and standard calculations.

Acknowledgement

The authors thank J. P. Goss and A. Lawson for useful discussions.M. J. R. gratefully
acknowledges the support of the Alexander von Humboldt Foundation.

References

1 Kohn,W. and Sham, L.J. (1965) Phys. Rev.,
140, A1133.

2 Hohenberg, P. and Kohn, W. (1964) Phys.
Rev., 136, B864.

3 Jones, R. and Briddon, P.R., in: (1998),
Identification of Defects in Semiconductors,
Vol. 51A of Semiconductors and Semimetals,
edited by M. Stavola, Academic Press,
Boston, Chap. 6.

4 Briddon, P.R. and Jones, R. (2000) Phys.
Status Solidi B, 217, 131.

5 Rayson, M.J. and Briddon, P.R. (2008)
Comput. Phys. Commun., 178, 128.

6 Rayson, M.J. and Briddon, P.R. (2009)
Phys. Rev. B, 80, 205104.

7 Rayson, M.J. (2010) Comput. Phys.
Commun., 181, 1051.

8 Rayson, M.J. (2007) Phys. Rev. E, 76,
026704.

9 Rayson, M.J. and Briddon, P.R. (2008)
Phys. Rev. B, 77, 035119.

10 Obara, S. and Saika, A. (1986)
J. Chem. Phys., 84, 3963.

11 Lippert, G., Hutter, J. and Parrinello, M.
(1999) Theor. Chem. Acc., 103, 124.

12 Kresse, G. and Furthmuller, J. (1996)Phys.
Rev. B, 54, 11169.

13 Vetterling, W.T. and Flannery, B.P.
(2002) Numerical Recipees, second ed.,
edited by Press, and S.A. Teukolsky,
(Cambridge University Press).

14 Farkas, O. and Schlegel, H.B. (2002)
Phys. Chem. Chem. Phys., 4, 11.

15 Wardle, M.G., Goss, J.P., and Briddon,
P.R. (2006) Phys. Rev. Lett., 96, 205504.

16 Wardle, M.G., Goss, J.P., and Briddon,
P.R. (2005) Phys. Rev. B, 72, 155108.

17 Wardle, M.G., Goss, J.P., and
Briddon, P.R. (2005) Phys. Rev. B, 71,
155205.

18 MacLeod, R.M., Murray, S.W.,
Goss, J.P., and Briddon, P.R. (2009)
Phys. Rev. B, 80, 054106.

19 Etmimi, K.M., Ahmed, M.E., Briddon,
P.R., Goss, J.P., and Gsiea, A.M. (2009)
Phys. Rev. B, 79, 205207.

20 Shaw, M.J., Briddon, P.R., Goss, J.P.,
Rayson, M.J., Kerridge, A., Harker, A.H.,
and Stoneham, A. M. (2005) Phys. Rev.
Lett., 95, 105502.

21 Goss, J.P., Coomer, B.J., Jones, R.,
Shaw, T.D., Briddon, P.R., Rayson, M.,
and €Oberg, S. (2001) Phys. Rev. B, 63,
195208.

302j 16 Accurate Kohn–Sham DFT With the Speed of Tight Binding



22 Rayson,M.J., Goss, J.P., andBriddon, P.R.
(2003) Physica B, 340, 673.

23 Goss, J.P., Jones, R., Shaw, T.D.,
Rayson, M.J., and Briddon, P.R. (2001)
Phys. Status Solidi A, 186, 215.

24 Goss, J.P., Briddon, P.R., Rayson, M.J.,
Sque, S.J., and Jones, R. (2005) Phys. Rev.
B, 72, 035214.

25 Goss, J.P., Rayson, M.J., Briddon, P.R.,
and Baker, J.M. (2007) Phys. Rev. B, 76,
045203.

26 Coutinho, J., Jones, R., Briddon, P.R.,
and €Oberg, S. (2000) Phys. Rev. B, 62,
10824.

27 Wardle, M.G., Goss, J.P., and Briddon,
P.R. (2006) Appl. Phys. Lett., 88, 261906.

28 Goss, J.P., Jones, R., and Briddon, P.R.
(2002) Phys. Rev. B, 65, 035203.

29 Liggins, S., Newton, M.E., Goss, J.P.,
Briddon, P.R., and Fisher, D. (2010)
Phys. Rev. B, 81, 085214.

30 Fall, C.J., Jones, R., Briddon, P.R.,
Blumenau, A.T., Frauenheim, T., and
Heggie, M.I. (2002) Phys. Rev. B,
65, 245304.

31 Fall, C.J., Blumenau, A.T., Jones, R.,
Briddon, P.R., Frauenheim, T.,
Gutierrez-Sosa, A., Bangert, U., Mora,
A.E., Steeds, J.W., and Butler, J.E. (2002)
Phys. Rev. B, 65, 205206.

32 Ewels, C.P., Van Lier, G., Charlier, J.C.,
Heggie, M.I., and Briddon, P.R. (2006)
Phys. Rev. Lett., 96, 216103.

33 Briddon, P.R. and Rayson, M.J.
(in preparation).

34 Hartwigsen,C.,Goedecker, S., andHutter,
J. (1998) Phys. Rev. B, 58, 3641.

35 Monkhorst, H.J. and Pack, J.D. (1976)
Phys. Rev. B, 13, 5188.

36 Rayson, M.J. (2007) Phys. Rev. B, 75,
153203.

37 Goss, J.P., Briddon, P.R., and Eyre, R.J.
(2006) Phys. Rev. B, 74, 245217.

38 Sulimov, V.B., Sushko, P.V., Edwards,
A.H., Shluger, A.L., and Stoneham, A.M.
(2002) Phys. Rev. B, 66, 024108.

39 Makov, G. and Payne, M.C. (1995) Phys.
Rev. B, 51, 4014.

40 Lany, S. andZunger, A. (2008)Phys. Rev. B,
23, 235104.

41 Freysoldt, C., Neugebauer, J., and
Van de Walle, C.G. (2009) Phys. Rev. Lett.,
102, 016402.

42 Csanyi,G., Albaret, T., Payne,M.C., andDe
Vita, A. (2004) Phys. Rev. Lett., 93, 175503.

43 Bulo, R.E., Ensing, B., Sikkema, J., and
Visscher, L. (2009) J. Chem. Theory
Comput., 5, 2212.

44 Gao, J.L. and Truhlar, D.G. (2002) Annu.
Rev., Phys. Chem., 53, 467.

References j303



17
Ab Initio Green�s Function Calculation of Hyperfine
Interactions for Shallow Defects in Semiconductors
Uwe Gerstmann

17.1
Introduction

In semiconductor technology, besides hetero structures, shallow and deep defects are
the key ingredients. The availability of mobile hole and electrons in dedicated
functional regions of the material hinges on the ability to control the concentration
of shallow defects. This requires a clear understanding of the physics of these
important entities. In particular, the identification of defects present in a given
material often is an important challenge. Here, magnetic resonance is the most
sensitive experimental technique to address this essential problem. Structure
identification, however, cannot be done by experiments alone. The measurements
provide a set of parameters only, which have to be compared with theoretical
predictions of these quantities. Only if theoretical modeling can exclude all but one
structural model, then an unambiguous identification of defects has been achieved.
For the modeling of the microscopic structure of the defects the electronic g-tensor
and in particular their hyperfine (hf) tensors have been found to be crucial para-
meters as they contain detailed information on the wave function distribution on the
central nucleus and the ligands, whereby the latter is often called superhyperfine (shf)
interaction. With the development of the local spin density approximation (LSDA) of
the density functional theory (DFT) [1] theoretical ab initio total energymethods have
been introduced that describe defect structures in solids quantitatively. Nowadays
many computational codes provide the possibility to calculate the hf structure of the
experimental magnetic resonance spectra routinely, in most cases with the required
degree of accuracy.

However, defects in semiconductors have to be divided in two groups: (1) Deep
point defects seriously disturb the crystal in a small region centered at the defect site.
Extremely long-ranged perturbations as e.g., a Coulombic potential-tail for charged
defects or strain fields are either ignored or treated as a correction. A self-consistent
treatment of the deepdefect is possible because it can be restricted to a small region in
space, a cluster, a supercell, or to the perturbed region in aGreen�s function approach.
(2) For shallow defects, on the other hand, the wave function of the defect-induced
state typically extends over several hundred or even thousand unit cells and,
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therefore, cannot be treated directly with ab initio supercell methods. Instead, the
defect-induced change of the crystal potential is replaced by amodel potential and the
defect state is treated in an empirical one-electron approximation, the so-called
effective mass approximation (EMA) [2–4]. In the simplest EMA for a substitutional
donor, e.g., the defect wave function is expanded into the Bloch states close to the
minimumof the lowest conduction band, for which the dispersion of the band can be
approximated by a parabola defining the effective mass. However, an empirical
correction is necessary to distinct between different atomic species: the so-called
central cell correction is introduced to describe the local part of the potential. The best
EMA are then able to reproduce the binding energies of shallow acceptors and
donors. The empirical character of the EMA, however, prevents a prediction of the hf
and shf parameters, decisive for an identification of the atomic structures. As a result,
the wealth of information contained in the (s)hf interaction data for shallow dopants,
the technologically most important class of defects, is completely obscured.

In this article, we show that within a Green�s function approach the central cell
correction as the empirical part of the EMA can be substituted by an ab initio
calculation of this quantity. By this, a prediction of hf splittings becomes possible,
within an accuracy comparable with that in case of deep defects. This article is
organized as follows: first, we discuss the microscopic origin of the hf structure
showing thatDFTisperfectly suited to allowanaccurate computation. ThenaGreen�s
functionmethod is applied onto deep defects, whereby lattice relaxation is taken into
account if calculating the hf splittings. Thereafter, based on a short review of the EMA
and its empirical extensions, we present how the ab initio calculated local part of the
potential is embedded via Green�s functions into an EMA-like background. Finally,
the approach is applied onto shallow donors in silicon and silicon carbide (SiC).

17.2
From DFT to Hyperfine Interactions

17.2.1
DFT and Local Spin Density Approximation

Our main target is the calculation of the hf splittings within a many-body problem
given by the nuclei and the density of the surrounding electrons. In a first step we get
rid of the nuclear degrees of freedom using the Born–Oppenheimer approximation.
According the theorem by Hohenberg and Kohn [5] the (non-degenerate) ground
state energy of the remainingmany-electron system is a unique functionalE[n] of this
electron density which, thus, provides the starting point of DFT. From a general
many-electron wave function y it can be obtained via

nðrÞ ¼ hYj
XNel

i¼1

dðr�riÞjYi: ð17:1Þ

The theory can easily be extended to include the spin polarization: Following von
Barth and Hedin [6], we assume that an external magnetic field defines the direction
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of spin quantization with s¼", #. The ground state energy is then a unique
functional E½ns� of the spin-polarized electron densities (the spin densities) or
alternatively a unique functional E½n;m� of the electron density

nðrÞ ¼ n"ðrÞþ n#ðrÞ ð17:2Þ

and the magnetization density

mðrÞ ¼ n"ðrÞ�n#ðrÞ: ð17:3Þ

Kohn and Sham [7] have shown that the density nðrÞ for interacting fermions can
be mapped onto the density for a system of non-interacting particles that are subject
to some extra energy, the exchange-correlation energy Exc½n;m�. For non-interacting
particles we know that the density nsðrÞ can be expanded into the sum of squared
single-particle orbitals jl;sðrÞ

nsðrÞ ¼
XNs

l¼1

jjl;sðrÞj2: ð17:4Þ

For practical use these orbitals jl;sðrÞ are the solution of coupled single-particle
equations (the Kohn–Sham equations), whereby the electrons move in a spin-polar-
ized effective potential

Veff ;sðrÞ ¼ VextðrÞþ e2
ð
nðr0Þ
jr�r0j d

3r0 þVDFT
xc;s ½n;m�; ð17:5Þ

given by the external potential Vext, the Coulomb-potential of the electrons, com-
pleted by the exchange-correlation potential VDFT

xc;s ½n;m� that includes the many-
particle contributions and that depends on the spin direction s, on the electron
density n(r), and also on themagnetization densitymðrÞ. The exact shape of this non-
local exchange-correlation potential

VDFT
xc;s ½n;m� ¼ dEDFT

xc ½n;m�
dnsðrÞ ð17:6Þ

is unknown. For practical applications, however, there are useful parametrization
schemes which approximate the exchange-correlation potential [8, 9] calculated
for a homogeneous spin-polarized electron gas. The resulting VLSDA

xc;s ½n;m� ¼
VLSDA
xc;s ðnðrÞ;mðrÞÞ depends only locally on the spin densities. This local density

approximation (LDA) of DFT has proven to yield approximate results with an
accuracy going far beyond the early expectations [1]. The perhaps most crucial
shortcoming of the LSDA can be found in connection with the fundamental band
gap of semiconductors as the gap of the single-particle energies turn out to be
too small by about a factor of two. The reason for this is a discontinuity upon a change
of the particle number that would be present in the exact exchange-correlation
functional [10, 11], but is absent in the LSDA [12]. We will come back to this
point later.
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17.2.2
Scalar Relativistic Hyperfine Interactions

Within the LSDA it is also possible to calculate the hf interaction of the magnetic
moments of the electrons with those of the nuclei. The influence of an external
magneticfieldB0 (in the range of some100mT) typically leads to level splittings in the
10�12 . . . 10�2 eV range. The smallness of the magnetic field-induced level splittings
simplifies the computation considerably, and the influence of an external magnetic
field can be described by perturbation theory.

Although there exist a non-relativistic derivation for the isotropic contact
interaction (Fermi [13]), Breit has shown that the origin of the hf splitting can
be only described correctly in a relativistic treatment [14]. The static magnetic
field BðrÞ ¼ r� AðrÞ caused by the magnetic moment mI ¼ gNmNI of a nucleus
with gyromagnetic ratio gN located at the origin is obtained using the vector
potential

AðrÞ ¼ r � mI
r

� �
: ð17:7Þ

By replacing the momentum operator p in Dirac�s equation

ðca � pþ bmc2 þVeff�ErelÞjYi ¼ 0 ð17:8Þ
by the canonical momentum p ¼ p�e=cA the expectation value of the hf interaction
is, thus, given in first order perturbation theory by

EHF ¼ �ehYja �AðrÞjYi: ð17:9Þ
Here,a is a vector of 4� 4matrices constructed from the 2� 2Pauli spinmatricessx,

sy, and sz, respectively, whereby jYi ¼ WL

WS

� �
is given by the Dirac spinor, decom-

posing into the two-component Pauli spinors WL andWS. For light atoms,WL is the
dominant, large component whereas WS turns out to be small. This leads to

EHF ¼ �eðhWLjs �AðrÞjWSiþ hWSjs �AðrÞjWLiÞ: ð17:10Þ
Thus, EHF is a genuine relativistic term that couples large and small components of
Dirac�s equation. The small component WS can be expressed in terms of the large
component WL as

WS ¼ cs � p
2mc2 þ E�Veff ðrÞWL ¼ SðrÞ

2mc2
ðs � pÞWL; ð17:11Þ

whereby S(r) is the inverse relativistic mass correction. By this, the hf splitting

EHF ¼ Econtact þEorb þEdip; ð17:12Þ

is the sum over the following expectation values containing the large component
only [15]:
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Econtact ¼ � 8p
3
mBhWLjSðrÞmI � sdðrÞjWLi

þ hWLj 1r4
qS
qr

½mI � sr2�ðmI � rÞðs � rÞ�jWLi; ð17:13Þ

Eorb ¼ � e
mc

mI � hWLj Lr3 jWLi; ð17:14Þ

Edip ¼ mBhWLj 1r5 ½s �mIr
2�3ðs � rÞðmI � rÞ�jWLi: ð17:15Þ

In the non-relativistic limit, since SðrÞ! 1; only the first term in Eq. (17.13)
contributes to the isotropic contact term Econtact. By this, we obtain the results of
the classical theory given by Fermi [13], that only the probability amplitude at the
nucleus contributes. In the relativistic case, however, this first term does not
contribute at all. It is the second term in Eq. (17.13) which is the relativistic analog
to the contact interaction. For a pure Coulomb-potential around a given nucleus we
obtain

Veff ðrÞ � �Ze2

r
; ð17:16Þ

and the derivative qSðrÞ=qr is similar to a broadened d-function

dThðrÞ ¼ 1
4pr2

qS
qr

¼ 1
4pr2

rTh=2

1þ E
2mc2

� �
r þ rTh

2

� �2 : ð17:17Þ

In other words, the magnetization density of the electron in the relativistic theory is
not simply evaluated at the origin, where it would be divergent for s-electrons, but is
averaged over a sphere of radius

rTh ¼ Ze2

mc2
; ð17:18Þ

which is the Thomson radius, about ten times the nuclear radius. As a result, the
divergence of the s-electrons presents no problem.Also if we approximate the nuclear
potential by that of a charged volume rather than that of a point charge [16], the
divergence already disappears. However, it is important to note, that we would obtain
divergent contact terms mixing the approximations, e.g., using (scalar)1) relativistic
orbitals in a non-relativistic formula.

If the ground state of the defect is a single determinantal orbital singlet state
with total spin S, we have the simple case where the orbital angular momentum

1) In the scalar relativistic treatment WL is calculated solving Dirac�s equation but thereby ignoring
spin-orbit interactions. This leaves the electron spin as a �good� quantumnumber.Already in a scalar
relativistic treatment, s-like wave functions diverge at the nuclear site (if the nucleus is taken to be a
point charge).
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is �quenched� [17]. The orbital state transforms like an angular momentum
eigenfunction with quantum number l ¼ 0. Hence, the expectation value of the
angular momentum operator vanish, and there are no orbital contributions Eorb
to the hf interactions. Writing the N-particle wave function jWLi¼ jS;MSi as a
single Slater determinantal in real space representation, the hf interaction is then
fully described by the matrix elements hS;MSjHHFjS;M0

Si with respect to the
spin Hamiltonian

HHF ¼
X

k

fakS � Ik þ S �Bk � Ikg: ð17:19Þ

It is important to note that the matrix elements (rk¼ r�Rk)

ak ¼ 1
2S

8p
3
ck

ð
mðrÞdTHðrkÞd3r; ð17:20Þ

Bk ¼ 1
2S

ck

ð
mðrÞ 3rk � rk�r2k1

r5k
d3r; ð17:21Þ

can be expressed as a sum over single-particle matrix elements with respect to the
magnetization density without the need to construct many-body wave functions first.
We have simply to insert the magnetization densities obtained from the self-
consistent LSDA calculation and obtain the hf interactions with the central nucleus
aswell aswith the ligands (ligandhf interactions or shf interactions). Since each of the
Bk is traceless, its diagonal elements can be parametrized by two parameters bk and
b
0
k, describing the axial and non-axial part of the anisotropy.

L ΓΛ X∆ K Σ Γ

E
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er
g

y 
(e

V
)

density of states
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5

Figure 17.1 The density of states (DOS) distribution for the silicon crystal broken up into states
transforming according to a1 (left) and to t2 (right), is comparedwith the energy bands plotted along
the high-symmetry directions.
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17.3
Modeling Defect Structures

17.3.1
The Green�s Function Method and Dyson�s Equation

By introducing a point defect into the otherwise perfect crystal we break the
translational symmetry, and the periodicity of the ideal crystal is lost. Nevertheless,
themethodmost frequently used for the computation of point defects in solids is the
supercell method: instead of an isolated system with a single point defect one
considers a three-dimensional lattice of clusters, each with a single point defect. This
crystal can be treated theoretically by the known methods of energy band theory,
however, with the cluster as the �supercell� unit cell.

The Green�s function method [18–20] embeds a single defect into an otherwise
perfect crystal (cf. Figure 17.2). For this system the effective potential Veff is split into
the effective potential V0

eff of the undisturbed crystal plus some short-ranged
impurity-related potential DV

Veff ¼ V0
eff þDV : ð17:22Þ

DV can be quite large at the defect site but will decay rapidly with the distance from
the defect center. The Green�s function, G0, for a perfect crystal characterized by the
Hamiltonian H0 is defined as [21]

Figure 17.2 (online color at: www.pss-b.com)
Dyson�s equation: A perturbation DV is
embedded into a reference system
characterized by the �unperturbed� Green�s
function G0. Within the perturbed region

(colored) the Green�s function G of the
perturbed system is determined via
Eq. (17.29):G ¼ ð1�G0DVÞ�1G0. Outside this
region, G remains unchanged and matches G0.
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G0ðEÞ ¼ lim
e! 0þ

1
E�ie�H0

: ð17:23Þ

A small imaginary part added to the energy prevents a singularity forE ¼ En;k, i.e.,
within the valence and conduction bands (cf. Figure 17.1). G0 can be expressed in
terms of Bloch functions jjn;k;si for the spin state s, which solve the Kohn–Sham
equations for the perfect crystal:

G0ðEÞ ¼ lim
e! 0þ

X

n;k;s

jjn;k;sihjn;k;sj
E�ie�En;k;s

: ð17:24Þ

The sum in Eq. (17.24) includes all states fn; k; sg, not just the occupied states.
Vice versa, the Green�s function G for a given system includes all electronic ground
state properties of this system. The full information of the density of states
distribution (DOS)

DðEÞ ¼ 1
p
Im TrfGðEÞg ð17:25Þ

andmost important the (spin-polarized) electron densities are obtained by summing
up the occupied bands only

nsðrÞ ¼ 1
p
Im

	 ð

occ:

GsðE; r; rÞdE


: ð17:26Þ

For a crystal containing a deep defect, the Green�s functionG corresponding to the
full Hamiltonian H reads

GðEÞ ¼ lim
e! 0þ

1
E�ie�H

; ð17:27Þ

where the Hamiltonian now contains the full effective potential Veff. The Green�s
function G is related to G0 by a Dyson equation

G ¼ G0 þG0DVG; ð17:28Þ
which can be solved iteratively

G ¼ ð1�G0DVÞ�1G0: ð17:29Þ
The solution of Eq. (17.29) is possible if we have to invert ð1�G0DVÞ only in the

vicinity of the defect, the �perturbed region�, whereDV is non-negligible. In contrast,
the Green�s functions G0 and G extend outside this perturbed region. Despite the
localized shape of the �perturbation� DV, the approach via Dyson�s equation is very
flexible. Nowadays, it is a standard tool to describe transport properties in micro-
scopic nanostructures [22], wherebyDV is determined by the conductance electrons.

One result of a self-consistent calculation of Dyson�s equation for a defect is
the electron density n(r). It can, of course, also be decomposed into contributions
from different spin directions ns(r). For the hf interactions we will need the
magnetization density
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mðrÞ ¼ 1
p
Im

	 ð

occ:

½G"ðE; r; rÞ�G#ðE; r; rÞ�dE


: ð17:30Þ

We have already noted in Section 17.2.1 that in fully converged LDA calculations
the fundamental band gap turns out to be too small. For silicon, this difference is
about 0.5 eVand for wide band gap semiconductors like GaAs, GaN, or SiC, the error
is in the range of 1 eVor even larger. In some cases, defect-induced gap states, which
should be located in the upper part of the gap, are calculated to be resonances in the
conduction band.Also if thisworst case scenario is not given, the hf interaction canbe
affected [23]. The Green�s function method provides a way to circumvent this
problem by a rigid shift of the crystalline conduction bands by some amount DEshift
with respect to the valence bands, before calculating G0. This formalism, called
scissor operator ScfEg ¼ EþDEshift, was introduced by Baraff and Schl€uter [24].
Hence, by substituting Eq. (17.24) by

G0ðEÞ ¼ lim
e! 0þ

X

n;k;s

jjn;k;sihjn;k;sj
E�ie�ScfEn;k;sg ; ð17:31Þ

we are able to adjust the fundamental gap to a given experimental value. It is
important to note here that this has to be done only once, namely if calculating
the Green�s function of the ideal crystal. Afterwards, since the Green�s function
approach is applied in real space without the need of periodic images, the band
edges are retained, and each one-particle level is corrected automatically in a self-
consistent way.

17.3.2
The Linear Muffin-Tin Orbital (LMTO) Method

For a periodic system like a crystal, one might consider a plane wave expansion to
be the simplest computational method. And indeed, most supercell calculations use
the pseudopotential method for which the inclusion of short-ranged lattice relaxa-
tions is relatively straightforward. Since by construction the pseudo-wave functions
do not include the rapid oscillations in the core region, the resulting spin pseudo-
wave densities are not directly applicable for the computation of hf interactionmatrix
elements, determined in the vicinity of the nuclei. Van deWalle andBl€ochl [25] used a
projector formalism to reconstruct the original wave function from the pseudo-
functions. Alternatively, in the muffin-tin methods, Veff is assumed to be spherically
symmetrical within atomic spheres around Rj,

Vðr�RjÞ ¼ Vðjr�RjjÞ if jr�Rjj � sj
const: else;

	
ð17:32Þ

and the Kohn–Sham orbitals are expanded into spherical harmonics times a radial
solution. Different muffin-tin methods are in use which differ in the technical
procedure used to construct a regular Bloch wave from the partial wave solutions
obtained within the atomic spheres: the Korringa–Kohn–Rostocker (KKR) method
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[26, 27], the linear muffin-tin orbital (LMTO) method [28, 29], and the linearized
augmented plane wave (LAPW) method [30]. Compared with the pseudopotential
method the muffin-tin methods have the advantage that the correct electron and
magnetization density in the nuclear region can be directly and very accurately
obtained, which is decisive for the hf interaction. All muffin-tin methods, however,
share the disadvantage that they are technically difficult and, due to the use of atomic
spheres, less flexible with respect to larger lattice relaxations, although there are full-
potential versions of all the muffin-tin methods, FP-KKR [31], FP-LMTO [32], and
F-LAPW [33].

In this work, we use the LMTO-ASA method since it provides perhaps the easiest
and straightforward way to realize the Green�s function method via a muffin-tin
approach [20]. In the atomic spheres approximation (ASA) the sphere radii for the
integrals are chosen such that the unit cell volume equals to the sum of the ASA
sphere volumes. In this approximation, the ASA spheres overlap slightly and the
contribution of the neglected regions are assumed to be cancelled by the double-
counted overlap. For open structures like semiconductors, additional �empty�
spheres centered around the highly symmetrical interstitial sites of the lattice have
to be inserted in order to optimize the volume-filling.We have extended the LMTO-
ASA Green�s function approach to include moderate lattice relaxations. For the
resulting distorted structures the concept of space-filling ASA spheres is no more
straightforward. Here, the concept of a Voronoi tessellation is very helpful
(cf. Figure 17.3), whereby the decomposition of a metric space is determined by
distances to a discrete set of points, the center of the Voronoi cells (either given by a
nucleus or the center of an empty cell) [34]. The concept can be easily extended to
hetero-atomic structures using aweighted decomposition.Here, we use the so-called
Bragg–Slater radii [35], whereby the ASA condition of space-filling spheres can be
easily fulfilled by constructing anASA sphereSj with radius sj to eachVoronoi cellZj:

VðSjÞ ¼ VðZ jÞ: ð17:33Þ

Using the in this way extended ASA approximation, we solve Dyson�s equation in
LMTO matrix representation [20]

Figure 17.3 (online color at: www.pss-b.com) Wigner–Seitz cells of a two-dimensional regular
structure (left) and in comparison a disordered structure divided into Voronoi cells (right). Possible
non-overlapping muffin-tin radii are also given.
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f1þ g0ðEÞ½DPðEÞ�DS�ggðEÞ ¼ g0ðEÞ; ð17:34Þ
within a �perturbed region� large enough to allow a proper description ofDS andDP.
Here, DP ¼ P�P0 is the localized, diagonal perturbation of the so-called potential
function [20] describing the electronic structure of the investigated atomic structure,
and ensuring that the partial waves from the muffin-tin spheres fulfill the correct
bounding conditions.DS ¼ SR0 L0 ;RL�SR0

0L
0 ;R0L

is the relaxation-induced change of the
LMTO-ASA structure constants

SR0 L0 ;RL ¼ ð�1Þlþ 18p
X

l00

l!l
0
!ð2l00 Þ!

ð2lÞ!ð2l0 Þ!l00 !
a

dRR0

� �lþ l
0 þ 1 X

m00
CLL

0
L
0YL

00 ðd^RR0 Þ;

ð17:35Þ
whereby CLL

0
L00 :¼

Ð
VYLðr^ÞY�

L00 ðr
^ÞYL00 ðr

^ÞdV and YLðr^Þ as spherical harmonics with
L ¼ ðl;mÞ. The calculation of the rather extended matrix DS is more elaborate: the
long-ranged tails of thematrix elements are split up and treated by generalized Ewald
sums [36], whereas the short-ranged contribution are calculated in a next-nearest
neighbor approximation.

In the general case, the atomic position {R} of the relaxed structure can be taken
from pseudopotential calculations. The electronic structure to the relaxed structures
can then be calculated via Eq. (17.34), including the (s)hf parameters of paramagnetic
states. We will see, however, that in some cases with rather moderate relaxation,
the extended LMTO-ASA GF approach is also able to predict at least the nearest
neighbor relaxation.

17.3.3
The Size of The Perturbed Region

Using aGreen�s functionmethod, the spin densities arising from the defect states are
not completely contained in the rather limited volume of the perturbed region.
Surprisingly, this does not cause a problem as will be shown in the following, taking
the isolated AsþGa antisite in GaAs as a reference system (Table 17.1 where also well
established experimental data is available):

The gap state, that mainly gives rise to themagnetization density (See Figure 17.4)
and, thus, to the hf interaction of the paramagnetic AsþGa charge state, transforms
according to the a1 irreducible representation of the group Td. For the neutral and the
two-fold positive, diamagnetic charge states, this state is unoccupied. The total
energies, Etot, and the single particle eigenvalues of this gap state, E(a1), also shown
in Table 17.1 seem to depend on Natoms in a rather unsystematic manner. However,
the variation ofEtot for theE

2þ andE0 charge states is practically identicalwith that for
Eþ , and therefore, the charge transfer energies are essentially independent ofNatoms.

In Table 17.1 we also show the convergence of the corresponding hf interactions,
calculated using perturbed regions of different sizes. The magnetization density is
mainly concentrated on the central antisite atom, where it gives rise to the largest
nearly isotropic hf splitting, and on its four nearest neighbors, where it is predom-
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Table 17.1 The influence of the size of the
perturbed region on the total energy, Etot, the
gap state energy E(a1), themagneticmoment of
the gap state mgap and the total magnetic
moment mpert within the perturbed region, as
well as the hf interactions (MHz) (upper line for
a, lower line for b) for the 3% outward relaxed

isolated AsþGa antisite in GaAs. Beside the hf
values for the central AsþGa nucleus, the shf
splittings due to several neighbor shells of the
crystal host are also given.Natoms is the number
of atomic ASA spheres in the perturbed region.
Experimental data taken from Refs. [37, 38].

Natoms Etot E(a1) mgap mpert AsþGa As Ga As As
(0,0,0) (1,1,1) (2,2,0) (1,1,3�) (3,3,1)

1 �107.83 1.478 0.097 0.113 2811.
5 �107.47 0.988 0.469 0.499 2778. 187.7

46.1
11 �108.09 1.080 0.572 0.598 2846. 175.3 8.8

45.8 1.5
23 �108.04 1.063 0.614 0.638 2839. 175.8 7.4 0.3

45.7 1.5 �0.2
47 �107.82 0.995 0.817 0.840 2879. 173.2 3.9 0.1 22.3

46.6 1.4 �1.9 4.2
exp. 2650. 169.3 – – 21.5

53.2 – – 2.2

As(1,1,3)
_

As(3,3,1)

Ga(2,2,0)

Figure 17.4 (online color at: www.pss-b.com)
Contour plot of the magnetization density for
the isolated AsþGa antisite in a ð1�1�0Þ plane in
GaAs (taken from Ref. [44]). The left panel
shows the contribution of the gap state, the right

part gives the total magnetization density. The
Ga (As) lattice sites are at the lower (upper) side
of the zig-zag chain of nearest neighbor bonds,
respectively.
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inantly p-like. The smallest conceivable perturbed region consisting of the defect ASA
sphere alone contains about 10% of the magnetic moment of the defect. Yet, we
obtain a central contact hf interaction at the AsGa antisite nucleus which is only 2%
smaller than the value obtained for the largest perturbed region with 47 atoms. It is
obvious and quite impressive that via the Green�s function approach the defect is
really embedded in an infinite background. Even if we do not present the data
explicitly, the reader should believe that this procedure also works in the case of a
vacancy: only an empty sphere is then necessary to obtain at least rough estimates.
From Table 17.1 we see that for different sizes of the perturbed region the hf
interactions with the nuclei at the �surface� of the perturbed region is slightly
overestimated. With a further increase of Natoms the corresponding values are
reduced to better values. For the contact hf interactions of the more distant Ga
(2,2,0) and As(1,1, �3�) ligands the convergence apparently is quite poor, but here the
magneticmoments for the ligandASAshells are extremely small. The value of 4MHz
for the contact interaction with a [69] Ga nucleus corresponds to 2� 10�4 of a single
s-like spin only.

17.3.4
Lattice Relaxation: The AsGa-Family

Experimentally well understood, the isolated AsGa antisite is only onemember of the
technologically very important AsGa-family: At least four different AsGa-related
defects with almost identical hf structure have been detected by magnetic reso-
nance [37–39]. Their thermal stability is quite puzzling: the well established isolated
AsGa defect is obtained by low-temperature electron irradiation of semi-insulating
GaAs and disappears at room temperature [40], when in electron-irradiated material
the so-far unidentified AsGa-X1 defect is observed. At T¼ 520K the AsGa-X1 defect
disappears and the so-called EL2 becomes dominant. The latter defect is quite stable.
It is the dominant defect in semi-insulating GaAs [41, 42] where it determines the
position of the Fermi level. The EL2 can be eliminated by a rapid quench from
1100 	C [43] and is recovered by annealing the sample above 750 	C. Its paramagnetic
properties strongly suggest the EL2 to be a nearly tetrahedral defect. If the EL2 is not
the isolated antisite it should be, thus, at least some pair or complex with some other
partners. However, the exact microscopic structure of the EL2 defect is still contro-
versial (for a review, see Refs. [39, 44]).

Another interesting aspect of the members of the family of AsGa-related defects is
their metastability. Theoretical ab initio calculations [45–47] have shown that a lattice
relaxation around the AsGa antisite atom is responsible for the defect metastability.
We have, thus, investigated the influence of the lattice relaxation onto the hf
interaction (See Table 17.1 for the largest perturbed region). For the isolated
tetrahedral point defects a symmetry-conserving relaxation of the nearest neighbors
was included to determine the lattice relaxation from the minimum of the total
energy. For the neutral isolated As0Ga point defect we find a minimum of the total
energy if the distance to the nearest neighbors is increased by 4.7%with respect to the
bond-length in the unperturbed crystal. The energy gained by this relaxation is
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0.32 eV. A very similar relaxation (4.0%, 0.33 eV energy gain) was reported by
Dabrowski and Scheffler [45] for a 54-atom supercell calculation. For the defect in
the singly positive, paramagnetic charge state the relaxation reduces to 3% (1.4% for
the double positive charge state). For the relaxed defects the calculated charge
transition energies are E2þ =þ ¼ Ev þ 0.98 eVand E þ =0 ¼ Ev þ 1.18 eV, if the band
gap is adjusted to the experimental value by the Scissor operator, somewhat smaller
than the results (1.25 and 1.5 eV, respectively) obtained by Baraff and Schl€uter [48]
and by Delerue [49]. Without such an adjustment of the gap, the charge transition
energies would be Ev þ 0.37 eV and Ev þ 0.55 eV, respectively.

Figure 17.5 shows the calculated total energy for the isolated AsþGa defect as a
function of the nearest neighbor distance d for a relaxation that does not alter the
tetrahedral defect symmetry. Also shown is the dependence of the hf interactions
with the antisite nucleus and of the shf interactions with the nearest neighbors. As is
the case for all deep donor states, the hf interaction with the donor nucleus is quite
sensitively dependent on the nearest neighbor distance. In our case, themoderate 3%
outward relaxation obtained for the minimum of the total energy leads to a 7%
decrease of the hf interaction with the central nucleus (the same relaxation leads to a
9% decrease of the isotropic shf interaction and a 5% increase of the anisotropic shf
interaction with the nearest neighbor nuclei).

Similar to the case of elemental semiconductors [50], the magnetization density is
the subject of strong oscillations (See also Table 17.1): The shf splittings are rather
small at the (2,2,0) and ð1; 1; �3�Þ neighbors, but againmuch larger at themore distant
(3,3,1) neighbor, the fifth shell of neighbors. In particular, there are no larger
interactions with the Ga nuclei, in agreement with the fact that these have not been
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Figure 17.5 (online color at: www.pss-b.com)
Calculated total energy for the AsþGa antisite as a
function of the nearest neighbor distance d
(left). d0 is the nearest neighbor distance for the
unrelaxed GaAs crystal. The right panel shows
the relative change of the hf interactions upon

relaxation normalized to its respective
unrelaxed values a0 and b0: Contact interaction
with the antisite nucleus (square) and contact
(full triangle) and dipolar (open triangle)
interactions with the nearest neighbor nucleus.
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detected by (optical detected) electron nuclear double resonance (OD)ENDOR. A
detailed comparison with experimental data [37] shows a close agreement already for
the interactions that had been calculated without taking into account a lattice
relaxation. Nevertheless, the agreement is substantially improved if the lattice
relaxation is included.

Since the hf interactions both with the central As nucleus and with the first shell of
As ligands are strikingly similar for allmembers of theAsGa family, it can be excluded
that the experimentally observed paramagnetic states of any member of the AsGa
family are subject to a major lattice relaxation of the AsGa nucleus. In Ref. [44] it has
been furthermore shown that for the technologically important EL2 defect the
AsGa–Asi model can be excluded based on this argument and high-fieldOD(ENDOR)
experiments [51]. Since a slight but definite deviation from tetrahedral symmetry is
observed in these experiments, it appears that the thermally most stable defect in the
AsGa family is some defect aggregate. This at first view paradox observation has been
proposed as the most likely solution, in which near room temperature the EL2
transforms to an isolated tetrahedral defect and that the deviations from tetrahedral
symmetry observed experimentally are caused by the pairingwith some othermobile
defect, e.g., shallow acceptors or donors, which occur while cooling the sample.

17.4
Shallow Defects: Effective Mass Approximation (EMA) and Beyond

In the last section we have seen that shallow dopants, acceptors as well as donors can
form complexes with intrinsic defects. In these complexes, the dopant levels appear
in ionized form, so that the resulting complex form again a deep defect. Also the
ionized charge state of an isolated donor is a deep defect, and the defect-induced
change of theDOS is well localized. In the neutral charge state of the defect, however,
the additional electron is rather extended. Only weekly bound, the donor electron
provokes a hydrogen-like series of bound states with binding energies small
compared to the fundamental band gap and with an effective Bohr radius that
may exceed 100 A

	
. Whereas now a days supercell calculations of up to 1000 atoms

nicely describe the ionization energies, the quantitative description of the spatial
distribution of the wave function still remains a challenge. We will illustrate this
problem taking conduction electrons in 4H-SiC as an example: Here, the delocal-
ization of the electron wave function can be characterized by an effective Bohr
radius of about 13 A

	
[52]. As a consequence, only 30% of the donor electron are

found in a region containing 750 atoms around the donor atom (Figure 17.6). This
is also demonstrated by recent 576-atom supercell calculations [53] where in
comparison with experiment the localization of the donor wave function at a
central P nucleus and the four neighboring ligands is overestimated by a factor of
three ( 2.1% instead of 0.8%). In otherwords, the usual ab initiomethods still cannot
be used straightforward to treat the shf structure of these strongly delocalized
defect states. Instead, we fall back on the empirical EMA as a standard tool to
describe the wave function of shallow defects.
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The EMA �predicts� ionization energies and in addition the hydrogen-like series of
bound states that agree sufficiently well with experimental data (for a review, see the
classical article by Kohn [4] or themore recent article by Ramdas and Rodriguez [54]).

The comparison with experimental EPR data, however, shows the EMA results for
the shf interactions to be at most qualitatively correct. In the following, this apparent
failure of the EMA is discussed in comparison with results of an empirical
pseudopotential calculation that provides accurate donor binding energies and
corrected wave functions. Finally, we show that a Green�s function based method
allows an ab initio description of the magnetization density of shallow defects,
including the resulting hf and shf splittings.

17.4.1
The EMA Formalism

The problem of a shallow defect can be divided into two parts: D0¼Dþ þ e–.
Providing a deep defect, the ionized donor Dþ can generally be treated using the
standard methods for localized states. This deep defect gives rise to some potential
DVþ that apart from a local part DVlocal asymptotically approaches the potential of a
screened point charge:

DVþ ðrÞ ¼ � e2

e1r
þDVlocalðrÞ: ð17:36Þ

The extra electron e� present in the neutral charge state D0 is delocalized andmoves
within this potential, hardly disturbing the electron density of the deep state Dþ .
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value below 10%.
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Thus, the electron density for the extra electron is expected to coincide with the
magnetization density of the donor state. Within the EMA [4] the extra electron is
described by a single-particle wave function YðrÞ which obeys the Schr€odinger
equation

� �h2

2me
r2 þVhostðrÞþDVþ ðrÞ�E

� �
YðrÞ ¼ 0: ð17:37Þ

We expand YðrÞ into a complete orthonormal set of Bloch functions jn;kðrÞ ¼
un;kðrÞeik � r leading to

YðrÞ ¼
X

n;k

fn;kjn;kðrÞ: ð17:38Þ

Moreover, only states near the minimum of the conduction bands are assumed to
contribute to the expansionEq. (17.38).Hence, theBloch states obeyun;kðrÞ �un;k0ðrÞ
and their energies can be expanded around this extremum. For the simplest case of a
non-degenerate conduction band edge at theCpoint of theBrillouin zone,we assume

Ec;k ¼ Ec;k0 þ
�h2

2m� ðk�k0Þ2; ð17:39Þ

with an isotropic conduction band mass m�.
This brings us to an equivalent problem for the hydrogenic envelope function

~WðrÞ: the effective mass equation (EME) reads

� �h2

2m� r2 þDVþ ðrÞ�ðE�Ec;k0Þ
� �

~WðrÞ ¼ 0; ð17:40Þ

withm� absorbing the periodic part of the potential. To proceed further we specify the
potentialDVþ. Far away from the impurityDVþ is approximated by the potential of a
point charge screened by the dielectric constant e1. Anticipating that most of the
particle density is delocalized, we approximate DVþ by its asymptotic form � e2

e1 � 1
r

and neglect the specific local part of the potential completely.
With these approximations the eigenvalue problem (17.40) is identical to the

elementary quantum mechanics textbook problem of the hydrogen atom. The
solution for a particle of massm� ¼ bmemoving in the screened Coulomb-potential
can be written as

~Wn;l;mðrÞ ¼ b

e1

� �3=2

�Rn;l
b

e1
jrj

� �
�Yl;m

r
jrj

� �
;

En;l¼c;k0�
b

e12

Ry
n2

: ð17:41Þ

With e1 
 10 and m� 
 0:1me we obtain an effective Rydberg energy of
Ry� ¼ 10�3Ry and an effective Bohr radius r�B ¼ 102rB. All approximations made
appeartobevalidundertheseconditions,exceptforthecentralcell,whichcontainsavery
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smallfractionoftheextraelectrondensityonly.Forthecomputationofhfinteractionsthe
hydrogenic envelope function ~Wmust be replaced by the true wave functionY.

In disagreement with the values of 53.73meV, 45.53meV, and 42.73meV deter-
mined experimentally for As, P, and Sb in silicon [55], the best EMA predicts
31.27meV for all the group V donors. This failure is of course a consequence of
the neglect of the local partDVlocal of the potential that would be necessary to distinct
between different atomic species. A suitable central cell correction must be found to
account for the so-called chemical shift within the binding energies.

17.4.2
Conduction Bands with Several Equivalent Minima

Besides the shollow electron centers in the silver halides AgCl and AgBr [56], we are
not aware of experimental shf interaction data for shallow donors in a direct
semiconductor with a conduction band minimum at the C point. EPR and ENDOR
data are available for donors in the more conventional semiconductors Si and SiC.
These have several equivalent conduction band minima far off the C point of the
Brillouin zone. For silicon e.g., the conduction band has six minima at
kð1Þ0 ¼ 0:854 2p

a ð1; 0; 0Þ, along the so-called D axis near the boundary of the Brillouin
zone. The solutions for the i different conduction band minima (the valleys) are
degenerate. In order to construct realistic wave functions, symmetrical linear
combinations of the single-valley wave functions from all equivalent valleys
are required.

Whereas the single-valley solutions ~W
ðiÞ
1;0;0ðrÞ decay exponentially without nodes,

the symmetrized wave function

~W
ðA1Þ
1;0;0ðrÞ ¼

X6

i¼1

1ffiffiffi
6

p ~W
ðiÞ
1;0;0ðrÞ; ð17:42Þ

describing the ground state and transforming according to the A1 irreducible

representation of the groupTd is oscillatory because of the eik
ðiÞ
0 � r factors in Eq. (17.38).

Except at the donor site, the resulting magnetization density appears to be hardly
related to the lattice structure (see right part of Figure 17.7). It shows an additional
artificial mirror symmetry with respect to the horizontal (001) plane through the

donorwhich is absent in the atomic positions. In addition, thefirst node of ~W1;0;0A1ðrÞ
nearly coincides with the nn ligand nucleus and, therefore, the isotropic shf
interaction with the 29Si nn nuclei (which one would naively assume to be largest)
virtually vanishes.

17.4.3
Empirical Pseudopotential Extensions to the EMA

Therewere several attempts tofind a central cell potential correction. Baldereschi [57]
has pointed out that intervalley potential matrix elements are of particular impor-
tance. These are screened by the dielectric function eðq ¼ kðiÞ0 �kðjÞ0 Þ rather than by the
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full dielectric constant e1. Several empirical pseudopotential schemes have been
developed giving reliable ground state donor binding energies (for a review, see
Pantelides [58]). Among these calculations, the calculation of Ivey andMieher [59, 60]
for group V donors in Si undertakes a calculation of the shf interactions. A model
pseudopotential screened by the dielectric function is fitted to reproduce the
experimental binding energy. In contrast to the EMA calculations, all k points
throughout the Brillouin zone are sampled and un;kðrÞ is not approximated by some
un;k0ðrÞ. If compared to the EMA density, the resulting density of the donor electron
has lost the mirror symmetry, retaining only the desired A1 symmetry of the atomic
structure (see also central part of Figure 17.7). The shf interaction of the nearest
neighbors, however, are still by about two orders of magnitude too small. In
consequence of this failure of the EMA and its extensions, the wealth of information
contained in the shf interaction data for shallow donors is completely obscured. In
the best case we need an ab initio calculation to unravel the experimental data.
Without such a calculation we cannot identify a single ligand shell from its shf
interaction data.

17.4.4
Ab Initio Green�s Function Approach to Shallow Donors

In section 17.3.3we have shown, that theGreen�s functionmethod allows an accurate
description of the hf interaction, already if the perturbed region contains only 10% of
themagnetic moment of a deep defect. It is this observation that brings us to the idea
that the same should also be possible in the case of shallow states where up to 90% of
the delocalized electron are found outside the largest conceivable perturbed region.
Hence, the basic idea is now to substitute the empirical part of the EMA, the central
cell correction, by a first-principle description in which DVlocal in Eq. (17.36) is
calculated self-consistently and embedded via a Green�s function approach into an
otherwise periodic, EMT-like background [61].

Similar to the case of the As-antisite in GaAs, we solve Dyson�s equation within a
�perturbed region� that contains the donor and five shells of ligands (47 atoms in
total) and six shells with 42 �empty� spheres to reduce the overlap of theASA spheres.
In the ENDOR experiments for group-V donors in Si no symmetry-lowering lattice
distortions have been detected [62]. Minimizing the LMTO-ASA total energy by a
symmetry-conserving relaxation of the nearest neighbor distances we find a min-
imum for a nearest neighbor distance that is decreased by 1% for P0

Si, and increased
by 3%As0Si and by 6% for Sb0Si, respectively with respect to the distance in a perfect Si
crystal. For P0

Si and As0Si, these values are reproduces by 216-atom supercell calcula-
tions [63]. For Sb0Si, however, a considerably larger outward relaxtion of 9% is
predicted. We are of course more confident to the supercell geometry where all
atoms are allowed to relax freely. Hence, in all what follows we use the 9% supercell-
value for Sb0Si. By this, we obtain considerably improved values if compared with the
values given in our original work [61].

Since in our approach we ignore the long-range tail of the Coulomb-potential for
that part of the induced density that is not contained within the perturbed region, we
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do not find a shallow gap state but rather a resonance just above the onset of
the conduction band. Thus, we cannot hope to obtain meaningful donor energies by
this approach.

Figure 17.8 shows the change of the density of states (DOS) introduced by the
defect (the �induced�DOS) for the three group-Vdonors in comparisonwith theDOS
of the unperturbed crystal. In our approach we separate densities that arise from
states transforming according to the different irreducible representation of the group
Td. In Figure 17.8 we display the a1-like densities only, suppressing the t2 and e-like
resonances that are ascribed to excited states. The inducedDOS for P0

Si andAs
0
Si show

a relatively well-defined minimum near 1.6 eV above the valence band edge, for Sb0Si
the resonance is much less pronounced. Starting from an effective one-particle
picture, we shall consider the induced DOS below this minimum as a substitute for
the shallow gap state. It contains about 15% of an electron within the perturbed
region for P0

Si andAs
0
Si, while for Sb

0
Si wefind as little as 8%of an electron. Identifying

the resonance below the minimum with the extra electron, we calculate the spin
polarization of all electrons within the LSDA. The resulting magnetization density
plotted for As0Si in Figure 17.7 (left) is qualitatively different from the EMT result
(right), in that it does not show the spurious inversion symmetry characteristic for the
EMT. Instead it has some similaritieswith the envelope function obtained by Ivey and
Mieher (central), with the clear distinction that there is no well-defined minimum at
the nearest neighbors. A more detailed comparison of the different approaches is,
however, possible via hf and shf data of ENDOR spectra, showing that our present
approach is superior to the Ivey and Mieher (I-M) and the EMT methods (see
Tables 17.2 and 17.3):

For the central donor nuclei the experimental values for the hf splitting are nicely
reproduced within 5% for all donors – P, As, as well as Sb. Also for the nearest
neighbor (1,1,1) shell, the isotropic and anisotropic shf interactions of our resonance
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Figure 17.8 Density of states per impurity
(DOS) that transform according the a1
irreducible representation of the point group Td
for group-V donors in silicon. The (bold) full line
denotes the induced density of the (un)relaxed

As0Si, the dashed line is for P0Si, and the dash-
dotted line is for the Sb0Si donors. The dotted line
represents the a1 density of the unperturbed Si
crystal. The grey area denotes the energy interval
of the a1 resonance.
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states compare favorably with the experimental data. The agreement is in fact much
closer than for the I–MandEMTresults for this shell. This becomes in particular clear
if analyzing the ratio b=a which characterizes the hybridization at the (111) ligand
shell (See also Table 17.3). For P and As, the values are rather insensitive to lattice
relaxations. In case of Sb however, the 9% outward relaxation is necessary to predict a
correct hybridization, b=a¼ 1.09 in comparison with the experimental ratio ðb=aÞexp
¼ 0.89. Note that for a reduced relaxation of 6% a much too small ansiotropy ratio of
0.12 is obtained [61]. The next two neighbor shells have not been identified exper-
imentally, presumably because the isotropic shf constant is below about 600 kHz, the
�continuum� of many overlapping ENDOR lines. This explanation is in line with our
results. Note that for the (2,2,0) shell both I–Mand EMTpredict hf interactions that in
contrast should be readily observed. For the (0,0,4) shell the isotropic shf data are
predicted too small by a factor of 2. For the outermost (3,3,1) shell in the perturbed
region our results compare again quite well with the experimental data.

Table 17.2 Isotropic hf and shf interactions (in
MHz) for group-V donors in Si. Experimental
values from Ref. [62] are compared with
theoretical results of the present LMTO-GF
approach, the pseudopotential approach from

Ivey and Mieher (I-M), and an EMT approach.
All data shown
have a negative sign. For Sb the values in
parenthesis belong to a smaller ligand
relaxation (6% instead of 9%).

shell donor exp. this work I-M EMT

(0,0,0) 31P 117.5 121.4 71.2 448.
75As 198.3 198.6 120.0 850.
121Sb 186.8 175.4 89.4 548.

(66.8)
(1,1,1) P 0.540 0.518 0.036 1.524

As 1.284 1.168 0.060 2.424
Sb 0.586 0.405 0.090 1.232

(2.053)
(2,2,0) P – 0.115 0.608 0.861

– 0.193 0.788 1.216
Sb – 0.312 0.532 0.734

(0.587)
(1,1,�3�) P – 0.053 – –

As – 0.179 – –

Sb – 0.025 – –

(0.001)
(0,0,4) P 5.962 2.963 5.484 8.414

As 7.720 3.160 7.606 11.400
Sb 6.202 3.725 6.202 7.324

(2.923)
(3,3,1) P 1.680 1.461 1.776 0.988

As 2.242 2.351 2.590 1.290
Sb 1.008 0.910 1.212 0.872

(0.848)
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Altogether, the oscillating behavior of the shf splitting is qualitatively correct
described. In contrast, the one-particle theories are by no means able to describe the
correct order of the contribution of the different shells. Ivey and Mieher [60] have
suggested that the discrepancy in their pseudopotential approach is due to the neglect
of the lattice relaxations, an explanation that at least for P and As is not supported by
our results. More important, according our Green�s function calculation, the shf
interactions are only to a small part due to the conduction band resonance:more than
75% of the isotropic shf is caused by the spin polarization of the valence band states.
Such polarizations are not included in the one-electron approach of I–M, which may
explain in part the striking discrepancy between the experimental data and the results
of the one-electron theories.

The agreement between theoretical and experimental hf and shf data, confirms
that the resonance is a valid representative of the ground state of the shallow defect
state. One may wonder whether these interferences can be found in an approach
where the Coulomb-potential that extends outside of the perturbed region has to be
cut. However, we have to note again that there is a clear distinction between the long-
ranged wave function and the long-range part of the Coulomb-tail of the potential,
although the two quantities are of course not completely independent. Whereas the
latter determines predominantly the ionization levels, it is the spatial distribution of
the wave function that gives rise to the shf splittings. It is the specific benefit of the
Green�s function approach that it allows to describe the wave function of a defect

Table 17.3 Anisotropic hf and shf interactions
(the axial component b in MHz) for group-V
donors in Si. In contrast to the pseudopotential
approach from Ivey and Mieher (I-M) [60], our

LMTO-GF values compare reasonably well with
the experimental hybridization ratio b=a [62].
For Sb the values in parenthesis belong to a
smaller ligand relaxation (6% instead of 9%).

shell donor exp. this work I-M

b b=a b b=a b b=a

(1,1,1) P 0.70 1.296 0.66 1.274 0.49 13.611
As 1.26 0.981 1.14 0.976 0.93 15.500
Sb 0.52 0.887 0.44 1.086 0.35 3.844

(0.25 0.122)
(2,2,0) P – – 0.01 0.087 0.03 0.049

As – – 0.02 0.104 0.03 0.038
Sb – – 0.01 0.025 0.02 0.038

(0.06 0.102)
(0,0,4) P 0.02 0.003 0.02 0.007 0.02 0.004

As 0.03 0.004 0.02 0.006 0.02 0.003
Sb 0.02 0.003 0.02 0.005 0.02 0.003

(0.05 0.017)
(3,3,1) P 0.06 0.036 0.05 0.034 0.04 0.023

As 0.08 0.036 0.09 0.038 0.08 0.031
Sb 0.03 0.030 0.04 0.040 0.03 0.025

(0.03 0.035)
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correctly, although some parts of the long-ranged Coulomb-tail of the potential are
ignored or approximated in a simple way. In order to prove that our shf results really
do not suffer from termination errors we have calculated Green�s functions for
different perturbed regions. When decreasing the size of the perturbed region, the
maximum of the resonance slightly shifts to higher energies, thereby decreasing the
moduli of all hf and shf data monotonously. This decrease is not dramatic and
amounts to less than 10% if we come down to a perturbed region that consists of the
donor and 2 shells of ligands.

17.5
Phosphorus Donors in Highly Strained Silicon

Several approaches to built up solid-state based quantum computing hardware are
actively pursued. The possible integration with existing microelectronics and the
long decoherence times [65–67] are particular advantages if using the nuclear or
electronic spins of phosphorus donors in group-IVsemiconductors as qubits [68–71].
These concepts require gate-controlled exchange coupling between neighboring
donors. However, to control the exchange coupling in semiconductors, the donor
atoms have to be positioned with atomic precision [72] since the strength of the hf
interaction, decisive for the rate at which two-qubit operations can be performed,
varies strongly at the atomic scale due to Kohn–Luttinger oscillations of the donor
wave function [69, 73, 74], already discussed in the last section. Under uniaxial
compressive strain in [001]-direction, two conduction band minima are lowered in
energy which is expected to suppress the oscillatory behavior in the (001) lattice
plane [73].

In a recent work [75], the hf interaction of phosphorus donors in silicon was
studied as a function of uniaxial compressive strain in thin layers of Si on virtual SiGe
substrates, extending the regime investigated by Wilson and Feher [76] by a factor of
20 to higher strains. Fully strained 15 nm-thin P-doped (½P� ’ 1� 1017cm�3Þ silicon
epilayers were grown lattice matched on virtual relaxed Si1�xGex substrates with
Ge-contents x ¼ 0:07; 0:15; 0:20; 0:25, and 0.30. The Si1�xGex layer determines the
strain of the Si epilayer: The higher lattice constant of SiGe alloys with respect to Si
leads to biaxial tensile strain, accompanied by a compensating uniaxial compressive
strain in growth direction (cf. inset in Figure 17.9), whereby the substrate with the
highest Ge-content leads, of course, the largest strain. By high-resolution X-ray
diffraction (XRD) it was shown that the compression in growth direction indeed
follows linear elasticity theory.

To observe the P donors with high sensitivity, electrically detected magnetic
resonance (EDMR) was used which monitors spin resonance via the influence of
spin selection rules on charge transport processes [77–79]. The unstrained silicon
layer provides the expected fingerprint of an isolated P-donor [80, 81] with an
isotropic g-factor of g¼ 1.9985, whereby the characteristic hf-split satellite lines with
a separation of Ahf ¼ 117:5MHz are clearly resolved. For the strained epilayers, in
contrast, the hf splitting decreases monotonously with the applied strain. Simulta-
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neously, the resonance line becomes clearly anisotropic. For example, for the epilayer
with ða?�aSiÞ=aSi ¼�0:00729 obtained by a substrate with 25% Ge content, the
isotropic hf splitting shrinks to 26.9MHz, while Dg¼ð1:21� 0:06Þ � 10�3.

17.5.1
Predictions of EMA

For an isolated P donor atom in unstrained Si, the isotropic Fermi-contact hf
interaction Ahf in the non-relativistic limit is proportional to the probability
amplitude jyð0Þj2 of the unpaired electron wave function at the nucleus, giving
rise to the hf satellite lines separated byAhf ¼ 117:5MHz. To determine jyð0Þj2, we
first note that the cubic crystal field leads to the formation of a singlet ground state
and a doublet and a triplet of excited states instead of a six-fold degenerate ground
state. Only the fully symmetric singlet ground state has a non-vanishing probability
amplitude at the nucleus.

Figure 17.9 (online color at: www.pss-b.com)
Relative hf splittings observed for P in fully
strained epilayers on Si1�xGex substrates as a
function of the Ge content x and the resulting
valley strain x¼ e ðak�a?Þ (see also Ref. [75]).
Black dots indicate the experimental data. The
DFT-results for valley repopulation only are
indicated by open squares and reproduce the
prediction of Wilson and Feher (dashed line).
The influence of strain-induced volume change

is shown by open circles, whereby those
additionally including nn relaxation are shown
by triangles. The insert shows the out-of-plane
lattice constant a? of thin Si layers (thickness 12
unit cells) as a function of the in-plane constant
ak predicted by supercell calculations compared
to linear elasticity theory (strait line). Pure Si and
Ge substrates are shown by dashed vertical
lines.

17.5 Phosphorus Donors in Highly Strained Silicon j329



In Section 17.4.2 we have seen that theA1 ground state wave functiony is given by
the symmetrical superposition yðrÞ ¼ P6

i¼1ð1=
ffiffiffi
6

p ÞWðiÞðrÞ of the six valleys contrib-
uting to the donor, whereby each W(i) is a product of the corresponding conduction
band Blochwave function and a hydrogenic envelope function. The probability of the
unpaired electron at the nucleus jyð0Þj2 becomes 1=6jP6

j¼1 W
ðiÞð0Þj2 ¼ 6jWð0Þj2,

since due to degeneracyW(i)(0)¼W(0) for all i. Assuming that the only effect of strain
is the change of relative population of the conduction bandminima, we similarly find
y¼P2

i¼1ð1=
ffiffiffi
2

p ÞWi and jyð0Þj2 ¼ 2jWð0Þj2 under high uniaxial strain, when only
two conduction bandminima contribute. Therefore, in the fully strained case, the hf
interaction should be 1/3 of the unstrained case.

In contrast, in Figure 17.9 we already observe a reduction to 0.21 of the unstrained
hf interaction AHF, clearly below the 0.33 AHF EMA-limit obtained above. Based on
group and linear elasticity theory Wilson and Feher [76] evaluated the analytical
dependence of Ahf(x) from the so-called valley strain x ¼ � Ju

3Dc
ðak�a?Þ, where

Ju ¼ 8.6 eV is the uniaxial deformation potential [82], and 6Dc¼ 2.16meV [54] is
the energy splitting between the singlet and doublet state in the unstrained material.
In Figure 17.9, a comparison of the prediction of Eq. (17.2) in Ref. [76] (dashed line)
with the hf splittings determined experimentally (full circles) clearly shows, that pure
valley repopulation is not able to describe the experimental data for x> 0.07. An
empirical treatment of additional radial redistribution effects as discussed inRef. [83]
would lead to 0.29 for x!�1, only a slight reduction of the repopulation-limit and,
thus, still at strong variance with the experimental data.

17.5.2
Ab Initio Treatment via Green�s Functions

Again, an ab initio prediction of hf interactions is necessary to clarify the situation. In
the last section, our Green�s function approach has been shown to describe the hf
splittings in predictive accuracy for PSi in the unstrained case. In the case of a strained
host material, however, the situation becomes more complicated since excited states
are admixed to the former pure singlet ground state. An application of DFT is, thus,
only possible in combination with linear elasticity theory: Due to the applied strain,
the symmetry of the P donor is reduced, and the resonance at the bottom of the CB
transfomring according the a1 representation in the unstrained case, now shows
admixtures of the b1 and b2 representations of D2d symmetry (cf. Figure 17.10). The
location of the P donor atom in their nodal planes implies a correlation of these b1
and b2-like orbitals with the admixed doublet state. Since, furthermore, only
one component of the diamagnetic doublet state is contributing to the singlet
ground state under strain [76], it is reasonable to construct the spin densities, which
enter the self-consistent LSDA total energy calculations for a given valley strain, by
ns(r)¼

�
1�aðxÞ

�
� nsa1ðrÞþaðxÞ � nsb1ðrÞ, whereby a(x) is obtained from the strain-

dependent admixture of the doublet states determined by linear elasticity theory (see
Eq. (C6) in Ref. [76]). Figure 17.9 shows that the spin densities constructed this way
allow a reasonable description of the pure valley repopulation effect: for an unrelaxed
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structure of an ideal silicon crystal, the results obtained by Wilson and Feher [76] are
nicely reproduced after the self-consistent cycle (cf. open squares in Figure 17.9).

We are now able to take into account explicitly by first principles the strain of the
silicon lattice as well as the relaxation around the P donors within. For the
optimization of the strained Si cells, we used a supercell approach [84]. Optimization
of long slabs (up to 12 unit cells along the (001)-direction) show an almost linear
dependence of the compression along (001) as an answer to the tensile strain in the
(001)-plane, effectively following linear elasticity theory as indicated in the inset of
Figure 17.9. This result confirms that linear elasticity theory remains valid in the
complete regime, even up to pure germanium as a substrate (x � �89). The hf
parameters calculated with LMTO-GF under these assumptions (cf. open circles in
Figure 17.9) already become smaller since the donor wave function becomes more
delocalized as a result of the enhanced volume, lifting the high-stress limit of 0.33AHF

obtained above. This tendency is strengthened, if local relaxation around thePdonors
is taken into account: According to total energy calculations on large explicitly
strained supercells with 512 atoms, this relaxation is dominated by a slight reduction
of the bond-length between the P donor and its nearest Si ligands by about 1%, nearly
independent of the strength of the tensile strain in the plane of the Si epilayer. Re-
calculating Ahf ðxÞ=Ahf ð0Þ for this geometry with the LMTO-GF code, we find a
further reduction (open triangles in Figure 17.9). In addition, being e.g., in the
unstrained case about 50MHz too large before, also the absolute values Ahf are then
in nice accordance with experiment. The hf interaction observed experimentally in
the moderately strained P-doped silicon layers can, thus, be explained by the
increased volume of the unit cell together with a slight inward relaxation of the
nearest Si neighbors. Since already such a small relaxation has a huge influence on
the predicted relative hf splittings for the strained material, the remaining
discrepancy between experiment and theory can easily be explained by uncertainties
due to the well-known flatness of the total energy surface in silicon [85]. Apparently,
there exists no high-stress limit for the reduction of the P-related hf splitting.
According to our DFTcalculation the decrease of the central P-related hf interaction
is accompanied by a remarkable increase of the shf interaction with neighboring
29Si atoms.

17.6
n-Type Doping of SiC with Phosphorus

For high temperature and high frequency applications, silicon carbide (SiC) has been
proven to provide in principle many advantages over silicon or gallium arsenide [86].
However, its technology, e.g. n-type doping, is considerablymore difficult than that of
silicon: although nitrogen is easily incorporated during growth, the electrical
conductivity saturates at higher doping concentrations [87, 88]. The alternative
shallow donor, phosphorus, cannot be easily introduced into the material by
diffusion. One must fall back on other doping techniques like ion implantation, in
situ doping during growth or neutron transmutation of 30 Si [89].
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From the transmutation process 3014Si !
ðn;cÞ 31

14 Si
� !b 31

15P it was assumed for long time
that the so createdP-dopants enter the silicon sublattice. Atfirst view, this assumption
is also supported by total energy calculations: the formation energy of PSi is
essentially lower (by 1.5 eV) than for P incorporated at the carbon sublattice.
However, the large number of different spectra observed in electron paramagnetic
resonance (EPR) [90–94], at least six, can by no means be explained by one single
defect at different lattice sites. Indeed, molecular dynamic (MD) simulations
including the recoil process and the following annealing processes result in various
P-related defects [95]. Due to kinetic effects during the recoil (770 eV after capture of
thermal neutrons [96]) and subsequent annealing processes, an incorporation of P at
the carbon sublattice becomes possible. The inconsistencies in earlymodels for theP-
related donors in SiC are a consequence of neglecting this possibility. Beside the
already discussed donors (PSi, PC, PSi VC [97]) alternative complexes with intrinsic
defects (e.g. PCCSi) are predicted with high probability [95]. At usual annealing
temperatures, the exchange mechanism toward isolated PSi is hindered. Although
providing much lower formation energy, due to a large activation barrier of about
5 eV, extremely high temperature annealing above 2000K is expected to be necessary
to achieve a reasonable incorporation of P at the Si-sublattice, and allows the
observation of PC in moderately annealed samples.

This scenario is supported by our ab inito calculation of the corresponding hf
splittings. Like isolated P at the silicon site, PC and PC CSi are calculated to act as
shallow donors. Thus, we use again the EMTembedded Green�s function method to
model the shallow defect states. As afirst reference in the compound semi-conductor
SiC, we applied our extended method to the well-known nitrogen donors NC in 6H-
SiC. As can be seen in Table 17.4, the experimental values are well reproduced: at the
hexagonal site (h) minor additional relaxation occurs compared to the ionized donor
Nþ

C retaining a tetrahedral arrangement of the ligands (slightly outward relaxed by
about 5% of the bond-length). A rather small hf splitting below 5MHz is the
consequence. For the quasi-cubic sites (k1, k2) in contrast, a small distortion toward
C3v-symmetry (one ligand relaxes 7% away from the donor atom) yields an increased

Table 17.4 Calculated and observed hf parameters (MHz) for P-related EPR-spectra in 6H-SiC
(see Ref. [94] for a review). Note that for the quasicubic sites (k1, k2) only minor differences in the
calculated values (below 0.4MHz) can be observed. Here, only the values for the k2-site are given.

defect site acalc bcalc center aexp bexp

Nc h 4.49 0.00 Nh 2.47 0.13
Nc k1,k2 28.48 1.05 Nk1 ;k2 33.40 0.01
PSi h 1.76 0.59 I1 1.56 0.89
PSi k1,k2 8.75 2.78 I2 8.70 4.20
Pc h 156.1 0.00 P1 145.0 0.00
Pc k1,k2 147.2 5:04

�0:10



P2? 156.0 0.70

PcCSi 169.8
PSiVC �20.6 3.54 P þ V 22.0 1.87
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hf splitting of 28.5MHz (exp. 33.4MHz). Note that the observation that more
pronounced distortions occur at the quasi-cubic sites whereas the hexagonal sites
mimic the lattice sites in the cubic material is also reported in case of the carbon
vacancy in 4H-SiC [98, 99].

We obtain the same trendwhen applying theGreen�s function-basedmethod to the
isolated P-donors at the silicon sublattice (PSi). However, compared to the P1, P2
spectra (originally assigned to PSi), the values are by about a factor of 20 too small. The
calculated values fit, instead, very well to the second set of spectra (I1, I2, see also
Table 17.4 and the upper part of Figure 17.11). Large, rather isotropic hf splittings in
the range of 150MHz can only be obtained for P at a carbon site – an observation
which is in line with the results of our MD calculations. The isotropic spectrum P1 is
most likely due to PC at the hexagonal site (again retaining essentially a tetrahedral
arrangement of the ligands but with a more pronounced outward relaxation of about
15%) whereas an explanation of the P2 spectra with a small but non-vanishing
anisotropic part requires C3v-symmetry, either obtained by a distortion around the
quasi-cubic sites or by a nearby carbon antisite (Figure 17.11). We no longer expect
that the P1, P2 and P þ V lines are caused by one center at three different lattice sites
as argued in themore recent models [92, 93]. In this point, based on the calculated hf
parameters, we come back to the original model of Veinger et al. [90], instead, and
reassign the so-called P þ V center to a PSiVC pair (Table 17.4).

Further confirmations of our model have been later obtained from additional EPR
measurements on the 3C-SiC and 6H-SiC polytypes [53] as well as from investiga-
tions on different new 4H-SiC samples: (1) the first was doped in situ with
phosphorus grown by the PVTmethod using SiP2O7 as a source [89]; (2) the second,
based on our theoretical results, have been 30 Si-enriched (50% instead of about 3%
natural abundance) in order to reexamine neutron transmutation. In one point, both
samples show a similar result: intense lines of the P þ Vcenter can be resolved, but
even no trace of the P1 and P2 spectra. Hence, one has clearly to rule out anymodel in
whichP1/P2 differ from theP þ Vcenter by the lattice site only. The absence of thePC-
related spectra can be explained by high temperature annealing (sample 2) and by an
incorporation of the P-donors close to the thermal equilibriumduring growth (sample
1). However, only in the 30Si-enriched, the I1/I2 spectra of PSi can be easily resolved in
comparable intensity, whereby in the sample in situ doped during growth the lines are
expected being covered by the intense central resonance line of the N-donor.

17.7
Conclusions

We have shown that a Green�s functions approach is able to calculate hf splittings of
shallow donors in semiconductors in predictive accuracy, whereby the ab initio
calculated local part of the potential, the central cell correction of effectivemass theory
(EMT), is embedded viaGreen�s functions into a periodic, EMT-like background. The
method was successfully applied onto shallow donors in Si and SiC: hf parameters of
donors in silicon (P, As, Sb) are reproduced in quantitative agreement with exper-
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imental data including the so-called Kohn–Luttinger oscillations due to the neighbor
shells. For P in strained silicon, a relaxation of the next nearest (nn) silicon neighbors
is shown to be crucial to explain quantitatively the experimentally observed decrease
of hf interaction, whereby our results indicate that in contrast to the prediction of the
EMA, there exists no high-stress limit for the reduction of the P-related hf splitting. It
is also confirmed that by strain the Kohn–Luttinger oscillations can be partially
suppressed. Both observations are crucial for quantum computing applications since
the spatial distribution of the hf interaction has a direct impact on the rate with which
two-qubit operations can be performed. The application of the approach ontoN and P
donors in SiC confirms an incorporation of the P atoms onto both, the silicon as well
as the carbon sublattice.

It is now possible to treat shallow donors without invoking a one-electron
approximation and several fitting parameters. The presented ab initio calculations,
although considerably more complex, are muchmore flexible and furthermore their
application requires considerably less manpower than one of the usual, more
involved one-electron EMAmethods for shallow defects. Most probably our method
cannot be extended directly to supercells containing a few hundred atoms, because
here the periodic images of the defect superlattice are still superimposed into each
cell. But it is not unlikely that for cluster calculations a similar extention will hold,
whereby in principle the unperturbed Green�s function can be obtained from a
supercell calculation of the corresponding ionized donor. This would be very
promising, since in a Green�s function approach the ab initio calculation results in
hf and shf interactions that for the center region of the defect are considerably more
accurate than those obtained from the best empirical approaches.
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18
Time-Dependent Density Functional Study on the Excitation
Spectrum of Point Defects in Semiconductors
Adam Gali

18.1
Introduction

Density functional theory (DFT) has been proven to be extremely powerful method
to study defects in solids. Nowadays, this is a standard tool to investigate their
concentration in thermal equilibrium, their interaction with each other, their
vibration modes or their hyperfine tensors [1–5]. All these properties are associated
with the ground state of the defect. The success of the DFTcalculations are based on
the well-developed approximate (semi)local functionals [6–9] that made possible to
study relatively large systems at moderate computational cost with a surprisingly
good accuracy. We mention here that the commonly used (semi)local functionals
suffer from the self-interaction error [7] which results in the underestimation of the
band gap of semiconductors. Nevertheless, for many semiconductors the (semi)
local DFT calculations could predict qualitatively well the adiabatic (thermal)
ionization energies of defects [1]. However, in pathological cases (semi)local
functionals could fail to describe the nature of the defect states correctly due to
the self-interaction error. Recent studies have shown [10–14] that non-local hybrid
functionals could improve the results at large extent, and could provide quantita-
tively good results for the thermal ionization energies of point defects [15]. The
effect of hybrid functionals is discussed in detail in another chapter in this book. We
claim that hybrid density functionals provide relatively accurate quasi-particle
energies and states compared to (semi)local functionals but these quasi-particle
energies are still within the mean field approximation. In order to calculate the
excitation spectrum properly one must go beyond the mean field approximation.
Time-dependent DFT (TD-DFT) goes beyond this approximation. TD-DFTmethod
has been successfully applied recently to calculate the excitation spectrum of
molecules and semiconductor nanocrystals [16]. In some earlier studies efforts
have been made to address the excitation of defect states in solids by TD-DFT
method where �solids� were modeled by extremely small finite clusters including
5–50 host atoms [17–21]. However, it is very questionable whether the electron
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states associated with the defect in a solid are properly described in such small
clusters, and no thorough study has been carried out so far even for a single defect
to address this very important issue.

We note that TD-DFT excitation spectrum obtained by (semi)local functionals is
reliable only for finite structures [16]. In a very recent study it has been shown that
hybrid density functional in the TD-DFT kernel provides appropriate excitation
spectrum for infinite semiconductors [22]. Here, we restrict ourselves into finite
structures where both the local and non-local functionals can be consistently applied
and validate the results for bulk systems.We study two representative defects in wide
gap semiconductors: nitrogen-vacancy (NV) center in diamond and divacancy in
silicon carbide (SiC). A common behavior of these defects is that they produce
characteristic transition in the photoluminescence (PL) spectrum. We briefly sum-
marize the known properties of these defects below.

18.1.1
Nitrogen-Vacancy Center in Diamond

Nitrogen-vacancy center in diamond has attracted a lot of attention in recent years,
since it has been detected at a single defect level [23, 24] and provides a quantum bit
for quantum computing applications [25–30]. Besides providing a single photon
source for quantumcryptography [31, 32], theNVcenter is also a promising candidate
as an optically coupled quantum register for scalable quantum information proces-
sing, such as quantum communication [33] and distributed quantum computa-
tion [34]. In addition, it has been recently demonstrated that proximal nuclear spins
can be coherently controlled via hyperfine interaction [35] and used as quantum
memory with an extremely long coherence time [36].

The electronic structure of the NV center in diamond has been discussed in detail
in a recent paper [37]. The NV center was found many years ago in diamond [38].
Themodel of the NVcenter consists of a substitutional nitrogen atom near a vacancy
in diamond [38–42] as Figure 18.1a shows. The NV center has a strong optical
transition with a zero phonon line (ZPL) at 1.945 eV (637 nm) accompanied by a
vibronic band at higher energy in absorption with the largest intensity at about
2.20 eV and lower energy in emission (see also Figure 18.4). Detailed analysis of the
ZPL revealed that the center has trigonal, C3v symmetry [39]. Previous ab initio
calculation clearly supported the negatively charged NV defect for 1.945 eV ZPL
center [43–45] as was originally proposed by Loubser and van Wyk [40]. In the NV
defect three carbon atoms have sp3 dangling bonds near the vacancy (with three back
bonds in the lattice) and nitrogen atom has also three back bonds with one dangling
bond pointing to the vacant site. Since nitrogen has five valence electrons the
negatively charged NV defect has altogether six electrons around the vacancy. One
can use the defect-molecule picture [46] together with group theory to find the
canonical orbitals of this system. According to this analysis there are two fully
symmetric one-electron states (a1) and one doubly degenerate e state which should be
occupied by six electrons [44]. It was found that the two a1 states is deeper in energy
than the e state. As a consequence, four electrons occupy the a1 states and two

342j 18 Time-Dependent Density Functional Study on the Excitation Spectrum



electrons remain for the e state. Our calculated one-electron levels obtained by ab
initio supercell (sc) calculations are shown in Figure 18.2.

As can be seen in Figure 18.2, the natural choice is to put the two remaining
electrons parallel to the e level forming an S¼ 1 state (in analog to satisfy the Hund-
rule for the p-orbitals of the isolated group IV elements in the periodic table). In the
C3v point group this total wave function has 3A2 symmetry, where 3¼ 2 S þ 1 with
S¼ 1. In our special case,we chose theMS¼ 1, so both electrons are spin-up electrons
on the e level. As can be seen, again in Figure 18.2, the lowest a1 level is relatively deep
in the valence band, so it seems to be a good approximation to assume that it does not
contribute to the excitation process, and we do not consider it further. However, the
next a1 level in the gap is not very far from the e level. If one electron is excited from

Figure 18.1 (online color at: www.pss-b.com)
(a) The structure of N–V� center in diamond;
only first- and second-neighbor C (cyan
spheres) and N (blue sphere) atoms to the
vacant site are shown. The yellow and red lobes

are contours of the calculated spin-density. (b)
Schematic diagram of the defect states in the
gap and their occupation in the 3A2 (ground)
and 3E (excited) states.
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Figure 18.2 (online color at: www.pss-b.com) The calculated one-electron levelswith respect to the
valence band maximum in the ground state of the NV defect. The results obtained in a 512-atom
supercell by applying the DFT within LDA functional in Ref. [44].
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the this a1 level into the e level then onewill arrive at
3E state (see Figure 18.1b). The 3E

is a doubly degenerate many-electron state, so it comprises two orthogonal many-
electron states with the same eigenenergy. Both of them can be described by a single
Slater-determinant: if the electron from a1 level is promoted to ex then the symmetry
of the resulted many-electron state will be Ex, if it is promoted to ey then the resulted
many-electron state will be Ey. Thus, Figure 18.1b shows one of the true MS¼ 1
eigenstates of the excited state under C3v symmetry (see Ref. [44] and references
therein).

The only allowed transition is 3A2 ! 3E in the first order. Thus, the excitation of
this system may be explained by promoting an electron from the a1 single particle
state to the e state resulting in the 3E excited state. This is certainly a simplified picture
since the excited electron feels the presence of the hole left behind as a result of the
Coulomb interaction between them, so they cannot be treated separately. Corre-
spondingly, the wave function in the excited state, which should describe the motion
of the correlated electron-hole pair, is principally not given by a simple product of
electron and hole wave functions but requires a more general representation to
account for energetic and spatial correlation between the two particles. Thus, we
examine the excitation of NV center by TD-DFT theory which is able to address this
complex phenomena. Before turning to the results we introduce another defect
under consideration.

18.1.2
Divacancy in Silicon Carbide

Divacancies are common defects in semiconductors with consisting of neighbor
isolated vacancies. The divacancy has been recently identified in hexagonal SiC
polytypes [4]. The defect possesses C3v symmetry in cubic SiC and also at on-axis
configurations in hexagonal polytypes. The silicon vacancy part of the defect (C1–3

atoms) introduces three carbon dangling bonds while the carbon vacancy part of the
defect (Si1–3 atoms) contributes with three silicon dangling bonds (see Figure 18.3).
Again, group theory analysis revealed us [47] that the six dangling bonds will build
two a1 and two e defect levels in C3v symmetry. Six electrons can occupy these states.
According to our ab initio sc calculations [47] the two a1 levels are lowest in energy and
then the doubly degenerate e levels follow them in the hierarchy. Four electrons will
occupy the a1 states and the two remaining electronwill occupy the degenerate e level.
Again, by following the Hund-rule the natural choice is to place the electrons with
parallel spins. Indeed, the ground state of the neutral divacancy is a high spin S¼ 1
state [4, 47]

A PL spectrum of about 1.0 eV is associated with this defect which can be also
detected at low temperature infrared absorption [48]. The nature of the excitation is
not well-understood. The position of the defect levels may reveal the possible
excitation mechanism of the defect. The two doubly degenerate e defect levels occur
in the fundamental band gap [47]. In the ground state, only the lowest e level is
occupied by parallel spin-electrons. Two a1 defect levels are in the valence bandwhere
the highest a1 state is resonantwith the valence band edge according to our ab initio sc
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calculations [47]. One possible model to explain the excitation is to promote an
electron from the resonant a1 state to the lowest e level in the fundamental gap [47]
(Figure 18.3b). Thiswill result in 3A2 ! 3E excitation. The sharp excitation between a
resonant state and a defect state in the fundamental gap is a well-known process in
semiconductors, e.g., similar process takes place for the isolated vacancy in dia-
mond [49]. Other excitations may also occur for divacancy in SiC, for instance,
between the e defect levels in the gap. We examine the lowest excitation energies of
divacancy by TD-DFT calculations.

18.2
Method

18.2.1
Model, Geometry, and Electronic Structure

We embed the defects into a nanocrystal that contains 147 host crystal atoms and
100 hydrogen atoms for termination. The results are strictly valid for these
nanocrystals but we discuss whether the obtained results could be valid in
crystalline environment. We applied PBE [9] functional to optimize the geometry
while the excitation spectrum is calculated both by the semi-local PBE and non-local
hybrid PBE0 functionals. In PBE0 functional the Hartree–Fock exchange is mixed at
25% extent into PBE functional [50]. The optimization of the geometry has been
done with numerical atomic basis set for diamond nanocrystal at double f polarized

Figure 18.3 (online color at: www.pss-b.com)
(a) The optimized geometry of the divacancy in
the ground state. Cyan and yellow balls
representC andSi atoms, respectively. Theopen

circles depict the vacant sites. (b) Schematic
diagram about the defect states in crystalline
environment in the 3A2 ground and 3E excited
states.
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(DZP) level which provided good results in scs compared to plane wave calcula-
tions [44]. We used the SIESTA code for this purpose [51]. Troullier–Martins
pseudopotentials have been applied to model the effect of nuclei together with
the core electrons in SIESTA calculations [52]. We used the relatively computa-
tionally expensive VASP code with plane wave basis set [53, 54] to study the
divacancy in SiC. In the VASP calculations, we use a plane wave basis set of
420 eV (�30Ry) which is highly convergent with the applied projected augmen-
tation wave (PAW) projectors for carbon, hydrogen, and silicon atoms [55, 56].
In the VASP calculations we applied the appropriate symmetry, and the energy of
the ground state and the excited states are calculated by setting the appropriate
occupation of the defect states in the gap as explained below. In the geometry
optimization calculations, all the atoms were allowed to relax until the forces were
below 0.01 eV/A

�
. In VASP code it is possible to set the occupation number of single

particle states. This may be used to study the geometry change upon electronic
excitation [12, 44]. In this scheme the excited state is described by promoting an
electron from an occupied Kohn–Sham defect level to an unoccupied Kohn–Sham
defect level of the ground state with allowing the nuclei to relax to find the optimum
geometry with the charge density obtained from this fixed occupation of orbitals.
This method is called constrained DFT briefly. The constrained DFT method is a
computationally cheap method to find the ZPL transition energy within the
Franck–Condon approximation as shown in Figure 18.4. In our experience this
methodology under special circumstances provides reliable results regarding the
relaxation energy due to electronic excitation [12] which is the Stokes-shift shown
in Figure 18.4. The constrained DFT method may provide reliable results for the
Stokes-shift upon the following conditions:

1) The excited state can be well-described by a single Slater-determinant and the
symmetry of the ground and excited states are different with avoiding possible
hybridization of states.

2) The nature of the excited and ground states is similar; for instance, they are
originated from similar well-localized defect states.

As we show below we considered such defects here that can fulfill these criteria.
Nevertheless, this statement cannot be proven by DFT based methods alone. We
studied the nature of excitation by TD-DFTmethod that is capable of studying the
above mentioned criteria. Next, we summarize the TD-DFT theory in nutshell with
focusing on the approximations that make possible to use this method in practice.

18.2.2
Time-Dependent Density Functional Theory with Practical Approximations

In the TD-DFTwithin the Kohn–Sham formalism the system subject to a TD external
potential:

v̂extðr; tÞ ¼ v̂statðrÞþ v̂tðrÞ f ðtÞ; ð18:1Þ
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is mapped onto a effective one-particle (non-interacting) system (e.g., Refs. [57, 58]):

i�h
qjiðr; tÞ

qt
¼ Ĥeff ðtÞ jiðr; tÞ; ð18:2Þ

where

Ĥeff ðtÞ ¼ � 1
2
r2 þ v̂extðr; tÞþ

ð
d3r0

rðr0; tÞ
jr� r0j þ v̂xc½r�ðr; tÞ: ð18:3Þ

Here v̂extðr; tÞ is the external potential,
Ð
d3r0ðrðr0; tÞ=jr� r0jÞ the Hartree term, and

v̂xc½r�ðr; tÞ is the functional derivative of the TD exchange-correlation functional with
respect to the TD density.

In the usual adiabatic approximationmemory effects are neglected, i.e., v̂xc½r�ðr; tÞ
is approximated as: v̂xc½r�ðr; tÞ ¼ v̂xcðrðr; tÞÞ. This approximation is proven to be very
successful in many cases and easy to implement. By using Eq. (18.2), one can
propagate thewave function in real time and calculate the full spectrumof the system
driven by Eqs. (18.1–18.3).
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Figure 18.4 (online color at: www.pss-b.com)
The energy (E) vs. configuration coordinate (q)
diagram for the excitation process of a defect in
the Franck–Condon approximation: Eg and Ee
are the minima in the quasi-parabolic potential
energy surfaces of the defect in the ground and
excited states, respectively, and qg and qe are the
corresponding coordinates. ZPE is the zero
point energy (indicated only for the ground
state). The energy ladders show the phonon
energies with the phonon ground states at n¼ 0

(ground state of the defect) and m¼ 0 (excited
state). At elevated temperatures the high-energy
phonon states can be occupied by inducing
transition A ! B (vertical absorption, green
arrow) and C ! D (vertical emission, red
arrow). Transition A$C corresponds to the
zero-phonon line (ZPL, blue double arrow) both
in absorption and emission. The energy of the
Stokes-shift (S) and anti-Stokes-shift (AS) are
also shown.
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In many cases the excitation can be taken as a perturbing potential where the
density response (r(1)(r,t)) is proportional to the perturbing potential (i.e., linear
response theory):

rð1Þðr; tÞ ¼
ð
d3r0dt0xðt; t0; r; r0Þ v̂tðr0Þ f ðt0Þ; ð18:4Þ

where x(t,t0,r,r0) is the full response function. It can be shown that the density
response in the Kohn–Sham picture takes the following form (see Ref. [58]):

rð1Þðr; tÞ ¼
ð
d3r0dt0xKSðt; t0; r; r0Þ

�
"
v̂tðr0Þf ðt0Þ þ

ð
d3r00

rð1Þðr00; t0Þ
jr0 � r00j

þ
ð
d3r00

d2Exc

drðr0Þ drðr00Þrðr
00; t0Þ

#
;

ð18:5Þ

where xKS(t,t0,r,r0) is just the response function built fromKohn–Sham orbitals. Note
that now the potential is not simply the TD part of Eq. (18.1), instead it also includes
the Hartree-term and TD exchange-correlation potential, furthermore this equation
has to be solved self-consistently since r(1)(r,t) appears on both sides.

Now taking the Fourier transform of both sides (f(v)¼ Ð
eivt f(t)dt), we arrive at the

equation:

rð1Þðr;vÞ ¼
ð
d3r0xKSðv; r; rÞ

�
"
v̂tðr0Þf ðvÞþ

ð
d3r00

rð1Þðr00;vÞ
jr0�r00j

þ
ð
d3r00

d2EXC

drðr0Þdrðr00Þ rðr
00;vÞ

#
ð18:6Þ

In Fourier space the form of the response kernel is (where we also introduced spin
dependence):

xKS;ss0 ðv; r; r0Þ ¼ dss0
X

i;a

j�
isðrÞjasðrÞjisðr0Þj�

asðr0Þ
v�ðeas�eisÞþ i0þ

2
4

�jasðrÞj�
asðrÞj�

isðr0Þjasðr0Þ
vþðeas�eisÞþ i0þ

#
: ð18:7Þ

In Eq. (18.7)jis(r)s are ground-state Kohn–Shamorbitals. Fromnowon, i,j and a,b
indices denote occupied and virtual (unoccupied) orbitals, respectively. k,l,m,n
indices stand for general orbitals.
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In order to solve Eq. (18.6), let us parameterize the density response as follows:

rð1Þs ðr;vÞ ¼
X

i;a;s

½PiasðvÞj�
asðrÞjisðrÞ:

þPaisðvÞjasðrÞj�
isðrÞ�: ð18:8Þ

Using Eqs. (18.7) and (18.8) we arrive at the following coupled matrix equations for
Pias(v) and Pias(v):

½dstdijdabðeas � eis þvÞþKias; jbt�Pjbt

þKias; bjtPbjt ¼ �ðv̂tÞias; ð18:9Þ

½dst dij dabðeas � eis � vÞþKais;bjt�Pbjt

þKais; jbtPjbt ¼ �ðv̂tÞais; ð18:10Þ

where we introduced the following short notation: ðv̂tÞias ¼ Ð
d3rj�

isðrÞv̂tðrÞjasðrÞ,
and the K kernel:

Kkls;mnt ¼
ð
d3rd3r0j�

ksðrÞjlsðrÞ

� 1
jr�r0j þ

d2Exc

drsðr0Þdrtðr00 Þ

0

@

1

Aj�
ntðr0Þjmtðr0Þ:

ð18:11Þ

Note that the kernel consists of two parts: theHartree part is local in time (it causes
the so-called local field effects), however the second part of the kernel is generally non-
local both in space and time. In the adiabatic approximation derived above it is time
independent but still space dependent. If the xc kernel is set to zero then this
approximation is called the random phase approximation. Neglecting both terms in
the kernel yield transitions between Kohn–Sham states.

Using Xias¼Pias(v), Yias¼Pias(v), and Vias ¼ ðv̂tÞias we arrive at the following
matrix equation:

"
L M
M� L�

� �
�v

�1 0
0 1

� �#
X
Y

� �
¼ �f ðvÞ V

V�

� �
; ð18:12Þ

where

Lias;jbt ¼ dst dij dabðeas � eisÞþKias;jbt; ð18:13Þ

Mias;jbt ¼ Kias;bjt: ð18:14Þ

In response theory, excitation energies are the poles of response function, thus by
taking f(v)¼ 0 we find the following non-Hermitian eigenvalue problem:
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L M
M� L�

� �
X
Y

� �
¼ v

�1 0
0 1

� �
X
Y

� �
; ð18:15Þ

Thismatrix equation is calledCasida-equation [59].Wenote that the termYmaybe
neglected (the so-called anti-resonance between the occupied and unoccupied states)
that leads to the so-called Tamm-Dancoff approximation. We keep further the anti-
resonance term in our derivation. If the ground-state density originates from a
restricted Kohn–Sham calculation (jia(r)¼jib(r)) then the size of the problem may
be reduced by one half and a unitary transformation can help discriminate between
singlet (s) and triplet (t) transitions:

uia ¼ 1ffiffiffi
2

p ðPiaa þPiabÞ; via ¼ 1ffiffiffi
2

p ðPiaa�PiabÞ: ð18:16Þ

It can be shown that if the orbitals can be chosen to be real (and that is true forfinite
structures) then the resulting matrices Mp, Lp will be also real where p labels either
singlet (s) or triplet (t) excitations. The long expression for thesematrices are given in
the appendix of Ref. [60]. We note that thesematrices contain the Hartree term and a
modified expression for the xc term. In the case of hybrid functionals, the Hartree
term is adjusted with respect to the case of (semi)local functionals. Now, we find the
following matrix equation:

ðMp � LpÞðMp þLpÞðXþYÞ ¼ v2ðXþYÞ: ð18:17Þ

If Mp� Lp is positive definite, Eq. (18.17) can be transformed to a hermitian
eigenvalue problem:

ðMp�LpÞ1/2ðMp þLpÞðMp�LpÞ�1/2ðXþYÞ0

¼ v2ðXþYÞ0;
ð18:18Þ

with

ðXþYÞ0 ¼ ðMp�LpÞ�1/2ðXþYÞ: ð18:19Þ

Clearly, in order to obtain excitation energies, these matrices have to be build and
the eigenvalue problem has to be solved. This is done using an iterative subspace
method in Turbomole package [61]. We note that we obtain the transition energies in
the frequency domain with this method which makes possible to restrict the
calculations to the lowest excitation energies and to analyze the states contributing
to the given excitation. This is a clear advantage over the time domain algorithms of
TD-DFTwhere always the full spectrum is calculated and the analysis of the nature of
transitions is not straightforward.

We applied the Turbomole package to carry out the TD-DFTcalculations [61]. This
is a cluster codewith localizedGaussian basis sets that can utilize hybrid functional in
the TD-DFT kernel. We applied an all-electron Gaussian DZP basis set for all the
atoms in the system [62] at fixed coordinates supplied by Siesta or VASP DFT

350j 18 Time-Dependent Density Functional Study on the Excitation Spectrum



calculations. We calculated the adiabatic TD-DFTspectrum both with spin-polarized
(semi)local DFT-PBE and non-local PBE0 functionals within the linear response
theory and beyond the Tamm-Dancoff approximation.We particularly focused on the
lowest excitation energies that may bemanifested in the low temperature absorption
and PL spectra.

18.3
Results and Discussion

18.3.1
Nitrogen-Vacancy Center in Diamond

In nanodiamond the gap opens up only slightly by about 0.1 eVeven in our relatively
small nanodiamond with a diameter of about 1 nm. Recently, we have found [63] that
nanodiamond exhibits low-lying Rydberg states which results in only small change
between the highest occupiedmolecular orbital (HOMO)–lowest unoccupiedmolec-
ular orbital (LUMO) gap of nanodiamonds and the band gap of bulk diamond. This
will have a serious consequence on the TD-DFT spectrum as we will show below.

We started with the geometry optimization of the negatively charged NVcenter by
SIESTADFT-PBE calculations using spin-polarization andwithout symmetry restric-
tion. The defect automatically arrived at the S¼ 1 state and retained the C3v

symmetry. It may be worthy to compare the relative positions of the defect states
obtained in nanodiamond (labeled as �nd�) and supercell (labeled as �sc�) DFT-PBE
calculations.

Two defect levels appear in theHOMO–LUMOgap: the a1 and e levels like in the sc
calculations. By comparing the PBE single particle Kohn–Sham levels obtained in the
sc and nanodiamond (columns 2 and 3 in Table 18.1), we observe that the relative
positions of the defect levels are very similar including the spin-polarization between
aa1 and a

b
1 states or the energy difference between a1 and e states within the same spin-

channel. This implies that the defect levels are �fixed� relative to each other anddonot
change significantly by confining the crystalline states. In our sc calculations we
found [44] that these defect states are strongly localized around the core of the defect,
in other words, they �split� from the extended crystalline states that are not effected
heavily due to quantum confinement. One may hope that the results obtained in the
nanodiamond model may be relevant for crystalline environment as the excitation
may occur between the localized defect states.

Next, we may check the quasi-particle shift due to non-local functionals or by
G0W0 correction [64, 65]. In the case of sc calculations, we used the screened hybrid
HSE06 functional with v¼ 0.20 1/A

�
screening parameter [66, 67] which provided

nice agreement with the experimental band gap of diamond and excitation energies
of the NV center [12]. For instance, we obtained the experimental vertical energy of
absorption (2.20 eV) very accurately by using constrained DFTcalculation andDSCF
procedure. In the case of nanodiamond we use unscreened hybrid PBE0 which gave
us very accurate absorption spectra for tiny nanodiamonds [63]. We believe that the
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unscreenedhybrid functionals aremore realistic for relatively small nanoclusters and
moleculeswhere the electron system cannot effectively screen theCoulombpotential
like in an infinite crystal. By comparing the �HSE06 sc� and �PBE0 nd� columns we
found that the quasi-particle shifts between occupied levels are very similar being but
a bit (0.16 eV) larger for �PBE0 nd.�However, there is a larger difference between the
relative positions of the unoccupied eb and the occupied states with the twomethods.
The quasi-particle shift for the unoccupied state is larger with the unscreened PBE0
functional which may be a natural consequence of the larger Fock-exchange term in
the Hamiltonian. The G0W0 sc calculations have been carried out at the C-point in
256-atom sc [64] which may not be fully convergent for the single particle states but
still it is worthwhile to compare theG0W0quasi-particle levelswith those obtained by
hybrid functionals. The spin-polarization of a1 state (�0.2 eV) is not enhanced such a
large amount like with hybrid functionals (0.5–0.6 eV) after the quasi-particle
correction. Interestingly, the quasi-particle shift difference relative to aa1 is also
larger for HSE06 sc than for G0W0 sc, thus the quasi-particle shift difference for
(eb � aa1 ) will be similar.

Now, we turn to the investigation of the excitation energies. In the case of the TD-
DFTcalculationwithPBEkernelwe arrived at a very low value of 1.57 eV.According to

Table 18.1 The relative positions of defect
levels of NV center in the ground state in eV
where a and b label the spin-up and -down
channels, respectively. The PBE and HSE06
supercell (sc) calculations have been carried out
in 512-atom sc yielding accurate excitation
energies with HSE06 functional (Ref. [12]) while
G0W0 sc calculations have been made in
256-atom sc with about 0.15 eV larger excitation
energies together with BSE than the
experimental values (Ref. [64]). �nd� labels the
results obtained in our nanodiamond. aa1 , a

b
1 ,

and ea states are occupied while eb is
unoccupied in the ground state. LUMO is a
Rydberg state in nanodiamond. The values in
the parentheses are the relative quasi-particle
corrections defined as the following: in column
HSE06 sc this is the difference between column
HSE06 sc and PBE sc carried out with the same

size of sc (but allowing relaxation with the two
methods as explained in Ref. [12]); in column
G0W0 sc the reference PBE values are taken
from the same geometry and sc in Ref. [64]; in
column PBE0 nd this is the energy difference
between column PBE0 nd and PBE nd carried
out in the same nanodiamond and with the
same geometry. Lowest excitation energy (Eexc)
is calculated by DSCF method for PBE sc and
HSE06 sc methods, while with G0W0 þ BSE
method for G0W0 sc and TD-DFT for PBE nd
and PBE0 nd. Exciton binding energy (EX) is
defined as an energy difference between the
calculated excitation energy and the quasi-
particle energy difference between the
corresponding states in TD-DFTmethods while
BSE provides this value on the top of G0W0 sc
calculation.

levels PBE sc PBE nd HSE06 sc G0W0 sc PBE0 nd

ab1 � aa1 0.56 0.58 1.04 (0.48) 0.6 (0.2) 1.22 (0.64)
ea � aa1 1.17 1.28 1.23 (0.06) 1.2 (0.1) 1.37 (0.09)
eb � aa1 2.45 2.44 4.00 (1.55) 3.3 (1.1) 4.67 (2.23)
eb � ab1 1.89 1.84 2.96 (1.07) 2.7 (0.9) 3.45 (1.61)
LUMO-ea 1.57 3.46
Eexc 1.91 1.57 2.21 2.32 2.20
EX 0.0 0.75 0.30 1.25
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our analysis the ea ! LUMO transition is responsible for this absorption peak.
As can be inferred in Table 18.1 the energy of LUMO is indeed close to the energy of
the highest occupied spin-up defect level ea. Apparently, this transition cannot occur
in crystalline environment. The next lowest transition energy is about 1.88 eV which
is close to the lowest excitation energy calculated in the sc by DSCFmethod (PBE sc
column in Table 18.1). However, this excitation peak arises in only 39% from ab1 ! eb

transition but 57% from ea ! LUMO þ 1 transition. This indicates that theTD-DFT
spectrum at PBE level cannot describe the nature of transition occurring in bulk
diamond due to the low-lying empty Rydberg state of nanodiamond.We note that the
calculated �exciton binding energy� of the lowest excitation is practically zerowhich is
typical for TD-DFTspectrumwith (semi)local functionals in the kernel. The situation
for the TD-DFTcalculation with PBE0 in the kernel is different. In PBE0 the LUMO
level is about the same energy distance from the ea state as the energy difference
between ab1 and e

b levels. The lowest excitation energy is 2.20 eV which is dominated
by ab1 ! eb transition as much as 92%. While the energy difference between these
single particle states was large (3.45 eV) due to the large quasi-particle shift between
these states relative to their PBE values (1.61 eV) the large excitonic effect (1.25 eV)
could compensate this effect with providing an excitation energy (2.20 eV) which is
very close to the experimental value. This number is also close to the values resulted
from HSE06 sc and G0W0 þ BSE (Bethe-Salpeter equation) sc calculations
(Table 18.1). We believe that it is not fortuitous coincidence. HSE06 sc gave less
quasi-particle shift than PBE nd and correspondingly the �exciton binding energy� in
HSE06 sc is smaller than for PBE nd. In G0W0 þ BSE sc calculation we found the
smallest quasi-particle shift with again smaller �exciton binding energy.� The
unscreened PBE0 functional may overshoot the �quasi-particle shifts� relative to
the PBE values but the large excitonic effect compensate this resulting in reasonable
values for the excitation energies. This implies that the calculated �exciton binding
energies� of defects in nanocrystals cannot reveal the �exciton binding energies� of
defects in the bulk counterpart but the calculated excitation energiesmay be accurate
after careful choice of themodel and inspection thenature of the transition. From this
investigation we can also conclude for NV center in diamond that the lowest
excitation is indeed described by promoting an electron from the ab1 level to the eb

level that can support the constrainedDFTmethod to calculate the Stokes-shift for the
PL process applied in Refs. [12, 64]. We note here that this transition describes the
absorption of the light with perpendicular polarization to the symmetry axis which
transforms as E irreducible representation in C3v point group. The parallel polarized
light transforms as A1 under C3v point group. According to the selection rules E
polarization will be allowed for 3A2 ! 3E transition in the first order while A1

polarization is forbidden. Our finding is in line with this group theory analysis.

18.3.2
Divacancy in Silicon Carbide

In our previous DFT-LDA sc calculation, we observed that neutral divacancy
introduces two doubly degenerate defect levels in the gap (see Figure 18.3). Beside
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these states two a1 level is associated with the dangling bonds according to the group
theory [47]. The highest a1 level is resonant with the valence band edge with�0.3 eV
below the valence band top. In the ground state the lowest e level in the gap is occupied
by two electrons. In spin-polarized calculation this e level splits by about 0.5 eV while
the empty e level does not split practically.

In the DFT-PBE cluster calculation the �band gap� of SiC opens up with several eV
compared to their bulk counterpart [68]. We note that we do not observe low-lying
Rydberg states for SiC nanocluster like in diamond nanoclusters thus no such
complications can occur in the analysis of the excitation spectrumof divacancy in SiC
nanocrystals as for NV center in nanodiamond. The quantum confinement of
crystalline states makes the resonant a1 state visible that is localized strongly on
the carbon dangling bonds. Because this a1 state does not mix with the crystalline
states, therefore the spin-polarization of this a1 state is significant (�0.7 eV) in
contrast to the case of DFT-LDA sc calculation. The ab1 state will pushes up the lowest
empty eb state by about 0.5 eV, thus the energy difference between the lowest and
highest eb states will be about 0.5 eV smaller than in sc calculation. It is important to
notice that the relative position of the aa1 and ea states agree those in sc calculation
within 0.1 eV. This may indicate that the localized resonant state also sticks with the
other localized defect states and splits from the crystalline environment. In the C3v

symmetry we determined the excitation energies with different light polarizations.
As expected, the excitation with E polarization is lowest in energy which allows to
couple the 3A2 ground state and the

3E excited state. Indeed, in this case the excitation
between ab1 and lowest eb states is dominant, however, there is a non-negligible
contribution (13%) from the lowest and highest ea states. The calculated absorption
energy is 1.15 eV that is close to the measured ZPL transition of 1.0 eV. For the
excitation with E polarization we obtained 1.43 eV which occurs between the lower
and higher ea defect states. We note that the corresponding �exciton binding energy�
is zero as we found already for NV center in diamond.

Next, we studied this excitation by applying PBE0 hybrid functional in the TD-
DFT kernel. The relative position between the occupied aa1 and ea defect levels
remains about the same (�0.7–0.8 eV). However, the energy differences between
the lower occupied and higher empty ea states and between the occupied ab1 and
empty eb states are increased by about 1.7–1.8 eV. This quasi-particle shift is a
natural consequence of the Fock-operator in the hybrid functional which opens the
gap between the occupied and unoccupied states. Again, we calculated the lowest
excitation energies with A1 and E polarizations. The excitation energy with E
polarization is 1.18 eVwhich almost coincides with the value obtained by the (semi)
local PBE in the TD-DFT kernel. The basic difference between the two transitions
that in TD-DFTwith PBE0 in the kernel the transition is dominated (over 95%) by
promoting the electron from the single particle ab1 defect level to the lowest e

b level.
The relative quasi-particle shift of about 1.8 eV was largely compensated by the
excitonic effect of about 1.0 eV. Interestingly, the next excitation energy of 1.85 eV is
due to the transition between the ab1 state and the higher eb state. The �exciton
binding energy� of this process is again�1.0 eV. The following excitation energy of
�2.35 eV is caused by transitions of E,A1 polarizations between the lower occupied
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and higher empty ea defect states where the resulting �exciton binding energy� is
smaller (�0.8 eV).

We calculated the Stokes-shift due to electronic excitation by constrained DFT
method. First, we studied the lowest excitation energy for which the transition
between ab1 and the lower eb states is the dominant process resulting in the 3E
excited state as shown in Figure 18.3b. We set this occupation for the defect states
and restricted the geometry optimization within C3v symmetry. The calculated
Stokes-shift is 0.075 eV. Because the eb state is half occupied Jahn-Teller distortion
may occur. By allowing C1h geometry optimization we obtained a slightly deeper
energy than for C3v symmetry. The final value for this Stokes-shift is 0.12 eV. By
combining the absorption energy (1.18 eV) and the Stokes-shift we arrived at
1.06 eV for the ZPL line which is very close to the experimental value found in
bulk SiC. We found that the deviation from the C3v symmetry is tiny, still it is not
exactly C3v symmetry. Thus, the strict selection rule of E polarization of light in the
emission process may be relaxed and A1 polarization may be slightly allowed. The
situation is different for the second lowest excitation process. In that case the ab1
electron is excited to the higher eb state. That higher eb state is localized on the Si
dangling bonds that can overlap and interact with each other. The Jahn-Teller
distortion for this excited state is much stronger (�0.2 eV) than for the previous
process (�0.04 eV) with resulting in a large Stokes-shift of 0.46 eV. Combining this
value with the calculated absorption energy (1.85 eV) one arrives at 1.39 eV ZPL
energy. Here, theC3v symmetry is considerably lowered toC1hwhere the Si2 and Si3
atoms are bended to each other (see Figure 18.3a). Thus, both polarizations should
be allowed for this PL process.

These results are strictly valid for the SiC nanocrystal. As both the resonant a1
state and the lowest e state remains �fixed� going from crystalline environment to
small nanocrystal one may hope that the calculated TD-DFT excitation energy is
valid for the defect in bulk SiC. Indeed, the calculated lowest excitation energy in
SiC nanocrystal is close to the experimental data recorded in bulk SiC. By assuming
that the transition from the resonant defect state is the strongest to the lower e level
wemay claim that we could identify the physical process in the PL center associated
with the divacancy [48]. Our calculations revealed that other type of excitationsmay
also occur for divacancy. In crystalline environment the detection of the resonances
occurring in SiC nanocrystals may be not feasible due to competing processes. For
instance, from the sea of the valence electrons lying in the continuous valence band
one can excite an electron to the lower e level instead of the resonant excitation
between the a1 level and the higher e level where the latter process is clearly
observable in our calculation due to the discrete energy spectrum of the relatively
small SiC nanocrystal.

By comparing the excitation and other properties of NV center in diamond and
divacancy in SiC one can list the similarities of the two systems:

1) The defect exhibits S¼ 1 high spin-state with C3v symmetry.
2) The lowest excitation is due to 3A2 ! 3E transition.
3) The spin-density is localized close to the core of the defect.
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Nevertheless, one can find also differences between the two systems:

1) Two highly localized well-separated defect states play the dominant role in the
excitation of the NV center in diamond while one of the defect states is resonant
with the valence band for the divacancy in SiC.

2) NVcenter has strict C3v symmetry in the PL process while for divacancy in SiC it
may be a bit lowered to C1h symmetry.

3) NV center has a clear PL signal at room temperature while this has not yet been
demonstrated by divacancy in SiC.

4) The spin-flip process in the PL process was already demonstrated for NV center
in diamond while this has not been investigated in detail for divacancy in SiC,
though electron paramagnetic resonance studies combined with photo-excita-
tion indicate that similar process may occur for divacancy.

Further investigations are needed ondivacancy in bulk SiC in order explore thefine
details of its excited states. Onemay say from the present study that divacancy in SiC
might be an alternative for realizing the concept of solid state quantum bit.

18.4
Summary

We investigated the excitation spectrumofNVcenter in nanodiamond and divacancy
in SiC nanocrystal. We found that TD-DFTmethod with PBE0 in the kernel could
reproduce the experimental data observed in their bulk counterparts. We discussed
the validity of these results by careful inspection of the model and its electronic
structure. Our results imply that TD-DFT method with non-local DFT functional
togetherwithnanocrystalmodelsmay be applied for studying the excitation of defects
in bulk crystals when the excitation occurs between well-localized defect states.
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19
Which Electronic Structure Method for The Study
of Defects: A Commentary
Walter R. L. Lambrecht

19.1
Introduction: A Historic Perspective

The title of the CECAM workshop that gave rise to this compilation is �Which
electronic structure method for the study of defects?� (see the Preface by De�ak [1]).
The first question, the reader might ask is why this question arises now. After all, the
standard framework for dealing with defects inmaterials has been around for at least
a few decades and hasmade significant contributions to our understanding of a wide
variety of defects in semiconductors.

The �standard� toolkit includes density functional theory (DFT) combined with
supercell band structure calculations. That is, the electronic structure problem is
reduced to a standard band structure problembyusing periodic boundary conditions.
For surfaces, one uses a repeated slab geometry with vacuum regions to separate the
surfaces; for interfaces, the artificial periodicity is introduced in only one dimension,
while there still is a physical periodicity in the other two directions. For point defects,
one needs to impose artificial periodicities in three dimensions, resulting in a faster
increase of the size of the system that needs to be calculated. Dislocations, which are
periodic in only one direction, are actually more complex because of their long-range
strain fields and to avoid those, one either needs to use an opposing Burger�s vector
dipole pair of dislocations, or use a finite sample surrounded by vacuum regions for
which one can then again restore periodicity in the two remaining dimensions. In
any case, this compilation almost entirely focuses on point defects in the bulk of
materials, not at surfaces or in nanostructures or not on extended defects, so we here
restrict the discussion to point defects.

The main reason almost all calculations nowadays use periodic boundary condi-
tions is a matter of convenience. One can use the general purpose computer
programs that have been developed for band structure calculations, once these have
been boosted to be able to deal with sufficiently large number of atoms. This is not
the only choice, one could resort completely to finite models, or clusters, or one
could embed the defect region into a perfect crystal by means of Green�s function
techniques.

Advanced Calculations for Defects in Materials: Electronic Structure Methods, First Edition.
Edited by Audrius Alkauskas, Peter Deák, Jörg Neugebauer, Alfredo Pasquarello, and Chris G. Van de Walle.
� 2011 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2011 by Wiley-VCH Verlag GmbH & Co. KGaA.

j359



Clusters are still popular with quantum chemists. Their drawback is that the
surface of the clusters presents a more severe perturbation than the milder periodic
boundary condition. One can avoid it to some extent by artificially satisfying the
surfaces dangling bonds with pseudo hydrogens, but there is no obvious advantage
to them compared to supercell techniques, except perhaps if one wants to use more
advanced treatments of correlation than available in DFT, such asmulticonfiguration
interaction methods [2].

On the other hand, the most sophisticated approach to point defects, leading to an
exact embedding of the local environment of the defect in the surrounding perfect
crystal using correct boundary conditions is the Green�s function method. Unlike in
supercells, the band edges are defined precisely and one can calculate not only bound
states in the gaps but also changes in the total and local densities of states within the
bands, in the form of resonances and anti-resonances. One can make sure that
the defect states, obey the exact symmetry of the defect site and are not influenced by
the supercell geometry. One naturally treats an open system, into or out of which
charge can flow as set by the chemical potential, without any uncertainties on how
to define the chemical potential relative to the bands unlike the need in supercells to
restore neutrality by artificial means such as a compensating homogeneous back-
ground charge density. In fact, there was a large amount of work done in the late
1970s–1980s to developGreen�s functionmethods for point defects [3–13]. Strangely,
thesemethods were abandoned in large part. The reason for this inmy opinion is not
because these methods were less intuitive or intrinsically less powerful, but rather
their development could not keep up with the pace of the standard supercell
approach. The original versions of these methods did not allow for relaxation of
the structure of the defects and in many cases were even restricted to specific
symmetries of the defect structure. On the other hand, practitioners using a standard
all-purpose band structure method, were able to solve the problems that arose from
experiment and required immediate attention. In particular, their ability to use the
correct relaxed structure near the defects was a crucial advantage to get the essential
physics correct. Meanwhile, practitioners of the Green�s function methods, had to
keep on generalizing their codes to handle such problems.

A second reason why the standard approach won the race is no doubt the almost
universaluseofplanewavebasissetsasopposedto localizedbasissets.For thelatter it is
notoriouslymoredifficulttoproveconvergenceandtocalculateforcesanalytically.Their
main advantages, a local �chemically intuitive� description and smaller basis sets were
nomatchagainst thebruteforceplanewaveapproachascomputerpowerincreasedand
more importantly iterative minimization algorithms [14] for dealing efficiently with
these intrinsicallymuch largerbasis setsweredeveloped. Inotherwords, it justbecame
tooeasy to tackle theactive researchproblemswith the supercell technique.Whywould
one need to develop a special technique for point defects if the standard all-purpose
method could do the job and provide answers the experimentalist needed?

One might thus have expected a lively discussion on which methods to use in the
early 1980s, when the Green�s function methods were still widely in use and cluster
calculations were still competitive with the supercell approach. But nowadays, only
a few practitioners of that approach remain. One at least is represented in this
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compilation (chapter 17, [15]). Development of methodologies for dealing with ever
larger systems, has of course continued, in particular, the development of order-N
methods. The large driving force for developing thosemethodshas been the advent of
nanostructures, but by and large they are not being applied verymuch to point defects
in solids. It appears that the sizes we need to handle point defects satisfactorily are
compatible with the computing power available without these new large scale system
methods. Nonetheless, at least one article in this compilation discusses progress in
developingmethodstosolvestandardKohn–Shamequationsmoreefficiently for truly
large systems (chapter 16, [16]).

At the same time, while it was long known that the local density approximation
(LDA) (or its slight modification, the generalized gradient approximation, GGA)
underestimates band gaps in semiconductors, the attitude of many studying point
defects, has been to just put up with this problem by focusing on quantities which
were supposedly not affected by this shortcoming. Thus the emphasis of point defect
studies shifted from calculating one-particle energy levels or changes in densities of
states in the bands, to total energies, energies of formation of defects and transition
energies. As long as one avoided explicitly calculating excited state properties, the
thinking went, we were safe. After all, transition energies are defined as the position
of the chemical potential relative to the band edge, where one charge state becomes
lower energy than another, sowe keep focusing on the ground states, which is after all
the legitimate quantity to calculate in DFT. Other quantities, which seemed safe are
charge densities, and spin densities and those define such things as the hyperfine
parameters, so useful to electron paramagnetic resonance (EPR) experimentalists, or
local vibrational modes as measured by infrared spectroscopy.

Nonetheless, it appears that in the last few years, increasingly the �festering�
underlying problems of the supercell plus LDA (or GGA) paradigm have become
more apparent and have been increasingly discussed in the literature. In part, this is
probably because a lot of the recent applications have been on more challenging
systems. For example, wide band gap semiconductors and oxides, including tran-
sition metal oxides, present a new challenge that brings out these underlying
problems. Transitionmetal impurities with strongly correlated d-states have received
increasing interest in the context of dilute magnetic semiconductors. The underes-
timate of the band gap by LDA (and GGA) in these systems is often larger. Defect
levels that should be and are experimentally in the gap, appear as resonances in the
bands in the LDAcalculations leading to qualitativelywrongdescriptions of the defect
behavior. The more ionic nature means that screening is reduced and brings out the
effects of the Coulomb interactions more vividly. In particular, the self-interaction
error of LDA and the orbital dependent correlation and exchange effects are being
put in the spotlight in these systems. Ionic systems also exhibit stronger polaronic
effects, which as will be seen below are strongly suppressed by LDA because of the
incomplete cancellation of the self-interaction. Due to the reduced screening,
spurious interactions involving charged defect states are also exacerbated.

In any case, whatever may have been the reason why these problems resurfaced,
whether they were always there and they were just temporarily ignored while the
community was absorbed in the successes of the standard approach, until our
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demands for accuracy and rigor overtook, or because the problems were becoming
more apparent in the new systems to which the attention has shifted, this renewed
debate on the methodologies is highly welcome.

At the same time, there has been a strong push in recent years to go beyond the
limitations of DFT to ground state properties. The quasiparticle excitations can now
be calculated in Hedin�s GW approximation [17, 18] using pseudopotential plane
wave [19–22], all-electron linearized augmented plane-wave (LAPW) [23, 24], line-
arized muffin-tin orbital (LMTO) [25–29], and projector augmented wave (PAW)
implementations [30–32]. Even electron–hole interactions affecting optical proper-
ties can be treated by the Bethe–Salpeter equation approach [33–39]. Time dependent
DFT provides an alternative way of dealing with excited states [36, 40]. Finally, the
QuantumMonte Carlo method has continued to make strides and is represented in
this compilation with chapter 2 by Hennig and coworkers [41]. While such meth-
odologies are still computationally demanding and until recently only feasible for
small systems like perfect crystal unit cells, parallelization of codes, and new
algorithmic developments are now letting these methods make inroads in the defect
world. At the same time, approximate methods to include some of the essential
correlation or orbital dependent effects have continued to be developed, such as
LDA þ U (or GGA þ U) and hybrid functionals.

Thus, the time is ripe not only to re-assess the accuracy of the standard approach
now thatwe canpush its limits by shear computational power but to incorporate these
new methodologies beyond LDA into the world of point defects.

This compilation gives the reader a sampling of some of the problems under
discussion. It will not provide definitive answers because there is as yet no consensus
onmanyof theseproblems,but at least itwill set the stage for further investigation and
will allow a newcomer to the field to quickly get involved in the middle of the debate.

In the remainder of this article, I will comment on some of the highlights of the
workshop and where the reader will find them in this issue.

19.2
Themes of the Workshop

Rather than commenting on the individual articles found in this book, the discussion
is centered around a few themes that run throughout several articles and an attempt is
made to place these in context and point out their connections. The themes are: (i)
dealing with periodic boundary condition artifacts, (ii) dealing with the band gap
underestimate by LDA, (iii) dealing with the self-interaction error of LDA, and (iv)
developments of alternative methods to DFT and excited state methods.

19.2.1
Periodic Boundary Artifacts

Essentially the task is to extract the information on a single defect in the dilute limit
froma calculationwith periodically repeateddefects at the smallest concentration one
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can handle computationally. Periodicity imposes several artifacts: the defect levels
broaden into bands because of their interaction, the structural distortion around
the defect may result in long-range elastic forces, and for charged defects, there is
a spurious Coulomb interaction between the image charges and between them and
the compensating background one introduces to enable a meaningful definition of
total energies. The total energy of an infinite periodic system is only well-defined if it
is overall neutral.

The direct band broadening effects are presumably easiest to avoid if the defects
wave functions are exponentially localized, which is the case for deep defects, while
for shallow defects, an accurate description of the binding energies relative to the
bands is probably better attempted in the framework of effectivemass approximation
methods [42–48].

Nonetheless, some care is needed to deal with defect band dispersion. Aradi
et al. [49] for example use a tight-binding fit to the defect band dispersion to derive the
center of gravity of the actual isolated defect level. This approach was used earlier by
Louie et al. [50] and is more important the smaller the cells are. Wei and Yan [51] in
chapter 13 of this compilation discuss an approach in which the one-electron defect
levels calculated at the C-point, which reflect the correct symmetry of the isolated
defect levels, are combined with the transition state approach. The point is that one
generally uses a special k-point set to calculate total energies and the differences in
defect level position at the special k-point from that at C needs to be taken into
account.

The elastic effects are expected to behave like 1/L3 while the image charge
electrostatic effects are longer range and expected to behave like 1/L with L the
characteristic length scale of the supercell, say 1/V1/3 with V the volume. The fact
that the image charges in the neutral background leads to a spurious Madelung
contribution aMq2=eL to the total energy of the system is known since the work of
Leslie and Gillan [52]. Makov and Payne [53] identified a correction describing the
interaction of the quadrupole moment of the defect density with the background
going as 1/L3. Nonetheless, these proposed corrections were not universally
adopted by practitioners in the field. It was for example argued by Segev and
Wei [54] that if the defect density becomes delocalized the Madelung model,
invoking point charges in jellium, overestimates the corrections. This point of
view is discussed in Wei�s contribution in this compilation (chapter 13, [51]).
Instead these authors proposed to use an extrapolation scheme proportional to 1/V
or proportional to the number of atoms in the cell. Gerstmann et al. [55] also
criticized the approach for the case of delocalized defect wave functions. Other
more sophisticated approaches were introduced but because they aremore difficult
to implement or focus on periodic boundary calculations of molecules, were rarely
used [56]. One confusing point here is that even if the defect wave function is
delocalized, the total electrostatic density perturbation contains the d-function part
of the nuclear charges and thus certainly the total charge density contains a point-
likemonopole contribution. Amajor reason why it has not always been that clear in
practical studies to see the pure q2/L behavior, is that other finite size effectsmay be
dominating. To clarify the situation, it is best to consider the effect in unrelaxed
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structures and one needs large enough cells of order several 100 atoms, before this
behavior becomes apparent [57]. Attempts have been made by several authors to fit
separately, 1/L and 1/L3 terms [58].

Recently, theproblemwasreformulatedinaslightlydifferentmannerbyFreysoldtet
al. [59] and their method is described in additional detail in chapter 14 of this
compilation [60]. Their analysis is based on plotting the defect minus perfect crystal
potential and subtracting from it a long-range part, calculated with an assumed
unscreened defect charge model, which in the simplest case is just a point charge.
Oneimportantpointarisingfromtheiranalysis is that indoingsoonemustaccountfor
an arbitrary constant shift in thepotential, a so-called alignment potential. The latter is
chosenso that the remaining short-rangepart of thepotential explicitly goes tozero far
away fromthedefect. Ifnecessary tomake thepotentialflat in the region far away from
the defect, a more sophisticated defect model charge density is introduced. This
alignment term has the form qDq=b and enters the defect formation energy together
with the qEF term which represents the chemical potential of the electron which one
must add to describe correctly the change inGibbs free energy of the charged defects,
which is considered to be an open system in connection with an electron reservoir.
Usually, this term is added separately but in Freysoldt et al.�s analysis, it emerges
naturally from their consideration of the spurious interaction energies which one
wishes to remove.

It is important to note that the alignment term goes as 1/V and was also
emphasized by several other authors [57, 61–64]. It is being used by many other
authors in some form or other, although the procedure used for determining it is not
always explicitly mentioned in the literature. When a defect is created in charge state
þ q, the electron must be removed to the electron reservoir with energy its chemical
potential me ¼ Evbm þEF. Usually, one measures the Fermi level here relative to the
valence bandmaximum (VBM).However, the question is how to calculate Evbm of the
perfect crystal in the defect containing cell. One might think this is just the highest
occupied band (at the appropriate k-point), not counting the defect levels in the
supercell itself, but the problem is that the defect may have perturbed the band edges
in the supercell. It helps to plot the bands of the supercell, so one can recognize defect
levels fromhost bands by their dispersion. The accepted alignment approach is to use
a �local characteristic� of the potential, say the average of the electrostatic potential
over an atomic sphere, or the potential at the muffin-tin radius in methods that use
such spheres, or a core level. If one now knows the valence band energy in the perfect
crystal relative to this �local potential marker,� then all we need to determine is the
samemarker at atoms far away from the defect in the supercell containing the defect.
Typically, one needs to average over a few atoms far away from the defect, and this is
for instance illustrated in Lany andZunger [65]. Freysoldt et al. [59, 60] essentially use
a well defined separation approach of long and short range parts of the defect
potential with a built-in check to make sure that after the long-range effects are
subtracted the short-range potential indeed just becomes a constant. But essentially,
it is just a different way of determining the alignment potential and the
remaining correction is just the Leslie and Gillan [52] Madelung correction or the
1/L Makov– Payne term [53].
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Now, there still remains the question of the Makov and Payne�s quadrupole term.
Lany andZunger [57] recently pointed out that the net quadrupole of the defect charge
density Q / L2, i.e., it is not independent of the supercell size and the quadrupole
correction 2pqQ=eL3 then effectively behaves also as a 1=L term. The reason for this
observed behavior is that Lany and Zunger�s defect charge density from which the
quadrupole moment is calculated includes the screening charge density which
becomes almost constant at large distance from the defect in the supercell. The
definition ofQ involves an integral over r2rðrÞ and is thus dominated by large r. The
same behavior in fact was pointed out earlier by Lento et al. [66]. Furthermore, Lany
and Zunger [57] found that this reduces themonopole correction by a factor which is
essentially independent of defect and amounts to about�1/3. Thus their prescription
for the image charge correction becomes: take 2/3 of the point charge correction.

On the other hand, Makov and Payne [53] definedQ explicitly as �the second radial
moment only of that part of the aperiodic density that does not arise from dielectric
response or from the jellium, i.e., is asymptotically independent of L.� This contradicts
Lany and Zunger�s statement thatQ / L2 but this is simply a question of whether or
not one here includes the short-range dielectric screening. We here say short-range
screening because the remaining long-range screening is included by dividing by the
dielectric constant. It is not obvious how to determine Q according to Makov and
Payne�s strict definition and onemightwonderwhy all (even short range) effects of the
screening density should be excluded. Lany and Zunger define the defect charge
density simply as the difference of the charge density in the cell with the defectminus
the corresponding perfect crystal charge density calculated in the same cell.

Inmy opinion, this is closely related to the question, is it actually correct to include
a compensating background density? In reality a charged defect is after all com-
pensated by other defects far away and not by a homogeneous back ground. Near
interfaces for example, it is well known that one has depletion layers which are
actually charged. On the other hand, if we consider a finite small region around the
defect, say one or two shells of neighbors, and consider this as an open system, then
clearly charge can flow into this region. In principle it should be determined self-
consistently in the presence of a given chemical potential of the electrons. The latter
sets the energy up to which to integrate the local densities of states to determine the
total charge inside the defect region. So, if a defect level is below it, it will be occupied
and if above it, it will be empty. Even in a Green�s function method, one would only
treat a finite region of a few cells around the defect as the region where the potential
is assumed to be different from bulk. But if the defect region retains a net charge, the
potential outside still has a long-range Coulomb tail. Presumably that could be used
as boundary condition for the potential in the defect region although I am not aware
of calculations where this was explicitly done. Asymptotically a charged defect should
behave as q=ðerÞ with e the macroscopic dielectric constant, but this means that
the net charge of the defect region is reduced to q=e, meaning that q½1� ð1=eÞ� has
indeed flown toward the defect. As long as e is fairly large (perhaps a wrong
assumption for very ionic oxides!) assuming local charge neutrality seems a rea-
sonable approximation. In other words, the background density represents to some
extent the physical screening charge density,more precisely, the short-range part of it.
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Thus, the screening charge density if included in the definition ofQ seems to arise in
large part from the background density. The quadrupole correction of Makov and
Payne is the interaction of this quadrupole with the background. So, it is somewhat
puzzling whether this needs to be included since it appears to amount at least in part
to an interaction of the background with itself. A detailed argument of Lany and
Zunger�s point of view can be found in Ref. [65].

A subtle point is to what extent the background density is really included in the
codes that are commonly in use. In some codes, it appears the latter�s presence is only
assumed in order to give a well defined meaning to the reference electrostatic
potential, which implicitly assumes charge neutrality but the interaction of the
background density with the electrons and nuclei is not explicitly included in the total
energy. This point is also discussed in [57, 65]. Other codes may explicitly add
the uniformbackground density to the charge density in a systematicmanner. This is
for example the case in the FP-LMTO code [67].

Now, so far we have only considered corrections to the total energies of the system.
In another recent paper, Lany and Zunger [68] showed that also one-electron energy
levels are subject to finite size potential shifts.

On the other hand, it is worthwhile mentioning that some attempts have been
made to go outside the standard practice of using a compensating background.
Schultz [69–71] for example has advocated the use of a local moment counter charge
approach, in which long-range effects of the net charge of the defect are treated with
boundary conditions of a single isolated defect in calculating the electrostatic
potential, while the remaining moment free (up to some moment order) density
is treated with the usual periodic boundary conditions. The special role of an
undetermined alignment potential also crops up in his theory. Its advantages and
disadvantages versus the neutralizing back ground density have been studied by
Wright andModine [72] and by Lento et al. [66] Onefinds, in fact that the convergence
with size of the system is slower than in the background charge approach and outside
the defect region, still a classical continuum model polarization correction must
be added. We cannot delve into the details of these other approaches here and
conclude that likely, discussions of finite size effects will continue for some time.

As mentioned in Section 19.1, periodic boundary artifacts can in principle be
entirely avoided by resorting to Green�s function methods which provide an exact
embedding of the defect region in the host crystal. A remarkable feat of suchmethods
is that they are able todescribe the correct defectwave functionswell outside the region
in which the potential (and possibly the structure) is perturbed. This is emphasized in
the contribution byGerstmann [15] in thismonograph (chapter 17). It is evidenced by
the degree of accuracy with which it can describe hyperfine and super-hyperfine
interactions.While theGreen�s functionmethodswere originally developedwith deep
defects in mind, they have now apparently found their most impressive performance
on shallow defects. Even though in his approach, the long-range Coulomb tail of the
charged defect is not included, and thus the shallow defect becomes a resonance in the
conduction band, it is possible within this approach to accurately identify the
resonance in the density of states and thus to reconstruct the charge density from
the Green�s function integrated over the energy range of the resonance.
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Shallow defects have perhaps been overlooked for a while with the impression that
the shallow defect problem was solved in terms of effective mass theory (EMT) long
ago. Nonetheless Gerstmann�s contribution here draws attention to the shortcom-
ings of the EMT in terms of describing the so-called central cell correction. We also
point out that some recent work is trying to revive the EMTwith novel approaches to
refine the central cell potential [46–48]. Perhaps a fruitful avenue will be to combine
first-principles supercell or Green�s function approaches to extract central cell
potentials to be used in EMT.

19.2.2
Band Gap Corrections

As is well known, the Kohn–Sham eigenvalue gap is underestimated by the LDA. On
the other hand, the prime question about point defects is where the defect levels,
either one-electron levels or transition levels lie with respect to the band edges. Thus,
a correction of the band gap is necessary before one can compare to experiment.

The most dramatic failure related to the band gap underestimate occurs when it
leads to an erroneous occupation of host states rather than defect states because the
defect level becomes a resonance in the bands. This situation for example occurs for
the oxygen vacancy in ZnO [73], a defect that was discussed by several contributors at
the workshop and has become a sort of benchmark [68, 74–78].

In the past, several approaches have been used: some are a posteriori corrections,
some are addressing the problem at the level of the Hamiltonian by going beyond
LDA in some way or other.Aposteriori corrections come down to deciding what is the
nature of the defect state. If the defect is essentially a shallow acceptor, the idea is that
the defect level position relative to the VBM is correct, and one would then just shift
up the conduction band minimum (CBM) without changing the defect level. If the
defect is a shallow donor state, the defect level would be shifted up along with the
CBM. If it is a deep defect, the intuitive idea is that the level would shift according to
howmuch it is valence band or conduction band like. How to apply this intuitive idea
in practice is another matter and different approaches give different results.

One approach goes by the name of a �scaled scissor correction.� The approach
consists in determining the projection of the defect state onto valence and conduction
band edge states to determine its percentage valence and conduction band charac-
ter [79]. However, its limitations were pointed out by De�ak et al. [80] by comparing
how much the one-electron levels shift in this approach compared to a GW
quasiparticle calculation.

A related idea was used by Janotti and Van deWalle [77, 81] for the oxygen vacancy
in ZnO. The LDA þ U approach is designed originally to deal with localized orbitals
such as semicore d states or open shell d and f systems [82, 83]. It produces a partial
band gap correction because it reduces the p–d hybridization. Janotti and Van de
Walle [81] reasoned that the extent to which this correction shifts the defect level,
shows towhat extent it is valence or conduction band like and thus used this as a basis
for extrapolating to the full gap correction, even if the rest of the band gap correction is
not arising from the p–d hybridization effect. However, it is not clear that one can

19.2 Themes of the Workshop j367



decompose the defect wave function in CBM and VBM like host states. Certainly for
deep defect levels, the idea of pinning the defect level to the host state at one dominant
k-point seems incorrect.

The scissor shift is easily incorporated in Green�s function methods [4, 8, 15]. In
that case, one could even relatively easily include different shifts at different k-points
instead of a uniform shift.

A better approach clearly is to use an energy functional orHamiltonian for the host
that reproduces the correct gap, or at least gives a better approximation to it that
results in a qualitatively correct starting point. We already mentioned that the
LDA þ U approach at least partially opens the gap. An extension of this approach
is applying it to the states that dominate theCBM, typically cation s-like states [73, 74].
Another is to add simply non-local external potentials that shift the appropriate
states [57, 84], or to use modified pseudopotentials [77, 85]. The success of such
approaches depends significantly on the details of the implementation [74]. While
their main advantage is simplicity and computational efficiency, it is undesirable
that one needs to adjust these potentials on a case by case basis. Much hope for
a universally applicable approach is placed these days in hybrid functionals.

Hybrid functionals were discussed by several contributors to the conference [75,
77, 86–88]. Hybrid functionals essentiallymix someHartree–Fock with LDA orGGA
exchange. Thereby they add an orbital dependence to the exchange correlation
functional that is missing in the LDA. This is also what the LDA þ U methods are
essentially trying to mimic. While hybrid functionals were first explored by chemists
for small molecules, e.g., the Becke B3LYP functional [89, 90], more recent versions
seem to be rather successful to reproduce band gaps of standard tetrahedrally bonded
semiconductors. The main new development however, is that they are now being
implemented in the popular plane wave programs and can thus more readily be
applied to the systems of interest. They still are typicallymuchmore time consuming
than semilocal functionals.

Among hybrid functionals, we can distinguish those that mix a fraction a of
unscreenedHartree–FockwithGGA, and those that use screenedHartree–Fock. The
former approach is called PBE0 or PBEh [91] if the fraction is a¼ 0.25 and added to
the original PBE–GGA functional [92, 93]. This fraction was argued to be optimal
based onmany-body perturbation theory [91]. The drawback of including unscreened
Hartree–Fock is the 1/r singularity of Hartree–Fock, which manifests itself as a 1/q2

singularity in reciprocal space. How to treat this carefully is discussed by Alkauskas
et al. [86, 94] and by Kotani et al. [28] Among the screened HF approaches, the
HSE [95, 96] introduced by Scuseria and coworkers ismost popular. In that approach,
theHartree–Fock is divided in a long-range and short range (or rathermediumrange,
as explained by Scuseria in his contribution to this volume [88]) bymeans of an error-
function cut-off similar to the well-known Ewald procedure, and a fraction of the
medium range part is included in the final functional. Roughly speaking, the idea is
that truly long-range behavior will be canceled by corresponding correlation and
should be avoidedbecause itwould lead tounphysical behavior inmetals for example.
At the same time, thismakes the computational approachmore easy to implement. A
detailed discussion of why it is believed to improve band gaps andwhich band gaps is
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provided in chapter 6 [88]. This chapter also discusses to what extent one can expect
that a universal materials independent range-separation of exchange and correlation
can be expected to work.

An alternative implementation of mixing screened Hartree–Fock is the so-called
screened exchange approach [97–99]. The latter is discussed here in the chapter by
Clark and Robertson (chapter 5, [75]) and their recent papers [76, 100, 101] and is
justifiable as a Generalized Kohn–Sham scheme [97]. In that case, the screening of
the exchange is usually done by a Thomas–Fermi exponential screening and the
screening length is not arbitrarily chosen but determined by the valence electron
density (excluding d-electrons). The fraction of screened HF included is determined
by the double counting correction in that case. A well defined LDA of the screened
exchange exists and is subtracted from the usual LDA so that in practice again amix of
LDA and screened HF is effectively used.

TheHSE approach has been implemented [102, 103] in Vienna ab initio simulation
package (VASP) [104] and has begun to be tested for point defects by several
contributors. Examples represented in this compilation are the chapters by De�ak
et al., (chapter8, [87, 105])VandeWalle andJanotti (chapter9, [77]), andAlkauskas et al.
(chapter 7, [86]). De�ak et al. (chapter 8, [87]) emphasize the importance of obtaining
accurate defect energy levels as a prerequisite for obtaining accurate formation
energies andotherderivedproperties. They consider a varietyof correctionapproaches
of the one-electron levels and their impact on total energy properties. The SX approach
was implemented by Clark and Robertson [75] in CASTEP [106] and has been much
less used, so it is too early to compare with the HSE approach in terms of practical
results. Ithaspreviouslybeen implemented inFLAPWbyFreemanandcoworkers [99].

In spite of the successes of these hybrid functional approaches, there remain
several issues under debate. One approach is to adjust the fraction a of mixing in
(screened)HFso as to exactly adjust the band gap for a particular system. The other is
to stick to the universal 0.25 mixing factor. The second freedom is what screening
length or long-range cut-off parameter to use. Unfortunately, these choices still lead
to significantly different results for defect levels relative to the band edges, notably
again the oxygen vacancy in ZnO as can be seen by comparing results from the
different groups [68, 74–77].

Another question is, if one adjusts the mixing parameter for each system, then
what to do at an interface? This question is addressed by Alkauskas et al. [86, 107].
Another interesting point raised by these authors [108] is that at least forwell localized
defects, it appears that defect levels measured relative to the average electrostatic
potentials are inmuch better agreement among different approaches than relative to
the VBM. In other words, the problem appears to lie in determining the band edges
rather than the defect levels! Thus, one needs to investigate not only how well these
new functionals do on the band gaps but how they do on the individual band edges.
This however is a tricky question because individual energy levels on an absolute
scale cannot be defined in a periodic crystal [109]. Nonetheless, whether such a level
has physical meaning or not, one can refer levels with respect to the average
electrostatic potential as zero and ask how these differ in different approaches, such
asGGA,HSE, andGW.Komsa et al. [110] recently discussed how the differentmixing
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and screening parameters in hybrid functionals affect the band edges and defect
levels relative to the electrostatic potential reference.

Themost accurate approach for band gaps in semiconductors at present is the GW
method.On the other hand, it is also themost computationally challenging to apply to
defects. Secondly,GWdoesnot readilyfit into theDFTframework for total energies. It
is amany-body perturbation theory for quasiparticle excitations. As such there is now
a refocus of interest in one-electron energies [80]. One inventive approach by Rinke et
al. [111] and discussed here in Giantomassi et al. [112] is to use a mixed approach of
GGA and or hybrid functionals with GW. The idea is that GWquasiparticle energies
give correctly the vertical (unrelaxed) total energy difference occurring in a change of
charge state of a defect. After all, this occurs by transferring an electron from the
defect level to a band state or vice versa. So, in principle, GW gives this excitation
energy correctly for fixed geometry. The hybrid functional or GGA approach is then
used subsequently to study the relaxation energy in a given charge state. This is a
promising approach, whichwas recently also applied to the oxygen vacancy inZnOby
Lany and Zunger [68]. The GWmethod was well represented with several talks at the
work shop and is further discussed in the next section.

While for some time calculations have focused on energies of formation and
transition levels, i.e., the Fermi energies where the formation energies for different
charge states cross, the use of GW brings back the one electron levels into focus.
RelatedlyDe�ak et al. [87] remind us that the one electron levels are a significant part of
the total energy expression and thus changing these one-electron levels by for
example gap corrections indirectly also changes the total energy derived quantities.

19.2.3
Self-Interaction Errors

Asecond important error of LDA thatwaswidely discussed at theworkshop is the self-
interaction error. In Hartree–Fock, the exchange term exactly compensates the
Coulomb interaction of an electron in a specific one-electron eigenstate with itself.
LDA and GGA make approximations to the exchange functional and hence the self-
interaction error (SIE) is not exactly canceled. This among other leads to a tendency of
the semilocal functionals (LDA and GGA) to favor states in which defect electrons
delocalize over several atoms. Hartree–Fock on the other hand misses correlation
effects entirely and too strongly favors localization. This problemhas been known for
some time now to affect the structural relaxation primarily for deep acceptors [113–
120]. It prevents the formation of a localized hole on a specific atom and the
accompanyingsymmetrybreakingrelaxations, so-calledJahn–Tellerdistortions.Such
localized relaxations trappinganelectronorhole, are also called self-trappedpolarons.

OneoftheearliestsystemsinwhichthisproblemwasnoticedistheAlacceptorinSiO2.
While LDA spreads the defect wave function equally over the four nearest neighbors,
Hartree–Fockfindsa localizedstateononeof theoxygensand itwasrecognized that this
results fromthespuriousself-interactionerrorofLDA[113].Subsequently, itwasshown
that a calculation including explicitly the self-interaction correction for the defect state
solves the problem [114]. However, applying an ad hoc self-interaction correction for a
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specific defect state is cumbersome. Others found that LDA þ U could also solve the
problem [115]. Other defects were soon identified that show similar problems, for
example the Zn vacancy in ZnO, the LiZn in ZnO [116, 120, 121].

The contribution in this compilation by Lany (chapter 11, [122]) discusses the
problem and his cure for it. While LDA þ U including Coulomb interactions U on
the anion p states would help to localize the corresponding hole states, they have the
disadvantage that applying a sufficiently strongUmayperturb thehost band structure.
Lany and Zunger therefore construct a so-called hole state potential, which by con-
structioniszeroaslongastheoccupationoftheanionp-orbitals is thesameasthatof the
host. Only those orbitals on which a hole localizes, thus decreasing their occupation
number feel a repulsivepotential that further re-enforce the localizationbypushing the
level into the band gap. In order to answer the question, how strong should the
localization potential be, they apply a so-called generalized Koopmans� theorem [123].

As shownbyPerdew et al. [124] the total energyas functionofoccupationnumber in
exact DFT for open systems with a continuously varying occupation number should
be a piecewise linear function. The impacts of this on the delocalizationproblemwere
pointed out recently byMori-S�anchez et al. [125]. Because of Janak�s theorem [126] the
linearity of the total energy implies constant Kohn–Sham eigenvalues as function of
occupation numbers. LDA shows convex d2E=dn2i > 0 and Hartree–Fock concave
d2E=dn2i < 0 behavior instead of linear behavior. A correct behavior leads to equality
of the total energy difference (DSCF approach) with the Kohn–Sham eigenvalue
for the defect levels, or satisfying a generalized Koopmans� theorem. Originally the
theoremwasderivedwithinHartree–Fock theory [123] but is only valid for delocalized
states. Lany and Zunger thus adjust the strength of their hole-state potential so as to
satisfy the generalized Koopmans� theorem and find that in many cases this leads to
polaronic behavior where LDA fails to describe the correct relaxation of the system.

Others have used LDA þ U and adjusted theU-value to satisfy the same criterion,
for example in a study of polaronic trapping in TiO2 [127]. Interestingly, the same
considerations about the required linear behavior of the total energy as function of
occupation number are at the heart of a recently proposedmethod for determiningU
in LDA þ U methods [128]. The use of Janak�s theorem to calculate transition
energies in the context of LDA þ U theory was also advocated by Sanna et al. [129]. A
point that should not be forgotten in this context is that Janak�s or Koopmans�
theorem refer to a specific eigenstate, while in the LDA þ U or hole-state potentials,
one applies it to a basis set specific state or local atomic orbital. This is different from
the explicit self-interaction correction by d�Avezac et al. [114].

While the correct physics, requiring an increased separation of empty and filled
defect states is built into these methods and its strength is adjustable according to
a well-described ab initio criterion, one might object against the ad hoc form of the
hole state potential or worry whether applying such LDA þ U corrections would not
spoil other aspects of the electronic structure for the host system. It is therefore of
interest to see how hybrid functionals do for such polaronic systems. For example,
Clark and Robertson [75, 76] note that their screened exchange method correctly
describes the polaron hole trapping at the Zn-vacancy in ZnO with localization on
a single atom. De�ak et al. [105] discuss the satisfaction of Koopmans theorem by the
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HSE functional. The application of the B3LYP hybrid functional to bound polarons in
ZnO was discussed at the workshop by Du and Zhang [120]. A comparison between
the hole-state potential and the HSE hybrid functional for N0 can be found in Lany
and Zunger [117] and Lyons et al. [130].

19.2.4
Beyond DFT

Besides the direct applications to defects, the workshop contained a good deal of
discussion of the underlying methodologies that go beyond LDA. The main issue is
how to make the more advanced methods, such as GW, Bethe–Salpeter equations,
time-dependent DFT efficient enough to become applicable to large systems as
required for point defect studies.

Two examples represented in this compilation are the chapters by Umari et al.
(chapter 4, [131]) and Giantomassi et al. (chapter 3, [112]). Umari et al. [131, 132]
discuss the use of a separate small orthogonal basis set for expanding the polariz-
ability operator. It should be recognized here that the bottleneck ofGWcalculations is
the calculation of the wave vector and frequency dependent polarizability that goes
into the calculation of the screened Coulomb interactionW. Inmost GWcalculations
this quantity is expanded in plane waves. Umari et al. discuss the construction of a
separate small basis set that spans the space of products of Wannier functions. This
approach reminds me of the product basis set approach introduced by Aryasetiawan
and Gunnarsson [133]. While they construct product basis functions of muffin-tin
orbitals rather thanWannier functions, the underlying idea is similar.Wenote that the
product basis supplemented with plane waves forms the basis for expanding polar-
izability, screened and bareCoulomb interactions in the FP-LMTO implementation of
GW by van Schilfgaarde et al. [27–29] Umari et al.�s approach shows great promise to
speed up GW as they show by applying it to supercells containing a few 100 atoms.

One of the remaining problems is the need to sum over a large number of empty
states. This problem was also tackled by Umari et al. [134] by reformulating the
calculation in such a way that no explicit summation of empty bands is required.
Instead one uses the completeness and rewrites the sum over empty states as one
minus the projection operator over all filled states. This is essentially similar to the
Sternheimer approach that has been so successful in linear response theory [135]. A
very similar approach was recently introduced by Giustino et al. [136].

The chapter by Giantomassi et al. [112] on the other hand discusses approaches
beyond the GWapproximation. For example, they discuss the inclusion of so-called
vertex corrections as well as the so-called quasiparticle self-consistent GWapproach.
After all, GWas conceived by Hedin is only the first approximation in a perturbation
series. The key here is that usually GW theory is applied as a one-shot correction to
someunderlying one-electron theory. The latter is usually LDAorGGAbut could also
be HSE or LDA þ U. The idea of QS–GW is to construct the best one-electron
(generalized)Kohn–Shamstartingpointwithanon-local exchangepotential extracted
from the GW self-energy itself. The method was introduced by van Schilfgaarde
et al. [27–29]. and implemented with a FP-LMTO basis set and product basis sets.
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The way forward beyond GW is still a matter of debate. Early results indicated that
self-consistentGWwithout vertex corrections gaveworse results that single-shotGW.
Other complications arise from the effects of semicore orbitals and differences
between all-electron andpseudopotential implementations. TheQSGWappears to be
the most successful among those approaches and leads to small remaining and
highly systematic errors on the band gaps of a wide variety of systems, not only
standard semiconductors. One of the remaining errors is the use of the random
phase approximation (RPA) in the dielectric screening. Including electron–hole
interaction effects in the latter is expected to further improve the method.

Giantomassi et al. [112] also discuss various technical aspects of the GWmethod,
such as the summation over empty states, the plasmon–pole approximation, and the
PAW implementation. They show applications to the problem of band-offsets at
interfaces and to point defects along the lines discussed earlier.

While at present GW is used to calculate one-electron excitations, there is also
progress to turn GW into a total energy theory. In principle, it is closely related to the
RPA total energy [28, 137]. However, it is not yet clear how stable this approach is to
calculating total energies and how good they are compared to LDA or GGA and
experiment. A recent evaluation of RPA was made by Harl et al. [138, 139].

At the workshop some results were also presented by M. Rohlfing applying the
Bethe–Salpeter approach including excitonic effects to defect problems. While no
contribution of his is included here, we refer the reader to [140–142].

Relatedly, a time-dependent density functional approach to point defects is pre-
sented in this compilation by Gali (chapter 18, [143]). His approach is part of a new
direction that explores the calculation of excited states of defects. This is an extremely
important new direction because much of the experimental information on point
defects relates to optical excitations, within the defect. This first of all requires one to
use non-equilibrium occupations of the defect levels (constrained DFT) but secondly,
electron–hole excitonic effects can be expected to be important as they also are in low-
dimensional systems and molecules. The contribution here describes a combination
of such approaches, from the constrained DFT implemented with hybrid functionals
in VASP to a time-dependent DFTapproach implemented in a cluster calculation. He
discusses two specific systems: the N–V centers in diamond and divacancies in SiC.

Finally, as mentioned earlier Hennig and coworkers (chapter 2, [41]) discuss
progress in Quantum Monte Carlo calculations. These calculations provide a bench-
mark for total energies for defects in relatively small supercells of order 16 atoms. The
discussion ismostly onDiffusionMonte Carlo and the various types of controlled and
uncontrolled error in this method and their application to self-interstitials in Si.

19.3
Conclusions

In this chapter, I have reviewed some of themain themes that were addressed during
the CECAMworkshop �Which electronic structuremethod for the study of defects?,�
held in Lausanne, June 8–10, 2009. It was not my intention to be complete in this
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review but rather to give the reader a vivid impression of the issues that are currently
under discussion in this field and the progress that is being made. The commentary
given reflects my own point of view as a practitioner in this field and not necessarily
that of the papers mentioned. If my understanding is incomplete, I apologize to the
authors. I have tried to put the articles that can be found in this compilation in the
context of the current open literature. The articles in this compilation provide only
a limited glimpse at what was presented at the conference. First, not all presenters at
the workshop chose to contribute to this compilation and secondly, some chose to
focus on a particular part of their presentation. In any case, no set of separate articles
can ever capture the gist of the many lively discussions that followed the presenta-
tions at the workshop.

I have focused this commentary on the original question in the title, focusing on
methodology rather than on specific applications. At the same time, it should be said
that the reader of this compilation will encounter a wide variety of defect problems in
materials, from defects in Si to wide band gap semiconductors and oxides and
interfaces, showing that the field is very much alive and not at all in an impasse over
unsolvedmethodological questions. I have also tried to draw some attention to some
of the �forgotten� problems and approaches, which were not very much represented
during the workshop. In particular, the problem of EMTof shallow defects may see
some revival and the chapter included here on theGreen�s function approach [15] will
hopefully remind some people of the promise held by this method.

The newcomer or outsider to this field might at first get the impression that the
field is in turmoil with many conflicting opinions. However, the fact that these
methodological questions are now being discussed in the open literature is very
healthy for the field and will hopefully help newcomers to avoid common pitfalls in
how to apply thesemethods. It is pretty clear now that image charge corrections need
to be made for charged defects and attention has to be paid to the proper alignment.
Also, there is a consensus now that band gap corrections are important, in particular
in cases where the low LDA gaps would lead to incorrect band filling for certain
charge states. The different approaches to achieve it have their pros and cons: hybrid
functionals and GW are more expensive but unbiased, not empirical. Non-local
external potentials or LDA þ U or hole-state potentials are less computationally
expensive but require careful selection of the associated parameters. The broader
availability of these new approacheswill assist in their rapid deployment andwill help
in ascertaining their success. In any case, it does not mean that all prior work with
LDA only is invalidated by the new approaches. It all depends on the system under
study and on what questions the calculation is trying to answer.

We should also be reminded of the continuing successes of thefield. In the end the
task of computational physics in this field is to assist experimentalists in extracting
themaximum information andunderstanding from their experiments. The standard
approach for defect calculations has provided a lot of guidance on which defects are
likely to formunder what circumstances andwhat the basic characteristics of specific
defects are. It has also been able to provide significant guidance on how to overcome
doping problems [51], and enables one to estimate defect concentrations accurately
taking into account rather complex defect chemistry and reactions. With the new
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approaches, the accuracy with which defect level positions can be calculated with
respect to the band edges is steadily improving. Theory still lags behind experiment:
optics experiments can determine differences between sharp photoluminescence
lines to better than a meV, and can purely spectroscopically distinguish different
defects. However, determining the chemical indentity of defects is likely to remain
a complex task requiring consistency between various experimental techniques, and
computational results. The new focus in the theory on excited state properties which
correlate more directly to optical studies is very promising. In fact, almost all
experiments deal with excited states, in some way or another, whether optically
activated EPR signals, or photoluminescence or optical absorption. The fact that we
can now start addressing quasiparticle and optical (electron–hole pair) excitations
including excitonic effects is an important advance in the theory. While the concepts
of Franck–Condon diagrams have been around for a long time, we can now start
actually calculating them just like for isolated molecules. Finally, defect wave
functions, in particular the delocalized or localized character can now be addressed.
In particular, great progress was made recently in realizing the importance of
polaronic effects and such information can be directly tested by means of EPR fine
structure. Even for delocalized shallow states, good agreement can be obtained
between calculated wavefunctions and the hyperfine structure. Although not men-
tioned in this compilation, certain defects at or close to the surface can be visualized
with scanning tunnelingmicroscopy and this provides another testing ground for the
theoretical capability to determine defect wave functions.

In short, the future of computational defect studies is bright. The theory can be
increasingly applied to more complex solids, its accuracy is improving steadily and
even defects in complex nanostructures are within reach.

Acknowledgements

I would like to thank P. De�ak for the encouragement to write this summary and the
authors for their willingness to let me comment on their work. I would like to thank
Chris Van deWalle, Audrius Alkauskas, Alfredo Pasquarello, and J€orgNeugebauer to
have the foresight to organize the workshop and inviting me to it. My own recent
research on defect has been sponsored by AFOSR, NSF, and ARO.

References

1 De�ak, P., Phys. Status Solidi B, in press.
2 De�ak, P., Mir�o, J., Gali, A., Udvardi, L.,

and Overhof, H. (1999) Appl. Phys. Lett.,
75(14), 2103–2105.

3 Baraff, G.A. and Schl€uter,M. (1978)Phys.
Rev. Lett., 41(13), 892–895.

4 Baraff, G.A. and Schl€uter,M. (1979)Phys.
Rev. B, 19(10), 4965–4979.

5 Bernholc, J. and Pantelides, S.T. (1978)
Phys. Rev. B, 18(4), 1780–1789.

6 Bernholc, J., Lipari, N.O., and Pantelides,
S.T. (1978)Phys. Rev. Lett., 41
(13), 895–899.

7 Bernholc, J., Lipari, N.O., and
Pantelides, S.T. (1980) Phys. Rev. B,
21(8), 3545–3562.

References j375



8 Gunnarsson, O., Jepsen, O., and
Andersen, O.K. (1983) Phys. Rev. B,
27(12), 7144–7168.

9 Beeler, F., Andersen, O.K., and
Scheffler, M. (1985) Phys. Rev. Lett.,
55(14), 1498–1501.

10 Lindefelt, U. and Zunger, A. (1981) Phys.
Rev. B, 24(10), 5913–5931.

11 Lindefelt, U. and Zunger, A. (1982) Phys.
Rev. B, 26(2), 846–895.

12 Braspenning, P.J., Zeller, R., Lodder, A.,
and Dederichs, P.H. (1984) Phys. Rev. B,
29(2), 703–718.

13 Zeller, R. and Dederichs, P.H. (1979)
Phys. Rev. Lett., 42(25), 1713–1716.

14 Payne, M.C., Teter, M.P., Allan, D.C.,
Arias, T.A., and Joannopoulos, J.D. (1992)
Rev. Mod. Phys., 64(4), 1045–1097.

15 Gerstmann, U. (2011) Phys. Status Solidi
B, doi: 10.1002/pssb.201046237. (chapter
17 in this book).

16 Briddon, P.R. and Rayson, M.J. (2011)
Phys. Status Solidi B, doi: 10.1002/
pssb.201046147. (chapter 16 in this book).

17 Hedin, L. (1965) Phys. Rev. 139
(3A), A796–A823.

18 Hedin, L. and Lundqvist, S. (1969),
Effects of electron–electron and
electron–phonon interactions on the one-
electron states of solids, in: Solid State
Physics, Advanced in Research and
Applications, edited by Seitz, D. Turnbull,
andH. Ehrenreich (AcademicPress,New
York) pp. 1–181.

19 Hybertsen, M.S. and Louie, S.G. (1986)
Phys. Rev. B, 34(8), 5390–5413.

20 Godby, R.W., Schl€uter,M., and Sham, L.J.
(1988) Phys. Rev. B, 37(17), 10159–10175.

21 Bruneval, F., Vast, N., and
Reining, L. (2006) Phys. Rev. B, 74
(4), 045102.

22 Bruneval F. and Gonze X. (2008) Phys.
Rev. B, 78(8), 085125.

23 Aryasetiawan F. (1992) Phys. Rev. B, 46
(20), 13051–13064.

24 Friedrich C., Schindlmayr A., Bl€ugel S.,
and Kotani T. (2006) Phys. Rev. B, 74
(4), 045104.

25 Aryasetiawan F. and Gunnarsson O.
(1995) Phys. Rev. Lett., 74(16),
3221–3224.

26 Aryasetiawan F. and Gunnarsson O.
(1998) Rep. Prog. Phys., 61(3), 237.

27 van Schilfgaarde, M., Kotani, T., and
Faleev, S.V. (2006) Phys. Rev. B, 74
(24), 245125.

28 Kotani, T., van Schilfgaarde, M., and
Faleev S.V. (2007) Phys. Rev. B, 76
(16), 165106.

29 Faleev, S.V., van Schilfgaarde, M., and
Kotani, T. (2004) Phys. Rev. Lett., 93
(12), 126406.

30 Leb�egue, S., Arnaud, B., Alouani, M.,
and Bloechl, P.E. (2003) Phys. Rev. B,
67(15), 155208.

31 Shishkin, M. and Kresse, G. (2006) Phys.
Rev. B, 74(3), 035101.

32 Shishkin, M. and Kresse, G. (2007) Phys.
Rev. B, 75, 235102.

33 Rohlfing, M. and Louie, S.G., (1998),
Phys. Rev. Lett., 80(15), 3320–3323.

34 Rohlfing, M. and Louie, S.G. (1998) Phys.
Rev. Lett., 81(11), 2312–2315.

35 Albrecht, S., Reining, L., Del Sole, R.,
and Onida, G. (1998) Phys. Rev. Lett.,
80(20), 4510–4513.

36 Onida, G., Reining, L., and Rubio, A.
(2002) Rev. Mod. Phys., 74(2), 601–659.

37 Schmidt, W.G., Glutsch, S., Hahn, P.H.,
and Bechstedt, F. (2003) Phys. Rev. B,
67(8), 085307.

38 Fuchs, F., R€odl, C., Schleife, A., and
Bechstedt, F. (2008) Phys. Rev. B,
78(8), 085103.

39 Benedict, L.X., Shirley, E.L., and
Bohn, R.B. (1998) Phys. Rev. Lett.,
80(20), 4514–4517.

40 Reining, L., Olevano, V., Rubio, A., and
Onida, G. (2002) Phys. Rev. Lett., 88
(6), 066404.

41 Parker, D.W., Wilkins, J.W., and
Hennig, R.G. (2010) Phys. Status Solidi B,
DOI: 10.1002/pssb.201046149.
(chapter 2 in this book).

42 Luttinger, J.M. and Kohn, W.(1955)Phys.
Rev., 97(4), 869–883.

43 Pantelides, S.T. (1978)Rev. Mod. Phys., 50
(4), 797–858.

44 Baldereschi, A. and Lipari, N.O. (1973)
Phys. Rev. B, 8(6), 2697–2709.

45 Baldereschi, A. and Lipari, N.O. (1974)
Phys. Rev. B, 9(4), 1525–1539.

46 Wang, H. and Chen, A.B. (2001) Phys.
Rev. B, 63(12), 125212.

47 Chen, A.B. and Srichaikul, P.(1997) Phys.
Status Solidi B, 202, 81.

376j 19 Which Electronic Structure Method for The Study of Defects: A Commentary



48 Mireles, F. and Ulloa, S.E. (1998) Phys.
Rev. B, 58(7), 3879–3887.

49 Aradi, B., Gali, A., De�ak, P., Lowther, J.E.,
Son, N.T., Janz�en, E., and Choyke, W.J.
(2001) Phys. Rev. B, 63(24), 245202.

50 Louie, S.G., Schl€uter, M.,
Chelikowsky, J.R., and Cohen, M.L.
(1976)Phys. Rev. B, 13(4), 1654–1663.

51 Wei, S.H. and Yan, Y. (2011) Phys. Status
Solidi B, doi: 10.1002/pssb.201046292.
(chapter 13 in this book).

52 Leslie, M. and Gillan, M.J. (1985) J. Phys.
C, Solid State Phys., 18, 973.

53 Makov, G. and Payne, M.C. (1995) Phys.
Rev. B, 51(7), 4014–4022.

54 Segev, D. and Wei, S.H. (2003) Phys. Rev.
Lett., 91(12), 126406.

55 Gerstmann, U., De�ak, P., Rurali, R.,
Aradi, B., Frauenheim, T., and Overhof
H. (2003) Physica B, 340, 190.

56 Bl€ochl, P.E. (1995) J. Chem. Phys., 103,
7482.

57 Lany, S. and Zunger, A. (2008)Phys. Rev.
B, 78(23), 235104.

58 Castleton, C.W.M., Hoglund, A., and
Mirbt, S. (2006) Phys. Rev. B, 73
(3), 035215.

59 Freysoldt, C., Neugebauer, J., and
Van deWalle, C.G. (2009) Phys. Rev. Lett.,
102(1), 016402.

60 Freysoldt, C., Neugebauer, J., and
Van de Walle, C.G. (2011) Phys. Status
Solidi B, doi: 10.1002/pssb.201046289.
(chapter 14 in this book).

61 Laks, D.B., Van de Walle, C.G.,
Neumark, G.F., Bl€ochl, P.E., and
Pantelides, S.T. (1992) Phys. Rev. B, 45
(19), 10965–10978.

62 de Walle, C. G. V. and Neugebauer, J.
(2004) J. Appl. Phys., 95(8), 3851–3879.

63 Mattila, T. and Zunger, A. (1998) Phys.
Rev. B, 58(3), 1367–1373.

64 Persson, C., Zhao, Y.J., Lany, S., and
Zunger, A.(2005)Phys. Rev. B, 72
(3), 035211.

65 Lany, S. and Zunger, A.(2009)Model.
Simul. Mater. Sci. Eng. 17,.

66 Lento, J., Mozos, J.L., and Nieminen,
R.M. (2002) J. Phys.: Condens. Matter 14,.

67 Kotani, T. and vanSchilfgaarde,M. (2010)
Phys. Rev. B, 81(12), 125117.

68 Lany, S. andZunger, A.(2010)Phys. Rev. B,
81(11), 113201.

69 Schultz, P.A. (1999) Phys. Rev. B, 60
(3), 1551–1554.

70 Schultz, P.A. (2000) Phys. Rev. Lett., 84
(9), 1942–1945.

71 Schultz, P.A. (2006) Phys. Rev. Lett., 96
(24), 246401.

72 Wright, A.F. and Modine, N.A. (2006)
Phys. Rev. B, 74(23), 235209.

73 Paudel, T.R. and Lambrecht, W.R.L.
(2008) Phys. Rev. B, 77(20), 205202.

74 Boonchun, A. and Lambrecht, W.R.L.
(2011) Phys. Status Solidi B,
doi: 10.1002/pssb.201046328.
(chapter 10 in this book).

75 Clark, S.J. and Robertson, J. (2010) Phys.
Status Solidi B, doi: 10.1002/
pssb.201046110. (chapter 5 in this book).

76 Clark, S.J., Robertson, J., Lany, S., and
Zunger, A. (2010) Phys. Rev. B, 81
(11), 115311.

77 Van de Walle, C.G. and Janotti, A. (2011)
Phys. Status Solidi B,, doi: 10.1002/
pssb.201046384. (chapter 9 in this book).

78 Oba, F., Togo, A., Tanaka, I., Paier, J., and
Kresse, G. (2008) Phys. Rev. B, 77
(24), 245202.

79 Castleton, C. W. M., H€oglund, A., and
Mirbt, S. (2006)Phys. Rev. B, 73
(3), 035215.

80 De�ak, P., Frauenheim, T., and Gali, A.
(2007) Phys. Rev. B, 75(15), 153204.

81 Janotti, A. and Van de Walle, C.G. (2005)
Appl. Phys. Lett., 87(12), 122102.

82 Anisimov, V.I., Zaanen, J., and
Andersen, O.K. (1991)Phys. Rev. B, 44
(3), 943–954.

83 Anisimov, V.I., Solovyev, I.V., Korotin,
M.A., Czy _zyk, M.T., and Sawatzky, G.A.
(1993)Phys. Rev. B, 48(23), 16929–16934.

84 Lany, S., Raebiger, H., and Zunger, A.
(2008) Phys. Rev. B, 77(24), 241201.

85 Segev, D., Janotti, A., and Van de Walle,
C.G. (2007) Phys. Rev. B, 75(3), 035201.

86 Alkauskas, A., Broqvist, P., and
Pasquarello, A. (2010)Phys. Status Solidi
B, doi: 10.1002/pssb.201046195.
(chapter 7 in this book).

87 De�ak, P., Gali, A., Aradi, B., and
Frauenheim, T. (2010)Phys. Status Solidi
B, doi: 10.1002/pssb.201046210.
(chapter 8 in this book).

88 Henderson, T.M., Paier, J., and
Scuseria, G.E. (2011)Phys. Status Solidi B,

References j377



doi: 10.1002/pssb.201046303. (chapter 6
in this book).

89 Becke, A.D. (1993) J. Chem. Phys.,
98(2), 1372–1377.

90 Becke, A.D. (1996) J. Chem. Phys., 104
(3), 1040–1046.

91 Perdew, J.P., Ernzerhof, M., and Burke,
K. (1996) J. Chem. Phys., 105
(22), 9982–9985.

92 Perdew, J.P., Burke, K., and Ernzerhof,
M. (1996) Phys. Rev. Lett., 77
(18), 3865–3868.

93 Perdew, J.P., Burke, K., and Ernzerhof,
M. (1997) Phys. Rev. Lett., 78(7), 1396.

94 Broqvist, P., Alkauskas, A., and
Pasquarello, A. (2009) Phys. Rev. B, 80
(8), 085114.

95 Heyd, J., Scuseria, G.E., and Ernzerhof,
M. (2003) J. Chem. Phys., 118
(18), 8207–8215.

96 Heyd, J., Scuseria, G.E., and Ernzerhof,
M. (2006) J. Chem. Phys., 124(21),
219906.

97 Seidl, A., G€orling, A., Vogl, P.,
Majewski, J.A., and Levy, M. (1996) Phys.
Rev. B, 53(7), 3764–3774.

98 Bylander, D.M. and Kleinman, L. (1990)
Phys. Rev. B, 41(11), 7868–7871.

99 Asahi, R., Mannstadt, W., and
Freeman, A.J. (1999) Phys. Rev. B, 59
(11), 7486–7492.

100 Robertson, J., Xiong, K., and Clark, S.J.
(2006) Phys. Status Solidi B,
243(9), 2071–2080.

101 Xiong, K., Robertson, J., Gibson, M.C.,
and Clark, S.J. (2005) Appl. Phys. Lett.,
87(18), 183505.

102 Paier, J., Hirschl, R., Marsman, M., and
Kresse, G. (2005)J. Chem. Phys., 122
(23), 234102.

103 Paier, J., Marsman, M., Hummer, K.,
Kresse, G., Gerber, I.C., and
�Angy�an, J.G. (2006) J. Chem. Phys.,
124(15), 154709.

104 http://cms.mpi.univie.ac.at/vasp/.
105 De�ak, P., Aradi, B., Frauenheim, T.,

Janz�en, E., andGali, A. (2010)Phys. Rev. B,
81(15), 153203.

106 http://www.castep.org/.
107 Alkauskas, A., Broqvist, P., Devynck, F.,

and Pasquarello, A. (2008) Phys. Rev. Lett.,
101(10), 106802.

108 Alkauskas, A., Broqvist, P., and
Pasquarello, A. (2008) Phys. Rev. Lett.,
101(4), 046405.

109 Kleinman, L. (1981) Phys. Rev. B, 24
(12), 7412–7414.

110 Komsa, H.P., Broqvist, P., and
Pasquarello, A. (2010) Phys. Rev. B, 81
(20), 205118.

111 Rinke, P., Janotti, A., Scheffler, M., and
Van de Walle, C.G. (2009) Phys. Rev. Lett.,
102(2), 026402.

112 Giantomassi, M., Stankovski, M.,
Shaltaf,R,M.Gr€uning, F., Bruneval, R.P.,
and Rignanese, G.M. (2010)Phys. Status
Solidi B,, DOI: 10.1002/pssb.201046094.
(chapter 3 in this book).

113 Lægsgaard, J. and Stokbro, K. (2001)Phys.
Rev. Lett., 86(13), 2834–2837.

114 d�Avezac,M., Calandra,M., andMauri, F.
(2005)Phys. Rev. B, 71(20), 205210.

115 Nolan, M. and Watson, G.W. (2006)
J. Chem. Phys., 125(14), 144701.

116 Lany, S. and Zunger, A. (2009) Phys. Rev.
B, 80(8), 085202.

117 Lany, S. and Zunger, A. (2010) Phys. Rev.
B, 81(20), 205209.

118 Lany, S. and Zunger, A. (2010) Appl. Phys.
Lett., 96(14), 142114.

119 Raebiger, H., Lany, S., and Zunger, A.
(2009) Phys. Rev. B, 79(16), 165202.

120 Du, M.H. and Zhang, S.B. (2009) Phys.
Rev. B, 80(11), 115217.

121 Carvalho, A., Alkauskas, A., Pasquarello,
A., Tagantsev, A.K., and Setter, N. (2009)
Phys. Rev. B, 80(19), 195205.

122 Lany, S. (2011) Phys. Status Solidi B,, DOI:
10.1002/pssb.201046274. (chapter 11 in
this book).

123 Koopmans, T.C. (1934) Physica (Utrecht),
1(1–6), 104–113.

124 Perdew, J.P., Parr, R.G., Levy, M., and
Balduz, J.L. (1982)Phys. Rev. Lett.,
49(23), 1691–1694.

125 Mori-S�anchez, P., Cohen, A.J., and
Yang, W. (2008) Phys. Rev. Lett.,
100(14), 146401.

126 Janak, J.F. (1978) Phys. Rev. B,
18(12), 7165–7168.

127 Morgan, B.J. and Watson, G.W. (2009)
Phys. Rev. B, 80(23), 233102.

128 Cococcioni, M. and de Gironcoli, S.
(2005) Phys. Rev. B, 71(3), 035105.

378j 19 Which Electronic Structure Method for The Study of Defects: A Commentary



129 Sanna, S., Frauenheim, T., and
Gerstmann, U. (2008) Phys. Rev. B,
78(8), 085201.

130 Lyons, J.L., Janotti, A., and
de Walle, C. G. V. (2009) Appl. Phys. Lett.,
95(25), 252105.

131 Umari, P., Qian, W., Marzari, N.,
Stenuit, G., Giacomazzi, L., and Baroni,
S. (2011) Phys. Status Solidi B, doi:
10.1002/pssb.201046264. (chapter 4 in
this book).

132 Umari, P., Stenuit, G., and Baroni, S.
(2009) Phys. Rev. B, 79(20), 201104.

133 Aryasetiawan, F. and Gunnarsson, O.
(1994)Phys. Rev. B, 49(23), 16214–16222.

134 Umari, P., Stenuit, G., and Baroni, S.
(2010) Phys. Rev. B, 81(11), 115104.

135 Baroni, S., de Gironcoli, S., Dal Corso, A.,
and Giannozzi, P. (2001) Rev. Mod. Phys.,
73(2), 515–562.

136 Giustino, F., Cohen, M.L., and
Louie, S.G. (2010) Phys. Rev. B, 81
(11), 115105.

137 Miyake, T., Aryasetiawan, F., Kotani, T.,
van Schilfgaarde, M., Usuda, M., and
Terakura, K. (2002) Phys. Rev. B, 66
(24), 245103.

138 Harl, J. and Kresse, G. (2009) Phys. Rev.
Lett., 103(5), 056401.

139 Harl, J., Schimka, L., and Kresse, G.
(2010) Phys. Rev. B, 81(11), 115126.

140 Ma, Y. and Rohlfing, M. (2008)Phys. Rev.
B, 77(11), 115118.

141 Ma, Y., Rohlfing, M., and Gali, A. (2010)
Phys. Rev. B, 81(4), 041204.

142 Kaczmarski, M.S., Ma, Y., and Rohlfing,
M. (2010) Phys. Rev. B, 81(11), 115433.

143 Gali, A. (2011) Phys. Status Solidi B, doi:
10.1002/pssb.201046254. (chapter 18 in
this book).

References j379



Index

a
ab initio 259, 260, 261, 266, 272–275,

279, 282
Ab Initio Modelling PROgram.

see AIMPRO
acceptor 183–185, 188–196
AIMPRO (Ab Initio Modelling

PROgram) 285, 286, 289, 290, 292
alignment 118, 120, 122, 248, 256
alignment potential 172, 174, 364, 366
aluminium 260, 261, 279, 280, 282
amorphous silica 201, 210
amorphous states 205, 207
anharmonic excitations 259, 278–282

b
backflow 19, 22, 25, 26, 28, 29
band alignment 34, 219–220
band edges/band extrema, valence band

maximum (VBM)/conduction band
minimum (CBM) 119, 123, 124

band gap 79, 80, 82–85, 88–93, 98–108,
115, 307, 313, 318, 319

band gap underestimate 362, 367
band offsets 33, 48, 49, 118, 128
band structure 79, 80, 82–85, 89–91, 93,

168–171, 178, 359, 360, 371
band-gap problem 6–13, 112, 120, 121
barrier (Energy-) 194, 195, 197
benzene 69
Bethe-Salpeter equation (BSE) 353, 362, 372
BiFeO3 83, 92, 93
bipolar doping 213, 214
bloch (wave) function 306, 312, 313, 321, 330

c
calculation 79, 80, 84, 85, 88, 89, 91–93
carbon (diamond) 23, 24

Car-Parrinello method 72
central cell correction 306, 322,324, 333
charge localization 252
charge state 131, 315, 318–320
charge transition level 113, 114, 118–125,

129–132, 140, 144–146, 253
chemical potential 4, 9, 214, 220–223, 237
co-doping 229, 232–235
coherence time 342
compensation 83
concentration 1–4
configuration coordinate diagram 194, 195
constant pressure approach 260–262,

264–266, 279, 281
convergence 116
correlated materials 104, 108

d
d states 7, 8, 10–13
dangling bond 129
deep defect 305, 306, 312, 319, 320,

324, 335
deep level, -state 183, 189, 195, 196,

207–209
defect energy levels 33
defect formation energies 54, 86, 92,

214, 224
defect localized state 193
defect 79, 81, 82–89, 91, 92, 201, 207–209
density functional 183, 185
density functional theory (DFT) 17, 33, 34,

37–41, 48–52, 55–57, 79, 97–100, 155,
259, 281, 301, 305–307, 329, 330, 332,
341, 346

density of states (DOS) 310, 312, 319, 325
diamond 342, 343, 345, 351, 353–356
dielectric constant 249
diffusion 1, 4, 12, 131

j381

Advanced Calculations for Defects in Materials: Electronic Structure Methods, First Edition.
Edited by Audrius Alkauskas, Peter Deák, Jörg Neugebauer, Alfredo Pasquarello, and Chris G. Van de Walle.
� 2011 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2011 by Wiley-VCH Verlag GmbH & Co. KGaA.



Diffusion Monte Carlo (DMC) 17
Dirac�s equation 308, 309
disordered tetrahedral networks 201
divacancy 342, 344, 345, 346, 353–356
doping asymmetry 213
doping limit rule 214, 218, 219
doping 83
Dyson�s equation 311, 312, 314, 324,
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e
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exchange-correlation functional 259–261,

279
excitation energy 140
exciton binding energy 352–355
excitonic 373, 375
expansion coefficient 279, 280

f
filter diagonalisation 292, 299
finite size corrections 172, 173, 176, 178
finite size effects 29, 363, 366
fixed-node approximation 19, 22, 25, 26
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energies) 2–6, 8–12, 113, 122, 249, 259,
261, 279, 282

free energy 259–270, 272–279, 281, 282
free energy Born-Oppenheimer

approximation 266–269
functional 359, 362, 368–374

g
GaAs 196, 313, 315
GaN 195–197
gap correction to levels 143
gap correction to total energy 143
gap error 139–141, 143–146, 151, 152

gap level 141, 143–148, 150
Generalized Koopman�s Theorem 371
generalized-gradient approximation

(GGA) 17, 18
graphitic systems 105
Green�s Function 2, 305, 306, 311–317,

320, 324, 327, 328, 330, 333, 334, 359,
360, 365–368, 374

group IV semiconductors 149
group theory 342, 344, 353, 354
GW 12, 24, 128, 141, 143, 146, 152, 165,

168, 169–171, 178
GW appoximation 34, 36–38, 40,

61–64, 202, 204, 362
GW method 352

h
Hafnium oxide 121
Hartree-Fock method 184
H-assisted doping 223–224
heat capacity 279, 280
HfO2 83, 91, 92
hole-state potential 184, 188–190
HSE (Heyd, Scuseria, and Ernzerhof)

hybrid functional 97–108, 149, 156,
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hybrid 362, 367–374
hybrid density-functional 216
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148, 165, 167, 178, 184, 185, 187,
189–193, 341, 350, 352, 354

hybrid scheme 215
hyperfine interaction 342

i
imaginary time step 20, 28
impurities 155, 161, 162
impurity-band 232, 234, 236
interface properties 33–57
inverse participation ratio 76
ionization potential 69–70

j
Jahn-Teller distortion 355
Janak�s theorem 185, 186
Jastrow factor 19

k
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Kohn-Sham formalism of density functional

theory (KSDFT) 285, 286, 288,
292, 301

Koopman�s theorem 187, 216
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193, 196

KSDFT (Kohn-Sham-formalism of density
functional theory) 285, 292, 299, 301

l
large-scale calculations 299, 301
lattice relaxation 306, 313, 314, 317,

319, 326, 327
LDAþU 6–9, 165–180
linear elasticity theory 328–330, 332
linear muffin-tin orbital (LMTO) 313–315,

323, 324
local density approximation (LDA) 155,

165, 307, 313, 361
local field effects 204, 209
local moment counter charge 366
local spin density approximation (LSDA)
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localized states 121

m
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magnetic field 306, 308
magnetic ordering 107
magnetization density 307, 309, 310,

312, 314–316, 318, 320–322, 325,
331, 335

Makov and Payne correction 216, 242
Makov Payne quadrupole correction 364
many-body perturbation theory (MBPT)
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Mg-acceptor 195
modified pseudopotentials 12, 13
molecular doping 220, 222–223, 237
molecular dynamics 272, 274, 277
molecular dynamic (MD) silmulation

333, 334
Mott insulators 106
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neutron transmutation 332, 334
nitrogen-vacancy center (NV center)

342, 351
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optical gaps 100–102
optimal polarizability basis 61–68
oxidation 131
oxygen vacancy 165, 173, 174,
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p
periodic boundary conditions 97
perturbed host state 194
phase stability 105, 106
photoluminescence 342
point defects 17, 18, 72, 155, 156, 158, 159,

161, 259–261, 277, 278
polaron 183, 188–190
potential alignment 248, 256
projector-augmented wave (PAW) 34
pseudopotential 19, 22–26, 28, 313–315,
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pseudopotential locality approximation 28
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quantum bit 342, 356
quantum communication 342
Quantum Monte Carlo (QMC) 18, 19
quantum-espresso 68
quasiharmonic approximation 271, 273
quasiparticle 62, 362, 367, 370,

372, 375
quasiparticle corrections 34
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Random Phase Approximation (RPA) 63
rare earths 106
relative energy of different
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relativistic 308, 309
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s
sawtooth 249
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scissor operator 142, 143
screened exchange 100, 103, 104, 134,

369, 371
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screening 243
self-interaction 184, 186
self-interaction error 361, 362, 370
self-interstitial 18, 23, 25
self-trapped polaron 370
semiconductor devices (or electronic

devices) 131
shallow defect 363, 366, 367, 374
shallow donors 306, 322, 324, 333,

334, 336
shallow level, -state 183, 189, 195, 196
SiC 306, 313, 319, 320, 322, 332–336
silica 70, 201, 202, 210
silicon (Si) 121, 130, 306, 310, 313,

322, 325, 328, 331–336

Index j383



silicon carbide 342, 344, 353
silicon nitride (vitreous) 72–77
silicon oxide/silicon dioxide (SiO2)

120, 131
silicon(bulk) 18, 25, 26, 28, 70,

105, 106
solid state calculations 97
Space-Time method (STM) 63
spin-orbit interaction 309
Stokes shift 346, 347, 353, 355
supercell 183, 184, 189
supercell correction 246
supercell geometry 2, 5
supercell-size convergence 3
surfactant 220, 224–226, 237
symmetry and occupation of defect

levels 217

t
thermodynamic integration 272–277
thermodynamics 262, 266, 271–277
time-dependent density functional theory

(TD-DFT) 346–351
TiO2 10, 11

transition energy level 213–215, 229
transition levels 3–5, 7–12

u
universal approaches 232
UP-TILD method 275, 276

v
vacancy 4, 8–11, 23–25, 251
vacancy concentration 281, 282
vertex corrections 51–54
voronoi cell/tesselation 314, 316–318, 324

w
Wannier�s functions 64–67
wave function 250, 252
wide band gap oxides 92, 93

z
zero-variance extrapolation 29
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