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SELF-ORGANIZED BIOLOGICAL DYNAMICS AND
NONLINEAR CONTROL

The growing impact of nonlinear science on biology and medicine is fundamentally
changing our view of living organisms and disease processes. This book introduces the
application to biomedicine of a broad range of interdisciplinary concepts from non-
linear dynamics, such as self-organization, complexity, coherence, stochastic reson-
ance, fractals, and chaos.

The book comprises 18 chapters written by leading figures in the field. It covers
experimental and theoretical research, as well as the emerging technological possibili-
ties such as nonlinear control techniques for treating pathological biodynamics,
including heart arrhythmias and epilepsy. The chapters review self-organized dynam-
ics at all major levels of biological organization, ranging from studies on enzyme
dynamics to psychophysical experiments with humans. Emphasis is on questions such
as how living systems function as a whole, how they transduce and process dynamical
information, and how they respond to external perturbations. The investigated stimuli
cover a variety of different influences, including chemical perturbations, mechanical
vibrations, thermal fluctuations, light exposures and electromagnetic signals. The
interaction targets include enzymes and membrane ion channels, biochemical and
genetic regulatory networks, cellular oscillators and signaling systems, and coherent or
chaotic heart and brain dynamics. A major theme of the book is that any integrative
model of the emergent complexity observed in dynamical biology is likely to be
beyond standard reductionist approaches. It also outlines future research needs and
opportunities ranging from theoretical biophysics to cell and molecular biology, and
biomedical engineering.
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Preface

The real voyage of discovery consists not in seeking new landscapes
but in having new eyes. Marcel Proust

The tools and ideas from nonlinear dynamics such as the concept of self-
organization provide scientists with a powerful perspective for viewing living
processes in a new light. As in the physical sciences before, the nonlinear
dynamical systems approach promises to change scientific thinking in many
areas of the biomedical sciences. For example, two rapidly evolving branches
of nonlinear dynamics, popularly known as chaos and complexity studies,
which have opened up new vistas on the dynamics of the nonliving world, are
also beginning to impact deeply on our view of the living world. The key
concept at the core of this work states that complex nonlinear systems, under
conditions far from equilibrium, have a tendency to self-organize and to
generate complex patterns in space and time.

Living organisms are prime examples of nonlinear complex systems operat-
ing under far from equilibrium conditions and, hence, self-organization and
dynamical pattern formation is the hallmark of any living system. It thus
comes as no surprise that knowledge about the nonlinear dynamics of physical
systems can be successfully transferred to the study of biological systems. As a
result, previously difficult to explain biological phenomena can now be under-
stood on a theoretical basis. Importantly, the nonlinear dynamical approach is
quickly leading to the discovery of novel biological behaviors and characteris-
tics also. Many examples of often-unexpected biological insights, as a conse-
quence of the nonlinear systems approach, and the emerging applications for
clinical diagnosis and therapy are among the topics discussed in this volume.

Motivated by the growing impact of nonlinear science on biomedicine I
proposed the organization of a workshop on ‘Self-organized Biodynamics and
Control byChemical and Electromagnetic Stimuli’ fromwhich the idea for this

xi



volume originated. The workshop, which was jointly sponsored by the US
Department of Energy and the Fetzer Institute, was held from 11 to 14 August
1996, at the Fetzer Institute in Kalamazoo, Michigan. Leading investigators,
many of whom are the acknowledged authorities in their respective fields, met
for three-and-a-half days to review current knowledge and to explore the most
promising frontiers in this rapidly developing research field. The unifying
theme was the nonlinear sensitivity of biological systems to weak external
influences, and the development of novel methods that take advantage of this
sensitivity in the study and nonlinear control of biological functions. Because
of the demand generated by the first gathering, a second workshop was
convened titled ‘Towards Information-based Interventions in Biological Sys-
tems: From Molecules to Dynamical Diseases’ from 23 to 26 August 1998.
Between the two workshops a total of 38 stimulating presentations were given.
Although this volume is not a workshop proceedings, the contributors, whose
work is the subject of this volume, were drawn from the workshop speakers.
Because of space constraints, several of the topics then discussed are not
represented here, although I have made an effort in their selection to provide
the broadest scope possible.

The interdisciplinary topics reflect the importance of the interplay between
theoretical work and laboratory experiments in this new research area. While
the book’s primary goal is to provide an overview, the authors have tried to
allow readers of diverse backgrounds to familiarize themselves with some of
the details of the experimental and theoretical approaches presented. For
example, chapters with a focus on experimental observations often provide
important methodological information, so that the reader can better evaluate
the challenges as well as opportunities of laboratory work in this area. In a
similar fashion, the intent of the chapters that deal with the construction of
theoretical models and the development of nonlinear analytical methods is to
provide enough detail to enable the nonspecialist but technically oriented
reader to follow the basic theoretical reasoning.

The use of concepts from nonlinear biological dynamics, or ‘biodynamics’ in
short, to frame and solve critical research questions is rapidly expanding
across many biological disciplines from cell and molecular biology to neuro-
science. For example, the formation in 1998 of a program area on ‘Quantitat-
ive Approaches to the Analysis of Complex Biological Systems’ by the US
National Institutes of Health is an indication that the nonlinear dynamical
systems approach is near the threshold of entering the mainstream of biomedi-
cal research. I am convinced that it will be increasingly important for scientists
in many biomedical disciplines to become familiar with the concepts outlined
here. It is my hope that this book can serve as a useful guide to biodynamics for
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students and professionals and that it can provide them with a new framework
for pursuing their own research interests.

Besides the 30 authors, who have generously given their time to write for this
book, there are many other individuals whose support and contributions are
directly responsible for making this book become a reality. In particular, this
project would not have come to fruition without the enthusiasm and continu-
ing support of the members of the Fetzer Institute’s Board of Trustees. The
task of planning and organizing the 1996 and 1998 workshops that provided
the initial forum for evaluating the results and ideas presented here was carried
out by the Fetzer Institute Task Force on ‘Biodynamics’, which was chaired by
Bruce M. Carlson and whose other members included Paul C. Gailey, the late
Kenneth A. Klivington, Harold E. Puthoff and myself. I thank my fellow task
force members wholeheartedly for their excellent efforts. I also acknowledge
the participation of Imre Gyuk, who provided the financial workshop support
by the US Department of Energy, and I thank Frank Moss, who made the
initial contact with Cambridge University Press. For valuable comments on
the contributions written or co-written by me, I am grateful to Adam P. Arkin,
Dean R. Astumian, Paul C. Gailey, Friedemann Kaiser, Susan J. Knox and
Arnold J. Mandell. At Cambridge University Press, I wish to thank Simon
Capelin and Sandi Irvine for patiently working with me to bring this book to
completion.

Finally, I am indebted to George Hahn and Jeremy Waletzky for their
important roles in the establishment of the Bioelectromagnetics Laboratory at
Stanford, where I conducted most of my work in biodynamics. At the labora-
tory, I thank Jeffrey Carson, Clemens Eichwald, Pamela Killoran, Peter
Maxim and Esther Shiu for their commitment to our work. I also want to
expressmy gratitude to my parents and Lark, who were a source of inspiration
and steady support throughout this project.

JanWalleczek, Palo Alto
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The frontiers and challenges of biodynamics
research

JAN WALLECZEK

1 Background

As scientists unravel the secrets of the organization of life, an understanding of
the temporal and spatiotemporal dynamics of biological processes is deemed
crucial for creating a coherent, fully integrative picture of living organisms. In
this endeavour, the basic challenge is to reveal how the coordinated, dynamical
behavior of cells and tissues at the macroscopic level, emerges from the vast
number of random molecular interactions at the microscopic level. This is the
central task of modern biology and, traditionally, it has been tackled by
focusing on the participating molecules and their microscopic properties,
ultimately at the quantum level. Biologists often tacitly assume that once all the
molecules have been identified, the complete functioning of the whole biologi-
cal system can finally be derived from the sum of the individual molecular
actions. This reductionistic approach has proven spectacularly successful in
many areas of biological and medical research. As an example, the advances in
molecular biology,which have led to the ability tomanipulateDNAat the level
of specific genes, will have a profound effect on the future course of medicine
through the introduction of gene-based therapies. Despite this progress, how-
ever, the consensus is growing that the reductionist paradigm, by itself, may be
too limiting for successfully dealingwith fundamental questions such as (1) how
living systems function as a whole, (2) how they transduce and process dynami-
cal information, and (3) how they respond to external perturbations.1

2 Self-organization

The difficulties of addressing these questions by purely reductionistic
approaches become immediately apparent when considering — from the
1 For recent perspectives see Hess and Mikhailov (1994), Glanz (1997), Spitzer and Sejnowski (1997),

Williams (1997), Coffey (1998) and Gallagher and Appenzeller (1999).
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standpoint of physics — the following two defining features. (1) Living organ-
isms are thermodynamically open systems; that is, they are in a state of
permanent flux, continuously exchanging energy and matter with their envi-
ronment. (2) They are characterized by a complex organization, which re-
sults from a vast network of molecular interactions involving a high degree
of nonlinearity. Under appropriate conditions, the combination of these two
features, openness and nonlinearity, enables complex systems to exhibit prop-
erties that are emergent or self-organizing. In physical and biological systems
alike, such properties may express themselves through the spontaneous
formation, from random molecular interactions, of long-range correlated,
macroscopic dynamical patterns in space and time — the process of self-
organization. The dynamical states that result from self-organizing processes
may have features such as excitability, bistability, periodicity, chaos or spa-
tiotemporal pattern formation, and all of these can be observed in biological
systems.

Emergent or self-organizing properties can be defined as properties that are
possessed by a dynamical system as a whole but not by its constituent parts. In
this sense, the whole is more than the sum of its parts. Put in different terms,
emergent phenomena are phenomena that are expressed at higher levels of
organization in the system but not at the lower levels. One attempt to help to
visualize the concept of self-organization is the sketch in Figure 1, which shows
the dynamical interdependence between the molecular interactions at the
microscopic level and the emerging global structure at the macroscopic level.
The upward arrows indicate that, under nonequilibrium constraints, molecu-
lar interactions tend to spontaneously synchronize their behavior, which
initiates the beginnings of a collective, macroscopically ordered state. At the
same time, as indicated by the downward arrows, the newly forming macro-
scopic state acts upon the microscopic interactions to force further synchroniz-
ations. Through the continuing, energy-driven interplay between microscopic
and macroscopic processes, the emergent, self-organizing structure is then
stabilized and actively maintained.

Amongst the earliest examples for this behavior in a simple physical system
is the spontaneous organization of long-range correlated macroscopic struc-
tures; that is, of convection cells (Bénard instability) in a horizontal water layer
with a thermal gradient (e.g., Chandrasekhar, 1961). In this well-known case of
hydrodynamic self-organization, the size of the emergent, global structures —
that is, of spatiotemporal hexagonal patterns of the order of millimeters — is
greater by many orders of magnitude than the size of the interacting water
molecules. This implies that, when the thermal gradient has reached a critical
value, the initially uncorrelated, random motions of billions of billions of
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Figure 1. Sketch illustrating the dynamical interdependence between microscopic
molecular interactions and the emerging global structure at the macroscopic level. The
systemunder consideration is open to the flow ofmatter or energy. The upward arrows
indicate that, under nonequilibrium constraints, molecular interactions tend to spon-
taneously synchronize their behavior, which initiates the beginnings of a macroscopic,
ordered state. As indicated by the downward arrows, this newly forming state acts
upon the microscopic interactions to force further synchronizations. Through the
continuing, energy-driven interplay between microscopic and macroscopic processes,
the emergent, self-organizing structure is stabilized and actively maintained.

molecules have synchronized spontaneouslywithout any external instructions,
hence, the term ‘self-organization’.

3 Theoretical foundations and computer simulations

The above arguments reveal that the origins and dynamics of emergent,
macroscopic patterns, including in biological systems, cannot be simply de-
duced from the sum of the individual actions of the system’s microscopic
elements. What is needed is an analysis of the system’s collective, macroscopic
dynamics, which results from the complex web of nonlinear interactions
between the elements. During the early 1970s, general theoretical frameworks
for this type of analysis, which are based on a branch of mathematics called
nonlinear dynamics, became more widely available and recognized. In 1977,
I. Prigogine was awarded a Nobel prize for the discovery that, in apparent
contradiction to the second law of thermodynamics, physico-chemical systems
far from thermodynamic equilibrium tend to self-organize by exporting en-
tropy and form, what he termed, dissipative structures (Glansdorff and
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Prigogine, 1971; Prigogine and Nicolis, 1971; Nicolis and Prigogine, 1977).
Other pioneers in the physical or biological sciences, for example, include H.
Haken and M. Eigen. Haken presented a theory of nonequilibrium phase
transitions and self-organization as an outgrowth of his work on the theory of
lasers (Haken, 1975, 1978), and Eigen developed a theoretical framework for a
role of molecular self-organization in the origin of life (Eigen, 1971). There are,
of course, many other scientists who are directly responsible for developing
this field. Only a few names can be mentioned here, however, and the reader
may consult Chapter 1 by Kaiser for a brief introduction to the history of this
science.

Armed with the tools of nonlinear dynamics, scientists are now able to
describe and simulate highly nonlinear biological behaviors such as biochemi-
cal and cellular rhythms or oscillations. The availability of the appropriate
mathematical tools is an important prerequisite for making progress in the
rapidly growing area of biological dynamics or ‘biodynamics’. One specific
reason stems from the fact that mechanistic explanations of self-organizing,
biodynamical processes frequently defy intuition. This is due to the complexity
of the dynamical interactions that underlie such processes, whose emergent
properties cannot be readily grasped by the human observer (compare Figure
1). Thus, as is reflected in many of the contributions to this volume, scientists
must rely heavily on computer simulations to explore complex biological
dynamics and to make predictions about experimental outcomes. Common to
all these approaches is the treatment of a biological system as an open system
of nonlinearly interacting elements. Consequently, the field of biodynamics
might be defined as the study of the complex web of nonlinear dynamical
interactions between and amongmolecules, cells and tissues,which give rise to the
emergent functions of a biological system as a whole.

4 Nonlinear dynamics moves into cell and molecular biology: cellular
oscillators, biological signaling and biochemical reaction networks

Although the self-organization of macroscopic patterns, including temporal
oscillations and spatiotemporal wave patterns, was first studied and theoreti-
callyunderstood inphysical andchemical systems,numerousexamplesare now
known at all levels of biological organization (for recent overviews, see Gold-
beter, 1996; Hess, 1997). The most conspicuous examples of self-organizing
biological activity are biological rhythms and oscillations. The formation of
oscillatorydynamical statesof differentperiodicitiesplaysa fundamental role in
living organisms. In humans, the observed oscillation periods cover a wide
range from the subsecond time domain of neuronal oscillations to the 28-day

4 J.Walleczek



period of the ovarian cycle. For instance, the perception of visual stimuli is
associatedwith oscillatory synchronizations of neuronal assemblies at frequen-
cies of 10s of hertz. At the cellular level, oscillatory signaling and metabolic
processes such as oscillations in the intracellular concentration of calcium
(Ca��), adenosine triphosphate (ATP) or nicotinamide adenine dinucleotide
phosphate (NADPH) have periods of the order of seconds to minutes. For
example, the activity of human neutrophils, a key component of cellular
immunedefense, involves oscillatory cell biochemicalprocesseswith periodson
the order of 10 to 20 s. Finally, the cell cycle itself is a prime example of a
biologicaloscillator: cell cycle progression is controlledby themitoticoscillator
whose oscillation periods may range from about 10min to 24 h. Many more
examples are known and several of them are covered in detail in this book.

The processes that underlie cellular oscillators are organized in complexly
coupled biochemical reaction networks, wherein feedforward and feedback
information flows provide the links between the different levels in the hierarchy
of cell biochemical network organization. Such networks are also central
components of the cellular machinery that controls biological signaling. Com-
puter modeling has recently enabled scientists to investigate the properties of
biological signaling networks such as their capacity to detect, transduce, pro-
cess and store information. In these efforts, it was found that cellular signaling
pathways may also exhibit properties of emergent complexity (for a recent
example, see Bhalla and Iyengar, 1999). Such findings serve to demonstrate the
difficulties that scientists face when they attempt to predict the dynamics of
cellular signal transduction processes only on the basis of isolated signaling
molecules and their individual microscopic actions. In order to develop an
integrative, dynamical picture of biological signaling processes, therefore, it
will be necessary to characterize the nonlinear relationships among the differ-
ent molecular species making up the biochemical reaction networks, which
control all aspects of cellular regulation as, for example, from RNA transcrip-
tional control to cellular division. Theoretical models of biochemical reaction
networks have been proposed that simulate, for example, cellular dynamics of
Ca�� oscillations (e.g., Goldbeter et al., 1990), interactions between different
cell signaling pathways (e.g., Weng et al., 1999), genetic regulatory circuits (e.g.,
McAdams and Arkin, 1998), cellular control networks for DNA replication
(Novak and Tyson, 1997) and cellular division (Borisuk and Tyson, 1998).
Such theoretical work is not limited, however, to the analysis of normal cell
function. Nonlinear modeling has been applied, for example, to pathological
cell signaling involved in cancer formation (Schwab and Pienta, 1997).

From this and related work the perspective is developing that biological
cells can be viewed as highly sophisticated information-processing devices that
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can discern complex patterns of extracellular stimuli (Bray, 1995). In line with
this view is the finding that, in analogy to electrical circuits, biochemical
reaction networks can perform computational functions such as switching,
amplification, hysteresis, or band-pass filtering of frequency information (e.g.,
Arkin and Ross, 1994). The development of the theoretical and computational
tools for deducing the function of complex biochemical reaction and nonlinear
signaling networks will become even more important for biologists now that
many genome projects are nearing completion. The ambitious goal of these
projects is to provide researchers with a complete list of all cellular proteins
and genetic regulatory systems. The daunting task that biologists face is to
functionally integrate the massive amount of data from these projects. Clearly,
this will require an approach that can account for the emergent, collective
properties of the vast network of nonlinear biochemical reactions that underlie
the biocomplexity of cells, tissues and of the whole organism.

5 Biological interactions with external stimuli and nonlinear control

The nonlinear dynamical nature of living processes turns out to be crucial for
understanding how biological systems interact with the external environment.
Specifically, the intrinsic nonlinearity of living systems is of great significance to
scientists who study the response of cells, tissues and whole organisms to
natural or artificial stimuli. The reason is that the response behavior of a
nonlinear systemmaydiffer drastically from that of a linear system. In a linearly
behavingsystem, the responsemagnitude toanapplied stimulus is proportional
to the strength of the stimulus. In contrast, disproportionately large changes
may result in a nonlinear system. The inherent amplification properties of
nonlinear systems thus represent one critical aspect that defines the system’s
sensitivity and the magnitude of its response to external perturbations.

Another aspect concerns the capacity of complex, nonlinear systems to
detect and process information contained in incoming signals. For instance,
the response of nonlinear systems can depend, in a highly nonlinear fashion, on
the frequency information contained in an oscillating external perturbation.
For these and other reasons discussed further below, the response of nonlinear
processes such as may occur in biological systems may lead to unexpected
sensitivities and complex response patterns. Knowledge about this behavior is
not only of significance for revealing the mechanistic basis of stimulus—
response effects but, importantly, can be exploited for the nonlinear control of
dynamical biological processes for practical purposes.

Within the context of this volume, nonlinear control refers tomechanisms or
methods that control chemical, biochemical or biological processes by exploit-
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ing the nonlinear dynamical features that underlie these processes. For
example, the goals of nonlinear control may be to cause excitation or sup-
pression of oscillations, entrainment and synchronization, or transitions from
chaotic to periodic oscillations and vice versa. Specifically, the term ‘control’
refers to the modification of the behavior of a nonlinear system by variation of
one or more of the control parameters that govern the system’s macroscopic
dynamics. This may be achieved by variations that are caused either by
processes within the system or by appropriately designed external perturba-
tions. In this approach, global macroscopic dynamics, rather thanmicroscopic
kinetics, thus provides the critical information for system control.

6 Purpose and contents

This volume provides an introduction to the application of a broad range of
concepts from nonlinear dynamics such as self-organization, emergent phe-
nomena, stochastic resonance, coherence, criticality, fractals and chaos to
biology and medicine. The selected contributions cover nonlinear self-organ-
ized dynamics at all major levels of biological organization, ranging from
studies on enzyme dynamics to psychophysical experiments with humans. The
emphasis is on work from (1) experimentalists who study the response of
nonlinear dynamical states in biological and other excitable systems to exter-
nal stimuli and (2) theorists who create predictive models of nonlinear stimu-
lus—response interactions. The investigated stimuli cover a variety of different
influences, including chemical perturbations, electromagnetic signals, mechan-
ical vibrations, light stimuli or combinations thereof. The interaction targets
include cyclical, excitable and oscillatory behavior in biological and related
systems. They include membrane ion channels and pumps, biochemical reac-
tion networks, oscillatory chemical or enzyme activity, oscillations in cellular
metabolites, Ca�� oscillations, genetic regulatory networks, excitable states in
neurons and sensory cells, and chaotic or periodic heart and brain tissue
dynamics. This volume’s two main purposes are: (1) to introduce the reader to
the present state of theoretical and experimental knowledge in this rapidly
expanding field of interdisciplinary research, and (2) to outline the future
research needs and opportunities from the perspective of the different disci-
plines, from theoretical physics to biomedical engineering.

The individual contributions summarize a wide range of experimental and
theoretical investigations by biologists, neuroscientists, chemists, physicists,
bioengineers and medical researchers. This selection emphasizes (1) the need
for cross-disciplinary dialogue and (2) the importance of the interplay be-
tween theoretical modeling and laboratory experiments. It also reflects the
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responsibility of the recent focus on collaborations between theorists and
experimentalists for the increasing progress in understanding complex
stimulus—response interactions in biosystems. This volume covers both the
basic research aspects as well as the emerging technological dimensions. Basic
research includes the interplay between theory development, laboratory ex-
perimentation and computer simulations. The promise of future technologies
comes from the development of techniques that exploit the self-organized
dynamics intrinsic to living systems for diagnostic, prognostic and thera-
peutic purposes. Special attention is given to three interconnected compo-
nents of the stimulus—response paradigm:

(1) The often surprising sensitivity of biological and related excitable systems to weak
external influences, whether they are chemical, mechanical or electromagnetic in
nature, is illustrated by many examples. The stimuli are either time-varying or
constant. Time-dependent stimuli include periodic oscillations and random fluctu-
ations. These are applied to systems that generate deterministic temporal or
spatiotemporal behavior by methods that in some cases involve feedback control.
A major focus is the application of electromagnetic stimuli as a specific, minimally
invasive tool for influencing biodynamical systems, which is the subject of the
research area known as bioelectromagnetics. This volume includes important
information regarding (a) the theoretical limits of the interaction of electromag-
netic field signals with chemical, biochemical and biological systems and (b) the
laboratory evidence for electric or magnetic field interactions with isolated en-
zymes, cells and tissues. The targets of electromagnetic fields may be any physico-
chemical processes that are sensitive to these fields and that play a role in the
generation or maintenance of self-organizing dynamics. The fundamental physical
constraints that govern these interactions are explained for both the initial energy
transduction step in the presence of thermodynamic noise and for the responsive-
ness of the dynamical state to a weak perturbation.

(2) The recognition of deterministic macroscopic dynamics in biological systems also
opens up unanticipated opportunities for probing biological systems. For example,
information regarding the intrinsic dynamics of a biological system can be ob-
tained by analyzing its response to an applied stimulus. Computer simulations
have long shown that the imposition of weak stimuli on systems with complex
dynamics, including living systems, may induce responses that depend not only on
the intensity of the stimulus but, importantly, on its temporal pattern as well as the
initial state of the system. State dependence and sensitivity to the temporal charac-
teristics of the applied stimulus is a fundamental feature of self-organizedbiological
activity. There now exists experimental evidence that is in excellent agreement with
the predictions from theoretical modeling: an increasing number of laboratories
report that excitable systems, including chemical, biochemical and biological
systems, display complex responses with nonlinear dependence on imposed tem-
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poral patterns. For example, resonance-like responses to coherently oscillating
stimuli that depend strictly on the frequency of the imposed stimulus have been
observed in many experiments in recent years. They include excitable chemical
reactions, isolated enzymes and membrane ion transporters, biochemical reaction
networks, Ca��-dependent gene expression, and neuronal or heart muscle cell
activity in single cells and tissue preparations.

(3) The identification of self-organized dynamical states in living systems and the
knowledge about their sensitivity has also paved the way for developing new
strategies for influencing or controlling biological dynamics. Importantly, it was
found that the sensitivity of biodynamical systems to appropriately designed
stimuli could be exploited for practical purposes, like the ability to shift the
dynamics of biological activity from an unwanted state to a desired one. The
discovery of deterministic biological chaos, for example, offers novel strategies for
therapeutic interventions. Here, chaos does not refer to disordered, random pro-
cesses, but rather characterizes hidden dynamical order within apparent disorder.
As this book illustrates, methods initially developed to control chaos in physical
systems have also been found to be effective in controlling chaotic dynamics in
chemical and biological systems. Dramatic demonstrations of this possibility are
experiments in which chaos control techniques were applied to heart and brain
tissue preparations and, most recently, to human heart patients. This book dis-
cusses implications of these possibilities for treating so-called ‘dynamical diseases’
such as heart arrhythmias and epileptic seizures.

A new research area that is critical to each of the three components of the
stimulus—response paradigm is the exploration of the constructive role that
intrinsic or external random fluctuations may play in physiological functions.
Consequently, one part of the volume is devoted to theory and experimenta-
tion on the previously unsuspected, beneficial role of stochastic noise in
controlling or influencing nonlinear dynamic and transport phenomena in
living systems. At first glance this notion seems counterintuitive, but estab-
lished physical concepts, including the ones known as stochastic resonance
and fluctuation-driven transport, make such phenomena theoretically plaus-
ible (see, e.g., Astumian and Moss, 1998). This volume covers both the applied
and basic research dimensions of noise-assisted biochemical and biological
processes. It summarizes theoretical and experimental evidence demonstrat-
ing a beneficial or even necessary role for noise in biological signaling, includ-
ing neuronal information processing. The developing technological applica-
tions, which are based on the principle of stochastic resonance, are also
addressed. This work includes the modulation of biological signal trans-
mission through the controlled addition of noise to diagnose or to improve
human sensory perception.
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7 Frontiers and outlook

What is the physical basis of biological self-organization? How do the basic
elements of biological activity interact to give rise to the function of a living
organism as a whole? How do biodynamical systems respond to weak bio-
chemical or electromagnetic perturbations? How can the nonlinear features of
biodynamical processes be put to practical use, for example, in clinical diag-
nosis and therapy? These are among the questions that are explored in the 18
chapters that follow. The presented ideas and experimental observations dem-
onstrate that many important features of the dynamics of living processes can
be understood on a theoretical basis. Importantly, the validity of this knowl-
edge is confirmed by the success of the emerging biomedical applications that
have already resulted from this work, for example by employing fractal time
series analysis and nonlinear control methods.

In summary, the perspective of a living system as a self-organizing, complex,
far-from-equilibrium biochemical state allows physics to enter the study of
dynamical biological functions in a quantitative, predictive manner. While the
nonlinear dynamical systems approach does not yet, however, represent a
physical theory for the organization of life, its broad scope and power suggests
that it will be a crucial building block in the construction of any such theory in
the future. At a minimum, biodynamics research is revealing how complex,
sophisticated and remarkably sensitive living processes really are. Finally, this
work suggests that any integrated understanding of the functional complexity
observed in dynamical biology is probably beyond the scope of standard
reductionistic approaches. It is our hope that the reader can share the excite-
ment of discovery conveyed in the following chapters and thus will be moti-
vated to view and explore biological processes from a new perspective.

References

Arkin, A. P. and Ross, J. (1994) Computational functions in biochemical reaction
networks. Biophys. J. 67: 560—578.

Astumian, R. D. and Moss, F. (1998) Overview: the constructive role of noise in
fluctuation driven transport and stochastic resonance. Chaos 8: 533—538.

Bhalla, U. S. and Iyengar, R. (1999) Emergent properties of networks of biological
signaling pathways. Science 283: 381—387.

Borisuk, M. T. and Tyson, J. J. (1998) Bifurcation analysis of a model of mitotic
control in frog eggs. J. Theor. Biol. 195: 69—85.

Bray, D. (1995) Protein molecules as computational elements in living cells. Nature
376: 307—312.

Chandrasekhar, S. (1961)Hydrodynamic and Hydromagnetic Stability. Oxford:
Oxford University Press.

10 J.Walleczek



Coffey, D. S. (1998) Self-organization, complexity and chaos: the new biology for
medicine. Nature Med. 4: 882—885.

Eigen, M. (1971) Molecular self-organization and the early stages of evolution.
Quart. Rev. Biophys. 4: 149—212.

Gallagher, R. and Appenzeller, T. (1999) Beyond reductionism. Science 284: 79.
Glansdorff, P. and Prigogine, I. (1971) Thermodynamic Theory of Structure, Stability

and Fluctuations. New York: Wiley.
Glanz, J. (1997) Mastering the nonlinear brain. Science 277: 1758—1760.
Goldbeter, A. (1996) Biochemical Oscillations and Cellular Rhythms. Cambridge:

Cambridge University Press.
Goldbeter, A., Dupont, G. and Berridge, M. J. (1990) Minimal model for

signal-induced Ca��-oscillations and for their frequency encoding through
protein phosphorylation. Proc. Natl. Acad. Sci. USA 87: 1461—1465.

Haken, H. (1975) Cooperative effects in systems far from thermal equilibrium and in
nonphysical systems. Rev. Mod. Phys. 47: 67—121.

Haken, H. (1978) Synergetics: An Introduction. Berlin: Springer-Verlag.
Hess, B. (1997) Periodic patterns in biochemical reactions. Quart. Rev. Biophys. 30:

121—176.
Hess, B. and Mikhailov, A. (1994) Self-organization in living cells. Science 264:

223—224.
McAdams, H. H. and Arkin, A. P. (1998) Simulation of prokaryotic genetic circuits.

Annu. Rev. Biophys. Biomol. Struct. 27: 199—224.
Nicolis, G. and Prigogine, I. (1977) Self-organization in Nonequilibrium Systems. New

York: Wiley.
Novak, B. and Tyson, J. J. (1997) Modeling the control of DNA replication in fission

yeast. Proc. Natl. Acad. Sci. USA 94: 9147—9152.
Prigogine, I. and Nicolis, G. (1971) Biological order, structure and instabilities.

Quart. Rev. Biophys. 4: 107—148.
Schwab, E. D. and Pienta, K. J. (1997) Explaining aberrations of cell structure and

cell signaling in cancer using complex adaptive systems. Adv. Mol. Cell Biol. 24:
207—247.

Spitzer, N. C. and Sejnowski, T. J. (1997) Biological information processing: bits of
progress. Science 277: 1060—1061.

Weng, G., Bhalla, U. S. and Iyengar, R. (1999) Complexity in biological signaling
systems. Science 284: 92—96.

Williams, N. (1997) Biologists cut reductionist approach down to size. Science 277:
476—477.

11Frontiers and challenges of biodynamics research



XXXXX



Part I

Nonlinear dynamics in biology and response
to stimuli

Part I introduces the terminology and definitions of key concepts in nonlinear
dynamics and provides examples of their application at different levels of
physiological organization. The examples show how common principles from
nonlinear dynamics can be applied in the study of systems that differ greatly in
terms of their material composition, scale of organization, and biological
function. Chapter 1 by Friedemann Kaiser first reviews the reasons why
nonlinear dynamics is critical to understanding biological function and order,
and also provides a historical background. The chapter then introduces basic
concepts and mathematical definitions that are essential to theoretical
analyses of nonlinear biological phenomena, with a focus on model construc-
tion and responses to stimuli. Chapter 2 by Raima Larter and co-workers
begins with a description of a nonlinear enzyme oscillator, the peroxidase—
oxidase system, which is the best-characterized biochemical in vitro reaction
showing diverse dynamics such as periodicity and bifurcation into chaos.
Insights into the dynamical principles that govern the enzyme oscillator are
then related to development of a model of neuroelectrical oscillations during
epileptic brain activity. Work from the laboratory of Ary Goldberger is
reviewed in Chapter 3, which demonstrates that neuronal control processes
underlying heart and gait dynamics are characterized by long-range power law
correlations. This chapter introduces the use of the concept of fractal dimen-
sionality in biology and shows how fractal time series analysis can be put to use
in clinical diagnosis and prognosis. Chapter 4, written by Mingzhou Ding and
collaborators, continues with the theme of fractal analysis and discusses results
obtained from psychophysical studies with humans. These experiments pro-
vide evidence for self-organized dynamics in human sensorimotor coordina-
tion and speech perception. The final chapter in this part, Chapter 5, returns
to the cellular and subcellular levels of biological organization. Adam Arkin
explains how engineering principles from electric circuit analysis can be
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employed in the modeling of computational functions of biochemical reaction
networks that are involved in nonlinear cell signaling networks, cellular oscil-
lators and genetic regulatory circuits.
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1

External signals and internal oscillation dynamics:
principal aspects and response of stimulated

rhythmic processes

FRIEDEMANN KAISER

1.1 Introduction

The description of order and function in biological systems has been a chal-
lenge to scientists for many decades. The overwhelming majority of biological
order is functional order, often representing self-organized dynamical states in
living matter. These states include spatial, temporal and spatiotemporal struc-
tures, and all of them are ubiquitous in living as well in nonliving matter.
Prominent examples are patterns (representing static functions), oscillatory
states (rhythmic processes), travelling and spiraling waves (nonlinear phenom-
ena evolving in space and time).

From a fundamental point of view, biological function must be treated in
terms of dynamic properties. Biological systems exhibit a relative stability for
some modes of behavior. In the living state, these modes remain very far from
thermal equilibrium, and their stabilization is achieved by nonlinear interac-
tions between the relevant biological subunits. The functional complexity of
biological materials requires the application of macroscopic concepts and
theories, the consideration of the motion of individual particles (e.g., atoms,
ions, molecules) is either meaningless or not applicable in most cases.

The existence and stabilization of far-from-equilibrium states by nonlinear
interactions within at least some subunits of a physical, chemical or biological
system are intimately linked with cooperative processes. Besides the well-
known strong equilibrium cooperativity, thermodynamically metastable
states and nonequilibrium transitions in cooperatively stabilized systems can
occur, provided a certain energy input is present. In equilibrium, an entire
subunit or a domain of a macromolecular system reacts as a unit, which
means that it transforms as a whole. Responsible for equilibrium phase transi-
tions are physical changes and chemical transformations of macrovariables.
Well-known examples are transitions from liquid to solid and from para- to
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ferroelectric states, changes of crystalline structures, superfluidic and super-
conducting systems. In nonequilibrium situations, nonlinearities create dissi-
pative elements that lead to new states, including trigger action, threshold
effects and hysteresis. Additional interactions of these nonequilibrium states
with external stimuli increase in a dramatic way the number and types of
specific modes of behavior.

In recent years it has become clear that nonlinear phenomena and their
interactions with external signals (fields and forces of electromagnetic, mech-
anical or chemical nature) are abundant in Nature. Examples range from
mechanics (anharmonic oscillators), hydrodynamics (pattern formation and
turbulence), electronics (Josephson junctions), nonlinear optics (laser, optical
bistability, information processing and storage), acoustics (sonoluminescence),
chemistry (oscillating reactions and spiral waves), biochemistry (glycolytic and
Ca�� oscillations) to biology (large spectrum of rhythms). Only a few fields of
research and some examples are mentioned.

Already more than six decades ago, membrane phenomena in living matter
were considered as steady states instead of equilibrium states (Hill, 1930). The
importance was stressed that cells are open systems, the steady states of which
are created and stabilized by the flux of energy and matter through the system.
These considerations led to the concept ‘Fliessgleichgewicht’ (‘dynamical equi-
librium’) for nonequilibrium states (Von Bertalanffy, 1932). First mathematical
modeling approaches (Rashevsky, 1938) and quite general theoretical con-
siderations on a strong physical basis (Schrödinger, 1945) were first attempts to
describe biological order and function with existing concepts and laws of
physics, and to look for the essential properties separating living from nonliv-
ing matter.

A simple, nonlinear two-variable model, including diffusion, revealed that
inherent temporal and spatial instabilities can create different spatiotemporal
structures, thus offering a simple chemical basis for morphogenesis (Turing,
1952). Later on it was stressed that ‘the cell cannot have a steady state unless it
is accompanied by oscillations’ (Bernhard, 1964). This statement implies that
in order to achieve a stable oscillatory condition the system must lose as much
energy as it gains on average over one oscillation cycle. From a modern point
of view, these oscillations are sustained oscillations of the limit-cycle type,
representing temporal dissipative structures in nonlinear systems.

Nonlinear phenomena require the investigation of nonlinear dynamical
models with only a few relevant degrees of freedom. Nonlinear dynamics is a
very old problem, originating in studies of planetary motion. Henri Poincaré
was first to investigate the complex behavior of simple mathematical systems
by applying geometrical methods and studying topological structures in phase
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space (Poincaré, 1892). He discovered that the strongly deterministic equations
for the motion of planets and other mechanical systems could display an
irregular or chaotic motion. Some years later, a mathematical basis for this
behavior was given (Birkhoff, 1932). Only in 1963 in a ‘computer experiment’
of a model of boundary layer convection was it discovered that a system of
three first-order nonlinear differential equations can exhibit a chaotic behavior
(Lorenz, 1963). Contrary to Poincaré’s example (deterministic chaos in conser-
vative or Hamiltonian deterministic systems), Lorenz discovered deterministic
chaos in dissipative systems.

The Lorenz model may be viewed as the prototype example for many
nonlinear dynamical systems, e.g., for the biologically motivated studies on
limit cycles in populations (May, 1972) and in brain function (Kaiser, 1977). The
development of the digital computer offered an additional tool to study aspects
of nonlinear behavior that were previously considered to be too complex.

The essential results of Lorenz are: (1) oscillations with a pseudo-random
time behavior (now called chaotic); (2) trajectories that oscillate chaotically for
a long time before they run into a static or periodic stable stationary state
(preturbulence); (3) some trajectories alternating between chaotic and stable
periodic oscillations (intermittency); (4) for certain parameter values trajecto-
ries appearing chaotic, although they stay in the neighborhood of an unstable
periodic oscillation (noisy periodicity).

It took another 10 years before the importance of these results was recog-
nized. Since then the number of both theoretical and experimental studies on
the complex behavior of simple systems has rapidly increased in all scientific
disciplines. Synonyms for complex behavior of nonlinear systems via spa-
tiotemporal instabilities are cooperative effects and long-range coherence
(Fröhlich, 1969), dissipative structures (Nicolis and Prigogine, 1977), self-
organization and synergetics (Haken, 1978), coherent and emergent phenomena
(Hameroff, 1987), and local activity (Chua, 1998).

As a general result one may conclude the following. New concepts are
developing in an emerging field of interdisciplinary research. The common
basis is nonlinearity and the temporal evolution and spatiotemporal instabili-
ties are similar in all nonlinear systems, thus permitting a unified description.
These concepts comprise fascinating phenomena: irregular or chaotic motion
originating from simple steady states, or regular oscillations as well as regular
and turbulent spatiotemporal structures originating from spatially homogene-
ous states. Some problems remain unsolved. For example, the identification of
the chaotic attractor in the mathematical theory (Birkhoff, 1932) and in the
simulation ‘experiment’ (Lorenz, 1963) has not yet succeeded, i.e., the chaoti-
city of the numerically computed results has not been proven in the strong
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mathematical sense. Furthermore, it should be emphasized that chaos is only a
part of the fascinating behavior that nonlinear systems can exhibit. Since
already, for regular motion, a huge number of states and bifurcations exist, the
pursuit of modern trends and the concern only with chaotic motion should be
avoided. In particular, with respect to externally excited systems, regular
motion and bifurcations need to be considered as well.

In this chapter, the terminology of nonlinear dynamics and basic concepts
needed to describe nonlinear states, complex phenomena and possible transi-
tions are presented, as well as their response to external stimuli. To keep the
presentation self-contained, only the temporal evolution of excited nonlinear
systems is discussed, with models representing simple mechanical oscillators
and complex biological rhythms. Mathematical details are omitted as well as
spatially irregular and spatiotemporally irregular structures, i.e., fractals and
turbulent states, respectively.

1.2 Nonlinear dynamics

1.2.1 Basic concepts

The theoretical analysis of nonlinear phenomena and their stimulation is
performed with the help of nonlinear evolution equations. These model equa-
tions describe the dynamic behavior; that is, the evolution in time of the system
under consideration. Two kinds of modeling approach are appropriate, a
continuous description (·�d/dt, time derivative)

x� �F(x,�,t) (1)

and a discontinuous description (n� 1� n��t, �t scaled to 1)

x
���

� f (x
���). (2)

The state of the system is x� (x
�
(t), . . . , x

�
(t)) or x

�
� (x

���
, . . . , x

���
) with the

state variables x(t),x
�
�R�, i.e.,m-dimensional systems (m/2 degrees of freedom)

are considered. F and f are nonlinear vector functions of the variables. These
functions depend on a whole series of parameters �. Equation (1) consists of m
nonlinear and coupled ordinary first-order differential equations, whereas
Equation (2) represents m nonlinear one-dimensional maps. For our general
considerations discrete systems and systems with additional delay terms are
neglected (for effects of delay terms see Milton, Chapter 16, this volume).
Continuous systems are closer to physical and biological reality.

The variables x span the state space, where the trajectories (starting at initial
conditions) advance in time toward limit sets called attractors. In principle,
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four types of attractors exist and they may all coexist with their respective
basins of attraction (Figure 1). Attractors represent asymptotically stable
solutions. In order to obtain information about the system’s behavior and the
types of solution, standard methods of nonlinear dynamics have to be applied
(see e.g., Kaiser, 1988; Schuster, 1988). Besides oscillation and phase plane
diagrams (Figure 1a,b), power spectra (by fast Fourier transformations) yield
information regarding the system’s stable steady states. For complex periodic,
quasiperiodic and chaotic states, highly sophisticated methods have to be
employed to yield a clear distinction between the different attractors. Whereas
stable fixed points (static attractors) are determined by a simple — in most cases
— linear stability analysis, the three other types of attractor require a detailed
analytical and numerical investigation of the complete nonlinear models.

A series of problems and questions arises. (1) Is an apparently aperiodic state
exhibited in a time series from numerical calculations or from experiments
really chaotic, or is it quasiperiodic or complex periodic? (2) How can one
separate noise and uniform randomness from deterministic irregularities
(chaos)? (3) What is the origin of deterministic chaoticity, and how can one
measure the strength of chaos? Meanwhile, some methods have been devel-
oped that allow for some answers. These methods are a direct continuation of
the standard methods (i.e., fixed points, stability analysis, oscillation and phase
plane diagrams, power spectra). To keep the discussion within a reasonable
range, only the most characteristic measures are given.

(1) Lyapunov exponent:This measures the convergence or divergence of nearby trajec-
tories. Equation (1) hasm exponents; a stable fixed point hasm negative exponents;
a stable periodic (quasiperiodic) motion has at least one (two) exponent(s) equal to
zero, the others being negative; a chaotic attractor is represented by at least one
positive exponent; while, in addition, at least two nonpositive exponents have to
exist. Besides this dynamicmeasure for which the long-term behavior of the system
is needed, static measures are adequate to separate chaotic from nonchaotic
motion. Two examples are discussed.

(2) Fractal dimension d
�
: Different dimensions can be defined for strange attractors,

including the Hausdorff, information, capacity and correlation dimensions. All
these have noninteger values for chaotic states and can be calculated by embedding
and box-counting methods.

(3) Kolmogorov entropy K: A fundamental measure for chaotic motion, representing
the average rate at which information about the state of a dynamical system is lost
in time. For a regular motion, K becomes zero; for random systems it is infinite.
Deterministic chaos exhibits a small, positive K-value. Meanwhile an enormous
amount of literature exists where both the mathematical background and the
details regarding applications of the methods are described (e.g., Ruelle, 1989).
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Figure 1. The four types of asymptotically stable solutions (attractors) existing in
dissipative nonlinear systems. (a) Oscillation diagrams (amplitude x versus time t); (b)
phase plane diagrams (variable y� x� versus amplitude x). The system’s behavior is
governed by one of these steady state solutions, the trajectories finally join these stable
states. The diagrams represent typical examples; a different model is chosen for each of
the eight diagrams.

20 F. Kaiser



Measured time signals are one dimensional and discrete in most cases.
However, in nonlinear systems this single coordinate contains information
about the other variables. Certain procedures have been developed to con-
struct the attractor from the data set by embedding and delay techniques and
to extract the inherent information (Schuster, 1988). The fractal dimension, d

�
,

and the embedding dimension provide a strong indication of the number of
relevant degrees of freedom in the dynamics of the system.

Chaotic states are characterized by their initial state sensitivity, leading to a
loss of final state predictability. This behavior results from the divergence of
nearby trajectories in at least one direction of phase space. In the latter case
one Lyapunov exponent is positive. Chaotic motion is irregular and complex,
yet it is stable, spatially coherent and completely deterministic. Refined
methods have been developed to distinguish and to extract random from
chaotic motion. These problems as well as the methods to control chaotic
motion are discussed in several chapters of this volume, for example see Ditto
and Spano, Chapter 15, this volume.

1.2.2 Principal aspects of driven nonlinear systems

Externally driven nonlinear systems exhibit an enormous variety of behaviors.
If at least one internal or external parameter is changed, the system undergoes
continuous or discontinuous changes and transitions from one attractor to
another at some critical value. The relevant and determining parameter is
called control or bifurcation parameter. The transitions via instabilities are
bifurcations of steady-state solutions of the dynamical system.

There are three types of local bifurcation. (1) Hopf bifurcation: typical
examples are transitions form a static attractor (fixed point) to a periodic
attractor (limit cycle) and from the latter to the motion on a torus. (2) Saddle-
node or tangent bifurcations: transitions from a limit cycle to a new one,
discontinuous transitions in hysteresis, and transitions from quasiperiodic to
phase-locked periodic states are the dominating bifurcations. (3) Period-
doubling bifurcations: a limit cycle of period, T, bifurcates into an oscillation
with period 2T, which, in many cases, is followed by a whole cascade of further
period-doubling bifurcations to states with periods 4T, 8T , . . . , 2�T. Period-
tripling and multiplying bifurcations can also occur.

Hopf and saddle-node bifurcations can create new frequencies, either in an
incommensurate ratio to the original one, or as subharmonics of the external
driver frequency, �

���
, for an external signal, F(t)�F

�
cos (�

���
t), the latter

being harmonic for simplicity. All three types of local bifurcation can terminate
in chaotic motion, representing the three generic routes to chaos (Schuster,
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Figure 2. Nonlinear response of externally perturbed dissipative systems. (a) Bistabil-
ity: steady state amplitude x versus bifurcation parameter �; the arrows show the
transitions for increasing and decreasing �, leading to a hysteretic behavior (u is the
unstable branch). (b) Multi-limit-cycle system (Equation 3): phase plane diagram (x�
versus x) containing one unstable fixed point, two stable limit cycles and an unstable
one in between. (c) Steady-state response of an externally driven limit cycle: amplitude x

�versus frequency� for a fixed driver strength, x
��

(�
��

) is the amplitude (frequency) of
the unperturbed limit cycle. (d) Resonance diagram: principal response of a driven limit
cycle to the external driver strength, F

�
, with frequency,� (F(t)�F

�
cos (�t)). Besides

the main resonance (1/1 Arnold tongue), a large number of subharmonic (n�m,
���

��
) and superharmonic (n�m, ���

��
) resonances exist. (e—f ) Resonance dia-

grams for a driven Van der Pol oscillator (Equation 3 with �,�� 0, only three tongues
are shown), indicating that an increasing internal dissipation (parameter �) leads to
strong changes in the resonance structure.

1988). Having in mind the external stimulation of biological rhythmicity, we
restrict the discussion to externally driven limit cycles and their respective
responses. A limit cycle (periodic attractor) represents a self-sustained oscilla-
tion, the period and amplitude of which is completely determined by the
internal parameters and no external forcing is required (active oscillator).
Figure 2 shows essential aspects of the nonlinear response of externally per-
turbed systems with main emphasis on sub- and superharmonic resonances.
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Figure 3. Resonance diagram. Response of the large-amplitude limit cycle of Figure
2b to an external periodic drive with frequency, �, and strength, F

�
. For 0��� 0.8

the frequency scale is expanded by a factor of 4 to enlarge the superharmonic
resonances. All resonances are ordered by the Farey construction rule: between
tongues a/b and c/d one finds (a� c)/(b� d), e.g., between 1/2 and 2/5 one gets the 3/7
resonance etc. The denominator determines the periodicity of the complex periodic
oscillations. The Farey sequences are found in most nonlinear continuous systems,
whereas another ordering principle, the U-sequence, is dominant in the small regions
where resonance horns (Arnold tongues) overlap (see Figure 2f ). The latter sequence is
general in discrete systems (nonlinear maps; Equation 2).

A prototypical limit-cycle oscillator is the Van der Pol oscillator. Its generaliz-
ed version is given by the equation (Kaiser, 1980, 1981)

ẍ��(x�� 1� �x	��x
)x� �x�F(t) (3)

(where ¨ denotes the second differential with respect to time) or equivalently as
a first-order system (Equation (1))

x� � y
y� ���(x�� 1� �x	��x
)y�x�F(t), (4)

where � is a measure for the internal dissipation. The case �� 0 and �� 0
represents the Van der Pol oscillator, F(t)�F

�
cos (�t). Figure 3 depicts a

detailed resonance diagram of the large-amplitude limit cycle (Equation (3)
and Figure 2b; Kaiser and Eichwald, 1991). The sequence of resonances is
Farey ordered, between the resonances, called resonance horns or Arnold
tongues; many additional resonances (periodic states) with decreasing width
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exist. The states in between are quasiperiodic. Only within very restricted areas
in the F

�
—� plane — mainly where resonance horns overlap — chaotic states do

exist. Their measure tends to zero. This is a general feature of driven limit
cycles, which is completely different from driven passive nonlinear oscillators.
The latter represent driven fixed points. In the latter case only a few resonance-
like structures exist with chaotic states in between. Quasiperiodic states can
exist only when at least two external incommensurate frequencies are applied.
The Duffing oscillator is a prototypical passive oscillator, its equation reads

�ẍ� �x� ��x� 	x��F(t). (5)

It represents, for example, the linearly damped motion in a doublewell poten-
tial (�� 0, 	� 0) under the influence of an external stimulus. The principal
difference between an active and a passive oscillator can easily be demon-
strated. From the energy balance per period (action balance per period), i.e.,
multiplying the oscillator equation by x� (by x) and integrating over one
unknown period T, one gets the steady-state amplitude (steady-state fre-
quency). Equation (3) with �,�� 0 yields


�(x�� 1)x� ��
�
�
F(t)x� �

�
(6)

and


x� ��
�
�
x��

�
�
F(t)x�

�
, (7)

whereas the passive oscillator (Equation (5)) leads to


�x� ��
�
�
F(t)x� �

�
(8)

and


�x� ��
�
�
�x�� 	x	�

�
�
F(t)x�

�
. (9)


�
�
means integration in time over one period T. Both the internal dynamics

and the external stimulus determine the steady-state response of the oscillator.
For F(t)� 0 one calculates the unperturbed values by applying a harmonic
ansatz: x(t)� a cos�t. The results for the limit-cycle system (a�x

��
) read:

x
��

� 2, �
��

� 1, whereas for the double-well system (a�x
�
) x

�
� 0,

������
	
	x�

�
. The amplitude dependence of � only occurs for x

�
� 0; the

oscillator must be driven (F(t)� 0).
Limit cycles require at least a two-variable system, i.e., two nonlinear

first-order differential equations are necessary. Sufficient conditions, e.g., in
chemical reaction systems involving Hopf bifurcations (i.e., LC behavior) are:
(1) at least a three-molecular step, e.g., representing a quadratic autocatalytic
process, or an autocatalytic step plus a nonlinear production rate for a
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Figure 4. Phase plane diagrams (x� versus x, see Figure 2b) of the externally driven,
strongly dissipative Van der Pol oscillator (Equation 3) exhibiting the Farey construc-
tion principle, here in the subharmonic resonance regime. The Farey parents (0/1 and
1/1) and the three first Farey generations (the Farey daughters 1/2, 2/3� 1/3, 3/4�
3/5� 2/5� 1/4, respectively) are shown. Only n/m� odd/odd leads to inversion
symmetric oscillations, 1/1, 1/3 and 3/5 in the example and both parents of an inver-
sion-symmetric daughter have to be noninversion symmetric. The 4/5 and 1/5 oscil-
lations in Figure 5 belong to the fourth generation: 4/5, 5/7, 5/8, 4/7, 3/7, 3/8, 2/7, 1/5.

two-dimensional system; (2) at least one two-molecular step for d� 3. Three
coupled first-order equations are necessary for an autonomous system (no
external drive) to become chaotic. However, this is not sufficient inmany cases.

Figure 4 displays the Farey construction principle governing the response of
driven limit cycles. Knowing the parents, the topology of all daughters can be
deduced. Having the information of one parent (e.g., 1/1) and one daughter
(e.g., 3/4), the structure of the other parent (2/3) is determined. This property
exhibits a specific method of information encoding and its subsequent decod-
ing. Figure 5 depicts the response of the Van der Pol oscillator, showing the
essential aspects contained in oscillation and phase plane diagrams and in
power spectra. Only the external frequency is varied in the diagrams.

1.2.3 Consequences for the system’s behavior

Besides sub- and superharmonic resonances, externally driven limit cycles
exhibit coexistence, leading to multistability and hysteretic behavior. In addi-
tion, global bifurcations create crisis-induced intermittent states and merging
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Figure 5. Oscillation diagrams (amplitude x versus time T �, scaled to the period of the
external drive), phase plane diagrams (x� versus x) and power spectra (power spectral
density c(�) versus frequency �, same arbitrary log-scale), for the driven Van der Pol
oscillator. (a) Small dissipation, nearly harmonic 1/1 oscillation, �

��
� 1 dominates.

(b—f ) Strong dissipation, relaxation-type oscillations, showing the 5/1 superharmonic
resonance, the 1/1, 4/5, 1/5 subharmonic resonances, and chaotic response, respec-
tively.Many lines in the power spectra are strong, the dominating line is in all cases the
resonance line, n/m. For inversion-symmetric oscillations only odd super- and subhar-
monic lines occur. In the chaotic spectrum some of the discrete frequencies are
exhibited above the ‘noisy’ background, which, however, is completely deterministic.
The external frequency decreases from (b) to (f ).
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Figure 6. General scheme for an externally driven nonlinear system. The internal or
external time-independent bifurcation parameter � determines the system’s steady
state, one of the three fixed points (FP) or a limit-cycle oscillation (LC). (a) The strength
of a periodic signal (given by the arrows) applied to a steady state (marked by the
crosses) determines whether the system is partially driven to a neighboring steady state
or remains within the same state. The frequency of the external drive determines
whether the system is for many internal oscillations in the neighboring steady state
(�

���
��

��
) or spends there only a small or vanishing part during one cycle

(�
���

��
��

). (b) A typical realization of the unperturbed scheme.With increasing�, the
steady state value x

�
increases, FP

�
becomes unstable and FP

�
is stabilized, which, in

turn, bifurcates via a Hopf bifurcation into a stable limit cycle. An inverse Hopf
bifurcation leads back to a new, stable nonoscillating situation, FP

�
. Many biochemi-

cal systems exhibit this kind of behavior.

attractors. Nevertheless, resonant, i.e., frequency-dependent responses will still
dominate. Sharp resonances and synchronization lead to frequency selectivity
and to a multifrequency response. Frequency and intensity windows deter-
mined by the resonance horns may lead to threshold and saturation effects,
provided a certain n/m resonance may be related to a specific functional state.
Transitions from limit cycles to quasiperiodic and chaotic states provide
additional behavior, where different bifurcations can presumably lead to dif-
ferent states of information storage and transfer. Knowledge regarding the
physical criteria that enable bifurcations to other states is also highly desirable.
At least for some cases, there is a stabilization of those states, because the
dissipated energy per period is minimal and decreases with increasing driver
strength (Kaiser, 1987).

Very slow external signals (�
���

��
��

) can synchronize the system’s fast
motion to the slow drive, whereas very fast signals (�

���
��

��
) create fre-

quency-locked states in the far subharmonic region. Figure 6 represents a quite
general scheme. The system either can be in one of three fixed-point states or in
a limit-cycle oscillation. The graph shows the system’s principal response to
weak (no crossing of bifurcation lines) and strong (crossing of bifurcation lines)
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Figure 7. Comparison of the response of a nonlinear passive oscillator (double-well
oscillator, Equation 5, with internal frequency �

���
, left column) and of an active

oscillator (Van der Pol oscillator, Equation 3, frequency �
��

, right column) to an
external periodic stimulus with frequency �

���
. (a) �

���
��

���
,�
��

: the system is en-
trained even by a weak external signal; that is, it partially decouples within one
external cycle and behaves like a damped oscillator (fixed point, left) or a free limit
cycle (right). (b) �

���
��

���
,�
��

: the passive system (driven fixed point, left) oscillates
with �

���
within one of the two minima even for rather strong drives; the limit cycle

(right) performs free oscillations, its amplitude is high-frequency modulated. (c) Re-
sponse to the combined influence of the weak, slow and the strong, fast signals. The
passive system follows both drives, whereas the limit cycle exhibits all three frequen-
cies. Three external periods are shown in (a), 60 in (b) and 1 in (c).

stimuli. The frequency relation �
���

/�
��

determines the system’s preferred
state, a driven limit cycle or a driven fixed point. In Figure 7 the principal
responses of a passive and an active oscillator to a very slow (and weak) and to a
very fast (and much stronger) stimulus are compared. The figure reveals the
pronounced differences in the response of the two systems. These differences
may also be deduced from experimental time series.
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Figure 8. Response of nonlinear oscillators to the combined influence of a fast and a
slow external signal, F(t)�F

�
cos (�

�
t)�F

�
cos (�

�
t). (a) Transition of a double-well

oscillator (Equation 5) from an intra-well oscillation (small, periodic oscillation, P1
�
)

to an inter-well oscillation (large, periodic oscillation, P1
�
) as a function of bothF

�
and

F
�
. (b) Transitions of a multi-limit cycle oscillator (Equation 3; see Figure 2b) from

quasiperiodic small oscillations (QP
�
) via periodic small (P1

�
) and quasiperiodic large

(QP
�
) to periodic large oscillations (P1

�
). Note that the F

�
scales are expanded by a

factor of 100 compared with F
�
, indicating that in the superharmonic region (�

�����
��

,�
���

) the critical driver strength required for the transition is much smaller than
in the subharmonic regions, �

�
� 1000�

�
in the example.

1.2.4 Combined influence of very fast and very slow signals

The response of a driven system to an external stimulus depends on the signal’s
strength and on its frequency. Detailed investigations have shown that the
critical driver strength, F

���
, required to synchronize passive and active oscil-

lators in the 1/1 resonance is at least one order of magnitude smaller in the
superharmonic case (�

���
��

��
,�

���
) compared to the subharmonic reson-

ances. Figure 8 displays such a situation, where F
���

(F
�
� 0) at least is two

orders of magnitude smaller than F
���

for F
�
� 0. The combined influence of

both stimuli reveals a phase transition-like behavior, smallF
�
values (F

�
�F

�
)

lead to bifurcations into the large period-one states (P1
�
) with valuesF

�
�F

���
.

Thresholds, being relevant for monochromatic fast (slow) excitations can
dramatically be lowered by an additional slow (fast) signal. Figure 9 shows
examples of externally driven oscillators for both, very slow and very fast
stimuli, in comparison with the internal dynamics or mechanics and for the
combined influence of both. The passive system behaves like a driven fixed
point, whereas for the active system the internal limit-cycle frequency is always
present, together with �

�
and/or �

�
.

29External signals and internal oscillation dynamics



Figure 9. Oscillation diagrams representing stable oscillatory states in Figures 8a and
b, respectively. In each column four different values of F

�
or F

�
are chosen, increasing

F
�
,F
�
�F

���
,F
���

to F
�
,F
�
�F

���
,F
���

from from top to bottom. (i) Double-well oscil-
lator; (ii) Multi-limit-cycle Van der Pol oscillator. (a) F

�
� 0,F

�
increasing: typical

behavior for a slow excitation; (b) F
�
� 0,F

�
increasing: typical behavior of fast

excitation; (c) combined influence of slow and fast signal, F
�
�F

���
and F

�
increasing,

but F
�
�F

���
. The small arrows in Figure 8a indicate the lines along which the series

were taken. All diagramswithin (i) and (ii) have the same scaling of the x-axis. Ten slow
external periods are shown in (a) and (c); 10 fast external periods in (b); �

�
� 1000�

�for both oscillators.
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1.2.5 Combined influence of static, periodic and noisy signals

In physical, chemical and biological systems noise is always present. Besides
the internal noise the external signal may exhibit an additional noisy compo-
nent (from the environment or from neighboring subsystems). Specific states
within a system are determined by the internal dynamics, its parameters and by
internal noise, the latter being irrelevant for asymptotically stable steady states
far enough away from bifurcation lines.

Biological systems are neither completely deterministic nor completely
random. The influence of noise is well documented for both experimental
results and theoretical investigations. Whereas usually — at least in linear
systems — noise leads to a randomization of processes, to a broadening of
frequency lines, to a destruction of spatial structures, to thermalization etc.,
noise may exhibit a constructive role in nonlinear systems. These noise-
induced transitions include order-to-order and chaos-to-order transitions, in
a way similar to chaos-induced processes such as the well-known three types
of crisis, showing enlargement, merging or destruction of attractors (Gass-
mann, 1997). Noise can induce coherence and coherence resonance (Pikovsky
and Kurths, 1997). In coupled systems, an increase in noise can create syn-
chronous firing of stochastically responding model neurons, whereas for
stronger noise levels coherence is lost again (Kurrer and Schulten, 1995).
Furthermore, a very weak external signal (periodic or aperiodic) can be
amplified by constructive interference with noise. This mechanism is well
known as stochastic resonance (Moss et al., 1994; see also Moss, Chapter 10,
this volume). Small-signal amplification and extreme sensitivity to specific
frequencies near bifurcation points by a periodic signal have been stressed as
further relevant processes (e.g., Wiesenfeld and McNamara, 1986; Kaiser,
1988).

A rather general statement for the influence of noise on nonlinear systems
can be given: a driven fixed point (passive oscillator) is rather sensitive to noise,
whereas a driven limit cycle is nearly insensitive to noise (e.g., Kurrer and
Schulten, 1991; Eichwald andKaiser, 1995). The situation can change dramati-
cally, if the limit cycle (fixed point) partially becomes a driven fixed point (limit
cycle), when a very slow signal is applied to the limit cycle (fixed point) near a
bifurcation line (see Figure 6). Such a situation is present in many biological
oscillators.

The combined influence of static, periodic and noisy signals, given by

F(t)�F

�F

�
cos (�t)� (t) (10)

can have dramatic influences on the system’s behavior. To keep the discussion
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within a reasonable limit, the following set of equations is considered (a special
case of Equation (1))

x� �A� f (x)� �xy�F(t)
y� �B� g(x)� �xy

(11)

with a prototypical nonlinearity xy and general nonlinear functions f (x) and
g(x). A second-order differential equation can be derived by eliminating the
variable y. It reads (��d/dx)

ẍ�
1
x
(A� �x�� f (x)�x� � f �(x)x�F(t))x� � �(B�A� g(x)� f (x)

�F(t))x�F� (t) (12)

or in an abbreviated version

ẍ� g	 (x,x� ,F(t))x� � f
 (x,F(t))x�F
 (t), (13)

where g	 , f
 and F
 can be extracted directly from Equation (12). This equation
represents the prototype of a nonlinear driven oscillator (see Equations (3) and
(5)). The external force influences parametrically, both, the nonlinear dissi-
pation (function g	 (x,x� ,F(t))) and the amplitude-dependent ‘frequency’ (func-
tion f
 (x,F(t))). Even a static stimulus (F(t)�F


) can perform both influences.

The stochastic component operates in an additive (via F� (t)) and in a multipli-
cative (via F(t)) manner. If, for example, Equations (11) describe chemical
reactions, both the kinetics and the dynamics are influenced in a deterministic
and in a stochastic fashion.

In principle, external stimuli can be even more complicated. Besides a
contribution not varying in time, the time-dependent, deterministic compo-
nent can be periodic, pulsatile or aperiodic, it can be fast or slow compared to
the internal dynamics and it can include amplitude or frequency modulation.
In this case the response then not only depends on one frequency and the
related amplitude as well as the internal state of the system, it also depends on
the specific temporal pattern of the signal. Nevertheless, general trends can be
deduced, because in most cases a few frequencies will dominate. New temporal
structures and temporal organizations emerge beyond a critical point of
instability of a nonlinear steady state. The same holds for spatial structures,
occurring beyond a critical point of instability of a homogeneous state. The
combination of both types of instability and subsequent steady states leads to
spatiotemporal structures. Therefore much may be learned from simple non-
linear models, because the behavior for many systems is generic and the
bifurcations and their characterizations obey universal laws.
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1.3 Biophysical rhythmicity

Rhythmic phenomena play an important role in many aspects of biological
order and function. The involved systems range from the molecular to the
macroscopic level, the corresponding periods cover the submicrosecond time
domain to hours (molecular and cellular oscillators), days (circadian rhythms)
and even months (population cycles). Oscillation dynamics define biological
clock functions and are of essential importance in intra- and intercellular
signal transmission and in cellular differentiation. The importance of non-
linear dynamical concepts in biology is stressed by the following facts:
(1) sustained autonomous oscillations do exist (Kaiser, 1980, 1988; Goldbeter,
1996); (2) sudden changes in the system’s dynamics indicate bifurcations of
nonlinear systems; (3) chaotic dynamics, meaning fractal behavior in the
temporal domain, is exhibited by many biochemical and biological systems
(Degn et al., 1988; Goldbeter, 1996). The functional role of chaos, however, is
still a matter of discussion (e.g., see Ditto and Spano, Chapter 15, this volume).
In the present contribution, no biological models will be discussed. Only
essential features of nonlinear dynamics are presented by considering certain
properties of physical or biochemical oscillators.

1.3.1 Requirements and concepts for a modeling approach

‘Things should be made as simple as possible — but not simpler.’ A. Einstein

Endogenous biological rhythms often exhibit stable periodic oscillations.
These oscillations are modeled by nonlinear differential equations exhibiting
self-sustained oscillations (limit cycles). Both the relevant variables (e.g., con-
centrations of the reacting molecules) and the nonlinear processes (e.g., chemi-
cal and enzymatic reactions) have to be known. For a concrete biological
situation, for example, a complete reaction chain within a cell, the resulting
large set of equations would includemany variables and processes. However, if
too much information is included, the set of equations cannot be analyzed
sufficiently. Restricting to an explanation of a phenomenon and, consequently,
to a description of a certainmechanism instead of the whole ‘biological reality’,
one obtains a reduced set of variables that contains the governing nonlinear
dynamics. The result is aminimal model, containing all the essential elements of
a specific process. This is the common procedure for developing models in
theoretical physics.

A simple demonstration can explain the method. Assume that a process is
described by the following set of equations
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q� �F(q)�Aq
�
�BF� (q), (14)

F(q) is separated into a linear (Aq
�
) and a nonlinear (BF� (q) ) part, where the

vector q� (. . . s,t,u . . . x,y,z . . .) represents n variables. Equation (14) thus con-
sists of n differential equations, that are coupled and nonlinear. The governing
dynamics is assumed to be determined by only a few variables. Then all the
other variables can be replaced by their steady-state values. By an adiabatic
elimination procedure for all the fast (irrelevant) variables, only a few equa-
tions result, an example being Equations (11), when only the variables x and y
are relevant. This procedure is the basis for the concept of self-organization
and synergetics (Haken, 1978). It can equally well be applied to spatiotemporal
problems and to delay systems (e.g., see Milton, Chapter 16, this volume).

Subsequently, the methods and concepts of nonlinear dynamics have to be
applied to the resulting equations. Furthermore, in order to investigate the
response of a biological system, or of parts of it, to an external stimulus, the
modeling approach has to be extended to include the additional dynamics.
Quite generally, three steps are indispensable: (1) the external signal couples to
a molecular target (primary physical mechanisms), (2) a complicated series of
internal transduction and transmission processes is activated, (3) the transla-
tion via a causal link of biochemical steps creates the system’s response
(secondary biological mechanisms; see Walleczek, 1995; Kaiser, 1996). Chemi-
cal signal transduction mechanisms across cellular membranes within single
cells or cell-to-cell communication processes are relevant candidates for bio-
logical pathways (see also Walleczek and Eichwald, Chapter 8, this volume).

1.3.2 A paradigmatic model

Many important aspects of stimulated rhythms are already contained in
models of externally driven limit cycles. At this point in the modeling ap-
proach, the type of the external stimulus (mechanical, chemical, hormonal,
electromagnetic, etc.) is irrelevant. It is the information contained in the signal
that is significant, however, especially its frequencies and amplitudes and its
temporal pattern. These characteristics of the input step must be within a
useful range of the subsequent cycle to which the input couples. Then, the
original information is encoded, e.g., by rate- or temporal-encoding pro-
cedures as part of the secondary interactionmechanism. At least for the second
messenger calcium (Ca��), frequency encoding instead of amplitude encoding
seems to be relevant for information processing. For example, experimental
evidence exists showing that proteins can decode intracellular Ca�� oscilla-
tions (De Koninck and Schulman, 1998). Finally, the information is transmit-
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ted through the pathway, and the relevant features are extracted by the final
cycle for further processing. This encoding procedure has to be fast and
efficient to be able to induce an unequivocal response.

To keep the presentation within a reasonable limit, a model is discussed that
contains essential elements of a coupled and stimulated system (Figure 10).
Each model component can be exchanged with any other passive or active
oscillator. The model consists of seven elements, five passive oscillators,
coupled in a symmetric array, and two active oscillators. The passive system’s
output x

�
(t) is a complex signal, containing information of the external signal,

the noise and the internal dynamics. Both active oscillators have been chosen
because of their specific properties that are essential for many biological
oscillators: a fixed point for weak and strong stimuli; a limit cycle in between,
allowing for threshold and excitability properties (compare Figure 6). The first
oscillator is a Ca�� oscillator based upon the Goldbeter—Dupont—Berridge
minimal model (GDB; Goldbeter et al., 1990). The second oscillator is repre-
sented by the FitzHugh—Nagumo model (FHN), originally introduced to
describe the onset of nerve pulses (FitzHugh, 1961). Coupled arrays of FHN
oscillators represent important model systems to describe signal transduction
in sensory neuronal systems, e.g., indicating that noise may play a functional
role via stochastic resonance (Collins et al., 1995). Besides the ever-present
internal noise, the system, or a part of it, is exposed to an external noise source,
acting synchronously. This means that �

�
can be viewed as spatially coherent

noise, whereas �
�
(i� 1 . . . 7) is spatially incoherent.

In general, noise is temporally incoherent. Instead of white noise, the nu-
merical simulations use exponentially correlated colored noise �

�
(t,�

�
), gener-

ated through an integral algorithm using a higher-dimensional Orenstein
—Uhlenbeck process. ��

�
is the variance of the Gaussian-distributed noise

amplitudes. Different time scales govern the system’s motion, the fluctuations
being the fastest, that is, the internal frequencies (�

���
,�
��

) are in the region of
1 hertz� s��, and the external signal oscillates more slowly, i.e., by two orders
of magnitude. The model equations in Figure 10 and the results in Figure 11
represent typical examples for representing the system’s dynamics. For sim-
plicity, delay is neglected in all Langevin systems and we take equal coupling
strengths �

�
. The passive oscillators (x

�
and x

�
) perform transitions from one

well to the other one in a nonperiodic fashion. Transitions can occur only
when both stimuli, the coherent signal and the noise, are present (subthreshold
situation). The Ca�� oscillator exhibits its fast limit-cycle oscillations when
system x

�
is in the right-sided potential well, and it acts as a driven fixed point

(below limit cycle threshold) when system x
�
is in the left-sided well. The FHN

oscillator is a driven fixed point (above limit cycle threshold) when the Ca��
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Figure 10. A paradigmatic model. Five double-well systems (1—5) are coupled in a
symmetric configuration. Each of them represents a bistable passive state. The single
oscillator equation is given by Equation (5); �� 0 is reasonable for �� 0.5 (strong
damping allows for the adiabatic limit, leading to Langevin systems).
�
��
U

�
� � �x

�
� 	x�

�
. Only the first oscillator is stimulated by a harmonic force F(t).

The output of one oscillator acts as the input of the next one, �
�
x
�
(t� �

�
), with coupling

strength �
�
and time delay �

�
. The complex output of the double-well system 5 is

coupled to an oscillator, which is in a steady state for bothweak and strong stimuli and
performs limit-cycle oscillations in between (compare Figure 6). As an example the
Goldbeter—Dupont—Berridge (GDB) Ca�� oscillator minimal model is employed. Its
output, in turn, is injected into a second active oscillator with the same properties
(either a fixed point or a limit cycle). As an example the FitzHugh—Nagumo (FHN)
model has been chosen. All seven systems are selected for their steady-state properties
andwithout any intention of implementing a realistic biological system. Each system is
subjected to its own noise term 

�
(t,�

�
) with noise strength �

�
; �

�
is an additional noise

source acting synchronously, i.e., spatially coherent, on systems 1—5 or 1—7, respect-
ively. The parameters are chosen that systems 1—5 are double-well oscillators, the
GDB—(FHN) system is a limit cycle (fixed point above limit cycle) for vanishing inputs.
Details of the differentmodels are irrelevant at this stage of discussion. The �

�
are linear

(i� 0,1) and nonlinear (i� 2,3) fluxes; the variables Y and Z denote the calcium
concentration of an intracellular calcium store and the intracellular calcium concen-
tration, respectively; v represents a fast-switching variable (e.g., a voltage in the case of
a membrane); w is a slow recovery variable.
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Figure 11.Oscillation diagrams for (a) (F
�
(t)�F

�
cos (�t), (b) noise (t), (c)F

�
(t)� (t),

(d)� (e) double-well systems x
�
(t) and x

�
(t), (f ) z(t), (g) w(t). Time is scaled

to the external slow harmonic stimulus. (h) and (i) show the limit-cycle oscillations
and the driven fixed points of (f ) and (g) on an extremely expanded time scale.
�
�
(i� 1 to 7)�

���
� 0.6; �

�
� 0, �� 0.01, F

�
� 0.3.
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Figure 12. Fourier spectra (power spectral density c(�) on a log-scale) for (a) fifth
Langevin system, x

�
, and (b) and (c) limit-cycle systems z(t) and w(t) of Figure 11. The

limit-cycle frequencies are clearly expressed. The inserts are an expansion of the low-
frequency parts. The �� 0.01 line (low-frequency signal with weak strength applied
only to system 1) is clearly exhibited in all spectra.

oscillator is an active oscillator, and vice versa. The weak external signal,
cos (�t), cooperates in a constructive way with the noisy inputs. Figure 12
illustrates that the weak signal is transduced to all systems. Furthermore, it
becomes amplified by the noise sources, exhibiting the properties of stochastic
resonance. This is demonstrated by calculating the signal-to-noise ratio (SNR)
for systems 5—7. The results in Figure 13 reveal that either �

���
or �

�
can amplify

the weak coherent signal, whereas the combined influence of both noise
sources has dramatic consequences for signal amplification, similar to the
phase transition-like behavior presented in Figure 8. For example, if the
system operates below its amplification maximum, a weak uniform noise
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Figure 13. Signal-to-noise ratio (SNR) versus noise strength �. (a) Langevin system
x
�
(t), (b) GDB oscillator z(t), (c) FHNoscillatorw(t). Left column: SNR as a function of

�
���

, spatially incoherent noise is applied to systems 1—7 and �
�
� 0. Middle column:

SNR as a function of �
�
, spatially coherent noise applied to systems 1—5 or 1—7 (which

makes no difference) and �
���

� 0. Right column: gray-scale plot of the SNR (from
white to black as the SNR increases) as a function of both �

�
and �

���
. Other

parameters are as in Figure 11.

contribution (spatially coherent noise �
�
) can enhance signal amplification,

whereas a system that is already operating in its optimal mode, may be
influenced only in a destructive way by a small �

�
contribution.

Much information may be obtained from coupled nonlinear models such as
the one presented here. The inclusion of delay terms and different coupling
strengths (with and without backcoupling) offers additional extraordinary
motion and shows the way to proceed from simple models to the complex
biological behavior relevant for rhythmicity, information transfer and, hence,
final biological function.

1.4 Conclusions

This overview demonstrates that the concepts of nonlinear dynamics in gen-
eral, and of externally driven active oscillators in particular, are indispensable
to the description and analysis of biological rhythms. Much information
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regarding the system’s complex and nonlinear behavior can be deduced from
rather simple limit-cycle models. The results include sub- and superharmonic
resonances as well as a large variety of bifurcations within regular states and
irregular, chaotic ones. The combined influence of stimuli that are fast and
slow compared with the internal dynamics allows for a substantial decrease in
bifurcation thresholds.

Internal noise occurs in all physical, chemical and biological systems. Its
role, in combination with weak external signals (periodic or aperiodic), is
extraordinary. Instead of its usual destructive action, it can also operate in a
constructive manner, e.g., by the mechanisms of stochastic resonance. Fur-
thermore, when noise is applied in combination with external or internal
signals to nonlinear processes, noise can provide oscillating systems with
special information-encoding properties. Frequency-encoded rhythmic pro-
cesses seem to operate more accurately compared with amplitude-encoded
processes. In those situations noise may exhibit a constructive influence on
information processing and information transfer, and the detection of weak
signals in noisy environments seems, thus, possible. The combined influence
of both internal and external noise can improve or reduce the system’s capac-
ity for signal amplification and information transfer. This phenomenon has
been demonstrated by the results with the paradigmatic model in Section
1.3.2. The constructive role of internal noise in information transfer via an
increase in external noise has been shown quite recently as well (Gailey et al.,
1997).

Temporal structures may display a huge amount of diverse patterns. Irregu-
lar temporal dynamics exhibits scaling and universal behavior. Chaotic states
contain a very large number of unstable period orbits, to which the systemmay
be stabilized by chaos control techniques (for details, see Showalter, Chapter
14, this volume). For many problems in physics, chemistry and biology, the
spatial variations have to be analyzed as well. Many nonlinear spatiotemporal
systems are governed by a few universal equations, the most prominent of
which are real or complexGinzburg—Landau equations. Equations of this type
result when a small-amplitude expansion near a bifurcation point (Hopf
bifurcation in many cases) is performed. The typical structure, when restricting
to one complex variable A, is given by the amplitude equation

�
�
A��A� � �A ��A���A, (15)

where �, �, � are complex parameters, �
�
denotes derivation with respect to

time, and � denotes the second spatial derivations perpendicular to the direc-
tion of propagation, describing diffusion and diffraction. Equation (15) ex-
hibits many regular spatiotemporal solutions (rolls, hexagons, squares,
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traveling waves etc.). Disordered structures occur via spatiotemporal instabili-
ties. These spatiotemporal chaotic or ‘turbulent’ states may be controlled or
suppressed by refined chaos control techniques, since they contain a very large
number of unstable patterns to which the system may be stabilized in a way
similar to temporal chaos control. Furthermore, with very weak control
signals, preselected regular patterns can be generated.

Finally, two fundamental questions remain. (1) How do nonlinear oscilla-
tions arise in a concrete biological system or in a functional subunit making up
part of the system? (2) What is the function of these oscillations, i.e., how does
functional order translate into biochemical signaling and biological function?
Answers to the first question are accumulating for many different systems.
With respect to the second question, most answers are more speculative in
nature. New experiments have already demonstrated, however, that specifi-
cally the frequency of cellular Ca�� oscillations could indeed determine the
specificity and magnitude of gene expression in cells (Dolmetsch et al., 1998; Li
et al., 1998). The further exploration of these questions is the subject of many of
the remaining chapters in this volume.
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2

Nonlinear dynamics in biochemical and biophysical
systems: from enzyme kinetics to epilepsy

RAIMA LARTER, ROBERT WORTH AND
BRENT SPEELMAN

2.1 Introduction

Biological systems provide many examples of well-studied, self-organized
nonlinear dynamical behavior including biochemical oscillations, cellular or
tissue-level oscillations or even dynamical diseases (Goldbeter, 1996). The
latter include such phenomena as cardiac arrhythmias, Parkinson’s disease
and epilepsy. Part of the reason for progress in understanding these phe-
nomena has been the willingness of investigators to communicate and share
insights across disciplinary boundaries, even when this communication is
hampered by differing jargon or concepts unfamiliar to the nonexpert. The
common language of nonlinear systems theory has helped to facilitate this
cross-disciplinary conversation as well as to provide a new definition of
what it means to say that two things are dynamically ‘similar’ or even ‘the
same’.

In this chapter, we compare the dynamics of a well-studied biochemical
oscillator, the peroxidase—oxidase reaction, with that of epilepsy, a dynami-
cal disease (Milton and Black, 1995). We are so accustomed to the normal
way of reasoning in science that it seems wrong, somehow, to point out the
similarities between, on the one hand, the oscillations in substrate concen-
tration during an enzyme-catalyzed reaction and, on the other, the regular
oscillations in the electroencephalography (EEG) signal observed during
certain types of epileptic seizure. While these two systems could not be more
different in terms of their material nature, they are actually quite similar
dynamically. By noticing the dynamical similarities between these two sys-
tems, we are able to apply the insights from a thorough and long-term study
of the enzyme system to the search for possible mechanisms of the origin
and spread of partial seizures. These insights into the complex disease of
epilepsy would have been much more elusive without the cross-disciplinary
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comparison of these two phenomena, an approach typical of nonlinear dy-
namics.

The type of investigation described in this chapter was recently highlighted
in a Research News article in Science that reviewed theoretical and clinical
studies of epilepsy (Glanz, 1997). As pointed out in this article, ‘Unlike tradi-
tional neuroscience, which often focuses on the details of the brain — neuro-
transmitters, receptors, and neurons, alone or in small groups — nonlinear
dynamics aims to identify the large-scale patterns that emerge when neurons
interact en masse’. As we will describe below, these large-scale patterns are
dynamically similar to those commonly observed in oscillatory chemical reac-
tions. Thus, it makes sense to look to the kinetics of these reactions for clues
about the mechanistic source of epileptic dynamics.

Another example of the fruitful interplay between disciplines that occurs in
the field of nonlinear science involves the recent flurry of activity in studying
calcium (Ca��) oscillations (Cuthbertson and Cobbold, 1991; Berridge, 1993).
The rapidity with which these oscillations, observed in different cell types
(muscle, liver, oocyte, glial, etc.), were identified as being dynamically similar
can be attributed directly to the comparisons made between these latter
observations and well-known chemical oscillators that had already been
studied for decades. Once dynamical similarity had been noted, a suggestion
was made to look for Ca�� waves, since the similarity to chemical systems
suggested that spiral waves ought, also, to exist in cellular systems. Spiral
waves of Ca�� activity were, indeed, observed in some of the cell types studied
(Lechleiter et al., 1991). The observation of these waves and their similarity to
both chemical waves (Epstein, 1991) and waves of electrical excitation in
excitable cardiac tissue (another biological system whose understanding has
been greatly facilitated by comparison with chemical systems) lent further
support to the notion that the Ca�� oscillations observed in different cell types
were dynamically similar. This type of investigation was very helpful in extract-
ing order from a broad set of observations that otherwise would not have been
deemed ‘similar’ by most investigators.

In this chapter, we review the research, both theoretical and experimental,
that has been carried out on a well-studied enzyme oscillator, the per-
oxidase—oxidase reaction, and briefly describe how the insights from our
research with this system have allowed us to propose a mechanism for the
origin and spread of epileptic seizures. The procedure uses the notion of
dynamical similarity, again, by noting the feedback characteristics of certain
subnetworks in the hippocampal region of the brain and modeling the subnet-
work dynamics using an approach drawn from enzyme kinetics.
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2.2 The peroxidase–oxidase reaction

Since the observation of oscillations in the horseradish peroxidase-catalyzed
oxidation of NADH over 30 years ago (Yamazaki et al., 1965; Nakamura et
al., 1969), extensive studies of this system have been carried out. This reaction
has recently been reviewed both in terms of its dynamical features (Larter et
al., 1993) and its constituent chemistries (Scheeline et al., 1997). When this
reaction takes place in a flow system with reduced nicotinamide adenine
dinucleotide (NADH) as the reductant, the concentrations of reactants (oxy-
gen and NADH) as well as some enzyme intermediates, can be seen to
oscillate with periods ranging from several minutes to about an hour,
depending on the experimental conditions. The peroxidase—oxidase (PO)
reaction exhibits many complex dynamical behaviors including bistability,
birhythmicity, quasiperiodicity, complex oscillatory behavior and chaos. As the
only single enzyme system to exhibit in vitro oscillations in homogeneous,
stirred solutions, the PO reaction is the simplest nonlinear biochemical sys-
tem known. In more complex biochemical systems, such as the glycolysis
reaction, metabolic control features such as allosteric enzyme kinetics are
also operative. Because this represents an additional means of regulation not
available to the PO system or to purely inorganic chemical oscillators, the
PO system has been said to be intermediate in type between chemical oscil-
lators and the much more complex, but highly regulated, biochemical oscil-
lators (Goldbeter, 1996).

The PO reaction occurs as the first step in a sequence of reactions in plants
that eventually culminates in the production of lignin (Mäder and Amberg-
Fisher, 1982; Mäder and Füssl, 1982); it also is involved in the important
processes of the photosynthetic dark reactions (Pantoja and Willmer, 1988).
At this point, it is not known whether the oscillations observed in the flow
system have any bearing on behavior in vivo; however, recent studies with
horseradish cell extracts revealed the existence of damped oscillations, in-
dicating that oscillations are possible in vivo as well (Møller et al., 1998).
Oscillatory behavior is known to occur in other biochemical settings and
seems to be a ubiquitous phenomenon at many levels in biological systems.
The existence of chaotic behavior in the PO reaction brings to mind many
intriguing questions, for example if chaos can occur in a single enzyme reac-
tion (such as the PO reaction) does the existence of multiple enzyme net-
works of reactions make chaos inevitable in vivo? Is chaos a sign of health or
disease?

The overall reaction that we refer to as the PO reaction is:

2NADH�O
�
� 2H�� 2NAD�� 2H

�
O (1)
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Figure 1 shows typical experimental results that can be obtained from the in
vitro study of this reaction as the concentration of the coenzyme, 2,4-di-
chlorophenol (DCP) is varied. In the second set of panels in the figure, a
comparison is made with simulations using one of the more recent proposed
mechanisms for the PO reaction. As can be seen from this figure, the theoreti-
cal studies are in quite good agreement with the experimental findings, in-
dicating that recently proposed mechanisms are beginning to converge on
reality.

A great deal of experimental and theoretical work has been devoted to
determining the mechanism by which oscillations and chaos arises in the PO
reaction. Although some controversy still exists regarding the mechanistic
basis of complex oscillatory behavior, including chaos in this system, the origin
of simple oscillatory behavior is solidly established. The part of the reaction
mechanism widely agreed to give rise to simple oscillatory behavior in the PO
reaction is illustrated in the reaction network shown in Figure 2. The free
radical species, NAD

.
, plays a central role by being involved in a positive

feedback loop, i.e., an autocatalytic reaction. The autocatalysis leads to an
explosion in theNAD

.
concentration, which would proceed unchecked, were it

not for the free radical termination reactions that also occur. The latter may
involve bimolecular radical—radical dimerization or, perhaps, unimolecular
deactivation via collisions with the container wall. Either way, the oscillatory
behavior may be understood as an alternation between an explosive produc-
tion of free radicals and a rapid termination, followed by another cycle of
production, then termination, etc.

In addition to oscillatory and chaotic behavior, the PO reaction exhibits
bistability. Although this phenomenon has not attracted as much interest as
have the more exotic dynamical effects of oscillations and chaos, it is men-
tioned here because of its suspected kinetic source: the inhibition of the enzyme
by molecular oxygen. Thus, in the reaction mechanism for this system we have
both autocatalysis and inhibition, i.e., positive and negative feedback. In the
following section we will see how these same dynamical features arise in
models of brain dynamics. In the latter types of model, positive and negative
feedback exist in the form of excitatory and inhibitory neuronal connections,
respectively. There is very little, if any, difference between the dynamics of
autocatalysis in enzyme kinetics and excitatory feedback in neuronal dynam-
ics. Similarly, inhibition in neuronal systems is modeled in a fashion identical
with that of inhibition in enzyme kinetics.

A simple model for the PO reaction, proposed in 1979, provides a good
example of the use of nonlinear dynamical techniques in elucidating the origin
of certain dynamical features of this system (Degn et al., 1979). It is a
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Figure 2. Steps in the peroxidase—oxidase reaction that lead to oscillatory behavior co,
compound. A key species is NAD

.
, which is involved in an autocatalytic feedback loop

(reprinted, with permission, from Scheeline et al., 1997, Copyright 1997 American
Chemical Society).

four-variable model (now known as the DOP model after Degn, Olsen and
Perram) and is given by the following system of rate equations:

A� �� k
�
ABX� k

�
ABY� k

�
� k

��
A

B� �� k
�
ABX� k

�
ABY� k

� (2)
X� � k

�
ABX� 2k

�
X�� 2k

�
ABY� k

	
X� k




Y� �� k
�
ABY� 2k

�
X�� k

�
Y, �

whereA is the concentration of dissolvedO
�
,B is the concentration of NADH,

andX andY are concentrations of two critical intermediates, X andY. The dot
over each variable denotes the derivative of this concentration variable with
respect to time. From many comparisons of simulations and experiment, it has
been determined that X mimics the probable dynamics of a free radical species,
NAD

.
, while Y corresponds to an enzyme—substrate complex known as com-

pound III, which consists of a molecule of oxygen bound to a reduced form of
the enzyme known as Per��; the native enzyme is Per��.
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Figure 3. Bifurcation diagram showing the value of the variable A
���

in the Poincaré
section as a function of the parameter k

�
. Chaotic dynamics are observed to arise from

period-doubling cascades from complex mixed-mode periodic states. Here, the com-
plex state at low k

�
values which undergoes the cascade is the 5�5�� state (reprinted,

with permission, from Steinmetz, 1991).

The DOP model exhibits chaotic behavior in a certain range of parameter
values. Typically, all parameters except k

�
are held fixed, and k

�
is treated as a

bifurcation parameter; chaos is found only within a certain range of parameter
values. Variations in k

�
reproduce the experimental behavior observed when

the enzyme concentration is changed, so this rate constant can be thought of as
being related to the enzyme catalyst concentration. The chaotic dynamics in
the DOP model is governed by a torus attractor that evolves through four
distinct stages, as the k

�
parameter is varied (Steinmetz andLarter, 1988). These

four stages are (1) the undistorted torus, (2) the wrinkled torus, (3) the fractal
torus, and (4) the broken torus. For the last two stages of the torus, chaotic
trajectories alternate with nonchaotic, i.e., periodic trajectories, as the value of
k
�

is varied. The latter are mixed-mode oscillations corresponding to phase
locking on the broken torus. It is found that some of the mixed-mode states go
through period-doubling cascades culminating in chaos as the parameter k

�
is

varied. An example of a small portion of the full bifurcation diagram for this
system is shown in Figure 3; here, a highly complex mixed-mode state with a
repeating unit pattern of 5 small/10 large/5 small/ 11 large, i.e., a 5�5�� state,
goes through a period-doubling cascade into chaos. This type of transition to
chaos is seen over a broad range of k

�
values with many different mixed-mode

states.
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This example, then, shows thatmixed-modeoscillations, while arising from a
torus attractor that bifurcates to a fractal torus, give rise to chaos via the
familiar period-doubling cascade in which the period becomes infinite and the
resulting chaotic orbit consists of an infinite number of unstable periodic orbits.
Recent experiments on the PO reaction have revealed the existence of mixed-
mode oscillations that occur in a period-adding sequence (Hauser and Olsen,
1996). Although the simple model discussed here clearly does not contain as
much information as the more detailed model in Figure 2, it does include the
critical part of the mechanism that gives rise to this and other dynamical
features of this reaction. The study of this and another simple, abstract model
(Olsen, 1983) has helped to guide the elucidation of the more detailed mechan-
ismby focusing the investigators’ attention on the essential features that lead to
oscillatory and complex dynamics.

We now turn to a discussion of epilepsy, which has been described as a
dynamical disease (Milton and Black, 1995) and will frame our discussion by
comparing dynamic processes in networks of neurons to dynamics in chemical
reaction networks. For discussion of dynamical diseases, in particular of
epilepsy, see also Milton (Chapter 16, this volume).

2.3 Epilepsy

One of the primary motivations for studying central nervous system (CNS)
disorders from the perspective of nonlinear dynamical theory is that it allows
one to consider phenomena such as epilepsy that involve the brain in a global
manner (Kelso and Fuchs, 1995). Such an approach runs counter to the
reductionist tendencies of much contemporary neuroscience. Focusing on
small details of the CNS has produced some spectacular successes, some of
which are discussed below, but does not provide much information on pro-
cesses such as memory or seizures, many of whose characteristics are emergent
and are not understandable below the level of ensembles of neurons (see also
Ding et al., Chapter 4, this volume). Consequently, it is critical that the correct
level of organization be chosen to model a given neuronal phenomenon.
Figure 4 illustrates some of the different levels of organization at which
neuronal modeling can be attempted.

In a general way, epilepsy can be thought of as a situation characterized by
an abnormal coherence of neuronal oscillations in both the temporal and
spatial domains. Thus, when investigating the dynamics of epilepsy, the most
appropriate level of description would seem to be a population or group of
neurons. The incidence of epilepsy in developed nations is about 7 in 1000
persons (Garcı́a-Flores et al., 1998). The most common type of adult epilepsy is
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Figure 4. Levels of organization in the brain.

that classed as partial seizures (Hauser, 1993; Hauser et al., 1993). These result
from a focal area of structurally and physiologically abnormal neurons, most
commonly located in the temporal lobe. The focal area generates abnormal
activity of regular periodicity, which can then spread to recruit adjacent
regions that are presumably anatomically and functionally normal; the end
result is a behaviorally manifest seizure (Jefferys, 1990; Luciano, 1993). As
many as 5—10% of patients with epilepsy will eventually become medically
uncontrollable (Wyllie, 1993); however,many in this latter group can be helped
by operative intervention to remove the focal generator site. This surgery can
render such a group seizure free in up to 90% of cases in properly selected
patients (Salanova et al., 1998). It is still not clearly understood, though, why
the removal of the focus should work so well to stop seizures, nor why it fails in
the 10% of intractable cases. Thus it is of great clinical importance to under-
stand more thoroughly the dynamics of seizure generation and spread.

Seizures are usually monitored by EEG, which measures the spatially
averaged electrical potential produced by populations of neurons by using
arrays of scalp electrodes (Lopes da Silva, 1991; Niedermayer, 1993). Seizures
are generally characterized by a high degree of synchronization across the
electrode array and an abnormal degree of periodic regularity (see Figure 5 for
an example). It is this latter feature of the dynamics of epilepsy that we seek to
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Figure 5. EEG tracings from a patient undergoing petit mal seizure. Notice that the
irregular tracings in normal brain state prior to the seizure are replaced by more
orderly, nearly periodic and highly synchronized firing during the seizure (reprinted,
with permission, from Niedermeyer, 1993, inElectroencephalography: Basic Principles,
Clinical Applications and Related Fields, third edition, Copyright Williams & Wilkins,
1993).

explain with the tools of nonlinear dynamics. Other groups have sought to
apply nonlinear dynamical techniques to much more sweeping questions
involving not only epileptic EEG signals but normal EEG as well. For
example, Babloyantz and Destexhe (1986; Destexhe and Babloyantz, 1991)
used techniques from nonlinear dynamics to analyze the difference in voltage
between two electrodes placed at different positions on the head; they claimed
that the dynamics of the EEG time series was governed by a strange attractor
for the normal, awake state and a seizure state. This attractor could be
visualized by reconstructing it in a phase space of dimension D equal to
approximately 4 for the awake state and 2 for a generalized, petit mal seizure
state; the latter value would be expected from the general appearance of Figure
5. Thus, the petit mal seizure state can be thought of as a periodic limit-
cycle oscillation; this conclusion seems quite solid and is probably noncon-
troversial. The general applicability of their result of D� 4 for a normal
awake state is somewhat more questionable, however, as other investigators
have found much higher dimensions when attempting to create phase space
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reconstruction of attractors from normal EEG data. Some studies indicate
that normal EEG signals are indistinguishable from noise (Belair et al., 1995).
But one investigation found that a phase space portrait reconstructed from a
single-channel EEG recording during normal brain activity was chaotic
(Soong and Stuart, 1989).

Furthermore, Lopes da Silva et al. (1994) showed that a seizure could be
followed as it spread across the brain by noting the regions in which a
reconstructed attractor suddenly dropped in dimension D. A recent study
showed that the dimension tends to drop several minutes before the onset of a
seizure (Lehnertz and Elger, 1998); in fact, the most pronounced decrease in
dimension occurs in regions near the focus. This report is quite exciting
because it suggsts that nonlinear dynamical techniquesmight provide a means
of predicting an impending seizure. It appears that while the methods of
nonlinear dynamic theory are quite useful for describing the dynamics of the
brain during (or perhaps just prior to) certain types of seizure, its usefulness in
understandingEEGpatterns during normal waking consciousness is consider-
ably more controversial (e.g., Basar and Bullock, 1989; Duke and Pritchard,
1991; Freeman, 1992; Destexhe, 1994; Kelso and Fuchs, 1995).

If nonlinear dynamics can be used to understand dynamical diseases such as
epilepsy, it has great potential for clinical applications.One example of such an
approach is the work of Schiff et al. (1994), who, with the use of small, correctly
timed electrical perturbations, could coax the dynamics of a synchronously
firing, i.e., ‘seizing’, hippocampal slice into a more normal chaotic regime. The
hippocampus is the structure in the medial temporal lobe in which focal
seizures most commonly originate. To a first approximation, its circuitry is
organized in a ‘lamellar’ pattern orthogonal to the long axis of the temporal
lobe. Thus thin slices in planes parallel to these lamellae preserve most of the
important intercellular connections and can be used in the laboratory as an
important experimental system. By creating a first-returnmap of the interspike
interval measured in the hippocampal slice, these investigators demonstrated
that the dynamics could be controlled with small electrical perturbations,
which maintained the trajectory near an unstable period-1 limit cycle. They
were also able to steer the brain slice into a more normal, chaotic regime. This
technique, called anti-control, may have possible clinical application in the
future for controlling seizures in human patients, since the onset of periodic
dynamics is associated with a seizure (for details, see Ditto and Spano, Chapter
15, this volume).

Our intent in the studies summarized below was to investigate epilepsy by
considering the dynamics of a small population of neurons known as a
subnetwork. A subsequent investigation involved coupling together several
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units of a subnetwork to investigate the spread of regular periodic firing of the
subnetwork as might occur during a seizure (Speelman, 1997; Larter et al.,
1999). The basic equations we start with in building the model are very
commonly used to describe the biophysics of nerve conduction. A necessary
but not sufficient condition for neuronal excitability is that the interior of the
nerve cell is electrically negative relative to the outside. This is due to the fact
that the neuronal membrane is selectively permeable to different ions, chiefly
Na� and K�. Sufficiency is conferred by the property that these membrane
permeabilities, i.e., conductances, vary in response to the state of the neuron
and its rate of change. This mechanism for the generation of the neuronal
action potential is elegantly described by a four-dimensional system of non-
linear differential equations initially put forth in a series of remarkably presci-
ent papers by Hodgkin and Huxley in 1952 (Hodgkin and Huxley, 1952a,b). A
number of excellent reviews of these equations and their mathematical proper-
ties are available; one particularly good one is Cronin (1987).

Once excited, the neuron conducts an electrical impulse, the action poten-
tial, in a nondecremental fashion along its axon to a terminal, where it
communicates with another neuron at a synapse. Synaptic transmission in-
volves electrical—chemical—electrical transduction and the influence on the
secondary neuron can be either excitatory (making it more likely to fire) or
inhibitory (less likely). Two important chemical transmitters in the CNS are
glutamate, which is excitatory, and �-aminobutyric acid (GABA), which is
inhibitory. A time-honored axiom calledDale’s Law holds that a given neuron
is either excitatory or inhibitory, but not both, although recent evidence
suggests hat this is not strictly true in every case.

As noted above, partial seizures are thought to be initiated by a focal area of
structural and functional abnormality in the hippocampus. The exact patho-
logical anatomy is not yet clear but it is likely that the biophysical malfunction
involves either excess excitation, decreased inhibition (including disinhibition)
or both (Schwartzkroin, 1993; Sloviter, 1994; Holmes, 1995; Dichter, 1998).
This type of dysfunction is considered in the simulations using the model
described below.

2.4 Modeling of neuronal dynamics

Computational modeling of neurons can reasonably be considered to have
begun with the work of Hodgkin and Huxley (1952a,b) discussed above. By
making reasonable assumptions about the kinetics of the conductance vari-
ables, FitzHugh determined that the essential dynamics could be represented
by a reduced set of two differential equations (FitzHugh, 1960). Although
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FitzHugh sacrificed the ability to calculate exact quantitative values, he did
create a simple model that recreated the essential qualitative dynamics of the
Hodgkin—Huxley equations. Morris and Lecar later created a hybrid two-
variable model for the membrane potential of neurons in a mollusk (Morris
and Lecar, 1981). It is this particular variation of the Hodgkin—Huxley equa-
tions that we start with in constructing a model for the subnetwork of interest
in the CA3 region of the hippocampus, i.e., the subnetwork thought to be
responsible for seizure initiations.

The goal of the subnetwork model study is to simulate the recruitment and
synchronization of neurons and to determine through this simulation those
parameters that affect the initiation and propagation of a seizure. However,
rather than connecting together a large number of explicitly modeled neurons,
typical of some approaches (Traub et al., 1982; Traub and Miles, 1991), we
collectivelymodel groups or populations of neurons. Thus, by defining a group,
or population, of neurons as a dynamical system, i.e., one described by a few
differential equations, the emergent behavior of this population or group can
be studied. This dynamical system, consequently, describes the behavior of an
important subnetwork in amore complex network constituting the real system
of the hippocampus. Similar models using interconnected excitatory and
inhibitory elements have been previously studied (Wilson and Cowan, 1972;
Kaczmarek, 1976; Plant, 1981; Mackey and an der Heiden, 1984; Castelfranco
and Stech, 1987; Milton et al., 1990). The interpretation of the variables in our
model is that they describe average properties of populations of neurons, i.e., a
prototypical or stereotypical neuron, rather than actual single neurons as the
basic elements of the network. In this work, then, we are taking an approach
similar to that in chemical kinetics in which a mass-action rate law, derived by
considering the behavior of prototypical single molecules undergoing colli-
sion, is reinterpreted on the macroscopic scale in terms of concentrations, i.e.,
variables that describe the average properties of very large numbers of mol-
ecules. As has been pointed out by others (Golomb and Rinzel, 1993, 1994),
what one always loses in approaches like this is information about the distribu-
tion of states that might exist on the microscopic scale; what we gain, of course,
is the ability to simulate macroscopic or collective processes which may not
have meaning at the microscopic level.

The subnetwork model we consider consists of three differential equations
that describe the qualitative behavior of the relevant subnetwork, a population
ofneurons in regionCA3 in thehippocampus.Two types ofneuronare included
in this simplemodel: pyramidal cells withmembranepotentialV and inhibitory
interneurons with membrane potentialV

�
, interconnected by synapses and fed

by current from the excitatory, i.e., perforant, pathway (see Figure 6).
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Figure 6. Schematic drawing of the subnetwork model associated with Equations (3).
For symbols, see the text (reprinted, with permission, from Speelman, 1997).

We have described the dynamical behavior of this subnetwork by a system
of three differential equations based on the two-variable Morris—Lecar model.
Rinzel and Ermentrout (1989) studied the dynamical features of this two-
variable model and found that it was generally applicable to many neuronal
systems. Here, the two-variable Morris—Lecar model is taken to describe the
dynamics of a population of pyramidal cells. To model the behavior of the
subnetwork, we have added a third equation to the Morris—Lecar model to
simulate the effect of a population of inhibitory interneurons connected to the
pyramidal cells and the effect of an excitatory pathway connected to the
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Table 1. Definitions of special functions in Equations (3)
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inhibitory interneurons. Additionally, a term describing the effect of a popula-
tion of inhibitory interneurons connected to a population of pyramidal neur-
ons is added to the first differential equation. The corresponding system of
equations is:
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whereV is the average membrane potential of a typical pyramidal type neuron
in the CA3 region of the hippocampus and W is a relaxation factor which is
essentially the fraction of open K� channels in these pyramidal cells. V

�
is the

potential of the inhibitory interneuron and the g
�
represents the total conduc-

tances for the i�Ca��, K� and leakage channels. The other parameters in
these equations are defined in Table 1, and typical values used in our simula-
tions are given in Table 2.

The functions �
�
and �

�
are hyperbolic functions that describe the collective
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Table 2. Definitions and typical values of the parameters in Equations (3) and the
special functions in Table 1

Parameter Description Value

V
�

Threshold value for m
�

�0.01
V
�

Steepness parameter for m
�

0.15
V
�

Threshold value for w
�

0.0
V
	

Steepness parameter for w
�

0.30
V
�

Threshold value for �
�

0.0
V



Steepness parameter for �
�
and �

�
Variable

V
�

Threshold value for �
�

0.0
g
�


Conductance of population of Ca�� channels 1.1
g
�

Conductance of population of K� channels 2.0
g
�

Conductance of population of leakage channels 0.5
V
�

Equilibrium potential of K� �0.7
V
�

Equilibrium potential of leakage channels �0.5
�
�

Delay Usually zero
i Applied current 0.30
b Time constant scaling factor Variable
c Strength of feedforward inhibition Varied (Figure 7)
� Temperature scaling factor 0.7

activity of a population of synapses. Each individual synaptical connection,
whether inhibitory or excitatory, is assumed to act like an ‘on—off ’ switch
between the pyramidal cell and the inhibitory interneuron. For example, when
the pyramidal cell potential, V, becomes larger than V

�
, a fixed threshold

potential, the connection between the pyramidal cell and the interneuron (�
�
) is

opened. The interneuron has an inhibitory effect on the pyramidal cell through
the negative sign preceding �

�
, the connection from the inhibitory interneurons

to the pyramidal neurons. A simple distribution of synapses is assumed, which
results in a smooth sigmoidal shape for the functions �

�
and �

�
. This assump-

tion is similar to that originally taken by Wilson and Cowan (1972) to describe
the response of individual populations of excitatory and inhibitory cells in
response to an average level of excitation. Their model describes recurrently
connected small populations of excitatory and inhibitory cells, whereas the
current model describes small populations of recurrently connected excitatory
and inhibitory cells. In spirit, then, the current work is more similar to that of
Kaczmarek (1976) and Plant (1981).

The system of Equations (3) was numerically solved using the function
NDSolve included in Mathematica (Wolfram Research) on an Indigo II Sili-
con Graphics workstation. Figure 7 shows a summary of these solutions as a
bifurcation diagram created by plotting the maxima in the V time series while
varying the parameter c. This parameter c is a measure of the current strength
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Figure 7. Bifurcation diagram showing the typical behavior of the subnetwork model
as parameter c is varied. Parameter c corresponds to the degree of inhibition in the
subnetwork of Figure 6 (reprinted, with permission, from Speelman, 1997).

flowing from the excitatory pathway directly into the inhibitory neurons and,
thus, its value can be interpreted as the degree of inhibition in the subnetwork.
A large variety of mixed-mode states are seen to be interspersed with regions of
apparent chaotic behavior. The mixed-mode states are found to be phase-
locked periodic states on a fractal torus attractor (Speelman, 1997); many of
these states appear in Farey-sequence order and the intervening chaotic states
arise via period-doubling cascades from the mixed-mode states. The similarity
between the bifurcation diagram for this neuronal subnetwork model (Figure
7) and the DOP model for the PO reaction (Figure 3) is striking but not
unexpected. Further details regarding the dynamical behavior of this model, a
coupled lattice derived from it to model propagation of a seizure and the
implications of these simulations in elucidating the mechanism of complex
partial seizures can be found in Speelman (1997) and Larter et al. (1999).

2.5 Conclusions

The dynamical features of a particular system (such as a malfunctioning
hippocampus in an epileptic patient) often provide clues to the type of mechan-
ism that might be operative in that system. These clues come from direct
observation and are enhanced by experience with dynamical mechanisms in
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other well-studied systems (e.g., population biology or chemical oscillators).
The role of feedback processes is central in all these types of system and, as we
have seen in the epilepsy example described here, any imbalances between
positive and negative forms of feedback can lead to serious disorders, if these
feedback processes occur in critical physiological systems.

The reduction of a population of neurons to two or three differential
equations may seem drastic, but this approach is not too different from the
original approach of Hodgkin and Huxley (1952a,b), who fit macroscopic
experimental measurements to a four-variable system of differential equations.
The general form of Hodgkin and Huxley’s equations are still used today in the
program GENESIS (Koch and Segev, 1989), which breaks up neurons into
small, discrete compartments in order to deal with the simulation of neuronal
behavior and applies Hodgkin—Huxley-type equations to each compartment.
The compartments can represent different areas of the neuron such as the
dendrite or axon. With this compartment modeling, different ion channels can
be incorporated into each of the different compartments. The compartments
then become analogous to atoms used in molecular dynamics simulations.
Recently, reduced compartment models have been used which is an approach
similar to using models that involve atom types in a molecular dynamics
simulation, such as a one pseudo-atom representation of the methyl group in
molecular mechanics modeling (Bush and Sejnowski, 1993; Pinsky and Rinzel,
1994).

One possible avenue for future exploration involves the success of the new
technique of vagal nerve stimulation for seizure control. It is possible that the
success of this new technique might be at least partially explained by experi-
ments of the type Schiff and co-workers carried out in which a hippocampal
slice undergoing seizures was coaxed back to a chaotic regime with pulses of
current (Schiff et al., 1994). Another important question is the mechanism by
which the seizure propagates to other areas of the brain, recruiting presumably
normal neurons. Clinical observation reveals that patients who have epilepsy
with anatomically and physiologically stable brain abnormalities do not have
seizures on a constant basis. It is likely that an area larger than that of the
stable abnormalities must malfunction in order to produce a behaviorally
manifest seizure. This, then, leads naturally to the question of what prevents
the spatial spread of abnormally periodic oscillations to physiologically nor-
mal tissue. This second issue was looked at using a coupled-lattice model
(Speelman, 1997) and has been described elsewhere (Larter et al., 1999).

There are additional similarities between neuronal modeling and molecular
dynamics. Modeling the entire neuron with one set of differential equations as
was done early on, for example by Kaczmarek (1976), is similar to considering
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an amino acid as one unit in simulations of large proteins. Finally, modeling a
population of neurons, where only the average behavior of the population is
considered would be similar to using stochastic boundary conditions in mol-
ecular dynamics where a ‘bath’ of molecules is represented as a mean field. This
flexibility available to investigators in computational modeling illustrates the
extent of artistry involved in deciding both the appropriate level at which to
model a problem and the simplification and assumptions that can be justified.
The similarity to the problems inherent in modeling the dynamics of the brain
is a good example of the progress that can be achieved in understanding a
complex system when cross-disciplinary fertilization of ideas occurs.
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3

Fractal mechanisms in neuronal control: human
heartbeat and gait dynamics in health and disease

CHUNG-KANG PENG, JEFFREY M. HAUSDORFF
AND ARY L. GOLDBERGER

3.1 Introduction

Clinical diagnosis and basic investigations are critically dependent on the
ability to record and analyze physiological signals. Examples include heart
rate recordings of patients at high risk of sudden death (Figure 1), electroen-
cephalographic (EEG) recordings in epilepsy and other disorders, and fluctu-
ations of hormone and other molecular signal messengers in neuroendocrine
dynamics. However, the traditional bedside and laboratory analyses of these
signals have not kept pace with major advances in technology that allow for
recording and storage of massive data sets of continuously fluctuating signals.
Surprisingly, although these typically complex signals have recently been
shown to represent processes that are nonlinear, nonstationary, and
nonequilibrium in nature, the tools to analyze such data often still assume
linearity, stationarity and equilibrium-like conditions. Such conventional
techniques include analysis of means, standard deviations and other features of
histograms, along with classical power-spectrum analysis. An exciting recent
finding is that such complex data sets may contain hidden information, defined
here as information not extractable with conventional methods of analysis.
Such information promises to be of clinical value (forecasting sudden cardiac
death in ambulatory patients, or cardiopulmonary catastrophes during surgi-
cal procedures), as well as to relate to basic mechanisms of healthy and
pathological function. Fractal analysis is one of the most promising new
approaches for extracting such hidden information from physiological time
series. This is partly due to the fact that the absence of characteristic temporal
(or spatial) scales — the hallmark of fractal behavior — may confer important
biological advantages, related to the adaptability of response (Goldberger et
al., 1990; Bassingthwaighte et al., 1994; Bunde and Havlin, 1994; Goldberger,
1996; Iannaconne and Khokha, 1996; Goldberger, 1997).
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Figure 1. Representative complex physiological fluctuations. Heart rate (normal sinus
rhythm) time series of 30min from (a) a healthy subject at sea level, (b) a subject with
congestive heart failure, (c) a subject with obstructive sleep apnea, and (d) a sudden
cardiac death subject who sustained a cardiac arrest with ventricular fibrillation (VF).
Note the highly nonstationary and ‘noisy’ appearance of the healthy variability, which
is related in part to fractal (scale-free) dynamics. In contrast, pathological statesmay be
associated with the emergence of periodic oscillations, indicating the emergence of a
characteristic timescale. bpm, beats per minute.

In this chapter, we present some recent progress in applying fractal analysis
to human physiology. We begin with a definition of fractal dynamics, followed
by an introduction to some special problems posed by physiological time
series. We then discuss the analysis of the output from two model systems:
(1) human heartbeat regulation, which is under involuntary (neuroautonomic)
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control; and (2) human gait regulation, which is under the voluntary control of
the central nervous system. We focus on the analysis of the output of these two
systems in health and disease.

3.2 Fractal analysis methods

3.2.1 Fractal objects and self-similar processes

Before describing the metrics we use to quantitatively characterize the fractal
properties of heart rate and gait dynamics, we first review the meaning of the
term fractal. The concept of a fractal is most often associated with geometrical
objects satisfying two criteria: self-similarity and fractional dimensionality.
Self-similarity means that an object is composed of subunits and subsubunits
on multiple levels that (statistically) resemble the structure of the whole object
(Feder, 1988). Mathematically, this property should hold on all scales. How-
ever, in the real world, there are necessarily lower and upper bounds over
which such self-similar behavior applies. The second criterion for a fractal
object is that it have a fractional dimension. This requirement distinguishes
fractals from Euclidean objects, which have integer dimensions. As a simple
example, a solid cube is self-similar, since it can be divided into subunits of
eight smaller solid cubes that resemble the large cube, and so on. However, the
cube (despite its self-similarity) is not a fractal because it has a dimension of 3.

The concept of a fractal structure, which lacks a characteristic length scale,
can be extended to the analysis of complex temporal processes. However, a
challenge in detecting and quantifying self-similar scaling in complex time
series is the following. Although time series are usually plotted on a two-
dimensional surface, a time series actually involves two different physical
variables. For example, in Figure 1, the horizontal axis represents ‘time’, while
the vertical axis represents the value of the variable that changes over time (in
this case, heart rate). These two axes have independent physical units, minutes
and beats/minute, respectively. (Even in cases where the two axes of a time
series have the same units, their intrinsic physical meaning is still different.)
This situation is different from that of geometrical curves (such as coastlines
and mountain ranges) embedded in a two-dimensional plane, where both axes
represent the same physical variable. To determine whether a two-dimensional
curve is self-similar, we can do the following test: (1) take a subset of the object
and rescale it to the same size as the original object, using the same magnifica-
tion factor for both its width and height; and then (2) compare the statistical
properties of the rescaled object with the original object. In contrast, to
properly compare a subset of a time series with the original data set, we need
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two magnification factors (along the horizontal and vertical axes), since these
two axes represent different physical variables.

To put the above discussion into mathematical terms: a time-dependent
process (or time series) is self-similar if

y(t) � a�y�
t
a� , (1)

where � means that the statistical properties of both sides of the equation are
identical. In other words, a self-similar process, y(t), with a parameter � has the
identical probability distribution as a properly rescaled process, a�y (t/a), i.e., a
time series which has been rescaled on the x-axis by a factor a (t� t/a) and on
the y-axis by a factor of a� (y� a�y). The exponent � is called the self-similarity
parameter.

In practice, however, it is impossible to determine whether two processes are
statistically identical, because this strict criterion requires them to have ident-
ical distribution functions (including not just the mean and variance, but all
higher moments as well)1. Therefore, one usually approximates this equality
with a weaker criterion by examining only the means and variances (first and
second moments) of the distribution functions for both sides of Equation (1).

Figure 2a shows an example of a self-similar time series. We note that with
the appropriate choice of scaling factors on the x- and y-axes, the rescaled time
series (Figure 2b) resembles the original time series (Figure 2a). The self-
similarity parameter � as defined in Equation (1) can be calculated by a simple
relation

��
lnM

�
lnM

�

(2)

whereM
�
andM

�
are the appropriate magnification factors along the horizon-

tal and vertical direction, respectively.2

In practice, we usually do not know the value of the � exponent in advance.
Instead, we face the challenge of extracting this scaling exponent (if one does
exist) from a given time series. To this end, it is necessary to study the time
series on observation windows with different sizes and adopt the weak cri-
terion of self-similarity defined above to calculate the exponent �. The basic
idea is illustrated in Figure 2. Two observationwindows in Figure 2a,window 1
with horizontal size n

�
and window 2 with horizontal size n

�
, were arbitrarily

1 Equation (1) also requires that the joint probability functions (covariance and all higher-order correla-
tions) are the same.

2 Note that the variable, t/a, on the right hand side of Equation (1) actually represents a magnification factor
of M

�
� a in a graphical representation.
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Figure 2. Illustration of the concept of self-similarity for a simulated random walk.
(a) Two observation windows, with time scales n

�
and n

�
, are shown for a self-similar

time series y(t). (b) Magnification of the smaller window with time scale n
�
. Note that

the fluctuations in (a) and (b) look similar, provided that two different magnification
factors, M

�
and M

�
, are applied on the horizontal and vertical scales, respectively.

(c) The probability distribution,P(y), of the variable y for the twowindows in (a), where
s
�

and s
�

indicate the standard deviations for these two distribution functions.
(d) Log—log plot of the characteristic scales of fluctuations, s, versus the window sizes,
n.

selected to demonstrate the procedure. The goal is to find the correct magnifi-
cation factors such that we can rescale window 1 to resemble window 2. It is
straightforward to determine the magnification factor along the horizontal
direction, M

�
� n

�
/n
�
. But for the magnification factor along the vertical

direction, M
�
, we need to determine the vertical characteristic scales of win-

dows 1 and 2. One way to do this is by examining the probability distributions
(histograms) of the variable y for these two observation windows (Figure 2c). A
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reasonable estimate of the characteristic scales for the vertical heights, i.e., the
typical fluctuations of y, can be defined by using the standard deviations of
these two histograms, denoted as s

�
and s

�
, respectively. Thus, we have

M
�
� s

�
/s
�
. SubstitutingM

�
and M

�
into Equation (2), we obtain

��
lnM

�
lnM

�

�
ln s

�
� ln s

�
ln n

�
� ln n

�

. (3)

This relation is simply the slope of the line that joins these two points, (n
�
,s
�
)

and (n
�
,s
�
), on a log—log plot (Figure 2d).

In analyzing ‘real-world’ time series, we perform the above calculations
using the following procedures. (1) For any given size of observation window,
the time series is divided into subsets of independent windows of the same size.
To obtain a more reliable estimation of the characteristic fluctuation at this
window size, we average over all individual values of s obtained from these
subsets. (2) We then repeat these calculations, not just for two window sizes (as
illustrated above), but for many different window sizes. The exponent � is
estimated by fitting a line on the log—log plot of s versus n across the relevant
range of scales.

3.2.2 Mapping ‘real-world’ time series to self-similar processes

For a self-similar process with �� 0, the fluctuations grow with the window
size in a power-law way. Therefore the fluctuations on large observation
windows are significantly larger than those of smaller windows. As a result, the
time series is unbounded. However, most physiological time series of interest,
such as heart rate and gait, are bounded — they cannot have arbitrarily large
amplitudes no matter how long the data set is. This practical restriction causes
further complications for our analyses. Consider the case of the heart rate time
series shown in Figure 3a. If we zoom in on a subset of the time series, we notice
an apparently self-similar pattern. To visualize this self-similarity, we do not
need to rescale the y-axis (M

�
� 0) — only rescaling of the x-axis is needed.

Therefore, according to Equation (3), the self-similarity parameter is zero — not
an informative result. Consider another example where we randomize the
sequential order of the original heart rate time series, generating a completely
uncorrelated ‘control’ time series (Figure 3b) — white noise. The white noise
data set also has a self-similarity parameter of zero. However, it is obvious that
the patterns in Figure 3a and b are quite different. An immediate problem,
therefore, is how to distinguish the trivial parameter zero in the latter case of
uncorrelated noise, from the non-trivial parameter zero computed for the
original data.
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Figure 3 (opposite). A cardiac interheartbeat interval (inverse of heart rate) time series
is shown in (a) and a randomized control is shown in (b). Successive magnifications of
the subsets show that both time series are self-similar with a trivial exponent �� 0 (i.e.,
M

�
� 1), albeit the patterns are very different in (a) and (b).

Physicists and mathematicians have developed an innovative solution for
this central problem in time series analysis (Hurst, 1951; Kolmogorov, 1961).
The ‘trick’ is to study the fractal properties of the accumulated (integrated)
time series, rather than those of the original signals (Feder, 1988; Beran, 1994).
One well-known physical example with relevance to biological time series is
the dynamics of Brownian motion. In this case, the random force (noise) acting
on particles is bounded, as with physiological time series. However, the trajec-
tory (an integration of all previous forces) of the Brownian particle is not
bounded and exhibits fractal properties that can be quantified by a self-
similarity parameter. When we apply fractal-scaling analysis to the integrated
time series of Figure 3a and b, the self-similarity parameters are indeed
different in these two cases, providing meaningful distinctions between the
original and the randomized control data sets. The details of this analysis are
discussed in the next section.

In summary, mapping the original bounded time series to an integrated
signal is a crucial step in fractal time series analysis. In the rest of this chapter,
therefore, we apply fractal analysis techniques after integration of the original
time series.

3.2.3 Detrended fluctuation analysis

As discussed above, a bounded time series can be mapped to a self-similar
process by integration. However, another challenge facing investigators ap-
plying this type of fractal analysis to physiological data is that these time series
are often highly nonstationary3 (Figure 1a). The integration procedure will
further exaggerate the nonstationarity of the original data.

To overcome this complication, we have introduced a modified root mean
square analysis of a random walk — termed detrended fluctuation analysis
(DFA)4 — to the analysis of biological data (Peng et al., 1994a, 1995). Advan-
tages of DFA over conventional methods (e.g., spectral analysis and Hurst

3 A simplified and general definition characterizes a time series as stationary if themean, standard deviation
and higher moments, as well as the correlation functions are invariant under time translation. Signals that
do not obey these conditions are nonstationary.

4 The DFA computer program is available at http://reylab.bidmc.harvard.eduwithout charge.
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analysis) are that it permits the detection of intrinsic self-similarity embedded
in a seemingly nonstationary time series, and also avoids the spurious detec-
tion of apparent self-similarity, which may be an artifact of extrinsic trends5.
This method has been successfully applied to a wide range of simulated and
physiological time series in recent years (Buldyrev et al., 1993; Hausdorff et al.,
1995b, 1996; Ossadnik et al., 1994; Peng et al., 1994a, 1995).

To illustrate the DFA algorithm, we use the interbeat time series shown in
Figure 3a as an example. First, the interbeat interval time series (of total length
N) is integrated,

y(k)�
�
�
���

[(B(i)�B

��

],

whereB(i) is the ith interbeat interval and B

��

is the average interbeat interval.
As discussed above, this integration step maps the original time series to a
self-similar process. Next, we measure the vertical characteristic scale of the
integrated time series. To do so, the integrated time series is divided into boxes
of equal length, n. In each box of length n, a least-squares line is fit to the data
(representing the trend in that box; see Figure 4). The y-coordinate of the
straight-line segments is denoted by y

�
(k). Next we detrend the integrated time

series, y(k), by subtracting the local trend, y
�
(k), in each box. For a given box

size n, the characteristic size of fluctuation for this integrated and detrended
time series is calculated by

F(n)��
1
N

�
�
���

[y(k)� y
�
(k)]�. (4)

(This quantity F is similar to but not identical with the quantity s measured in
the previous section.)

This computation is repeated over all time scales (box sizes) to provide a
relationship between F(n) and the box size n. Typically, F(n) will increase with
box size n. A linear relationship on a double log graph indicates the presence of
scaling (self-similarity) — the fluctuations in small boxes are related to the
fluctuations in larger boxes in a power-law fashion. The slope of the line
relating log F(n) to log n determines the scaling exponent (self-similarity
parameter), �, as discussed before.

5 The DFA algorithm works better for certain types of nonstationary time series (especially slowly varying
trends). However, it is not designed to handle all possible nonstationarities in real-world data (Peng et al.,
1995).
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Figure 4. The integrated time series: y(k)�
�
�
���

[B(i)�B

��

], where B(i) is the i-th

interbeat interval shown in Figure 3a. The vertical dotted lines indicate boxes of size
n� 100, and the solid straight line segments represent the ‘trend’ estimated in each box
by a linear least-squares fit. (From Peng et al., 1995.)

3.2.4 Relationship between self-similarity and autocorrelation functions

The self-similarity parameter of an integrated time series is related to the more
familiar autocorrelation function, C(�), of the original (nonintegrated) signal.
Briefly:

(1) For white noise, where the value at one instant is completely uncorrelatedwith any
previous values, the integrated value, y(k), corresponds to a random walk and
therefore �� 0.5 (Montroll and Shlesinger, 1984; Feder, 1988). The autocorrela-
tion function, C(�), is 0 for any � (time lag) not equal to zero.

(2) Many natural phenomena are characterized by short-term correlations with a
characteristic time scale, �


, and an autocorrelation function, C(�), that decays

exponentially, i.e., C(�)� exp (� �/�

). The initial slope of F

�
versus log n may be

different from 0.5, but � will approach 0.5 for large window sizes.
(3) An � greater than 0.5 and less than or equal to 1.0 indicates persistent long-range

power-law correlations, i.e., C(�)� ���. The relation between � and � is
�� 2� 2�. Note also that the power spectrum, S( f ), of the original (nonintegrated)
signal is also of a power-law form, i.e., S( f )� 1/f �, because the power spectrum
density is simply the Fourier transform of the autocorrelation function,
�� 1� �� 2�� 1. The case of �� 1 is a special one, which has interested
physicists and biologists for many years — it corresponds to 1/f noise (�� 1).

(4) When 0��� 0.5, power-law anti-correlations are present such that large values
are more likely to be followed by small values and vice versa (Beran, 1994).

(5) When �� 1, correlations exist but cease to be of a power-law form; �� 1.5
indicates brown noise, the integration of white noise.
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The � exponent can also be viewed as an indicator of the ‘roughness’ of the
original time series: the larger the value of �, the smoother the time series. In
this context, 1/f noise can be interpreted as a compromise or ‘trade-off’
between the complete unpredictability of white noise (very rough ‘landscape’)
and the much smoother landscape of Brownian noise (Press, 1978).

In the next sections, we apply these scaling analyses to the output of two
complex integrated neuronal control systems, namely those regulating human
heart rate and gait dynamics in health and disease.

3.3 Fractal dynamics of human heartbeat

Clinicians have traditionally described the normal activity of the heart as
‘regular sinus rhythm’. However, contrary to subjective impression and clinical
assumption, cardiac interbeat intervals normally fluctuate in a complex, ap-
parently erratic manner, even in individuals at rest (Figure 1a; Kitney and
Rompelman, 1980; Goldberger et al., 1990). This highly irregular behavior
defies conventional analyses that require ‘well-behaved’ (stationary) data sets.
Fractal analysis techniques developed above are good candidates for studying
this type of time series where fluctuations on multiple time scales appear to
occur.

3.3.1 Is the healthy human heartbeat fractal?

To test whether heartbeat time series exhibit fractal behavior, we can apply the
DFA algorithm to the full, 24-hour data sets excerpted in Figure 3. Figure 5
compares the DFA analysis of the interbeat interval time series for the healthy
subject with the randomized control time series. For the healthy subject, DFA
analysis shows scaling behavior with exponent �� 1 over three decades,
consistent with 1/f-type of dynamics as previously reported (Kobayashi and
Musha, 1982; Peng et al., 1993b).6 As expected, the randomized control data set
shows a trivial exponent �� 0.5, indicating uncorrelated randomness. Power
spectrum analysis confirms the DFA results. The � exponent derived from the
power spectrum, however, is less accurate because the stationarity requirement
for Fourier analysis is not satisfied in this case.

6 One alternative method to reduce the effects of nonstationarity in heart rate time series is to study the first
difference of the original time series. In that case, the interbeat interval increments exhibit long-range
anti-correlations (Peng et al., 1993b).
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Figure 5. Scaling analyses for two 24-hour interbeat interval time series shown in
Figure 3. The solid circles represent data from a healthy subject, while the open circles
are for the artificial time series generated by randomizing the sequential order of data
points in the original time series. (a) Plot of logF(n) vs. log n by the DFA analysis.
(b) Fourier power spectrum analysis. The spectra have been smoothed (binned) to
reduce scatter.
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3.3.2 Does fractal scaling break down in disease and aging?

The presence of long-range (fractal) correlations for healthy heartbeat fluctu-
ations has important implications for understanding and modeling neur-
oautonomic regulation, as discussed below. A corollary question is whether
pathological states and aging are associatedwith distinctive alterations in these
scaling properties that could be of practical diagnostic and prognostic use.

Analysis of data from patients with congestive heart failure is likely to be
particularly informative in assessing correlations under pathological condi-
tions, since these individuals have abnormalities in both the sympathetic and
parasympathetic control mechanisms that regulate beat-to-beat variability
(Goldberger et al., 1988). Previous studies have demonstratedmarked changes
in short-range heart rate dynamics in heart failure compared to healthy
function, including the emergence of intermittent relatively low frequency
(�one cycle/min) heart rate oscillations associated with the well-recognized
syndrome of periodic (Cheyne—Stokes) respiration, an abnormal breathing
pattern often associated with low cardiac output (Goldberger et al., 1988;
Goldberger, 1997). Of note is the fact that patients with congestive heart failure
are at very high risk for sudden cardiac death.

Figure 6 compares a representative result of fractal scaling analysis of
representative 24-hour interbeat interval time series from a healthy subject and
a patient with congestive heart failure. Notice that for large time scales
(asymptotic behavior), the healthy subject shows almost perfect power-law
scaling over more than two decades (20� n� 10 000) with �� 1 (i.e., 1/f
noise), while for the heart failure data set, �� 1.3 (closer to Brownian noise).
This result indicates that there is a significant difference in the scaling behavior
between healthy and diseased states, consistent with a breakdown in long-
range correlations.

To systematically study the alteration of long-range correlations with life-
threatening pathologies, we have analyzed cardiac interbeat data from three
different groups of subjects (Peng et al., 1995; Amaral et al., 1998): (1) 29 adults
(17 male and 12 female) without clinical evidence of heart disease (age range:
20—64 years, mean 41), (2) ten subjects with fatal or near-fatal sudden cardiac
death syndrome (age range: 35—82 years) and (3) 15 adults with severe heart
failure (age range: 22—71 years; mean 56). Data from each subject contained
approximately 24 hours of electrocardiogram (ECG) recording encompassing
�10� heartbeats.

For the normal control group, we observed �� 1.0� 0.1 (mean
value�SD). These results confirm that healthy heart rate fluctuations exhibit
long-range power-law (fractal) correlation behavior over three decades, similar
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Figure 6. Plot of logF(n) vs. log n for three interbeat interval time series: healthy young
subject, elderly subject, and a subject with congestive heart failure. Compared with the
healthy young subject, the heart failure and healthy elderly subjects show different
patterns of altered scaling behavior (for details, see text).

to that observed in many dynamical systems far from equilibrium (Mallamace
and Stanley, 1997; Meakin, 1997). Furthermore, both pathological groups
showed significant deviation of the long-range correlations exponent � from
the normal value, �� 1. For the group of heart failure subjects, we found that
�� 1.24� 0.22, while for the group of sudden cardiac death syndrome sub-
jects, we found that �� 1.22� 0.25. Of particular note, we obtained similar
results when we divided the time series into three consecutive subsets (of �8 h
each) and repeated the above analysis. Therefore our findings are not simply
attributable to different levels of daily activities.7

Similar analysis was applied to study the effect of physiological aging. Ten
young (21—34 years) and ten elderly (68—81 years) healthy subjects underwent
2 h of continuous supine resting ECG recording (Figure 6). In healthy young
subjects, the scaling exponent had an � value close to 1.0. In the group of
healthy elderly subjects, the interbeat interval time series showed two scaling
regions. Over the short range, interbeat interval fluctuations resembled a
randomwalk process (Brownian noise, �� 1.5), whereas over the longer range
they resembled white noise �� 0.5). Short-range (�

�
) and long-range (�

�
)

exponents were significantly different in the elderly subjects compared with
young subjects (Iyengar et al., 1996). Interestingly, the alterations of scaling

7 More recent analysis does indicate subtle but important differences in fractal scaling between sleep and
wake periods under healthy as well as diseased conditions (P. C. Ivanov et al., unpublished data).
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behavior associated with physiological aging exhibited different patterns com-
pared with the changes associated with heart failure.

3.3.3 Clinical utility of fractal heart rate analysis

A relevant question regarding these new measurements is ‘does fractal analy-
sis, such as the DFA method, have clinically predictive value, independent of
conventional statistical indices?’ To answer this question, we have studied the
predictive power of the DFA exponent in comparison with multiple conven-
tional measures based on mean, variance and spectral analysis (Ho et al.,
1997). We analyzed two-hour ambulatory ECG recordings of 69 participants
(mean age 71.7� 8 years) in the Framingham Heart Study — a prospective,
population-based study. The study population consisted of chronic conges-
tive heart failure patients, and age- and sex-matched control subjects. Import-
antly, we found that this fractal measurement carried prognostic information
about mortality not extractable from traditional methods of heart rate varia-
bility analysis (Figure 7). Subsequent studies have confirmed and extended
these observations (Mäkikallio et al., 1997, 1998, 1999), suggesting that fractal
scaling measures may have a practical use in bedside and ambulatory
monitoring.

3.4 Fractal dynamics of human walking

In the previous section, we described the fractal fluctuations in the healthy
human heartbeat, as well as alterations of these normal scale-invariant pat-
terns with both aging and disease. In this section, we turn our attention from
the dynamics of the involuntary (autonomic) nervous system to the voluntary
nervous system.

Our focus here is on the step-to-step fluctuations in walking rhythm; that is,
the duration of the gait cycle, also referred to as the stride interval (see Figure
8). The stride interval is analogous to the cardiac interbeat interval, and, like
the heartbeat, it was traditionally thought to be quite regular under healthy
conditions. However, as shown in Figure 8, subtle and complex fluctuations
are apparent in the duration of the stride interval. While this ‘noise’ had been
previously observed (Gabell and Nayak, 1984; Yamasaki et al., 1991), until
recently these fluctuations had not been characterized and their origin was
largely unknown. Our goal is to analyze these step-to-step fluctuations in gait
in order to gain insight into the neuronal control of locomotion in health and
disease.
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Figure 7. Assessment of patient survival rate by using an index (DFA index) derived
from DFA analysis along with the information about the standard deviation of heart
rate variability (SHR). In this population-based (Framingham Heart) study, we found,
using multivariable analysis, that the DFA and SHR were the two most powerful
independent heart rate variability predictors of mortality. Here, high and low DFA
indices (or SHR) refer to their median values. (After Ho et al., 1997, Predicting survival
in heart failure cases and controls using fully automated methods for deriving non-
linear and conventional indices of heart rate dynamics, Circulation 96: 842—848.)

The simplest explanation for these step-to-step variations in walking
rhythm is that they trivially represent uncorrelated (white) noise superim-
posed on a basically regular process — random fluctuations riding on top of
the normal, constant walking rhythm. A second possibility is that these fluc-
tuations have short-range correlations (‘memory’) as one might expect to see
in a Markov process or a biological system where there is exponential decay
of the system ‘memory’. In that case, the current value of the stride interval
would be influenced by only the most recent stride intervals, but, over the
long term, fluctuations would vary randomly. A third, less intuitive possibil-
ity is that the fluctuations in the stride interval could exhibit the type of
long-range correlations seen in the healthy human heartbeat (see above), as
well as other scale-free, fractal phenomena (Feder, 1988; Bassingthwaighte et
al., 1994). If this were the case, the stride interval at any instant would
depend (at least in a statistical sense) on the intervals at relatively remote
times, and this dependence (‘memory effect’) would decay in a power-law
fashion.
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Figure 8. (Top) The gait cycle duration is termed the stride interval and is typically
measured as the time between consecutive heel strikes of the same foot. (Bottom) Stride
interval time series of a healthy subject while walking under constant environmental
conditions. Although the stride interval is fairly stable (varying only between 1.1 and
1.4 s), it fluctuates about its mean (solid line) in an apparently unpredictablemanner. A
key question is whether these fluctuations represent uncorrelated randomness or
whether there is a hidden fractal temporal structure, like that seen for the heartbeat.
(Adapted from Hausdorff et al., 1995b.)

3.4.1 Is healthy gait rhythm fractal?

To test these possibilities, we first measured the stride interval in healthy young
adult men as they walked continuously on level ground at their self-deter-
mined, usual rate for about 9min (Hausdorff et al., 1995b). To measure the
stride interval in health and disease, ultra-thin, force-sensitive switches were
placed inside the shoe. We recorded the footswitch force on an ambulatory
recorder and then determined heel strike timing (Hausdorff et al., 1995a). This
recently devised, inexpensive and portable technique enables, for the first time,
continuous and relatively long-term measurement of gait, and is roughly
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analogous to the use of Holter monitoring for recording continuous heartbeat
activity.

A representative stride interval time series from a healthy subject is shown in
Figure 9 (top). Of note is the stability of the stride interval; during a 9-minwalk,
the coefficient of variation is only 4%. Thus, as in Figure 8, a reasonable first
approximation of the dynamics of the stride interval would be a constant.
Nonetheless, the stride interval, like the healthy heartbeat, does vary irregu-
larly, raising the intriguing possibility of some underlying complex temporal
‘structure’. Further, this complicated pattern changes after random shuffling of
the data points (Figure 9), demonstrating that the original temporal pattern is
related to the sequential orderingof the stride intervals, and is not simplya result
of the distributionof the data points. Figure 9 (bottom left) shows theDFAplots
for the original time series and the shuffled time series. The slope of the line
relating logF(n) to log n is 0.83 for the original time series and 0.50 after random
shuffling.Thus, fluctuations in the stride interval scale asF(n)� n��� indicating
long-range correlations, while the shuffled data set behaves as uncorrelated
(white) noise; �� 0.5. Figure 9 (bottom right) displays the power spectrum of
the original time series. The spectrum is broad-band and scales as 1/f � with
�� 0.92. The two scaling exponents are consistent with each other within
statistical error due to finitedata length (Peng et al., 1993a), andboth� and�are
consistent with long-range (fractal) correlations (compare with Figure 5).

For a group of ten healthy adults, we confirmed that the scaling exponents �
and � both indicated the presence of long-range correlations consistent with a
fractal gait rhythm. After random shuffling of the original stride interval time
series, � approaches the value of a completely uncorrelated process (0.5). The
shuffled time series has the same mean and standard deviation as the original
time series, indicating that this fractal property of healthy human gait is related
to the sequential ordering of the stride interval time series, but not to the first
or second moments of the time series.

3.4.2 Stability of healthy fractal rhythm: effects of walking rate

The unexpected observation of fractal variability in human gait raises a
number of questions. Does the fractal gait rhythm exist only during walking at
one’s normal pace, or does it occur at slower and faster walking rates as well?
Does the influence of one stride interval on another continue beyond a few
hundred strides, or do the long-range correlations eventually break down
during an extended walk? To answer these questions, we asked young healthy
men to walk for 1 h at their usual rate as well as at slow and fast paces around
an outdoor track (Hausdorff et al., 1996). A representative example of the effect
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Figure 9. (Top) Representative stride interval time series before and after random
shuffling of the data points. (Bottom) The detrended fluctuation analysis (DFA) and
power spectrum analysis. The structure in the original time series disappears after
random shuffling of the data. DFA indicates that this structure represents a fractal
process with long-range correlations (�� 0.83). (Adapted from Hausdorff et al.,
1995b.)
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Figure 10. An example of the effects of walking rate on stride interval dynamics. (a)
One-hour stride interval time series for slow (1.0m/s), normal (1.3m/s), and fast
(1.7m/s) walking rates. Note the breakdown of the temporal structure with random
reordering of the fast walking trial data points, even though this shuffled time series
has the same mean and standard deviation as the original, fast time series. (b, c)
Fluctuation and power spectrum analyses confirm the presence of long-range correla-
tions at all three walking speeds and their absence after random shuffling of the data
points. (Adapted from Hausdorff et al., 1996.)
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of walking speed on the stride interval fluctuations and long-range correla-
tions is shown in Figure 10. Remarkably, the locomotor control system
maintains the stride interval at an almost constant level throughout the 1 h of
walking at all three walking speeds. Nevertheless, both the DFA and power
spectral analysis indicate that the subtle variations in walking rhythm are not
random. Instead, the time series exhibit long-range correlations at all three
walking rates. The fractal scaling indices � and � remained fairly constant
despite substantial changes in walking velocity and mean stride interval. For
all subjects tested at all three walking rates, the stride interval time series
displayed long-range, fractal correlations over thousands of steps. These findings
indicate that the fractal dynamics of walking rhythm are normally quite robust
and appear to be intrinsic to the locomotor system.

3.4.3 Mechanisms of fractal gait

What biological mechanisms are necessary to generate this fractal gait
rhythm? To further investigate this question, we asked subjects to walk in time
to a metronome that was set to each subject’s normal stride interval. The
purpose of this test was to help to characterize the biological ‘clock’ that
controls locomotion. A breakdown of long-range correlations during metro-
nomic walking would suggest that some locomotor pacesetter above the level
of the spinal cord (supraspinal mechanism) is essential in generating this
scale-free behavior or, at least, that centrally mediated entrainment of the
clock can ‘overcome’ long-range correlations generated peripherally. Alterna-
tively, persistence of the long-range correlations during metronomic walking
might imply that the scaling property is unrelated to central influences and
that it results either from neuronal circuits at or below the level of the spinal
cord, or from peripheral feedback influences. The results during metronomic
walking were consistently different from those obtained when the walking
rhythm was unconstrained. During metronomically paced walking, fluctu-
ations in the stride interval were always random and failed to exhibit long-
range, fractal correlations.

Metronomic walking and normal, unconstrained walking both utilize the
same mechanical systems, the same force generators, and the same feedback
networks. The breakdown of fractal, long-range correlations during metro-
nomically paced walking demonstrates that influences above the spinal cord (a
metronome) can override the normally present long-range correlations. This
finding is of interest because it demonstrates that supraspinal nervous system
control is critical in generating the robust, fractal pattern in normal human
gait.
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3.4.4 Alterations of fractal dynamics with aging and disease

These findings indicate that fractal gait dynamics depend on central nervous
system function. Therefore, we hypothesized that, just as aging and cardiovas-
cular diseasemay alter the fractal nature of the heartbeat, so too might changes
in central nervous system function alter the fractal gait pattern. To test this
hypothesis, we have begun to systematically study the effects of advanced age
and neurodegenerative disorders on fractal gait rhythm (Hausdorff et al.,
1997b).

3.4.4.1 Effects of aging

We compared the gait of a group of very healthy elderly adults (ages 76� 3
years) to healthy young adults (ages 25� 2 years). Interestingly, both groups
had identical mean stride intervals (elderly 1.05 s; young 1.05 s), and required
almost identical amounts of time to perform a standardized functional test of
gait and balance. The magnitude of stride-to-stride variability (i.e., stride
interval coefficient of variation) was also very similar in the two groups (elderly
2.0%; young 1.9%). Figure 11 (left) compares the stride interval time series for
one young and one elderly subject. Visual inspection suggests a possible subtle
difference in the dynamics of the two time series (the data from the young
subject appearing more ‘patchy’). Fluctuation analysis reveals a marked dis-
tinction in how the fluctuations change with time scale for these subjects. The
stride interval fluctuations are more random (less correlated) for the elderly
subject than for the young subject, a difference not detectable by comparing the
first and second moments.

Similar results were obtained for other subjects in these groups, indicating
a subtle, previously undetected alteration in the fractal scaling of gait with
healthy aging. Even among healthy elderly adults who have otherwise nor-
mal measures of gait and lower extremity function, the fractal-scaling pattern
is significantly altered when compared with young adults. From a practical
clinical perspective, the breakdown of long-range correlations of gait with
aging is of interest for a number of reasons. An exciting prospect is that
quantitative assessment of fractal properties of locomotion may provide a
simple, inexpensive way to obtain important information about gait instabil-
ity among the elderly. Falls are a major cause of disability and death in this
age group (Hausdorff et al., 1997a). The ability to identify individuals at
greatest risk, as well as to assess interventions designed to restore gait stabil-
ity (e.g., exercise, footwear), could have major public health implications.
From a more basic physiological viewpoint, realistic models of gait dynamics
must account not only for the unexpected long-range correlations in stride
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Figure 11. Left: Example of the effects of aging. Stride interval time series are shown
(above) and DFA (below) for a 71-year-old elderly subject and a 23-year-old young
adult. For illustrative purposes, each time series is normalized by subtracting its mean
and dividing by its standard deviation. This normalization process highlights any
temporal ‘structure’ in the time series, but does not affect the fluctuation analysis.
Therefore, in this figure, stride interval is without units. For the elderly subject, DFA
indicates a more random and less correlated time series. Indeed, �� 0.56 (�white
noise) for the elderly subject and 1.04 (1/f noise) for the young adult.
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Right: Example of the effects of Huntington’s disease (HD). For the subject with
Huntington’s disease (age: 41-years old), as comparedwith a healthy control, the stride
interval fluctuations, F(n), increase more slowly with time scale, n. This indicates a
more random and less correlated time series. Indeed, �� 0.40 for this subject with
Huntington’s disease and 0.92 for this healthy control subject. (Adapted from Haus-
dorff et al., 1997b.)
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interval in health, but also for their breakdown with aging and disease (Haus-
dorff et al., 1995b).

3.4.4.2 Effects of neurodegenerative disease

We further hypothesized that impaired central nervous system control might
also alter the fractal property of gait. To test this hypothesis, we have com-
pared the stride interval time series of subjects with Huntington’s disease and
Parkinson’s disease, two major neurodegenerative disorders of the basal gan-
glia (a part of the brain responsible for regulating motor control), with data
from healthy controls. The time series and fluctuation analysis for a subject
with Huntington’s disease and a control subject are shown in Figure 11 (right
panel). For the subject with Huntington’s disease, stride interval fluctuations,
F(n), increase slowly with time scale, n, compared with a healthy control. This
finding indicates increased randomness and reduced stride interval correla-
tions as compared with the control subject. In general, compared with healthy
control subjects, fractal scaling was reduced in the subjects with Parkinson’s
disease and reduced further in subjects with Huntington’s disease. Interest-
ingly, while � was lowest in subjects with Huntington’s and intermediate in
subjects with Parkinson’s disease, subjects with Parkinson’s disease walked
more slowly compared with subjects with Huntington’s disease, further con-
firming that the mechanisms responsible for the generation of gait speed are
apparently independent of those regulating fractal scaling (Figure 10a).

Among the subjects with Huntington’s disease, the fractal scaling index �
was inversely correlated with disease severity (see Figure 12). Moreover, � was
significantly lower in subjects with the most advanced stages of Huntington’s
disease as compared with subjects in the early stages of the disease, indicative
of more random stride interval fluctuations. Interestingly, in a few subjects
with themost severe impairment, �was less than 0.5, suggesting the presence of
a qualitatively different type of dynamical behavior (namely, anti-correlations)
in the gait rhythm.

These results indicate that, with both Parkinson’s and Huntington’s disease,
there is a breakdown of the normal fractal, long-range correlations in the stride
interval, especially apparent in subjects with advanced Huntington’s disease.
Step-to-step fluctuations aremore random (i.e., more like white noise), suggest-
ing that the fractal property of gait is modulated in part by central nervous
system (i.e., basal ganglia) function. Although fractal scaling is altered both
with aging and certain diseases, the magnitude of these changes varies in
different conditions, and other measures of gait dynamics may also distinguish
among different disease states and aging (Hausdorff et al., 1998), adding
specificity to these new dynamical measures (compare with Figure 6).
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Figure 12. Among subjects with Huntington’s disease, disease severity score (0�most
impairment; 13�no impairment), measured using an index that correlates with
positron emission tomography (PET) scan indices of caudate metabolism (Young et
al., 1986), is strongly (p� 0.0005) associated with fractal scaling of gait. (Adapted from
Hausdorff et al., 1997b.)

3.5 Fractal dynamics of heart rate and gait: implications and general
conclusions

In this chapter, we have investigated the output of two types of neuro-
physiological control systems, one involuntary (heartbeat regulation), and the
other voluntary (gait regulation). We find that the time series of both human
heart rate and stride interval show ‘noisy’ fluctuations. According to classical
physiological paradigms based on homeostasis, such systems should be de-
signed to damp out noise and settle down to a constant equilibrium-like state
(Cannon, 1929). However, analysis of both heartbeat and gait fluctuations
under apparently steady-state conditions reveals the presence of long-range
correlations (see Table 1). This ‘hidden’ fractal property is more consistent with
a regulatory system driven away from equilibrium, reminiscent of the behavior
of dynamical systems near a critical point, or, in the case of physiological
systems, perhaps a critical zone of parameter values (Ivanov et al., 1998). The
discovery of such long-range organization poses a remarkable challenge to
contemporary efforts to understand and eventually simulate physiological
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Table 1. Fractal dynamics of heart rate and gait

Fractal heart dynamics Fractal gait dynamics

Features in health Extends over 1000s of beats
Persists during different
activities

Extends over 1000s of steps
Persists regardless of gait
speed (slow, normal, fast)

Potential diagnostic
and prognostic utility

Altered with advanced age
Altered with cardiovascular
disease (e.g., heart failure)
Helps predict survival

Altered with advanced age
Altered with nervous system
disease (e.g., Parkinson’s
disease)
May predict falls among
elderly

control systems. Plausible models must account for such long-range ‘memory’
(Hausdorff et al., 1995b, 1996). There are no precedents in classical physiology
to explain such complex behavior, which in physical systems has been connec-
ted with turbulence and related multiscale phenomena. The discovery of
fractal dynamics as a possibly ‘universal’ feature of integrated neuronal control
networks raises the intriguing possibility that the mechanisms regulating such
systems interact as part of coupled cascade of feedback loops in a system
driven far from equilibrium (Ivanov et al., 1999).

The long-range power-law correlations in healthy heart rate and gait dy-
namics may be adaptive for at least two reasons (Peng et al., 1993b): (1) the
long-range correlations may serve as a newly described organizing principle
for highly complex, nonlinear processes that generate fluctuations on a wide
range of time scales, and (2) the lack of a characteristic scale may help to
prevent excessive mode locking that would restrict the functional responsive-
ness (plasticity) of the organism. Support for these two related conjectures is
provided by the findings described here from severely pathological states, such
as heart failure, where the breakdown of long-range correlations is often
accompanied by the emergence of a dominant frequency mode (e.g., the
Cheyne—Stokes frequency; compare Figure 1b). Analogous transitions to
highly periodic behavior have been observed in a wide range of other disease
states, including certain malignancies, sudden cardiac death, epilepsy, fetal
distress syndromes, and with certain drug toxicities (Goldberger, 1996, 1997).

Unanswered questions currently under study include the following. What
are the physiological mechanisms underlying such long-range correlations in
heartbeat and gait? How do these macroscopic dynamics relate to microscopic
fluctuations and self-organization at the cellular and molecular levels
(Liebovitch and Toth, 1990)? Are these fluctuations entirely stochastic or do
they represent the interplay of deterministic and stochastic mechanisms (Gold-
berger, 1997; Ivanov et al., 1998)?
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Figure 13. The breakdown of long-range power-law correlations may lead to any of
three dynamical states: (1) a random walk (‘brown noise’) as observed in low-frequency
heart rate fluctuations in certain cases of severe heart failure; (2) highly periodic
oscillations, as also observed in Cheyne—Stokes pathophysiology in heart failure, as
well as with sleep apnea (Figure 1c), and (3) completely uncorrelated behavior (white
noise), perhaps exemplified by the short-term heart rate dynamics during atrial fibrilla-
tion. (After Peng et al., 1994b.)

From a practical viewpoint, these findings may have implications for
physiological monitoring. The breakdown of normal long-range correlations
in any physiological system could theoretically lead to three possible dynami-
cal states (Figure 13; Peng et al., 1994b): (1) a random walk (brown noise), (2)
highly periodic behavior, or (3) completely uncorrelated behavior (white
noise). Cases (1) and (2) both indicate only ‘trivial’ long-range correlations of
the types observed in severe heart failure. Case (3) may correspond to certain
cardiac arrhythmias such as fibrillation, or to gait disorders such as Hunt-
ington’s disease. Such alterations are not detectable with traditional clinical
statistics (e.g., those based upon comparison of means and variances). The
application of fractal and related analysis techniques is likely to provide an
important, complementary set of tools to assess the stability of such systems
and their changes with aging and disease (Figures 6 and 11). Perhaps most
exciting is the prospect that such new approaches may be the basis for the
development of dynamical assays designed to assess the efficacy and exclude
the toxicity of new interventions, which hopefully will maintain and restore the
multiscale complexity and correlated noisiness that appear to be defining
features of healthy, adaptive physiology.
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4

Self-organizing dynamics in human sensorimotor
coordination and perception

MINGZHOU DING, YANQING CHEN,
J . A. SCOTT KELSO AND BETTY TULLER

4.1 Introduction

The human brain is composed of 100 billion to a trillion neurons and as many
neuroglia. The human-and-environment system is open and complex. Human
behavior is adaptive and multifunctional, arising from interactions that occur
on many levels among diverse organizational components. How is the vast
material complexity of the brain on the one hand and the behavioral complex-
ity that emerges on the other to be understood? In this chapter we describe
experiments that illustrate recent research efforts aimed at uncovering the
basic principles and mechanisms governing the brain and behavioral function.
In particular, we focus on the following specific questions. (1) How do we react
to and coordinate with the environment (see Section 4.2), and (2) how do we
perceive and categorize the world around us (see Section 4.3)? Our work is
based on the joint premises that a more complete understanding of how the
brain works will come: (1) when experimental research in the laboratory is
combined with new theoretical approaches investigating how the brain func-
tions as a whole; and (2) as a result of direct, multidisciplinary collaborations
between neuroscientists, experimental psychologists, mathematicians and
physicists.

4.2 Evidence for self-organized dynamics from a human sensorimotor
coordination experiment

One of the simplest forms of human—environment coordination involves
producingmotor outputs at a specific timing relationshipwith regular external
events.Many human activities such as music and dance depend on the efficient
execution of this sensorimotor task.We approach this problemby carrying out
a simple experiment in which a subject taps his finger on a computer keyboard
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Figure 1. Definition of the synchronization error, e
�
, and inter-response interval, I

�
.

(From Chen et al., 1995, with permission.)

in synchrony with a periodic sequence of metronome beeps (Chen et al., 1997).
The variability of his performance is quantified by the synchronization error, e

�
,

defined as the difference between the computer-recorded tapping time and the
metronome onset time (see Figure 1). The time course of this variable is erratic,
showing clear evidence of an underlying random process (Figure 2). It has long
been surmised that understanding the nature of this putative random process
is an important step towards unraveling the brain’s strategy of timing control
(Hary and Moore, 1985). Previous work in this area has focused mainly on
measuring the mean and the variance of e

�
from short trials (� 100 cycles).

These averaged quantities ignore the temporal structure of the synchronization
error time series. Motivated by ideas and concepts from physics and mathe-
matics, we redesigned the experiment by extending the length of experimental
trials substantially beyond that employed in traditional experiments, and
applied a host of new techniques to analyze the data, including the rescaled
range method and the spectral maximum likelihood estimator. This new
methodology enabled us to establish that the temporal structure of the syn-
chronization error time series is characterized by 1/f � type of long memory (i.e.,
long-range correlations), and that the underlying stochastic process can be
modeled by fractional Gaussian noise.

4.2.1 Experimental design and observations

Five right-handed male subjects took part in the synchronization experiment.
Seated in a sound-attenuated chamber, each subject was instructed to cycli-
cally press his index finger against a computer key in synchronywith a periodic
series of auditory beeps, delivered through headphones. Two frequency condi-
tions, F

�
� 2Hz (T

�
� 500ms) and F

�
� 1.25Hz (T

�
� 800ms) were studied.
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Figure 2. Example of a synchronization error time series. Histogram and its Gaussian
fit are shown in the insets. Notice that most synchronization errors and their average
are negative, meaning that, on average, the subject tapped before the beep. (FromChen
et al., 1995, with permission.)

These frequencies were chosen such that the subject was able to perform the
required tapping motion continuously. Each experimental session consisted of
the subject performing 1200 continuous taps for a given frequency. A computer
programwas used to register the time of a specific point in the tapping cycle in
microsecond resolution. The data collected were the inter-response intervals, I

�
,

and the synchronization or tapping errors, e
�
. As shown in Figure 1, I

�
and e

�
relate to each other through
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Careful considerations indicated that e

�
is the fundamental time series in this

experiment and is the subject of analysis below (Chen et al., 1997).

4.2.2 Results of data analysis

Twenty time series, each consisting of 1200 points, were collected from the five
subjects, each performing two sessions for a given frequency condition. Each
time series was indexed by the order of responses. Figure 2 shows a typical
example of an error time series for F

�
. The data appear to be stationary. In

addition, the distribution of the variable e
�
, shown as a histogram in the inset of

Figure 2, is well fit by a Gaussian distribution with a mean of � 16.9ms and
standard deviation of 20.3ms. A chi-square test confirmed the assertion that e

�
was Gaussian distributed.

An initial indication of the long-memory character of the time series in
Figure 2 was provided by computing its spectral density using 1024 points
after discarding the first 50 points to eliminate transients. The result, plotted on
a log scale in Figure 3a, roughly follows a straight line, suggesting that the
spectral density, S( f ), scales with frequency, f, as a power law, S( f )	 f��,
where �� 0.54. From a theorem in Beran (1994) this implies that the autocor-
relation function,C(k), of the original error time series, e

�
, decays with the time

lag k also as a power law,

C(k)	 k��, (2)

where �� 1� �� 0.46. Recall that a long-memory process is mathematically
defined as a process whose autocorrelation function, C(k), sums to infinity
(Beran, 1994),

�
�
��

C(k)�
. (3)

The autocorrelation function in Equation (2), with 0��� 0.46� 1, meets
this definition. This establishes the error time series in Figure 2 as coming from
a long-memory process, specifically a fractional Gaussian noise process (Man-
delbrot and Van Ness, 1968). Similar results were obtained for all 20 error time
series from the experiment. Also, the average spectral density for the 10 error
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Figure 3. (a) Spectral density of the error time series in Figure 2. We have converted
the unit of frequency from 1/beat to Hz. (b) Log—log plot of averaged R/S value, Q(s),
against window size, s, for the time series in Figure 2. (From Chen et al., 1995, with
permission.)

time series from each frequency condition was observed to obey a power law
with slope close to 1/2.

Another index for long-memory processes is the Hurst exponent, H. It
relates to � through (Beran, 1994),

H� (1� �)/2. (4)

A direct way to estimate the value of H is the trend-corrected rescaled range
analysis originally used by Hurst to analyze yearly minima of the Nile River
(Hurst, 1951). Let the trend-corrected range of the random walk be denoted as
R(n,s). Let S�(n,s) denote the sample variance of the data set. If the average
rescaled statisticQ(s)�
R(n,s)/S(n,s)�

�
scales with s as a power law for large s,

Q(s)	 s�, thenH is the Hurst exponent. One can show that, if the autocorrela-
tion function, C(k), sums to a finite number, then generally H� 1/2, corre-
sponding to the case of short-term memory. If Equation (3) holds, then
1/2�H� 1, and the time series is said to have long-persistent memory.

Figure 3b shows the log—log plot of Q(s) versus s for the error time series
shown in Figure 2. A straight-line fit to the data gives H� 0.79, which is
consistent with H� 0.77 obtained from Figure 3a and Equation (4). Applying
the same rescaled range analysis to all the error time series, we found the
average Hurst exponent to be about 0.723� 0.071, which is significantly
greater than H� 1/2. Similar results were obtained using the maximum
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likelihood estimator (Beran, 1994) applied to the power spectra (for details see
Chen et al., 1997).

4.3 Evidence for self-organized dynamics from a speech perception experiment

The area of speech perception offers rich possibilities for addressing the
question of how we perceive and categorize the world around us. In a recent
study we examined the issue of how people sort a continuously varying
acoustic signal into appropriate phonemic categories by studying the dynami-
cal processes involved (Tuller et al., 1994; Case et al., 1996). The employed
experimental paradigm generalizes the classical phenomenon known as cat-
egorical perception. Categorical perception refers to a class of phenomena in
speech perception where a range of acoustic stimuli are perceived as belonging
to the same phonetic category. For our experiments, the stimuli consisted of a
natural 120-ms ‘s’ excised from a male utterance of ‘say’, followed by a silent
gap of variable duration (0 to 76ms) denoted by �, which is then followed by a
synthetic speech token ‘ay’. If � is small (from 0 to 20 or 30ms), the stimulus is
perceived as ‘say’. If � is large, around 40 to 76ms, the stimulus is perceived as
‘stay’. Thus, if we vary � systematically as a control parameter, transitions from
‘say’ to ‘stay’ or from ‘stay’ to ‘say’ take place. This systematic variation of a
control parameter is typical in nonlinear dynamics studies, and it allows
detailed examinations of important questions such as how and by what
mechanism human perception changes from one state to another.

4.3.1 Experimental design and basic findings

In an experimental run, the subject is presented with a sequence of stimuli in
which the gap duration is systematically increased from 0 to 76ms in in-
crements of 4ms, and then decreased with the same step size back to 0ms.
Between two consecutive stimuli, there is a resting period of 2.5 s, which is
called the interstimulus interval. The three observed perceptual patterns are
shown in Figure 4. Figure 4a describes a pattern where the switch from one
percept to another (‘say’ to ‘stay’ or ‘stay’ to ‘say’) occurs at the same gap
duration for both increasing and decreasing �. The pattern in Figure 4b
represents a classic hysteresis effect where the overlapping region indicates that
a given stimulus can be perceived differently depending on the direction of the
gap variation. The third pattern, shown in Figure 4c, is a more peculiar one in
that the percepts switch from ‘say’ to ‘stay’ earlier as � increases, and again
from ‘stay’ to ‘say’ earlier as � decreases.We call this phenomenon the enhanced
contrast effect, which is related to selective adaptation and range effects in
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Figure 4. (a—c) Individual experimental runs showing three prototypical patterns. For
details, see text in Section 4.3.1. (From Tuller et al., 1994, with permission.)

speech perception, implying that boundary shifts act to enhance contrast
between perceptual states. The pattern in Figure 4a is rarely observed, while
patterns in Figure 4b and c occur about equally often.

The dependence of speech categorization on recent percepts and on the
direction of parameter change is a strong indicator of nonlinearity and multi-
stability. In what follows, we briefly describe a theoretical model proposed to
capture the observed patterns of category change within a unified dynamical
account. Then, we describe one model prediction that is evaluated by further
experiments.

4.3.2 A dynamical model of categorization

Speech perception can be regarded as a pattern formation process in the brain.
For the present experiment, we modeled the coexistence of two distinct pat-
terns (‘say’ and ‘stay’) and the spontaneous switch among the patterns by an
overdamped oscillator,

dx/dt�� dV(x)/dx�� k�x�x�, (5)

with the following potential,
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Figure 5. Potential landscape defined by Equation (6) for five values of k. For details,
see text in Section 4.3.2. (From Case et al., 1995, with permission.)

V(x)� kx� x�/2�x	/4, (6)

where k is a control parameter (Tuller et al., 1994). Figure 5 shows how the
landscape changes for several values of k. With k�� 1, only one stable point
exists corresponding to a single category (e.g., ‘say’; Figure 5a). As k increases,
the potential landscape tilts but otherwise remains unchanged in terms of the
composition of attractor states (Figure 5b). However, when k reaches a critical
point, k�� k

�
, a qualitative change in the attractor layout takes place.

Specifically, the particular change at k�� k
�
is a saddle-node bifurcation.

Thus, where there was once only a single perceptual category, there are now
two possible categories.When�k

�
� 0� k

�
, both ‘say’ and ‘stay’ are available

categories (Figure 5c). The coexistence of both categories continues until
k� k

�
, where the attractor corresponding to ‘say’ ceases to exist via a reverse

saddle-node bifurcation (where the qualitative change is from two available
categories to one), leaving only the stable fixed point corresponding to ‘stay’
(Figure 5d). Further increases in k serve only to deepen the potential minimum
corresponding to ‘stay’ (Figure 5e). Thus, the model captures the three ob-
served states of the system: at the smallest values of the acoustic parameter
only ‘say’ is reported, for an intermediate range of parameter values either ‘say’
or ‘stay’ are reported, and for the largest values of gap duration only ‘stay’ is
reported.

To accommodate the three observed patterns in Figure 4, we assume that k
in Equation (6) can be expressed as

k(�)�� k

� �� �/2� ��(n� n

�
)(�� �

�
). (7)

The meaning of each term is explained below. First, � is a variable linearly
proportional to the gap duration � and varies from �

�
� 0 to �

�
� 3 (the

corresponding experimental gap duration varies from 0 to 76ms; in Figures 6
and 7, for ease of comparison with the experiment, we have scaled the �
parameter from 0 to 76ms). Second, �(n� n

�
) is the step function defined by
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Figure 6. (a) Perceptual states in the �—� plane for increasing � (small n). (b) Perceptual
states in the �—� plane for decreasing � (large n). (c) Superposition of transitions
between categories in (a) and (b). For details, see text in Section 4.3.2. (From Case et al.,
1995, with permission.)
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�(n� n
�
)��

0 if n� n
�

1 if n� n
�
,

(8)

where n is the number of perceived repetitions of the stimuli and n
�
� n

���
��
� 20 represents the critical number of accumulated repetitions. The �-function
is introduced because it is noted in the experiments that repetitive presenta-
tions of the stimuli tend to alter the perceptual states in a qualitative way.
Third, � in Equation (7) corresponds to the effect of learning and prior
experience with respect to the experiment. Here, � is hypothesized to increase
as the subject gets more exposure to the stimuli. (Our results indicate that this
is indeed the case.) Fourth, k


specifies the initial perceptual configuration

when �� 0 and n� 0. We set k

�� 1 in our numerical simulations, for only

‘say’ is perceived at �� 0 (see Figure 5a).
By solving the above equations we obtained the three regions of different

perceptual states of the system in the �—� plane for increasing � (thus �) as
illustrated in Figure 6a. The shaded region indicates the set of parameter
values for which both ‘say’ and ‘stay’ can be perceived. When � is monotoni-
cally increased from �

�
� 0, the percept switches from ‘say’ to ‘stay’ at the upper

curve. Figure 6b plots the three regions of different perceptual states for
decreasing �. The lower curve in this case marks the transition from ‘stay’ to
‘say’. Figure 6c is the superposition of Figure 6a and b. The intersection of the
two transition curves yields a critical value, �

�
, for which the system exhibits the

dynamics as seen in Figure 4a. For �� �
�
, the system exhibits the enhanced

contrast effect as shown in Figure 4c, and, for ���
�
, the classical hysteresis

phenomenon as shown in Figure 4b is obtained. Thus, the proposed dynamical
model was found to be capable of capturing the experimentally observed
patterns.

4.3.3 Testing of a model prediction

Several predicted effects of the model were evaluated by us (Tuller et al., 1994).
Our results show a strong correspondence between the theory and the experi-
ments. Here we consider a specific predicted effect of the �-function on k(�),
henceforth termed k (Case et al., 1995). Specifically, when �(n� n

�
)� 1 in

Equation (7), i.e., when the number of perceived repetitions, n, is larger than the
critical value, n

�
, each step change in gap duration (�) entails a larger change in

k than when �(n� n
�
)� 0. This is illustrated in Figure 7, which plots k versus

�. Consider what happens for the ‘say’—‘stay’ continuum when gap duration
sequentially increases (solid line), then decreases (dashed line). When � is at its
minimum value (0ms) at the beginning of the run, k


is arbitrarily assigned the
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Figure 7. k—� plot. The solid line represents increasing gap duration, and the dashed
line represents decreasing gap duration. There is a dotted reference line at k� 0. For
details, see text.

value �1, so that k is also negative. As � increases to its maximum (76ms in
our continuum), k continuously increases and the stimulus with maximum � is
categorized as ‘stay’. Now � begins to decrease, although the stimuli are still
identified as ‘stay’. When n� n

�
, the �-function (the last term in Equation (7))

acts to increase the rate of change of k. Hence, the steeper slope of the dashed
line in the k—� plane. The net result is that, as � decreases back to 0ms, the
absolute value of k corresponding to a given value of � is larger for the second
portion of the run than for the first portion, for all response patterns.

Figure 8 shows the potential V(x) for expanded k when n� n
�
and gap

duration is increasing (top row, left to right), and when n� n
�

and gap
duration is decreasing (bottom row, right to left). Potentials in the top row are
for a gap duration identical with those of the corresponding potentials in the
bottom row. Nevertheless, the shapes of the minima are different. A compari-
son of Figure 8a with 8n, or of Figure 8b with 8m reveals that the depth of the
potential is greater for a stimulus presented near the end of the sequence than
for the identical stimulus presented near the beginning. In contrast, the value of
k associated with the largest value of � (the turnaround point) is the same
whether that stimulus is presented as the final stimulus of the first half of the
run (Figure 8g), or as the first stimulus of the second half of the run (Figure 8h).
To reiterate, although Figure 8 shows an instance of enhanced contrast, the
relative difference in the depth of the potential at the beginning and end of a
run is not dependent on the response pattern. This observation leads to the
hypothesis that the same physical stimulus presented at the end of a sequence
is judged a better exemplar of the category than the identical stimulus pres-
ented at the beginning of the sequence, as a result of dynamical context effects.
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Figure 8. Potential landscape defined by Equation (6) for several values of k as
determined by Equation (7). For explanations, see text in Section 4.3.3. This sequence
illustrates enhanced contrast with the perceptual shift from ‘say’ to ‘stay’ occurring
between panels (c) and (d), and the switch back between panels (j) and (k). (From Case
et al., 1995, with permission.)

Below we describe the experiment that was designed to test this hypothesis
by exploiting the findings that listeners are able (1) to make fine distinctions
amongmembers of a given phonetic category and (2) to give reliable judgments
about the extent to which a given stimulus constitutes a good exemplar of a
category. We used the subjects’ judgments of goodness of a stimulus to index
perceptual stability, and compared the ratings of physically identical stimuli
that occur in different positions in the sequence. If the model predictions hold,
sequential changes in an acoustic parameter should result in a stimulus at the
end of a run being judged as a better exemplar of the category than the same
stimulus at the beginning of a run. On the other hand, nonsequential, random
changes in the acoustic parameter should not influence judged category good-
ness.

Sixteen native speakers of American English with normal hearing took part
in the experiment. The subjects were divided into two groups of eight each. The
sequential-presentation group heard the stimulus sequence (0ms (endpoint),
8, . . ., 72, 76 (turnaround), 76 (turnaround), 72, . . ., 4, 0ms (endpoint (condition
1)), or (76ms (endpoint), 72, . . ., 4, 0ms (turnaround), 0ms (turnaround),
4, . . ., 72, 76ms (endpoint) (condition 2)). The mixed-presentation group heard
the stimulus sequence, (0ms (endpoint), 4, 8, 12, 16, . . ., 72, 76 (turnaround), 76
(turnaround), (72 through 4 in random order), 0ms (endpoint) (condition 1)), or
(76ms (endpoint), 72, 68, 64, . . ., 4, 0 (turnaround), 0 (turnaround), (72 through
4 in random order), 76ms (endpoint) (condition 2)).
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Figure 9. Mean differences in judged goodness (vertical axis) between stimuli with
0-ms gaps and between stimuli with 76-ms gaps. Filled symbols, sequential presenta-
tion; open symbols, mixed presentation. Squares, condition 1; circles, condition 2. For
explanation, see text in Section 4.3.3. (From Case et al., 1995, with permission.)

The subjects’ task was to identify each stimulus as ‘say’ or ‘stay’, and then
rate from 1 to 7 how good an exemplar of the category the stimulus was. They
were given the following instructions for rating the stimuli: ‘Choose the num-
ber 1 only if you really could not tell whether the stimulus was ‘‘say’’ or ‘‘stay’’.
Choose the number 2 if you thought you heard ‘‘say’’ or ‘‘stay’’, but were not
completely sure. Choose 3 if you were sure of what you heard, but the stimulus
was a very poor example. Choose 4 if you were sure, and it was an ‘‘okay’’
example, 5 if you heard a good example of ‘‘say’’ or ‘‘stay’’, 6 if you heard a very
good example, and 7 if the word you heard was the best possible example of
‘‘say’’ or ‘‘stay’’ given the examples you have heard. Feel free to make compari-
sons between the stimulus words.’ The subjects entered their identification and
rating responses on an appropriately labeled computer keypad. All stimuli
were presented binaurally through headphones at a comfortable listening
level.

The obtained experimental results, i.e., the mean differences in judged good-
ness of stimuli versus position in the sequence, are illustrated in Figure 9. For
the sequential-presentation group (filled symbols), there were obvious differen-
ces in judged goodness between the first and second presentation of the
endpoint stimuli for both condition 1 (squares) and condition 2 (circles) in the
direction predicted by the model. That is, the second presentation is judged as
a better exemplar than the first, yielding positive mean differences. In contrast,
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no such differences in judged goodness were observed with mixed presentation
(open symbols), or between the first and second presentation of a stimulus at
the turnaround. Thus, the model prediction was confirmed by the experiment.

4.4 Discussion and outlook

Our approach to the study of the synchronization problem is clearlymotivated
by statistical physics. The wide occurrence of 1/f � type long-memory processes
in electrical systems and solid-state devices has long posed a challenging
problem for physics. Increasingly, this type of process is being observed in
biological systems (e.g., Bassingthwaighte et al., 1994). Over the years, a
number of mechanisms, ranging from the superposition of many independent
relaxation processes (Granger, 1980) to self-organized criticality (Bak et al.,
1987), were proffered to explain long memory. It remains unclear, however,
what the specific mechanism is that could account for the results reported in
Section 4.2. In addition to the question of mechanism, another important
problem concerns the function of long-memory processes. It is known, for
example, that neurons in many brain systems fire spike trains that exhibit
long-range correlations (Teich et al., 1997).

It is an intriguing possibility that the long memory seen in the synchroniz-
ation error time series is a behavioral manifestation of the long-range corre-
lated firing properties of neuronal assemblies. Research has begun to address
the question of computational advantages of long-range correlated firing
patterns. More work is needed to make these considerations more concrete.

A central issue in the study of nonlinear dynamical systems is the character-
ization of qualitative changes (e.g., bifurcations) in a given system’s dynamics,
as a parameter is systematically varied. Concepts frommathematics, combined
with the realization that speech perception is a highly nonlinear process, lead
naturally to the approach adopted in Section 4.3. It is worth noting that
traditional experimental protocols in the study of categorical perception em-
phasize randomized presentations of stimuli to eliminate the effects of contex-
tual dependence. Our methodology described here enables us to examine
context effects in speech perception within a nonlinear dynamical framework,
thereby affording the rudiments for a theory of temporal organization of
speech categorization.
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5

Signal processing by biochemical reaction networks

ADAM P. ARKIN

5.1 Introduction

One cannot help but be impressed by the engineering, by evolution, of the
cellular machinery. The cellular program that governs cell cycle and cell
development does so robustly in the face of a fluctuating environment and
energy sources. It integrates numerous signals, chemical and otherwise, each of
which contains, perhaps, incomplete information of events that the cell must
track in order to determine which biochemical subroutines to bring on- and
off-line, or slow down and speed up. These signals, which are derived from
internal processes, other cells and changes in the extracellular medium, arrive
asynchronously and aremulti-valued; that is, they are notmerely ‘on’ or ‘off ’ but
have many values of meaning to the cellular apparatus. The cellular program
also has a memory of signals that it has received in the past, and of its own
particular history as written in the complement and concentrations of chemi-
cals contained in the cell at any instant. These characteristics of robust,
integrative, asynchronous, sequential and analog control are the hallmark of
cellular control systems. Below, arguments will be made that there is also
another characteristic of such control systems: there is often an irreducible
nondeterminism in their function that, besides leading to differences in timing of
cellular events across an otherwise genetically identical (isogenic) cell popula-
tion, can also lead to profound differences in cell fate. The circuitry that
implements these control systems is a network of interconnected chemical
reactions. Included in these reactions are the genetic reactions involving: the
gene expression reactions such as transcription initiation, transcript elonga-
tion, and translation; gene rearrangements such as DNA inversion reactions;
and epigenetic control reactions such as DNA methylation. Enzymatic reac-
tions, biosynthetic and mechanochemical interactions, and a host of other
chemical reaction types also are central elements of this control system.
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This chapter focuses on biochemical systems in which spatial concentration
distributions and purely mechanical interactions are ignored or are not pres-
ent. A full specification of cellular function is gained by (1) the determination of
all the chemical parts making up the system, (2) the deduction of the mechan-
isms of interactions between these parts, and (3) the designation of the par-
ameters necessary to describe the physics of all of these mechanisms. However,
this specification, which theoretically could produce a computer simulation
that exactly predicts the temporal behavior of all cellular constituents, repre-
sents a full understanding of the cellular system no more than a fully specified
model of a Pentium chip gives us an understanding of the principles of its
designs and function. In the case of the Pentium, understanding is best
achieved by grouping individual transistors into logic gates, gates into devices
such as counters, registers, and amplifiers, and then these devices into large
devices such as arithmetic logic units, multiplexers/demultiplexers, clocks and
bus controllers. The function of the chip can then be described by a relatively
high-level programming language that makes clear the interactions between
these composite devices and allows for a vastly simplified mathematical analy-
sis. To achieve progress toward the description of cellular function on a similar
basis is the ultimate motive for the work presented here.

5.1.1 Research goals

Thework described herein represents efforts whose goal is the deduction of the
engineering principles and logic of large biochemical reaction networks
(BRNs). Specifically, the capacity of BRNs is explored (1) to sense and respond
to multiple time-varying and conflicting signals (often chemical concentra-
tions) in a robust and timely manner as well as (2) to execute internal develop-
mental and behavioral programs. Two complementary types of analysis are
presented. First, the utility of the circuit analogy for BRNs is examined and
methods for the dissection of large networks into ‘functional units’ or ‘devices’
discussed. For this purpose, the device physics for a number of recurrent
regulatory architectures is outlined to provide some background. In addition,
the role of thermal noise in determining chemical reaction outcomes in cells is
shown to be significant, especially for reactions involving genetic material. All
these analyses assume that the individual components and their interactions
have already been identified. However, this is often not the case. Thus, in
addition, I briefly describe experimentalmethods for deducing BRN structures
and assigning groups of chemicals into composite devices. The methods are
designed to produce these deductions frommeasurements on the whole chemi-
cal reaction system rather than by breaking the system into small pieces.
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Methods of network deduction and analysis are of special importance now
that many genome projects are completing the inventory of all of the cellular
proteins and genetic regulatory systems. If the full promise of these projects, i.e.,
to uncover the program of cellular life, is to be realized, it is necessary to
compose these parts into functioning networks whose temporal behavior we
may understand, whose properties we can control, and whose failures we can
diagnoseandameliorate.Analytical tools suchas theonesdescribedherein, and
in other contributions to this volume, lay the groundwork for this endeavor.

5.2 The circuit analogy and network analysis

In biology we are faced with often very complicated networks of interacting
components. Ignoring atomic levels of detail, the lowest-level ‘devices’ in a
BRN are often the individual chemicals and the set of reaction channels.
Perhaps the best-characterized biochemical network of such devices is inter-
mediary metabolism. Figure 1a is taken from Peter Karp’s and Monica Riley’s
EcoCyc database of Escherichia coli (E. coli) metabolism, and is a representa-
tion of this network wherein every circle in the diagram represents one of the
small organic molecules transformed in the course of metabolism, each black
line represents a (possibly reversible) chemical reaction that converts one set of
small organics into another (Karp et al., 1999). Each grey line indicates that the
connected circles are the same species of molecule that appears in multiple
pathways. The macromolecules and macromolecular complexes that catalyze
these conversions are not shown nor are the regulatory interactions that allow
combinatorial control of the rate of one reaction by a set of other chemicals in
the network. Were these components to be included in the diagram it would
resemble Figure 1b; the diagram would be black with interactions. This
highlights the main difficulty in forming a qualitative understanding of how
metabolism actually works: biochemical systems are highly nonlinear and
interconnected and composed of large numbers of chemical components. It is
natural, therefore, to look for other systems that have these properties and ask
whether we can apply the tools developed for their analysis to biochemical
systems. Because diagrams of BRNs bear some resemblance to electronic
circuits, it is tempting to askwhether it is possible tomap themonto analogous
electrical or electronic circuits so that we may apply the well-developed
methods of electrical circuit analysis, the theory of computation and Boolean
algebra. The subsequent section discusses some current methodology for the
analysis of BRNs, and similarities to and differences from electrical engineer-
ing analyses.
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Figure 1. A biochemical reaction network. (a) The left panel shows all the mass
transformation reactions of E. coli intermediarymetabolism from EcoCyc (Karp et al.,
1999). Details of the enzymatic reactions, the enzymes themselves and the regulatory
interactions are not shown. If they were to be included, the vast number of interactions
would make the diagram appear black as suggested in the right panel (b).

5.2.1 Comparisons of electrical and chemical networks

In this chapter, the words ‘circuit’ and ‘network’ are used somewhat inter-
changeably tomeana groupof elements thathave someproperty that is affected
dynamically by interaction with other elements. In electrical circuits, these
elements are, for example, resistors, capacitors, wires, and power sources. A
signal in these networks is a voltage (or current) received at some node in the
network, such as one lead of a resistor.Different signals are distinguished by the
different points at which they impingewithin the circuit and sometimes by their
temporal pattern. In all cases, the currency of signals in electrical networks is
carried by electrons. In chemical circuits, elements are, for example, enzymes,
ions, reaction channels, andDNA.A signal in a chemical network is composed,
most often, of the appearance of an amount of some chemical species at a point
in thenetwork suchas at anallosteric regulatory siteof anenzyme.Thecurrency
of signals in chemical networks is not uniform. It is the individual concentra-
tionsandchemicalpotentialsof theparticularspecies interactingat thatpoint in
thenetwork.This lackof commoncurrency for information transfer isoneof the
complications of BRNs: different chemical signals are often distinguished only
by their interaction specificities with other members of the network.

This suggests another one of the significant complicating differences be-
tween electrical and chemical circuits. In electrical circuits, component types
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(e.g., resistors) are used over and over again, with or without the same physical
parameters, but sharing common substrates and products (i.e., electrons).
Whereas, in (nonspatial) chemical circuits, though the underlying reaction
motifs of first- and second-order reactions are used again and again, the
parameters, substrates and products for each reaction are unique to that
reaction. That is, electrical circuits are constructed out of a toolkit of standard
parts whose physics are well understood and are designed to take on a limited
set of values. In contrast, chemical systems are constructed from many unique
pieces whose physical parameters are not immediately obvious. This complica-
tion in the analysis is even worse if one tries to make an analogy between
chemical and digital electronic circuits.

5.2.1.1 Digital and analog circuitry

There are a number of instances when the behavior of a biochemical system is
such that it suggests digital rather than analog circuitry. The distinguishing
feature of a digital circuit is that the signals within a circuit take on discrete
values rather than a continuum. Thus, the major benefit of a mapping of a
chemical circuit to a digital one is the reduction in the number of states
(state-space) of the constituent concentrations and activities that must be
considered for analysis. The powerful machinery of Boolean algebra and
digital circuit analysis can then be brought to bear on the problem. In addition,
it is computationally more efficient to simulate Boolean networks than to
simulate differential equations. At some level, all chemical signals might be
considered digital, since their values are discrete; that is, their values are
measured in numbers of molecules (per unit volume). However, the number of
states available to a chemical signal in a kinetic network is usually far greater
than two. We are usually concerned with large numbers of molecules so that
individual reaction events cause changes in the number of molecules, which are
very small, compared to the average, and thus can be approximated as infini-
tesimal or continuous changes of a concentration variable. (Important excep-
tions to this are discussed in Section 5.2.3.3). This is no different from disre-
garding the quantal nature of electrons flowing through an electrical circuit,
because their numbers are so large in metal wires. Even neglecting the discrete
nature of chemistry, the dynamics of a chemical system might be such that it is
sometimes feasible to treat the system as a digital circuit.

Cooperative enzyme activity The typical example often used to justify Boolean
approximations in biochemistry is the cooperative enzyme. For simplicity,
consider the cooperativity to be in the action of an allosteric effector on the
maximal activity of the enzyme. In this case, for various models of cooperativ-
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ity, the maximal activity of the enzyme is a sigmoidal function of the effector
concentration. If the sigmoid is very steep (high cooperativity), then it looks
much like a threshold function — zero below a critical value of the effector
concentration, and some constant, nonzero value above it. However, for this
‘switch’ in enzyme activity to be truly Boolean (digital) two criteria must be
met: (1) the effector concentration signals must cause the effector to transit
from values well below the critical value to values well above it (or vice versa),
and (2) the time spent in the transition region of the sigmoidal activity curve
should be small compared with the response time of the receptive system. If the
first of these criteria is not met, then small variations in effector concentration
could cause entry into the transition region resulting in large fluctuations in
enzyme activity, thus destroying the two-state property of the system. If
changes in the effector concentration fail to cross the transition region, then
again the two-state behavior is ill defined. If the second criterion is unfulfilled,
then the integrated activity of the enzyme during the transition time might
become significant to the receptive process. This means that these intermediate
activity values cannot be ignored and so this ‘switch’ becomes multi-valued at
best. (Sometimes this criterion is violated in very fast electronic circuits where-
in certain components are fast enough to ‘see’ the transition time of a transis-
tor. Digital designs that fail to take this into account will fail.)

Multiple signal encoding Finally, another complication of applying digital
signal analysis to chemical networks of even ‘switch-like’ reaction mechanisms
is the following: unlike most electronic digital systems, for each signal-recep-
tive mechanism, the value of an ‘On’-signal is, in general, different from other
systems that also might receive that same signal. For example, one kind of
enzyme might become active above a calcium ion concentration, [Ca��], of
10�M, and another one only above 100�M. Functionally, then, there are at
least three significant values for the [Ca��] signal: below 10 �M, between 10
and 100�M, and above 100�M. The dynamics of the [Ca��] signal might be
such that it is driven very rapidly from 0 to greater than 100�M; in which case
the early sensitivity of the first enzyme is only functionally important if the
difference in activation time between the two enzymes is significant. In chemi-
cal systems, where there are many different chemical signals whose value
ranges and time scales are all unique, discerning the ‘logic’ of the network is
even more difficult and dependent on the exact parameters of the system.

5.2.1.2 Synchronous and asynchronous design

A final point of contrast between engineering principles of electrical or, more
specifically, electronic circuits and biochemical ones is the use of synchronous
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designs. The majority of sequential (as opposed to combinational) digital
designs rely on a system clock for synchronization of processes. In digital
design, clock synchronization is considered desirable for two reasons. First,
susceptibility to noise is improved, since the transient dynamics of component
devices that occur before the edge of a synchronizing clock pulse do not affect
circuit function. Second, the different delays of various signals through a
circuit to their respective outputs can be ignored, since the time between
clock-pulses in a synchronous circuit is generally set to be longer than the
longest delay; thus outputs are not read until all signals have reached their
destination.

With very few exceptions, biochemical circuits are unclocked; that is, asyn-
chronous. Even when there seems to be a central oscillator, such as that
underlying the timing of the cell cycle, microscopic examination of the process
reveals a large variability in timing of the oscillations. Progressive dephasing
arises both due to noise in the underlying processes (see Section 5.2.3.3) and the
fact that the cell cycle oscillator has check points so that the cycle does not
proceed until all necessary subprocesses have completed their work. Since
cellularly uncontrolled variables such as externally available nutrients control
how fast certain of these processes can be executed, the cell cycle is designed to
be tolerant to these metabolically induced large changes in timing. Interest-
ingly, electronic asynchronous design (traditionally used for interface circuits)
has become increasingly popular as circuit size and complexity has increased.
The reasons cited by electrical engineers for asynchronous circuit design are
precisely the reasons a biological circuit would be expected to be asyn-
chronous. Five such reasons are stated by Myers (1995):

Average case performance: The clock period for synchronous systems must be set long
enough so that the circuit can accommodate the slowest operation possible even
though the average delay of an operation is often much shorter. Asynchronous
circuit designs allow the speed of the circuit to change dynamically. The speed of the
circuit is, therefore, governed by average case delay.

Adaptivity to processing and environmental conditions: Since variables such as tempera-
ture change with the environment, circuit up-time and processing rate, and circuit
component speeds can be greatly affected by such changes, synchronous designs
must be simulated under a wide range of conditions and the clocking set so that the
circuit functions under the widest range of variation. Asynchronous designs, in
contrast, are adaptive and speed up and slow down as necessary.

Component modularity: In asynchronous systems, components (functional subcircuits)
can be interfaced without the difficulties of synchronizing clocks necessary in
synchronous systems. Also, when a new version of a component with different
timing is developed, the old component can often be replaced without requiring any
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other changes in the rest of the system. In other words, the system is robust to (some)
changes in its component circuitry.

Elimination of clock-skew: In large digital circuits, the time it takes a clock pulse to
reach different parts of the chip can be different, leading to loss of synchronization.
To minimize this skew in arrival times, a great deal of extra circuitry must be
designed in. (Nearly a third of the silicon area is required for clock distribution in a
DEC Alpha microprocessor.) Asynchronous circuits are tolerant to signal timing
differences among components.

Lower system power requirements: Since they do not require all the extra clock
circuitry, asynchronous circuits reduce synchronization power. They can also be
easily adjusted to make use of dynamic power supplies.

The advantages of asynchrony have to do, then, with robustness to changes
in the circuit environment and in the dynamical state of its various compo-
nents and efficiency both in speed and energy. The noise-filtering behavior of
synchronous design is an advantage only because clocks make rejection of
noise and transients relatively easy to design. Asynchronous circuits can be
designed to be as stable to spurious signals. It is likely that biochemical circuits
have evolved for this robustness, efficiency and adaptability to environmental
changes. It is not surprising, therefore, that most biochemical circuits are found
to be asynchronous. However, even wholly digital, asynchronous circuits are
notoriously difficult to analyze. Thus one can expect similar difficulties for
analog biochemical circuits. On the other hand, study of biological circuits
may provide unthought of stable electronic asynchronous circuit designs and
any analytical tools developed for the biological circuits may have application
to the electronic ones and vice versa.

5.2.2 Device function and state

Metabolic charts like the one in Figure 1a are daunting in their complexity, but
perhaps no more daunting in topological complexity than the schematic for a
modern computer chip. The difference between these two interaction maps is
that the device physics for every element on the chip schematic are fairly well
characterized. The behavior of the circuit is fully specified by these physics and
the functioning and reliability of the chip can be probed efficiently using
simulation tools such as the SPICE software package (Tuinenga, 1995). Even
better, because of the precisely designed physical characteristics of these el-
ements, their functionmay be partially abstracted into a higher-level language:
digital Boolean logic. Thus, most analyses do not need to include the detailed
differential equations that most completely describe transistor function. In-
stead, the device details can be abstracted to a higher level, i.e., to perform as
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logic gates. Circuits composed of such gates can be grouped together to form
higher-level devices whose input/output behavior can be derived and used
without reference to the exact mechanism from which this behavior is derived.
This type of grouping of subnetworks into functional components greatly
facilitates the analysis of the larger circuit. One challenge, then, for the analysis
of biochemical and genetic networks is to dissect complex networks into
individually analyzable devices that can be hooked back together to predict
the total system behavior.

What, then, constitutes a device? In electrical circuits, elementary devices are
objects such as wires, resistors, capacitors and inductors. In digital circuits,
elementary devices are parts such as transistors and gates. Perhaps, the defin-
ing property of a device is not that it may be separated physically from its
network, but rather that the physics of the device may be derived for a general
case without reference to the precise dynamics of the rest of the network in
which it might be embedded. Resistors, for example, must always obey Ohm’s
law and Kirchoff’s laws, no matter the circuit in which they are used (within
broad limits). These laws, along with perhaps some equations for effects of
dissipation on the resistivity of the material, fully specify the device function.
Practically, this results in the need for only a single parameter to characterize a
resistor, the resistance. This value is the same no matter how the circuit
elements up- and downstream are functioning.

A single chemical reaction step is an elementary device in a chemical
network in much the same way as a resistor is an elementary device in an
electrical circuit. A single number may characterize the behavior of the reac-
tion: the rate constant. Though it is possible to describe the reaction event in
much more detail, via quantum mechanics, collision theory, etc., it is generally
not necessary. Just as with the resistor, the rate constant for a given elementary
reaction does not depend, to first approximation, on the other reactions going
on around it. Vast networks of chemical reactions such as in metabolism or
during signal transduction, then, are circuits of these elementary devices in
which each device accepts chemical concentrations as inputs, and outputs
chemical fluxes. This is conceptually different from digital devices that accept
voltage and output voltage. Electronic devices, on the one hand, simply feed
their output voltage to the ‘voltage receptor’ on the downstream device.
Chemical reactions, on the other hand, convert concentration to flux; the
output must be reconverted to concentration for input to the next device. In
the elementary case, it is both the upstream and downstream elements together
that dynamically determine this conversion of the upstream flux to instan-
taneous chemical concentration and, thence, the downstream flux.
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Figure 2. Examples of electrical and chemical ‘voltage dividers’. For explanations see
text in Section 5.2.2.1.

5.2.2.1 Elementary electronic and chemical devices

The main advantage of a device description is that composite devices may be
constructed out of a ‘basis’ set of elementary devices. A simple, but informative,
example from electronics is the voltage divider, the most primitive of power
supplies (Figure 2a). The output of the voltage divider is a voltage and current,
and the voltage is given byV

��
R
�
/(R

�
�R

�
). Next to the divider is represented

a chemical analogy (Figure 2b) that, here, let us call the ‘A’ buffer. If we assume
that the steady-state concentration value of reaction species A, [A], is the
output to this device, then its value is given by k

�
[B]/k

�
(this circuit can both

divide and amplify the signal [B]).
The voltage divider can be considered a device only if the circuits driven

from its output do not affect its function. This is only the case if the down-
stream devices, the load, have very high impedances compared to R

�
. Figure

2d shows these devices as a single load with resistance, R
�
, connected from the

output of the divider to ground. This arrangement puts R
�
in parallel with R

�
;

thus the two resistances can be combined into one (as guaranteed by
Thevinin’s theorem) that has an effective resistance of R

�
R
�
/(R

�
�R

�
). Thus,

when R
�
�R

�
the effective resistance is equal to R

�
. In this case, the voltage

divider remains an intact device. However, as the load resistance decreases, the
value at the output of the device becomes more and more dependent on the
properties of the devices to which it is attached. Similarly, in the ‘A’ buffer
(Figure 2b), if A is consumed by a third reaction then this reaction rate must be
very small compared to k

�
in order for the chemical device to remain intact. If

many other reactions consume A, then the sum of their rate constants must be
much less than k

�
. On the other hand, consider the case when A is an allosteric

effector of a set of enzymes downstream. Assuming binding to the enzyme is a
reversible step, the steady-state [A] is unaffected by the interaction with the
downstream enzymes. Seemingly, then, this chemical device remains intact
when connected to the rest of the network in this way. However, the time it
takes to achieve the steady-state value of [A] after ‘turning on’ the device (by,
for example, adding a catalyst required for B-to-A conversion) increases as the
concentrations and binding constants of the downstream enzymes increase.
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Thus, some aspects of the device function are changed by connection to the rest
of the network. In summary, any analysis of devices dissected from the rest of a
large network, therefore, relies on recognizing when these changes are signifi-
cant and when they are not.

Composite devices like the voltage divider (or the ‘A’ buffer) serve not only
as recognizable units of function but also as a means for simplifying circuit
analyses. For many analyses of circuits containing the voltage divider, the two
voltages (V

��
andV

���
), the current (I), and the two resistor parameters (R

�
and

R
�
) can be replaced by the single parameter,V

���
. There are no approximations

in this simplification, the single parameter is derived directly from the device
physics of the underlying components. If we see two resistors and a power
supply in the same configuration as shown in Figure 2a, and we can see that the
downstream impedances are high, then we know that we need only measure
the output voltage in order to determine the central functionality of the circuit.
That is, we do not need to determine the particular resistances R

�
and R

�
or

the properties of the power supply to obtain the circuit function. This ability to
reduce the number of physical measurements that must be performed on the
system is of special importance in the biochemical case. Here, it is often at great
expense in time and resources that a particular variable can be determined
quantitatively and in vivo.

Often, reductions in number of parameters or in the dimensionality of a
dynamical system are fundamental steps in analyzing the overall function of
the circuit. If these reductions are derived directly from the device physics as
above, then much of the circuit behavior is retained in the new simplified
circuitry. But sometimes, especially in biology, such reductions remove im-
portant experimental features of the system. Again, an analogy from elec-
tronics provides the simplest explanation. Consider the voltage divider in
Figure 2c: here, R

�
has been placed in parallel with R

�
. Application of the

parallel resistor rule allows us to replace this circuit with one identical in
structure with that shown in Figure 2a in which the top resistance is R

�
R
�
/

(R
�
�R

�
). However, the reliability of the reduced circuit is much different from

that of the full circuit. Failure of the top resistor is catastrophic for circuit
function in the reduced circuit, whereas failure of both R

�
and R

�
is necessary

to completely destroy the function of the circuit in Figure 2c. The chemical
version, in which the parallel resistor paths are two different reaction channels
that convert B to A, shows the same sort of sensitivity. This has important
implications: for example, biologists know that debilitating mutations in a
protein, assumed here to control one of the reaction channels, may not be
lethal to the function of the whole network.
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Figure 3. (a) A simple futile cycle in an enzyme-based reaction system. This configur-
ation of reactions (i.e., a regulatory architecture or motif ) is a ubiquitous control
structure found in many prokaryotic and eukaryotic signal transduction circuits.
(b) The stationary-state concentration of A, [A]

��
, as a function of B-p concentration,

[B-p]. For details see text in Section 5.2.2.2.

5.2.2.2 Definition of state in electronic and chemical networks

Finally, an important concept for circuit analysis of chemical networks is the
definition of state. We distinguish between the state of a particular input or
output, the local state, and the state of the system, the global state. In digital
electronics, local states can take on only two values, 0 and 1. The state of the
system is a vector of the local states for each distinguishable input and output.
In chemical systems, nominally the local state is often the value of a particular
concentration that may take on any positive-indefinite number. The global
state is the vector of concentrations of all chemically distinguishable species in
the system. Each global state is also associatedwith properties such as dynami-
cal stability and type (stable node, stable focus, limit cycle, etc.) This theoreti-
cally infinite state-space of a chemical system makes its analysis extremely
difficult compared with digital systems. However, the dynamical and
stoichiometric structure of the system may strongly restrict the range of
concentrations that can be reached by any particular chemical species.

Switching in an enzymatic futile cycle As an example consider the circuit
shown in Figure 3a. This is a standard futile cycle in which a protein, here
labeled A, is phosphorylated by another protein, called a kinase (B), and then
subsequently dephosphorylated by a phosphatase or by hydrolysis. It is called
a futile cycle because it takes energy (usually in the form of adenosine triphos-
phate, ATP) to achieve the unidirectional phosphorylation step only to have it
seemingly wasted when the protein spontaneously dephosphorylates. The
total amount of A and A-p (A

���
) remains constant. This is the first restriction
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on the state of the system: concentrations of A, [A], and A-p, [A-p], are
restricted between 0 and A

���
. As shown in Figure 3b, the kinetics of the system

represented in Figure 3a are such that there is a sigmoidal transition from high
[A] to low [A] as a function of the concentration of B-p, [B-p]. The steepness
of this sigmoid is largely dependent on the fraction of the [B-p] range in which
the kinase and phosphatase reactions are both saturated (thus, causing the
system to enter a state called ‘zero-order ultrasensitivity’; ZOU). Thus the
smaller the dissociation constants of A and A-p from their respective enzymes,
the more the curve in Figure 3b resembles a Boolean step function. In the case
of high ZOU, then, it may be reasonable to say that, in the steady state, the
variable A takes on two states, low and high, whose physical values are roughly
0 and A

���
, respectively. However, the applicability of this simplification de-

pends ultimately on the dynamics of B-p. Even if the changes in [B-p] were
slow enough, compared with the dynamics of the futile cycle, such that the
cycle was always near the steady state, [A] only functionally has two states if
two further conditions are met. First, the controlling physiological changes in
[B-p]must cross the threshold region of the [A] steady-state curve completely,
and, second, some downstream targets of A activity respond differentially to
the high and low states of [A] (or [A-p]).

Bistability and hysteresis The chemical switch represented by Figure 3a is a
‘soft-switch’. That is, it is not a true bistable state. Rather, [B-p] is a control
parameter that smoothly transforms the single steady-state solution of the
kinetic equations from a high to a low value. However, one change in the
circuit topology (the addition of another reaction) and small quantitative
changes in the circuit parameters convert this soft-switch to a ‘hard-switch’, a
truly bistable system. The reaction in Figure 4a is identical with that of Figure
3a, with the exception of a positive feedback that allows A-p to catalyze the
phosphorylation of A. When the strength of this positive feedback is low, i.e.,
when the maximal rate is a small fraction of the maximal rate of B-p-catalyzed
phosphorylation, the switch behaves nearly identically to the ‘soft-switch’
(compare Figures 3b and 4b). However, relatively small changes in the strength
of the feedback cause a strong qualitative change in the behavior of the switch.
Figure 4c shows the case where the feedback strength has been doubled. The
switch now exhibits hysteresis: the [B-p] at which A switches from high to low
is different from the [B-p] at which A switches from low to high. In Figure 4d
the feedback strength has been doubled yet again and now the switch is
irreversible. Once a switch changes from high to low, switching back from low
to high is now physically impossible with B-p as the sole control parameter.
These qualitative changes in behavior can have profound effects on the func-
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Figure 4. A biochemical ‘switch’. (a) The same futile cycle as in Figure 3 is shown;
however, here the phosphorylated from of A catalyzes its own production. Depending
on the exact value of the feedback strength, this system can behave either exactly like
the futile cycle in Figure 3, or generate true bistability with its attendant hysteresis and
‘memory’ at higher feedback strengths. (b—c) A family of stationary-state concentration
curves for A as a function of B-p concentration. For details see text in Section 5.2.2.2.

tion of the rest of the network in which this ‘hard-switch’ is embedded. These
qualitative changes may result from changes in kinetic parameters of well
under an order of magnitude. The addition of the positive feedback in Figure
4a may seem to be a large perturbation to the system represented in Figure 3a,
but such topological changes in a network structure can be found in control
processes that occur in ‘real’ biological systems. For example, the pp125 focal
adhesion kinase (FAK), a cytoplasmic tyrosine kinase-transducing signal in-
itiated by integrin engagement and G-protein-coupled receptors, is alterna-
tively spliced (and more highly expressed) in brain tissue. Some alternative
splices that are preferentially expressed in brain tissue have an increased
autophosphorylation activity, suggesting that FAK may have properties that
are specific to neurons. It has been suggested that these isoforms of FAK may
play an increased role in turn over of point contacts in motile or invasive cells.

Limiting assumptions and caveats The analysis of the futile-cycle switches
above assumes that they may be treated as self-contained subcircuits whose
dynamics may be analyzed without reference to the rest of the network in
which they are embedded. The first caveat to this assumption arises from the
ambiguity of the functional definition of the state of A andA-p discussed above.
For example, simply because a bifurcation analysis predicts that a system is
bistable does not mean that both states are used by the biological system. The
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second caveat comes from the concept of chemical device impedance discussed
above. Connection of this device to downstream targets (by reaction with A or
A-p) should not disrupt the function of the device. However, for this device it is
not so easy. Consumption of A or A-p, or rapid equilibrium binding to
downstream targets, can destroy or greatly alter the bistable behavior of this
circuit. This particular type of switch suffers more from the fan-out problem
than even the voltage divider in the circuitry discussed above (Figure 2b).
Because the total amount of A and A-p is conserved, a connectionwith enough
downstream targets can cause the partition ofA

���
into the target-bound forms,

thus driving the circuit out of the bistable region, and resulting in the destruc-
tion of the switch-like properties.

However, once one is convinced that it is reasonable to analyze a chemical
subunit as a self-contained device, there are many available methods for
predicting the classes of possible circuit behaviors. For example, full solution
of the differential equations, bifurcation analysis, and stoichiometric network
analysis, all provide means for predicting the range of qualitatively different
states that the circuit dynamics may achieve. The sets of kinetic parameters
required to switch between each of these states, and control the exact position
within, may sometimes be derived as well.

One of the criticisms often leveled at quantitative analysis of biochemical
and genetic networks is that one needs measurements of all the mechanisms
and of the possibly hundreds of kinetics parameters for those mechanisms, and
that obtaining these data is nearly impossible in vitro, let alone in vivo. The
response to this is three-fold: (1) using the analyses just mentioned, it is possible
to derive limited classes of behaviors that even relatively roughly measured
networks may express; (2) these same analyses can sometimes yield sets of
parameter estimates each of which specifies a range of parameters necessary to
achieve each qualitatively different behavior; and (3) since most of the BRNs
that govern cellular function must be robust to often large fluctuations in the
environment and to molecular noise in their own apparatus, chemical circuit
behavior should not be overly sensitive to the exact values of each of the
kinetics parameters; otherwise there would be a high rate of cell failure. The
detailed study of these circuit motifs yields a better qualitative understanding
of how a biological pathway is controlled and, as shown below, may point to
biologically important physical phenomena that have not yet been fully con-
sidered by bench biologists. Further, experimental observation of a particular
dynamic behavior may suggest that one or few types of regulatory motifs are
responsible for the behavior. Knowledge of how the different motifs achieve a
particular behavior can then lead to targeted experiments to differentiate
among them.
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5.2.3 Regulatory architecture, motifs, and circuit elements

In this section, I outline some of the work we have done on identifying
common control architectures and elements in biochemical systems. It is an
underlying assumption that these elements have evolved to perform one or
more specific functions that are useful to an organism.One indicator that these
elements are ‘functions’ is that their architectures recur across organisms and
across pathways within a single organism. Not only does identification of the
elements simplify the analysis of larger BRNs but they also provide a basis set
from which researchers might possibly construct custom networks that per-
form novel functions. The following is far from a complete set of such devices.
They are chosen simply to illustrate what sorts of network function can be
realized by biochemical systems.

5.2.3.1 Single enzymes and enzyme networks

Enzymes and other proteins are examples of how a single molecule or a small
molecularcomplexmaybea fairly complicatedchemicaldevice.Thepresenceof
an enzyme that catalyzes a simpleMichaelis—Menten-type reaction is described
by an already-composite chemical device composed of three elementary reac-
tionsteps. If an enzyme is consideredadevice in itself, then its inputsare (at least)
its substrates and effectors, and its outputs are the rates of product generation.
These output rates are usually, but not always, monotonically increasing or
decreasing, saturating functions of the various substrates, inhibitors and ac-
tivators.That is to say, theoutputsareoften sigmoidal functionsof the inputs. In
the extreme case, sigmoid functions look like step functions and, therefore, it is
tempting to use a Boolean truth-table to describe their function rather than the
full enzymological description (Arkin andRoss, 1994). Even if the sigmoid func-
tions are not so steep, they resemble variousmodels of computational ‘neurons’.
Thus, networks of such enzymes resemble these formal neuronal networks
(Bray, 1990). In fact,Hjelmfelt andRoss have demonstrated the equivalenceof a
particular parameterization of the example given in Figure 3a to a McCul-
loch—Pitts artificial neuron, and they showed how to make various computa-
tional circuits out of interconnectednetworksof these elements (Hjelmfelt et al.,
1991, 1992; Hjelmfelt and Ross, 1992). On the basis of these results, in collabor-
ationwith F. Schneider, they experimentally implemented a chemical neuronal
network made out of bistable chemical reactions with a dynamical function
similar to the futile cycle, as discussed in Section 5.2.2.2 (Hjelmfelt et al., 1993).
Furthermore,Bray (1990) has suggested that theneuronal network-likeproper-
ties of chemical parallel-distributed processes may help to explain, in part, the
reliability and evolutionary adaptability of these networks.
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Finally, it is worth noting that some protein-based devices have dynamics
fundamentally different from the standard enzymological mechanisms. Mol-
ecular machines such as polymerases, ribosomes, and kinesin can be very
intricate molecular devices. New techniques are allowing the quantitative
measurement of the microscopic and mesoscopic dynamics of motion of these
molecular complexes on their macromolecular substrates (Guthold et al., 1994;
Yin et al., 1995; Bustamante and Rivetti, 1996; Wang et al., 1997). However,
consistent models of the in vivo dynamics of these machines are still in their
infancy. The initial attempts to treat mathematically the dynamics of various
of these molecular motors and their input/output behavior have laid a good
foundation against which to test future measurements and models (Peccoud
and Ycart, 1995; Peskin and Oster, 1995; Astumian and Bier, 1996; Duke and
Leibler, 1996; McAdams and Arkin, 1997; Arkin et al., 1998; Goss and Pec-
coud, 1998). One of the interesting common dynamical phenomena found in
these machines is that their operation is fundamentally stochastic. A similar
observation is made when examining the function of, for example, ion channels
(Collins et al., 1995). Noise in the operation of these devices, as is discussed
further below, necessitates a consideration of robustness and reliability in the
design of cellular signal-processing networks.

5.2.3.2 Biochemical oscillators

Biochemical oscillators are found to play a number of roles in the control of
cellular and organismal behavior (Berridge and Rapp, 1979; Rapp, 1979). The
most pervasive form of oscillator in biology is the cell cycle oscillations that
underlie repeated patterns of cell growth and division (Borisuk and Tyson,
1998; Novak et al., 1998). Though the chemical network that drives a particu-
lar cell cycle is usually not a ‘free running’ oscillator in that it is regulated by
checkpoints that can stop, slow or even redirect the cycle (e.g., in order to wait
for unsynchronized processes to catch up, to deal with damages and stresses in
the cell or to change the chemical pathway responsible for the cell cycle in
different cell types), at root is a chemical system capable of repeatedly leaving
and very nearly restoring an initial condition. Biochemical oscillations are
also found in mitochondrial volume, in yeast glycolytic flux (Jonnalagadda et
al., 1982), in GTP/G-protein activity, in cytoplasmic calcium concentrations,
in neuronal signaling, in circadian rhythms (Goto et al., 1985; Ouyang et al.,
1998) and in certain reconstituted enzyme systems such as horseradish per-
oxidase (Stemwedel et al., 1994; Hung and Ross, 1995). These oscillations have
many different functional roles in the cells in which they are found. Timing
and synchronization are the most obvious ones. However, there is some
evidence that oscillatory dynamics can reject noise while propagating signals,
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and that the frequency and amplitude of an oscillation can carry information
that can be decoded by chemical frequency filters like the ones discussed
further below. Thus, these oscillators are signal generators whose output can
be modulated in amplitude, frequency and phase by chemical, thermal and/or
light inputs.

Ross and co-workers have attempted to classify chemical and biochemical
oscillators into a finite set of classes distinguished by their network topology
and their responses to various experimental perturbations (Eiswirth et al.,
1991a,b). Chemical species within such oscillator devices are classified as
essential or nonessential depending on whether or not quenching of their
oscillatory behavior destroys the overall ability of the network to support
oscillation.

These classification methods demonstrate a number of the advantages of a
device analysis. They provide a theoretical framework for understanding the
different ways in which chemical systems can provide oscillatory signals. They
also provide an ordered set of diagnostic experiments by which a novel,
oscillatory chemical species may be classified in a small number of experimen-
tal steps. This classification, then, severely restricts the underlyingmechanisms
and their parameterizations that give rise to the experimental observations.

5.2.3.3 Genetic regulatory circuits

In 1961, at the Cold Spring Harbor Symposium in Quantitative Biology,
Jacob and Monod first outlined a circuit theory of genetic control in
prokaryotes (Monod and Jacob, 1961). The basic theory describing combina-
tional control of transcription initiation, expression of polycistronic operons
and feedback control as a basis for control of metabolism, growth and develop-
ment remains largely unchanged today. Most of the basic mechanisms pro-
posed are used in prokaryotes and eukaryotes alike, although eukaryotic gene
control has a few more levels of complexity to it. The central process is the
transcription of DNA to RNA via the multiprotein complex RNA polymerase
(RNAP), and then the translation of RNA to protein via transfer RNA and
ribosomes. Transcription can be broken up into at least two processes: tran-
scription initiation and transcript elongation. Translation can be broken into
three processes: translation initiation, protein elongation and transcript degra-
dation. Each of these processes may, in turn, be regulated by cellular signals.

Transcription initiation The best characterized of these controls is the regula-
tion of transcription initiation. Initiation begins from a region of DNA called
the promoter, upstream (at the 5� end of DNA) from the genes of interest. In
prokaryotes, this is most often accomplished by the binding of proteins,

129Signal processing by biochemical networks



Figure 5. The organization of the P
�
and P

��
divergent promoters from bacteriophage

�. The gene products of cI and cro dimerize, then bind to operator sites (OR
�
, OR

�
and

OR
�
) in the promoter region with differential affinities. The pattern of CI

�
, Cro

�
and

RNA polymerase binding to the operator and promoter sites determines the frequency
of transcription initiation from P

��
and P

�
.

transcription factors, to sites on the DNA called operator sites. The pattern of
transcription factors bound to sites canmodulate both the strength with which
RNAP binds to the promoter and the rate at which it begins transcription. The
number of patterns (states) of the promoter can be quite large. For example,
the � phage P

�
/P

��
control region is composed of two promoters and three

operator sites (shown schematically in Figure 5). The operator sites can bind
homodimers of two proteins, Cro and CI with different affinities. The region
can have 40 different configurations of RNAP, Cro

�
and CI

�
bound, each of

which is characterized by its stability (free energy) and its transcriptional
activity (Ackers et al., 1982; Shea and Ackers, 1985).

It is tempting to think of these states as 40 different logical states of a
complex Boolean switch that transmits a set of RNA signals when particular
sets of transcription factors are present or absent. In some cases, this may
indeed be a good approximation, but a number of issues need to be addressed
before such an abstraction is made. Most important is probably the time that
a given configuration of transcription factors and RNAP at a given promoter
persists. In many cases, in prokaryotes, these proteins are assumed to be in
rapid equilibrium with their respective binding sites. The binding dynamics of
RNAP to its promoter, especially, is likely more complicated than this; how-
ever, empirically this does not seem to be a bad approximation in most cases.
In this approximation, the 40 molecular configurations of P

�
/P
��

are sampled
many times in between transcription initiation events. The total time spent in
any configuration is related to its stability. Thus an average transcriptional
activity may be calculated for any instantaneous concentration of proteins.
The thermodynamic and kinetic parameters for the P

�
/P
��

promoters have
been determined (Ackers et al., 1982; Shea and Ackers, 1985). The graph of
P
��

activity as a function of CI
�
and Cro

�
concentrations, [CI

�
] and [Cro

�
],
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Figure 6. A plot of the activity of the P
��

promoter as function of the concentration of
its two transcription factors, CI

�
and Cro

�
. Activity is expressed in units per time of

open-complex formation (ocs/s). For details see Section 5.2.3.3.

respectively, is shown in Figure 6 for a constant (available) RNAP concentra-
tion of 30 nM. This plot summarizes the ‘control logic’ for transcription
initiation at P

��
. The 40 ‘logical’ states of the promoter region are not directly

visible in this activity curve. The smoothness of this curve arises because of the
rapid equilibrium assumption. Were the transcription factors ‘sticky’ (i.e., were
their off-rates from DNA comparable with or slower than the rate of tran-
scription initiation), then the timing (order) of CI and Cro binding would
become important and a time-independent control surface could not be plot-
ted. Further, the activity of P

��
as a function of CI

�
is not a monotonically

saturating function. Instead, as [CI
�
] increases, the activity of P

��
at first

increases, then decreases. There are, then, at least three functionally different
regions of [CI

�
] and a Boolean abstraction of this ‘switch’ could not necessar-

ily map [CI
�
] into a single binary variable. In addition, as discussed above,

the appropriateness of a Boolean approximation to this curve is dependent on
the time it takes the effector molecules to traverse from their initial to final
values and vice versa.
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Figure 7. Diagram of the promoter control of the sea urchin endo-16 gene involved in
early embryogenesis. Derived from Yuh et al. (1998).

The logic of P
��

(and its inextricably linked partner, P
�
) is relatively com-

plex for prokaryotic operators and promoters. The logic of eukaryotic tran-
scription initiation dynamics can be far more complicated than even this. One
example, schematically illustrated in Figure 7, was reported for the endo-16
gene involved in endodermal formation in sea urchin development. The pro-
moter has at least 15 different protein input signals that regulate expression by
binding to six different binding regions upstream from the RNAP binding site
(Davidson et al., 1998; Yuh et al., 1998). In addition to these modes of
regulation, eukaryotes also can regulate the more global organization of their
nuclear genome by, for example, controlling the acetylation of histones, there-
by remodeling the chromatin structure. The larger number of genes found in
eukaryotes as compared to prokaryotes is not the only or even the best
measure of organismal complexity.

Transcript elongation and degradation The signal that is controlled by the
promoter logic is ‘Produce Transcript’. Often this is interpreted to mean ‘Turn
Gene Product On’. That is to say, it is often loosely thought that genetic
networks are composed of promoter logic elements interconnected by the
transcription factors that are the ultimate product of activity from many of the
constituent promoters. But there are other factors that must be considered
before such an abstraction can be made. After transcription initiation, there
are numerous mechanisms of elongation control, including terminators and
antiterminators (regions of DNAat which a transcribing RNAP can fall off the
template, or at which RNAP can be modified to be resistant to such termina-
tion, respectively), downstream binding sites for proteins that block a proces-
sive RNAP, and RNAP pause sites. In polycistronic operons, mostly found in
prokaryotes, these can lead to strong polarity effects in which there is higher
expression of transcripts proximal to the promoter than for those that are
distal. Further, each gene in the transcript may or may not have its own
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ribosome binding site and degradation rate. Thus each gene can express
different numbers of proteins per transcript. Further, in prokaryotes, transla-
tion of a protein product from a transcript is often tightly coupled to transcrip-
tion. Production of protein rapidly follows production of transcript. In eu-
karyotes, this coupling is much weaker, since many processes can act on a
given transcript before and after it is exported from the nucleus to be trans-
lated. The correlation between the concentration of transcript and its protein
product is lower in eukaryotic systems. In all cases, protein products may or
may not be actively degraded. All these processes have to be taken into
account before realistic models can be constructed.

Stochastic processes in gene regulation There is one further level of complex-
ity to the genetic machinery that must be carefully considered. Many of the
molecules that control gene expression are often present in small numbers
inside the cell. The genes themselves are usually present in only one or a few
copies. Further, the genetic reaction rates are often rather slow compared to
the other biochemical reactions inside the cell. These facts indicate that a
deterministic chemical kinetic treatment of these reactions may not always be
possible and that the discrete molecular nature of the expression machinery
and their thermal fluctuation must be taken into account as well (Kampen,
1981; Ko, 1991, 1992; Peccoud and Ycart, 1995; McAdams and Arkin, 1997;
Arkin et al., 1998; Goss and Peccoud, 1998). Consider, for example, the rate of
transcription initiation from P

��
. The maximum activity of P

��
shown in

Figure 6 is about 0.007 open-complexes/s; that is, one transcript initiation
about every 2.5min on average. This occurs at [CI

�
] of the order of 200 nM,

and at [Cro
�
] of zero. However, during early � phage development, [Cro

�
]

and [CI
�
] are generally less than 100nM. In E. coli, which has a cell volume

of approximately one femtoliter, 1 nM corresponds to about one molecule
only. Given that a well-fed E. coli cell has a cell cycle time of about 20min,
there are, on average, fewer than ten transcription initiations from a fully
activated P

��
per cell division. However, the actual number of transcription

initiations from P
��

is most likely a stochastic process. Further, the number
of proteins produced per transcript is also probably a random process. The
‘back-of-the-envelope’ explanation for this is as follows. We can roughly
divide the gene expression process into four stages: (1) RNAP binding to the
promoter, (2) transcription initiation, (3) RNAP arrival at the end of a gene,
and (4) competitive binding of ribosomes and RNA degrading enzymes to the
RNA transcript. The probability of RNAP being bound at its promoter is
determined by the partition function of operator/promoter states that enters
into the calculation of the curve in Figure 6. The probability of transcription
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initiation is very roughly a first-order rate process whose rate constant can be
read off the figure. The time until transcription initiation, after RNAP has
bound to its promoter in a given state, is distributed approximately exponen-
tially (McAdams and Arkin, 1997). Elongation then proceeds by a series of
independent steps each exponentially distributed in time. The arrival time at
the end of a gene is, therefore, the sum of a set of independent exponential
distributions (one for each nucleotide in the sequence) which has the form of a
�-distribution.

Finally, the number of proteins per transcript is determined by how many
ribosomes can bind to the ribosome binding site on the transcript before the
transcript is degraded by an RNase protein. These two processes are often
competitive, so ribosome binding temporarily protects the transcript from
degradation. Thus, the question arises of how many ribosomes can bind before
degradation by RNase occurs. This is analogous to asking how many heads
does one get before one gets a tail when flipping a biased coin. Such processes
are described by a geometric distribution. Each of these distributions can be
rather broad and skewed. Consequently, the pattern of protein production
from a single promoter can be expected to be burst-like and erratic.

When all of the above arguments are put forth in a chemicallymore rigorous
fashion, the dynamics of gene expression may be described by a chemical
master equation (McAdams and Arkin, 1997). Figure 8 shows the pattern of
protein production from a model of the � phage P

�
promoter (McAdams and

Arkin, 1997). Each curve is one realization of the stochastic gene expression
process started from the same initial conditions in identical cells. Our theoreti-
cal model indicates that individual cells can have quite different expression
patterns. There is ample experimental evidence that this is indeed the case in
cell populations (Novick and Weiner, 1957; Ko, 1992; Ross et al., 1994; Siegele
and Hu, 1997). The implications of this noise for the control of cellular
behavior and development, and for the engineering of reliable genetic circuitry,
has been discussed in detail (McAdams and Arkin, 1997, 1998, 1999; Arkin et
al., 1998).

5.2.3.4 Electrical and chemical frequency filters

Since biological signals can be periodic, as described in Section 5.2.3.2, and
noisy, as described in Section 5.2.3.3, a consideration of the frequency-depend-
ent responses of chemical reactions to time-varying chemical signals is in
order. A frequency dependence can be considered to be a type of filtering. In an
electrical context, frequency filters are devices that accept a time-dependent
input and differentially pass on some frequencies in the signal, while suppress-
ing others to different degrees.
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Figure 8. Master equation simulation of stochastic gene expression from a P
�
-like

promoter in three initially identical cells. For details see Section 5.2.3.3. (From
McAdams and Arkin, 1997.)

The two basic, passive electrical filters, the low-pass filter and the high-pass
filter, are represented in Figure 9. The amplitude of each frequency component
of the output signal is always less than, or equal to, the corresponding ampli-
tude in the input signal. These small circuits are composed of ‘linear’ elements
(resistors and capacitors) and thus are noise filters as well as frequency filters.
The spectrum of the output signal is the superposition of the filtered ampli-
tudes of each frequency component. The filter causes no interference among
the different components of the input signal to arise in the output signal.

Chemical low-pass filter A chemical version of the low-pass filter is shown in
Figure 10 (top). The input is the amplitude of time-varying (positive) input of a
chemical species; the output is the amplitude of the concentration of species A.
The frequency response function has the same fall-off as that of the low-pass
filter. However, this ‘filter’ can (at low frequencies) amplify a signal as well, since
it has a factor of ‘k’ in the numerator. In fact, any network of such linear
chemical reactions (with one input) is a low-pass filter. The additional reac-
tions between the input and output change the phase retardation of the signal
as well as the exact shape of the monotonically decreasing filtering profile.

Chemical band-pass filter As soon as a nonlinear chemical reaction is con-
sidered, there exists the possibility of band-pass filtering (all chemical systems,
like all electronic systems, are low-pass at high enough frequencies). As an
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Figure 9. Electrical frequency filters. (Top) A filter that passes only low frequencies (a
low-pass filter). (Bottom) A filter that passes only high frequencies (a high-pass filter).
For details see text in Section 5.2.3.4.

example, consider the bimolecular reaction shown in Figure 10 (bottom). In
this reaction scheme, � must be less than or equal to P, which, in turn, must be
equal to RB. Solving the Riccati equation that describes this system analyti-
cally is at best difficult, but very good asymptotic solutions may be found. The
filtering profile shown in Figure 10 (bottom) shows a pronounced band-pass
region between the critical frequency, �

�
, and k

�
. This particular chemical

circuit is admittedly artificial, since the constraint that ‘P match RB’ is not
likely to be met in biological systems. The example demonstrates, however,
that chemical systems can be both band-pass and low-pass filters. Note,
however, that this does not describe a linear filter, and if the driving signal has
many frequency components, then there are in fact (very small) interference
bands that appear at frequencies not contained in the original signal.

More complex chemical filters The above types of mechanism can be easily
linked in serial or parallel fashion to form very complicated filtering profiles

136 A. P. Arkin



Figure 10. The frequency filtering properties of two different chemical mechanisms.
Top: A reaction pathway with linear (first-order) kinetics acts as a low-pass filter. Here,
the concentration of the species A is driven by a sinusoidal influx of material (ampli-
tude� �). The amplitude of the oscillation in A is plotted as a function of the frequency
of the influx species. The analytical equation describing this curve is shown below the
reaction mechanism. Bottom: As soon as a simple nonlinearity is found in the reaction
(second-order kinetics) then the system can behave as a band-pass filter. Here, there is
influx of material from independent sources into species A and B. Species A is driven by
a sinusoidal signal that has an amplitude equal to � around an average influx value ofP
(the pedestal). The amplitude of the oscillation in C is plotted as a function of the
driving frequency of the A influx. The equation for this curve is too complicated to
show (see Samoilov, 1997).

indeed, such as notch filters that do not pass some intermediate band of
frequencies. The ability to easily construct complex filters out of relatively
simple chemical reactions suggests that such filtering could be used by biologi-
cal systems to respond differentially to the types of oscillatory input discussed
above. This is particularly interesting when considering, for example, that in T
lymphocytes some expression of some transcription factors are stimulated by
much lower frequencies of cytosolic Ca�� oscillations than others (Dolmetsch
et al., 1997, 1998). Also, although this has not yet been directly observed,
chemical frequencies can allow the demultiplexing of multiple signals carried
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in the frequency spectrum of a signal chemical concentration. For example,
perhaps one hormone could induce one frequency of Ca�� spiking and an-
other could superimpose another. Thus the presence or absence of two exter-
nal signal species could be carried throughout the cell using only one species;
downstream chemical filters could then decompose the signal at the respective
sites of action.

Nonlinear chemical filters do not behave, as was mentioned above, like
linear filters. For example, interference effects can introduce new frequency
components into the output spectrum. Thus these macroscopic kinetic circuits
are not really noise filters, but they may perform more general transform-
ations. Also, these treatments of these circuits assume that the fluctuations in
chemical reactions are negligible. How a given chemical kinetic mechanism
filters its own internal noise is still an open question. However, it is certain that
mechanisms such as molecular dimerization, and other forms of cooperativity,
filter molecular noise to some extent and can therefore lend increased reliabil-
ity to the genetic circuits described above.

More complex chemistry can have ever more exotic and interesting behav-
iors. These include analytical delays and strong band-pass effects,
quasiperiodicity and chaos. When the input signal is noisy, some complex
chemical networks can exhibit a phenomenon called stochastic resonance in
which the noise signal improves the detection of very small periodic signals in
the system over some region of power in the noise spectrum (Collins et al.,
1995, 1996; Braun et al., 1997; Astumian and Moss, 1998; Jung et al., 1998).
These examples only underscore the point that biological systems are non-
stationary dynamical systems whose signal-processing machinery may be far
more sophisticated than is generally understood.

5.3 Comments on the parameterization of models, nonlinear systems
and cellular reliability

One of the concerns often voiced about the business of biological systems
modeling concerns the fact that most mathematical descriptions of biological
processes contain a good many parameters most of which cannot easily be
experimentally measured. Further, these descriptions are most often sets of
coupled nonlinear differential equations that may, in general, show an extreme
sensitivity to parameters (and initial conditions). Since it is currently difficult,
at best, to measure all of the kinetic parameters for even isolated network
components, such as enzymes, and since such measurements of in vitro kinetics
are not guaranteed to be the same as those that are obtained in vivo, it might
seem a hopeless task to construct confirmatory and predictive models of
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complex BRNs. This fear is valid; however, there are a number of phenom-
enological observations and mathematical facts that argue that the situation is
not so bleak as might be initially thought.

The first trivial observation is that all that is nonlinear is not necessarily
sensitive to parameter changes. Extreme sensitivity, such as that found in
deterministically chaotic systems, at least so far, has proven to be a relatively
rare phenomenon in biological and biochemical systems. Though chaos has
certainly been detected at the tissue level such as in heart and brain dynamics,
and on the chemical level in reconstituted and forced peroxidase—oxidase
enzyme systems, it is certainly not the rule in even very complex, nonlinear
biochemical systems. The reason for this must reside in the engineering specifi-
cations for good biological function. Most cells operate in fluctuating environ-
ments (wherein variables such as temperature, pressure, volume and ionic
strength can change unpredictably) and must both detect and use chemical
components that are at very low concentrations and whose kinetics, therefore,
is likely to exhibit large fluctuations in reaction rates. In addition, there is a
finite chance that a given component of a regulatory network may fail, due
either to this noise in its components or to more extreme processes such as
mutations. In order for a cell to survive under such conditions, the function of
its regulatory networks cannot be so sensitive to their parameters (which are
sensitive to these fluctuations) and must be reliable in the face of individual
component failure and mutation. In order to achieve this robustness, cells use
functional redundancy and feedback stabilization among other design strategies
to obtain reliable operation.

Barkai and Liebler have suggested that this very insensitivity to parameters
might be one criterion for judging whether or not a particular biochemical
model is reasonable (Barkai and Leibler, 1997). As an example, they have
analyzed various models of exact adaptation in bacterial chemotaxis. This is a
phenomenon in which the ratio of clockwise to counter-clockwise rotation of
the flagellum initially decreases upon cellular exposure to a step of chemo-
attractant, but then returns exactly to the initial basal value, even under
continued (constant) exposure to the attractant. Since this behavior is judged
to be important to the cell’s fitness for survival, Barkai and Leibler (1997) have
argued that the regulatory network that controls this behavior should be
insensitive to changes in its parameters. They propose a schematic model of
adaptation that maintains ‘exactness’ despite order-of-magnitude changes in
one or more parameters, whereas some previous models of adaptation seemed
to require a highly tuned parameter set. However, although the model by
Barkai and Liebler exhibits high reliability in exact adaptation, the time to
recovery is less robust. Experimental measurements on the dispersion of times
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to exact recovery in different mutants of chemotactic E. coli should further
constrain the class of models that can explain the chemotactic behavior (Alon
et al., 1999). An important side-note is that the argument that cells should not
be too sensitive to small perturbations assumes that the perturbations are
natural (i.e. commonly occurring ones). Specific toxins and pharmaceuticals,
hard radiation, and other such ‘artificial’ perturbations are rarely encountered
during the normal course of a particular organism’s evolution. Its BRNs may
therefore be sensitive to very low exposures to these types of attacks.

Biochemical models, therefore, are often subject to a number of restrictive
global functional constraints such as robustness and, in some cases, homeo-
stasis as well as an often large list of experimental data that greatly restricts the
class of models that can explain and predict organismal behavior. If the basic
stoichiometric network of reactions is known, this provides a further restric-
tion on the class of behaviors and the feasible sets of parameters that can
reproduce experimental observations (Clarke, 1981).

5.4 Summary and outlook

The challenges of understanding how these incredibly complicated biological
systems function to the point where we can predict their behavior, control
them and rationally design modifications into them are clear. The chemical
and physical systems that underlie their function operate in regimes of which
we do not yet have a full theoretical facility. They operate asynchronously,
asymmetrically and nonlinearly in fluctuating environments with less than fully
reliable parts. In addition, the systems are rather large and highly interconnec-
ted networks that operate over a large range of time and space scales. Practi-
cally, it is not feasible to derive the equations for each microscopic event that
occurs within and among cells. Some higher levels of abstraction will be
necessary to make useful and rapid analyses. The work presented here has
considered a bottom-up approach that starts with the detailed kinetics of
networks of chemical reactions and attempts to derive when and where such
networks may be dissected into self-contained ‘devices’. It was a hypothesis of
this chapter, and one that is confirmed in part by the literature, that these
devices are regulatory motifs that recur within different pathways of the same
organism and across organisms. The motifs may be realized using different (or
related) biochemical species, but their functions may be the same. The level of
abstraction from the detailedmolecular kinetics of each device will be different,
and it is a central challenge to develop methods for making models that can
combine such heterogeneous submodels in a physically consistent way. Also,
in analogy to finding the basis set of protein folds in order to understand the
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principles of protein folding, it would be advantageous to identify a basis set of
such devices, and their restricted class of functions, from which many BRNs
may be constructed.

Meeting this challenge is especially crucial in light of the accelerated on-
slaught of essentially raw data that has fallen out of new high-throughput
biologicalmeasurement devices and their resultant ‘projects’. Genome projects
provide partial parts lists for the cellular machinery. Information technologies
are providing large numbers of hypotheses for predicting protein activity,
structure/function predictions and even network hypotheses. Gene chip tech-
nology and two-dimensional protein gel/mass spectrometry methods are
beginning to provide quantitative measurements of the condition- and time-
dependent variations in concentrations of mRNA-transcript proteins.
Advanced microscopy and other cell measurement devices are beginning to
create large databases of spatial information, cell motion and cellular interac-
tion data that can be related to changes in ion concentrations and gene
expression. In addition to these relatively new stores of data, there are all the
data generated from the standard biochemical and genetic research communi-
ties as well as massive amounts of clinical andmedical diagnostic data. It is one
central challenge to deduce from these data the responsible regulatory net-
works. Such reverse engineering methods are in their very early days (Arkin
and Ross, 1995; Arkin et al., 1997; Liang et al., 1998; Thieffry and Thomas,
1998).

Theoretical and computational tools developed to dissect and analyze com-
plex biological systems are essentially tools to make more rigorous the process
of hypothesis formation that every biologist must conduct before and after
performing such experiments. These tools provide a central structure for
organizing the data generated by the above techniques. They help to yield new
insights and new biological principles, some of which are discussed above.
Several of these insights have profound implications for biological processes
such as development, facultative infection and other diseases. Finally, these
tools are beginning to aid in the design of novel functions into cells. Since the
engineering principles by which such circuitry is constructed in cells comprise
a super-set of that used in electrical engineering, it is, in turn, possible that we
will learn more about how to design asynchronous, robust electronic circuitry
as well.
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Part II

Nonlinear sensitivity of biological systems to
electromagnetic stimuli

Electromagnetic stimuli represent a special class of external perturbations
that are discussed in almost all of the remaining book chapters. Part II
therefore provides important information in regard to the biophysical foun-
dations of interactions between biological processes and electric or magnetic
fields. In addition, experimental examples are described that demonstrate the
nonlinear sensitivity to electromagnetic stimuli of enzymes, single cells and
tissues. The principles of electric field interactions and the functional role of
bioelectric fields are reviewed in Chapter 6 by Paul Gailey. He discusses the
remarkable electrosensitivity of selected biological systems and how oscillat-
ing electric fields may be detected and amplified by biological structures. The
chapter concludes with the description of a model based on the concept of
long-range coherence, which may explain how relatively weak electric fields
may effectively interact with excitable cellular assemblies in the presence of
noise. An electric field-sensitive cellular oscillator in cells of the immune
system is the subject of Chapter 7 by Howard Petty. He discusses experiments
that have led to the discovery of coherent metabolic oscillations in human
neutrophils, and describes the response of these cells to time-varying chemical
and electric fields. His work shows the critical importance of the phase rela-
tionship between internal cellular oscillations and the externally applied field
oscillations in the induction of cellular responses. Direct interactions between
magnetic field stimuli and biological activity is the main theme of Chapter 8
by Jan Walleczek and Clemens Eichwald. Their chapter presents a brief
history of research in this area and then describes work showing that enzyme
activity, including oscillatory enzyme dynamics, may serve as an effective
magnetic field coupling target. Further, they present results from nonlinear
modeling studies that propose mechanisms by which biological processes
may become sensitive to the frequency of oscillating magnetic field perturba-
tions. Finally, Chapter 9, contributed by Stefan Engström and collaborators,
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outlines an experimental approach that has revealed the magnetic field sensi-
tivity of hippocampal brain tissue. Their work provides evidence that neur-
onal tissues may be able to discriminate between different frequencies of
magnetic field oscillations.
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6

Electrical signal detection and noise in systems
with long-range coherence

PAUL C. GAILEY

6.1 Introduction

The long-running controversy over the possibility of health effects from weak,
environmental electric and magnetic fields (e.g., 60-Hz power line fields) has
both advanced and obscured the study of field interactions with biological
systems.While a substantial number of publications focus on theoretical limits
of field detection, the efforts by some to disprove the possibility of health effects
has drawn attention away from the broad and fascinating range of well-
established field interaction phenomena. In this chapter, I review some of the
fundamentals of electric field interactions with biological systems, extend these
concepts to systems with long-range coherence, and discuss implications for
research and therapy. Those readers interested in the detailed mathematical
analysis of these processes are directed to appropriate treatments in the
literature.

It should come as no surprise that applied electric fields can affect biological
systems. Organisms at all levels of complexity both generate and use electric
fields in development and function. Early work by L. Jaffe showed that a
number of organisms generate electric fields during development (Jaffe and
Nuccitelli, 1977). More recent work by Shi and Borgens (1995), Hotary and
Robinson (1994) and others revealed that such fields are ubiquitous and may
play a key role in tissue organization. Electric fields produced by embryos
appear to direct the placement and differentiation of certain cells into struc-
tural and functional components of the developing organism. As investigators
attempt to tease apart this intricate, self-directing symphony, we can gain
insights by looking at a more comprehensible and immediately relevant pro-
cess — wound healing. When our skin is abraded, the natural electric potential
maintained between the outer and inner layers of skin is short circuited. The
wound provides a low-resistance return path, and the resulting electric field
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directs the migration of keratinocytes toward the injured area (Sheridan et al.,
1996). Many of the details of this process are well understood, but, taken as a
whole, it is a stunning example of self-directed organization that is globally
mediated by an endogenous electric field.

Other examples of electric field effects in biology include phenomena such as
ephaptic signaling, or electric field coupling between neurons (Dudek et al.,
1986). But we focus instead on externally applied electric fields to discuss the
physics of these interactions and theoretical detection limits. From this perspec-
tive, there is no better starting point than the elasmobranch fish. Pioneering
work by Kalmijn (1982) and others revealed the extraordinary sensitivity
of these marine animals. Their well-established behavioral responses to
500-nV/m electric fields are best understood by analogy. If wires connected to
either end of a single 1.5-V flashlight battery were placed 2000 miles (about
3000km) apart in the ocean, electrically sensitive sharks and rays would be
able to clearly detect the electric field produced in the water by the battery.
These animals need such extreme sensitivity in order to detect the weak electric
fields produced in seawater by the physiological processes of their prey.

There is much to be learned about the methods and limitations of electric
field detection from this remarkable sensory system. First, the fish use highly
conductive ‘canals’ to amplify the field internally at the site of their sensory
organ. Second, they average the response of large populations of cells to reduce
the effects of noise. Finally, they are clearly able to correct for the effects of
temperature on the detection process — effects that can be significantly larger
than the effect of the electric field itself. These are the same issues relevant to
any discussion of electric field detection processes: the electric field must be
amplified to levels of physiological significance, and the detector must be able
to distinguish between the signal and the noise or random fluctuations in-
herent in the system.

The latter point is currently the subject of intense discussions in the neuros-
cience, biophysics, and physics literature (Barnes, 1988, 1996; Adair, 1991;
Astumian et al., 1995, 1997; Rieke et al., 1997; Valberg et al., 1997). Any
physical system operating at biological temperatures will exhibit thermal noise,
and specific structures introduce additional classes of noise that must also be
considered.Voltage-gated ion channels, for example, are not deterministic open
or shut devices. They are probabilistic devices that switch randomly between
different states. Therefore, a potential difference applied to the cell membrane
will affect only the probability of channels being open or closed, not their exact
states. The random switching produces a type of noise specific to these chan-
nels. Release of acetylcholine in a synapse is another example of a random
process. These and other sources of noise result in fluctuations in the timing of
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the spike trains from nerves that encode sensory input and other neuronal
signals. The question of how organisms extract the information of interest
from the background of natural noisy processes is very much open.

We are faced with similar questions when inquiring into the use of electric
fields to perturb nonsensory biological systems except that the potentially
affected components are not known a priori. Fortunately, we can begin an
investigation at the cellular level for which some very detailed analyses of
theoreticalmodels are available (Schwan, 1983; Trachina andNicholson, 1986;
Polk and Postow, 1996). More recent work includes numerical simulations for
groups of electrically coupled cells (Stuchly and Xi, 1994; Gailey, 1996). Fol-
lowing a review of these concepts, we will push forward the frontier of electric
field detection by considering populations of synchronized oscillatory cells.
Such populations occur widely in nonsensory settings and are fundamental to
neuronal processing. Here we will find that the presence of noise can enhance
signal detection in a manner reminiscent of stochastic resonance (e.g., see Moss,
Chapter 10, this volume). In these coupled populations, noise and coupling
strength between elements work counter to each other in preventing or permit-
ting synchronous oscillations. As either noise is increased or coupling strength
is decreased, the system undergoes a phase transition from the synchronous or
long-range coherent state to the nonsynchronous state. Near this boundary,
the system is very sensitive to external perturbations. The possibility of using
electric fields to influence this transition may be important because, as de-
scribed by Ding et al., Chapter 4, this volume, such phase transitions appear to
be fundamental to brain function. More generally, we can expect to discover
various forms of long-range coherence, occurringwidely in biological function,
as it is an essential feature of self-organization — the hallmark of living systems.

6.2 Principles of electric field detection in biological systems

Electric fields are defined in terms of the force they exert on electric charge. In
biological systems, these charges can occur as electrons, ions and macro-
molecules containing excess charge or nonsymmetrical charge distributions. A
spherically symmetric, charged object in a uniform electric field experiences a
force, F, of magnitude F� qE, where q is the net charge and E represents the
electric field strength. This force is generally very small in the case of ions and
charged molecules because the unit of elementary charge is so small. As an
example, consider what is called the fair-weather, static electric field. Ordinar-
ily, when no thunderstorm is underway, the electric field near the earth’s
surface is about 100V/m. A singly charged ion such as sodium (Na�) has a net
charge of one electron, or about 1.6� 10��� coulombs. From the force
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equation above, one can estimate that the force on Na� due to the fair-weather
electric field is only about 10��� newtons. Such a small force is hard to
imagine, being roughly equivalent to the pull of gravity on an object that
weighs one one-thousandth of a picogram.

Electric fields also exert a force on objects that have an inhomogeneous
distribution of charge, but an overall net charge of zero. The simplest example
is an electric dipole, which one can imagine as a short rod with positive charge
on one end and negative charge on the other. Because the net charge is zero, a
uniform electric field will not pull the dipole in one direction; it will instead
exert a torque on the dipole that tends to align it in the direction of the electric
field vector. In summary, while free ions are set in motion by uniform electric
fields to produce electric currents, dipoles are only rotated.

Electric dipoles are common in biological systems and can be either free (e.g.,
water molecules) or bound to a structure, such as some receptors and other
proteins bound to the cell membrane. Electric field interactionswith dipoles on
numerous scales of organization lead to the property known as the electric
permittivity of a substance. Detailed analyses and measurements of the electri-
cal permittivity of biological materials have been conducted (Foster and
Schwan, 1996). The charge distributions on biological macromolecules are
complex, and are often described in terms of higher-order multipole moments.
For general discussions of the physics of electric field interaction, many good
texts are available, including those of Feynman et al. (1964) and Iskander
(1992).

When one is attempting to analyze or predict electric field interactions, the
strength of the electric field must, of course, be known. Determining the field
strength experienced by the cells and tissues of a biological organism can be
quite difficult, however, because of the complex relationship between the
externally applied field and the fields induced internally. At low frequencies,
biological tissues strongly shield electric fields in a way similar to the shielding
properties of a metal Faraday cage. The ratio between external and internal
electric fields can be very large. A 1000-V/m, 60-Hz external electric field, for
example, will produce an internal electric field of only about 0.001 V/m inside
the human body. This attenuation by six orders of magnitude is substantial.
Actual fields inside the body will vary considerably depending on the orienta-
tion of the subject, body size and position within the body. Biological tissues
have enormously complex electrical properties because of their organization at
the molecular, cellular, tissue and organ levels. A number of researchers have
tackled the problem of predicting the internal electric fields that will result
from a known externally applied field (Durney et al., 1975; Gandhi and Chen,
1992; Dawson et al., 1997). However, the reliability of these results is limited by
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the resolution of the anatomical models used in the simulations. Even at
millimeter resolution, important electrical features such as thin membranes
surrounding organs cannot be accurately modeled.

Internal electric fields can also be induced by external, oscillating magnetic
fields via a process known as Faraday induction. Low-frequency magnetic
fields pass through biological tissues largely unattenuated. Inside the tissues,
they induce an electric field with a magnitude and direction that depends on
the geometry and electrical properties of the tissues, along with the frequency
and polarization of the magnetic field. Therapeutic devices for accelerating
bone healing, for example, depend on this principle for inducing electric fields
in the tissues of interest. The prediction of internal electric fields induced by
external magnetic fields is also difficult and requires detailed numerical
models. To provide a rough idea of the strength of field induction, we note that
a uniform 60-Hz magnetic field of 0.1 millitesla (mT), which is also 1 gauss (G),
will induce an electric field of the order of 1mV/m inside an average-size
human male adult. The internal electric fields induced by either external
electric or magnetic fields depend very much on frequency. Higher frequencies
induce higher internal electric fields up to the frequency at which the whole
body resonates in the 30—100MHz range (Durney et al., 1975). Internal electric
fields may have magnitude similar to that of external electric fields at whole-
body resonance. At higher frequencies still (microwave to millimeter wave
range), electromagnetic fields are unable to penetrate the body efficiently, and
the magnitude of induced internal fields decreases rapidly beneath the surface.

6.2.1 The cell membrane as a target for electric field coupling

Exogenously produced internal electric fields can interact with a variety of
biological substructures, and summaries of these interaction mechanisms can
be found in Polk and Postow (1996). Much attention in recent years has
focused on electric field interactions with the cell membrane and membrane-
bound proteins. The remainder of this chapter addresses such interactions at
several levels of organization.

Interest in the cell membrane as a locus for electric field interactions arises
for two reasons. First, the plasma membrane is a primary sensory organ for the
cell. Cell membrane processes mediate responses to biochemical signals as well
as physiological electrical activity. Second, the extraordinary electrical proper-
ties of these lipid-based membranes result in the amplification of any electric
field in the cell’s environment for the following reasons. Electrical current
flowing through biological tissues cannot easily pass through the membranes
of cells in the tissue. An electrical potential that would drop gradually in a
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homogeneous medium along a length comparable to the cell dimension in-
stead drops abruptly across the membrane. For purposes of illustration,
consider a 10-�mdiameter cell in the presence of a 1-V/m electric field.With no
cell present, the potential drop over the 10-�m distance along the field direc-
tion would only be 0.01mV. However, because the cell membrane is a poor
conductor, most of the potential now drops across the membrane surfaces
perpendicular to the direction of the field. The lipid bilayer structure of these
membranes is only about 5 nm thick. Thus, the induced electric field across the
membrane is roughly 0.005mV divided by 5nm, or 1000V/m. Although this
1000 : 1 amplification is dramatic, some perspective is gained by noting that the
cell’s resting potential of about 50mV produces a transmembrane electric field
of 10
V/m.

Methods for predicting the transmembrane potentials produced by internal
electric fields have been reported by several investigators (Schwan, 1983;
Trachina and Nicholson, 1986; Gailey, 1996). Such potentials can be of the
order of the electric field strength times the cell’s dimension in the direction of
the field (as in the example above). The maximumpotential obtainable in large
cells, however, is limited by the electrical properties of the cell membrane,
cytoplasm and extracellular media. These properties can be summarized in
terms of a characteristic length of the cell, �, such that themaximummembrane
potential inducible by a low-frequency electric field external to the cell is
approximately E� (Gaylor et al., 1988). The characteristic length reflects the
‘leakiness’ of the cell membrane relative to the conductivity of the intracellular
and extracellular media.

Cell membranes exhibit a high capacitance per unit area because of the
atomic dimensions of the lipid bilayer. This capacitance of about 1 �F/cm� is
a significant factor in determining the frequency dependence of induced mem-
brane potentials. As noted earlier, because the membrane represents a barrier
to current flow at low frequencies, the interior of the cell is shielded from
external fields. However, as the capacitive reactance of the membrane is
decreasing at the higher frequencies, the external currents now may flow
through the cell, and produce small perturbations in the membrane potential.
A notable exception is the observation that very intense electric fields, even of
short duration and high-frequency content, are able to puncture cell mem-
branes (Weaver, 1993; Gailey and Easterly, 1994). This process, known as
electroporation, is widely utilized by molecular biologists for transfecting cells
with genes. It is also thought to underlie the tissue damage occurring in severe
electrical trauma (Gaylor et al., 1988). Although there has been some investi-
gation of high-frequency, resonant interactions at the cell membrane level
(Fröhlich, 1988), the present discussion will be confined to extremely low-
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frequency (ELF) interactions ( f� 100Hz) that are frequently on a time scale
comparable to physiological processes associated with electrically excitable
membranes.

6.2.2 Electric field effects on action potentials and cell electrical oscillations

Most cells maintain a relatively steady resting potential in the neighborhoodof
60mV, but excitable tissues such as neurons and myocytes can transiently or
periodically exhibit large excursions known as action potentials. As discussed
earlier, low-frequency electric fields in biological tissues induce membrane
potentials in the cells of the tissues. These induced potentials are generally
small in comparison to a cell’s resting potential, although they may be more
significant for active excitable tissues as will be illustrated next.

The physiology of cellular excitability is complex, but results largely from
the nonlinear properties of voltage-gated ion channels (Hille, 1992; Aidley,
1998). Individual cells contain thousands to millions of these channels categor-
ized by the types of ion they transport or allow to pass through the membrane.
Excitable cells typically contain large populations of Na� and K� channels
that play a major role in the generation of action potentials.

Ion channels gate stochastically. That is, they open and close randomly such
that only their average properties can be determined under a specific set of
conditions. Voltage-gated ion channels in a lipid membrane respond to the
membrane potential through changes in these average properties. For
example, a channel gate with a mean open time of 10ms at a given membrane
potential may express a mean open time of 5ms at another membrane poten-
tial. The actual time the gate stays open will vary, but after many openings will
be seen to obey an exponential probability distribution with a rate constant
equal to the inverse of the mean open time. A separate rate constant governs
the closed-time statistics.

An action potential is initiated when the membrane potential exceeds a
certain threshold determined by the properties of the ion channels. This thresh-
old may be tens of millivolts above the resting potential of the cell, and is
difficult to induce by means of an externally applied field. For example, a
person must come into contact with a relatively high-voltage source before
muscle contractions are induced (e.g., a defibrillator). The voltage source
generates intense electric fields inside the muscle tissues, and the induced
membrane potentials exceed the action potential threshold for the muscle cells
(Reilly, 1992). Externally applied electric fields, where there is no direct contact
with a voltage source, generally cannot induce sufficient membrane potentials
to initiate action potentials. Instead, they produce only a small perturbation of
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the membrane potential. In the case of excitable tissues, such as muscle, these
perturbations produce no immediately apparent effect.

More interesting is the case of neurons that are in the process of firing. Some
insight into this process can be gained by modeling the neurons as integrate-
and-fire devices. In this model, a steady endogenous current is assumed to flow
into the neuron and continuously raise its potential until a threshold is reached
and an action potential is generated. After firing, the potential is reset to some
lower level and the process begins again. This repetitive firing or oscillatory
behavior is common in the central nervous system and some sensory systems.
Such oscillatory systems are far more sensitive to small perturbations than are
excitable tissues that require induced membrane potentials of 20mV or more
to initiate an action potential. A detailed analysis reveals that these neurons
represent nonlinear, limit-cycle oscillators, and can be influenced by extremely
weak perturbations (Fohlmeister et al., 1980). The discovery of the sensitivity
of limit-cycle oscillators to perturbations was made in the 1600s by Huygens:
he reported that two pendulum clocks would self-synchronize through the tiny
vibrations of the pendula movements transmitted through the wall on which
they were hanging (Bak, 1986). For the theory of perturbation responses of
limit-cycle oscillators, see Kaiser, Chapter 1, this volume.

In the case of an integrate-and-fire neuron, we can visualize its sensitivity by
considering the point in time when the potential is ramping up and is just
about to reach the firing threshold. At this point, a small perturbation in one
direction could push it over the threshold ahead of schedule. A small perturba-
tion in the other direction would produce a delay in reaching the threshold. In
either case, we expect the membrane potential perturbation to affect the timing
of the action potential. Such effects have been clearly demonstrated in vitro.
For example, a constant (DC) electric field has been used to suppress epilepti-
form activity in hippocampal slices (Gluckman et al., 1996), while oscillating
fields have been used to entrain or phase lock cardiac myocytes (Lazrak et al.,
1997). In the latter case, the applied electric fields alternated with a frequency
near the natural beating frequency of the myocytes. Earlier studies by Wachtel
(1979) demonstrated a similar effect on spontaneously firing Aplysia neurons.

Extensive studies of periodic stimulation of a nonlinear biological oscillator
have been reported (Guevara et al., 1981). These investigators injected current
pulses into beating chick cardiac myocytes and studied a range of complex
nonlinear interactions including phase locking. However, there is a distinct
difference between these current injection experiments and the electric field
exposure experiments described above. When electric current is injected direc-
tly into a cell through a microelectrode, the injected charge causes a unipolar
modification of the membrane potential; that is, the membrane potential of the
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Figure 1. Predicted interbeat interval (IBI) of chick cardiac myocytes exposed to an
electric field that induces a 10-mV peak membrane potential perturbation. In the first
third of the graph, the electric field has a frequency 20 times less than the natural
beating frequency of the myocyte. The myocyte nearly phase locks in the middle third
of the graph when the electric field frequency is changed to a value close to the
myocyte’s natural beating frequency. In the final third, the electric field frequency is
increased by a factor of 3. The dashed line indicates the IBI when no electric field is
applied.

entire cell changes in the same direction and by the same amount. In contrast,
electric field exposure hyperpolarizes one side of a cell and depolarizes the
opposite side. The effects of this bipolar stimulation require slightly more
complex models for analysis (Gailey et al., 1996).

Nonlinear interactions as described above can be studied with numerical
models, if the details of the biological process in question are understood. In
the case of chick cardiac myocytes, detailed models of the ionic channels
producing the spontaneous activity have been developed (Kowtha et al., 1994).
By incorporating this model into an electric field-exposure model, some of the
expected interactions can be examined. Figure 1 shows the interbeat interval
(IBI) for chick cardiac myocytes exposed to an electric field that induces a
10-mV perturbation of the membrane potential at different frequencies. For
frequencies far below the natural frequency of the myocytes, the IBI changes
gradually at twice the frequency of the stimulation. Phase locking occurs when
the electric field frequency is near the natural frequency, and a different
behavior occurs when the electric field frequency is three times higher than the
natural frequency. On the basis of mathematicalmodels of this type, there is no
fundamental lower limit with respect to the magnitude of perturbation that is
still capable of influencing a nonlinear oscillator. Any ‘real-world’ system,
however, must contend with noise, an issue that will be addressed in Section
6.3.
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6.3 Competing with noise

Extracting weak signals from the background of noisy processes is an
endeavor of fundamental importance in many different disciplines. Noise is an
inescapable reality that occurs in all physical systems, and the detection of a
weak signal requires not only a device that will respond to the signal, but the
ability to distinguish the signal from all relevant sources of noise. An analogy
will be used to establish some common terminology. Assume a person is
listening to their favorite radio station as they leave town on an automobile
trip. At first the program is received clearly, but as the car travels farther from
the radio transmitter, the radio signal becomes weaker, and the quality of the
sound from the radio degrades. We will assume that the problem arises due to
electronic noise within the radio. All electronic processes produce noise and,
when the radio signal becomes weak enough, the magnitude of the noise is
comparable to that of the signal. In engineering terms, the signal-to-noise ratio
(SNR) is approaching unity. For good reception, we want to have an SNR as
high as possible.

Next, assume the driver is a physicist who happens to have a container of
liquid helium in the car. Because noise processes are generally reduced at lower
temperatures, he immerses his radio in the liquid helium. At temperatures near
absolute zero, the internal noise of the radio is greatly reduced and his SNR
once again improves to acceptable levels. The sound quality soon degrades
again, however, as he continues to travel away from the radio transmitter. The
problem now is noise in the antenna system, so his next tactic is to install
several antennas on the car and to average the outputs from each before
routing the signal to the radio. Because the noise in each antenna is random
and independent (uncorrelated), he can reduce the antenna noise by the square
root of the number of antennas he installs. A total of 16 antennas, for example,
improve the SNR by a factor of 4. Thus, our physicist has reduced noise and
improved signal detection by array averaging.

Continuing to travel, he is again plagued by poor signal quality. With all the
antennas on his car’s roof, the radio signal, although weaker, is still measur-
able, and the other measures taken have reduced the radio’s internal noise as
much as possible. The problem now is that his signal is so weak that it is
comparable to that of distant radio stations broadcasting at the same fre-
quency and to that of noise in the environment. The noise may arise from
weather-related electrical phenomena and emissions from electronic devices in
the area. Faced with this external noise, our physicist is now out of luck. No
further improvements to his system will allow him to improve the SNR for his
radio signal.
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Biological systems face these same limits in attempts to detect weak signals.
Aside from our physicist’s liquid helium trick, biological systems have em-
ployed every means discussed, and others, to improve signal detection. These
principles are clearly demonstrated in the system used by the shark to detect
the incredibly weak electric fields produced by the electrophysiological activ-
ity of their prey (Kalmijn, 1982). Ultimately, the shark’s detector is based on
ion channels in specialized cells. But as we will discuss, ion channels are very
noisy devices. The shark overcomes this internal noise by using many cells
closely coupled in an array (the ampulla of Lorenzini). Signal strength is
improved by using conductive canals that open on the shark’s body surface at
positions up to 10 cm apart. An array of these organs and canals further
improves sensitivity, and averaging or other signal processing of these separ-
ate signals in the central nervous system may accomplish additional noise
reduction.

Sources of noise in biological systems are numerous, but evolution has
apparently produced sensory systems that operate close to theoretical limits
(Bialek, 1987; Lowe and Gold, 1995). Since humans have no known sensory
system for detecting weak electric fields, we now ask how these fields might be
detected incidentally by neurons. In keeping with our focus on cell membrane
interactions and ion channels in particular, we will address ion channel noise
in some detail and comment only briefly on other sources of noise occurring at
the cell membrane. Reviews of these sources of membrane noise, including
thermal voltage and current noise, shot noise, and 1/f noise are available
(DeFelice, 1981; Bezrukov and Vodyanoy, 1994).

Thermal electrical noise, in particular, has received attention relative to
minimumdetection limits. All materials, including biological tissues and mem-
branes, produce thermal electrical noise (Johnson, 1927). A number of early
analyses of minimum detection limits for cells were based on thermal voltage
noise occurring at the cell membrane (Barnes and Seyed-Madani, 1987;
Weaver and Astumian, 1990; Adair, 1991). These analyses addressed the
question of the SNR by assigning the induced membrane potential to be the
signal of interest, but they did not specify a particular sensor. If membrane ion
channels are the sensors of interest, however, a direct comparison of induced
membrane potential to thermal voltage noise may not be appropriate. A more
detailed model revealed that the thermal voltage noise occurring in different
ion channels is poorly correlated when many channels are present (Gailey,
1999a). Thus, array averaging of thermal voltage noise is predicted and its
effects are expected to be insignificant in comparison with the effects of ion
channel noise.
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6.3.1 The role of ion channel noise in electric field detection

Channel noise results from the random opening and closing of membrane-
bound ion channels. Consider, for example, a cell with a potential difference
between the inside and the outside and only two ion channels in the mem-
brane. If the probability of each channel being open is one half, then, on
average, one of the two channels will be open. Channel gating is stochastic,
however, thus it is also possible for both channels or neither channel to be
open. The current through the membranewill fluctuate from its expected value
(with one channel open), to twice this value when both channels are open, or to
zero when neither channel is open. A similar process occurs when large
numbers of channels are present, and the characteristics of the fluctuations are
predictable as long as the statistical properties and rate constants of the
channel gates are known. Returning to the integrate-and-fire model of a
neuron, we now imagine that the charging of the membrane, or ramping up of
the voltage, does not occur smoothly. It fluctuates due to the channel fluctu-
ations that cause the charging current to fluctuate. In Section 6.2.2, we dis-
cussed how a small perturbation could advance or delay the firing time of an
integrate-and-fire neuron. Now it is clear that the time between nerve firings
(action potentials) will vary randomly due to channel noise. This relationship
was first described mathematically by Gerstein and Mandelbrot (1964).

In order for a perturbing signal, for example a membrane potential induced
by an electric field, to influence a spontaneously firing neuron, it must pro-
duce an effect comparable with or exceeding the fluctuations in firing time
caused by channel noise. This is the basic signal-to-noise limit discussed
earlier. We can tackle this problem mathematically by making some simplify-
ing approximations (for details of the mathematical analysis, see Gailey,
1999b). First, ion channels will be treated as two-state devices that exist in
either an opened or a closed state. Although channel behavior is well pre-
dicted by a model that includes four separate gates in series (Hodgkin and
Huxley, 1952), many of the essential features can be observed using a two-
state model (DeFelice, 1981). We will also restrict the analysis to constant,
rather than alternating, perturbations. However, the results will also apply to
low-frequency oscillating perturbations under the condition that any effects
must occur in a time period of less than half the period of the perturbing
signal. A 10-Hz signal, for example, undergoes a complete oscillation in
100ms. The analysis below will apply for time periods of less than 50ms,
during which the perturbing signal remains consistently either positive or
negative. If the SNR is 1 or greater during this time period, then longer time
scale effects such as phase locking are also possible. These effects occur
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because of the repetitive influence of the (alternating) perturbing signal inter-
acting with the natural oscillations of the neuron.

A membrane potential perturbation will slightly alter the opening and
closing rate constants of a voltage-gated ion channel, as discussed earlier.
Interestingly, this effect is a continuous function of the membrane potential, so
there is no lower limit of the magnitude of perturbation capable of changing
these rate constants. The question is whether or not the change is significant
compared to the channel noise. The change in the expected fraction of open
channels due to a perturbing potential can be approximated using a Boltz-
mann function (Hille, 1992). Assuming that themembrane potential is constant
over the short period of interest, the Boltzmann function also predicts the
change in expected current flow through the membrane due to the perturbing
potential. Integrating this effect over time yields the induced change in total
charge transferred. This change in total charge is considered to be the signal of
interest. In the integrate-and-fire model, it could be the change that either
pushes the neuron over its firing threshold early or delays its firing.

The next step is to find the magnitude of the fluctuations in total charge
transferred due to stochastic channel gating. This quantity is the ‘noise’ in our
signal-to-noise analysis and can be obtained from a random walk analysis of
the channel fluctuations. By setting the signal (derived from the Boltzmann
function above) equal to the noise from the random walk analysis, we obtain a
mathematical condition that must be met in order for a perturbing signal to
meet the SNR� 1 criterion (Gailey, 1999b). This condition is a function not
only of the magnitude of the signal but of the channel rate constants, the
number of channels and the time period involved. The number of channels is a
factor because the relative magnitude of the channel noise decreases as more
channels are added. The duration of the perturbing signal is important because
the current fluctuations tend to average out over time. Choosing biologically
reasonable rate constants and setting the induced membrane potential to 1 �V,
one can examine the number of channels and the time required for detecting
the signal. Figure 2 illustrates the results of this analysis for some specific
conditions approximating an array of Na� channels.

It is apparent from Figure 2 that the number of channels and time required
to detect a weak membrane perturbation are inversely related. With more
channels, less time is required. Although the calculations were performed for a
1-�V signal, the results scale with signal strength. For example, while an array
of 10
 channels requires about 0.1 s to detect a 1-�V signal, only 0.01 s would
be required to detect a 10-�V signal. Another result, not shown in Figure 2, is
that detection limits are sensitive to the gating rates of the ion channels. Faster
gating rates provide more noise averaging during a time interval so that less
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Figure 2. Number of ion channels and duration of applied signal required for detect-
ing a membrane potential perturbation of 1�V. Using a Boltzmann approximation for
sodium (Na�) channels (z� 6), the change in total charge transferred is calculated for
the induced potential of 1�V. This value is compared with expected fluctuations in
total charge transferred as a result of random channel gating. The graph shows the
number of channels and time required for the induced effect to equal the expected
fluctuations (signal-to-noise ratio, SNR� 1). Note the change in requirements for
SNR� 1 when the channel gating time is varied. (For details, see text in Section 6.3.1.)

time and/or number of channels are required to detect a given signal. Although
the perturbing signal in this analysis is treated as a constant, the results are
applicable to oscillating signals, as discussed earlier. In order to detect a 10-Hz
signal, the SNR� 1 criterion must be met in less than 50ms. In Figure 2 one
can observe that the detection of a 10-Hz, 1-�V signal requires about 10� ion
channels, while the detection of a 60-Hz, 1-�V signal would require 10� or
more channels.

It is interesting to compare these results with well-established findings in the
biophysical literature. Some 30 years ago, Verveen et al. (1967) devised a
measure called the relative spread of threshold (RS) to describe the variation in
the probability of the firing of a nerve relative to the magnitude of stimulus
needed to have it fire 50% of the time. Later models by Clay and DeFelice
(1983) and Rubenstein (1995) demonstrated that experimental measurements
of this variability can be predicted quite well by numerical studies of channel
noise. According to Rubenstein (1995), the RS for an ensemble of 10� ion
channels is about 0.0009. Assuming a threshold stimulation of about 20mV,
this implies that the probability of nerve firing changes by one standard
deviation for a 20-�V change in the magnitude of the stimulus. If the results
presented in Figure 2 are scaled to 20-�V signal strength, the time required to
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detect the signal is about 1ms — in good agreement with experimental findings
and Rubenstein’s model. Although the RS measurements and calculations
were not designed to address detection limits per se, the general agreement
between them and the analysis presented here support the validity of this
approach.

The next question that must be addressed concerns the biological relevance
of these results.While we have shown that the detection of very small perturba-
tions is theoretically possible, and supported by in vitro nerve stimulation
experiments, their possible impact on living systems is not clear. Is a tiny
alteration in the timing of a nerve impulse important? This question, for
reasons quite apart from those addressed here, is currently the subject of
intense investigations. For example, researchers in the neuroscience commu-
nity are attempting to understand how information is encoded in neuronal
signals (Rieke et al., 1997). The basic problem is that nerve signals are typically
very noisy, and it is not clear whether this variability represents information
encoded in a way that we do not understand, or is just an unavoidable
nuisance with which organisms must contend. Some interesting results have
been reported in this area recently and we will return to this question in the
next section.

Another question relates to the number of ion channels needed for detecting
a weak signal. Is it possible to have 10� or more ion channels in an array? Most
cells do not have this many channels, and because of the way electric fields
interact with cells, not all the channels in a cell will experience the same
membrane potential perturbation. The only way to reach the numbers of
channels required to detect very weak signals is for the channels from many
cells to work together. Such group activity would simply represent a larger-
scale example of the array averaging discussed above. The difficult question is
how the cells could work together. One possibility is for many cells to be
connected together by gap junctions. These junctions are tiny pores that
provide an ionic pathway directly from the cytoplasm of one cell to another
and, thus, connect them electrically. A well-studied example of this behavior is
the aggregates of chick cardiac myocytes mentioned earlier (DeHaan and
DeFelice, 1978; Kowtha et al., 1994; Lazrak et al., 1997). Myocytes form gap
junctions when they come into contact with each other, and connect so well
that the aggregate behaves electrically as a giant cell with a single beating
frequency. Cells that initially beat at their own frequencies synchronize once
they are brought into contact and form gap junctions. Clay and DeHaan
(1979) studied the rhythmic properties of these aggregates and found that the
variability or noise in beating rate was inversely proportional to the square
root of the number of cells. Larger aggregates, with more cells and more ion
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channels, beat more regularly. Their findings also support the analysis of
detection limits presented above, and demonstrate further that the principles
can be extended to groups of cells.

Perhaps more intriguing is the possibility of groups of neurons working
together. With some notable exceptions, however, gap junctions generally do
not connect neurons. If they do not directly share ionic currents (as in the case
of the myocytes), is it possible that detection limits will still be reduced for
groups of neurons? The answer to this question is the focus of the next section.

6.4 Signal detection in systems with long-range coherence

Synchrony among groups of neurons in the central nervous system is a
well-established phenomenon (see, e.g., Traub and Miles, 1991). In a larger
context, such synchronous behavior is an example of long-range coherence —
the organized, cooperative activity of large populations of interacting units.
Although we have tread a long path from the specifics of ion channels and
noise to electric field interactions, our questions can now assume a somewhat
more general nature. Instead of asking only whether interacting neurons can
detect weaker signals than single neurons, we can ask, in general, whether
systems with long-range coherence are more sensitive to weak perturbations.
The relevance of this question to neuronal systems will be developed, but its
possible importance for biological systems as a whole should first be noted. A
moment’s reflection reveals that biological systems should be defined in terms
of coherence.With some 10�� cells in the human body, most of them about five
orders of magnitude smaller than the body as a whole, the unified functionality
of the body suggests that long-range coherence is one of our most defining
characteristics. If systems with long-range coherence exhibit a peculiar sensi-
tivity to weak perturbations, the implications for carefully planned therapeutic
interventions are intriguing.

Interesting examples of long-range coherence have received attention in
recent years. Particularly surprising are oscillatory chemical reactions such as
the horseradish peroxidase system (see Larter et al., Chapter 2, and Walleczek
and Eichwald, Chapter 8, this volume). Traditionally, chemical reactions have
been thought of as perfect examples of statistically random processes; that is,
thermal energy causes molecules to move rapidly and erratically, and they
collide with each other in a completely random fashion. Thus, the time course
of a chemical reaction follows a statistically predictable path. In contrast, the
molecules in chemical systems with long-range coherence undergo synchro-
nized transitions. Considering the enormous numbers of molecules involved
and the large relative distances between molecules, such synchrony is remark-
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able. A more familiar example of long-range coherence is the laser. Here,
electrons undergo transitions between energy levels when photons are
absorbed or emitted. Under appropriate conditions, the emitted photons
provide coupling between electrons and synchronize the transitions. The result
is the coherent, highly monochromatic light output of the laser. In both
examples, some form of coupling between elements forces the random, inde-
pendent fluctuations of the individual microscopic elements to give way to
macroscopic synchrony. Order emerges from disorder as coupling overcomes
noise.

Mathematical descriptions of long-range coherence can be quite complex.
The difficulty arises from complexities in the behavior of the individual el-
ements, the nature of their intrinsic fluctuations, and the form of the coupling.
Modeling coupled neurons in detail, for example, would require a representa-
tion of the ionic currents, the ion channel noise, and the complex network of
excitatory and inhibitory synapses between them. All this complexity can
easily obscure the fundamental issue of weak signal detection. In order to
avoid such problems, we turn to a highly simplified model of coupled, oscilla-
tory neurons described by Shinomoto and Kuramoto (1986). The neurons in
this model are simply active rotators that can be thought of as runners circling
a track. Each moves on their own with some random fluctuation in speed, but
they experience an attractive or repulsive force with each other depending on
their proximity. The coupling in this model is considered global because each
element is equally coupled to all other elements, thus eliminating all spatial
and geometrical considerations associated with structure. Although a highly
idealizedmodel of coupled neurons, it captures enough of the essential features
to address the importance of long-range coherence in weak signal detection.

By varying either the coupling between elements or the magnitude of noise
in each element, the system passes through a phase transition. When the noise
magnitude is high and coupling is weak, the system is incoherent and the mean
phase of all the elements is constant in time. At lower noise magnitude or
stronger coupling, the system becomes coherent and a large fraction of the
elements are synchronized so that the mean phase of the system varies period-
ically in time. This emergence of macroscopic, global synchrony after the phase
transition is similar to the synchrony observed in large populations of neurons
in the central nervous system (Kelso, 1995). Using this model, we have inves-
tigated the influence of a weak signal on the behavior of a system of globally
coupled neurons (Gailey et al., 1997a). In our model, the signal is a weak
perturbation of the coupling between elements. Figure 3 shows a simulation in
which the perturbation is applied with too much noise in each element for
synchrony to occur. Very little change in this incoherent system is observed
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Figure 3. Numerical simulation of a system of globally coupled, noisy phase oscil-
lators illustrating the fraction (probability) of oscillators at various phases as a
function of time. A small, low-frequency signal is applied to the coupling coefficient
between oscillators, but the noise in the system is too large to allow the oscillators to
synchronize at their natural frequency. The relatively smooth distribution indicates
that the phases of the oscillators are largely uncorrelated in time and are not respon-
ding to the applied signal.

Figure 4. Same system of oscillators shown in Figure 3, but with a low value of
intrinsic noise. Because the noise is low, the oscillators are strongly synchronized at
their natural frequency as can be observed along the front edge of the plot. The applied
signal again produces little effect on the system.

due to the perturbing signal. In Figure 4, the noise is low enough for the system
to synchronize, and the perturbing signal again has little effect on the overall
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Figure 5. The system of oscillators in Figures 3 and 4 is now modeled with an
intermediate noise level and the same low-frequency signal applied to the coupling
coefficient. During the negative-going part of the applied signal, the system is desyn-
chronized (smooth portions of the plot). Synchrony occurs only during the positive-
going portion of the applied signal, where the overall phase of the system is seen to
oscillate at its natural frequency. This effect is similar to stochastic resonance in that a
weak signal is efficiently transmitted through the system only above some optimum
noise level.

behavior of the system. This situation changes, however, in Figure 5 where the
noise magnitude poises the system very close to the phase transition between
synchronized and nonsynchronized states. The small perturbing signal now
produces the very large effect of moving the system in and out of synchrony at
a regular rate.

The effect observed in Figures 3 to 5 is reminiscent of stochastic resonance in
that signal detection is enhanced when noise is varied to some optimum
magnitude (see Moss, Chapter 10, this volume). Here, however, the noise we
are interested in is internal noise rather than externally applied noise. Much of
the relevant noise in biological systems is internal noise due to random
processes such as channel gating, and can play a constructive role in signal
processing (Bezrukov and Vodyanoy, 1997; Gailey et al., 1997b). The results
presented above are based on an infinite number of interacting elements, but
we have also studied finite populations and observed similar results (Gailey et
al., 1997a). As expected, the sensitivity of the system increases in proportion to
the square root of the number of elements, similar to the results for arrays of
ion channels discussed earlier. Thus, the answer to the question about detec-
tion limits posed earlier is affirmative: systems with long-range coherence can
detect much weaker signals than can individual elements within the system.
Compared with detection limits for a single element, coherent systems can
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detect signals weaker by a factor of the order of the square root of the number
of elements. Sensitivity may be enhanced at the boundary between coherent
and incoherent behavior known as a phase transition. Such boundaries can be
very sharp when large numbers of elements are involved, becoming less distinct
when the number of elements is reduced.

6.5 Biological implications of small perturbations to coherent systems

The final question to be addressed in this chapter is whether or not the small
perturbations discussed abovemight be biologically significant.While we have
observed that increasing the number of elements in a coherent system increases
its ability to detect weak signals in a statistical sense, the relevance of small
perturbations remains to be demonstrated. The increased ability of large
systems to detect small signals is a result of the averaging of the noise asso-
ciated with each element through the coupling between elements. This noise
averaging reduces the magnitude of fluctuations in the global behavior of the
system. For example, the firing regularity of a large, coupled systemof identical
oscillating neurons should be much better than that of a similar small system.
Smaller noise-driven fluctuations in the oscillation period suggest that smaller
perturbations compared to the timing of oscillations can theoretically be
detected. Therefore, one way to pose the question of relevance is in terms of the
importance of the precision in firing times of neurons during information
processing.

How critical is the exact timing of a nerve impulse? This question is hotly
debated at present, but recent results have suggested that information may be
encoded in the precise timing of neuronal spikes (de Ruyter van Steveninck et
al., 1997). Traditionally, neuroscientists have assumed that information was
encoded only in the firing rate of neurons (Ferster and Spruston, 1995), but
recognition of the improved information-carrying ability of spike timing has
focused attention away from simple rate encoding. For example, Berry et al.
(1997) have observed timing jitter in salamander retinal spike trains of less
than 1ms, noting that the timing of the spikes conveys several times more
information than the spike count. Similar precision was observed in the rat
cerebral cortex in response to time-varying stimulation (Mainen and Sej-
nowski, 1995). Another current dilemma is how the central nervous system
decodes important signals in the presence of so much external noise. What
we interpret as noise in this case, however, is actually ongoing patterns of
electrical activity occurring simultaneously in neighboring or co-located
neuronal networks (Ferster, 1996). In contrast to internal noise, external
noise may be highly correlated among neurons in a network, thus, this noise
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cannot be minimized by averaging. Pointing out that such signals are
actually not noise at all, Arieli et al. (1996) suggested that neuronal process-
ing is specifically designed to process the combination of evoked and ongoing
signals. What investigators have so far called noise may turn out to be the
contextual background necessary for the complete interpretation of incoming
signals. If this observation is indeed accurate, then only internal noise must
be considered when determining minimum detection limits. As described
above, coherent function among many neurons in a network reduces such
noise substantially.

The study of long-range coherence in neuronal function is gaining momen-
tum. Alonso et al. (1996) reported phase locking among large populations of
neurons in a cat visual cortex, and Arieli et al. (1995) have measured coherence
between sites up to 6mm apart in the same system. Such networks can oscillate
at high frequencies, with attention focused recently on the 40—70Hz frequency
band (Jefferys et al., 1996). Such oscillations can involve billions of synaptically
coupled neurons, and have been observed during rapid eye movement (REM)
sleep in humans (Llinas and Ribary, 1993; Steriade et al., 1993). Kelso (1995)
has usedmagnetoencephalography (MEG) to study coherentmodes of activity
in the human brain during various types of stimulation. He emphasizes the
shift between modal patterns as a possible key to shifting cognitive processes
(see also Ding et al., Chapter 4, this volume). These changes in modal patterns
are phase transitions — a real-world version of the transitions described earlier
in terms of the coupled rotator model. As has been pointed out, the greatest
sensitivity to perturbation occurs at the phase transition boundary. This
observation is significant because of the evidence now suggesting that phase
transitions underlie many neuronal processes. The rapid onset and offset of
synchrony among populations of interacting neurons has been characterized
in the cat visual cortex (Gray et al., 1992). Thus, it is possible that long-range
coherence may be the physical correlate of unified consciousness (Kahn et al.,
1997).

This chapter has outlined a preliminary but scientifically sound basis for
the possibility of using relatively weak electric fields to perturb and perhaps
control neuronal function. Indeed, investigation of electric field control of
epilepsy is already underway (Jerger and Schiff, 1995; Gluckman et al., 1996;
see also Ditto and Spano, Chapter 15, this volume). The primary limiting
factor is noise, but we have shown that internal noise yields to coherence in
coupled systems. Sensitivity is enhanced at phase transition boundaries,
and the rapid crossing of such boundaries may form the physical basis of
cognition. What appears to be external noise may instead be an intrinsic
component of unified information processing. Considerable work has been
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performed to model the interactions of electric fields with cells, but it is
apparent that a more detailed picture of how fields interact with coupled
networks is needed. As understanding of the mechanisms involved in rapidly
establishing neuronal coherence develops, the ability to influence such tran-
sitions will also grow. One might envision electric field therapies for a var-
iety of neurological disorders, along with a scientific basis for evaluating the
possibility of undesired interactions due to environmental fields. A compre-
hensive view of living organisms as multilevel, dynamically changing, coher-
ent systems has yet to be developed. Such an understanding promises to
yield deep insights and the possibility of interventions cast in the body’s
own, unifying language.
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7

Oscillatory signals in migrating neutrophils: effects
of time-varying chemical and electric fields

HOWARD R. PETTY

7.1 Introduction

Cellular oscillators have been found in a great variety of biological settings,
from bacteria to humans (Rapp, 1979). They have been phenomenologically
associated with a broad array of biological processes including metabolism,
intercellular and intracellular signaling, cell division, hormone secretion and
muscle contraction (Goldbeter, 1996). One cell system exhibiting oscillatory
biochemical and physiological properties is the human neutrophil. Studies of
neutrophilmigration or activation have reported oscillations in actin assembly
(Wymann et al., 1989; Omann et al., 1995), shape change (Wymann et al., 1989,
1990; Ehrengruber et al., 1995), velocity change (Hartman et al., 1994), respir-
atory burst (Wymann et al., 1990; Kindzelskii et al., 1998), membrane potential
(Jager et al., 1988), intracellular calcium (Ca��) (Kruskal and Maxfield, 1987),
nicotinamide adenine dinucleotide phosphate (NAD(P)H) autofluorescence
(Kindzelskii et al., 1997, 1998) and receptor interactions (Kindzelskii et al.,
1997). Interestingly, these neutrophil oscillations generally exhibit periods of
about 10 or 20 s. Although oscillators can be correlated with certain cell
activities, their biochemical mechanisms and broad physiological relevance
are not established. Moreover, the relationships among these oscillators are
not clear.

In addition to the well-known 3-min nicotinamide adenine dinucleotide
(NADH) oscillations of eukaryotic glycolysis (Hess and Boiteux, 1971; Chance
et al., 1973), we have recently discovered more rapid 10- and 20-s NAD(P)H
oscillations (Kindzelskii et al., 1997, 1998). Other biochemical (e.g., Ca��)
and physiological (e.g., O

.
�
�

release) oscillators operate at these periods with
consistent phase relationships to NAD(P)H oscillations. These and other find-
ings detailed below have led to several suggestions regarding the regulation
of neutrophil function. (1) Cell metabolism may entrain cell functions;
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(2) metabolic oscillations may act as a transmembrane signaling mechanism;
(3) neutrophils respond to time-varying chemical and electric fields in a fre-
quency-dependent fashion; and (4) certain clinical deficiencies in neutrophil
function can be traced to aberrant metabolic oscillations and can be amelior-
ated by perturbation of these oscillators. Thus, the aim of this chapter is briefly
to review the potential ability of intracellular oscillators to explain cell proper-
ties and clinical disorders.

7.2 Oscillatory receptor interactions and inside-out signaling

Several years ago we reported that cell surface integrins physically and func-
tionally interact with other cell surface molecules (Petty and Todd, 1996). The
leukocyte integrins CR3 (complement receptor type 3) and CR4 interact with
the pro-inflammatory glycosylphosphatidylinositol (GPI)-linked membrane
proteins Fc�RIIIB, uPAR (urokinase receptors) and CD14. Although GPI-
linked proteins lack transmembrane domains, they elicit transmembrane sig-
nals, at least in part, by interacting with integrins. Recent studies have shown
that these interactions can be highly dynamic. Using resonance energy transfer
(RET) as a qualitative measure of receptor proximity, receptor association/
dissociation events have been followed in real time (Kindzelskii et al., 1996;
Zarewych et al., 1996).

As neutrophils polarized for migration, CR3 trafficked to the uropod while
CR4 and uPAR moved to the lamellipodium. RET experiments indicated that
CR4 and uPAR were in close proximity; however, the signal oscillated instead
of reaching a stable plateau (see Figure 1a; Kindzelskii et al., 1997). Receptor
specificity was suggested by the inability of other labels to exhibit oscillatory
RET signals. Physical controls confirmed the signal’s RET origin (Kindzelskii
et al., 1996, 1997). Indistinguishable frequencies were obtained by monitoring
the emission of the acceptor or the quenching of donor fluorescence. This
suggested that many CR4 molecules were binding and releasing uPAR simul-
taneously to create a sinusoidal waveform, i.e., the systemwas phase locked. As
these oscillations were observed in the absence of an extracellular signal, we
inferred that they were a manifestation of inside-out signaling via integrins.

To test the role of the signaling apparatus in CR4—uPAR oscillations, we
examined the effects of signal transduction inhibitors (Figure 1c and d). Since
typical doses of these inhibitors blocked CR4—uPAR oscillations, we titered
these drugs to obtain suboptimal doses that crippled, but did not destroy, cell
polarization. Importantly, the addition of staurosporine, a kinase inhibitor, led
to a flyback sawtooth CR4—uPAR waveform; this suggested that reducing
kinase activity slows the formation of CR4—uPAR proximity complexes. On
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Figure 1. Resonance energy transfer (RET) signal oscillations of normal migrating
neutrophils labeled with fluorochrome-conjugated anti-uPAR F(ab�)

�
and anti-CR4

Fab fragments. Cells were prepared from peripheral blood using Ficoll—Hypaque
density gradient centrifugation. Quantitative microfluorometry was performed as
previously described (Kindzelskii et al., 1996). Signal intensities (ordinate) are plotted
versus time (abscissa). All cells were morphologically polarized for migration; oscilla-
tions decay to background levels when migration ends. (a) Sinewave RET signal of
cells (�� 20 s). (b) When cells are stimulated with 10��M N-formylmethionylleucyl-
phenylalanine (FMLP), sinewaves of higher frequency are found (�� 10 s). These
oscillations are phenomenologically linked to the signal transduction apparatus.
(c) When cells are exposed to a suboptimal dose (0.05�M) of the kinase inhibitor
staurosporine, a flyback sawtooth waveform (�� 10 s) was found. (d) On the other
hand, suboptimal doses (50�M) of the phosphatase inhibitor pervanadate leads to a
reverse sawtooth waveform (�� 10 s). The RET amplitude oscillations are �40% of
the peak rate-shuttered count rate.

the other hand, suboptimal doses of pervanadate, a phosphatase inhibitor, led
to a reverse sawtooth waveform. Thus, we suggest that the signaling apparatus
participates in RET oscillations.

Since kinases utilize ATP as a substrate, we tested the hypothesis that the
neutrophil’s metabolism participates in signaling oscillations. As measuring
ATP levels in living cells would perturb its concentration, we chose to study
NAD(P)H, which oscillates 180° out of phase with adenosine triphosphate
(ATP). Furthermore, NAD(P)H emission was linear within the cellularly rel-
evant concentration range (Liang and Petty, 1992). We therefore studied
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Figure 2. Gallery of oscilloscope recordings of oscillatory physico-chemical properties
in migrating neutrophils. Data from normal ((a)—(d)) and clinical ((e)—(g)) blood
samples are shown. (a) Sinusoidal NAD(P)H autofluorescence oscillations of normal
migrating neutrophils are shown (�� 20 s). (b) When an electric field is applied at
NAD(P)H troughs, the oscillations grow in amplitude. Electric field strengths were
calculated from current readings. (c) When the field is terminated, the amplitude
declines. (d) Neutrophils labeled with the fluorescent Ca�� indicator INDO-1 show
regular Ca�� spikes (�� 20 s), as previously reported by Kruskal and Maxfield (1987).
To examine the clinical relevance of these oscillations, neutrophils with reported
deficiencies in chemotaxis and cell shape change were studied. (e) Pyoderma gangren-
osum patient 1 (KN) displayed random or chaotic NAD(P)H oscillations.
(f ) Pyoderma gangrenosum patient 2 (SC) exhibited sinusoidal 10-s NAD(P)H oscilla-
tions, but a flyback sawtooth CR4—uPAR waveform (�� 10 s). (g) Wiskott—Aldrich
syndrome (WAS) neutrophils exhibited a shoulder on the rising side of the NAD(P)H
oscillation (�� 10 s). Data were collected at sweep rates of 5 or 10 s per division
depending upon the cells under study.
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Figure 3. Relative phase angles in cellular chemistry and function. The sketch sum-
marizes the results of several published and unpublished studies from our group. The
NAD(P)H peak was chosen to be 180°. Relative phases of these parameters were
determined by rapidly switching between their optical set-ups on the microscope’s
filter slider. In certain cases (e.g., INDO-1 and NAD(P)H), substantial overlap in
spectral properties necessitated triangulation with a third parameter relative to these
two. ELF, extremely-low-frequency electric field.

NAD(P)H oscillations in single migrating neutrophils (Figure 2a). We found
that NAD(P)H oscillations were identical in period with the CR4—uPAR
oscillations under all experimental conditions. Furthermore, the NAD(P)H
oscillations could not be accounted for by variations in neutrophil thick-
ness; in fact, the completion of cell shape changes preceded NAD(P)H peaks
by 90° (Figure 3). By rapidly switching between optical set-ups, we found
that NAD(P)H oscillations were 180° out of phase with RET oscillations,
thus suggesting that RET oscillations were in phase with putative ATP
oscillations.

To explore the extracellular expression of cellular oscillators, we monitored
the pericellular release of reactive oxygen metabolites (ROMs) and extracellu-
lar proteolysis during cell migration. Cells were placed in semi-solid collagen
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Figure 4. Oscillatory interactions of cells with the extracellular environment. Sponta-
neous neutrophil migration through gels containing ((a),(c)) 100 ng H

�
TMRos/ml or

((b),(d)) 25 �g Bodipy-BSA/mlwas observed. The release of oxidativemolecules such as
hydrogen peroxide oxidizes H

�
TMRos to TMRos, yielding fluorescence emission.

Proteolytic attack on Bodipy-BSA yields highly fluorescent peptides. (a) When cells
migrate through these matrices, a repetitive series of oxidant-induced stripes of
TMRos are observed. (b) Similarly, cell migration through Bodipy-BSA-containing
gels yields a series of fluorescent stripes indicating periodic extracellular proteolysis.
((c),(d)) Phase-matched electric field application enhances the size of the stripes.

gel matrices, doped with various reporters. These matrices resembled base-
ment membranes and impeded the diffusion of reporters, thus permitting
photomicroscopy. Gels were doped with dihydrotetramethylrosamine (H

�
-

TMRos) or hydroethidine, which become fluorescent upon exposure to
ROMs, or Bodipy-BSA, which, in turn, becomes fluorescent upon proteolytic
disruption. As unstimulated neutrophils migrated through this environment,
stripes of proteolysis were observed microscopically (Figure 4). Similarly,
ROM production was observed to oscillate. However, ROM production and
proteolysis oscillated 180° apart while ROM production was in-phase with
NAD(P)H oscillations.
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7.3 Outside-in signaling in cellular function

If metabolic oscillators are a key component of the signaling apparatus, it
should be possible to detect outside-in signaling. Indeed, a variety of factors
that activate or inhibit neutrophil function alter the frequency and/or ampli-
tude of NAD(P)H oscillations. As mentioned above, migrating cells exhibited
metabolic oscillations of �10 or 20 s. In the absence of exogenous agents, 20-s
oscillations were observed (Figure 1a). When neutrophils migrated on fibrino-
gen-coated surfaces, which ligate CR3 and CR4, 10-s oscillations were also
found (Kindzelskii et al., 1997). Similarly, incubation of neutrophils with yeast
particles triggered 10-s NAD(P)H oscillations (Petty et al., 1996). 10-s oscilla-
tions were also observed when neutrophils migrated on vascular endothelial
cell monolayers, which ligated neutrophil selectins and integrins. When neu-
trophils migrated in gel matrices containing immune complexes composed of
bovine serum albumin (BSA) and anti-BSA antibody, these complexes were
taken up by the cells, which then displayed 10-s oscillations. Ligation of formyl
peptide receptors with N-formylmethionylleucylphenylalanine (FMLP) also
triggered 10-s oscillations. Thus, multiple pro-inflammatory extracellular me-
diators lead to higher frequency NAD(P)H oscillations. The increased
NAD(P)H frequency in conjunction with a constant ROM step size (Kindzel-
skii et al., 1998), doubles the ROMproduction rate, thereby potentiating target
destruction and cell migration.

In addition to extracellular signals that double NAD(P)H frequencies, there
are factors that block formation of 10-s NAD(P)H oscillations. When immune
complexes were opsonized with complement, 20-s NAD(P)H oscillations were
found. Thus, complement deposition blocks acquisition of the activated 10-s
oscillation. At present, we do not know whether these differences were due to
structural differences in the complexes or due to different receptor ligation
patterns. Nonetheless, the reduced rate of ROM production may contribute to
the diminished phlogistic potential of complement-treated targets. Another
exogenous factor found to affect NAD(P)H oscillations was the widely pre-
scribed anti-inflammatory drug indomethacin. When neutrophils were at-
tached to endothelial cells, a 10-s oscillation was observed. However, in the
presence of 100�M indomethacin, neutrophils on endothelial cell monolayers
exhibited a reduced NAD(P)H oscillation periodicity (� 27 s) and a reduction
in amplitude (� 30%). This is consistent with the ability of indomethacin to
reduceROMproduction by neutrophils (Smolen andWeissmann, 1980). Thus,
pro-inflammatory factors increased NAD(P)H oscillation frequency and po-
tentiated ROM production whereas anti-inflammatory conditions did the
opposite. These findings support the concept that NAD(P)H oscillations are
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important in regulating the NADPH oxidase’s activity. Furthermore, it may
be possible that NADPH oscillations could function as a signal switching the
NADPH oxidase on and off.

7.4 Cell metabolism as a message for activation and polarization

We suggest that metabolic oscillations, perhaps due to the glycolytic oscillator,
account for receptor, signaling and functional oscillations during cell migra-
tion. This is not unreasonable, since the equilibrium constants of several
oscillatory cell properties are within an order of magnitude of approximate
substrate concentrations.During cell migration,most CR4molecules bind and
release (or undergo conformational changes with) uPAR molecules in syn-
chrony. A role for metabolic oscillations is plausible, because the concentra-
tion of free ATP as measured by the luciferase assay is �10��M. This is, for
example, comparable to the equilibrium constant (K

�
) for ATP binding to

protein kinase C (� 10�
M; Petty, 1993), although the relevance of bulk ATP
levels and equilibrium constants is uncertain. This hypothesis is also consistent
with the observation that kinase and phosphatase inhibitors retard the rise
time and declination of CR4—uPAR oscillations, respectively. Hunter (1987)
has speculated regarding such an oscillatory phosphorylation apparatus and
suggested an analogy between cell signaling and electronic circuit theory. Our
work suggests that this analogy may apply to neutrophils. Furthermore, a
panel of neutrophil-activating substances increased metabolic oscillation fre-
quency whereas anti-inflammatory agents blocked these frequency changes.
We conjecture that signaling molecules such as kinases are not necessarily
signaling molecules per se, but rather represent the conduit through which
signals pass, just as telephone wires carry signals, but are not the signals.
Another derivative of this concept is that some postulated, but unknown,
‘second’ messengers may not exist; metabolite usage could feedback through
the metabolic apparatus creating oscillations that transiently drive metabolite
levels to concentrations required for certain cell functions to appear.

Cell functions, in turn, may be driven by metabolic and/or signaling oscilla-
tions. A central concept in cell motility refers to oscillatory adhesive events
(Springer, 1990). Oscillatory integrin behavior may be required for oscillatory
cell adhesion. Moreover, leukocyte integrins and uPAR molecules interact
with and affect the function of one another (Simon et al., 1996; Sitrin et al.,
1996). We speculate that when CR4 is phosphorylated, uPAR and its asso-
ciated protease are more active, thus contributing to oscillatory proteolysis.
Pericellular proteolysis is required for cell migration in complex environments.
Oscillatory metabolism may also participate in the oscillatory production of
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ROMs. An oscillatory respiratory burst was first reported by Wymann et al.
(1989). Moreover, we have found that the frequency of NAD(P)H oscillations
match that of ROM production. Since the NAD(P)H oscillation peak occurs
simultaneously with the release of ROMs and, since ROMs are produced by
the NADPH oxidase, we suggest that substrate oscillations entrain product
oscillations. Although the concept has not been proven, it is not unrealistic
because themagnitude of NADPHoscillations (� 180 to 350�M) arewithin a
factor of 10 of the enzyme’s apparent equilibrium constant.

In addition to participating in target destruction, ROMs also inactivate
protease inactivators (Weiss, 1989), thereby allowing proteases to function.
Thus, as neutrophils migrate through complex environments, they alterna-
tively inactivate protease inactivators, then activate protease action. The
metabolic phase difference is translated into a repetitive sequence of biochemi-
cal reactions in the extracellular matrix to promote locomotion.

Our studies reveal cellular rhythms within the extracellular environment,
the plasma membrane and the cytoplasm of a cell, which are all related by
consistent phase differences (Figure 3). Figure 5 shows a hypothetical model
that seeks to explain the roles of the numerous cellular and extracellular
neutrophil oscillators in simple biochemical terms. During neutrophil migra-
tion CR4 and/or associated proteins are simultaneously phosphorylated by an
oscillatory signaling machinery. This phosphorylation wave leads to
CR4—uPAR coupling. CR4—uPAR coupling focuses pericellular proteolysis
next to the integrin adherence site where cell extension is to occur. Actin
assembly, and consequently, cell extension (shape change) then proceed
through this adherence and proteolysis site when ATP is at its peak. The mean
free cytoplasmic ATP level (� 10��M) approximates to the equilibrium
constant for ATP-actin binding to microfilaments. In summary, we therefore
suggest that the cadence of metabolic oscillations entrains and coordinates
downstream oscillatory behaviors.

7.5 Neutrophil response to pulsed chemical fields

We speculate that the neutrophil’s signal transduction apparatus periodically
senses the extracellular environment via ametabolic oscillation-coupledmech-
anism (e.g., the system could be ‘ready to receive’ when a substrate concentra-
tion is near its peak). Previous theoretical (Schienbein and Gruler, 1995) and
experimental (Vicker, 1994) studies have predicted the existence of a signal at
the above frequency. To provide a preliminary test of this idea, we exposed
neutrophils to spatially uniform, but temporally varying, concentrations of
FMLPusing a stopped-flowmicroscope chamber (for details, see Albrecht and
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Figure 5. A hypothetical model of the role of intracellular oscillators in cell motility.
For details see text in Section 7.4.

Petty, 1998). Briefly, neutrophils were exposed to temporally decreasing
FMLP concentrations at various time intervals. When cells were treated at
10-s intervals, the neutrophils apparently perceived that they weremigrating in
the wrong direction (a temporally decreasing signal), and they reversed their
direction of polarization. Most cells chose their new direction at 180� 15°
relative to their initial direction of polarization. Cells treated with buffer
injections or increasing concentrations of FMLP did not change direction.
Thus, cells were able to compare current FMLP levels with those previously
encountered. Importantly, the frequency of ligand input was a crucial determi-
nant of the physiological output. Moreover, the 10-s input period was consist-
ent with signal response lags previously noted for chemical and electrical
stimulation (Gerisch and Keller, 1981; Franke and Gruler, 1994). Although
cells are exposed to chemotactic factor gradients in vivo, these findings strongly
suggest that temporal events participate in neutrophil signal processing.

7.6 Pulsed electric fields: the signal contribution of metabolic resonance

To test the effect of another class of extracellular signals, we applied pulsed DC
electric fields of various intensities to cells. When electric fields were repeatedly
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Figure 6. Phase-matched electric fields lead to exaggerated neutrophil shape changes
and cytoskeletal polymerization. ((a),(b)) Differential interference contrast (DIC) and
((c),(d)) fluorescence micrographs are shown. (a) Normal migrating neutrophils are
triangular in shape and about 10�m in length. (b) However, when a phase-matched
electric field is applied to the sample, cells extend to �40 �m in length. These mor-
phological changes are accompanied by changes in microfilaments. Control or electric
field-exposed cells were rapidly fixed with dithiobis(succinimidyl propionate), which
provides superior retention of labile filaments, followed by extraction and staining
with fluorescein-phalloidin. As previously reported by other groups, a patchy appear-
ance of microfilaments is observed in control cells (c) whereas long microfilaments are
observed in cells exposed to phase-matched electric fields (d).

applied to cells at NAD(P)H oscillation troughs, the NAD(P)H autofluores-
cence intensity continued to increase until it saturated at 200% of the normal
oscillatory amplitude for both the 10- and 20-s oscillations (see Figure 2b).
When the field was terminated, the oscillations slowly returned to their orig-
inal amplitude (compare Figure 2c). We call this repetitive increase in
NAD(P)H amplitude metabolic resonance (see also Adachi et al., 1999).

The unique aspect of metabolic resonance is that it accompanies exag-
gerated normal migratory functions. During metabolic resonance, neutrophils
extended from their normal length of �10 �m to �40—50�m. Figure 6 shows a
typical example of exaggerated cell extension, but it occurred only when the
field was applied at NAD(P)H troughs. This correspondence between field
application, phase and cell extension was observed in every trial (amounting to
several hundreds) over the past three years. These extraordinary cell shape
changes cannot be accounted for by galvanotaxis, electrophoretic motion or
dielectric forces (Petty andKindzelskii, 1997; A. L. Kindzelskii andH. R. Petty,
unpublished results). The observed shape change was not a direct (passive)
physical effect, but rather was probably due to (active) assembly of cytoplasmic
microfilaments. Figure 6d shows a fluorescence micrograph of microfilaments
after 10min of metabolic resonance followed by fixation and labeling (A. L.
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Kindzelskii and H. R. Petty, unpublished results). We suggest, therefore, that
microfilament assembly drives cell shape changes. Other changes that accom-
panied metabolic resonance were the amount of ROMs produced, DNA
damage and the extent of pericellular proteolysis taking place during locomo-
tion (Figure 4c and d;Kindzelskii et al., 1998; A. L. Kindzelskii andH. R. Petty,
unpublished results). Heightened NAD(P)H amplitudes may have led to exag-
gerated ROM production. In summary, the amplitudes of multiple cell func-
tions and cell metabolism were influenced by phase-matched electric field
application.

To better define the physical parameters affecting metabolic resonance, we
examined the effects of electric field intensity (� 1—10�
V/m) and cell surface
charge on metabolic resonance in normal neutrophils. The minimal electric
field intensity (E

��
) that could support metabolic resonance was 10�	V/m.

The same value for E
��

was found for both Pt and Ag/AgCl electrodes.
Precautions were taken to guard against sample contamination by electrode
reaction products (vycro frits, agar and gelatin barriers), ground loops and
stray magnetic fields. Interestingly, metabolic resonance was constant above
E
��

, i.e., the effects of 1 and 10�	V/m were indistinguishable, whereas inten-
sities � 10�	V/m were without effect. In contrast, metabolic resonance was
not observed for Escherichia coli or neutrophils from WAS patients (see
Section 7.5) whereas E

��
values of �2� 10�� and 1� 10��V/m were found

for human lymphocytes and fibrosarcoma cells, respectively. To test the role of
surface charges in the metabolic resonance of neutrophils, we measured E

��
at

various cell surface charge densities. Cell surface charge was reduced by
treatment with neuraminidase, which dramatically reduces neutrophil elec-
trophoretic mobility (Petty et al., 1980). Neuraminidase treatment increased
E
��

from 0.80 (� 0.05)� 10�	V/m to 10.6 (� 1.0)� 10�	V/m after 100min
of incubation (A. L. Kindzelskii and H. R. Petty, unpublished results). Thus,
both electric field intensity and cell surface charges participated in the induc-
tion of metabolic resonance.

7.6.1 Electromechanical coupling hypothesis

An electric field simultaneously acts on �10� net negative surface charges per
cell. This exerts a small force (F

�
) on cell membranes relative to their immobile

cytoskeleton. Themagnitude of this force (F
�
�QE) atE

��
is 0.02�dyne, which

is a significant fraction of the force of gravity on a neutrophil (� 0.5�dyne).
Cell shape change is an exercise in force balancing, where cytoskeletal poly-
merization forces (F

�
) support cell extension whereas opposing forces derived

from surface tension (F
�
) promote cell rounding. F

�
has been estimated to be
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�1 to 6�dyne per filament (Albrecht-Buehler, 1990), which is consistent with
actin load forces (Mogilner and Oster, 1996). The surface-cortical tension (s

	
)

of neutrophils is 0.036 dyne/cm (Evans and Yeung, 1989). Using the equation
F
�
� 2R�s

	
, and a pseudopod radius of 0.1�m, the value F

�
� 2.3�dyne is

obtained. This suggests that only a small number of filaments is required to
support cell extension, which agrees with an experimental assessment of
pseudopodial filament numbers (Zhelev and Hochmuth, 1995). Thus, it is
possible that forces of the order of microdynes may be sufficient to mediate
neutrophil shape changes.

In the absence of an electric field, we propose thatF
�
is driven by ATP-actin.

The free concentration of ATP (� 10� molecules/cell) is less than the total
actin content (� 10�/cell) and is near the K

�
for ATP-actin interactions with

microfilament.We hypothesize, therefore, that ATP concentration oscillations
may entrain actin assembly oscillations, which may account for the binary
switch model of actin assembly (Stossel, 1993) and oscillatory actin assembly
(Wymann et al., 1990; Omann et al., 1995). This delicate biochemical balance in
migratory cells, however, can be affected if an additional coherent force, phase
matched to the ATP-actin assembly point of the cycle, is applied (Figure 3).
One type of coherent external force is an electric field, F

�
. When F

�
�F

�
�F

�
,

cell extension and net cytoskeletal assembly take place. Since F
�
and F

�
are

both of the order of microdynes we speculate that a cell could detect a force of
more than �0.1—1% of the two counterbalancing forces (depending upon
parameters chosen) to yield the biochemical and structural changes observed
at the lowest field strengths. This idea could help to explain the threshold effect
noted above; either F

�
�F

�
�F

�
or it is not, thus constituting a binary switch.

When the barrier for neutrophil extension (F
�
) is brought down by F

�
, ATP-

actin assembly into microfilaments is exaggerated. This, of course, may lead to
exaggerated microfilament assembly and cell shape changes that were ob-
served (see Figure 6). Since microfilament assembly is predominantly unidirec-
tional (Petty, 1993), additional actin molecules are added to increase filament
length during each field pulse. Consequently, exaggerated microfilament as-
sembly draws large amounts of ATP-actin through the system, which repre-
sent a significant fraction of a leukocyte’s total free ATP pool. We hypothesize
that metabolic feedback circuitry compensates by driving metabolic ampli-
tudes higher, thus causing metabolic resonance. In this system, initiation of
microfilament extension and metabolic resonance are observed immediately;
there is no 8- to 10-s lag as observed in high-field (800V/m) studies (Franke
and Gruler, 1994). This may be due to the fact that in the experiments
presented here the weak electric field stimulus was phase matched with meta-
bolic oscillations, whereas in the latter studies it was not.
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7.7 Clinical abnormalities in neutrophil oscillators

If metabolic oscillations play a central role in cell locomotion as proposed
above, then it should be possible to identify patients with neutrophil-related
disorders who display aberrant metabolic oscillations. Pyoderma gangren-
osum is one such disorder. It is an uncommon, destructive and poorly under-
stood inflammatory disease, which has been reported to be heritable in pedia-
tric cases. Pyoderma gangrenosum patient KN has had numerous skin lesions
accompanied by ulceration and drainage in the absence of infection since birth.
Her neutrophils are unable to acquire normal shape in vitro. KN’s disorder
was initially identified on the basis of integrin clusters and aberrant integrin-
GPI-linked receptor interactions (Adachi et al., 1998). No oscillatory
CR4—uPAR RET signal was obtained. Phosphotyrosine Western blots
showed heightened phosphorylation of the patient’s cells. When NAD(P)H
oscillations of KN’s neutrophils were studied, incoherent changes in auto-
fluorescence were observed (see Figure 2e). We therefore speculate that inco-
herent metabolic fluctuations did not permit normal cell shape change and
migration.

Several physical perturbations affected NAD(P)H oscillations and the be-
havior of KN’s neutrophils.We discovered that KN’s phenotype was tempera-
ture dependent. As the temperature was reduced to �30 °C, the metabolic
oscillations returned to a sinusoidal waveform of normal frequency. Concomi-
tantly, the integrins unclustered and the cells polarized normally. Although
KN has had about three occasions of severe open lesions per year in the past,
she has not had these problems on her extremities during the past 18months as
local hypothermia was employed. This suggests that knowledge gained con-
cerning biological oscillators can be applied to clinical disease.

One conjecture, alluded to above, was that coherent metabolite (e.g., ATP)
flux through the system can constitute a signal; whether ATP flux was promo-
ted by ‘signaling’ molecules such as kinases or by actin was not relevant. For
KN’s neutrophils, we suggest that integrin clusters continually generate activa-
tion signals such as phosphorylation without dephosphorylation and cycling.
When a pulsed DC electric field was applied at NAD(P)H oscillation minima,
metabolic oscillations reverted to a sinusoidal waveform. Similarly, the ex-
posed cells adopted normal shapes and migratory capacity. The effect was
transient because removal of the external field led to incoherent metabolic
oscillations within 3min. We suggest that an external pulsed electric field
caused metabolites to be drawn through the system via actin assembly, thus
providing a surrogate signal.

A second pediatric-onset pyoderma gangrenosum patient (SC) with less
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severe disease was also evaluated (Shaya et al., 1998). Although cell motility
was defective, SC’s neutrophils did not exhibit integrin clusters. Moreover,
NAD(P)H oscillations were sinusoidal in SC’s cells, although their frequency
matched that of activated cells. Importantly, the CR4—uPAR RET oscillations
exhibited a flyback sawtooth waveform (Figure 2f ). That is to say, SC’s
neutrophils behaved like staurosporine-treated normal cells. This raised the
interesting possibility that SC’s neutrophils contained a less efficient kinase,
thus leading to the observed waveform (e.g., compare also with individuals
with diabetes in which the kinetic rate constant of the insulin receptor’s kinase
was diminished; Hubbard et al., 1994). We next tested the hypothesis that
phosphatase inhibitors would slow phosphatase kinetics, thus balancing the
kinase/phosphatase pathways. Pervanadate returned SC’s cells to a sinusoidal
waveform whose period was doubled relative to that of untreated cells. This is
consistent with cyclic phosphorylation/dephosphorylation mediated by the
metabolic apparatus. Thus, topical application of phosphatase inhibitors may
be a useful means of rational drug therapy in this case.

Another disorder exhibiting aberrant neutrophil chemotaxis is Wiskott—
Aldrich syndrome (WAS; Badolato et al., 1996; Remold-O’Donnell et al., 1996).
WAS genetic lesions have been traced to a single intracellular 60-kDa protein
(WASP) associated with microfilaments. These molecular lesions lead to cyto-
skeletal defects including an inability to assemble microvilli. WASP partici-
pates in actin polymerization by anchoring microfilament assembly and lies at
a crossroads between signaling and cytoskeletal machineries (Symons et al.,
1996). We hypothesized that WAS cells may display aberrant metabolic oscil-
lations. Figure 2g shows NAD(P)H oscillations of WAS neutrophils. A shoul-
der was observed on the rising side of each oscillation. Similar results were
obtained using cells from two related boys who express a Pro�Leu mutation
at codon 39. These observations provided additional evidence for a link
between intracellular oscillators, cell behavior and disease. We next tested the
ability of WAS neutrophils to detect electric fields. Interestingly, metabolic
resonance and exaggerated cell extension were not observed. As WAS cells
express reduced amounts of CD43, a charged membrane sialoprotein, we
employed higher field strengths (� 1V/m) without detecting metabolic reson-
ance. Since WAS cells are deficient in pseudopod extension, we suggest that
they are not subject to the force-balancing condition described above and
cannot sense these electric fields. Thus, an intact cytoskeletal machinery is
needed to support metabolic resonance and cytoskeletal assembly precedes
metabolic resonance.

Depressed clinical inflammatory responses have been associated with an
inability to acquire the 10-s NAD(P)H oscillation. Infection of fetuses and
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newborns is a major contributor to infant morbidity and mortality. One
well-studied contributor to the depressed phlogistic potential of neonates is a
broad spectrum of depressed neutrophil functions. These blunted functions
include chemotaxis, extravasation, actin polymerization, ROM production
and phagocytosis (e.g., Dos Santos and Davidson, 1993). To test the role of
metabolic oscillations in the diminished function of neonatal neutrophils, we
obtained fetal blood from umbilical cords: 20-s sinusoidal NAD(P)H oscilla-
tions were found for migrating neonatal neutrophils. However, attempted
stimulation with 10�
 to 10��M FMLP did not affect the metabolic oscil-
lation frequency. Thus, under nominally activating conditions, neonatal
neutrophils were unable to respond normally. We speculate that this develop-
mental delay in metabolic oscillations may account for neonatal disease sus-
ceptibility.

Another example of depressed innate immunity is the rapid progression of
Ebola virus infections. The secretory glycoprotein (sGP) of Ebola virus binds
to Fc�RIIIB of neutrophils (Yang et al., 1998). Preliminary studies have
indicated that sGP blocks acquisition of the 10-s metabolic oscillation. Cells
stimulated with 10�
 to 10��M FMLP retained the 20-s NAD(P)H oscilla-
tion. Thus endogenous substances and products of infectious agents can affect
neutrophil metabolic oscillations.

7.8 Discussion and conclusion

There is a growing awareness of the important role of biochemical oscillators
in transmembrane signaling (O’Rourke et al., 1994; Goldbeter, 1996; Berridge,
1997). This is especially true for the Ca�� oscillator. Ca�� signals are thought
to encode information in their frequency, amplitude, duration and number
(e.g., Gu and Spitzer, 1995; Berridge, 1997; Dolmetsch et al., 1997). Recently,
CaM kinase II was shown to decode Ca�� oscillations in a frequency-depend-
ent fashion (De Koninck and Schulman, 1998). Numerous physiological end-
points (gene expression, hormone secretion, etc.) have been correlated with the
Ca�� oscillator (Gilon et al., 1993; Goldbeter, 1996; Berridge, 1997). Although
the present review did not focus on Ca�� oscillations, these oscillations
parallel NAD(P)H oscillations with constant phase angles (see Figures 2d and
3). However, some evidence suggests that Ca�� oscillations may possibly be
secondary to metabolic oscillations (Corkey et al., 1988; Pralong et al., 1990;
O’Rourke et al., 1994).

In conclusion, we hypothesize that metabolic oscillations represent a physi-
cal as well as biochemical signal that regulates cell migration, spreading and
phagocytosis. Furthermore, we propose that the frequency, amplitude and
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phase information contained in these oscillations is physiologically meaningful.
Several independent lines of physical, chemical and genetic evidence support
this concept. Although these lines of evidence strongly support the role of
cellular oscillators in cell function, largely through correlative changes, they do
not prove causality. There is, therefore, a small possibility that cellular oscil-
lators may represent epiphenomena; they may reflect the mechanistic pathway
without direct participation. However, we believe that this distinction is unim-
portant in the present context. In either case, the long-term goal of improved
management of inflammatory disease could be achieved. These oscillators
have already been used to characterize disease states and to search for novel
anti-inflammatory substances. Further study of neutrophil oscillators may
lead to both a mechanistic understanding of neutrophil activation and im-
proved patient care.
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8

Enzyme kinetics and nonlinear biochemical
amplification in response to static and

oscillating magnetic fields

JAN WALLECZEK AND CLEMENS F. EICHWALD

8.1 Introduction

The use of magnetic fields as a tool for influencing biological processes, which
historically began with attempts to treat human disease, has had a long but
checkered record. For many centuries following the discovery of the naturally
magnetic material, magnetite (Fe

�
O
�
), the purported effects associated with

this material were surrounded by superstition. In the first century AD, Pliny
the Elder wrote about the apparently magical powers of ‘lodestone’, as mag-
netite was called then, such as the ability to heal the sick. The credible, scientific
study of the biological effects of magnetism, however, has begun only in this
century, and only in the 1960s were the first surveys of the laboratory evidence
published (Barnothy, 1964, 1969).

Beginning in the 1970s, it was established that several animal species such as
pigeon, salmon and honey bee were sensitive to even weakmagnetic fields such
as that of the Earth (for an overview, see Kobayshi and Kirschvink, 1995). This
represents a remarkable sensitivity, since the magnetic flux density (B) of the
Earth’s magnetic field measured in units of tesla (T) is only about 50 microtesla
(�T). For comparison, the magnetic field associated with a small, 1-cm toy
magnet would be 1000-fold greater, for example, B� 50 millitesla (mT). In
elegantly designed studies, scientists revealed that pigeons, salmon and bees
were capable of sensing geomagnetic field lines as a way to orient themselves in
their environment. The discovery of small amounts of magnetite in the biologi-
cal tissue of these animals pointed to the role of magnetite as a potential
element of a biological ‘compass’ for magneto-orientation. An understanding
of the biomolecular mechanisms by which field interactions with magnetite
could be translated into a biological change is, however, still lacking.

Until the late 1980s, with the exception of the behavioral effects in magneto-
orientation, studies suggesting an influence of magnetic fields on other
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biological endpoints were poorly accepted. This was despite the fact that many
hundreds of studies had been published, including reports of the stimulation or
inhibition by magnetic fields of enzyme activity and of biological signaling
events, cell growth and metabolism, and tissue repair (for overviews, see Adey,
1981; Adey and Lawrence, 1984; Wilson et al., 1990; Blank, 1995; Lacy-Hulbert
et al., 1998). One reason for this skepticism was the lack of independent
replications of basic findings. In addition, studies were criticized for lacking
sufficient methodological rigor, a criticism that appeared to be justified for a
significant share of the earlier work. In the 1990s, however, reports appeared in
the literature, suggesting the reproducibility between independent laboratories
of several biological magnetic field effects such as on cellular signal transduc-
tion (Conti et al., 1985; Walleczek and Budinger, 1992), isolated enzyme
activity (Harkins and Grissom, 1994; Taoka et al., 1997), and in clinical
therapy (Ieran et al., 1990; Stiller et al., 1992). One specific insight that led to
reproducible findings was the discovery that magnetic field effects, for example
in lymphocytes, depended strongly on the biological state of the cells at the
time of exposure (Walleczek, 1992, 1994; Eichwald and Walleczek, 1996a). The
recent progress was echoed in the executive summary of a review by the US
National Research Council (1997) which concluded, for example, that ‘repro-
ducible changes have been observed in the expression of specific features in the
cellular signal-transduction pathways for magnetic-field exposures on the
order of 100�T and higher’. Although progress has been made, it is also clear
that more work is needed to better establish the biological conditions under
which robust effects can be routinely observed with stringent experimental
protocols (e.g., Walleczek et al., 1999).

8.1.1 The quest to understand magnetic field effects at the
biomolecular level

Theoretical objections were another significant reason for the early skepticism
concerning the experimental results. Physicists argued that most biological
preparations do not contain any material that is magnetically susceptible with
the rare, above-mentioned exception of magnetite potentially associated with
certain neurosensory tissues. Therefore, the existence of an effective mechan-
ism for direct magnetic field interaction with biological activity not related to
sensory function seemed highly improbable. In 1992, we (Grundler et al., 1992;
Walleczek and Budinger, 1992) and McLauchlan (1992) hypothesized that the
origins of some of the reported (nonsensory) biological magnetic field effects
could be due to a mechanism already well-known in magnetochemistry for
more than 20 years. This mechanism is known as the radical pair mechanism
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(RPM). Similar proposals, although they went largely unnoticed then, ap-
peared, for example, in the Russian scientific literature as early as 1976 (for a
review, see Walleczek, 1995). A first critical step in the test of this hypothesis
was to resolve the principal question of whether any biologically relevant
activity could be affected as a consequence of this mechanism operating within
a biological context. The answer came soon when a landmark study reported
by Harkins and Grissom (1994) identified a magnetic field-dependent enzyme
system for which its sensitivity to an applied magnetic field could conclusively
be shown to be a direct consequence of the RPM. The studied enzyme was a
vitamin B

��
-dependent ammonia lyase, and, importantly, the paramagnetic

radical pair species that served as the primary field coupling site could be
identified as well (Harkins and Grissom, 1995). On the basis of these findings,
in combination with knowledge about the details of the enzyme’s reaction
cycle, we constructed a biophysical model that could qualitatively reproduce
the experimental results (Eichwald and Walleczek, 1996b). These develop-
ments represented a major advance in the long quest to understand how
magnetic fields may interact with living systems: on the basis of established
biophysical principles, the experimental findings, in combination with the
modeling results, were capable of explaining a direct magnetic field effect on
general biological (enzyme) activity at the molecular level.

8.1.2 A two-stage model for magnetic field interactions in
biological systems

One major goal of our work is to help to establish the fundamental mechan-
isms of direct interactions between magnetic fields and living systems. A
related goal is to develop magnetic fields as a novel tool for probing as well as
for controlling biological activity for practical purposes, for example in bio-
technology and biomedicine. At present, for both goal areas, the RPM pro-
vides the primary physical mechanism responsible for initial magnetic field
detection, whereas enzyme-regulated and oscillatory biochemical reactions
representminimummodels of secondary biological mechanisms. In our defini-
tion (see Walleczek, 1995; Walleczek et al., 1999), the function of the primary
physical mechanism is to enable the efficient coupling of the magnetic field
signal to a molecular target in the presence of thermodynamic and other noise
sources. The function of the secondary biological mechanism is to translate
potentially small field-induced changes at the microscopic level into a biologi-
cal change that is observable at the macroscopic level (Figure 1). In this
chapter we discuss (1) the RPM as an example of a physical mechanism that is
initially not limited by thermodynamic noise, and (2) possible features of
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Figure 1. Proposed relationship between primary physical and secondary biological
mechanisms during magnetic field interactions with biological systems. In this
example, the primary physical mechanism describes magnetic field interactions with
radical pair recombination events at the microscopic level, whereas the secondary
biological mechanism represents a subsequent pathway leading to the induction of a
macroscopic biological response.

enzyme-based biologicalmechanisms including signal frequency detection and
nonlinear signal amplification (see Figure 1). Our findings will be discussed
against the background of the role of self-organized biodynamical states in
biological information processing in response to external stimulation and in
regards to potential practical applications.

8.2 The radical pair mechanism in biological systems

The RPM is a well-established physical mechanism for describing how mag-
netic flux densities, e.g. of the order of 0.1 to 100mT, can nonthermally affect
chemical and biochemical reactions that involve transient free-radical states
(e.g., Turro, 1983; Steiner and Ulrich, 1989; Grissom, 1995; Walleczek, 1995;
Brocklehurst and McLauchlan, 1996). In contrast to electrical interactions (see
Gailey, Chapter 7, this volume), magnetic field interactions through the RPM
are not initially limited by thermal noise, because they result from direct field
coupling to a coherent quantum-mechanical process that is not affected by
thermal energy perturbations. During the past 20 years, research in mag-
netochemistry has identified several organic reaction systems that are sensitive
to magnetic interactions through the RPM at millitesla intensities. For
example, the application of magnetic fields of B� 0.1 to 1mT was found to
change the reactivity of the dicyanobenzene/pyrene system (Weller et al., 1983;
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Batchelor et al., 1993). Remarkably, in the case of this simple chemical reaction
the lowest effective field intensity was close to the weak strength of the Earth’s
magnetic field. The systematic search for RPM-mediatedmagnetic field effects
on biologically relevant systems, with the exception of photosynthetic reaction
centers, has begun only recently (for reviews, see Grissom, 1995; Walleczek,
1995). One magnetically sensitive enzyme, a subject of research in our labora-
tory, is described further below. First, we need to briefly highlight basic
physico-chemical principles that underlie the RPM. Since the subsequent
description is restricted to a few key concepts only, for a detailed explanation
we recommend the reviews by Steiner and Ulrich (1989) and McLauchlan and
Steiner (1991).

8.2.1 Principles underlying the radical pair mechanism

Radicals are formed as reaction intermediates in many chemical and biochemi-
cal transformations. They are atoms or molecules with one or more free
electrons, and they have, because of the magnetic spin moment of the free
electron, paramagnetic properties (i.e., radical species are slightly attracted to a
magnetic field gradient). Generally, radicals are created by cleavage of a
covalent bond of a precursor molecule, M

�
, as shown in Figure 2. Immediately

after bond cleavage the two radical fragments, i.e., the radical pair, physically
separate, for example by diffusion. They retain, however, their original electron
spin orientation according to the Wigner spin conservation rule that describes
the conservation of spin angular momentum. As a consequence of this quan-
tum-mechanical process (‘spin coherence’), despite physical separation, the
spins remain correlated with each other for a short time period (e.g.,
0.1—100ns). To describe this special kind of correlated reaction intermediate
the term spin-correlated radical pair was introduced (e.g., McLauchlan and
Steiner, 1991). Effective magnetic field interactions may occur only during the
brief time frame duringwhich the radical pair spins are in their correlated state.
This time frame is known as the radical pair lifetime (compare Figure 2).

The fate of the spin-correlated radical pair in the absence compared to the
presence of an external magnetic field is illustrated in Figure 2. As shown in the
top row in the Figure, the two members of the spin-correlated radical pair (R
and R�), created by homolytic cleavage of the precursor molecule, M

�
, may

reencounter each other and — in the absence of an external magnetic field —
recombine to form the original molecule, M

�
. This process is called radical pair

recombination, and the resulting species is known as the geminate or cage
product. Recombination is, however, possible only if the radicals are singlet
correlated; that is, if the two unpaired electron spins are oriented in an

197Enzyme kinetics and nonlinear amplification



Figure 2. Illustration of the magnetic field effect on radical pair recombination. For
details, see text in Section 8.2.1.

antiparallel fashion (R� and R�) as in the above example. The effect of the
applied magnetic field on radical pair recombination is shown in the bottom
row in Figure 2. The field changes the probability of conversion from the
singlet-correlated spin state into an overall triplet configuration; that is, with
the spins now in a parallel orientation (R� and R��). Unlike for singlet-
correlated radical pairs, recombination of the triplet-correlated radical pairs is
spin forbidden because of the Pauli exclusion principle; hence, as is illustrated
in the figure, the two members of the radical pair cannot recombine, but diffuse
away as free radicals. It is apparent from the above description that the
magnetic field does not affect the chemical nature of the involved species;
however, the external field does alter the ratio between recombined cage
product and escape product (free radical) yields. Importantly, it has been
shown that a related situation may occur in enzyme systems whose activity
depends on the formation of a radical pair intermediate state during the
enzyme reaction cycle (Grissom, 1995). Thus, an external magnetic field may
be used as a tool to alter the ratio between cage and escape product formation
and, consequently, to change the net forward flux within an enzyme reaction
cycle (see Section 8.2.2).

As illustrated in Figure 2, the physical basis for the sensitivity of radical
recombination to applied magnetic fields is the field’s capacity to affect the
interconversion between singlet and triplet electron spin states. Briefly, two
mechanisms can be distinguished by which this may occur: the hyperfine
coupling (HFC) and the �g mechanism. The HFC mechanism describes the
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field’s influence on interactions between the magnetic moments of the nuclear
and electron spins, and it operates typically at low-to-moderate flux densities,
e.g., B� 0.1 to 50mT. For greater flux densities (B� 0.1 to 1T) magnetic field
effects can usually be accounted for by the �g mechanism. The latter mechan-
ism describes the interference of an external magnetic field with intrinsic
magnetic interactions between the spin moment of the electron and its orbital
motion around the nucleus, termed spin—orbit coupling. It is important to note
that the effects due to the two mechanisms are opposite in sign: the HFC
mechanism decreases the rate of singlet—triplet interconversions, whereas this
rate is always increased as a result of the �g mechanism. Consequently,
biphasic effects may be observed for reaction systems in which both mechan-
isms operate; that is, field effects in opposite directions may result between
exposures to lower compared to higher magnetic flux densities. An experimen-
tal example of this phenomenon for enzyme activity involving radical pair
recombination is the subject of the next section.

8.2.2 Static magnetic field effects in enzyme kinetics

Recent in vitro experiments have demonstrated a substantial magnetic field
effect on the B

��
-dependent enzyme ammonia lyase, as was mentioned in

Section 8.1.1 (Harkins and Grissom, 1994). Harkins and Grissom observed
that the effect of the external field on the enzyme was biphasic in nature; that is,
an inhibitory effect of the order of 25% was observed at lower flux densities
and a return to zero-field conditions or even a slight increase at higher flux
densities (compare Figure 3). Importantly, the original observation could be
subsequently confirmed by another laboratory (Taoka et al., 1997). This
robust field effect, together with detailed knowledge of the enzyme’s reaction
cycle, presented us with a unique opportunity (1) to model the molecular
mechanisms that may underlie this field effect and (2) to gain insight into the
role of enzyme kinetic features in mediating this interaction. For this purpose
we developed a prototypical model of a magnetic field-sensitive enzyme sys-
tem. The model appropriately integrated the slower times scales of
Michaelis—Menten-type enzyme kinetics with the much faster time scales of
magnetic field-dependent electron spin kinetics associated with the paramag-
netic enzyme radical pair species (for details, see Eichwald and Walleczek,
1996b). As illustrated in Figure 3, which compares the experimental results
with those obtained from the simulations, our model was able to qualitatively
reproduce the biphasic magnetic field effect on B

��
-dependent ammonia lyase

activity. In particular, the model simulations revealed that the size of the
magnetic field effect was a function of the specific relations between the
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Figure 3. Comparison between experimental data and the model simulation of the
biphasic magnetic field effect on V

�
�
/K

�
of coenzyme B

��
-dependent ethanolamine

ammonia lyase in vitro activity. The data points represent the experimental results
obtained at different flux densities. The solid line indicates the result from the com-
puter simulation. The magnetic flux density,B, is in mT. (Reproduced with permission
from the Biophysical Society (Eichwald and Walleczek, 1996b).)

different rate constants such as (1) the ratio between radical pair lifetime and
the rate of magnetic field-sensitive spin conversion induced by the HFC and
the �g mechanisms and (2) the chemical rate constants of the enzyme reaction
cycle (Eichwald and Walleczek, 1996b).

It is a common assumption that, even if there exist magnetic field-sensitive
biochemical pathways in cells as a consequence of the RPM, biologically
significant effects are unlikely to occur on the basis of this mechanism. The
reason is the usually small change in radical pair recombination probability
due to a weak magnetic field that typically translates into a chemical rate
change of only �0.1% to 5%. Biochemical rate changes of this size are not
normally expected to play any significant role in shaping biological function.
Our simulations suggested, however, another possibility: the field-sensitive
enzyme itself may act as a biochemical amplifier. Specifically, we found that the
specific relationships of the kinetic coefficients that govern the enzyme reaction
cycle provide a means for amplifying small initial changes in radical pair
recombination into disproportionally large changes in enzyme activity. We
derived an amplification factor, �, from the specific relations between the
different rate constants. This factor quantitatively characterizes the amplifica-
tion properties of the single enzyme molecule, and accounts for the fact that —
although the magnetic field-induced change in radical pair recombination
probability is small — the effect on the enzyme reaction rate can be considerably
larger, for example by a factor of 10 (see Figure 4). Thus, we suggest that
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Figure 4. Dependence on the amplification factor, �, of the magnitude of the magnetic
field effect on enzyme reaction rate, v�. The magnetic flux density, B, is in mT. The
dashed line extrapolates the behavior for B� 0. (Reproduced with permission from
the Biophysical Society (Eichwald and Walleczek, 1996b).)

enzyme-based kinetic amplification may have played a significant role in the
induction of the reported 25% field effect on ammonia lyase activity (Harkins
and Grissom, 1994). Our computational approach revealed that the combined
analysis of physical and biochemical mechanisms (magnetic field modulation
of radical pair recombination probability and amplifying kinetic processes
within the enzyme reaction cycle, respectively) is a prerequisite for a qualitative
as well as quantitative interpretation of magnetic field effects on enzyme
activity (Eichwald and Walleczek, 1996b). In summary, despite the fact that
magnetic modulation of RPM-dependent reaction rates may appear to be
negligibly small, we propose that, when such interactions occur within an
appropriate biological context, they may still lead to biochemical changes
substantial enough to significantly affect biological function. Another mechan-
ism for biochemical amplification is discussed in Section 8.3.2.

8.2.3 Oscillating magnetic field effects in enzyme kinetics

After successfully modeling the effect of a time-invariant, static magnetic field
on enzyme kinetics (Figure 3), we set out to study the effect of a magnetic field
whose intensity varies with time. The motivation for this work was our
previous hypothesis that RPM-mediated magnetic field effects could occur in
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Figure 5. Relaxation behavior of the magnetic field-sensitive enzyme under the influ-
ence of pulsed magnetic fields. Time evolution of the variables x and y as a function of
the duration of the magnetic field pulse. The variable x (solid line) is the fraction of the
enzyme formed as enzyme—substrate complex prior to radical pair generation, and y
(dashed line) representing the enzyme—substrate complex prior to product release
(Eichwald and Walleczek, 1997). (Reprinted with permission from Eichwald, C. F. and
Walleczek, J., Low-frequency-dependent effects of oscillating magnetic fields on rad-
ical pair recombination in enzyme kinetics. J. Chem. Phys. 107: 4943—4950. Copyright
1997 American Institute of Physics.)

biological systems that depend on the frequency of field oscillations in the
low-frequency range from about 0.1 to 1000Hz (Walleczek, 1995). Others have
argued against this possibility, because of the large difference in time scales
involved in such interactions; radical pair recombination takes place in the
nanosecond time domain (see Section 8.2.1), compared to the millisecond time
scale of low-frequencymagnetic field oscillations. For this reason it had always
been assumed that field oscillations with periods of the order of milliseconds
would not result in effects any different from those associated with static
magnetic fields (see, e.g., Brocklehurst and McLauchlan, 1996; Valberg et al.,
1997). Hence, we asked whether a magnetic field-sensitive enzyme could detect
any difference between exposure to a low-frequency oscillating compared with
a static magnetic field. Specifically, we tested whether the kinetic properties of
the enzyme reaction cycle might give rise to effects that depend on the oscilla-
tion frequency of the time-varying field. For this investigation the model
discussed in Section 8.2.2 was extended to enable the study of time-dependent
magnetic field perturbations, including pulsed fields as well as combinations of
static and sinusoidally oscillating fields (for details, see Eichwald and Wallec-
zek, 1997). One representative result from the computer simulations with
pulsed magnetic fields is displayed in Figure 5. The figure illustrates that the
magnetic field-exposed enzyme can indeed act as a frequency sensor that is
responsive at lower field frequencies but less responsive at frequencies that are
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Figure 6. Frequency dependence of the response behavior of the enzyme to
sinusoidally oscillating magnetic fields, B(t)�B

��
cos (�

��
t). The variables x (solid

lines) and y (dashed lines) are defined as in Figure 5. (a) Oscillation amplitudes of x and
y. (b) Phase shift �

�
and�

�
between oscillations in the variables x and y and the applied

magnetic field. The phase shift �
�
(�

�
) is defined as the phase difference between the

maximal amplitude of the oscillating magnetic field at t� 0 and the minimum (maxi-
mum) of the variable x (y). (Reprinted with permission from Eichwald, C. F. and
Walleczek, J., Low-frequency-dependent effects of oscillating magnetic fields on rad-
ical pair recombination in enzyme kinetics. J. Chem. Phys. 107: 4943—4950. Copyright
1997 American Institute of Physics.)

faster than the time scales inherent in the kinetic properties of the enzyme
reaction cycle. Furthermore, a transition region in the frequency domain could
be characterized that reflected the enzyme’s relaxation behavior to sinusoidally
oscillatingmagnetic fields,B(t)�B

��
cos (�

��
t): Figure 6a reveals a character-

istic transition region near �� 1, where the oscillation amplitudes of two
enzyme intermediate states corresponding to variables x and y decrease drasti-
cally, and Figure 6b illustrates the phase shift between the temporal variations
of the applied field and the variations in the variables x and y.

The model simulations also suggested that specific combinations of static
and sinusoidally oscillating magnetic fields could critically determine the
temporal variations in the enzyme—substrate states as well as the overall
enzyme reaction rate. Importantly, we determined that — at higher field fre-
quencies — the application of oscillating magnetic fields caused changes that
could not be predicted by knowledge of the effect of the static magnetic field
component only. The simulations also provided evidence for the effectiveness
of the oscillating magnetic field, even in the presence of a relatively stronger
static magnetic field. It is important to note again that these effects reflect the
kinetic properties of the underlying biological system; that is, the characteristic
response behavior of the magnetic field-exposed enzyme, and not any low-
frequency sensitivity of the RPM itself (Walleczek, 1995, 1999; Eichwald and
Walleczek, 1997). In summary, our computer simulations confirmed the
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feasibility of our proposal that a magnetic field-dependent enzyme may sense
the frequency information contained in a low-frequency signal (Walleczek,
1995). Additionally, this work also indicated the possibility that an enzyme
may act as a frequency-specific amplifier of initially small RPM-mediated
effects induced by an oscillating magnetic field (Eichwald and Walleczek,
1997). An experimental test of this prediction is the subject of a future investi-
gation.

8.3 Magnetic field stimuli as a tool for controlling self-organized
biological dynamics

The discovery that certain enzyme-regulated biochemical reactions may pro-
vide a molecular coupling target for magnetic fields in cells raised an interest-
ing possibility: the application of oscillating and static magnetic fields could be
developed into a minimally invasive tool for controlling biochemical and
biological activity. In particular, given the often cyclic or oscillatory features of
biological activity, we proposed the concept of influencing biological activity
with specific dependence on the frequency information contained in an oscilla-
tory magnetic field (Walleczek, 1995; Eichwald and Walleczek, 1998). As was
shown before for other time-varying physical stimuli such as oscillating electric
stimuli, our approach could lead to the development of magnetic field pertur-
bations as a tool (1) for studying the dynamical properties of biological
signaling mechanisms in response to perturbation, and (2) for directing bio-
logical activity toward an intended outcome, for example, in clinical therapy
(e.g., see Ditto and Spano, Chapter 15, this volume). The plausibility of this
idea in regard to the ability of a single enzyme molecule to act as magnetic field
detector was discussed in Section 8.2.3. Below, we discuss another possibility
based on the existence of macroscopic far-from-equilibrium biodynamical
states such as self-sustained biological oscillations.

8.3.1 A minimum model of a biochemical oscillator

Many elements of the pathways by which cells either communicate with each
other or receive and transduce signals from the environment are controlled
dynamically. This is reflected, for example, by the observation that the cellular
concentration of chemical messengers such Ca��, or of metabolites such as
nicotinamide adenine dinucleotide phosphate (NADPH), may oscillate spon-
taneously or in response to external stimulation. After years of speculation,
experimental evidence has finally emerged in confirmation of the idea that the
frequency of a biological oscillator may encode dynamical information that
controls basic cellular activity (e.g., see Petty, Chapter 7, this volume). In
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Figure 7. Scheme of the model of two coupled-enzyme control-
led reactions. Substrate, S, is converted into product, P,
catalyzed by enzyme reaction E

�
and, subsequently, P is con-

verted back into S by enzyme reaction E
�
. It is implicitly

assumed that one of the reactions includes an energy conver-
sion step, e.g., by hydrolysis of adenosine triphosphate (ATP),
to drive the reaction against a concentration gradient. S is
supplied at a net rate � (S


� S). The activity of enzyme E

�
is

controlled by substrate inhibition kinetics, as indicated by the
minus sign in the circle in the figure. Enzyme reaction E

�exhibits magnetic field sensitivity through the radical pair
mechanism. (Reprinted from Biophys. Chem. 74, Eichwald, C.
F. and Walleczek, J., Magnetic field perturbations as a tool for
controlling enzyme-regulated and oscillatory biochemical reac-
tions, pp. 209—224, Copyright 1998, with permission from
Elsevier Science.)

particular, work with human lymphocytes has now firmly established that the
degree of gene activation can be critically determined by the frequency of
cytoplasmic Ca�� oscillations in these cells (Dolmetsch et al., 1998; Li et al.,
1998).Within this context we refer the reader to our earlier work, not discussed
here, which specifically addresses the possibility of electromagnetic field per-
turbation of cytoplasmic Ca�� oscillations (Eichwald and Kaiser, 1993, 1995).

Here we describe a model that we have developed for testing the feasibility of
nonlinear frequency and amplitude control of biodynamical states with mag-
netic fields through the RPM (for details, see Eichwald and Walleczek, 1998).
As a minimum model of a biodynamical state we chose a biochemical oscil-
lator consisting only of coupled two-enzyme reactions (Figure 7). The system
represents a cyclic reaction wherein substrate (S) is converted into product (P)
catalyzed by reaction E

�
, and product is subsequently converted back into

substrate catalyzed by reaction E
�
. It is assumed that one of the reactions

includes an energy conversion step to drive the reaction against a concentra-
tion gradient. The designation substrate and product are of course inter-
changeable because of the cyclic nature of the system. The following specific
case was investigated: (1) the activity of one of the enzymes (E

�
) is controlled by

substrate inhibition kinetics, and (2) the activity of the other enzyme (E
�
)

exhibitsmagnetic field sensitivity through the RPM in the manner described in
Section 8.2. The first condition enables the inclusion of a regulatory feedback
mechanism. For certain boundary conditions, this results in a system that is
capable of sustained oscillatory behavior, since substrate inhibition kinetics
offers a pathway for inducing enzyme-regulated biochemical oscillations (Shen
and Larter, 1994). The second condition allows the integration of the magnetic
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Figure 8. Oscillation diagram of the substrate and product concentrations and of two
intermediate enzyme—substrate complexes. The lines represent the temporal evolution
of substrate concentration (solid line, x), product concentration (dashed line, y),
concentrationof intermediate enzyme—substrate complex corresponding to enzymeE

�(dashed-dotted line, e
�
), and concentration of intermediate enzyme—substrate complex

corresponding to enzyme E
�

(dashed-dot-dotted line, e
�
). (Reprinted from Biophys.

Chem. 74, Eichwald, C. F. and Walleczek, J., Magnetic field perturbations as a tool for
controlling enzyme-regulated and oscillatory biochemical reactions, pp. 209—224,
Copyright 1998, with permission from Elsevier Science.)

field coupling step into the oscillatory biochemical reaction based on our
previous model (Eichwald and Walleczek, 1996b, 1997). Figure 8 shows an
example of the natural oscillation pattern of the coupled two-enzyme reaction
system in the absence of magnetic field perturbation.

8.3.2 Oscillating and static magnetic field control of the biochemical
oscillator

First, to characterize the amplification properties of the enzyme oscillator, the
effects of static magnetic fields were studied. In Figure 9 the size of the primary
field effect on radical recombination probability (right axis) is shown in com-
parison to the corresponding effect size on the oscillator period (left axis). For
example, atB� 25mT one can observe that, while the field caused a reduction
in radical recombination probability by 6%, the oscillation period was
reduced by about 60%. This finding demonstrates that the kinetic properties of
the coupled enzyme reactions provide a source for greatly amplifying small
initial changes, i.e., by a factor of 10 (for a comparison with experimental
results, see Section 8.4.1). In this theoretical study we were most interested,
however, in the response of the oscillator to periodically oscillating fields,
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Figure 9. Response behavior of the enzyme oscillator toward static magnetic field
perturbations. The solid line refers to the oscillation period (T) in seconds. The dashed
line represents the probability for radical pair recombination (P

�
). Note the different

axis scaling. For an interpretation in regards to biochemical amplification see Section
8.3.2. (Reprinted from Biophys. Chem. 74, Eichwald, C. F. and Walleczek, J., Magnetic
field perturbations as a tool for controlling enzyme-regulated and oscillatory bio-
chemical reactions, pp. 209—224, Copyright 1998, with permission from Elsevier
Science.)

because in this case the oscillator’s frequency-sensitive features may be directly
affected. A range of different field frequencies was employed to study the
oscillator’s response towards stimulation (for details, see Eichwald and Wal-
leczek, 1998). Some representative oscillation patterns are shown in Figure 10,
where the flux density of the oscillating magnetic field was held fixed at 12mT
and only the field frequency was varied. For easy comparison, note that the
natural frequency of the unperturbed oscillator (�

��
� 0.063 s��) is close to the

one shown in panel (b) in Figure 10. The panels (c)—(f ) in the figure illustrate
changes in the oscillatory patterns in response to field perturbation at increas-
ing frequencies (�

��
� 0.25, 0.47, 0.6 and 1.0 s��). Panel (a), on the other hand,

provides an example of the oscillator response to a field frequency
(�
��

� 0.03 s��) smaller than the natural, unperturbed oscillator frequency. It
is evident from these results that both the amplitude as well as frequency of the
biochemical oscillator can be drastically altered in strict dependence on mag-
netic field frequency. Remarkably, field frequencies much greater than the
natural oscillator frequency, for example by a factor of 100, still induced
nonlinear resonant responses (see Eichwald and Walleczek, 1998). The simula-
tions, thus, support the notion of nonlinear frequency control of cellular
activity by an oscillating magnetic field assuming that (1) the oscillator
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Figure 10. Frequency dependence of the enzyme oscillator to oscillating magnetic
field perturbations, B(t)�B

��
cos (�

��
t). (a) �

��
� 0.03 s��, (b) �

��
� 0.063 s��, (c)

�
��

� 0.25 s��, (d)�
��

� 0.47 s��, (e)�
��

� 0.6 s��, (f )�
��

� 1.0 s��. For details, see
text in Section 8.3.2. (Reprinted from Biophys. Chem. 74, Eichwald, C. F. and Wallec-
zek, J., Magnetic field perturbations as a tool for controlling enzyme-regulated and
oscillatory biochemical reactions, pp. 209—224, Copyright 1998, with permission from
Elsevier Science.)

dynamics is dependent on a field-sensitive reaction step and (2) the oscillator
frequency controls cellular activity as was observed, for example for cytoplas-
mic Ca�� oscillations in lymphocytes (Dolmetsch et al., 1998; Li et al., 1998).

8.4 Nonlinear biochemical amplification in response to weak perturbation

In order to experimentally test our model predictions we implemented the
oscillatory peroxidase—oxidase enzyme reaction as an experimental paradigm
of a small biochemical reaction network (BRN). Because this enzyme reaction
represents a cell-free system of a simple BRN consisting of only two coupled

208 J.Walleczek and C. F. Eichwald



Figure 11. Experimental demonstration of the amplification properties of a nonlinear
enzyme oscillator in response to weak substrate perturbation. The bar in the figure
indicates the time during which the perturbation was applied. The perturbation
consisted of a small change in the inflow concentration of substrate (NADH) from
4.0nmol/s to 3.67 nmol/s to the reaction mix in a continuously stirred open-flow tank
reactor (CSTR). The perturbation response of the peroxidase—oxidase enzyme oscil-
lator was monitored with an oxygen electrode placed inside the CSTR (J. J. L. Carson
and J. Walleczek, unpublished results). For details, see text in Section 8.4.

feedback loops, it yields basic information in regard to nonlinear signal
amplification processes without interference from the complexity of biochemi-
cal interactions in whole cells. (For a detailed description of this oscillator,
which is controlled by the enzyme horseradish peroxidase, see Larter et al.,
Chapter 2, this volume). The experimental results shown here are chosen to
demonstrate the amplification properties of an enzyme-regulated biochemical
oscillator. The degree of amplification is expressed in terms of an amplification
factor,A

�
.A

�
is defined as the ratio of an observed change in output response to

the change in the input stimulus,

A
�
�

(�
�
��

�
)/(�

�
)

(S
�
�S

�
)/(S

�
)
,

where � represents the output response, S the input stimulus, and the sub-
scripts i and f refer to the initial and final values, respectively (Goldbeter and
Koshland, 1982). Our approach allowed the direct, real-time observation of
the nonlinear amplification properties of a BRN in a continuously stirred,
open-flow tank reactor (Figure 11). A change in the concentration of one of the
enzyme substrates, nicotinamide adenine dinucleotide (NADH), served as the
perturbing input signal. As illustrated in Figure 11, a small (� 8%) change in
the input signal at t� 4000 s was greatly and rapidly amplified by the BRN to
yield a large change in the output response. This is apparent from the increase
in the oscillation amplitude (� 200%) as well as the oscillation period
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(�100%); upon cessation of the perturbation at t� 5000 s, the oscillator
returned to its original dynamics within a few minutes. From the time series in
Figure 11 we calculated thatA

�
� 23 andA

�
� 10 for the effects on the enzyme

oscillator amplitude and frequency, respectively. This finding clearly demon-
strated the great capacity of an oscillatory BRN to amplify the effects from
weak perturbations. The degree of amplification was similar to the magnitude
(A
�
� 10 to 20) suggested by our minimum model of a biochemical oscillator

(see Figure 9). Finally, experiments with magnetic field perturbations, instead
of chemical perturbations, of the peroxidase—oxidase oscillatory BRN are
briefly discussed.

8.4.1 Magnetic field control of an enzyme-regulated biochemical oscillator

Stopped-flow kinetic measurements have recently revealed that there exist
intermediate reaction steps in the redox cycle of the peroxidase enzyme that
are sensitive to magnetic fields of the order of 1 to 100mT in accord with the
RPM (Taraban et al., 1997). This finding compelled us to construct the
minimum model described in Section 8.3.1 that integrates magnetic field-
dependent chemical kinetics with oscillatory enzyme dynamics. The resulting
computer simulations predicted that exposures to magnetic fields of B� 1 to
100mT should be able (1) to affect the amplitude of the peroxidase—oxidase
oscillatory system and (2) to cause transitions of the oscillatory dynamics from
complex oscillations to periodic ones or vice versa (Eichwald and Walleczek,
1998). Recent experiments have confirmed both predictions (Carson et al.,
1999; Christine-Møller and Olsen, 1999). Figure 12 shows a time series of the
oscillatory enzyme dynamics, with the time and duration of the applied static
magnetic fields indicated by the horizontal bars. Prior to the onset of the
magnetic field exposure, the enzyme oscillator displays a complex, possibly
chaotic, oscillatory pattern. Immediately after the start of the 50-mT magnetic
field exposure, the complex state switches to a periodic one of much smaller
oscillation amplitude; after removal of the field, the periodic state switches
back to a complex one. As shown in the graph, even the lower magnetic flux
density of 25mT was capable of inducing an inhibitory effect on the oscillation
amplitude as had been predicted in principle (see Figure 9). This real-time
evidence for magnetic field effects on a small BRN demonstrates the feasibility
of the use of magnetic fields as a minimally invasive tool to influence and
control biological activity. Importantly, these experimental findings, in combi-
nation with our modeling results (Eichwald and Walleczek, 1998), confirm that
magnetic field effects on nonlinear enzyme dynamics can be understood on a
theoretical basis.
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Figure 12. Real-time evidence for the magnetic field control of an enzyme-regulated,
oscillatory state. The bars in the figure indicate the time during which the magnetic
field was applied. The perturbation response of the peroxidase—oxidase enzyme oscil-
lator was monitored with an oxygen electrode placed inside the continuously stirred
open-flow tank reactor (Carson et al., 1999). For details, see text in Section 8.4.1.

8.5 Conclusions and outlook

In recent years the science of bioelectromagnetics, i.e., the study of electromag-
netic field interactions with biological systems, has offered significant new
insights. For instance, this chapter has explained how direct magnetic field
effects on enzyme activity can now be understood as a consequence of well-
established biophysical principles. The century-old claims mentioned in Sec-
tion 8.1 about possible beneficial health effects of strong, static magnetic fields
thus might not be without mechanistic basis. In any case, the recent insights
have opened the door for developing oscillating and static magnetic fields as a
tool for studying, as well as for controlling, biological activity. Our findings in
regard to biochemical amplification indicate that biological systems could be
more sensitive than previously thought to weak external perturbations such as
electromagnetic stimuli. While the sensitivity of a living cell to natural and
artificial stimuli depends, of course, on the existence of a molecular target that
is sensitive to stimulation at the microscopic level, it is the amplification
properties of the underlying cell biochemistry that ultimately determine the
magnitude and characteristics of the observable biological response (compare
Figure 1). In this contribution, we have discussed two possible pathways for
amplifying initially small effects: (1) the kinetic properties of single enzyme
molecules (Eichwald and Walleczek, 1996b, 1997), and (2) enzyme-regulated,
nonlinear biochemical oscillators operating under far-from-equilibriumcondi-
tions (Eichwald and Walleczek, 1998). Both the results from the computer
simulations and those from the experiment with the peroxidase—oxidase oscil-
lator demonstrated that small perturbations could be rapidly amplified, at
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least 10- to 20-fold, in enzyme-based systems (see Figures 4 and 11). Further-
more, in the intact cell there exist multiply connected enzyme-regulated BRNs
(see Arkin, Chapter 5, this volume). Thus, the additional possibility arises that
even greater amplification gains may be achieved at the cellular level: the
output from one systemmay serve as input for a subsequent system resulting in
the further amplification of a previously amplified input signal as was dis-
cussed previously (Goldbeter and Koshland, 1982).

With previously to the potential for frequency control of cell biochemical
activity, our simulations confirmed the feasibility of this approach as well.
Both, the single enzyme molecule (Figures 5 and 6) and the two-enzyme
coupled biochemical oscillator (Figure 10) were found to be capable of dis-
criminating between different frequencies of magnetic field oscillations. These
results may thus also provide a starting point for explaining previously re-
ported field effects on biological systems that depended on the frequency of the
applied magnetic field. For example, Bawin et al. (1996) reported that oscilla-
tory electrophysiological activity in hippocampal brain tissue was capable of
discriminating between 1-Hz and 60-Hz magnetic field exposures (for details,
see Engström et al., Chapter 9, this volume).

In summary, we have presented a theoretical framework based on the
integration of concepts from bioelectromagnetics and nonlinear dynamics.
The results from this cross-fertilization are encouraging because they have
already revealed novel pathways for influencing essential biological processes.
Our work may enable, for example, the development of an advanced magnetic
field technology for the minimally invasive control of self-organized bio-
dynamical processes at the cell biochemical level. At present, the kinds of static
or oscillating magnetic field employed in the treatment of human disease such
as in tissue repair are almost exclusively derived from empirical work without
any firm theoretical foundations. In the future, research such as ours may
enable the rational design of optimal magnetic field exposure protocols as a
result of new insights into the sensitivity and response patterns of the underly-
ing biodynamical mechanisms. Therefore we are optimistic that new ap-
proaches, based on the concepts proposed above, may soon assist the develop-
ment of more effective electromagnetic technologies for clinical diagnosis and
therapy.
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9

Magnetic field sensitivity in the hippocampus

STEFAN ENGSTROY M, SUZANNE BAWIN
AND W. ROSS ADEY

9.1 Introduction

We think of the brain as our very own computer, a never-ending process of
signaling, providing overall guidance for the body and ultimately defining who
we are. A multitude of signaling means has evolved for this task, combining
mechanical, chemical and electrical communication into a complex network.
As we consider the diversity among the types of signal present in the brain, it is
not surprising that dynamical processes are also utilized to deliver its mess-
ages. Signals of electrical origin are particularly suitable for modulation in
time. We see direct evidence of this by examining an electroencephalogram
(EEG) or its magnetic counterpart, the magnetoencephalogram (MEG). These
techniques provide ways of visualizing the natural rhythms occurring during
various brain activities.

The hippocampus is an important structure in the brain that is particularly
interesting within the context of dynamical signaling. It is central to the
seemingly disparate phenomena of memory function and epilepsy. These two
expressions of hippocampal activity are associatedwith normal and pathologi-
cal behavior, both of which turn out to be responsive to manipulation with
drugs as well as magnetic fields. In vitro studies of the rat hippocampus led us
to conclude that an externally applied magnetic field with a steady low-
frequency oscillation is capable of mimicking the function of nitric oxide (NO)
in this model system. Rhythmic slow activity (RSA, or theta rhythm), which is
correlated with learning and attention, is modified when the NO pathway is
manipulated, either with drugs or with a low-frequency magnetic flux density
of about 50 to 500 microtesla (�T). A second type of hippocampal rhythm,
epileptiform activity, is similarly affected by NO manipulations and by the
magnetic field exposure. These stimuli are capable of reducing the rate of
occurrence of ictal episodes (electrical seizures) in a hippocampal slice, or have
them cease entirely.

216



The prospect of using magnetic fields as a clinical tool is the ultimate motive
for the studies presented in this chapter. In the future it may be possible to
develop a therapeutic magnetic field technology by analyzing the magnetic
field actionwithin the context of better-understood drug applications. If so, the
obvious therapeutic advantage would be the noninvasive nature of a magnetic
field treatment. Surgery or scalp electrodes would not be necessary to deliver
the stimulus, and it might even be possible to use existing equipment for
transcranial stimulation to obtain the suggested low-level exposures.

The remainder of this section provides a brief overview of hippocampal
stimulation by electric and magnetic fields, followed by two sections that
describe our own parallel pharmacological and magnetic field experiments.
We also review a set of experiments that examines a dynamical hypothesis for
understanding the magnetic field detection mechanism at work in this system.
In the final section we summarize our conclusions and offer some speculative
thoughts suggesting future investigative paths.

9.1.1 Electric and magnetic field stimulation of the brain

Brain function relies heavily on electrical signaling, and it is not surprising that
exogenous electric fields of sufficient strength are able to influence its oper-
ation. Magnetic field stimulation at high magnetic flux densities is also well
known to influence many types of brain function, usually with the mechanistic
understanding that a strong oscillating magnetic field induces substantial
electric currents in the tissue (Markwort et al., 1997). At the high-field end of
magnetic stimulation as used in transcranial magnetic stimulation (TMS) and
magnetic resonance imaging (MRI), magnetic flux densities are of the order of
a few tesla. These high-field levels correspond to some tens of thousands times
the naturally occurring geomagnetic field, a flux density comparable to the
exposures employed in our experiments.

It is clear, then, that the present study is concerned with relatively weak
magnetic fields — so weak that the corresponding induced electric fields are not
likely to be sufficiently large to influence the normal electrical processes in the
brain. About this level of interaction, there is much less information in the
literature (Bell et al., 1992a,b; Lyskov et al., 1993), and themechanism by which
the tissue detects the magnetic field is not known. Since only the time-varying
part of an oscillating magnetic field is responsible for inducing electric fields in
living tissue, observations of static field effects on the brain immediately
establishes a magnetic field receptor. The observation of static magnetic field
effects is not definitive for human subjects, but is well established in several
animal orientation models (Able, 1994).
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The normally operating hippocampus is crucial for successful learning and
memory retrieval (Berry and Thompson, 1978; Winson, 1978). RSA is a key
component in this function, and was chosen for the first part of the study
described below. Magnetic field influences have been implicated in behavioral
experiments (Stern, 1995; Baker-Price and Persinger, 1996; Kavaliers et al.,
1996; Persinger, 1997; Lai et al., 1998; Sienkiewicz et al., 1998), and a plausible
mechanistic explanation of these results may well include magnetic field sensi-
tivity of the hippocampus.

A hippocampal epileptic seizure is a pathological condition directly related
to excessive synchronous neuronal bursting. This activity can be triggered by
visual or auditory stimuli. Electric currents injected directly into the hip-
pocampus can induce or reverse an epileptic seizure (Durand and Warman,
1994). The mechanism by which these substantial electric currents affect the
process is well understood in terms of hyperpolarization of the participating
neurons. Fairly weak electric fields are also capable of affecting this system, as
we have reported before (Bawin et al., 1984). Control of hippocampal bursting
patterns at a very sophisticated level is possible if the chaotic, but locally
deterministic, system is properly modeled (Schiff et al., 1994; for details, see
Ditto and Spano, Chapter 15, this volume).

The strong dynamical character of both RSA and epileptiform activity is a
common key to a deeper understanding of these processes. It is sometimes
possible to avert an epileptic seizure, if during the aural period (immediately
preceding the seizure), some kind of sudden distraction is introduced. This
distraction, or perturbation in dynamical terms, can be as simple as a sudden
noise. This auditory stimulus is probably only weakly coupled to the hip-
pocampal rhythm — but a small change in the dynamical state is sometimes all
it takes to deflect the system’s descent into the highly synchronous and
potentially destructive state of an epileptic seizure. Simply acknowledging that
epilepsy belongs to the class of dynamical diseases allows a better understand-
ing of its process, thus opening the door to subtle dynamical ways of therapy
(see Milton, Chapter 16, this volume).

9.2 Parallel pharmacological and magnetic field studies

The sequence of experiments below is outlined in approximately the order in
which they were performed and reported at scientific meetings over the past
five years. Subtitles provide the main conclusions and supporting details are
given in the text. In order to render the text more accessible, details of the
experimental methodology are presented in the captions to figures and tables.

A number of pharmacological agents were used, mainly to probe the nature
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Figure 1. Overview of the nitric oxide/cyclic GMP/�-aminobutyric acid (NO/cGMP/
GABA) pathway. (1), (2) -Arginine is converted by the enzyme nitric oxide (NO)
synthase (NOS) intoNOand citrulline. This conversionmay be blocked by agents that
compete with -arginine for binding sites on the enzyme, without being converted to
NO and a residue. The available amount of NO can also be increased by adding NO
donors, or decreased with NO chelating agents (see text for details). (3), (4) One of the
main roles of NO in the brain is to activate guanylyl cyclase (GC) which is responsible
for the formation of cyclic guanosinemonophosphate (cGMP). Stable analogs of cyclic
GMP can be added to the tissue to bypass blockade of NOS or GC. Cyclic GMP has
been shown tomodulateGABA receptor functions in cell cultures.We used agonists of
GABA

�
to find out whether the magnetic field affects this portion of the pathway in

our preparation. NMDA
�
, N-methyldopamine receptor.

of a pathway initially involvingNO (see Figure 1). Our story, as told below, is a
parallel investigation of drug application and magnetic field exposure. These
apparently diverse stimuli have similar effects on the two different aspects of
hippocampal function that we chose to study. The most intriguing dynamical
aspect of this investigation is the apparent frequency specificity of the response
to magnetic field stimulation. Our studies show that a 1-Hz oscillating
magnetic field, but not static or 60-Hz fields, are capable of interfering with the
normal course of the hippocampal rhythms.

9.2.1 Establishing the magnetic field effect: frequency and amplitude response

Repetitive short epochs of RSA were induced in hippocampal slices by car-
bachol perfusion. RSA consists of episodes of rhythmic neuronal activity
(8—15Hz oscillations) of 7—15 s duration, separated by 20—40 s of relative
quietude (see Figure 2). After a steady baseline of RSA intervals was estab-
lished, slices were exposed to sham or field conditions for 10min. During this
interval, 20% of all slices destabilized spontaneously, if exposed only to
ambient static magnetic fields. By ‘steady baseline’ we mean a regular behavior
in terms of the seizure interval. Destabilization simply implies that these
intervals become irregular, or cease altogether. When exposed to a 1-Hz,
56-�T

���
magnetic field (rms indicating root mean square), 67% of all slices
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Figure 2. Rhythmic slow activity (RSA) in rat hippocampal slices. (a) Amplitude trace,
as a function of time, of three episodes of RSA. (b) Magnification of the initial part of
the second episode. RSA was induced by perfusion with carbachol, a stable analog of
acetylcholine (Konopacki et al., 1987). Carbachol is added to the perfusion solution
and slices are perfused on average for an additional 40min. RSA develops in about
80%of all slices treated in this way. If, at this point, a slice displays a steady baseline, it
is chosen for inclusion in the study. We define a ‘steady baseline’ as a 10-min sequence
of RSA episodes where no single interval between episodes deviates by more than two
standard deviations (SDs) from the mean over the sequence. This baseline is later used
to determinewhen the RSA becomes destabilized.When the RSA interval between two
consecutive episodes deviates by more than six SDs from the baseline average, we
record this time as the destabilization time. For carbachol-induced RSA experiments,
Table 1 reports the median destabilization time and the number of slices that did
destabilize during the first 10min of field or sham exposure. Time scales are given by
the black bars.

destabilized during exposure. The null hypothesis that these results could have
been obtained purely by chance was rejected (p� 0.02). This experiment
establishes that themagnetic field affected the process controllingRSA interval
stability. An additional field condition using a 60-Hz, 56-�T

���
magnetic field

destabilized 47%of the slices during the first 10min of exposure. Although this
result was not significantly different from the control experiment, we note that
it elicited a response between that of the 1-Hz exposure and the control (Bawin
et al., 1996; see Table 1, nos. 4—6).

The effect of the 1-Hz, 56-�T
���

magnetic field is probably due to direct
magnetic field detection, since the maximal induced electric field in the slices is
estimated to be less than 0.4�V/m. This level is well below reported effects of
biological electric field stimulation, with the exception of the low-field end of
some very specialized marine animals such as sharks (Kalmijn, 1997). Explor-
ing a modest exposure parameter matrix, we tested the effects of varying the
strength of the magnetic field. Apart from control experiments (zero AC field),
fields at 5.6, 56 and 560 �T

���
were applied to the hippocampal slices after a

stable baseline had been obtained (see Table 1, nos. 1—9). The lowest field level
did not destabilize the RSA intervals to any degree different from the control
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Table 1. Summary of results from magnetic field exposures of rat hippocampal
slices collected during the past four years

Time Fraction Exp.
No. Prep. Field exposure (min.) (%) Statistics no.

1 C Control 19.2 20 NA 15
2 C 5.6�T

���
, 1Hz 15.0 47 NS 15

3 C 5.6�T
���

, 60Hz 10.0 47 NS 15
4 C Control 17.9 20 NA 30
5 C 56�T

���
, 1Hz 7.3 67 p� 0.02 30

6 C 56�T
���

, 60Hz 10.4 47 NS 30
7 C Control 18.9 13 NA 15
8 C 560�T

���
, 1Hz 5.0 80 p� 0.05 15

9 C 560�T
���

, 60Hz 12.3 33 NS 15
10 K Control 10 NA 30
11 K 560�T

���
, 1Hz 37 p� 0.05 30

12 K Control 5 NA 20
13 K 1.6mT, static 12 NS 8
14 K 3.2mT, static 17 NS 12
15 K�M Control 25 NA 24
16 K�M 560�T

���
, 1Hz 62 p� 0.02 24

17 K�M 1.6mT
�—�

, PTF 25 NS 24

Different experimental protocols have been used throughout the time course of our
study. The main differences lie in the type of hippocampal activity being studied,
primarily influencing the perfusion preparation and the measures of activity. In all of
the studies reported here, hippocampi were dissected from Sprague—Dawley rats
(25—50 days old) and placed into cold (4 °C) artificial cerebrospinal fluid (ACSF; see
Table 2). Slices are cut (500�m thick) perpendicular to the long axis of the
hippocampus. Six slices are then transferred to a recording chamber where they rest
on a nylon mesh and are perfused from below with warmed (33—35 °C) and gassed
(95% O

�
, 5% CO

�
) ACSF. A constant stream of a humidified O

�
/CO

�
gas mixture

flows over the slices (Bawin et al., 1996). After equilibrating to these conditions,
recording and stimulating electrodes are positioned in the cell layer of the slices (in
the CA3 region). One or two slices are selected for study on the basis of their
response to a test pulse. Once suitable slices are found, the stimulating electrodes are
removed and the pharmacological preparation commences. All further
pharmacological treatments are delivered by addition to the perfusion solution. All
experiments are done in the ambient laboratory static field background of 45 �T (at
an angle of 66° from the horizontal). Alternating vertical magnetic fields are
generated with a single horizontal double-wound coil mounted around the perfusion
chamber, and level with the slices. Prep., for slice preparation: C, carbachol; K, high
[K�]; M, muscimol. Field exposure: all controls are independent sham-field
exposures (coils are powered with equal antiparallel currents). PTF, phase-tracking
field (see Section 9.3 for details). Time: median time of destabilization onset. Fraction:
fraction of slices which destabilized during a set interval. Statistics: statistical
confidence for rejecting null hypothesis is given; NS, not significant; NA, not
applicable. Exp. no., number of tested hippocampal slices.
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samples. As mentioned above, the 56-�T
���

magnetic field destabilized RSA in
67% of the slices. When exposed to 560�T

���
, 90% of all slices destabilized

during the 10-min exposure. This experiment therefore establishes a lower
threshold for the observedmagnetic field effect, and also supports the notion of
a ‘normal’ dose—response relationship with respect to field amplitude: a larger
stimulus produces a larger response. These experiments were also carried out
with 60-Hz instead of 1-Hz fields of the same flux densities. The higher
frequency produced the same trends in terms of dose response, but they were
not significantly different from the control experiments (see Table 1).

9.2.2 The presence of NO destabilizes RSA intervals

Previous work in our laboratory showed that an increasing amount of NO
tends to destabilize the RSA intervals, and, conversely, decreasing its availabil-
ity promotes stability (Bawin et al., 1994). We found that hemoglobin, which
chelates extracellular NO, stabilizes the system. The addition of nitro--
arginine (NLA) or methyl--arginine (MLA), which decrease the intracellular
production of NO by inhibiting NO synthase, similarly regularizes the RSA
intervals. In contrast, sodium nitroprusside (SNP), a NO donor, destabilizes
RSA intervals. For better overview, Table 2 summarizes the employed phar-
macological interventions. Our experimental findings are consistent with the
suspected action of NO in this system and are in general agreementwith results
reported in the literature (Pape and Mager, 1992; Vincent and Hope, 1992;
Zorumski and Izumi, 1993). All experiments were qualitative in the sense that
no attempt was made to find optimal drug concentrations, but rather they
were used to infer the type of response elicited with any particular substance.
Figure 1 shows pertinent aspects of the NO pathway in our system.

9.2.3 Hippocampal magnetic field response is dependent on NO

One hypothetical magnetic field coupling target is the radical-dependent
enzyme NO synthase. NO synthase activity has been proposed as a potential
candidate for a magnetically sensitive enzyme reaction, although no direct
measurements have been made (Walleczek, 1995). As noted above, addition of
NLA to the perfusion solution inhibits NO synthase and stabilizes the system.
Furthermore, in the presence of NLA, exposure of the slices to the 1-Hz,
56-�T

���
magnetic field does not destabilize the RSA intervals. However, after

removal of NLA from the slices, the 1-Hz field may again destabilize the
intervals, suggesting that the field interaction is dependent on NO synthase
activity (Bawin et al., 1996).
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Table 2. Summary of types of chemical agent used during the study

Abbreviations Compound Comments

ACSF Artificial cerebrospinal fluid Physiological perfusion solution
Carbachol (20�M) Induces rhythmic slow activity

(RSA)
K� Potassium ions (8.5mM) Induces ictal activity
NLA N�-nitro--arginine (100�M) NO synthase blocker
MLA N�-methyl--arginine (100�M) NO synthase blocker
SNP Sodium nitroprusside (100�M) NO donor
CGMP 8-Bromo-cGMP (10�M) Cyclic GMP analogue
Hb Hemoglobin (100�M) Chelates extracellular NO

Muscimol (0.6�M) GABA
�
receptor agonist

All pharmacological treatments were supplied through the perfusion system. The
ACSF (pH� 7.3) consisted of: 2.0mM CaCl

�
, 3.75mM KCl, 1.2mM MgSO

	
,

1.25mM NaH
�
PO

	
, 124mM NaCl and 10mM glucose. Drugs are generally added

once the slice exhibits stable baseline behavior.

Finally, the addition of hemoglobin to chelate extracellularNO still allowed
the 1-Hz, 560-�T

���
field to destabilize the RSA intervals. This finding indi-

cates that the field detection process is not dependent on freely diffusing
extracellular NO, lending further support to the hypothesis that an intracellu-
lar process such as NO synthase activity is directly involved in the field
detection process.

9.2.4 Epileptiform activity is also a NO-dependent process

NO is a general signaling substance, affecting not only RSA but many other
neuronal processes as well (Vincent and Hope, 1992). Therefore, we explored
the possibility that NO can modulate hippocampal rhythmic activities other
than RSA. Our next experimental paradigm, epileptiform activity, again turns
out to respond to both NO manipulations and magnetic field stimulation. It is
also an experimental model with direct clinical relevance as a prototype for
epilepsy. To provoke the induction of paroxysmal (epileptiform) activity,
which is characterized by ictal episodes (seizures) separated by interictal
bursting (see Figure 3), we perfused the hippocampal slices with a high
(8.5mM) concentration of potassium ions ([K�]). For experimental details see
the caption to Figure 3.

NO has been suggested as an anticonvulsant from in vivo experiments
(Kirkby et al., 1996), and the expected behavior to pharmacological treatment
is indeed observed in our system: the interfit intervals between ictal episodes
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Figure 3. Epileptiform (ictal) activity in rat hippocampal slices. (a) Three ictal episodes
in the ‘target’ slice are shown. (b) Simultaneous trace of the ‘control’ slice. (c) The phase
tracking is active during the periods of ictal activity in the ‘target’ slice (shown as
hatched boxes); at all other times (connecting lines), the magnetic field signal reverts to
the constant frequency of 1Hz. (d)—(f ) show a magnification of traces (a)—(c) for the
indicated regions. Epileptiform activity was induced by perfusion at a high [K�],
which generates paroxysmal bursting by activation of the glutamate receptor (Korn et
al., 1987). The slices require perfusion at a high [K�] (increased to 8.5mM from
3.5mM) for 90min to exhibit steady ictal episodes. A slice is accepted for experimenta-
tion if it displays stable baseline interictal intervals for 20min. For the early studies on
epileptiform activity, a measure similar to that used for quantifying the rhythmic slow
activity intervals was used. Baseline behavior was established and the first interictal
interval to deviate more than six standard deviations from the established average was
taken as a measure of the onset of destabilization. In later experiments, muscimol was
added to the perfusion solution to bias the ictal response. In these cases, the destabiliz-
ing agents tend to completely shut down the ictal activity, and the time of complete
inhibition was used as a measure of efficacy of the drug or field treatment.
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were lengthened by addition of the NOdonor SNP, and shortened byNLA, an
inhibitor of NO synthase (see Table 2).

9.2.5 Epileptiform activity is inhibited by magnetic field exposure
and by GABA agonists

The interfit intervals are prolonged by the 1-Hz, 560-�T
���

magnetic field, a
behavior analogous to our previous observations of the RSA intervals. The
similarity in response to pharmacological treatment suggests that this system
too may be manipulated via the NO pathway (see Table 1, nos. 10—11). Recent
pharmacological studies in our laboratory suggest that interfit intervals are
regulated by �-aminobutyric acid (GABA) through the GABA

�
receptor. The

receptor’s activity has been shown to be modulated by NO through a cyclic
GMP-dependent process (compare Figure 1; Bradshaw and Simmons, 1995;
Wexler et al., 1998). Thus, as expected, the addition of the GABA

�
agonist

muscimol increased the interfit intervals, or inhibited them altogether if given
in sufficiently high concentrations. Therefore, we employed muscimol as an
agent to potentiate the slices for the magnetic field stimulation, a procedure
that allowed us to bias the slices’ response to other influences. This technique
was used in the series of experiments described in Section 9.3 below.

9.2.6 Static or variable-frequency magnetic fields do not affect
epileptic activity

Static magnetic fields of the same and twice the amplitude as the peak-to-peak
amplitude of the 1-Hz sinusoidal magnetic field (B� 1.6 and 3.2mT) failed to
influence the interval between seizures in hippocampal slices perfused with a
high [K�]. These results are summarized in Table 1 (nos. 12—14) and suggest
that the oscillating character of the 1-Hz signal is crucial for influencing this
NO-dependent system. Thus, we now focus on the observation that the 1-Hz,
but not the 60-Hz or the static magnetic field was effective. One can view this as
general frequency dependence, probably stemming from a dynamical response
at, or following, the magnetic field transduction step. A more specialized
conjecture is that there exists an oscillatory dynamical system in hippocampal
tissue, with an intrinsic frequency near 1Hz, making it particularly sensitive to
signals similar to its own oscillation period. This idea of resonant coupling
could provide us with the needed leverage to understand how the relatively
weak field could have an effect on the system.

Assuming that this intrinsic oscillator exists and that it manifests itself
directly or indirectly in the electrophysiological recordings, we hypothesized
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that applying the magnetic field in-phasewith the observed signal would affect
the system to a greater degree. The details and logic of this experiment are
somewhat involved and will be deferred until Section 9.3. Suffice to say here
that this hypothesis appears to be rejected by our observations, and that a
possible resolution is that the detailed timing and frequency of the ictal
episodes is not a direct indicator of any system manipulated by the magnetic
field.

With hindsight, another experimental observation from the previous studies
appears to have some relevance within this context. In no case where the
magnetic field affected the slice behavior was the signal amplitude, burst rate
or fit duration affected. Only the intervals between episodes changed in re-
sponse to the magnetic field. This may indicate that the interaction occurs on a
higher level of regulatory control of these rhythmic activities.

9.3 Dynamical studies: phase-tracking experiments

Ourmost recentmagneticfield experimentsare especiallypertinent to the scope
of this book. As we outlined above, our experiments revealed that sinusoidal
1-Hzmagneticfields at 56 and560 �T

���
are capableof inhibitingnormal aswell

as paroxysmal activity in hippocampal slices. The frequency character of this
fieldwas found to be important: the same strengthfield at 60Hz, or a static field
of the same amplitude, failed to induce a significant change.

Our objective was to test whether the 1-Hz signal is somehow linked to the
comparable frequencies we obtained from the time series of the elec-
trophysiological recordings. As mentioned before, the natural frequency of
RSA is 5—13Hz, while the burst interval in an ictal episode is of the order of
0.5—3Hz (see Figures 2 and 3). We initially assumed that the extracellular
recording from the CA3 region reflects an intrinsic oscillator that is directly
influenced by the element that mediates the magnetic field action. Given this
assumption, we hypothesized that, by providing a stimulus that closely follows
this observed bursting pattern in frequency and phase, we could increase the
field’s impact on the underlying neuronal processes. Three exposure condi-
tions were tested: (1) 1-Hz, 1.6-mT

�—�
(p—p indicating peak to peak) sinusoidal

magnetic field, (2) 1.6-mT
�—�

magnetic field, with the frequency varying in the
range 0.5—3.0Hz, attempting to match the phase of the target slice signal, and
(3) zero AC field.

We monitored the extracellular electrophysiological signals in two hip-
pocampal slices called ‘target’ and ‘control’ (see Figure 4). To achieve the
phase-tracking experimental condition (2), the electrophysiological signal
from the ‘target’ slice was processed in real time to predict the occurrence of the
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Figure 4. Sketch of the exposure strategy for the phase-tracking experiments. Ex-
tracellular signals were monitored in two hippocampal slices called ‘target’ (T) and
‘control’ (C). To achieve phase tracking, data from the ‘target’ slice are processed in real
time and used to control a function generator. This, in turn, drives a set of coils to
produce a magnetic field, which is close in frequency and phase to the experimental
signal in the ‘target’ slice. The ‘control’ slice experiences an irregular field with no
correlation to its own bursting activity. Slices were exposed to the sham or field
stimulus for 10min. A preparation was considered to respond to the field stimulation if
the fit activity stopped within 30min following the onset of the sham/field exposure.

next burst. Once an estimate of the next burst is available, the frequency of a
function generator is modified in an attempt to synchronize the phase of the
applied magnetic field oscillations with the occurrence of the next burst.
During the quiescent periods between ictal episodes, the function generator
reverts to the 1-Hz field used throughout the exposure condition (1).

The occurrence of each individual burst is a stochastic event, and the phase
tracking is not perfect. We monitored a five-event window to achieve the
tracking, and this number of bursts was enough to initiate adequate phase
tracking. Figure 5 gives an idea of how well our phase-tracking device per-
formed. While tracking the ‘target’ slice, the ‘control’ slice experiences an
irregular field with no correlation to its own bursting activity, providing a
simultaneous out-of-phase reference. This fact turns out to be relevant for
interpreting the outcome of this series of experiments.

9.3.1 Interpretation of phase-tracking experiments

The 1-Hz sinusoidal signal in exposure condition (1) stopped the seizures
within 30min in 62% of the slices. On the other hand, exposure condition (2),
using a frequency chosen to match the signal phase to that of the bursting
pattern in the fits, led to results no different from the control condition (3): 25%
of slices had ceased their seizure activity in both cases (see Table 1, nos. 15—17).
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Figure 5. Phase difference distributions from phase-tracking experiments. (a) Relative
phase between the ‘control’ and the phase-tracking signal generated by monitoring the
burst activity in the ‘target’ slice. There is no correlation and a uniform distribution is
expected. (b) Ideal phase tracking would be a single spike at �phase� 0. We obtain a
broadened peak due to the stochastic nature of the individual bursts, and a lag because
we are predicting the next burst from data derived from immediately preceding events.
The relative phase is defined as the phase difference divided by the current period of the
signal.

In no instance was there a difference between the ‘target’ and ‘control’ slices.
No strong conclusions are possible besides the obvious rejection of the hy-
pothesis that seizure inhibition would improve by phase tracking the individ-
ual bursts. The simplest explanation is that the system where magnetic field
transduction occurs is not directly associated with the signal represented by
the electrophysiological measurements. The transduction step, however, may
still be resonating with an intrinsic time scale of the order of 1Hz, although
affecting a higher level of control.

We can choose to view the phase-tracking field in the ‘target’ slice as a 1-Hz
field interrupted by episodes of the same amplitude but irregular frequency.
Formulated in this way, our results resemble those of Litovitz et al. (1997),
where the constancy of the field over a certain period of time is the most
important aspect of the field exposure. However, the required time over which
the character of the field should not change differs from their studies. Our
system appears to require constancy over the range 1—10min, whereas Litovitz
et al. (1997) observed 1—10 s as the required time interval during which expo-
sure parameters should not change.

9.4 Conclusions, discussion and a speculative outlook

The experiments reviewed here led us to conclude that relatively weak 1-Hz
oscillating magnetic fields are capable of modulating normal and paroxysmal
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rhythmic actions of the rat hippocampus. We observed an apparent effect
threshold somewhere in the magnetic flux density range from 5.6 to 56�T

���
.

In contrast, static fields or fields oscillating at 60Hz did not induce a signifi-
cant effect, although the 60-Hz field exposures exhibited the same trends as a
function of field amplitude as did the 1-Hz exposures. We also found that
pharmacological manipulation of the NO/cyclic GMP/GABA

�
-pathway af-

fected the studied hippocampal rhythms. In the instances where drug and
magnetic field studies interlock, our results support the hypothesis that these
two types of stimulus are acting upon the same system. The transduction step
for the magnetic field sensitivity is still largely undefined in this system. What
we do know is that the detector is probably sensing the magnetic field directly,
as opposed to detecting secondary electric fields or currents that are induced
by the time-varying component of the field. We also know that the frequency
information is critical to the detection process, since static and 60-Hz fields did
not elicit significant responses. At this point in the discussion, however, we are
forced to move into the realm of conjecture.

Asmentioned above, there is minimal informationpointing to the type of the
primary field interaction step. One possibility concerns the prediction that a
mechanismbased onmagnetite could provide a reduced effectmagnitude at the
higher frequencyasobserved inour system (Kirschvinket al., 1992a,b).Magnet-
ite has been reported to exist in the human hippocampus, although its func-
tional and structural organization has not been demonstrated in this context
(Dunn et al., 1995). On the other hand, static magnetic fields might be expected
to affect amagnetite-controlledsystemaswell, but dynamical events at, or after,
the initial transduction step could, in theory, circumvent such objections.

Another transductive mechanism concerns the possibility of affecting the
recombination of geminate or spin-correlated radical pairs in accord with the
radical pair mechanism (RPM), especially within the context of enzyme kin-
etics (Walleczek, 1995; Eichwald and Walleczek, 1996). One of the objections
to the RPM is the expected small change in enzyme activity to magnetic fields
at the field levels with which we are concerned here. The proposed enzyme
model suggests solutions to some of these objections. For example, it has been
proposed that an enzyme may act as an effective amplifier of initially small
RPM-dependent changes (Eichwald and Walleczek, 1996). Consistent with
our observation of a reduced effect at the higher frequency, the enzyme model
predicts that only magnetic fields oscillating at sufficiently low frequencies
would be able to affect enzyme activity (Eichwald and Walleczek, 1997). These
models have recently been extended to account for field effects on nonlinear
dynamical enzyme activity, which provides an additional foundation for signal
frequency specificity and amplification (Eichwald and Walleczek, 1998; see
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Walleczek and Eichwald, Chapter 8, this volume). Signal cascadesmay achieve
amplification and it is possible that the signaling pathway in our system is
capable of providing this function (see Figure 1).

As was mentioned in Section 9.1, a magnetoencephalogram (MEG) reveals
global spatiotemporal dynamics during brain function (Bamidis et al., 1995;
Kawamichi et al., 1998). The low-frequency magnetic fields detected by the
MEG are a consequence of the underlying neuroelectrical signaling processes.
It is unlikely that these extremely weak biogenic magnetic fields may them-
selves play a role in the signaling scheme of the brain, although this possibility
cannot be completely ruled out. For example, it might still be possible that
these fields are sufficiently large locally to be able to modulate some magneti-
cally sensitive neurochemical process. At present, however, no molecular
targets or mechanisms are known that would be sensitive to the average
magnetic flux densities associated with neuroelectrical dynamics.

As to the dynamical component of the magnetic field transduction, our only
solid observation is that the phase-tracking strategy we adopted was not
successful. Here, we provide the three seemingly most plausible explanations
for this result:

(1) The electrophysiological recording is not directly reflecting any property of the
system that is responsible for detecting the 1-Hz sinusoidal signal.

(2) The detection system requires constancy over a certain period of time in order to
function.

(3) The phase-tracking device was using an incorrect phase-angle difference and it
might have succeeded if this parameter were appropriate for the system.

The observation that drug or field treatment does not affect the structure of
individual bursts or the length of the ictal episode lends some support to
explanation (1) above (see Sections 9.2.6 and 9.3.1).

Another important topic relevant to this discussion is the role of neuronal
communication pathways in determining the dynamics of these processes.
Chemical synapses are adequate to model the ictal events we are discussing, at
least for understanding synchronization down to the level of several tens of
milliseconds (Traub andRichard, 1991). Epileptic discharges are synchronized,
however, on much faster time scales, and thus there must be more to the
interaction network than synapses alone. An independent indication is the fact
that synchronous bursting is possible in the hippocampus even while synaptic
transmission is essentially blocked by a low Ca�� concentration (Kaczmarek
and Adey, 1975; Jefferys and Haas, 1982; Taylor and Dudek, 1982).

Two sufficiently fast means of neuronal interactions are well known. Gap-
junction-mediated communication is available in the hippocampus, but it

230 S. Engström et al.



appears that the involved neurons are not sufficiently well connected for this
to be an efficient means of signal propagation (Traub et al., 1985). Ephaptic
communication works through direct electric field interactions between
touching, or nearby neurons — hence the name, ����	
� to touch (Jefferys,
1995). Related to ephaphsis is the term ‘field effect’: field influences on a
group of neurons mediated by an electric field generated locally. The dif-
ferences between these terms are ill defined, partially because they may essen-
tially be the same phenomenon, only occurring on different scales. We may
view ephaphsis as a process normally limited in space and time to a restric-
ted domain of cells. In the pathophysiology of epilepsy, these constraints
may be temporarily lost, allowing a far wider spread of nonsynaptic excita-
tion. The ephaphtic mechanism for signaling is fairly subtle in terms of the
electric fields involved. However, its speed, combined with structural path-
ways defined in the hippocampus, provides an alternative route to massive
interconnectedness required for synchronization and dynamically interesting
properties.

The phenomenon of periodic rhythms in the hippocampus are clearly, but
not necessarily exclusively, electrical in nature. It is thus not surprising that
sufficiently large electric fields are capable of influencing the system. The
situation is very different for the magnetic field stimulus employed here, since
there is no well-understood magnetic component to its function at present.
However, some mechanistic insights may be gained from our studies that
compared the effects of the magnetic field with that of NO on this system (see
Section 9.2). Strikingly, all the experiments were consistent with the hypothesis
that the magnetic field acts similarly to this chemical agent. From our work, a
direct coupling to the short time scale mechanisms seen in RSA or epileptiform
activity seems implausible. Our experiments designed on a dynamical premise
(see Section 9.3.1) also argue against such an interpretation: only the interval
between seizures was changed as a result of the magnetic field exposure — the
exposure never significantly affected the trace amplitude, burst frequency or
any other local measure.

In summary, our experimental evidence points to a field influence more akin
to the diffusive action of NO than an acute perturbation at the level of the
individual bursting processes. Furthermore, our results do not rule out that
some complex dynamical state is subtly affected, but they imply an effect on a
process that occurs on a longer time scale.While this process is still determined
by neuronal activity, any dependence on the fast processes that produce the
characteristic time series is entirely unknown at this point. When considering,
for example, the existence of human consciousness, it may seem obvious that
neuronal cooperative processes are capable of spanning life times of the order
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of minutes, yet more direct evidence from electrophysiological recordings is
available (Adey, 1972).

Regardless of how hippocampal synchronization and communication is
achieved, it is the dynamics at the neuronal level that must be influenced in
order to control a disorder such as epilepsy. Our best option for attaining this
goal may be to view functional hippocampal integration as a complex dynami-
cal state, which is remarkably stable to many types of perturbation but still
able to respond to subtle influences specifically designed to alter this state.
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Part III

Stochastic noise-induced dynamics and
transport in biological systems

The consideration of random fluctuations is central to any discussion of the
limits of biological stimulus—response interactions. The conventional view
holds that stochastic perturbations diminish the efficiency of biological signal
detection and transduction pathways. Part III provides an overview of the
recently found constructive role of noisy fluctuations in biochemical and
biological processes. Two major concepts have emerged for describing such
noise-facilitated processes, stochastic resonance and fluctuation-driven trans-
port. In Chapter 10, Frank Moss opens with an overview of the history and of
the physical principles of stochastic resonance. He then extends this discussion
into the realm of biology and medicine, and offers experiments that demon-
strate stochastic resonance in the detection by organisms of dynamical signals,
including weak electric fields. The chapter concludes with new evidence
for spatiotemporal stochastic resonance in two-dimensional systems. Sergey
Bezrukov and Igor Vodyanoy take the discussion of stochastic resonance to
the molecular level in Chapter 11. Their experiments demonstrate the noise-
improved transduction of electrical signals by voltage-gated ion channels in a
planar lipid bilayer. The authors also present a model that can theoretically
account for the experimental observations. In Chapter 12, Dean Astumian
introduces the theoretical foundations of fluctuation-driven transport. He ex-
plores the theoretical feasibility of different types of microscopic ratchet mech-
anisms that may harness random fluctuations to accomplish work such as
directed transport. Experimental evidence in support of a biomolecular ratchet
mechanism for free energy transduction is subsequently reviewed by Tian
Tsong in Chapter 13. He found that randomly fluctuating electric fields were
capable of increasing the activity of a membrane ion pump. This chapter also
describes the sensitivity of membrane ion pumps to the frequency of coherently
oscillating electric fields, and it concludes with a discussion of a potential role
for frequency-specific electrical interactions in cell—cell communication.
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10

Stochastic resonance: looking forward

FRANK MOSS

10.1 Introduction

Stochastic resonance (SR) has been a familiar topic to physicists since the early
1980s, to sensory neurobiologists since the early 1990s and is now becoming
familiar to medical researchers interested in the possibilities it offers for new
diagnostic and therapeutic techniques. It has been the subject of numerous
editorial commentaries and three major reviews. In this chapter, I review very
briefly the fundamental classical physical process and its realization or study in
various substrates ranging from single elements to arrays of elements over a
range of size scales. The emphasis is on the classical phenomenology and its
applications in the biological or medical sciences. I then attempt to have a look
into the future.

SRwas first proposed as a theoretical explanation for the observed recurren-
ces of the Earth’s ice ages. In this view, dynamical orbital processes, which
moved the Earth’s orbit slightly closer to the sun periodically on an approxi-
mately 100 000-year period, were known to be too small to account for the
reduced insolation necessary to trigger the onset of a glacial period in the
Earth’s climate. But if a temporal randomness in the insolation, or noise, was
introduced into the dynamical motion of the climate state point, such quanti-
ties as the frequency spectrum of the ice age recurrences could be reproduced
with some accuracy. For a review of SR applied to the climate problem and the
early history of its introduction, see Nicolis (1993). Following demonstrations
of the effect in an electronic circuit (Fauve and Heslot, 1983) and a ring laser
(McNamara et al., 1988; Vermuri and Roy, 1989), SR was demonstrated or
studied in a wide variety of physical contexts. This work, largely in physical
systems, has been the subject of three extensive reviews (Moss, 1994; Moss et
al., 1994; Gammaitoni et al., 1998), and hence will not be further outlined here.
Instead, we shall look at its introduction into sensory biology (Douglass et al.,
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1993; Wiesenfeld et al., 1994; Wiesenfeld and Moss, 1995; Moss and Wiesen-
feld, 1995) at the level of whole cells and at the molecular level (Petracchi et al.,
1994; Bezrukov and Vodyanoy, 1995), at array effects (Collins et al., 1995;
Lindner et al., 1996), at the noise-enhanced propagation of coherent structures
in chemistry (Kádár et al., 1998), and in networks of cells and finally at what SR
is beginning to mean to medical science. It should be understood that this
sketch is certainly not the whole story. Currently, vigorous SR research on
diverse systems is in progress in numerous laboratories scattered over the
world.

10.1.1 Basic principles underlying stochastic resonance

The classical phenomenology of SR was for a long time thought to be depend-
ent on the dynamical motions of a particle (or system state point) in some energy
potential with two minima separated by a barrier; that is, a bistable potential
(Gammaitoni et al., 1989a,b; Jung and Hänggi, 1991). For quite some time,
theoretical efforts, commencing with the seminal work of Wiesenfeld
(McNamara and Wiesenfeld, 1989) were directed toward understanding the
details of the stochastic motion of the state point in such energy potentials (for
a recent review, see Gammaitoni et al., 1998). A very nice exposition, using
electronic circuits to illustrate the dynamics, has been written recently (Lan-
zara et al., 1997). However, this picture changed abruptly in early 1995 with the
advent of a nondynamical, purely statistical picture of SR (Gingl et al., 1995).
This considerably simplified view stimulated much further work, especially in
biology where the picture seemed to fit the simplest and most general ideas
about how neurons function. Indeed, the ingredients for SR in this view are
generally found in a variety of settings in both natural and artificial systems
and devices. For this reason SR has migrated into numerous fields in addition
to the ones I discuss here. I introduce this simple picture in order to expose the
basic principles of how SR works in a transparent way.

10.1.2 The nondynamical picture of stochastic resonance

In this view, only three ingredients are necessary for a system (or a device) to
exhibit SR. They are (1) a threshold, (2) a subthreshold signal, which carries
some information, and (3) noise, or some random process, which may be either
external or internal to the system, but which adds to the subthreshold signal.
This is illustrated in the diagram in Figure 1, wherein (a) the subthreshold
signal (sine wave) and the threshold (horizontal line) are shown. We adopt a
simple rule (which, in fact, is fundamental to the way neurons function): the
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Figure 1. (a) A threshold (straight line) and a subthreshold signal (the sinusoidal wave)
showing�, the distance between the threshold and themean of the signal. (b) Noise has
been added to the subthreshold signal. (c) Standard-shaped pulses mark the locations
in time of the threshold crossings.

system or device can respond to the subthreshold signal only when it crosses
the threshold, in which case it generates an output pulse of standard shape. In
(a) no threshold crossings occur, since the signal is always subthreshold.
However, if noise is added to the signal, as in (b), there are threshold crossings.
These are marked in time by the train of standard shaped pulses shown in (c).
Blurring out fine details, many devices or systems function in this basic way. As
obvious examples, one can mention early model neurons and the thermal
activation of electrons over a barrier, as in the room temperature operation of
a back-biased electronic diode. In spite of the fact that the pulses seem to occur
at random times, they carry a surprising amount of information about the
subthreshold signal. In order to understand this, we need only turn to early
electrical engineering. A formula for the mean threshold-crossing rate of a
Gaussian process has been given (Rice, 1954),


���
f


�3
exp��

��

2��� , (1)

where f

is the bandwidth of the noise (assumed to have a rectangular power

spectrum to the cut-off frequency, f

), � is the threshold as shown in Figure 1a,

and � is the standard deviation of the noise. The threshold is time dependent.
Consider the case that the subthreshold signal is sinusoidal with amplitude �
and frequency �, then,

�(t)��

� � sin�t, (2)
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where the signal is subthreshold for ���

. If �(t) is slowly varying compared

to f

, then the noise ‘samples’ the subthreshold signal at well above the Nyquist

frequency, and the information content in the pulse train is determined by this
‘sampling’ rate; that is, the threshold-crossing rate. These two formulae show
how the threshold-crossing rate 
���
��(t) can become a slow function of
time.Moreover, with this the threshold-crossing rate has become exponentially
sensitive to the weak signal. Under these conditions, one can calculate the
power spectra of the output pulse train (Figure 1c) without the signal; that is,
for the noise alone, P

�
, and for the signal, P

�
. The signal-to-noise ratio (SNR) is

the ratio of the amplitudes of the first harmonic terms of these power spectra
(for details, see Moss et al., 1994; Gingl et al., 1995),

SNR��
2 f

��

��

�3�	 � exp��
��


2��� . (3)

Note that this formula is remarkably similar to the one derived by McNamara
andWiesenfeld (1989) for a bistable energy potential, but with ��


replacing the

energy barrier, U

, and �� replacing the noise power density, D. Equation (3)

together with the original data from the SR experiment with the crayfish
mechanoreceptor is shown in Figure 2 (see also Section 10.2.1).

The foregoing picture of SR has also been called the threshold model for
obvious reasons. It is nondynamical because it is the first model for SR that
does not make use of the analogous ‘particle’ moving in an energy potential,
for which dynamical equations of motion are necessary. The calculation
sketched above is purely statistical, with the central question being ‘What is the
threshold-crossing rate?’. Thereafter, we are only asking questions related to
signal processing, for example ‘What is the signal-to-noise ratio?’.

This picture has recently been greatly expanded with the construction of a
new theory for which the threshold is unnecessary (Bezrukov and Vodyanoy,
1995, 1997a,b). Biologists had long recognized that a ‘hard’ threshold, such as
the one shown in Figure 1, was too simple an approximation for constructing
neuron models. A more accurate description is obtained by replacing this
threshold by some probability function. Bezrukov and Vodyanoy, by con-
structing their new theory with a probability function instead of a threshold
function greatly expanded the list of candidate systems wherein SR can use-
fully be sought (see Bezrukov and Vodyanoy, Chapter 11, this volume).

10.2 Stochastic resonance moves into biology

The simple threshold model sketched above immediately calls to mind the
functioning of a sensory neuron. The membrane potential governs the
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Figure 2. Signal-to-noise ratio (SNR) versus noise intensity. (Solid circles) Data from
the crayfish mechanoreceptor experiment (for details see Section 10.2.1). (Open circles)
Equation (3), 2f


��

��/3���� 5.17� 10� and �


� 6.33.

dynamics of neurons. This potential has a resting value to which is added the
sum of inputs to the neuron. When the potential exceeds some threshold, the
neuron ‘fires’, or generates an action potential. All action potentials generated
by the same neuron are virtually identical. Thus a train of action potentials
traveling down an axon is a record of threshold crossings of the membrane
potential. Moreover, the membrane potential is noisy in the millisecond time
domain. This inherent noise has its origin in the random openings and clos-
ings of the membrane ion channels that are driven by thermal fluctuations
(Gailey et al., 1997). Thus, even in the absence of a coherent signal on the
membrane potential, the action potential train is noisy. In the presence of
signals, the train contains a coherent component. Of course there are subtle
details that we have ignored here, but this coarse-grained behavior is what we
are interested in.

So where might one seek SR in the natural world? An obvious answer is
where there are weak signals, noise and thresholds. Sensory neurons were an
obvious first place to look.

10.2.1 Single neurons: the crayfish mechanoreceptor

The crayfish is a venerable animal in biology, having been the subject of the
first experiments in modern neuronal physiology pioneered by Thomas
Henry Huxley in the last century (Huxley, 1880). The animal has a no less
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estimable evolutionary history, tracing its ancestral origins to the Cambrian.
Today it remains one of the most successful animals, populating the globe
from the Arctic to the equator in many species. It may owe this remarkable
success, at least in part, to an extraordinarily simple but remarkably effective
predator avoidance system: the hydrodynamically sensitive hair
mechanoreceptor (Wilkens and Douglass, 1994). The tail fan of the crayfish is
covered with numerous small hairs, the longer of which (about 10�m by
250�m) move with low frequency (6 to 25Hz) water motions (see Figure 3).
Each of these hairs is connected to a pair of sensory neurons that fire action
potentials when the hair moves. The sensory neurons converge on a small
network of neurons called the sixth ganglion. This ganglion processes infor-
mation from the hair receptors and sends it on to the higher nervous system.
When necessary, the ganglion can excite a pair of motor neurons that trigger
the animal’s escape reflex. The animal escapes from predators, mainly fish, by
spreading its tail fan, contracting its abdominal muscles and swimming back-
wards at a high speed.

Our experiments were performedwith the most abundant species of crayfish
found in the USA, the common ‘red swamp’ crayfish, Procambarus clarkii.
Figure 3b shows the location of a suction electrode and preamplifier (A) for
recording from a single sensory neuron. The stimulus was a periodic water
motion of frequency in the range 8 to 100Hz, plus a random component, the
noise, with total amplitude in the range 10 to 100 nm. In these experiments,
since the noise was added externally, it was necessary to choose a hair receptor
with a small internal noise so that the effects of the noise added to the stimulus
were maximized. Recordings were made extracellularly using completely stan-
dard techniques and apparatus. Trains of action potentials were recorded from
identified single hair receptors. These were converted into standard-shaped
rectangular pulses. The power spectra of these pulse trains were of the form of

���[sin (at)/at]� functions whose amplitude 
���, was proportional to the
noise intensity. Three example power spectra are shown in Figure 4 for cases of
small, intermediate and large added noise. The signal due to the periodic
component of the stimulus, which was held constant, is evident in every case as
the sharp spike riding on the broad band noise background. The signal
component is of maximum amplitude only for the intermediate noise intensity
(Figure 4b). The SNR can be obtained by comparing the amplitude of the
signal feature to the amplitude of the noise background at the signal frequency.
The SNRs obtained from this experiment are plotted as the data points in
Figure 2. This experiment was the first to demonstrate SR in any biological
application (Douglass et al., 1993).
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Figure 3. (a) The Australian Murray River Crayfish, Euastacus armatus (Sandeman
and Wilkens, 1982). (b) Diagram of the mechanoreceptor: sixth ganglion and caudal
photoreceptor systems of the crayfish. Recording site A is at a sensory neuron, B is
from the caudal photoreceptor output neuron. The photosensitive area (about
100�m� 100�m) is illuminated with dim steady light (arrow) during recording
sessions.
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Figure 4. Three power spectra measured from a sensory neuron of the crayfish
mechanoreceptor system, showing the broad-band noise background and the signal
features as sharp peaks riding on the background. The fundamental is at about 50Hz
and the second harmonic shows in the top two panels. (a) Small noise, (b) optimal
noise, and (c) large noise. The signal-to-noise ratio (SNR) is maximum for (b).
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10.2.2 Networks: the crayfish sixth ganglion

Note that the foregoing experiment demonstrated SR using external noise. The
results are biologically relevant, since the environment, especially the one in
which the crayfish lives, is indeed noisy and the animal’s survival depends upon
timely detection of predators in this noisy environment. Nevertheless, the
question of whether or not the internal neuronal noise can play some role in the
processing of signals from weak stimuli was not addressed. Moreover, one
might ask whether some type of computational processing is going on in order
for the animal to interpret the noisy signal (Adey, 1972). In the absence of
stimulation, the sensory neurons are noisy, and different ones exhibit different
noise intensities. They all converge on the sixth ganglion, where the first
opportunity for such computational processing might take place (Figure 3b).
In the simplest case, this might be simple summation of all incoming signals, a
process that has been shown in electronic (Pantazelou et al., 1993) and numeri-
cal simulations and theory (Collins et al., 1995) to lead to SR. Thus, as input to
the ganglion, there is a very large number of action potential trains which are
largely noise and only very weakly coherent as indicated by the power spectra
in Figure 4. The ganglion does make a computation (of completely unknown
nature) because based on the result it ‘decides’ whether or not to trigger the
escape reflex. There is, however, yet another intriguing modality associated
with the sixth ganglion. Embedded within it are two bilaterally symmetric
photoreceptor cells, called the caudal photoreceptors (CPRs; Wilkens, 1988).
These two cells are dendritically and synaptically connected with the inter-
neurons of the ganglion (about 250 in number). They thus receive input from
the network of interneurons. They each have an output neuron that connects
to the higher nervous system (see Figure 3b). The activity of these CPR cells is
mediated by light falling on a small (100�m by 100�m) area. Recordings at the
CPR output, shown at location B in Figure 3b, show evidence of the hydro-
dynamic stimulus applied to the tail fan array of hairs. However, in the absence
of stimulus, the noise level within the CPR cells is determined by the light
intensity. And, the larger the light intensity, the larger is the resulting noise
intensity.

In experiments with the CPR, while periodically stimulating the entire tail
fan array of hair receptors with a weak periodic water motion, we observe that
the sensitivity of the CPR to these processed signals is greatly enhanced by
light (Pei et al., 1996). In the dark, the CPR is only weakly sensitive to the
hydrodynamic signal, but in the presence of light, its responses can be over one
order of magnitude larger. Example data for two different cells, at two different
stimulus amplitudes, are shown in Figure 5. One cell shows clear evidence of a

244 F. Moss



Figure 5. Signal-to-noise ratio (SNR) versus light level for two different photoreceptor
cells in the crayfish sixth ganglion. (Open circles) One receptor shows the full stochastic
resonance (SR) curve with a maximum SNR at an optimum light level. (Closed circles)
The other has not yet reached its maximum at the largest light level. The light level 0
corresponds to complete darkness, and 4 corresponds to 1.1�W/cm�. The amplitude
of the hydrodynamic forcing was 260 nm.

maximum, at optimal light (noise) intensities, while for the other, the optimal
value was not achieved since the signal was still enhanced at the largest light
intensity applied. The largest light intensities applied (about 1 �W/cm�) were
comparable to dim room light.

10.2.3 A survival trait?

The sixth ganglion together with the CPR cells function as a signal processor
and decision-maker. The decision is whether or not to trigger the escape reflex,
and it is based on the characteristics of the hydrodynamic signals received from
the hair cell array on the tail fan. The ‘danger’ signal would be in the form of 8-
to 12-Hz, weakly periodic water motions induced by swimming fish. But we
must consider the whole life style of the crayfish. It is largely a nocturnal
animal, remaining in its burrow near the bottom of streams or ponds during
most of the day. During this time it is important that the escape reflex not be
triggered ‘accidentally’, because then the animal might exit its burrow in the
day and be subject to predators. I use the word ‘accidentally’, because the
escape reflex trigger is essentially a stochastic process. If there are predator-
type signals of some amplitude present together with noise, then there is some
probability that the escape reflex will be triggered. Thus, when the animal is
safely inside its dark burrow, the escape trigger probability must be greatly
reduced. The animal, however, does sometimes emerge in daylight to forage for
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food. Out of the burrow and in the light the animal is at risk. In this situation
the CPR drastically increases the sensitivity of the sixth ganglion to predator-
induced weak water motions. It is a kind of early warning system that can be
sensitized in the light and more or less deactivated in the dark.

We propose this as an alternative to the accepted function of CPR cells.
Many crustaceans are endowed with such light-sensitive cells. They all show
diurnal rhythms, regulating a variety of animal functions over the 24-h
day—night cycle. So the accepted function of the CPR cells is to distinguish day
from night. Our explanation is not at variance with this view, but does add
essential detail, and it proffers a specific survival benefit for the light (noise)
mediated sensitivity of the hydrodynamic hair receptor—sixth ganglion system.

10.2.4 But does the animal actually use stochastic resonance?

All experiments to date on SR in animals have relied on electrophysiological
measurements of the responses of neurons to weak coherent signals and noise.
Computer analysis of the data has shown increased information content in the
neuronal responses at this level in the nervous system of the animal. But a
serious weakness of this line of research is that such experiments can never test
whether or not the living and functioning animal actually makes use of SR. In
order to answer such questions, behavioral experiments are necessary. Psycho-
physics experiments, using the human tactile sense, have been accomplished
(Collins et al., 1996) but no animal behavioral experiments showing SR have
yet been reported. For a variety of reasons, the crayfish is not suitable for
behavioral experiments. However, David Russell and Lon Wilkens of this
laboratory have developed suitable behavioral research techniques using a
different animal, the paddlefish, which uses an electroreceptor system.

10.2.4.1 The paddlefish electroreceptor

The animal model being developed for behavioral experiments is the pad-
dlefish, Polydon spathula. This fish has a well-developed feeding apparatus
based on the detection of weak electric fields from its customary prey, plankton
such as daphnia or brine shrimp. These small animals (1 to 3mm) emit weak
electric fields (a few microvolts per centimeter) of 8 to 12Hz associated with
their characteristic swimming motions. The paddlefish uses an extensive array
of electroreceptor cells spread over the upper and lower surfaces of its rostrum,
a large paddle-shaped appendage at the front of the fish and extending out-
ward above its mouth (see Figure 6a). Extensive experiments in this laboratory
have shown that the paddle fish detects, locates and feeds on these small
creatures by relying entirely on its electrical sense (Wilkens et al., 1998).

246 F. Moss



Figure 6. (a) The paddlefish with a rostrum supporting an array of electroreceptor
organs. (b) Frequency response of a single cell showing a maximum response at the
characteristic frequencies of the animal’s planktonic prey (� 10 to 20Hz). The electric
field in the vicinity of the receptor was about 1 �V/cm, which is also of the same order
as the fields that are characteristic of the prey. (From Wilkens et al., 1998.)

Electrophysiological experiments with the same type of electroreceptor cell in
sharks have established that the cells are noise- and temperature-mediated
oscillators (Braun et al., 1994). Recent experiments in this laboratory have
established that the frequency response and electric field sensitivity of the
paddlefish’s electroreceptors are closely matched to the characteristic fields
emitted by swimming daphnia (Wilkens et al., 1998).

10.2.4.2 A behavioral experiment

A swim mill has been constructed in this laboratory in such a way that the
paddlefish can swim against a continuously flowing stream of water while
remaining stationary in the laboratory frame of reference. The fish swims in a
viewing chamber and is videotaped simultaneously from the side and below.
The water stream is seeded with daphnia or brine shrimp that also show up on
the videotape. The statistical feeding behavior of the swimming fish can thus be
established by analyzing the videotapes. These data take the form of two-
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dimensional distributions of prey captures as a function of distance from a
reference point on the fish’s rostrum. The signal being detected is electrical, so
that in order to study SR we introduce an electrical noise into the flowing
stream. Our question is, can the fish detect prey at greater distances in the
presence of an optimal level of electrical noise than in its absence? We have
now established this (see below), and, for some fish, have found an increase in
the overall feeding rate as a function of the amplitude of the applied electrical
noise. These data show an enhanced feeding rate at an optimal noise intensity
of around 1 �V/cm, that is, quite near the magnitude of the field emitted by the
typical prey (see Figure 6b). However, what we wish to obtain is the detailed
shape of the capture distribution function in two dimensions in the absence of
noise and for a range of noises. The results from such experiments have
recently been published (see Russel et al., 1999).

One might ask about the source of such electrical noise in the natural
habitat of the paddlefish.We have not established this, but we can speculate as
follows. First, the fish feed on individual plankton only as juveniles. As adults
(they can grow to more than 1m in length and a few 100 kg in mass) they filter
feed on swarms of plankton, opening their (large) mouths and swimming
repeatedly through the swarm. A large swarm of daphnia must, however, emit
electrical noise. Each can be regarded as an oscillator that emits an approxi-
mately dipole field pattern, but the daphnia in the swarm are oriented ran-
domly in all possible directions. Moreover, their periodic swimming motions
are not synchronized. Summing the electric field at any defined point in space
over a large number of randomly oriented, asynchronous oscillators results in
noise. A second possibility involves turbulently flowing water throughwhich is
passing a weak electric current. The current can be induced by Faraday
induction as the conducting water flows in the Earth’s magnetic field.

10.3 And into medical science

SR shows that weak signals can be enhanced in nonlinear systems character-
ized by thresholds. This suggests medical applications, especially in rehabilita-
tive clinical applications. A variety of pathological conditions, arising through
the natural aging process or through disease or accident, lead to reduced
sensitivity of the nervous system to some sensory stimuli. A specific example
might be the age-related, reduced sensitivity of the proprioceptive neurons.
These sensory modalities detect and transmit information about joint angle
and velocity to the central nervous system. In old age, the increased firing
thresholds of these neurons cause the reduced sensitivity. With reduced infor-
mation about joint position and limb velocity, arm and legmovements become
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difficult, leading to ‘feebleness’ in otherwise healthy elderly individuals. But the
addition of noise may help to overcome the effects of the increased thresholds
by restoring the normal firing rates to these degraded neurons. Efforts involv-
ing the basic research of such possibilities are currently in progress.

10.3.1 Electromyography of the median nerve

To begin this research, it is necessary to demonstrate that weak signals can
indeed be enhanced by the noise inherent in typical sensory neurons of the
human body. And it would be desirable to demonstrate this result in the
simplest possible setting using apparatus familiar to everymedical doctor. This
has been done in a brilliant experiment designed by Dr Faye Chiou-Tan of
Baylor College of Medicine (Chiou-Tan et al., 1996) using electromyography
of the median nerve. Transcutaneous electrical stimuli were introduced just
above the elbow and detected on the middle index finger and thumb. The
inherent noise in the median nerve was controlled by subject-controlled ten-
sion in the abductor pollicis brevis muscle, which was flexed against a force
gauge (see Figure 7a). The noise in the median nerve is quite accurately
Gaussian distributed. Preliminary experiments showed that the standard devi-
ation of this distribution, i.e., the noise intensity, could be accurately controlled
by the subject while exerting a fixed force against a force gauge. The experi-
ment consisted of sending near-subthreshold electrical signals down the me-
dian nerve in the absence of noise. The internal noise was then increased by
muscle flexure and noise-enhanced signals were recorded at the receiving
electrodes. A SNR can be defined in a way similar to that outlined above. The
measured SNRs versus the muscle tension-mediated noise levels are shown in
Figure 7b. The data do not show a maximum at an optimal noise, but clearly
demonstrate noise enhancement of the SNR in the sensory neurons of the
median nerve. Moreover, we observed no SNR enhancement of signals travel-
ing through the motor neurons in the median nerve. It should be noted that
this was the first SR experiment to make use of well-controlled inherent noise.
The experiment also demonstrated an important process: the transcutaneous
introduction of electrical noise can enhance the sensitivity of sensory neurons.
This experiment then opens the door for therapeutic and rehabilitative uses of
noise in the human nervous system.

A series of further experiments have been reported by this group (Chiou-Tan
et al., 1997, 1998) aimed at demonstrating the effectiveness of the muscle
tension-mediated inherent noise when the muscle is remotely located. Some of
these experiments have included the use of drugs to block certain pathways in
order to identify and localize the muscle-noise action.
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Figure 7. Electromyography of the human median nerve. (a) Set-up of apparatus and
recording sites. NCS, neuronal cell system. (b) Sensory neurons in the median nerve
show noise-enhanced signal transmission (left), but motor neurons during the same
experiment do not (right). The noise was mediated by muscle tension and measured
with the Viking II instrument shown in (a). SNR, signal-to-noise ratio; EMG, elec-
tromyograph; RMS, root mean square. (From Chiou-Tan et al., 1996.)

10.3.2 Electrophysiology of proprioceptor neurons

Closely related to the experiments described in the foregoing section are the
electrophysiologicalexperiments onproprioceptive, ormuscle-spindleneurons
(Cordo et al., 1996). These are neurons that sense theposition andvelocity of the
movements of the joints.Without their proper functioning all muscle-mediated
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movement becomes impossible. In this experiment, electrodes were inserted
into themedian nerve above the elbow in humans. Thenervewas searcheduntil
a signature of a proprioceptive neuron was found. The experiment from this
point on entailed a classic SR procedure using external noise added to a weak
signal. Moving the wrist periodically using a mechanical actuator provided a
coherent signal. This motion was sensed through tendon stretch by the prop-
rioceptive neuron and transmitted up the nerve to the recording site. The
amplitude of wrist motion was reduced until the coherence in the neuronal
recording was barely detectable. External noise was then added by mechan-
ically vibrating the wrist tendon that couples into the stretch-sensing neuron.
The SNRs of the responses were computed in the same way as in the original
crayfish experiment. The SNRs were noise-enhanced at low levels of noise and
degraded at high levels, thus demonstrating SR in this system.

10.3.3 Noise-mediated coherence in distributed systems

This topic is of great interest at present. Local random processes, or ‘noise’,
probably affect many distributed natural phenomena. In one view, a number of
interacting agents might be spread over a two-dimensional surface, each of
which is being subjected to local noise. Certainly we expect the noise to affect
the dynamics of such a system to some degree and, maybe, in some instances,
even to a large degree. But could we imagine a system wherein the noise could
enhance some collective, or coherent, dynamical property? If so, and if an
optimal noise maximally enhances the property, the process is called spa-
tiotemporal SR. Spatiotemporal SR has now been achieved experimentally for
the first time in two very different media, which nevertheless may behave
chemically in similar ways.

10.3.3.1 The subexcitable Belousov–Zhabotinsky reaction

In the first experiment the Belousov—Zhabotinsky nonequilibrium chemical
reaction was operated in a subexcitable mode (Kádár et al., 1998). Using a
photosensitive version of this famous chemical reaction confined to a thin slab
of silica gel, the group observed enhanced wave propagation in response to
spatiotemporal noise applied to the gel slab as a two-dimensional optical image.
The image was of a rectangular region divided into a large number of square
subregions or cells. The intensity of the light falling on a given cell determined
its state of excitability by controlling the rate of photoproduction of bromide
ions (Br�) which are inhibitors of autocatalysis in this reaction. A large light
intensity maintains the region below the threshold of excitability, i.e., in the
subthreshold state, with the result that disturbances are rapidly quenched. In
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Figure 8. The growth and propagation of a spiral Ca�� wave in a network of glial cells
cultured from human brain tissue. Snapshot pictures of the wave with time elapsing to
the right. The waves propagate over centimeter-scale distances for times of a few
seconds.The images showthewavepropagatingagainst abackgroundofnetworknoise
controlled by the concentration of neurotransmitter (kainate) in the bath solution.

the presence of little or no light, the disturbances grow into the familiar waves
that propagate indefinitely. The average light intensity for all cells was ad-
justed to maintain the entire region in the subexcitable state, so that indefin-
itely sustained waves were impossible. To this average, a time-dependent noise
was then added. The noise in each cell was generated independently of the
noise in any other cell. It was noted that waves propagating into the region
from an external source lived longer, and hence propagated further, in the
presence of this spatially distributed, time-varying noise. An optimal value of
the noise intensity resulted in sustainedwaves. Noise intensities larger than the
optimal level resulted in degraded propagation and wave break-up into seg-
ments of random lengths.

10.3.3.2 Self-organized critical behavior in astrocyte syncytia

The second experiment takes place in a very different medium: a network of
glial cells cultured from human brain tissue (Jung et al., 1998). Long-range (a
few centimeters), long-lived (many seconds), spiral chemical waves of calcium
ions (Ca��) are observed in cultured networks of glial cells for normal concen-
trations of the neurotransmitter kainate (see Figure 8). A new method for
quantitatively measuring the spatiotemporal size of the waves is described.
This measure results in a power-law distribution of wave sizes, meaning that
the process that creates the waves has no preferred spatial or temporal (size or
lifetime) scale. This power law is one signature of self-organized critical phenom-
ena, a class of behaviors found in many areas of science. The physiological
results for glial networks are fully supported by numerical simulations of a
simple network of noisy, communicating threshold elements. By contrast,
waves observed in astrocytes cultured from human epileptic foci exhibited
radically different behavior. The background random activity, or ‘noise’, of the
network is controlled by the concentration of the neurotransmitter kainate.
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The mean rate of wave nucleation is mediated by the network noise. However,
the power-lawdistribution is invariant, within our experimental precision, over
the range of noise intensities tested. These observations indicate that spatially
and temporally coherent Ca�� waves,mediated by network noise, may play an
important role in generating correlated neuronal activity (waves) over long
distances and times in the healthy vertebrate central nervous system (CNS).

Self-organized criticality (SOC) is an established dynamical behavior (Bak et
al., 1987) of numerous physical systems, including avalanches and earthquakes
(Bak, 1996), magnetic noise and an economic index (Mantegna and Stanley,
1995) to name only a few. A common feature of these processes concerns
power-law distributions of event sizes or lifetimes. By contrast, processes with
characteristic times, for example the discharge of a capacitor through a resistor
or the decay of a population of radioactive nuclides (and innumerable similar
phenomena, for example those described by linear differential equations)
proceed according to exponential laws. Systems showing SOC tend naturally
toward a critical state where power-law scaling is the rule. Moreover, SOC
arises in some complex systems that are far from equilibrium. Complexity
means that an enormously large number of events are possible, the size or
lifetime of any particular event being unpredictable. Thus a fundamental
randomness,ornoise, is characteristicof SOC.Far fromequilibriummeans that
the systemsare continuouslydriven fromthe external environment, for example
the relentless build up of strain along a fault line, ultimately leading to an
earthquake(ofasyetunpredictablesize tooccuratanasyetunpredictabletime).

The human brain is a complex object that operates far from equilibrium,
owing to an incessant stream of stimuli to ‘think about’. Thus one might
speculate that brain function may also be an example of SOC, and, indeed,
interesting and suggestive numerical simulations have been reported (Bak,
1996; see also Ding et al., Chapter 4, this volume).

I report here the first experimental evidence supporting a role for SOC in a
vertebrate CNS preparation. In a culture of glial cells, time-lapse images
employing the Ca�� fluorescent dye indicator Fluo-3, obtained during
dose—response studies with kainate, revealed well-defined spiral and other
waves. The waves were born in the background network noise, grew and
propagated some distance before dying again in the noise (Figure 8). The
spatiotemporal size, s, of a single wave comprises not only its physical size at
any given time but also its growth during its lifetime and its propagation
distance. Motivated by our physiological spiral wave observations, Peter Jung
developed a novel statistical analysis suitable for quantitatively characterizing
such waves. The analysis yields size distributions, p(s)� s��, which, for both
numerical and biological data, are accurately described by power laws with
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quite similar exponents, a. In the healthy CNS, long-range signaling by Ca��
probably occurs via such coherent waves.

10.4 Looking to the future

In this chapter I have outlined the movement of SR from the physical sciences
into biology and briefly described only a few of the many experiments now in
progress or recently completed. Moreover, with the experiments of Faye
Chiou-Tan, we have seen the successful movement of SR into basic research in
medical science. These experiments indicate that clinical applications may not
be far off (e.g., see the recent commentary by Glanz, 1997). Certainly there are
many medical applications at present where usually periodic stimulation is
used. One can mention, for example, the electrical or mechanical vibratory
stimulation to ease chronic pain currently used for many patients in rehabilita-
tion programs. But periodic stimulation has disadvantages. It often leads to
illusions or generally unpleasant sensations. By comparison, random stimula-
tion may be advantageous. Moreover, many sensory modalities adapt rapidly
to periodic stimuli but do not to random stimuli. So we can expect to see many
applications of SR, or noise-supported excitatory behavior, in the near future
in medical science.

Research on spatiotemporal SR has only just begun. If Bak’s speculations
(Bak, 1996) are even partially correct, self-organized, noise-supported and
long-range signaling in the brain will develop into an exciting area of research
in the near future. The experiments of K. Showalter (Kádár et al., 1998) in the
‘hard’ science area of chemical dynamics, having demonstrated an almost
identical dynamics, will surely stimulate interest in further observations of
such waves in biological substrates.
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11

Stochastic resonance and small-amplitude signal
transduction in voltage-gated ion channels

SERGEY M. BEZRUKOV AND IGOR VODYANOY

11.1 Introduction

Voltage-gated ion channels are crucial ‘building blocks’ in various systems of
signal transduction and processing in living organisms. They are ultimately
responsible for information flow at several hierarchical levels of biological
complexity that include signal sensing (Lu and Fishman, 1994) and generation
of nerve action potentials (Hille, 1992), and are crucially important in synaptic
transmission and other intercellular communications (Alberts et al., 1994).
Preceding biologically inspired work on the role of external noise in electrical
signal transduction concentrated on rather complex objects such as neurons
(Bulsara et al., 1994; Pei et al., 1996; Chapeau-Blondeau et al., 1996; Longtin,
1997; Plesser and Tanaka, 1997) and neuronal ensembles (Gluckman et al.,
1996; Chialvo et al., 1997). It was demonstrated that addition of random
fluctuations, or noise to the input of these systems could improve the trans-
mission efficiency for small input signals. Yet even more elaborate physiologi-
cal systems showing similar properties include isolated sciatic nerves of a toad
(Morse and Evans, 1996; Moss et al., 1996), rat SA1 cutaneous mechanorecep-
tors (Collins et al., 1996a), mechanosensory transduction pathways in ar-
thropods (Douglass et al., 1993; Levin and Miller, 1996), and human sensory
perception (Cordo et al., 1996; Collins et al., 1996b; Chiou-Tan et al., 1996;
Simonoto et al., 1997). The counterintuitive phenomenon of noise-improved
signal transduction, called ‘stochastic resonance’ — first introduced as a possible
explanation for the periodic recurrences of the Earth’s ice ages (Benzi et al.,
1981) — has now been established empirically for many macroscopic systems
and, for some of them, is understood theoretically (Wiesenfeld and Moss, 1995;
Gammaitoni et al., 1998; see also Moss, Chapter 10, this volume).

In a series of publications (Bezrukov and Vodyanoy, 1995, 1997a,b) that
form the basis of this chapter, we have addressed the problem of electrical
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signal transfer in the presence of noise in a subcellular system consisting of
voltage-gated ion channels reconstituted in a planar lipid bilayer. We explore
the following: whether the phenomenonof noise-facilitated signal transduction
described for a variety of different biological objects such as neurons or
sensory systems can originate at the basic level of ion channels.

Theoretically, we discuss a model of the time-dependent Poisson wave (Cox
and Lewis, 1966) where the average pulse generation rate is a function of an
input signal. Our first finding shows that such awave of identical current pulses
with an exponential dependence on input voltage gives an adequate description
of signal transfer properties in the absence of external noise. It explains the
experimentally found threshold-free response of ion channels to arbitrarily
small signals; it provides the right value of small-signal transduction coefficient
and its dependence on membrane holding potential; it also determines the
output noise value that reflects the stochastic behavior of ion channels.

Our second finding demonstrates that stochastic resonance is an inherent
property of a time-dependent Poisson process. In the presence of an external
input noise added to a small input signal, our model displays two features
typical of a stochastic resonator. (1) It describes noise-facilitated signal trans-
duction, i.e., output signal amplitude is increased by addition of noise to the
system input. (2) It shows noise-induced improvement in the output signal
quality; in particular, it yields the optimal noise amplitude corresponding to the
maximal output signal-to-noise ratio (SNR).

Experimentally, we have studied ‘model ion channels’ formed by a 20-amino
acid peptide alamethicin in planar lipid bilayer membranes (Hall et al., 1984)
from the point of view of electrical signal transduction. Alamethicin channels
are highly voltage sensitive —while their open channel current—voltage charac-
teristics are practically linear, the probability of finding the alamethicin chan-
nel in an open state depends strongly on the applied transmembrane voltage.
Thus, the equilibrium between the population of open alamethicin channels
and the pool of ‘inactive’ alamethicinmolecules can be regulated by an external
voltage signal.When reconstituted into solvent-freemembranes prepared from
diphytanoyl phosphatidylcholine (DPhPC), the channel voltage sensitivity is
defined by the gating charge of 5 to 7 elementary charges, which is remarkably
close to that of voltage-gated channels in excitable membranes (Hille, 1992).

In the subsequent sections we show that the application of external noise
facilitates the transfer of electrical signals through this system. Specifically, for
small sine wave signals, the introduction of noise increases the output signal
power by about 10	-fold, conserving or even slightly improving the output
SNR. For noise intensities around 10mV (root mean square, r.m.s.), the output
SNR, measured as the ratio of the output signal peak height to the output
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noise spectral density in the immediate vicinity of the signal, shows a 2-dB
increase with respect to the initial output SNR in the absence of external noise.
Thus the addition of noise improves signal transduction in this system.

11.2 Stochastic resonance in a time-dependent Poisson process

A time-dependent Poisson process represents a broad variety of reactions at
the molecular level. The central issue of modern reaction-rate theory is the
problem of escape from metastable states (Hänggi et al., 1990). In a stationary
system, thermally activated events usually occur with the escape rate r being
exponentially dependent on reaction activation energy E

�
according to the

Van’t Hoff—Arrhenius law

r� � exp (�E
�
/kT), (1)

where k and T have their regular meanings. Prefactor �, giving an absolute
reaction rate, is only weakly temperature-dependent and, in most models, does
not depend on E

�
at all. The absence of correlations between consecutive

events — which accounts for the Poisson distribution — is caused by the
independence of different reaction centers and/or by a significant separation
between the time scale of a rare event of activation barrier crossing and the
time scale characterizing a fast motion within a metastable state.

Empirically known for more than a century, Equation (1) has been the
subject of numerous theoretical studies (e.g., for reviews, see Berezhkovskii et
al., 1988; Hänggi et al., 1990). Eyring (1935) was the first to use quantum-
statisticalmechanics to calculate the prefactor � through the partition function
of the metastable state and the activated complex. His approach is now
commonly known as the transition state theory of escape rate and is regarded
as an ‘epoch-making’ result, although at least several predecessors can be
easily identified. For example, about 20 years before Eyring, a simplified
one-dimensional version of this approach was used by Richardson (see e.g.,
Nye, 1976, pp. 236—240) in calculations of thermionic currents. Later, even
simpler arguments, used to describe electron transfer across a semiconductor
p—n junction (see e.g., Benedict, 1976, pp. 80—85), led to the same general result
of the thermally activated escape rate expressed by Equation (1).

In many physico-chemical systems, reaction rates are controlled by activa-
tion barriers whose heights depend on an external parameter, e.g. voltageV, so
that E

�
E

�
(V). For small time-dependent voltage deviations 	V(t) from a

stationary value V

we can write

r(V(t))� r(V

� 	V(t))� r(V


)� r(V


)�	V(t), (2)
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where ���E�
�
(V


)/kT and E�

�
(V) �E�

�
(V)/�V. The module of factor �

determines the reaction sensitivity to the external voltage. The output of such a
system is a train of uniform, randomly arriving pulses, where information
about the modulation by periodic, aperiodic or random signals is encoded in
the statistical properties of pulse arrival times. A signal that increases the
barrier height will decrease the pulse generation rate and vice versa. The
detection of these rate changes (e.g., by appropriate filtering) permits the
recovery of the input signal, although contaminated by a certain level of noise
stemming from the randomness of the pulse arrival.

It is clear that the higher the average rate r(V

), the better is the signal

transduction. The SNR is improved by increased statistics (similarly to de-
creasing the uncertainty in a coin throw experiment by increasing the number
of throws). Indeed, the amplitude of the signal component prescribed by
Equation (2) is proportional to r(V


), while the noise amplitude, according to

general considerations, grows as the square root of the number of events; that

is, it increases only as �r(V

). This means that the SNR is proportional to

�r(V

) (or to r(V


), if one considers the ratio of signal and noise in terms of

power spectral density components).
In the case of a superlinear dependence of the generation rate on the input

signal, e.g., the activation energy in Equation (1) is proportional to an external
parameter, the statistics can also be improved by adding zero-mean input
noise. Due to the system’s superlinear behavior, random voltages at the input
that correspond to the activation energy decrease will add to the output rate
more than equal voltages of the opposite sign will subtract. As a consequence,
the average rate will go up. These improved statistics would result in an
increased SNR at the output, if not for the contamination of the input signal by
the added noise. This leads to the following central questions:

(1) Is it possible to increase the output signal quality in the time-dependent Poisson
process by the addition of input noise and, if the answer to this question is yes, then:

(2) What are the noise properties that optimize signal transduction?

In a number of cases representing important phenomena in physics and
biology, the dependence of activation energy on an external parameter is linear
over a wide range of parameter changes. For semiconductor p—n junctions or
ion channels of excitable membranes such a parameter is the applied voltage.
In ion channels, voltage sensitivity is assigned to ‘gating charge’ (Hille, 1992). If
channels spend most of their time in the closed conformation and channel
openings are considered to be the events constituting the Poisson process, we
find that

r(V(t))� r(0) exp (�V(t)), (3)
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where

�� ne/kT, (4)

ne is the channel gating charge, and e is the electron charge. In the case of the
exponential dependence given by Equation (3), the influence of noise addition
on signal transduction can be treated analytically. In this treatment we limit
ourselves to the adiabatic small-signal regime by assuming thatV(t) is a sum of
a constant V


, a slow zero-mean Gaussian noise V

�
(t), and a slow small-

amplitude sinewave signal

V(t)�V

�V

�
(t)�V

�
sin (2�f

�
t), (5)

where V
�
� � � ���. If the signal frequency, f

�
, and noise ‘corner frequency’, f

�
,

are much smaller than all other characteristic frequencies in the system, we can
characterize signal transduction by considering only the low-frequency part of
the output spectrum. The shape of the output pulse gives a ‘form-factor’ that
influences the spectrum only at high frequencies comparable to the inverse
pulse duration. Indeed, at low frequencies, the power spectral density of a
‘steady’ Poisson wave of uniform pulses generated with a constant rate r is
given by (Rice, 1954)

S( f ) �
��

� 2Q�r, (6)

where Q is single pulse area. For a time-independent Poisson process the
low-frequency spectrum is ‘white’; that is, it does not depend on frequency.

If the generation rate r is time dependent, this is no longer true. Rate
modulation by an external parameter V(t) introduces correlations into pulse
arrival times. At low frequencies around f

�
, the power spectral density of such a

time-dependent Poisson process (Cox and Lewis, 1966) can be calculated as

S( f )� 2Q�
r(V(t))�� 4(Qr(0))��
�




exp(�V(t)) exp (�V(t� �))� cos (2�f�)d�, (7)

where angle brackets denote averaging over time t. The first term of Equation
(7) represents the frequency-independent component expected from a ‘station-
ary’ Poisson process with a steady pulse generation rate r�
r(V(t))�. For the
case of V

�
��, where � is the noise r.m.s. value, this average rate is easily

obtained as


r(V(t))�� r(V

) exp ((��)�/2). (8)
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The second term describes additional spectral components stemming from
rate modulation by the input signal and noise. To calculate the correlator in
the second term, we use an approach given by Rice (1954). We introduce a
random vector X�V(t), Y�V(t� �) and employ relations obtained for
two-dimensional normal distributions. As a result, we get


 exp(�V(t)) exp (�V(t� �))�� (exp (�V

))� exp ((��)�(1��(�)) ), (9)

where �(�) is the normalized autocorrelation function of noise plus signal,
represented by the last two terms in Equation (5). We consider here the input
noise with a Lorentzian power spectrum,

S
�
( f )�S

�
(0)/[1� ( f / f

�
)�]� (2��/� f

�
)/[1� ( f / f

�
)�], (10)

so that the spectrum is frequency independent, ‘white’, at low frequencies and,
at frequencies higher than a ‘corner frequency’, f

�
, decreases as 1/ f �. The

integral of S
�
( f ) over all frequencies represents the total noise power and

equals to the mean-square fluctuation, ��. The autocorrelation function for
this noise is given by a single-exponential dependence with a characteristic
decay time of 1/(2�f

�
). At f� f

�
, Equation (7) becomes

S( f )� 2Q�r(V

) exp�

(��)�
2 ��

2(Qr(V

)��)�

�f
�

exp ((��)�)
�
�
�

(��)����
n!n

(11)
�

(Qr(V

)�V

�
)�

2
exp ((��)�)	( f� f

�
).

The first term of this expression accounts for the noise of a ‘steady’ Poisson
wavewith time-independent pulse generation rate that exceeds the equilibrium
rate r(V


) by a factor exp((��)�/2). The second term yields the system response

to the input noise and includes not only the small-amplitude transduction, but
also the effects caused by frequencymixing. Themixing between different noise
spectral components is described by the terms under the summation sign. For
small noise intensities; that is, for �� 0, this sum approaches unity. The last
term represents the transfer of a small signal indicating a finite power transduc-
tion coefficient of (Qr(V


)�)� even in the absence of external input noise. The

addition of noise enhances the signal component exponentially with the noise
mean-square amplitude.

Encoding of the input voltageV(t) into the time-dependent pulse generation
rate r(V(t)) is described by the last two terms in Equation (11). Indeed, if � and
V
�
were zeros, these terms would vanish and the output spectrum would be

reduced to that of a steady Poisson wave given by Equation (6). The second
term, representing the transduction of input noise to the system output, would
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also vanish if the noise were weakly correlated, that is, f
�
�
. This result is in

accord with Equation (10), which shows a decrease in the low-frequency noise
spectral density, S

�
(0), as the corner frequency is increased.

Experimentally, the intensity of the signal spectral component described by
the last term in Equation (11) depends on the resolution of the spectrum
analyzer used for measurements. To calculate this component (of dimensional-
ity A�/Hz), we divide the prefactor at the delta-function in Equation (11) by the
spectrum analyzer resolution, �f

�
. The output SNR is now obtained as the

ratio of the last term of Equation (11) to its two first terms

SNR�

(�V
�
)�r(V


)

2�f
�

exp�
(��)�

2 �
2�

2r(V

)

�f
�

exp�
(��)�

2 �
�
�
�

(��)��
n!n

. (12)

It is clear that in addition to a trivial dependence on input signal amplitude,V
�
,

and spectrum analyzer resolution, �f
�
, the quality of the output signal can be

regulated by the input noise parameters such as intensity, �, and frequency
bandwidth, f

�
. A simple dependence of the SNR on pulse generation rate for a

steady Poisson wave with adjustable rate, SNR	 r, is modified by the second
term of the denominator in Equation (12).

Figure 1 illustrates the main features of the SNR calculated according to
Equation (12). The results show that it is always possible to select noise
parameters in such a way that noise addition to the system input will improve
the output signal quality. If the bandwidth of the input noise is large enough,
then introduction of such small-intensity noise improves signal transduction.
The output SNR first grows to a certain value defined by the initial rate and
the ratio between the initial rate and the noise corner frequency. Then, as the
noise intensity increases, the SNR starts to fall, eventually decreasing below its
value for zero input noise. The optimal noise intensity corresponding to a
maximum in the SNR is shown in Figure 2. The analysis demonstrates that for
f
�
/r(V


) ratios smaller than 10� it can be estimated using the following expres-

sion

�
���

�
1
��ln

�f
�

2r(V

)
. (13)

The introduction of input noise with sufficiently short correlation time (large f
�
)

and with intensity �
���

or smaller always increases the output SNR value. It is
apparent that in order to obtain any improvement in theoutput SNRby adding
noise with a Lorentzian spectrum described by Equation (10) (single-pole

263Stochastic resonance in ion channels



Figure 1. The output signal quality, measured as the signal-to-noise ratio (SNR), can
be improved by addition of input noise if the ratio of the noise cut-off frequency, f

�
, to

the process initial rate, r(V

), is high enough. Numbers in the boxes show �f

�
/2r(V


)

values used in Equation (12). For the noise with a Lorentzian spectrum used in the
calculations, an improvement in the output signal is obtained if �f

�
/2r(V


)� 1, other-

wise, the introduction of noise only leads to deterioration of the output signal.

passive filtering), the condition �f
�
/2r(V


)� 1 has to be fulfilled. In the case of

noise with a sharp spectral cut-off (rectangular spectrum) the �/2 factor here
and in Equations (12) and (13) should be omitted (Bezrukov and Vodyanoy,
1997b).

Figure 3 reveals the dependence of the output SNRon the initial rate r(V

) at

different input noise intensities. The trivial proportionality between the SNR
and the statistics (r(V


) ) expected for a time-independent Poisson process is

markedly changed by noise addition. At sufficiently small initial rates, the
noise addition improves the output signal quality. This general conclusion
holds for any parameter combination. Results are shown in Figure 3 for
�f

�
/2� 1 and (�V

�
)�/2�f

�
� 2.

In summary, our model is very general as it describes noise-facilitated signal
transduction in a variety of systems with exponential statistics ranging from
‘kT-driven’ molecular processes of electron transfer, ion channel conforma-
tional transitions, or biochemical reactions to more elaborate system with
macroscopic sources of internal noise (Jung and Wiesenfeld, 1997).
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Figure 2. The maximal increase in the output signal-to-noise ratio (SNR) is achieved
at an optimal noise intensity (vertical axis on the left) that depends on the ratio of the
noise corner frequency, f

�
, to the process initial rate, r(V


). The SNR value at the

optimal noise intensity (vertical axis on the right) is given in units of the initial SNR,
that is, the output SNR in the absence of input noise. Interestingly, the increase in the
output SNR value can reach two orders of magnitude as the corresponding optimal
noise changes by only three-fold.

11.3 Ion channels as molecular ‘stochastic resonators’

One of the main parameters describing nonlinear properties of voltage-sensi-
tive ion channels is ‘gating charge’ (Hille, 1992). This parameter reflects the
sensitivity of ion channel conformational dynamics to the electric potential
drop across the cell membrane. Here, we consider a channel that has only two
states, open and closed, with probabilities P

 
and P

�
, respectively. We also

suppose that the conformational change underlying the closed—open transi-
tion moves n electron charges from one membrane surface to the other.
Following Hodgkin and Huxley’s (1952) and Hille’s (1992) treatment, for the
fraction of open channels we obtain

P
 
�

1
1� exp ((w� neV)/kT)

, (14)

where w is the increase in the conformational energy in the closed—open
transition when the transmembrane potential is zero. Equation (14) represents
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Figure 3. At small initial rates the output signal-to-noise ratio (SNR) is always in-
creased by noise addition to the signal input. In the presence of noise the SNR deviates
from the straight solid line corresponding to an ‘undisturbed’ Poisson process (zero or
small input noise) giving larger SNR values. The higher the noise intensity (��,
numbers in boxes), the greater is the improvement in the output signal quality at small
r(V


). As the initial rate grows, the SNR starts to saturate and eventually declines to

values less than the SNR for the ‘undisturbed’ process.

the well-known Boltzmann equation rewritten for channel conformational
statistics. In the case when the closed channel population dominates, i.e.,
P
 

�P
�
, Equation (14) yields

P
 

� exp�
�w
kT � exp�

neV
kT � . (15)

In this case it is easy to see that the fraction of the open channels and the rate of
single-channel openings, r

�
(V), are related to each other through the channel

lifetime in the open conformation, �
 
, according to P

 
� r

�
(V)�

 
. Therefore,N

independent channels will produce a randomprocess of ion current pulses with
the generation rate r(V)�Nr

�
(V) that is given by

r(V)�
N
�
 

exp�
�w
kT � exp�

neV
kT � . (16)

If the probability P
 
of finding a channel in its open state is small enough, the

correlations between successive pulses generated by the same channel can be
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ignored. Then, in the case of time-dependent voltage, VV(t), that is slow
enough for the channel gating system to respond, the current pulses represen-
ted by Equation (16) will constitute a time-dependent Poisson process de-
scribed by Equation (3) with the ‘equilibrium’ generation rate being

r(0)�
N
�
 

exp�
�w
kT � . (17)

Experimentally, the gating charge is determined from the dependence of the
fraction of open channels on the applied potential. The relative maximum
conductance is measured during depolarizing voltage steps of different ampli-
tudes (Hodgkin and Huxley, 1952). The ‘limiting equivalent voltage sensitivities’
are expressed in millivolts per e-fold increase in Na� or K� conductance and
are calculated from the steepest part of the conductance versus voltage step
amplitude curve at P

 
�P

�
. This procedure gives an equivalent sensitivity of

3.9mV for Na� and 4.8mV for K� channels that corresponds to about 6 and
4.5 electron charges of gating charge (Hille, 1992).

It should be noted that the gating charge determined in this way is just a
convenient empirical parameter that probably underestimates the actual
charge of the channel ‘voltage sensor’. If the structural change that causes
channel opening can move sensor charges only a fraction of the distance
between membrane surfaces, the sensor charge has to be larger. Nevertheless,
the concept of gating charge offers an useful quantitative description of chan-
nel conformational balance and also suggests a simple physical explanation for
a complex biological phenomenon.

Biological ion channels have been successfully modeled with a number of
channel-forming peptide compounds (Sansom, 1991; Woolley and Wallace,
1992; Cafiso, 1994). From the point of view of electrical signal transduction,
the most interesting model of an ion channel is the antibiotic alamethicin. It
forms channels with conformational dynamics that are highly voltage de-
pendent. The ‘equivalent voltage sensitivity’ of these channels is remarkably
close to that of Na� channels of excitable membranes. The mechanism of
alamethicin channel sensitivity to transmembrane voltage is not fully under-
stood (for a review, see, e.g., Cafiso, 1994). Most popular explanations refer to
the interactions between the electric field within the membrane and the sub-
stantial dipole moment of the alamethicin molecule (about 75 debye). The
voltage-dependent insertion of peptide molecules adsorbed to the membrane
surface is the oldest model of alamethicin channel formation (Baumann and
Mueller, 1974). We have chosen it from among the others for its simplicity
and we use it here as an illustration only. Figure 4 shows how the electric field
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Figure 4. A model explaining alamethicin channel ‘gating’ by voltage-sensitive equi-
librium between populations of peptide molecules adsorbed to the membrane surface
and molecules traversing the membrane. The electric field (E) interacts with the
alamethicin dipole moment, changing the equilibrium constant. Molecules within the
membrane spontaneously and reversibly form ion-conducting clusters of different
sizes. Bigger clusters correspond to higher current levels. (From Bezrukov and
Vodyanoy, 1997b.)

across the membrane interacts with the alamethicin dipoles, inducing a
change in the peptide orientation from the surface orientation to the trans-
membrane one. Molecules then reversibly aggregate into ion-conducting clus-
ters of different sizes. The particular technique employed for alamethicin
reconstitution into planar lipid bilayer membranes is described elsewhere
(Bezrukov and Vodyanoy, 1993, 1997b). To obtain the steady-state conditions
that are necessary for accurate measurements, the lipid bilayer membranes
were equilibrated with alamethicin-containing aqueous solution for 2—3 h at a
constant holding potential of 100—150mV. The membrane capacitance was in
the 30—50 pF range.

Ion channels of alamethicin show several distinctly different and well-
defined conductance states that are probably related to peptide aggregates of
different sizes (see Figure 4). They appear as spontaneous current ‘bursts’
where ionic current undergoes several random transitions between different
current levels and then returns to the initial background level (Hall et al.,
1984). Figure 5 illustrates the phenomenon of ionic current bursts at two time
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Figure 5. ((a) and (b)) Ionic currents through the membrane containing alamethicin
channels are shown for two different time scales. A holding potential of 130mV
(positive from the side of peptide addition) and a 5-mV (r.m.s.), 0.5-Hz sinewave signal
are applied to the membrane. Ion channels appear as random ‘current bursts’ with a
fine structure revealed by the higher resolution recording. Different current levels
within a single burst correspond to different cluster sizes (see Figure 4).

scales differing by a factor of 500. The probability of observing a channel
burst event is voltage dependent. For the particular lipid (DPhPC), salt (1M
NaCl aqueous solution), range of transmembrane voltages (100—150mV,
positive from the side of peptide addition), and all other parameters held
constant (alamethicin concentration, temperature etc.), the average
alamethicin-induced conductance grows exponentially with voltage as exp(V/
(4.1� 0.6mV). Taking into account that the structure of a single burst does
not depend on the applied voltage appreciably (Boheim, 1974), the rate of
channel generation is described by Equation (16) with the gating charge ne
being equal to 5 to 7 electron charges. Exponential dependence of channel
open probability on voltages in this range means that alamethicin channels
do not reach the saturation predicted by Equation (14) over more than five
decades of probability change. The interpretation of this experimental obser-
vation is indeed very model dependent; however, formally, it suggests that the
difference in the conformational energy between closed and open alamethicin
channel states, w, is much larger than for Na� or K� channels of excitable
membranes.
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Figure 6. Spectral density of the membrane ionic current (upper trace) in comparison
with the spectral density of the current through a resistor of equivalent conductance
(peak at the bottom). No external noise is applied. It is evident that voltage-dependent
ion channels give a much higher output signal than the equivalent resistor. Spectra
were obtained as averages over 23 spectral estimates with a total duration of 20min.
(From Bezrukov and Vodyanoy, 1997b.)

11.3.1 Periodic signal modulation

If the transmembrane potential is modulated by a periodic signal, then channel
generation rate is also periodically modulated. This is exactly the case for the
ion current realizations shown in Figure 5 where a slow (0.5Hz) 5-mV (r.m.s.)
sine wave signal was added to a holding potential of 130mV. Though seem-
ingly random, the moments of channel onsets contain information about the
sine wave signal: the corresponding periodicity is easily detected when the
spectral analysis technique is applied. The power spectral density of the output
signal from the recordings shown in Figure 5 is presented in Figure 6. It reveals
the correlations between channel generation rate and the input signal as a
pronounced peak at the signal frequency. The peak at the bottom is measured
using the same set-up with the membrane substituted by a carbon resistor
whose conductance is equal to the average membrane conductance for the
same experiment. It is evident that ion channels produce a higher output signal
than a passive circuit of the same conductance. To calculate the ‘gain’, we
compare voltage-dependent alamethicin channels with hypothetical
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‘alamethicin channels’ with the gating charge switched off, that is, ne� 0.
Current through the parallel array of voltage-dependent channels is propor-
tional to a product of applied votage, V(t)�V


� 	V(t), and channel gener-

ation rate. Using Equations (2) and (4) and keeping terms linear in 	V(t) only,
we obtain

	[V(t)r(V(t))]� 	V(t)r(V

)� 	V(t)r(V


)neV


/kT (18)

For voltage-insensitive channels n is zero and the corresponding expression for
	[V(t)r(V(t))] does not contain the second term in the right-hand side of
Equation (18). The square ratio of these expressions yields the small-signal
power transduction

��� (1� neV

/kT )�. (19)

The obtained value is in good agreement with the data shown in Figure 6. The
result, however, holds for small and slow signals only. If a signal is too fast for
the channel ‘gating system’ (for alamethicin channels the gating time should
include not only field-induced flipping of the molecules but also aggregation
kinetics, as shown in Figure 4), frequency corrections should be added to
Equations (18) and (19). Thus, while the measured transduction coefficient is in
good agreement with the predictions (n� 6.3) of Equation (19) for a slow
signal, Figure 7 illustrates that it deviates from the predictions for a fast signal.
The output signal is calculated as S( f

�
)�N( f

�
��f ), where S( f

�
) is the height

of the spectral component at the signal frequency, and N
�
( f
�
��f ) stands for

the background noise spectrum that represents an average over spectral
components in the immediate vicinity of the signal peak. The data show that
transduction is proportional to the square of the holding potential and is
nearly frequency-independent below 1Hz. A 3-dB decline corresponds to
about 2Hz. Signals with higher frequencies are too fast for the alamethicin
‘gating system’ to respond, so that, with the signal frequency growing, the
transduction coefficient approaches unity or 0 dB, corresponding to ne� 0
(see Equation (19)).

The data shown in Figures 6 and 7 refer to a deterministic input, i.e., a
constant DC holding potential in the presence of a sine wave signal; no
external noise was added at this stage. The smooth power spectra (an example
of which is given in Figure 6) correspond to the intrinsic randomness of
‘kT-driven’ channel conformational transitions. Interestingly, the shapes of the
noise spectrum in Figure 6 and of the transduction coefficient in Figure 7 are
very similar. This similarity suggests that the mean duration of the single-
channel current burst determining the noise spectrum off-set is also respon-
sible for the frequency dispersion of the channel sensitivity to voltage.
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Figure 7. Transduction coefficient measured as the ratio of the channel output-signal
peak to the signal peak of the equivalent resistors of holding potentials of 100 and
150mV. The latter corresponds to the output signal expected for ion channels with
their voltage sensitivity switched off, that is ne� 0 (see Equation 16). At low frequen-
cies, the coefficient is in good agreement with the model prediction. As frequency
increases above 1—2Hz, the channel sensitivity to voltage decreases. The sinewave
input signal becomes too fast for the channel-formation reactions (see Figure 4) to
follow. (From Bezrukov and Vodyanoy, 1997b.)

11.3.2 Noise enhancement of signal transduction

The effect of external input noise on signal transductionwas studied in terms of
the output SNR and the output signal amplitude dependence on noise magni-
tude. The output SNR was calculated as the ratio of the signal spectral
component (corrected for the background noise spectrum) to the background
noise spectrum SNR� ( S( f

�
)�N( f

�
��f ))/N( f

�
��f ). A white noise from a

laboratory-made noise generator was filtered by a band-pass filter restricting
its spectrum to the 3.2mHz to 5.3Hz frequency range (Bezrukov and
Vodyanoy, 1997b). The generator output was varied within 0—20mV (r.m.s.)
limits. The upper curve in Figure 8 shows the power spectral density of ionic
current through alamethicin channels in the presence of 8-mV external input
noise. Under the particular conditions used in this experiments, a positive
(from the side of peptide addition) holding potential of 140mV supports an
average initial rate of about 0.3 channels/s. Application of the 8-mV noise
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Figure 8. Spectral density of ionic current through the membrane in the presence of
8mV (r.m.s.) input noise in comparison with the spectral density of membrane capaci-
tive current. The membrane capacitive current was measured by inverting the initial
holding potential of �140mV to �140mV. Negative (from the side of peptide
addition) voltage completely ‘removed’ ion channels from the membrane, restoring its
resistance to about 10��ohms andmaking all ohmic contributions negligible. An input
signal of 0.5Hz and 5mV (r.m.s.) was applied in both cases. (From Bezrukov and
Vodyanoy, 1997b.)

increases this rate by about 10-fold, increasing both the output signal and the
background noise. The lower curve in Figure 8 corresponds to the bilayer
capacitive currents. It was measured from the same bilayer but with ion
channels removed by switching the polarity of the holding potential to nega-
tive. The input signal and noise are filtered by the membrane capacitance of
about 35 pF in such a way that the frequency correction is proportional to the
frequency squared. Indeed, the input voltage from noise and the signal gener-
ators is now applied to the operational amplifier input through a purely
capacitive load (dielectric membrane devoid of ohmic channel conductance)
whose impedance falls as the inverse of the frequency. Figure 8 illustrates that
capacitive contributions to the output signal or noise in the signal vicinity are
negligible. The decline of capacitive current spectral density starting at fre-
quencies above 5Hz is due to additional filtering of the noise generator output
that was used to reduce possible overload of the electronics by wide-band
noise.
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Figure 9. Introduction of input noise facilitates signal transduction. A major noise-
induced increase in signal output is achieved at essentially constant, or even slightly
improved, signal-to-noise ratio (SNR). The output signal (triangles) and the SNR
(circles) are given as ratios of their values at zero input noise. Two signal frequencies,
0.2Hz (filled symbols) and 0.5Hz (open symbols), were used. The inset shows the SNR
statistics at a finer scale. (From Bezrukov and Vodyanoy, 1997b.)

The addition of external input noise significantly increases the output signal
and, for optimal noise amplitudes, even improves output signal quality as
quantified by the SNR. Figure 9 presents results for two signal frequencies,
0.2Hz (filled symbols) and 0.5Hz (open symbols). One observes that a 20-mV
input noise increases the output signal by about 3� 10� times (or 35dB),
preserving the initial SNR value. At some intermediate noise intensities
(around 10mV) an increase in the SNR is observed, demonstrating a charac-
teristic feature of systems with stochastic resonance: the small-intensity input
noise increases both output signal and noise, but the signal grows somewhat
faster. The statistics of the SNR measurements on a finer scale are displayed in
the inset in Figure 9.

Before comparing our theoretical predictions with the experimental results
we should note that our model has been formulated for idealized inertia-free,
nondynamical systemswith an instantaneous response to the applied stimulus.
Alamethicin channels, as any other real object, however, have inertia in their
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response. As it follows from Figure 7, signals with frequencies exceeding 2Hz
are progressively less effective in influencing alamethicin channel behavior,
implying that the response cut-off frequency of 2Hz should be used as the noise
corner frequency, f

�
. Taking r(V


) equal to 0.3 s�� and n in the range of 5 to 7,

fromEquation (13) we obtain �
���

� 6 to 8mV. This value is in good agreement
with the experimental findings presented in Figure 9. The same is true for the
output SNR (Equation (12)) given by our model for these parameters. The
predicted increase is about 3 dB and is very close to the measured SNR value.

The agreement between the experimental results and the predictions from
the time-dependent Poisson model is surprisingly good, taking into consider-
ation that several of the theoretical assumptions do not hold in our experi-
ments. While the assumption about the exponential dependence of pulse
generation rate on applied voltage has been verified by our measurements of
the average alamethicin-induced conductance versus applied DC holding
potential, the absence of pulse—pulse correlations is not so well established. In
fact, autocorrelation analysis of alamethicin channel currents at high open-
channel densities shows an increase in correlation times, suggesting interac-
tions between different pulses (Kolb and Boheim, 1978). This behavior may be
important at high noise intensities that induce a significant increase in
alamethicin conductance and, therefore, ‘switch on’ interpulse interactions.
The assumption of the weakness of the input signal strength, namely V

�
� kT/

ne and V
�
��, is also obviously violated. In our experiments we used signals

with amplitudes comparable to the equivalent channel voltage sensitivity
(3.5—4.7mV) and to the input noise amplitude (0—20mV). These ‘high’ signal
amplitudes were necessary for the reliable differentiation of the signal from the
noise background. Nevertheless, the theoretical predictions are accurate
enough to allow us to state that our model not only gives a solid qualitative
picture of the phenomenon, but that it also provides a robust quantitative tool
for the analysis of stochastic resonance at the molecular level.

11.4 Concluding remarks on small-signal stochastic resonance

Our theoretical and experimental results allow us to discuss a number of
generic and frequently discussed questions concerning noise-facilitated small-
signal transduction.

(1) Addition of input noise can increase output signal amplitude. Our model shows (the
last term in Equation (11)) that the signal component in the output spectrum grows
with noise (r.m.s.) value � as

S
����


	 exp ((��)�), (20)
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and does not depend on the noise frequency band. The increase in signal transduc-
tion does not saturate with � as in other models (e.g. Kiss, 1996) and does not
depend on signal frequency.

(2) Addition of noise with optimized parameters enables the improvement of the output
signal quality. Our model predicts an infinite growth in the output SNR value, if
additive noise is correlated poorly enough, i.e.,

f
�
/r(V


)� 
, (21)

and its amplitude is kept at the level prescribed by Equation (13). As it follows from
Equation (12), the noise-induced SNR improvement does not depend on signal
frequency. It is necessary to note that our calculations were performed for a
periodic signal (Equation (5)), whereas several authors argue, quite reasonably, that
practically interesting cases should refer to aperiodic signals occupying a finite
frequency range (Neiman and Schimansky-Geier, 1994; Collins et al., 1996; Kiss,
1996). It is exactly the frequency-independent behavior of the signal amplification
and output SNR values obtained from our model that makes it applicable also to
aperiodic signals. Indeed, any aperiodic signal occupying a finite frequency range
can be represented by a superposition of periodic signals. As long as the highest
frequency of this range is much smaller than all the other characteristic frequencies
in the model, all our conclusions hold for aperiodic stimuli as well.

(3) Small-signal stochastic resonators and the input—output SNR issue. This is, prob-
ably, the most controversial issue in stochastic resonance research. First of all, a
discussion of this issue depends on the particular definition of the SNR. If,
following standard textbooks on random data analysis (e.g., Bendat and Piersol,
1986), we define the SNR as the ratio of the signal amplitude to that of noise in
some finite frequency range, then the output SNR value can exceed the input SNR
value. Indeed, if the input noise is distributed over a finite frequency range, �f, and
the signal frequencies are limited to a sufficiently smaller range, �f

�
��f, then it is

always possible to ‘filter out’ noise contributions outside �f
�
. At �f

�
small enough,

even a deteriorated SNR at the output of a stochastic resonator can be substan-
tially improved to exceed that at the input, if the resonator bandwidth is properly
adjusted.

To distinguish between optimal filtering and some alternative mechanism that
could be responsible for the improvement in the SNR, researchers have defined the
SNR as a ratio of the squared Fourier signal component to the power spectral
density of the output noise at the signal frequency (e.g., Douglass et al., 1993; Gingl
et al., 1995; Jung, 1995). Then, in the linear-response limit, it is easy to show that the
output SNR never exceeds the input SNR (DeWeese and Bialek, 1995; Dykman et
al., 1995). Indeed, noise components that, by their frequencies, are infinitely close to
the input signal are indistinguishable from the signal itself and are amplified by the
stochastic resonator with the same transduction coefficient. Frequency mixing
only adds additional noise components to the system output. In the case of large
signals, which is not addressed by our work, the situation is not that simple (Kiss,
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Figure 10. In the case of small-signal stochastic resonance, the output signal-to-noise
ratio (SNR) never exceeds the input SNR. The model, based on a time-dependent
Poisson process, shows that the output SNR can approach its input value only for
small ratios of the noise corner frequency, f

�
, to the initial process rate, r(V


). The

numbers in boxes show different �f
�
/2r(V


) values used in the calculations.

1996; Loerincz et al., 1996).
In our model the output SNR versus input SNR ratio can be calculated from

Equations (10) and (12) as

 �

(��)� exp�
(��)�

2 �
�f

�
r(V


)
� exp�

(��)�
2 �

�
�
�

(��)��
n!n

. (22)

This ratio is plotted in Figure 10 as a function of �� for different f
�
/r(V


) values. As

can be observed, the output SNR never exceeds the input SNR but approaches its
value for small noise amplitudes when the initial rate is high, r(V


)�
. Thus,

stochastic resonance is a mechanism for noise-induced signal amplification (Equa-
tions (11) and (20)); it is also a mechanism for noise-induced improvement of the
performance of a signal transducer (Equations (12) and (13)). However, with
respect to the input SNR, the small-signal stochastic resonance does not yield any
additional benefits in comparison with optimal filtering techniques.
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12

Ratchets, rectifiers, and demons: the constructive
role of noise in free energy and signal transduction

R. DEAN ASTUMIAN

12.1 Introduction

A particle in solution is subject to random collisions with solvent molecules,
giving rise to the erratic, ‘Brownian’, motion first observed and reported by
Robert Brown in 1826. This dynamic behavior was described theoretically by
Langevin (1908), who hypothesized that the forces on the particle due to
the solvent can be split into two components: (1) a fluctuating force that
changes magnitude and direction very frequently compared to any other time
scale of the system, and (2) a viscous drag force that always acts to slow the
motion induced by the fluctuation term. Einstein (1906) derived a (fluctuation—
dissipation) relationship between themagnitudeof the fluctuation termand the
viscous drag coefficient that dampens its effect. Since the strength of the
fluctuation increases with temperature, the fluctuating force is often called
thermal noise. If the particle is a molecule, bombardment by the solvent also
allows exploration of the different molecular configurations, i.e., the arrange-
ments of the atoms of the molecule relative to each other. Biological (and many
other) macromolecules often have only a few stable configurations, called
conformations, with large energy barriers separating them. Thermal noise
‘activates’ transitions over these barriers from one conformation to another.
Kramers (1940) formulated a theory for thermal noise-activated transitions
between different conformations based on diffusion over energy barriers (e.g.,
Hänggi et al., 1990). Indeed almost all chemical reaction pathways are de-
scribed in terms of rate constants that specify the probability that thermal noise
will provide sufficient energy to surmount barriers separating chemical states.
Since the development of a statistical description of thermodynamics, where
heat continuously sloshes back and forth between different parts of any system
and homogeneity is maintained only on average, scientists have attempted
to devise ways to harness the fluctuations inherent even in equilibrium
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systems to accomplish work. If, without expending energy, we could trap with
any certainty a system in a state where one part is hotter than another, it would
be possible to harness the heat flow resulting from removal of the constraints
on the system to do useful work. The thought experiments involved in under-
standing why this is impossible have provided excellent theoretical labora-
tories in which to investigate the deeper implications of the second law of
thermodynamics.

12.2 Maxwell’s demon

Perhaps the first and most influential such construct is that due to Maxwell,
who proposed a device (often whimsically described as an intelligent being or
demon) that could open or close a gate separating two containers of a gas
depending on a measurement of the velocity of an oncoming molecule (Leff
and Rex, 1990; von Baeyer, 1998). If the demon would open the gate only to
fast molecules coming from one side and to slow molecules coming from the
other, a thermal gradient would be formed without expenditure of external
energy — a clear violation of the second law. Imagine two identical chambers
filled with gas that are open to one another. At some time the two chambers are
isolated from one another by sliding a partition between them. Because of
fluctuations in density and average kinetic energy, the pressure and tempera-
ture in the two chambers will not be identical. This is most easily recognized if
there is only one or a few molecules, but it is true in general. With an
appropriate apparatus, the reequilibration between the two chambers when
the partition is removed could be used to do work, e.g., the lifting of a weight
attached to a piston that moves when the gas in the chamber that is hotter and
denser expands into the chamber where the gas is cooler and less dense. If we
simply guess in which direction the expansion will occur and arrange our
apparatus and weight accordingly, half the time the weight will be lifted, but
half the time we will be wrong and the weight will descend. On average no net
ork results. There are two approaches to attempt to improve on this result.
The first, discussed by most authors writing on Maxwell’s demon, is to
determine in which chamber the product of density and temperature is greater
and use this information to guide the set-up of an apparatus to extract the
energy released from reequilibration. If such a measurement could be done
without expenditure of energy, a perpetual motion machine could be construc-
ted. Early attempts to resolve the paradox focused on the measurement
process itself, arguing that interacting with a system to make a measurement
intrinsically involves a finite dissipation that overcompensates any work out-
put of the device. Landauer (1991), however, demonstrated several convincing
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physical set-ups by which a measurement can be made without any dissi-
pation. This stimulated Bennet (1987) to consider how much energy is dissi-
pated in the process of returning the measuring device to its initial state by
erasing the acquired information. He found that the minimum energy required
is more than enough to make up for any work done by lifting weights. So, the
principle of ‘you can’t get something for nothing’ remains, yet the investiga-
tions leading to exorcism of Maxwell’s demon have been of great importance
in the development of modern ideas of computing and information theory.

12.3 Ratchets and rectifiers

A second possible approach to extract work from thermal fluctuations is to
design an apparatus involving weights and pulleys where, if we guess correctly,
the reequilibration raises a weight, but, if we guess wrongly, the weight is
prevented from descending. Such a device is a ratchet. Macroscopic ratchets
and rectifiers passively convert external zero-average fluctuating forces into
net motion (current). What happens if such devices are shrunk to microscopic
size? This was the question posed by von Smoluchowski (1912) and later by
Feynman in his Lectures on Physics (Feynman et al., 1966), where he analyzed
a microscopic ratchet (a cog with asymmetric teeth) and pawl (Figure 1a). The
ratchet’s teeth are arranged so that it is impossible to drag the pawl up one
face. At first glance it would seem that a paddlewheel attached to such a ratchet
should convert thermal fluctuations to unidirectional motion. If the wheel
cannot go backward, molecules hitting the paddle would cause an irregular
but relentless rotation of the wheel that could lift a weight. This would be a
perpetual motion machine of the second kind, a contradiction to the second
law. Feynman resolved this paradox, showing that consistent application of
the laws of statisticalmechanics to all parts of the device restores the result that
work cannot be extracted from thermal noise in an isothermal system. In order
to function, the pawl must be attached to the ratchet by some elastic element,
say a spring, which is also influenced by thermal noise. When the spring is
extended the pawl is down and the device works as anticipated. However,
occasionally, by thermal noise the spring contracts, lifting the pawl and
disengaging the ratchet mechanism. When this happens, molecular collisions
with the paddlewheel cause forward and backward motion with equal prob-
ability. Because of the asymmetry, however, it takes only a tiny motion
backward to set the device back far enough that when the pawl reengages the
device moves counterclockwise by one tooth, but it takes a much larger
movement forward to advance the device by one tooth in the clockwise
direction. If the paddlewheel and pawl are at the same temperature, the
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Figure 1. (a) Depiction of Feynman’s ratchet. Because of the asymmetry of the ratch-
et’s teeth, it might seem that even thermal fluctuations acting on a paddlewheel
attached to the ratchet could be used to do work. However, the behavior of the spring
is also influenced by collisions with molecules, which cause it to vibrate. When the
spring is down, molecular collisions with the paddlewheel indeed tend to cause the cog
to turn only in the planned direction. However, in the rare event that the spring is up,
disengaging the one-waymechanism, the randommolecular forces on the paddle cause
forward and backward motion with equal probability. It only takes a very tiny
movement of the wheel backwards to set the device back one tooth, whereas to send it
forward by a tooth requires a much greater motion. If the paddle and the pawl are at
the same temperature so that the fluctuations on the pawl are as strong as those
driving the paddlewheel, the ratchet, despite appearances, will not turn. The equations
are approximate formulae for the frequency of moving a step in the clockwise (cw) and
counterclockwise (ccw) direction.�U� !h�, where ! is the spring constant and h is the
height of a tooth on the cog. (b) Plot of net rate versus T from Equation (1), with
A� 10	/s and �U� 50meV.



Figure 2. (a) A molecular ratchet constructed of a triptycyl paddlewheel attached to a
helix-forming helicene pawl by a single bond around which rotation is possible.
(b) Calculated �H as a function of the dihedral angle about this bond. Despite the
anisotropy in the structural design, at equilibrium, clockwise and counterclockwise
transitions over the barrier are equally likely, for structural reasons analogous to those
given by Feynman for his ratchet and pawl. (c) Hypothetical scheme for converting this
ratchet to a chemically driven molecular motor by linking the ‘pawl’ to a catalyzed
reaction (conversion of S to P). When the active site is empty, the pawl is flexible and
the barrier to rotation small. Binding substrate at the active site reduces the flexibility
of the pawl, and raises the barrier to rotation. If the catalyzed reaction is far from
equilibrium, the fluctuations of the barrier height will not obey detailed balance and
can lead to unidirectional rotation of the triptycyl paddlewheel — a chemically driven
molecular motor.

tendencies to move forward, owing to the fluctuating force acting at the
paddlewheel, and tomove backward, owing to the fluctuating engagement and
disengagement of the pawl, exactly cancel; despite our macroscopic intuition,
the ratchet will not rotate at equilibrium.

Recently, Kelly and colleagues at Boston College have synthesized an
organomolecular ratchet with a triptycene as the paddlewheel, linked to a
four-ring helicene as the pawl and spring (see Figure 2; Kelly et al., 1997, 1998;
Davis, 1998). Because the helicene has a twist to it, the force necessary to turn
the triptycene paddlewheel clockwise is less than is necessary to turn it
counterclockwise. This is illustrated by manipulation of ‘tinker-toy’ molecular
models and by the calculated plot of �H versus the dihedral angle. The energy
profile is strongly anisotropic, as expected for a ratchet, but of course is
periodic, with a repeat every 120°. Using the nuclear magnetic resonance
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(NMR) technique of spin polarization transfer, it was shown that despite the
anisotropy, consistent with the second law, the frequencies of clockwise and
counterclockwise turns are exactly equal — a neat experimental verification of
Feynman’s theoretical analysis.

Feynman also considered a modification of his ratchet. The temperatures of
the pawl and of the gas in the box containing the paddlewheel need not be
equal. Feynman showed that when the temperatures are different the imbal-
ance in the strength of the thermal noise acting on the paddlewheel and on the
spring does indeed cause the cog to rotate. Astonishingly, the device works
both ways — when the temperature of the paddlewheel is greater than that of
the spring, the ratchet rotates clockwise as our intuition would suggest. But
when the temperature of the spring is greater than that of the paddlewheel, the
ratchet’s rotation is counterclockwise! A simple equation illustrating this can
be derived from the two relations for the unidirectional rates shown in Figure
1, with T

�
�T

�
� 2�T and T

�
�T

�
� 2T, and

net rate�
A�U�T
2k

�
T�

e������!, (1)

where k
�
is the Boltzmann constant. The net rate is nonmonotonicwith respect

to the average temperature T (Figure 1b), and is maximized when �U� 2k
�
T,

illustrating the synergy between ‘thermal noise’ and an external energy supply
(the thermal gradient in this case) for doing work. Certainly in the case of the
molecular ratchet in Figure 2 there is no way to power it with a thermal
gradient. Is there some other possibility, such as linking the helicene pawl to a
chemical catalyst, or to a moiety that absorbs light and thus modulates the
height of the barrier for rotation? Recent research has focused on the interplay
between thermal noise and catalyzed chemical reactions or external signals,
both of which can serve as an energy source.

12.4 Biasing Brownian motion

To get a better insight into how Brownian motion can be biased by a fluctuat-
ing input to cause directed motion, let us consider two simple examples based
on diffusion of a particle in solution in the presence of electric potentials that
are turned on and off at random. The first is based on the ideas behind
Maxwell’s demon, and the second on the ideas behind Feynman’s ratchet and
pawl.
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12.4.1 Information ratchet

Imagine a negatively charged particle diffusing on a glass slide where there is a
periodic array of electrodes. The negative electrode of each pair is much closer
to the solution than is the positive electrode. Thus, when the potential is on, the
particle feels a series of repulsive barriers centered at the electrodes (see Figure
3a). If the ionic strength of the solution is large, theDebye distance is very small
and these barriers can be very sharp. Now, let us add a mechanism for turning
the potential on or off depending on where the particle is located at a particular
instant in time. We place a series of light beams, one just to the left of each
electrode pair (dashed line in Figure 3a), and one to the right (dotted line in
Figure 3a), and arrange it so that when the particle trips the dotted light beam
immediately to the left of an electrode pair a switch that turns the potential off
is flipped, and tripping the dashed beam to the right of the electrode pair turns
the potential on. Thus, when a particle approaches the electrodes from the left,
the potential barriers are turned off. The potential will turn back on when the
particle diffuses either the short distance to the next dashed beam to the right,
or the longer distance to the dashed beam on the left. Because diffusion the
shorter distance is more probable the particle moves on average to the right. If
the two beams are very close to the electrodes, the net velocity to the right
approaches D/L, where L is the spacing between the electrodes and D is the
diffusion coefficient. If the voltage is very large, motion to the right occurs even
against a strong opposing force, but the velocity decreases exponentially with
the force

velocity�
k
�
T

�L
e�������, (2)

where we have used the Einstein relation D� k
�
T/�, and where � is the

coefficient of viscous drag. It is worth noting that at no point is elastic energy
stored in this mechanism — useful motion occurs solely by biasing the
Brownian motion of the particle.

12.4.2 Energy ratchet

The information ratchet described above works very well for driving directed
motion of a single particle, but it involves a rather complicated set-up. This is
because the mechanism requires actively obtaining and using information
about the particle’s whereabouts to decide when to turn the potential on and
off, much like Maxwell’s demon. It turns out that we can circumvent this
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Figure 3. Illustration of electronic implementation of biasing Brownian motion.
(a) Information ratchet. When a particle passes the dotted line, a circuit is tripped that
turns off the potential. It is more likely that the particle will trip the closer dashed line
to the right turning the potential back on than it is that the particle will diffuse to the
dashed line on its left. In this way, net left-to-right motion is ensured even though the
particle never experiences a ‘force’ in any direction. (b) Energy ratchet. When the
potential is on, the particle is tightly pinned in one of the wells at positions iL. Turning
off the potential allows free diffusion, and then turning the potential back on forces the
particle back to one of the wells. Because of the anisotropy, net motion from left to
right occurs as explained in Figure 4.



Figure 4. Schematic picture of how turning a ratchet potential (U) on and off can lead
to motion against an applied force. When the sawtooth potential (U

�
	
) is on, the

Brownian particle is tightly pinned at the bottom of an energy well. Then, when the
sawtooth potential is turned off, the particle begins to move downhill (to the left) with
velocity F/�, but also begins to undergo Brownian motion, which superimposes a
random walk on the deterministic drift to the left. If the potential remains off long
enough for the particle to diffuse the short distance �L, but not the longer distance
(1� �)L, net motion to the right occurs even though the applied force F

���
tends to

move the particle to the left.

requirement by setting up the system so a particle ‘feels’ an anisotropic force
when the potential is on. Consider a simple example where fluctuations are
imposed from the outside by turning a potential on and off in the device shown
in Figure 3b. The electric potential felt by a charged particle fluctuates as
shown in Figure 4, where a macroscopic force is superimposed as a net tilt to
show that the turning the potential on and off can actually drive the particle
uphill and thereby do work. If the external force is not too large the particle is
pinned near the bottom of one of the wells (for example at x� 0) when the
potential is on. Without noise, the particle would move to the left with a
velocity F

���
/�, when the potential is off, where � is the coefficient of viscous

drag. Thermal noise changes the situation dramatically. Because of Brownian
motion, a random walk is superimposed on the deterministic drift, and the
position of the particle can be determined only in terms of a probability
distribution. While the potential is off, the probability distribution simulta-
neously drifts downhill with a velocity F

���
/�, and spreads out like a Gaussian

function. After a time t
���

, the distribution (Figure 4) is

P(0 � x; t
���

)�
e�

"������������#�
	�����

�4�Dt
���

. (3)
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When the potential is turned on again, the particle is trapped in the well at iL if
it is between L(i� 1� �) and L(i� �). The probability of finding the particle
in each well, P

��
, is calculated by integrating the probability density (Equation

(3)) between these limits. Because of the anisotropy of the potential, a particle
starting at iL is more likely to be trapped in the well at (i� 1)L than in the well
at (i� 1)L for small enough F

���
and intermediate values of t

���
. The average

number of steps R in a cycle of turning the potential on for a time t
��

long
enough that the particle reaches the bottom of a well (t

��
� (L�/�U)), and then

off for a time t
���

, and then back on again is R�
�
�

����

iP
�
L, and the average

velocity is 
���RL/(t
���

� t
��
). Motion to the right occurs even though the

macroscopic force acts to push the particle to the left.

12.5 Chemically driven motion

The above descriptions show how external fluctuations can lead to directed
transport, but what about a nonequilibrium chemical reaction? Figure 5 shows
how a chemical reaction can drive directed motion by coupling a nonequilib-
rium-catalyzed reaction to the diffusion of a particle along a polymer chain. A
key requirement that is necessary (but not sufficient) is that detailed balance for
the transitions between one ‘state’ and another is broken (for details, see
caption to Figure 5). As described below and shown in Figures 6 and 7, both an
information and an energy ratchet can be driven with a nonequilibrium
chemical reaction.

12.5.1 Information ratchet

In Figure 6 we depict a positively chargedmotor molecule that diffuses along a
polymer filament each monomer of which also bears a positive electric charge.
The motor is an enzyme (E) that catalyzes the chemical reaction S�P, where
both S (substrate) and P (product) each bear a negative charge. When the
active site on the motor is unoccupied, the net charge on the motor is positive
and there is an energy barrier for the motor to pass over the positive charge on
the filament backbone, as shown on the curve labeled U

����
. When the active

site is occupied by either S or P the motor is electrically neutral, and in this
chemical state there is no barrier for the motor to diffuse over the positive
charges on the filament, as reflected in the flat potential profile labeled U

�����
.

If it could be arranged that the active site of the motor would most probably
be occupied when the motor is just to the left of a charge on the filament (the
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Figure 5. A chemically driven Brownian motor consisting of an electrically charged
catalytic particle undergoing one-dimensional diffusion along a linear polymer of
electric dipoles. As the particle catalyzes the chemical reaction SH�S��H�, its net
charge fluctuates depending on its chemical state (i.e., to what it is bound), and so the
interaction with the dipole fluctuates. In states i� 1 and 2, the particle is negatively
charged and so is pinned in the region near the positive end of a dipole. When the
particle is bound to proton (state i� 3), the net charge is zero and the particle is free to
diffuse along the backbone of the dipole with equal probability to the left and right.
Because of the asymmetry of the dipole potential, a short excursion to the right results
in the particle being one step to the right when proton dissociates. A much longer and
less probable excursion to the left is necessary to trap the particle a step to the left when
proton dissociates. Thus it might seem that the charge fluctuations caused by the
chemical reaction could drive net motion even when the reaction is at equilibrium. Just
as in Feynman’s ratchet, a more careful consideration shows that this is not true. Since
S� and H� are electrically charged, their concentrations depend on the position along
the dipole axis. The excess probability to bindH� near the 	� end and to bind S� near
the 	� end results in a detailed balance for all transitions, and zero net flow. However,
when the reaction is away from equilibrium, directed motion does occur. For
L� 10��m, �� 2� 10��Ns/m and reasonable values of the rate coefficients
(Astumian, 1997a), the average velocity is greater than 3 �m/s with �G� 1 kJ/mol.



Figure 6. Schematic illustration of a chemically driven ‘information ratchet’ in which
the anisotropy necessary to break the symmetry of the system and allow net motion is
contained within the position dependence of the transition constants between the
chemical states. For simplicitywe have taken the equilibrium constant for the chemical
reaction to be unity, but the results do not depend on this scaling.

gray regions), and unoccupiedwhen themotor is just to the right of a charge on
the filament (the black regions), left-to-right motion arises trivially, as de-
scribed in the case of an information ratchet driven by external fluctuations.
The barriers act as a series of gates. Every time a motor approaches a barrier
from the left, S or P most likely binds, thus causing the ‘gate’ to open. As soon
as the motor crosses the threshold, S or P dissociates, causing the gate to close
and preventing backward diffusion.

This condition is achieved if, for example, the association/dissociation of S is
fast and association/dissociation of P is slow in the gray region, and vice versa
in the black region, but only when the S�P reaction is far from equilibrium.A
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Figure 7. Illustration of a chemically driven energy ratchet, where the anisotropy is
found in the function describing the potential energy of interaction between the motor
and its track. The transition constants can be isotropic. These illustrative examples
focus on electrostatic models for simplicity, but the same symmetry and energetic
principles could equally well be implementedwithmodels involving protein conforma-
tional change.

simple parametrization in terms of a factor ‘a’ is shown in Figure 6, where in
the units used here, the dissociation constant K

$��
�K

$�%
� 1 for both S and

P. Note that the equilibrium constant of the overall reaction is independent of
‘a’, as it must be. The rate at which the system switches from the potentialU

����
to U

�����
is the sum of the rates for binding S and for binding P,
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�
�������

� "a[S]� (1/a)[P]#. Similarly, the rate at which the potential profile
switches fromU

�����
toU

����
is the sum of the rates for dissociation of S and for

dissociation of P, �
�������
����

� [a� (1/a)].
When the chemical reaction is at equilibrium ([S]� [P]), the ratio �

�������
/

�
�������
����

is independent of ‘a’, and no directed motion occurs. However, when
[S]� 1� [P], the active site is most likely occupied when a� 1 (i.e., in the
gray region), but most likely unoccupied when a� 1 (i.e., in the black region).
This situation results in net motion from left to right.

12.5.2 Energy ratchet

A second possibility for achieving net motion using energy released from a
chemical ratchet is modeled after an ‘energy’ ratchet, where the required
anisotropy is found in the interaction between the motor and the track. This
possibility is illustrated in Figure 7. Once again the motor bears a net charge,
but now the filament is depicted as an array of dipoles lined up head to tail. We
have shown several charges along the axis of each monomer of the filament so
that the motor is never more than a Debye distance (represented by the dashed
line) from one of the charges on the filament. When the active site of the motor
is unoccupied, the interaction between the charge on the motor and the
charges on the dipoles gives rise to a potential energy profile U

����
that is well

approximated by a saw tooth function as shown. When either S or P occupies
the enzyme active site, the charge on the motor is effectively neutralized and
the potential energy is an approximately flat function of position.

Here, the dissociation constants K
$��

and K
$�%

must each depend on posi-
tion, since the difference in electrostatic potential energy between the bound
and free states depends on position. In general, this position dependence is not
equally apportioned between the association and dissociation rate constants,
since the transition state may ‘look’ either more like the free or more like the
bound state. In Figure 7, we have illustrated a specific case loosely inspired by
the structure of the myosin molecule. In this picture, S enters and leaves the
binding cleft from the ‘top’, where we imagine the transition state is at the
mouth of the cleft, far from the filament surface. Thus, almost all of the position
dependence of K

$��
appears in the rate constant for dissociation of S, since the

transition state looks more like the unbound state. On the other hand, P enters
and leaves the binding cleft through an opening that is quite close to the
binding site itself, and so the transition state ‘looks’ more like the bound state.
Thus almost all of the position dependence of K

$�%
is expressed in the associ-

ation rate constant for binding P. At equilibrium, ([S]� [P]), a Boltzmann
relation between the �

�������
and �

�������
����
holds and no flow occurs (Astumian
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and Bier, 1996). Far from equilibrium, however (where [S]� 10�[P]/� (see
Figure 5)), the transitions between ‘bound’ and ‘free’ states are approximately
independent of position, and flow results as described for the energy ratchet
driven by external fluctuations.

12.6 Biased diffusion in practice

The phenomenon of fluctuation-driven transport was anticipated in some
sense by many authors. Even before publication of Feynman’s ratchet, A. F.
Huxley (1957) proposed a model for muscle movement based on biased
Brownian motion. His idea in some ways is very similar to Maxwell’s demon
because it requires the rate constants for binding and release of adenosine
triphosphate (ATP), adenosine diphosphate (ADP), and inorganic phosphate
(P

�
) to depend on the position of a motor molecule (myosin) along a bio-

polymer (actin). Passive devices that can convert external random fluctuations
into directed motion have also been investigated. Risken (1989) showed that
the mobility of a particle in an anisotropic periodic potential is not symmetric
with respect to an applied force. Wonnenberger, Breymayer and colleagues
investigated the effect of harmonic forcing on particles in a spatially periodic
pinning potential (Breymayer et al., 1982; Wonnenberger and Breymayer,
1984). Closer in spirit to Feynman’s work, Buttiker (1987) showed that a
symmetric spatially periodic temperature could drive transport of a Brownian
particle along a spatially periodic potential, with a velocity and sign that
depends on the phase relation between the temperature and potential periods.

A very significant recent development was the demonstration by Ajdari and
Prost (1992) that directed motion of a particle in a viscous medium could be
induced simply by turning a periodic anisotropic potential on and off. Orig-
inally proposed as a possible method for particle separation, this represents a
true Brownian motor because the mechanism utterly fails in the absence of
thermal noise, irrespective of the amplitude of the potential. Astumian and Bier
(1994) and Prost et al. (1994) showed that the mechanism (now known as a
flashing ratchet) works even if the potential (or equivalently the interaction) is
turned on and off randomly, but only within a frequency window for the
inverse correlation time of the fluctuation.

There have been several recent reviews (Hänggi and Bartussek, 1996;
Astumian, 1997a; Jülicher et al., 1997; Astumian and Moss, 1998) and popular
articles (Astumian, 1997b; Bier, 1997) dealing with fluctuation-driven trans-
port, to which we refer the interested reader. Recent work has dramatically
extended the domain of fluctuation-driven transport, with two specific topics
coming to the fore — applications to particle separation, and possible ties to
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mechanism of biomolecular motors and pumps. And perhaps a third topic
should now be added to this list — chemically synthesized nanomolecular
ratchets, brakes and molecular versions of other macromechanical devices.

Rousellet et al. (1994) demonstrated experimentally that diffusion of small
particles can be biased by turning an anisotropic dielectrophoretic potential
cyclically on and off. Shortly after, Faucheaux et al. (1995) used an optical trap
to show the same behavior at the level of a single particle. This work has begun
an avalanche of proposals concerningways to use fluctuation-driven transport
for particle separation. Several authors (Chauwin et al., 1995; Mielke, 1995;
Bier and Astumian, 1996) have shown that with appropriate potentials there
can be a threshold value of the diffusion coefficient where particles with a
diffusion coefficient greater than the threshold move in a direction opposite to
those with a diffusion coefficient smaller than the threshold. This opens up the
possibility of a continuous separation, where particles are continuously fed
into the middle of the device and large particles collect on one side and small
particles collected on the other side. These experimental set-ups have used a
flashing ratchet approach. Duke and Austin (1998) and Ertas (1998) have
recently proposed a novel two-dimensional separation method based on con-
structing a system with anisotropic barriers using microlithography. If the
system has a nondiagonal mobility tensor, a DC force in one direction will
cause transport perpendicular to the force. They have argued that this can also
be used as the basis for a continuous separation technique. Derenyi and
Astumian (1998) have recently shown that a nondiagonal mobility tensor is
not necessary, and in fact a continuous method for separation can be based on
a simple two-dimensional system where the linear coupling coefficients are
identically zero. The biased diffusion in this case results from a quadratic
non-Onsager effect and allows a great reduction in the size and increase in the
throughput of the device as compared with the proposal of Duke and Austin
(1998).

One of the main reasons for the tremendous recent interest in fluctuation-
driven transport has been the potential application to biological systems
(Astumian and Bier, 1996), particularly in light of the fact that it is now possible
to study biomolecular motors at the level of a single molecule (Svoboda et al.,
1993). Molecular motors use chemical energy to move along a biopolymeric
track constructed of identical monomeric subunits. Because of this, the motors
see an energy landscape that is spatially periodic at every instant in time and
the flashing ratchet models are thus more relevant for biology than the
fluctuating force ratchets. Analysis of the simplest flashing ratchet models
shows that with a spatial period of 10��m, energy barriers of roughly 10 k

�
T

(hydrolysis of one molecule of ATP releases about 20 k
�
T) and a viscosity
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somewhat greater than that of water, the velocity induced by turning the
potential on and off is around 10�
m/s and a force of about 1—10pN is
necessary to bring the particle to a halt. These values are in good agreement
with what is observed experimentally. Needless to say, such simple models do
not reflect all aspects of the very complicated motor proteins, and a number of
authors have described more complicated models that take into account more
degrees of freedom for the system (Derenyi and Vicsek, 1996; Cilla and Floria,
1998). Perhaps the strongest direct evidence for a ratchet mechanism for free
energy transduction by a biomolecule comes from recent experiments showing
that the Na�,K�-ATPase, a biomolecular ion pump, can use an external
oscillating (Tsong and Astumian, 1986; Liu et al., 1990) or randomly fluctuat-
ing (Xie et al., 1994, 1997) electric field to drive unidirectional transport
(Astumian et al., 1987, 1989; Astumian and Robertson, 1989, 1993). These
results were interpreted theoretically in terms of a four-state kinetic ratchet
(Robertson and Astumian, 1991). For the detailed experimental results and
their interpretation consult Tsong (Chapter 13, this volume).

12.7 Perspective

Typically, approaches to designingmolecular motors and pumps have focused
on transposing and scaling down our macroscopic inventions to the micro-
scopic world. Such attempts have been rewarded with only limited success,
partly because of the ubiquitous presence of thermal noise. In the microscopic
world, moving deterministically is like trying to walk in a hurricane — the forces
prescribing the desired path are puny in comparison with the random forces
exerted by the environment.

A more promising approach has emerged over the last several years where,
instead of working against Brownian motion, thermal noise is harnessed to
provide the energy for motion and to surmount energy barriers, and the
external or chemical energy source provides the energy to bias the diffusive
motion. Returning for example to consideration of the molecular ratchet in
Figure 2, we begin to see a way that chemical or light energy can be used to
power a simple molecular motor. Kelly and colleagues (1994) previously
synthesized a molecular brake, with a polycyclic metal chelating agent in place
of the helicene pawl.When a metal ion is bound to the chelator, the polycycle is
rigid, presenting a large barrier to rotation of the triptycyl paddlewheel — the
brake is ‘on’; but when the chelator is not bound to a metal ion, the barrier to
rotation is low and the brake is off. A similar strategy could be adopted in the
case of the ratchet, but with a catalyst in place of the simple chelator. Then, if
the catalyzed reaction were far from equilibrium, chemical energy would drive
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a nonequilibrium fluctuation between a high barrier and low barrier — a
flashing ratchet, as shown in Figure 4. Coupled with the intrinsic anisotropy of
the system, energy from the chemical reaction would drive (counterclockwise!)
unidirectional rotation of the triptycyl paddlewheel. With an appropriate
photoactive moiety, it might also be possible to modulate the barrier height
between a photochemically excited state and a ground state, leading to a
light-driven molecular motor.

Analogies between biological motors and systems have often been for-
mulated in terms of mechanisms familiar from standard, macroscopic deter-
ministic physics. Molecular motors designed as described above, based on the
physics of chemical reactions and stochastic processes, may instead take cues
from recent studies at the single molecule level of actual biological engines.
This may be the start of a new chapter in the quest for making microscopic
machines.
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13

Cellular transduction of periodic and stochastic
energy signals by electroconformational coupling

TIAN Y. TSONG

13.1 Introduction

The transport of life-sustaining materials across the cell membrane consumes
large fractions of the total energy expenditures of cells. As such, membrane
transport is tightly regulated and controlled. Membrane proteins are mostly
responsible for the transport of molecules and ions in and out of the cell. There
are many classes of membrane transporters. A simple classification lists three
types: channels, carriers and pumps. Channels and carriers are passive downhill
transporters, whereas pumps are active uphill transporters.However, a channel
may also be able to fulfill the role of an uphill transporter by coupling a
downhill transport reaction to an uphill transport reaction: the transporter,
however, will still be a downhill transporter overall. Beside proteins, a small
number of transporters come from heterocyclic organic compounds. These
small molecules can serve as ion channels or ion carriers, but only a protein
with enzymatic activity can function as a pump. All transporters are embedded
in lipid bilayers and, for a pump to function, some degrees of freedom must be
hindered or restricted. As I shall discuss later, this feature of a pump is crucial
for capturing energy from a periodically oscillating or randomly fluctuating
force field (Tsong and Astumian, 1986, 1988; Tsong, 1990, 1992).

In order for a pump to capture energy another feature is essential: it must be
able to interact effectively with a driving force, e.g., an electric field or an
acoustic field (Tsong and Astumian, 1986, 1988). This chapter focuses on
mechanisms that employ these two properties of a membrane transporter (1)
for harvesting energy from a periodic or a randomly fluctuating electric field
and (2) for using the energy to perform chemical work. The ability to transduce
energy from a fluctuating force is a remarkable design of Nature: a cell must be
able to harvest energy from seemingly chaotic fluxes of energy in its environment
in order to survive. By what mechanisms can a cell perform such task? I
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examine certain properties of biochemical reactions that are relevant to the
main theme of this volume, namely what roles do the dynamics, especially the
nonlinear dynamics of molecules, play in biological signal transduction and
sensory detection. And, what mechanisms may a cell or an organism adopt to
improve its sensitivity and efficiency? Are there limits below which the detec-
tion of signals would be considered unattainable by our current state of
knowledge? I begin by examining some unique features of membrane proteins
and chemical behavior or reactivity arising from these features. Proteins that
make up part of supramolecular assemblies, such as myosin and actin in a
myofibril or sonic receptors of the cochlea, which may have similar properties,
are mentioned briefly as well.

13.2 Chemical reactions in isotropic and anisotropic media

A chemical reaction occurs by bringing two or more reactant molecules to
proximity or to collide, thus producing the end-products. The rate and the
behavior of a reaction depend not only on the reactivity of the reactants but
also on the properties of the medium. In a low-viscosity, noninteracting
medium of a homogeneous phase, the rate of an elementary step is either
diffusion limited or proportional to the diffusion rate. No directionality is
involved. Hence, the medium, and so the reaction, is isotropic. The driving
force for such a reaction is simply the free energy of the reaction. The reaction
proceeds downhill with respect to the free energy. However, in an organism,
only small fractions of biochemical reactions take place in homogeneous
solution phase. Most reactants in a cell constitute parts of a supramolecular
structure, tissue, or organ and these reactants have limited mobility. Chemical
reactions of these molecules depend on how reactants are brought together
and how products are dissipated. The media of these chemical processes are,
therefore, anisotropic. Directionality becomes an inherent property of such
biochemical reactions. Most biochemical reactions of cells and tissues belong
to this class and they manifest many interesting properties, some of which are
only slowly unfolding.

Adding to this complex nature of a reaction environment, the driving force
for a reaction may also be complex and anisotropic. Furthermore, a driving
force may not be constant. It may exhibit both spatial and temporal fluctu-
ations. One of the most commonly occurring fluctuating force fields is tem-
perature, which reflects the thermal energy of the system, or the kinetic energy
of the molecules. If a reaction has a nonzero enthalpy that is not compensated
for by the entropy of the reaction, thermal energy will be able to shift the
chemical equilibrium of the system. The extent of change is described by the

302 T. Y. Tsong



van’t Hoff equation, � lnK/�(1/T)���H
�
/R, where K, T, R, and �H

�
are,

respectively, the equilibrium constant, the absolute temperature in Kelvin, the
gas constant, and the enthalpy of the reaction. The system, in this case, will
have absorbed energy, shifting the chemical reaction equilibrium, and the
thermal energy will have done chemical work on the system. A nonzero
reaction enthalpy,�H

�
, is, thus, crucial for a system’s interaction with thermal

energy. In such a case, the reaction is isotropic. This means that the reactivity
of molecules is scalar or nonvectorial. As a consequence, the reaction cannot
produce directional flux of molecules or energy. Hence, mass moves by simple
diffusion. Take a ligand binding reaction as an example. Macromolecules and
ligands can approach each other from any direction with equal probability.
Their paths of diffusion are not obstructed in any direction. In other words, all
reactant molecules are rapidly tumbling, and chemical reactivity of these
molecules is, for all practical purposes, considered uniform in all directions. As
long as a ligand approaches a macromolecule within a certain distance, they
will either react or not react, depending solely uponwhether the impact energy
(kinetic energy) of the two reactants is sufficient to overcome the activation
barrier. If the impact energy exceeds the barrier, they will react to produce
products; if not, they will bypass each other. Case A in Figure 1 illustrates such
a system. The macromolecule might be a protein or DNA, and the ligand a
substrate, an ion, or a small molecule. Case B illustrates a system in which the
active site of the macromolecule is located at a specific locale on the molecule.
Only a ligand approaching from the right direction can react; others, from
incorrect directions, cannot. Strictly speaking, the latter system would behave
differently from case A. However, if the molecule and the ligand can tumble
much faster than the frequency of the molecular collisions, the system can still
be regarded as quasi-isotropic, and thermodynamic and kinetic equations
developed for case A should also be applicable to case B in Figure 1. In the real
world, case B is more common than case A despite the fact that most ther-
modynamic and kinetic equations with which we are familiar have been
derived on the basis of systems represented by case A. For example, recent
advances in structural biology have taught us that the active site of a protein is
typically located in a small, highly localized area within its three-dimensional
structure.

The situation would be different if the macromolecule were too big, or
carried with it a piece of membrane fragment. This might be the case when
one prepares a sample, which retains much of the supramolecular assembly,
or disrupts a cell membrane to prepare a partially purified protein. In this
case, the rotation of the protein—membrane complex would not be uniform,
and its rotational relaxation time could conceivably be longer than the mean
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Figure 1. Isotropic and anisotropic chemical reactions. Ligand binding to a macro-
molecule is used as an example to illustrate the two basic types of chemical reaction.
(A) A ligand can bind to any site of the macromolecule and both ligands and
macromolecule are free floating and the medium of the reaction is homogeneous and
of low viscosity. The reaction is isotropic. (B) The ligand can bind only to a specific site
on the macromolecule. If both ligands and macromolecules are free floating and
tumbling much faster than the collision rate, and the medium is homogeneous and of
low viscosity, the reaction is quasi-isotropic. In the laboratory, most reactions occur-
ring in the homogeneous phase belong to this class. (C) The rotation of the macro-
molecule is slower than the collision time and there exists also only one specific site on
the macromolecule at which ligand binding can take place. The reaction will display
anisotropic characteristics. (D,E) The reaction is vectorial; only ligands approaching
from the outside of the vesicle may react. The reaction is anisotropic (for details, see
text in Section 13.2).

time constant for collisions. Then, binding of the ligand to the protein is no
longer an isotropic event (see case C in Figure 1). Further, mass action in
case B would behave differently from that in case A, although, in kinetic
treatments, effects of nonproductive collisions can easily be corrected by
inserting a coefficient into the rate equation, e.g., a cross-section of collisions.
As we shall see later in our analysis, when such a system interacts with a
periodically oscillating or randomly fluctuating driving force, there may oc-
cur many interesting effects that do not occur in cases A and B (Tsong, 1992,
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1994). The anisotropic nature of a chemical reaction becomes quite obvious
in case D in Figure 1, where membrane reactions are mostly vectorial or
anisotropic. The difference between an isotropic and an anisotropic reaction
forms the basis of our discussion of an ‘animate’ chemical system versus an
‘inanimate’ chemical system.

13.2.1 Periodic driving force and randomly fluctuating driving force

Our system is an anisotropic one: a membrane ATPase, an immobile enzyme,
or a protein, which is a part of a supramolecular complex, for example myosin
in a myofibril. Chemical reactions at surfaces, for example adsorption or
catalysis, belong to this class of reactions. But, in catalysis and reactions at
surfaces, the potential or the driving force of a chemical reaction is still treated
as constant, for example the chemical potentials of reactants, or the free energy
of a reaction. What if a driving force is a nonuniform, nonconstant force: an
oscillatory, fluctuating, or noise-function driving force, with a spatial dynamic?
In other words, a driving force that is temporally and spatially fluctuating with
time. In a cell, a tissue, or an organ, this situation should be the prevalent
situation. The contraction of a muscle is a good example of a directional flow
of energy. In electron transport, reducing equivalents follow a unique path,
and, in membrane transport, a driving force must be directed normal to the
membrane to be effective; exerting a force in any wrong direction would not be
productive.

We consider the simple situation illustrated in Figure 2. Here, a membrane-
embedded protein is assumed to have a permanent or an induced electric
moment in its structure. This property will enable the protein to interact with
an externally applied electric field. We assume that the protein does have
different conformational states with different values of electric moments, and
that two of these conformational states are functional states of the enzyme in
the catalytic cycle. When an applied field points in the direction of the electric
moment, a conformational state (P

�
) with a smaller net moment will be

favored, and when a field points in the opposite direction, a conformational
state (P

�
) with a larger electric moment will be favored. If an applied field is

oscillatory, it will cause the protein to undergo a conformational oscillation
between P

�
and P

�
. This phenomenon has been termed ‘enforced conforma-

tional oscillation’ (Tsong, 1990). Without an applied field, there are fluctuations
in protein conformation but the amplitude of fluctuations will be small. If an
electric field is randomly fluctuating, the conformation of the molecule will
also be fluctuating, not randomly, i.e., in a spontaneous manner, but in
response to the field. Next, a simple estimate of the interaction energy is in

305Signal transduction: electroconformational coupling



Figure 2. Enforced conformational oscillation by a periodic electric field. (A) The
membrane is polarized, which forces the protein with an outward molar electric
moment (vertical arrow) to assume a conformational state with smaller moment.
(B) When the membrane is depolarized, the protein assumes another conformational
state with a greater outward molar electric moment. (C) An oscillating electric field is
used to drive the conformational oscillation of the protein. The phenomenon is termed
enforced conformational oscillation by an alternating electric field (Tsong, 1990, 1992).

order. The thermodynamic relationship governing an electric field-induced
conformational change of a protein is,

(�K
&
/�E)

����� � � �
� (�M/RT), (1)

whereK
&
, E, R and T are, respectively, the equilibrium constant (although K

&
would not be constant in an oscillating field) for the P

�
�P

�
conversion, the

electric field intensity, the gas constant, and the absolute temperature in
Kelvin. Subscripts P,T,V, denote pressure, absolute temperature and molar
volume. �M�M

�
�M

�
represents the difference in the molar electric mo-

ments for P
�

and P
�
. The shift in equilibrium is best illustrated in Figure 3

where the relative energy levels of P
�
and P

�
are shown. When the field is off,

P
�

and P
�

exhibit the same energy level, meaning that they are equally
populated. When the membrane is polarized, the energy level favors P

�
, but

when the membrane is depolarized, the energy level favors P
�
. The energy

difference between the two different polarization conditions is �G
�
, where E is

the peak-to-peak field strength of an oscillating electric (AC) field. Simply,
�G

�
��M·�E, where �M of a protein can be a large number; hundreds to
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Figure 3. Energy diagram of a membrane protein under the influence of an oscillatory
electric field. The relative energy levels of P

�
and P

�
in the absence and presence of the

field are shown. At zero electric field, the reaction diagram assumes the shape given by
the solid curve. The conformational state P

�
is favored over P

�
by �G

�
. When an

electric field is present, the energy diagram shifts to the one represented by the dashed
curve. The overall energy level declines because of the interaction between the molar
electric moment (M) of the protein and the electric field. The electric field interaction
energy with P

�
is �G

�
. However, the field interaction favors P

�
over P

�
by �M�E,

shifting the chemical equilibrium in favor of the conformational state P
�
. If the electric

field oscillates, the protein will also oscillate between P
�
and P

�
. As mentioned, this

phenomenon is termed enforced conformational oscillation (Tsong, 1990, 1992).

thousands of debye (D) have been reported in some proteins. If P
�
and P

�
differ

by one gating charge and membrane thickness is 50 Å (1Å� 0.1 nm), �M will
be roughly equal to 240D. The dipole moment of a transmembrane helical
segment is 120D. A transmembrane potential oscillating at �50mV will
generate a transmembrane �E of 200 kV/cm (�G

�
, in this case, would be a few

kilocalories per mole). In a cell, field fluctuations are likely to be much greater
than the �E value given here, when both temporal and spatial resolutions are
high, and the �M values for membrane proteins are also likely to be greater
than 240D. Thus, electroconformational changes of membrane proteins can-
not be ignored. The thermodynamics of electric field-induced conformational
changes has been discussed in great detail elsewhere (Tsong and Astumian,
1986; Tsong, 1990, 1992). From experiments, Na�,K�-ATPase is known to
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undergo conformational changes in the catalytic cycle and these changes can
also be triggered by an electric field (Nakano andGadsby, 1986; Rephaeli et al.,
1986a,b; Steinberg and Karlish, 1989; Stürmer et al., 1989; Wuddel and Apell,
1995). Given that electroconformational change is a common occurrence in a
cell membrane, how can this change be exploited to fuel an energy-consuming
biochemical reaction?

13.3 Electroconformational coupling

The above question led us to formulate a theory of electroconformational
coupling (ECC; Tsong and Astumian, 1986). A simple case in which ECC is
applied to a membrane ion pump is illustrated in Figure 4. In order to
demonstrate that no direct interaction between an electric field and a ligand is
required for the ECC model to work, we chose a neutral ligand in the
simulation. The analysis would then be extended to include ionic ligands
where ligand—field interactions would certainly come into play. To make the
pump simple and workable, the four-state pump cycle has the following
characteristics. P

�
has its ligand-binding site facing out and P

�
has its binding

site facing in. The affinity of P
�
for ligand (S) in the external medium (S

���
) is

weak compared with the affinity of P
�
for ligand in the cytoplasm (S

��
). First,

the system is allowed to equilibrate. Then, a sinusoidal AC field is applied.
Several events will happen in sequence. (1) Before the AC field, E, is turned on,
[P

�
]� [P

�
·S

���
], [P

�
]� [P

�
·S

��
], [P

�
]� [P

�
], and [P

�
·S

���
]� [P

�
·S

��
]. (2)

An AC field, E, is applied. The first phase of the AC field depolarizes the
membrane, which favors the formation of P

�
and P

�
·S

��
. This triggers a flux

from P
�
�P

�
and another one from P

�
·S

���
�P

�
·S

��
. Because

[P
�
]� [P

�
·S

���
], the first flux is greater than the second flux; thus a net

clockwise flux is produced. The accumulation of P
�
leads to association with

S
��

because of its high affinity for S
��
, and [P

�
·S

��
] increases further. (3) The

field reaches the second half of the sinusoidal wave and the membrane is now
polarized. The reversal of membrane polarization will now favor the forma-
tion of P

�
and P

�
·S

���
over P

�
and P

�
·S

��
. (4) There now will be two types of

flux, P
�
�P

�
and P

�
·S

��
�P

�
·S

���
. Since at this moment, [P

�
· S

��
]� [P

�
],

the second flux will be greater than the first flux, and the net flux is again a
clockwise one. (5) Since the wheel is turned clockwise no matter which way
the membrane is polarized, a ligand is pumped out of the cytoplasm for each
complete turn of the four-state catalytic wheel. (6) The next cycle of the
sinusoidal wave will repeat the processes of steps 1 to 4. In summary, the ECC
model successfully describes the action of a molecular pump. The direction of
the wheel spin can be easily reversed if the affinity of S for P

�
and P

�
is
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Figure 4. Electroconformational coupling (ECC) model of a protein pump. A model of
a protein pump can be constructed with the enforced electroconformational change
coupled to a ligand binding reaction. In the four-state cyclic transport model shown
here, membrane depolarization (� ) favors P

�
(with the substrate binding site facing

the extracellular medium) and membrane polarization (� ) favors P
�
(with the sub-

strate binding site facing the cytoplasm). If substrate (S) is neutral, then membrane
depolarization will also favor P

�
S and polarization will favor P

�
S. With a suitable

design of binding affinity for S, e.g., affinity of P
�

for S is smaller than P
�

for S, the
pump will spin clockwise under the influence of an alternating electric field. The
substrate will be pumped out of the cytoplasm when the applied field drives the
catalytic wheel to spin clockwise (Tsong and Astumian, 1986; Tsong, 1989).

reversed. In such a case, the transporter will pump S inward instead of
outward. Subsequently, more detailed analyses have been carried out and the
ECC model has been shown to exhibit some interesting properties that are
discussed below. Next, experimental data relevant to the discussion of the
ECC membrane transport model are presented and compared with the
model’s predictions.
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13.3.1 Properties and predictions of an ECC transporter – an electric ratchet

Our analysis of a simple four-state biochemical cycle has revealed that the
ECC model will work effectively only if certain conditions are met (Tsong and
Astumian, 1986; Astumian et al., 1987; Chen, 1987; Markin and Tsong, 1991b;
Markin et al., 1992b; Hilgemann, 1994). For optimal conditions, the efficiency
of energy transfer from an electric field to the system can approach unity
(Markin et al., 1990). In reality, these limiting conditions cannot be attained
and one expects the efficiency of an ECC machine to degrade as experimental
conditions deviate from ideal conditions. The first limiting condition has been
discussed above, i.e., the asymmetry of a biochemical catalytic cycle. The
affinity for the ligand must not be equal for P

�
and P

�
on the two sites of the

membrane. The greater is the difference between the two affinities, the more
efficient the machine will be. The second limiting condition states that the rate
for conformational changes (k

����
) must be faster than the frequency of the field

oscillation (f
��

), and the field oscillation, in turn, must be faster than the rate of
the ligand binding/dissociation reaction (k

����
). The inequality expressed in

Equation (2) must be observed in order to attain a high efficiency in energy
coupling (Markin and Tsong, 1991b),

k
����

� f
��

� k
����

. (2)

There are other limiting conditions that may greatly affect the efficiency of the
energy-coupling step, some of which will be mentioned in future discussions,
but they are not the focus of the present contribution.

We next ask the question, what does the ECC model predict that can be put
to experimental test? Some of the more prominent features, and in many cases
also the obvious features of the model, are listed below. Many of these features
were observed prior to the formulation of the ECC model (Serpersu and
Tsong, 1983, 1984; Liu et al., 1990). Indeed, they formed the basis of the
construction of the model:

(1) Windows of field strength and frequency to achieve maximal efficiency in energy
coupling: This is a rate-dependent phenomenon and was obvious intuitively and
checked with experiments before the conception of the ECC model (see below).

(2) Window for ligand concentration: After this prediction, a search was undertaken
and, for example, a window for [Ca��] was identified for Ca��-pump activity in
human erythrocytes (Tsong, 1992).

(3) Energy coupling with randomly fluctuating electric fields: The intuitionwas born out
by theoretical analysis and later verified by experiments. The theory allowed a
quantitative fitting of the data (Xie et al., 1994, 1997).

(4) Energy coupling for systems with various combinations and ratios of charges between
a ligand and a transporter protein: Charges in the two species may have identical or
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opposite signs. Transports due to charge rectification and to the ECC mechanism
have been separated and their contributions to energy coupling quantitatively
evaluated. Several predictions as laid out by Markin and Tsong (1991a,b) await
experimental tests.

(5) Effects of white noise on the ECC coupling efficiency: Experiments have shown that
when electric fields of suboptimal strengths are used, the superposition of a
broad-band electric noise enhances the pumping efficiency. But, in no cases did the
observed activities exceed the maximal activity using an optimal electric signal. In
other words, there is a maximal enzyme activity, which cannot be exceeded by the
imposition of electric energy in the forms of either signal or white noise. The theory
for this observation remains to be developed. The enhancement of the ion pump
activity by the white noise presumably is by stochastic resonance; however, the
detailed mechanisms remain unknown and are currently under study.

(6) An ECC pump is an electric ratchet: Equations and conditions are identical with an
electric ratchet (for details, see Astumian, Chapter 12, this volume).

(7) The ECC concept is equally applicable to other driving forces: for example, acoustic,
concentration (chemical potential), osmotic pressure, mechanical, and temperature
fluctuations (Tsong, 1989, 1990, 1992; Markin and Tsong, 1991a). Few modifica-
tions of the basic thermodynamic and kinetic equations are necessary. The ECC
system is in fact a Brownian ratchet (Astumian and Bier, 1994; Astumian, 1997).

13.3.2 Energy coupling of periodic electric fields

We selected membrane ATPases for electric activation experiments, because
the proton electrochemical potential had been postulated to be an intermedi-
ate state in the biosynthesis of ATP. The proton electrochemical potential
consists of two components, the proton gradient (�pH across the energy-
transducing membrane) and the transmembrane electric potential. As most
experiments have failed to detect a sizable �pH across any energy-transducing
membrane, such as the inner membrane of the mitochondrion or the photo-
synthetic membrane, the electric potential would appear to be the dominant
force of ATP synthesis. Inmitochondria, electron transport from the consump-
tion of foodstuffs can produce a transmembrane potential of the order of
200mV. For Na�,K�-ATPase, the electrogenic nature of the Na�-pump and
the K�-pump can also generate a transmembrane potential. It was reasoned
that these two enzymes should also respond to electric stimulation, and this
turned out to be indeed the case. Submitochondrial particles, when exposed to
an electric pulse of about 20 kV/cm with a decay time constant of 60�s,
produced ATP, and this activity was inhibited by oligomycin, an inhibitor of
mitochondrial F


F
�
-ATPase (Teissie et al., 1981). The high field strength was

required to input sufficient energy, and the short electric pulse avoided Joule
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heating. It was found that the ATP yield increased with increasing concentra-
tion of dithiothreitol (DTT; F. Chauvin, R. D. Astumian and T. Y. Tsong,
unpublished results). The reason for this dependence remains unclear. Con-
ceivably, the energy captured from the electric field could be temporarily
stored in a reduced form of the enzyme complex. As is evident, mitochondrial
ATPase was not the best system for our electrical activation experiment
because of the high field strength needed to generate a sufficient amount of
ATP for the assay. Furthermore, the size distribution of submitochondrial
particles, as they were prepared, was broad, making the estimation of the
�$

����
generated by the external field difficult (Marszalek et al., 1990). The

Na�,K�-pump of human erythrocytes turned out to be a simpler, more
suitable system. This enzyme specifically responds to the inhibitor ouabain,
which would allow us to monitor pump activity specifically due to Na�,K�-
ATPase. Because of this possibility, we chose to perform experiments with
intact erythrocytes, where the enzyme exists in its natural environment (Teissie
and Tsong, 1980, 1981). Radioactive tracers were used to measure the electric
field-induced flux of Na�, K� and Rb�. It turned out that only the two
ATP-dependent pumping modes of the enzyme were activated by the external
electric field. The electric field did not affect the passive flux of these ions.
Furthermore, the specific activity of the electric field-stimulated pump activity
never exceeded the maximal ATP-dependent pump activity. Because of this
property, experiments were either done at 2—4 °C, at which ATP hydrolysis
activity was negligible, or in samples in which ATP was depleted by biochemi-
cal treatment. Many experiments have been performed during the past years
and a great number of results are now available. Those obtained prior to the
use of randomly fluctuating electric fields are summarized below. These experi-
ments were conducted with sinusoidal or equally spaced, square-waved AC
fields (Serpersu and Tsong, 1983, 1984; Liu et al., 1990).

Ouabain-sensitive AC field-induced pump activities were also detected.
These activities exhibited the same Michaelis—Menten constant (K

�
) and

maximumvelocity (V
�
�

) as the ATP-dependent pump activities. Thus, electric
field-activated pump pathways are likely to be similar to the molecular path-
ways involved in ATP-dependent enzyme catalysis. Furthermore, we observed
windows of field strength and frequency for AC field-stimulated pump activity.
The optimal field strength was 40V

�—�
/cm (p—p denotes peak—peak), or ampli-

tude 20V/cm, for both Na�- and K�-pumps, which generates a maximum
transmembrane electric potential of about 25mV. This value corresponds
roughly to a transmembrane electric field of 50 kV/cm for this system, a value
substantial enough to enable the use of the ECC model for analysis. Our
experiments also led to the discovery of optimal AC field frequencies for Rb�-
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and K�-pump activity (�1.0 kHz) and for Na�-pump activity (�1.0MHz).
This large difference in effective frequencies seemed to suggest that the two
pumps could be uncoupled under our experimental conditions; at 1.0 kHz,
when the K�-pump was actively pumping, the Na�-pump was completely
inactive, and vice versa, at 1.0MHz. These observations were considered
unusual but not at all implausible.Many publications report the uncoupling of
the two pumps under special solvent conditions.

Our work exploring the dependence of Rb�-pump activity on AC field
frequency also revealed a second type of frequency dependence; that is, the
activity versus frequency diagram exhibited a shoulder around 10kHz. This
shoulder was reproducible but not always reliably measured. However, a
similar shoulder was also detected by Wei Chen of the University of Chicago,
who used a whole-cell clamp method to measure Na�,K�-pump activity in
muscle cells (W. Chen, personal communication). The experimental method in
this casewas very different fromours, and his observationof a similar frequency
dependence for the K�-pump was a remarkable affirmation of our own data.

The experiments described so far for the Na�,K�-pump have led us to
propose that membrane proteins are capable of receiving and deciphering
electric signals and signals of other physical origins such as pressure, sound
waves, concentrations or mechanical forces, as was mentioned above.

13.3.3 Energy coupling of randomly fluctuating or stochastic electric fields

With respect to the question of the physiological significance of the experi-
ments, there appear to be several shortcomings when only regularly oscillating
electric fields are employed. First, electric fields on, around, or across a cell
membrane are unlikely to be regularly oscillatory. Because of the many
simultaneous actions of ion channels, pumps, redox enzymes, and ATPases,
the electric potential in the vicinity of a cell membrane should display consider-
able fluctuations. The magnitude of the fluctuations would depend on how a
signal is measured; measuring at a local level, the fluctuations could be quite
substantial. Theoretical analysis suggested that the four-state cyclic ECC
transporter, which was shown to respond to AC field stimulation, should also
respond to stimulation with random telegraph fluctuating electric noise (RTN;
Astumian et al., 1987; Chen, 1987; Zhou and Chen, 1996). RTN consists of
alternating square pulses, with life times randomly distributed according to the
exponential function. The pulse width of RTN is t�� �* ln (R), where �* is
the mean life time and R is a random number, e.g., of a value between 0.01 and
1. A representation of typical RTN with an amplitude of 20V/cm and a �* of
1ms is shown in the lower panel of Figure 5a as compared to a sinusoidal wave
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Figure 5. Different waveforms of applied electric fields. In the upper panel of (a),
oscillatory electric fields, one with sinusoidal waveform and the other with squared
waveform, are shown. Both have an amplitude of 20V/cm and a frequency of 1.0 kHz.
In the lower panel, the life time of the electric field varies randomly with a distribution
according to the random telegraph function (RTF). The distribution of the RTF is
given in (b); the frequency distributions of the sinusoidal and the squared electric fields
are shown as delta-functions at 1.0 kHz (Xie et al., 1994).

and a square wave of the same mean life time (or periodicity) in the upper
panel. If one plots the histogram of frequency distribution versus frequency, a
sinusoidal wave, or a square wave of constant periodicity, would show a
delta-function at 1 kHz, while RTN would have the distribution shown in
Figure 5b.

For our experiments, RTN-triggering signals of varied mean life times were
generated by computer and used to drive a function generator. The resulting
RTN electric pulses were then employed in the electric stimulation experiment
summarized next. Not surprisingly, we observed that the Rb�-pumping mode
of the Na�,K�-pump was activated at a mean frequency of 1.0 kHz. As shown
in Figure 6, the optimal amplitude was 20V/cm, as was the case for the
above-described experiments with sinusoidal electric fields (Xie et al., 1994). In
the figure the solid lines drawn through the data points are simulations based
on the four-state cyclic ECC model. The fact that a simple four-state ECC
model could reproduce these observations was gratifying because of (1) the
complexity of the involved experimental conditions and (2) the simplicity of the
ECC concept and the employed membrane transport model.

Our work was then extended to include fluctuations in the electric field
amplitude. The field amplitude was allowed to fluctuate according to the
Gaussian distribution function, with a varied standard deviation (�):
A(x)�A


exp (�2x�/�), where A


is the amplitude at x� x


, and x is a
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Figure 6. Electric activation of Rb� pumping mode of Na�,K�-ATPase in human
erythrocytes (red blood cells, RBC). (a) Rb�-influx into human red cells stimulated
with a random telegraph function (RTF) field of mean frequency 1.0 kHz, at different
amplitude values. Filled circles are data for electric field-stimulated samples and stars
for stimulated samples in the presence of 0.2mM ouabain. Crosses represent the
controls (no stimulation, with or without ouabain). The experiment was done at
3� 1 °C, and no significant ATP-dependent pump activity was measured. (b) Rb�-
influx at constant amplitude (20V/cm) as dependence on the mean frequency of the
RTF (Xie et al., 1994). amole, attomole.

random number between 1 and 0. A graphical representation of typical RTN
of mean amplitude 20V/cm is shown in Figure 7c. Several different experi-
ments were performed: one was to apply a square wave of constant life time,
with fluctuating Gaussian amplitude that centered around 20V/cm and with �
varying. The result showed that when �� 0, the Rb�-pump activity was about
25% higher compared with the application of a regular sine wave of identical
amplitude. However, when a field with finite � was imposed, the activity was
found to decline linearly (Xie et al., 1997). Simulations with a four-state ECC
model were capable of reproducing these observations. In another experiment,
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Figure 7. Different waveforms of randomly fluctuating electric fields. (a) A square
random telegraph function (RTF) electric field (amplitude distribution with a mean
frequency of 1.0 kHz as given in (d) is shown). (b) The square waveform has a constant
life time of 1.0 kHz, but with the amplitude fluctuating according to the Gaussian
distribution shown in (e). (c) Both the life time and the amplitude are fluctuating. The
frequency follows the RTF in (d), and the amplitude follows the Gaussian distribution
in (e) (Xie et al., 1997).

we employed a RTN-Gaussian field. In this case, the dependence of pump
activity on � was monotonic for certain conditions but nonmonotonic for
others. Typical experimental results are summarized in Figure 8. The non-
monotonic feature observed at E� 10 and 15V/cm could not be reproduced
by the ECC model simulations. However, in the simulations, we had assumed
that the Rb�-pump had only one frequency optimum at 1 kHz, but previous
experiments had also suggested a shoulder around 10kHz. Thus the question
remains to be investigated whether the nonmonotonic feature apparent from
the experimental study could be accounted for by including in the model the
additional dependence at 10 kHz.
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Figure 8. Random telegraph function (RTF)-electric field induced, ouabain-sensitive
Rb� pump activity. Electrical stimulation was done with a RTF of mean frequency
1.0 kHz, with the peak amplitude value given for each curve. The amplitude of the field
fluctuated according to a Gaussian distribution of varying values of standard devi-
ation. Data represented by crosses are for the controls (no electrical stimulation). A
nonmonotonic behavior of pump activity is seen for experiments with peak amplitudes
of 10 and 15V/cm (Xie et al., 1997). amole, attomole.

Ca��-ATPase from human erythrocyte was also tested for its ability to
respond to an electric field. It was found that when a sinusoidal electric field
was used, the optimal amplitude for the coupling efficiency was 30V/cm and
the optimal frequency was 100kHz. In this case, however, a ligand (Ca��)
concentration window was also found at 0.8mM. Indeed, the ECC model
predicted the existence of a window for the ligand concentration before the
experiment. We also tested other ATPases, but, at present, the results are not
detailed enough for a report.
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13.4 Sensing of weak electric fields

Our experiments with a highly active Ecto-ATPase preparation from chicken
oviduct, with the enzyme solubilized with a detergent, are of special interest to
the question of weak electric field sensing. We observed that Ecto-ATPase
activity was stimulated by 50% upon AC field application at an optimal
amplitude of 5V/cm and an optimal frequency of 10kHz. Since the AC
field-exposed detergent—enzyme micelle has an average dimension of only
about 100 Å, an ACfield of 5V/cm is estimated to induce amaximumpotential
drop across the ATPase of 5 �V only. This is a very small value compared with
the exposure experiments with the Na�,K�-pump in human erythrocytes,
where the estimated induced potential was about 50mV (for details see Section
13.2.1). This surprising ACfield sensitivity called for an alternativemechanistic
explanation. It is known that ATP hydrolysis is a spontaneous reaction and
that it does not need any energy input to fuel the reaction, as in the case of
uphill pumping of Rb�. Apparently, the electric field interacted with the
enzyme at the kinetic level, thus enhancing the rate of ATP hydrolysis. In this
view, the activation barrier of the ATP hydrolytic reaction could be the site of
the electric field action. For an exposure of cells or tissues to weak extremely
low-frequency (ELF) electric fields, a cellular membrane protein would experi-
ence a similar small level of electric field potential. Thus these observations
bear resemblance to the reported biological effects of relatively weak ELF
electromagnetic fields (EMFs; see Gailey, Chapter 6, this volume).

As was described previously, we interpreted these results with our oscilla-
tory activation barrier (OAB) model (Markin et al., 1992a,b). In this case, the
conformational oscillator should have a characteristic frequency of 10 kHz.
Apparently, the transition state of the ATP hydrolysis involves a large change
in the molar electric moment; as a result, the enzyme—substrate complex was
able to interact with the weak electric field.When the applied field matched the
intrinsic frequency of the enzyme oscillator, a resonance would occur, and
hence the amplitude of the oscillation would increase. A greater barrier oscilla-
tion could lead to either an enhancement or a suppression of the catalytic rate,
depending on the detailed mechanisms of interactions. When a simple har-
monic oscillator was adopted as a model of an activation barrier oscillator,
however, the ACfield was found to enhance the rate. The numerical simulation
based on the OAB model reproduced both the magnitude and the general
features of the observed AC field effects on ATP hydrolysis.

The OAB concept was simple, however, and our analysis was cryptic. Thus,
in the future, the model needs to be further refined and tested more rigorously
and thoroughly with other enzyme systems. Despite these limitations, our
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analysis suggested that the rate enhancement originated from nonlinear effects
due to enhanced barrier oscillations. For example, one may reason that when
the field strength is low, any nonlinear effects may vanish. In other words, all
nonlinear systems may become linearly behaving systems at a lower bound.
The question is, of course, at what level of field intensity should potential
nonlinear effects be omitted and at what levels they should not. In any case, in
order to be able to theoretically reproduce the above experimental findings,
our calculations needed to include nonlinear effects. We take this as evidence
that, at the tested electric field intensity, nonlinear effects play a significant role.
Obviously, an OAB system should also respond to a fluctuating force field, as
was the case for the ECC system, but a detailed study of such interactions
remains to be done.

13.5 The effects of broad-band (white) electric noise: stochastic resonance

From the very beginning of our experiments, we asked the questions ‘what
would be the effect of white noise on the ability of a molecule to recognize a
signal?’ ‘Wouldwhite noise enhance ormask a signal, or would it have no effect
on signal recognition?’ This question lingered and other experiments always
took precedence. During that time, many laboratories reported that low-level
noise could greatly enhance the signal-to-noise ratio (SNR) in biological rate
processes such as the impulse firing rate of crayfish neurons and other neurons,
ion conductance of gramicidin channels, and other biological processes
(Douglass et al., 1993; Wiesenfield and Moss, 1995; Moss, 1997; Bezrukov and
Vodyanoy, 1995, 1997). These enhancements in the SNR-manifested effects
and properties of stochastic resonance (for an introduction, see Moss, Chapter
10, this volume). With our system, a suboptimal field strength (10V/cm) was
used to stimulate Rb�-pump activity, and white noise of varied power levels
was superimposed on the stimulating signal. With a sinusoidal electric field,
10V/cm is at the onset of the stimulation activity, and by itself can produce
only little pump activity, but when white noise of broad bandwidth was also
imposed, Rb�-pump activity was amplified. We do not know whether the
phenomenon reported here meets the criteria of stochastic resonance, but until
a better explanation is found, the noise enhancement of Rb�-pumping will be
treated as a case of stochastic resonance. This observation may be of special
importance, since the Na�,K�-pump is a membrane transport protein of
universal occurrence and it is an essential energy-transducing protein. Fur-
thermore, our experiments did not simply demonstrate the improvement in the
SNR of Na� or Rb� currents, but they also showed that the activity of an
uphill transport process could be aided by white noise. In essence, the energy
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contained in white noise is used by the stochastic resonance mechanism to
boost the efficiency of energy coupling of an ECC transport system. Our data
to be published indicate that while stochastic resonance may enhance cation-
pump activity, the highest activity we have obtained so far never exceeded the
optimal activity of the enzyme in the absence of noise.

13.6 Michaelis–Menten enzyme models

Although we have discussed only the effects of electric fields on the activity of
several membrane ATPases, the four-state membrane transport model we
discussed here is considered a special case of amore generalMichaelis—Menten
enzyme model (Tsong, 1990, 1992; Robertson and Astumian, 1990). Figure 9
illustrates this idea. A simple Michaelis—Menten enzyme mechanism can be
rewritten into a cyclic biochemical reaction, step by step, species by species, the
same as the four-state membrane transport reaction. As was mentioned in the
beginning of this chapter, the concept and the equations of the ECC model are
equally applicable to other types of physical force, such as pressure, chemical
potential, thermal energy, etc., with minimal modification. This means that
mechanisms similar to the ECC model may play an important role in the
normal functioning of cells. For example, a thermal ratchet model has been
employed to explain muscle contraction and motor functions in cell locomo-
tion and division (Astumian, 1997).

It would appear that molecules of cell membranes, over millions of years of
evolution, have acquired the ability to sense, decipher and respond to low-level
electric fields, in the form of either periodic or randomly fluctuating signals
(Kalmjin, 1982; Weaver and Astumian, 1990). We propose that a high-level
background noise may not be sufficient to mask such effects. Furthermore,
since nonstationarymagnetic fields can induce electric fields, it is reasonable to
assume that organisms also have the ability to sense and respond to magnetic
fields on this basis. A current concern of bioelectrochemists is to understand
the mechanisms by which cells interact with EMFs (e.g., Walker et al., 1997).
We have shown that interactions may start at the level of the cell membrane,
and that ATPases comprise a class of membrane proteins capable of recogniz-
ing and deciphering an electric signal. Whether the biological effects of EMFs
are harmful or beneficial to human health is a fundamental question of great
public concern. Our experiments so far do not directly address this issue. It is,
however, understood that once mechanisms of interaction are clarified, their
effects can be assessed with higher confidence. Effects on enzyme mechanisms
also serve as a reference point for understanding the effects observed with cells,
organisms and in humans. Concentration oscillations of metabolites, ions,

320 T. Y. Tsong



Figure 9. Comparison of the electroconformational coupling (ECC) model with
Michaelis—Menten enzyme models. The upper scheme is the four-state ECC model
discussed in this chapter. The next scheme was proposed to interpret the electric field
induced ATP synthesis by mitochondrial ATPase (Tsong and Astumian, 1986); it is
also an ECC model. The linear scheme that follows is a typical Michaelis—Menten
enzyme catalytic model. Since enzyme (E) is recycled in each turnover, it can be
rewritten as a cyclic model. Furthermore, since the enzyme conformation that favors
binding of substrate (S) should be different from the conformation that favors binding
of product (P), the catalytic reaction is better represented by the four-state mechanism
shown at the bottom. If the enzyme is immobilized, as is the case for a membrane
transporter, it can become a transducer of signal or energy in the form of fluctuating
electric fields, chemical potentials, acoustic fields, magnetic fields, or other fluctuating
potentials (see Tsong, 1990, 1992).
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oxygen, etc. are common occurrences in cells. In effect, these events produce
oscillations of chemical potentials, or oscillations of chemical driving forces.

13.7 The language of cells

What can we learn from these experiments and model analyses? We have
found that a molecule with restricted motion can interact with an oscillatory
driving force of particular bandwidth and amplitude. Fluctuating electric fields
of similar mean frequency and distribution give equivalent results. Most
molecules in cells or organisms are parts of greater supramolecular structures;
few molecules are truly free floating. Their chemistry is bound to be different
from that of the homogeneous phase, for example chemical reactions in an
aqueous solution. One of the differences with which we were particularly
fascinated, and have been exploring here, is their ability to decipher a signal,
process it, and transmit the information contained therein into a more perma-
nent record of a cell or an organism.

We all accept that an individual communicates with other individuals by a
language, either in the forms of sound, touch, and vision, or by other means.
An organ can also communicate with other organs. All sensory and percep-
tual signals must be transmitted to the brain and the brain must, conversely,
transmit commands to these organs to coordinate their activities. Organ-to-
organ communication is done by many means but all these different signal
types must be ultimately translated into electrical impulses of neurons to
reach the brain. While each organ may have its own distinct languages, one
common language is electrical. By the same token, cells have their own
diversity of languages, but one common language is again electrical. Ulti-
mately, all ‘cellular languages’ must be received and processed by molecules
(Tsong, 1989).

How do cells converse in different kinds of languages?What are the essential
elements of a language? Amplitude, frequency, and waveform, and different
combinations of these properties of force fields may be some critical elements.
For example, our experiments described here have shown that the Na�,K�-
pump may recognize an electric field of a particular amplitude, frequency, and
waveform; these characteristics may thus constitute essential elements of a
cellular language. As I mentioned before, inside a cell, there are molecules that
can recognize different types of force and potentials beside electric potentials,
e.g., pressure (Hudspeth, 1989), magnetic fields (Walker et al., 1997; see Wallec-
zek and Eichwald, Chapter 8, this volume), concentration, temperature, etc.
Even for membrane ATPases, different ATPases responded to electric fields of
different amplitudes and frequencies. In other words, a cell may contain all the
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machinery needed for deciphering and processing a basic type of language.
Tissues and organs are much more sophisticated in their handling of complex
signals of communication. Still, I propose that the basic unit of communication
is the cell and that molecules carry out the initial deciphering of signals. Thus,
to understand the mechanisms of signal transduction, one must start with
molecules.

In summary, the experiments discussed in this chapter indicate that each
enzyme or ion pump has a characteristic frequency by which it can most
effectively interact with an oscillating or a fluctuating potential of particular
amplitude. Therefore, different enzymes and pumps can recognize and process
different frequencies and amplitudes. In this view, these oscillatory and fluc-
tuating potentials aimed at particular cellular enzymes and transporters make
up the language of cells. The transmission of acoustic, or vocal signals in
organisms, and of electric signals in organs and cells, are well-known examples.
Can an organism transmit an EMF signal, and if so by what mechanisms?
These are questions we would like to address in our future work. In an earlier
publication I proposed that cells do have their own languages for communica-
tion (Tsong, 1989). Now our task is to decipher these languages. Once we can
understand the languages of cells, we should be able to communicate with
them, or even to control their activities and command their actions. It would
appear that the time is ripe for a rigorous pursuit of this concept and to
develop it into a viable new area of biomedical research.
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Part IV

Nonlinear control of biological and other
excitable systems

One of the most intriguing practical applications derived from nonlinear
dynamics has been the development of nonlinear control techniques. The
chapters in Part IV explain how they can be employed in the control of
chemical dynamics and biological activity. Chapter 14 by Kenneth Showalter
outlines the origins of the concept of chaos control and its applications in the
control of chemical chaos. As a model system he describes the well-established
nonlinear chemical oscillator, the Belousov—Zhabotinsky reaction. The chap-
ter concludes with a discussion of prospects for controlling spatiotemporal
chaos. In Chapter 15, William Ditto and Mark Spano present experiments on
biological chaos and clinical applications that employ chaos control tech-
niques, for example in the treatment of heart arrhythmias by feedback-control-
led electrical stimulation. Finally, they review experiments demonstrating that
electric fields can be used in the nonlinear control of neuronal activity. John
Milton, in Chapter 16, discusses epilepsy as a dynamical disease within the
framework of developing dynamical therapies. He describes theoretical work
showing how time-delayed feedback generates multistable dynamical states.
The chapter proposes that the therapeutic control of epilepsy might be achiev-
able by exploiting the sensitivity of multistable states to weak stimuli. Chapter
17 by Oliver Steinbock and Stefan Müller focuses on the control of spatiotem-
poral dynamics, in particular of spiral wave patterns. First, the authors present
an overview of spiral wave pattern formation in different chemical and biologi-
cal systems. Then they review experiments that have achieved the control of
wave patterns in the Belousov—Zhabotinsky reaction, for example with electric
field and laser light perturbations. The book’s final chapter reviews some of the
major characteristics of biodynamics research. Chapter 18 explores the impli-
cations of the herein-discussed work for basic research, clinical applications
and biological thinking. It emphasizes that modern medicine might greatly
benefit from a better understanding of the self-organized biodynamical pro-
cesses that appear to be involved at all levels of physiological organization.
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14

Controlling chaos in dynamical systems1

KENNETH SHOWALTER

14.1 Introduction

A clown sits precariously atop his unicycle, stopping at the viewing stand to get
a few more laughs out of the audience. The more discerning observers notice,
however, that the clown never actually stops. Rather, he is in constant motion,
moving slightly ahead and slightly back and slightly ahead again in a seem-
ingly uncoordinated, jerky fashion. In fact, the clown’s motions are precise
corrections he makes to stabilize his otherwise unstable vertical perch. Many
other examples of this type of action—reaction behavior come to mind in
everyday experience, from the tightrope walker in the same circus to a waiter
one-handedly whisking away a wobbling tray loaded with dishes.

The clown’s balancing act provides a good analogy for recently developed
methods for controlling a type of behavior called deterministic chaos, which
was previously thought to be uncontrollable. Contrary to the traditional view
of ‘chaos’, deterministic chaos is not totally random but has an underlying,
intricate order. Despite this order, predicting the long-term behavior in such
systems is essentially impossible, since chaotic systems exhibit an extreme
sensitivity to initial conditions, where two systems that differ only infini-
tesimally evolve in time so as to diverge exponentially from one another.
Chaotic behavior arises in systems as diverse as turbulent fluids, electronic
circuits, lasers, and oscillatory chemical reactions.

The extreme sensitivity of chaotic systems suggests that they might be
difficult if not impossible to control, since any perturbations used for control
would grow exponentially in time. Indeed, this quite reasonable view was
widely held until only a few years ago. Surprisingly, the basis for controlling

1 Adapted from K. Showalter (1995) Chemistry in Britain 31: 202—205 (with permission from the Royal
Society of Chemistry), and from W. L. Ditto and K. Showalter (1997) Chaos 7: 509—511 (with permission
from the American Institute of Physics).
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chaos is provided by just this property, which allows carefully chosen, tiny
perturbations to be used for stabilizing virtually any of the unstable periodic
states that are inherent in a chaotic system. Unstable periodic states of a
chaotic chemical reaction, for example, can be stabilized by perturbing the
operating conditions of the system according to a simple feedback algorithm.
The result is a transformation of the irregular chaotic responses into regular
periodic oscillations.

One of the most attractive features of feedback control is that it can be
applied without knowing the mechanism of a system. Other control methods
require an accurate model of the system so the governing equations can be
appropriately modified to produce the desired stabilization. Feedback
methods, however, require only a means to monitor the system and access to
an operating condition that can be suitably perturbed. Thus, complex systems
for which no accurate mathematical models are available can be readily
controlled. In addition, the fact that no knowledge of the mechanism is
necessary can be turned around: feedback control can be used as a powerful
tool for investigating the underlying dynamical structure of a system, thereby
gaining insights into the mechanism.

14.2 Control theory and experiments

Research on controlling chaotic systems has seen remarkable growth in a short
time span, with the ‘early’ studies in the field appearing less than ten years ago.
In the late 1980s, Alfred Hübler and coworkers (1988) carried out a series of
studies on manipulating chaotic systems to achieve a desired ‘goal dynamics’,
with forcing terms appropriately incorporated into the corresponding govern-
ing equations. In 1990, EdwardOtt, Celso Grebogi and James A. Yorke (Ott et
al., 1990) showed how unstable periodic oscillations of a chaotic system can be
stabilized with small, controlled perturbations by using what is now known as
the OGY method (Shinbrot et al., 1993).

A mere nine months after the OGY method appeared, William L. Ditto,
StevenN. Rauseo and Mark L. Spano demonstrated the concept of controlling
chaos in a laboratory experiment involving a chaotically oscillating mag-
netoelastic ribbon (Ditto et al., 1990). Magnetoelastic materials stiffen in a
magnetic field, and an oscillatory field causes a vertical magnetoelastic strip to
oscillate, relaxing under the influence of gravity only to stiffen again. For some
values of the field strength the strip oscillates chaotically, and when tiny
perturbations to the field are imposed according to the OGY algorithm,
various periodic oscillations can be stabilized. Several other applications
quickly followed, including the stabilization of a chaotic diode resonator by
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Earle R. Hunt (1991) and a chaotic laser by Rajarshi Roy and coworkers
(1992).

Perhaps the greatest driving force behind the advances in chaos control has
been the prospect of developing practical applications. It now seems obvious —
especially with the benefit of hindsight — that the ability to transform chaotic
behavior into periodic or steady-state behavior would be highly beneficial in
many day-to-day circumstances. One vitally important application that im-
mediately springs to mind is the use of control techniques to restore a regular
heartbeat from the state of atrial or ventricular fibrillation, debilitating heart
maladies that are often fatal. Alan Garfinkel and coworkers (1992) were the
first to demonstrate the feasibility of using chaos control to stabilize periodic
behavior from irregular heart muscle activity. Using rabbit heart tissue that
had been induced to undergo irregular behavior related to the contractions
observed in fibrillation, they identified the stable and unstable directions of an
unstable periodic state and stabilized the ‘regular heartbeat’ by applying
appropriately timed electrical perturbations.

Another application with enormous potential benefits involves the use of
chaos control for destabilizing periodic behavior in the brain, where periodicity
is abnormal and associated with epileptic seizure activity. Steven J. Schiff and
coworkers (1994) were successful in doing just that in an in vitro preparation of
hippocampal brain tissue in which the system was forced away from the
periodic state by electrical perturbations. For details regarding the above
applications, see Ditto and Spano, Chapter 15, this volume.

14.3 Chemical chaos

Dynamical studies of chemical reactions are often carried out with continuous-
flow stirred tank reactors, much like those used in commercial chemical
manufacturing, because particular states far from equilibrium can be main-
tained and carefully examined. Oscillatory chemical reactions in such reactors
display myriad responses — from steady state to periodic to chaotic — as a
control parameter, such as the concentration of a reactant, is varied. Many
experimental and theoretical studies of oscillatory reactions have been carried
out and a number of bona fide chaotic chemical systems are now known (Scott,
1993, 1994).

Figure 1 shows behavior typical of an oscillatory chemical reaction, where
the concentration of an intermediate species C periodically rises and falls in a
regular pattern. The response varies according to the reactant concentration,
R. As R is swept through a set of values, qualitative changes in the oscillatory
behavior arise at critical values called bifurcation points. At the first bifurcation
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Figure 1. In an oscillatory chemical reaction, the concentration, C, of an intermediate
species oscillates over time. Panels (a)—(e) show periodic oscillatory patterns for
different values of the reactant concentration, R. An increasing period number not
only corresponds to more oscillations per cycle, but also a longer time for each period.
As R is changed further, chaos emerges when the number of oscillations per period,
and hence the length of the period, becomes infinite; see panel (f ). (Adapted from K.
Showalter (1995) Chemistry in Britain 31: 202—205, with permission from the Royal
Society of Chemistry.)
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Figure 2 (opposite). A convenient way of representing the progression of an oscilla-
tory system from simple period-1 behavior to chaos is to plot only the maximum value
of each oscillation in a cycle. The values can then be used to construct a bifurcation
diagram, showing the behavior as a function of an operating condition or concentra-
tion. For example, the two maxima of period-2, B1 and B2, indicated in Figure 1b are
plotted in panel (a) at reactant concentration R� 0.156. As the control parameter is
changed further, the system will display period-2 oscillations until R reaches about
0.15561, at which point the system exhibits period-4 oscillations. The points C1—C4 are
the four maxima of period-4 at R� 0.1555 shown in Figure 1c, and the points D1—D8
correspond to the eight maxima of period-8 at R� 0.15538 shown in Figure 1d. The
chaotic behavior shown in Figure 1f appears at R� 0.1545 in panel (a), where the
points represent the maximum value of C in each oscillation. The solid curves repre-
sent stable states of the system at a given R-value, while the dashed curves represent
unstable states. Panel (b) shows a blowup of a range of the behavior in panel (a).
(Adapted from K. Showalter (1995) Chemistry in Britain 31: 202—205, with permission

point, the system changes from having an oscillatory pattern with one maxi-
mum per period to having two different maxima per period, one large and one
small (see Figure 1a and b). The oscillation period is therefore doubled at the
bifurcation point. Simple oscillations with one maximum per period are called
period-1 oscillations, while those with two maxima and twice the period are
called period-2 oscillations. Further changes in reactant concentration move
the system through a cascade of successively doubled oscillatory patterns, from
period-2 to period-4 to period-8, and so on.

The period doublings occur closer and closer to each other as the reactant
concentration is further changed until an infinite number of bifurcations occur.
This period-doubling cascade is a classical route to chaos, observed in many
different types of dynamical systems. An intuitive understanding of chaotic
behavior comes from realizing that when there have been an infinite number of
period doublings, the period must be infinitely long; that is, the oscillations are
completely aperiodic. This, however, is only part of the story. We have already
noted the other part, namely that chaotic systems exhibit an extreme sensitiv-
ity to initial conditions, so that tiny perturbations cause their behavior to
diverge exponentially away from that of the unperturbed system.

14.3.1 Mapping the onset of chaos

A useful way of representing dynamical behavior involves selecting only one
point from each oscillation, such as the maximum concentration of the chemi-
cal intermediate, C. With each oscillation represented by just its maximum
value, the period-doubling cascade appears as shown in Figure 2. At high
values of reactant concentration R, the maxima of the period-1 oscillations
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form a curve that gradually increases to higher values ofC asR is decreased. As
R is further decreased, the curve divides (bifurcates) into two curves that
represent the two maxima assumed by C in the period-2 state. On further
decreasing R, another period doubling gives rise to period-4 oscillations. This
period doubling continues as R is decreased: period-4 gives way to period-8,
period-8 gives way to period-16, and so on, until an infinite number of period
doublings gives rise to chaos.

At each bifurcation, the stable state of the system loses its stability as it gives
way to the next state; for example, period-1 becomes unstable as it is replaced
by period-2. Therefore, an additional unstable periodic state is added at each
bifurcation. Because an infinite number of period doublings gives rise to chaos,
a chaotic system is characterized by an infinite number of unstable periodic
states. This collection of unstable states comprises the strange attractor of the
system.

A map-based control algorithm provides a simple way of stabilizing a
chaotic system in any of the unstable states of the system’s strange attractor.
The key to this method is the one-dimensional (1-D) map, which is a conveni-
ent representation of the dynamics of a chaotic system. As shown in Figure 3, a
1-D map is produced by plotting the maximum C

���
of an oscillation as a

function of the maximum C
�
of the previous oscillation. This is called a next

maximum map, and it can be used to find the next maximum from the current
maximum. For example, the period-1 oscillation appears on the map as a
single point, since the maximum concentration is the same for each measure-
ment. The period-1 point therefore falls on the line C

���
�C

�
. Higher peri-

odicity oscillations give points falling to either side of this line; for example, a
period-2 oscillation gives two points and a period-4 oscillation gives four. For
simple, low-dimensional chaos, the maximum of an oscillation can be pre-
dicted from the previous maximum by using the effectively one-dimensional
curve, the 1-D map.

Although it was the OGY theory that stimulated experimentalists to try
their hand at controlling chaos in the laboratory, a reduction of the theory has
been used to carry out many of the experiments. Low-dimensional chaos can
be controlled by varying a parameter, such as reactant concentration, accord-
ing to the 1-D map (Figure 4; Peng et al., 1991; Petrov et al., 1992). The
stabilization procedure is greatly simplified with the map-based algorithm.
This is especially important in controlling high-frequency chaos in diodes and
lasers (Hunt, 1991; Roy et al., 1992), since there is simply not enough time
between oscillations to carry out extensive calculations. Even in relatively slow
systems, like the chemical reaction considered below, the map-based method
has an appealing intuitive basis.
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Figure 3. The 1-D map is a useful technique for representing a chaotic system, where
each of the points on the curve represents two values: the maximum of the present
oscillation and the maximum of the next oscillation. For period-1, the maximum of
each oscillation is the same, so there is only one point. For period-2, one cycle includes
two different maximum values, so the 1-D map has two points (labeled P2), which
represent the changes from B1 to B2 and from B2 to B1 shown in Figure 1b. Similarly,
four points appear for period-4. Plotting successive pairs of maxima for the chaotic
behavior in Figure 1f yields the curve shown (schematically) by the solid line. The
labeled points represent the unstable period-1, period-2, and period-4 orbits embedded
in the strange attractor. (Adapted from K. Showalter (1995) Chemistry in Britain 31:
202—205, with permission from the Royal Society of Chemistry.)
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Figure 4. A blowup of the 1-D map around the period-1 point in Figure 3 illustrates
the 1-D map method for controlling chaos. The unstable period-1 point, labeled C

�
, is

given by the intersection of the map and the diagonal line, where C
�
�C

���
. Also

shown is a blowup of a second 1-D map produced from chaotic oscillations at a
slightly different value of the reactant concentration,R� 	R. The first step in control-
ling chaos with this method is to construct two such maps and measure the horizontal
distance �C between them. This permits the determination of a proportionality
constant, g��C/	R, which describes the shift of the map with the change in R. The
second step is to use this proportionality constant to carry out control. To stabilize the
unstable periodic state, it is necessary only to measure the current state C

�
, and then

changeR by an amount 	R such that the next maximumafterC
�
is the desired stateC

�
.

The necessary change in R is calculated from the difference between the current state
and the period-1 point, C

�
�C

�
��C, and the earlier determined proportionality

constant, g, according to 	R��C/g. This procedure is repeated for each cycle, or only
as often as is necessary, to stabilize the periodic behavior. (Adapted from K. Showalter
(1995) Chemistry in Britain 31: 202—205, with permission from the Royal Society of
Chemistry.)
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14.3.2 Controlling chemical chaos

The famous oscillatory Belousov—Zhabotinsky (BZ) reaction, discovered and
developed in the 1950s and 60s in the former Soviet Union (Zhabotinsky,
1985), is easily prepared from reagents found in most chemical laboratories.
When the reagents are mixed together in a beaker, the reaction displays some
30 to 40 oscillations in the concentrations of a host of intermediate species.
With cerium ion as the catalyst, the reaction mixture oscillates between pale
yellow and colorless; however, with other metal ion catalysts, oscillations
between red and blue or orange and green are displayed. In unstirred thin films
of solution, the BZ reaction exhibits spectacular spiral waves and target
patterns (Zaikin and Zhabotinsky, 1970; Winfree, 1972; see also Steinbock and
Müller, Chapter 17, this volume).

The BZ reaction is often studied in a continuous-flow, stirred tank reactor,
in which a particular oscillatory state can bemaintained indefinitely for careful
study. As a control parameter such as a reactant concentration or the rate of
reactant inflow is systematically varied, the reaction undergoes a period-
doubling cascade to chaos. Chaotic behavior in the BZ reaction has been
extensively studied over the years, mainly in the laboratories of Harry L.
Swinney at the University of Texas (Simoyi et al., 1982) and John L. Hudson at
the University of Virginia (Hudson et al., 1979), as well as by Jean-Claude
Roux and coworkers at the Centre de Recherche Paul Pascal in Bordeaux
(Roux et al., 1980).

Themap-based control algorithm has been used to stabilize periodic oscilla-
tions in the period-doubling chaos of the BZ reaction (Petrov et al., 1993). The
period-1 and period-2 orbits were determined from appropriate 1-D maps
constructed from electrode measurements. Once these were determined, the
behavior could be readily switched between chaos and the two different
periodic states at any time (see Figure 5). Additional periodic states could also
be stabilized by determining the appropriate orbits and applying the algor-
ithm.

An extension of the map-based algorithm allows the unstable states to be
tracked as the operating conditions are varied (Petrov et al., 1994a). This
technique provides a means to experimentally characterize the dynamics of a
system that is beyond the traditional methods of time series analysis. In
addition, it allows a system to be stabilized even when the operating conditions
uncontrollably drift, as often occurs in practical settings.
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14.3.3 Controlling spatiotemporal chaos

Controlling chaos in homogeneous systems like the BZ reaction in a tank
reactor can be understood in terms of descriptions based on ordinary differen-
tial equations, since the behavior varies in time only. The next level of complex-
ity is found in spatiotemporal systems, where the behavior varies not only in
time but also in space. Not only are spatiotemporal systemsmore complex, but
they are also more likely to be encountered in everyday settings. While the
homogeneous chemical reaction is typically relegated to the chemist’s labora-
tory bench, spatiotemporal behavior is found throughout Nature — especially
in living systems. The beating heart, for example, exhibits a wave of electrical
activity that propagates through the excitable tissue to trigger a contraction of
the muscle.

Applications of feedback methods have been developed to extend the range
of stable burning in combustion systems by stabilizing oscillatory and chaotic
flames (Petrov et al., 1994b). Model flame systems exhibit period-doubling
behavior and chaos as parameters such as the air—fuel ratio or reaction zone
width are varied. As the flame chaotically flickers, themotion in time and space
can be monitored just as the concentration of a chemical species in the BZ
reaction was monitored. However, whereas varying a single parameter in time
can control the BZ reaction, controlling the spatiotemporal variations of a
flame requires varying parameters in both time and space. In this way it is
possible to guide an otherwise chaotic flame into burning in a controlled,
stable manner. It is not difficult to imagine how extending the range of stable
burning could have a wide range of applications, from eking out higher
efficiencies in power plants to providing more thrust in rocket engines.

14.4 Order out of chaos

Chaos is everywhere. Chaotic chemical reactions, lasers, electronic circuits,
myocardial tissue, and flickering flames are just a few examples. Many more
can be found by looking in the most commonplace settings. Just think of
smoke rising from a cigarette, bubbling beer, or a dripping faucet. Less obvious
is chaotic behavior in chemical manufacturing processes or combustion-based
electrical power generation or irregular wave activity in living excitable tissue.
Controlling chaos could be beneficial in many of these settings, and recently
developed theoretical tools are now available for use in practical applications.
Only a dozen years ago, researchers were just beginning to understand that
chaos is as natural as order, and that the roots of order and chaos are
intertwined. Now we are learning how to use chaos in real-world applications.
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Figure 5. Stabilizing period-1 and period-2 in the Belousov—Zhabotinsky reaction.
The plot shows electrode measurements of bromide ion concentration of the reaction
in the chaotic state. Period-1 oscillations (P1) were stabilized from the chaotic behav-
ior, which was followed by the stabilization of period-2 oscillations (P2), and then a
return to chaotic behavior when the control algorithm was switched off. (Adapted
from K. Showalter (1995) Chemistry in Britain 31: 202—205, with permission from the
Royal Society of Chemistry.)
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15

Electromagnetic fields and biological tissues:
from nonlinear response to chaos control

WILLIAM L. DITTO AND MARK L. SPANO

15.1 Introduction

Between regularity and randomness lies chaos. Our prevailing scientific para-
digms interpret irregularity as randomness. When we see irregularity, we
chauvinistically cling to randomness and disorder as explanations. Why
should this be so? Why is it that, when the ubiquitous irregularity of biological
systems is studied, instant conclusions are drawn about randomness and the
whole vast machinery of probability and statistics is belligerently applied?
Recently we have begun to realize that irregularity is much richer than mere
randomness can encompass. Thus, we are brought to chaos.

Sustained irregularity has always upset our notions of how the world should
behave. Yet it seems to be the canonical behavior of biological systems. One
informal definition of chaos, sustained irregular behavior, although descriptive,
is too vague to define the rich behavior of chaotic systems. A more precise
defining feature of chaotic systems is their sensitivity to initial conditions (e.g.,
see Baker and Gollub, 1990). It is this definition that we will utilize for the
characterization and control of chaotic systems.

Fleeting glimpses of order within disorder are quite common. We have all
seen short stretches of almost periodic behavior in otherwise irregular systems.
A tantalizing example lies in the stock market, where many hope to reap
windfall fortunes from analyzing short-term order and predicting the volatile
market. But short-term order is a profound, even defining, feature of chaotic
systems. To be explicit, chaotic systems exhibit the following.
(1) Sensitivity to initial conditions, where the behavior of the system can change

dramatically in response to small perturbations in the system’s parameters and/or
initial values. This makes long-term (but not short-term!) prediction impossible.

(2) Complex geometric structure(s) in the system’s phase space (fractal objects whose
composition includes an infinite variety of unstable periodic behaviors) to which
the system’s behavior is attracted.
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The combination of sensitivity to initial conditions and complex geometry in
state space can produce to the casual observer an appearance of randomness.
However, upon closer inspection one glimpses a remarkable order. The flesh of
chaotic systems adheres to a skeleton of infinite unstable periodic behaviors
that seemingly come and go with no apparent pattern. That is to say, no
apparent pattern until one looks with the tools of nonlinear dynamics. Armed
with an understanding of unstable periodic motions, chaotic systems take on a
more understandable, and consequently controllable, character. It is this order
that allows the successful short-term prediction of a system’s behavior and the
subsequent control that would be impossible in a totally random system. In the
following, we apply chaos theory to specific biological systems.

15.2 Cardiac dynamics

15.2.1 Introduction to ventricular fibrillation

Sudden cardiac death is a major health problem that claims one in six lives.
Nearly all instances of sudden cardiac death do not occur in a hospital and the
majority are due to an irregular and rapid heart rhythm termed ventricular
fibrillation (VF). Heart attacks and primary heart muscle disease (car-
diomyopathy) are the most common causes of VF. In VF, the main pumps of
the heart, the ventricles, quiver in an irregular manner such that blood is not
effectively pumped throughout the body. The only presently known treatment
for VF is to pass an electrical signal with a large current through the heart
muscle. This shock, if successful, effectively resets the heart back to a rhythm
compatible with life. Without such treatment, sustained VF is always fatal.

15.2.2 Fibrillation as a dynamical state

Applications of nonlinear dynamical techniques to VF have, until recently,
yielded contradictory results, primarily due to the inadequacies of current
techniques to resolve determinism in short and noisy data sets. The mechanis-
tic elucidation of VF has been hampered by its rapidly changing and markedly
heterogeneous electrophysiological nature, rendering waveforms obtained
during VF challenging to analyze quantitatively. In light of recent successes
with the identification of unstable periodic motion embedded in chaotic sys-
tems and control of these motions in physical and biological systems (Ditto et
al., 1990; Ditto and Pecora, 1993; Ott and Spano, 1995; Pierson and Moss,
1995; So et al., 1996, 1997), new techniques to decide whether experimentally
obtained, irregular biological waveforms represent deterministic or stochastic
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(random) behavior abound. Previous quantitative measures for determinism,
such as Fourier spectra, fractal dimension, and Lyapunov exponents, along
with other statistical techniques, have proven uniformly inadequate for detect-
ing determinism in these short, possibly nonstationary, time series. Elucidation
of the presence of determinism during VF is important because it may make
novel therapeutic and diagnostic strategies possible. However, whether VF
represents a deterministic or stochastic process has been controversial
(Guevara et al., 1981; Goldberger et al., 1986; Chialvo et al., 1990; Kaplan and
Cohen, 1990; Witkowski and Penkoske, 1990).

The presence of the infinite number of unstable periodic motions that
comprise the skeleton of a chaotic system has recently been exploited experi-
mentally. This corollary of a chaotic system’s sensitivity to initial conditions is
the key to the control of such systems (Ditto et al., 1990;Ditto andPecora, 1993;
Ott and Spano, 1995). This form of stabilization is analogous to a baseball on a
saddle. Control is achieved through movement of the saddle’s position or
adjustment of the ball’s motion to keep the baseball constantly rolling back
toward the unstable equilibriumpoint in the center of the saddle. This theoreti-
cal technique was originally pioneered by Ott, Grebogi and Yorke (Ott et al.,
1990). Their technique (and variations thereof) has been successfully applied to
control chaos in the vibrations of a magnetoelastic ribbon (Ditto et al., 1990),
electrical circuits (Hunt, 1991), the output of a solid-state laser (Roy et al., 1992),
chemical oscillations (Parmananda et al., 1993; Petrov et al., 1993), drug-
induced arrhythmias of in vitro rabbit ventricle (Garfinkel et al., 1992), seizure-
related population spiking of hippocampal slices (Schiff et al., 1994) and many
other systems. These successes all have in common a proportional feedback
control around unstable periodic state space trajectories.

15.2.3 Detection of deterministic dynamics in canine ventricular fibrillation

Our experimental preparations consisted of open-chest, anesthetized dogs
whose hearts were studied in vivo after VF was electrically induced (Witkowski
et al., 1995). Transmembrane cardiac current, I

�
, was measured from the

ventricular epicardium without cell disruption (Witkowski et al., 1993). Mini-
mal signal filtering was specifically employed to avoid the pitfalls associated
with filtered noise (Rapp et al., 1993). The I

�
time series was then examined to

detect activations (beats). The intervals between successive activations, A(i),
form a related time series that is most useful in diagnosing and controlling
chaos.

We plotted the (i� 1)th interval, A(i� 1), versus the previous interval, A(i),
in a Poincaré map (where deterministic points typically are attracted to a
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geometric structure known as an attractor). Such a Poincaré map provides a
reduced view of the dynamics of the measured data. We searched for evidence
of unstable periodic orbits (UPOs), which appear as unstable fixed points
(UFPs) in a Poincaré map. These UFPs have associated directions along
which the system state point approaches (stable manifold) and recedes from
(unstablemanifold) the fixed point. A typical example of such a sequence in the
Poincaré map is demonstrated by following state points 23—29 in Figure 1a:
from point 23 to point 25 the state of the system is drawn toward the UFP
along the stable manifold; points 26 through 29 demonstrate exponential
divergence away from the fixed point along the unstablemanifold. This pattern
is repeated time and again throughout the experimental run. The solid lines in
the figure denote the positions of the stable and unstable manifolds as deter-
mined by fitting to a number of such sequences. Figure 1b—d displays similar
behavior for other data sets. The resultant geometry is known as a flip saddle
and is consistent with previous experimental results for in vitro rabbit hearts
(Garfinkel et al., 1992).

The detection of UFPs is only the beginning in the search to understand and
control the physical mechanisms that underlie VF. While the canine model of
VF is widely employed to test promising new defibrillation devices, the rel-
evance of the findings in our study to the clinically important disturbance of
VF in humans requires additional studies. VF can be induced in virtually all
human hearts. It is fascinating to speculate that a greater understanding of the
nonlinear dynamical behavior of VF might lead to the possibility that VF may
be controlled through chaos control techniques. For this to become a reality
we really need to know not merely the temporal dynamics but also the
spatiotemporal dynamics that underlie VF. With that in mind we instituted a
study to visualize the spatiotemporal electrical patterns long suspected of being
the dynamical manifestation of fibrillation.

15.2.4 Imaging of the spatiotemporal evolution of ventricular fibrillation

Rotors, electrophysiological structures that emit rotating spiral waves, occur
in a variety of systems that all share with the heart the functional properties of
excitability and refractoriness. These reentrant waves, seen in numerical sol-
utions of simplified models of cardiac tissue (Holden, 1997) are believed to
occur during ventricular tachycardias (Winfree, 1994; Panfilov and Holden,
1997). The detection of such forms of reentry in fibrillating mammalian ven-
tricles has been difficult (Gray et al., 1995, 1998; Lee et al., 1996). Here we
show that in isolated perfused dog hearts, high spatial- and temporal-resol-
ution optical transmembrane potential mapping can readily detect transiently
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Figure 1. (a) Return plot of the time series A(i) from a typical 1-min interval of in vivo
ventricular fibrillation (VF) illustrating the local structure of the chaotic attractor. The
range of data displayed was narrowed to more clearly demonstrate the points contri-
buting to the local structure. Note the flip saddle structural appearance for points 23
through 29. Coordinates for the calculated unstable fixed point (UFP), the stable
eigenvalue (�

�
) and the unstable eigenvalue (�

�
) for this visitation of the UFP are

provided above the plot. The diagonal dashed line is the line of identity
(A(i� 1)�A(i)). (b)—(d) Three separate flip saddle structures (points 143—146 in (b),
396—401 in (c), 450—454 in (d)) sequentially generated by a second representative VF
time series with abbreviations as in (a).
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erupting rotors during the early phase of VF. This activity is characterized by
a relatively high spatiotemporal cross-correlation. During this early fibrilla-
tory interval, frequent wavefront collisions and wavebreak generation are
also dominant features (Pertsov et al., 1993). Interestingly, this spatiotem-
poral pattern undergoes an evolution to a less highly spatially correlated
mechanism devoid of the epicardial manifestations of rotors, despite con-
tinued myocardial perfusion.

In 1930, Carl Wiggers used a movie camera operating at 32 frames/s to
record the movements of the surface of the in situ heart in which VF was
induced (Wiggers, 1930). He described four stages: (1) an initial stage consisting
of 2 to 8 rapidly activated peristaltic waves; (2) a subsequent convulsive
incoordination stage that lasted 14—40 s, so named because ‘When the ven-
tricles are held in the palm of the hand, a fluttering, undulatory, convulsive
sensation is experienced’ without the ability to generate any blood pressure;
(3) and (4) are subsequent stages that reflect the progressive ischemia. In terms
of clinical interventions the most significant of these stages is stage 2, when
countermeasures can be instituted and sudden death aborted. Recently, using
an electronic camera operating at 60 frames/s, together with voltage-sensitive
dye staining of the heart, a single rapidly moving rotor, which produced an
electrocardiographic pattern in rabbit hearts that resembled fibrillation, was
described (Gray et al., 1995). However, similar rotating waves in larger mam-
malian hearts are described as uncommon occurrences in canine hearts (Lee et
al., 1996).

We have recorded the electrical activity from a limited epicardial area of the
right and left ventricles in isolated, blood-perfused canine hearts. The anterior
right ventricle and part of the left ventricle were compressed under an optical
window to minimize motion artifacts. (No pharmacological agents were em-
ployed to reduce mechanical motion artifacts in the dynamics.) The measure-
ment technique employs an image-intensified charge-coupled device (CCD)
optical recording system (Witkowski et al., 1998a) imaging an epicardial
surface stained with the voltage-sensitive dye di-4-ANEPPS (Figure 2). An
area of approximately 5.5 cm� 5.5 cm was imaged, which represents approxi-
mately 30% of the epicardial surface (Figure 3). At the levels of illumination
utilized, continuous recordings lasting 10—15min could be realized with no
detectable phototoxic damage. A 128� 128-pixel, frame-transfer CCD cam-
era operating at 838 frames/s (1.19ms/frame) was used. The analog video
signal underwent 12-bit A/D conversion prior to transfer to a frame grabber.

Fluorescent images were obtained with a temporal resolution of 1.2ms and
a spatial resolution of approximately 0.5mm (Witkowski et al., 1998a,b). VF
was induced with a single, critically timed electrical pulse. Both the early onset
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Figure 2. (a) Schematic representation of the experimental set-up. Two 1-kW stabil-
ized xenon arc lamps were used to illuminate the epicardial cardiac surface under
study with �100mW/cm� of quasi-monochromatic green light. This focused fluor-
escent source was imaged after barrier filter rejection of reflected light components and
retention of fluorescent components with wavelengths �590nm, as illustrated. The
cooled fiber optically coupled image-intensified CCD frame-transfer camera system
was operated at 1.19ms/frame with 12 bits of dynamic range. (b) Time series from the
sequential processing steps for a representative single pixel from 500 frames during
ventricular fibrillation (VF) are shown. The effects (on signal to noise) of subsequent
image processing steps are depicted; those included 9� 9 Gaussian spatial followed by
21-point median temporal filtering, and culminating with 5-point temporal derivative
estimation with final clipping to maintain only the positive values (setting all negative
values to 0). The optical calibration bar indicates a 2% change in fluorescence.

of VF (corresponding to Wiggers’ stages 1 and 2) as well as sustained VF that
lasted for more than 10min in perfused hearts were imaged with this appar-
atus. The optical transmembrane potentials as well as their temporal deriva-
tives were then viewed as videos. (Quicktime and AVI video sequences from
this study are available at the web site: http://www.physics.gatech.edu/chaos)

The data from 15 frames of optical images clearly show the onset of spiral
wave formation in our canine heart experiment (Figure 4a). The initial waves
triggered by the induction of VF consistently produced a reentrant cycle with a
‘figure-of-eight’ morphology as in Chen et al. (1988). These are composed of
two mirror-image rotors that share a common reentrant pathway. As an
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Figure 3. Photograph of formalin-fixed canine heart with the pacing electrodes
marked by white-headed pins, and the approximate area of epicardium that was
imaged is outlined with white tape.

example, this reentry might last for a total of eight cycles before being abol-
ished by wavefronts that collided in the area of the initial reentry. These
collisions often resulted in the subsequent emergence of two oppositely di-
rected, spatially discrete wavefronts with observable dangling ends (Wit-
kowski et al., 1998a) as shown in Figure 4b. Each of the dangling ends of the
emerging wavefronts is also called a wavebreak or phase singularity (Pertsov et
al., 1993). Thereafter, other rotors are formed. All episodes of induced VF were
self-sustaining and terminated only when the heart was defibrillated.

A completely different electrophysiological pattern was also observed when
perfused VF had persisted for 10min. During this ‘chronic’ VF, no rotors were
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(a)

Figure 4. (a) Rotors, the source structures that immediately surround the core of
rotating spiral waves, occur in a variety of systems that all share with the heart the
functional properties of excitability and refractoriness. Here we show that in isolated,
perfused dog hearts, high spatial and temporal resolution optical transmembrane
potentialmapping can readily detect transiently erupting rotors during the early phase
of ventricular fibrillation (VF). This activity is characterized by a relatively high
spatiotemporal cross-correlation.
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Figure 4. (b) During this early fibrillatory interval frequent wavefront collisions and
wavebreak generation are also dominant features.

observed. The source mechanism is still probably reentry, but we believe that
its geometric aspect has become more three-dimensional. This pattern was
reproducible in that, after defibrillation and a recuperation interval of 10min,
the acute pattern of VF (Wiggers’ stage 2) was once again the initial manifesta-
tion after VF induction.

15.3 Control of chaos in cardiac systems

15.3.1 Control of isolated cardiac tissue

We have found that it is possible to control a chaotic cardiac arrhythmia using
chaos control. Our cardiac preparation consisted of an isolated perfused
portion of the interventricular septum from a rabbit heart as shown in Figure 5
(Garfinkel et al., 1992). The heart was stimulated by passing a 3-ms constant
voltage pulse, typically 10—30V, at twice threshold between platinum elec-
trodes embedded in the preparation. Electrical activity was monitored by
recording monophasic action potentials with Ag-AgCl wires on the surface of
the heart. Monophasic action potentials were digitized at 2 kHz and processed
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Figure 5. Photograph of an isolated well-perfused portion of the interventricular
septum from a rabbit heart, arterially perfused through the septal branch of the left
coronary artery with a physiologically oxygenated Kreb’s solution at 37 °C.

in real time by a computer to detect the activation time of each beat from the
maximum of the first derivative of the voltage signal.

Arrhythmias were induced by adding 2 to 5 �M ouabain with or without 2
to 10�M epinephrine to the arterial perfusate. The mechanism of ouabain/
epinephrine-induced arrhythmias is probably a combination of triggered ac-
tivity and nontriggered automaticity caused by progressive intracellular cal-
cium (Ca��) overload from sodium (Na�) pump inhibition and increased
Ca�� currents. Typically the ouabain/epinephrine combination induced spon-
taneous beating, initially at a constant interbeat interval and then progressing
to period-2 and higher-order periodicity before developing a highly irregular
aperiodic pattern of spontaneous activity. The duration of the aperiodic phase
was variable, lasting up to several minutes before spontaneous electrical
activity irreversibly ceased. The spontaneous activity induced by ouabain/
epinephrine in this preparation showed a number of features symptomatic of
chaos. Most importantly, in progressing from spontaneous beating at a fixed
interbeat interval to highly aperiodic behavior, the arrhythmia passed through
a series of transient stages that involved higher-order periodicities. These
features are illustrated in Figure 6 in which the nth interbeat interval, I

�
, has
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Figure 6. Time series of monophasic action potentials (right) and the Poincaré maps of
interbeat intervals (left) at various stages during arrhythmias induced by ouabain/
epinephrine in typical rabbit septa. Typically, the arrhythmia was initially character-
ized by spontaneous periodic beating at a constant interbeat interval (a) (opposite),
proceeded through higher-order periodicities such as period-2, period-4, and period-5
(b) (opposite), and ending in a completely aperiodic pattern (c). Note that, in the
Poincaré map of the final stage, the points form an extended structure that is neither
point-like nor a set of points (i.e., is not periodic) and is not space-filling (i.e., is not
random). This behavior is indicative of chaos.

been plotted against the previous interval, I
���

, at various stages during
ouabain/epinephrine-induced arrhythmias. As before, this Poincaré return
map allows us to view the dynamics of the system as a sequence of pairs of
points (I

�
, I

���
), thus converting the continuous dynamics of our system to a

map. On such a map, chaotic data (Figure 6c) can easily be distinguished from
periodic data (Figure 6a,b). Additionally, the sequence of the data points on
such a plot reveals the stable and unstable directions; knowledge of those is
required to implement control (Figure 7).

In this rabbit preparation, each control attempt consisted of a learning
phase and a control phase. During the learning phase an UFP was identified
and characterized (Garfinkel et al., 1992). During the subsequent control
phase, the computer waited until a close approach to the UFP was detected
( � I

�
� I

���
�� �where � defines the control region and is a fraction of the total

attractor size). The algorithm then initiated a control stimulus that moved the
next point on the Poincaré plot (as predicted by the local dynamics of the
UFP) onto the stable manifold (i.e., the contracting direction) of the UFP,
thereby allowing the natural dynamics of the system to subsequently draw the
system state onto the UFP itself. Stimuli were administered on subsequent
points to keep the system on the stable manifold. Thus, the system state was
continually contracted towards the UFP, which is shown schematically in
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Figure 7. The Poincaré map of the aperiodic phase of a ouabain/epinephrine-induced
arrhythmia in a typical rabbit heart preparation illustrating the structure of the
chaotic attractor.

Figure 8. If the current point on the Poincaré plot strayed outside the control
region, stimuli were then discontinued until the system state point reentered
the control region. (It should be noted here that on-demand pacing is simply
the special case of this algorithm where the stable manifold is horizontal.) An
example of the application of this algorithm to the rabbit heart is shown in
Figure 9.

Chaos control with this approach was complicated by the fact that in this
experiment intervention was, of necessity, unidirectional. By delivering an
electrical stimulus before the next spontaneous beat, the interbeat interval
could be shortened, but it could not directly be lengthened. This is because a
stimulus, which elicits a beat from the heart, shortens the interbeat interval
between the previous spontaneous beat and the beat elicited by the stimulus.
The effects of this limitation are apparent in Figure 9, where the best control we
could achieve was a period-3.

Several observations should be made about the pattern of the stimuli
delivered by the chaos control program. First, these stimuli did not simply
overdrive the heart. Stimuli were delivered sporadically, not on every beat and
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Figure 8. Schematic of the chaos control technique. I
�
is the current and I

���
the

previous interval between activations. The central point at the intersection of the three
lines represents an unstable fixed point (UFP). The stable (inward arrow) and unstable
(outward arrow) manifolds are shown as calculated from multiple close returns to the
UFP during the learning phase of the algorithm. Without intervention, the natural
dynamics around the UFP carries the activation intervals from A to B to C, contract-
ing inward along the stable manifold and expanding outward along the unstable
manifold, as shown. Chaos control is implemented after a determination of these stable
and unstable manifolds (or eigenvectors) and contraction and expansion rates along
the manifolds (or eigenvalues), as determined by a data-derived least-squares linear fit
ormodel of the dynamics in the vicinity of theUFP. A point occurring at A is predicted
to move to B, as determined by this model of the local dynamics. A stimulus is
introduced into the high right atrium to force a premature activation that directs A
onto the stable manifold at location B� instead of allowing the uncontrolled dynamics
to proceed to B. The contraction along the stable direction then pulls the next
activation interval closer to C�, which is closer to the UFP. Thus, the sequence of ABC
is modified to AB�C�, keeping the dynamics close to the UFP. This process is repeated
in a feedback loop to stabilize the UFP.

never more than once in every three beats on average. In contrast, periodic
pacing, in which stimuli were delivered at a fixed rate, was never effective at
restoring a periodic rhythm and often made the original aperiodicity more
marked. Nonchaos control, irregular pacing was similarly ineffective at con-
verting chaotic to periodic behavior. Encouraged by both the evidence for
UFPs in rabbit and canine hearts and by our success in controlling the rabbit
tissue preparations, we decided upon the aggressive course of attempting to
control chaos in fibrillating atria (upper chamber) of human hearts.

15.3.2 Control of atrial fibrillation in humans

Atrial fibrillation (AF) is the most common arrhythmia requiring treatment
intervention (Prystowsky et al., 1996). The occurrence of AF increases with
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Figure 9. Left: Interbeat interval, I
�
, versus beat number, n, during the chaotic phase of

the ouabain/epinephrine-induced arrhythmia in a typical control run. The region of
chaos control is indicated. Right: The corresponding Poincaré map for the time series
on the left. The light points represent interbeat intervals during the uncontrolled
arrhythmia while the dark points represent interbeat intervals during the chaos
control. Note the transient period between the initiation of the chaos control and the
establishment of a period-3 pattern that is apparent on both plots.

age, touchingmore than 5%of the population over the age of 65 (Kannel et al.,
1982). During AF the rapid and irregular ventricular rate as well as the loss of
atrial mechanical function diminish overall cardiac performance and may
cause palpitation, breathlessness, fatigue and lightheadedness. In addition to
these disabilities, AF dramatically increases the risk of stroke and cardiovascu-
lar-related death (Kannel et al., 1982).

Evidence has suggested that biological activity, including the beating of
myocytes in vitro (Chialvo et al., 1990; Chialvo, 1990), cardiac arrhythmias
(Garfinkel et al., 1992; Witkowski et al., 1995; Hall et al., 1997), and brain
hippocampal electrical bursting (Schiff et al., 1994; So et al., 1997) exhibit
deterministic dynamical behavior. Chaos is the deterministic collection of a
large number of unstable periodic motions. Such unstable behavior, including
its associated local dynamics, forms the basis for various chaos control tech-
niques (for reviews, see Ditto and Pecora, 1993; Ott and Spano, 1995; Lindner
andDitto, 1995; Christini and Collins, 1995, 1996; Pei and Moss, 1996). Recent
work on the control of chaos in low dimensions (Ott et al., 1990), high
dimensions (So and Ott, 1995; Ding et al., 1996), and spatially extended
systems (Petrov et al., 1996; Petrov and Showalter, 1996) in physical and
biological systems has enabled the application of chaos control to human AF.

The human AF study was performed on 25 patients undergoing clinically
indicated electrophysiological testing. The study was conducted under a pro-
tocol approved by the Human Research Committee at Emory University
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Figure 10. Summary of the human atrial fibrillation (AF) experiment. Top: A quad-
ripolar electrode catheter was inserted in the femoral vein, advanced through the
inferior vena cava, and positioned in the lateral right atrium. During AF, electrograms
recorded from the proximal pair of electrodes were amplified, digitized, and local
activations automatically detected. This timing information was used to characterize
the chaotic dynamics of the system with identification of the UFP as well as the stable
and unstable manifolds. The control algorithm then generated pacing pulses at times
predicted to move the system towards a stable (periodic) state. Bottom: Details of the
electrode and its placement.
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Atlanta, GA, and all patients gave written informed consents. A quadripolar
electrode catheter with 5-mm interelectrode spacing was inserted via the
femoral vein and advanced under fluoroscopic guidance to the anterolateral
aspect of the right atrium as is illustrated in Figure 10. The tip of the catheter
was positioned to achieve a bipolar stimulation threshold of �2mA at a 2-ms
pulse width. AF was induced using rapid pacing (50Hz) for 1 to 2 s.

Local atrial activation was recorded from the proximal pair of electrodes
(poles 3 and 4). The signal was amplified (with no filtering) and sent to the
active control and passive recording computers, where it was digitized at 2 kHz
and 5 kHz, respectively, and activations (beats) were detected. Control stimuli
were output from the computer and used to trigger a stimulus isolation unit
that was connected to the distal poles (1 and 2) of the atrial electrode catheter
(Figure 10, top).

As before, we implemented the control algorithm outlined in Figure 8, with
each control attempt having learning and control phases. The identification of
an UFP (Garfinkel et al., 1992; Schiff et al., 1994) and its subsequent character-
ization (Pierson and Moss, 1995) were much improved by intervening ad-
vances in technique. Additionally, to demonstrate that we were indeed at-
tempting control around an UFP rather than a noisy random point, we
applied the So-algorithm (So et al., 1996, 1997) to our data after the control
runs, since thismethod is computationally too costly to implement in real time.
It also detected the fixed point around which we had attempted control. This
algorithm transforms the data such that, in a suitable phase space, points near
an UFP are mapped onto the UFP position. Other points are mapped
randomly over the attractor. Thus, in a one-dimensional (1-D) histogram of
the distribution of the transformed points, UPOs are observable as sharp
peaks. In this case ‘near’ refers to a region around the UPO that can be
approximated by a linear map. (Higher-order versions of this method have
also been formulated.) This linear region is similar to the linear region used by
Pierson and Moss (1995). The results of the So-transform method are dis-
played in Figure 11. The large peak near an interbeat interval of 0.2 s denotes
the period-1UPO. The line where the error bars denote the standard deviation
at each point represents the same transform applied to 100 surrogates. The
peak exceeds the surrogate background by more than 40 standard deviations
of the surrogate ensemble as shown in the inset in Figure 11. Also note that,
since this method maps points near the UPO onto the UPO position, the fact
that the transformed data on either side of the peak fall below the surrogate
average provides additional confirmation that we have correctly detected a
UPO in these data.

A typical outcome of human atrial chaos control is shown in Figure 12. The
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Figure 11. The So-transform of the human atrial fibrillation (AF) data. The large peak
near an interbeat interval of 0.2 s denotes the period-1 unstable periodic orbit (UPO).
The line with error bars denoting the standard deviation at each recorded point
represents the average of 100 surrogates. (Inset) The So-statistic, which is the height of
the So-transform minus the average of the surrogates and then normalized by the
standard deviation of the surrogates for each value of the interbeat interval. Note that
this is a slightly different definition from the one used by So et al. (1996).

outcomes of chaos control were categorized as follows. (1) Excellent chaos
control was defined by successful capture, where a capture is an activation
within 15ms of the application of a control stimulus, for at least 25 sequential
intervals around a UFP. The mean of the controlled intervals was equal to or
longer than the mean of the activation intervals of spontaneous AF and the
standard deviation from the meanwas at least two times less than the standard
deviation from the mean of the uncontrolled activation intervals. (2) Partial
chaos control was defined as in (1) except with more frequent losses of control
(10—50% of total intervals during chaos control were escapes from the control
region) about the UFP. (3) Unsuccessful chaos control was defined as all other
cases, including those with infrequent capture, lack of suitable UFPs, indis-
cernible dynamics about the UFP, and all other results. Out of the 25 patients
in the study, excellent chaos control was achieved in 9/25 patients (36%),
partial chaos control was achieved in 10/25 patients (40%) and unsuccessful
chaos control was seen in the remaining 6/25 patients (24%). More than 80%
of the interventions that exhibited partial control had evidence of incomplete
activation detection as the cause for the frequent loss of control, rather than
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Figure 12. Typical plot of activation interval, I
�
, versus the nth activation interval with

andwithout control. Times prior to beat 150 comprise the learning period. The control
is initiated between the solid vertical lines as indicated. Control is suspended near beat
250 and then resumed around the same unstable fixed point (UFP) with no new
learning phase. This suspension and resumption demonstrates the ability to control
about UFPs with activation intervals significantly longer than the mean uncontrolled
intervals. The suspension and resumption of control confirms the validity of the UFP
dynamics and the control using them.

any failure of the chaos control algorithm. Additional reasons for loss of
control included poor characterization of UFPs and rapid changes in the
(uncontrolled) dynamics. To diagnose poor characterization of the UFPs,
control was turned off and then reinitiated with a new learning phase. After the
second learning phase was completed, a dramatically different UFP was
found, thus calling into question the accuracy of the original UFP characteriz-
ation. In contrast, during excellent chaos control, we were able to discontinue
chaos control and subsequently reacquire the same UFP, as shown in Figure
12. In these cases the UFP always had values for its position and its manifolds
similar to those found previously. More significantly, the chaos control re-
mained excellent. In the six unsuccessful control attempts, we were never able
to both locate and control, for any significant length of time, a UFP with a
mean cycle length at or above the uncontrolled mean.

Since this algorithm is implemented in a 2-D Poincaré section, it is useful to
consider the results on that section which are displayed in Figure 13. The top
panel shows the distribution of the data before control was implemented for a
typical case, while the bottom panel gives the distribution as a result of the
control algorithm. The symmetry is important in that it indicates that the
deviations around the control point are truly random and not the result of
poor control technique or bad control parameters.

It has been demonstrated that during AF conventional fixed-rate pacing
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Figure 13. Histogram of the data on a Poincaré plot before (upper) and after (lower)
implementation of chaos control of human atrial fibrillation (AF).

(stimulation at a constant cycle length) and on-demand pacing (a stimulation
rate at which the intrinsic activation interval exceeds the programmed pacing
interval) only local activations are entrained in a narrow window of cycle
lengths around the mean activation interval (Allessie et al., 1991; Kirchhof et
al., 1993). Both techniques suffer from inconsistent capture when pacing at
shorter- and longer-cycle lengths (Allessie et al., 1991; Kirchhof et al., 1993).
When pacing at intervals much shorter than the mean interval, either method
only eliminates the long intervals, leaving the shorter ones unchanged. In
contrast, our results have demonstrated the effectiveness of chaos control for
entraining the atrium at intervals equal to and significantly longer than the
mean spontaneous interval with the ability to eliminate both short and long
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fluctuations about themean interval. Thus, chaos control dramatically reduces
the variation from the mean cycle length.

It should be noted that chaos control operates quite differently from peri-
odic or on-demand pacing by locating, characterizing and exploiting the
natural dynamics around a UFP in the Poincaré plot. In addition, chaos
control initiates a stimulus only when the system state comes near the UFP.
The stimulus forces a predicted interval onto the stable manifold (the contract-
ing direction) and allows the natural contraction along the stable manifold to
pull the state point onto the UFP, thereby minimizing the number of control
interventions needed. Chaos control uses control stimuli to exploit the natural
contraction of the stable direction of a UFP rather than enforcing a rigid target
point (interval).

Thus, we have shown that chaos control can be used to stabilize an UFP
whose corresponding activation interval was equal to or significantly longer
than the mean of the uncontrolled activation intervals during human AF.
However, several unresolved questions remain. (1) It is unclear what extent of
the atrium is captured during control. A previous study on the regional
entrainment of AF in dogs has shown capture of a region 4 cm in diameter
(Allessie et al., 1991). We are currently working on determining the spatial
extent of such chaos control in animal experiments. (2) While sinus rhythms
occasionally follow chaos, further studies will be required to determine a
causal connection. (3) It is an open question, in lieu of chaos control-induced
cardioversion, whether chaos control can lower the energy threshold required
for defibrillation of the atrium. The atrial defibrillation threshold, even with
newly developed endocardial leads, remains sufficiently high to result in stimu-
lation of skeletal muscles and patient discomfort (Wickelgren, 1996). Despite
these uncertainties, chaos control in human AF offers a promising alternative
for altering the dynamics of the arrhythmia. This alternative requiresmuch less
energy than the existing high-energy shock techniques, which are designed to
overpower the dynamics of the atrium. Thus, a better understanding of the
dynamics of human AF and its response to chaos control techniques presents
us with an intriguing new direction for the study and treatment of human
fibrillation (Langberg et al., 1999).

15.4 Control of chaos in brain tissue

Our success in controlling chaotic cardiac systems led us to see whether a
similar strategy could control chaotic behavior in brain tissue (Schiff et al.,
1994). One of the hallmarks of the human epileptic brain during periods
between seizures is the presence of brief bursts of focal neuronal activity known
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Figure 14. Schematic diagram of the transverse hippocampal slice and arrangement of
recording electrodes.

as interictal spikes. Often such spikes emanate from the same region of the
brain from which the seizures are generated. Several types of in vitro brain slice
preparations, usually after exposure to convulsant drugs that reduce neuronal
inhibition, exhibit population burst-firing activity similar to the interictal
spike.One of these preparations is the high potassium (K�) model, where slices
from the hippocampus of the temporal lobe of the rat brain (a frequent site of
epileptogenesis in human brain) are exposed to artificial cerebrospinal fluid
containing a high K� concentration that causes spontaneous bursts of syn-
chronized neuronal activity originating in a region known as the third part of
the cornu ammonis or CA3, as shown in Figure 14.

If one observes the timing of these bursts, clear evidence for UFPs is seen in
the return map. As reported, we were able to regularize the timing of such
bursts through intervention with stimuli delivered by micropipette with timing
as dictated by the chaos control algorithm to put the system onto the stable
direction. As illustrated in Figure 15, not only were we able to regularize the
intervals between spikes, but we were also able through a chaos ‘anticontrol’
strategy to make the intervals more chaotic. It is the latter that might serve a
useful purpose in breaking up seizure activity through the prevention or
eradication of pathological order in the timing of the spikes. This original
anticontrol or chaos maintenance strategy (Schiff et al., 1994) has been further
elaborated and expanded to high dimensions in the past few years (In et al.,
1995, 1998; Yang et al., 1995).
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Figure 15. Demonstration of chaos anticontrol and chaos control in a hippocampal
slice of a rat brain exposed to artificial cerebrospinal fluid containing a high concentra-
tion of K� and undergoing spontaneous chaotic population burst firing or spiking.

15.5 Electric field interactions with mammalian neuronal tissue

15.5.1 Stochastic resonance in rat hippocampal slices

Stochastic resonance (SR), a phenomenon in which the addition of noise
enhances a nonlinear system’s response to an otherwise subthreshold signal,
has been suspected to play a role in the processing of information in neuronal
systems (Benzi et al., 1981, 1982; Nicolis, 1982; Bezrukov and Vodyanoy, 1995;
Moss and Wiesenfeld, 1995; Wiesenfeld and Moss, 1995; Bulsara and Gam-
maitoni, 1996). Theoretical models of single neurons (Bulsara et al., 1989, 1991;
Chialvo and Apkarian, 1993) and simulations of neuronal networks (Riani and
Simonotto, 1994; Collins et al., 1995) have all demonstrated SR. Although
interspike-interval histograms (ISIHs) from the responses of periodically
stimulated neuronal sensory systems have features consistent with SR, neur-
onal SR had been experimentally confirmed only in the sensory processes of
invertebrate peripheral nervous systems (Douglass et al., 1993; Levin and
Miller, 1996; see also Moss, Chapter 10, this volume). Recently, however, the
observation of SR in a network of neurons from a mammalian brain has been
reported (Gluckman et al., 1996b). A time-varying electric field with both
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periodic and stochastic components was used to deliver both signal and noise
directly to the neuronal membranes in a hippocampal slice. As the magnitude
of the stochastic component of the field was increased, resonancewas observed
in the response of the neuronal network to a weak periodic signal.

The brain is a noisy processor, and the idea that the brain might make use of
such noise to enhance information processing is not new (Adey, 1972). In SR,
the response of a nonlinear system to an otherwise subthreshold signal is
optimized with the addition of noise. Since its proposal as a mechanism to
explain how weak periodic variations in the Earth’s orbit might be amplified
by random meteorological fluctuations to produce ice ages, SR has been
observed in a diverse range of physical systems. Despite a significant amount of
theoretical work predicting that SR might be found in the brain, there had
been no experimental demonstrations in the brain (Bulsara et al., 1991; Long-
tin et al., 1991; Chialvo and Apkarian, 1993; Riani and Simonotto, 1994;
Collins et al., 1995). Features suggestive of SR have been observed in ISIHs
recorded from the auditory nerve (Longtin et al., 1991), spinal cord (Chialvo
and Apkarian, 1993), and visual (Longtin et al., 1991) and somatosensory
(Chialvo and Apkarian, 1993) cortex in response to periodic environmental
stimuli. Direct observations of SR were made by detecting the activity of single
peripheral sensory neurons from crayfish (Douglass et al., 1993) and crickets
(Levin and Miller, 1996). In these experiments, signal and noise were encoded
into environmental fluid or gas motions, which were then detected by the
neurons under study. An effort to increase internal neuronal noise in the
crayfish experiment by raising temperature failed to demonstrate SR as a
function of noise (Pantazelou et al., 1995).

It was recently demonstrated that an electric field could be used to either
suppress or enhance epileptiform activity in mammalian brain slices (Gluck-
man et al., 1996a). The effect of an imposed electric field on neurons has been
worked out in detail (Chan and Nicholson, 1986; Chan et al., 1988), and can
generally be understood as follows. The charged ions both inside and outside
the neurons move under the influence of the imposed electric field. The cell
membranes of the neurons act as containers, albeit leaky ones, opposing this
motion,and theneuronsare thereforepolarizedby thefield.Wealigned thefield
parallel to the axis between the apical dendrites, where signals come in from
other neurons, and the soma, where these signals are integrated and translated
into action potentials. The resulting polarization can be thought of as either a
signal similar to neuronal synaptic activation or an offset in the somatic
transmembrane potential. The overall effect of the electric field on the network
is somewhat analogous to the injection of current into each of the neurons
(Chan et al., 1988). Because the field can interact with neurons at magnitudes
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Figure 16. Photograph (as viewed from the side) and schematic of perfusion chamber
(as viewed from above) for the hippocampal slice preparation. The hippocampal slice
rests just below the upper surface of the bath. An electric field is imposed by a potential
between parallel Ag-AgCl plates submerged in the bath.

insufficient to trigger action potentials, it is an ideal means to introduce a
subthreshold signal into an entire network to probe for the existence of SR.

A picture and a schematic of our set-up for studying SR inmammalian brain
tissue are shown in Figure 16 (Gluckman et al., 1996b). Longitudinally or
transversely cut hippocampal slices were placed in the center of a field pro-
duced by parallel Ag-AgCl electrode plates submerged in the perfusate. The
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neuronal layers of the slice can be visually identified and therefore easily
oriented with respect to the field. The potential between the plates, and
therefore the field amplitude, was set by a computer-generated signal applied
through an isolation amplifier.

Synchronous activity of the network was monitored from the extracellular
potential in the cell body layer of the slices. The recordings were made with
respect to a point in the bath on nearly the same isopotential of the imposed
field as the measurement electrode. This configuration minimized the amount
of artifact in the measurement from the stimulus field. Because some remnant
of the input signal leaked into the recording, care was taken in the choice of
input signals to ensure that synchronous burst-firing neuronal activity could
be differentiated from stimulus artifacts in the recordings. The bursts typically
last 10 to 30ms, occur as frequently as a few hertz, and can be identified from
characteristic oscillations near 250Hz. We therefore chose an input signal
composed of a sinusoid with amplitude, A

���
, and frequency, f


� 4Hz, and a

noise signal with a high frequency cutoff, f
��
�

, with f

� f

��
�
� 250Hz. The

noise was Gaussian distributed in amplitude.
No neuronal population events were observed for this network in response

to a sinusoidal signal with A
���

� 3.75mV/mm, f

� 3.3Hz; a sinusoidal field

with approximately twice that amplitude was required to excite bursts. With a
pure noise input (A

�����
� 10mV/mm, f

��
�
� 26Hz), randomly occurring

bursts were observed. With the combination of both of these signals, bursts
occurred preferentially near the maxima of the sinusoidal component of the
signal. This is the essence of SR — the behavior of a noise-driven system being
coherentlymodulated by the introduction of an otherwise subthreshold signal.

The signal-to-noise ratio (SNR) as a function of A
�����

, with constant A
���

, is
shown in Figure 17a. A series of these optimization curves, corresponding to
different values of A

���
, is shown in Figure 17b. In each case, a maximum is

observed in the SNR at intermediate noise levels. Also, as would be expected,
asA

���
is increased, the maximum of the SNR curve increases in amplitude and

occurs at lower noise levels.
In contrast to previous biological experiments that have demonstrated SR

in the sensory processes of peripheral sensory neurons, this experiment shows
SR in the behavior of a network of neurons taken from the brain. Although SR
for individual nonlinear elements is fairly well understood, the effects of
different types of noise and coupling in arrays or networks of devices are still
being worked out. Noise in an array of elements can be either local, where the
noise sources for each element are independent and uncorrelated (Pantazelou
et al., 1993; Collins et al., 1995; Lindner et al., 1995), or global, where the noise
is uniform across the array (Bezrukov and Vodyanoy, 1995; Inchiosa and
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Figure 17. Signal-to-noise ratio (SNR) in decibels (dB) as a function of Gaussian noise
amplitude, A

�����
, for various values of noise and input sinusoidal signal amplitude,

A
���

, in the hippocampal slice experiment as shown in Figure 16.

Bulsara, 1995). The mammalian brain experiments correspond to global noise,
where the random fluctuations in the external electric field produce correlated
noise at each element in the neuronal array. Although one might anticipate
that global noise would make the detection of SR more difficult in an array,
this did not prove to be an impediment to the identification of SR in these
experiments.

Much interest has been generated in recent years concerning the so-called
40-Hz endogenous oscillations in the brain. Neurons have been shown to fire
action potentials in phase with these oscillations, which are thought to be of
importance in the binding of neuronal events across disparate regions of the
brain (Jefferys et al., 1996). SR, as illustrated by our experiments, provides a
means to enhance this phase locking in the presence of noise. Also of great
interest are the possible effects of 60-Hz environmental electromagnetic fields
on the brain (Wiesenfeld and Moss, 1995; see also Gailey, Chapter 6, this
volume). Here too, SR provides the capability of enhancing the impact of
such weak signals on neurons, especially when SR in arrays of elements is
considered.

All nervous systems, from those of invertebrates to those of humans, are
noisy — membrane potentials fluctuate, membrane channels open and close,
quantal release at synapses is probabilistic. Two hypotheses suggest them-
selves: either nervous systems evolved to include noise within their circuits as
an advantage to processing, or, perhaps more palatably, the components that
all nervous systems had to use in their evolution were inherently noisy and
brains had to make the best of it. Regardless, the findings presented here show
that random noise can enhance the response to a signal within a mammalian
neuronal network.
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15.6 Conclusions

In less than a decade since the original chaos control experiments, the experi-
mental applications of chaos control have exploded in number. Advances in
the lore of chaos control, especially extensions to higher-dimensional systems,
the development of the maintenance of chaos, and the beginnings of techniques
for controlling spatially extended systems, have enabled chaos control to be
applied to reasonably complex systems, including many biomedical systems of
clinical interest. Applications range from AF, for which devices incorporating
chaos control appear to be quite viable, through VF, which awaits practical
extensions of chaos control theory to spatiotemporal systems, all the way to
epilepsy, which may benefit from techniques for maintaining chaos.

SR also comprises a new and exciting subfield of nonlinear dynamics, having
been studied for less than two decades. We know that SR is definitely em-
ployed in several sensory systems and now understand that it can occur even in
mammalian brain tissue. One hope is that these results might shed some light
on themeans by which the brain communicates both externally and internally.

We have found that while the techniques of nonlinear dynamics can be
applied with success to many different biological systems, it is also true that
these selfsame biological systems can teach us much about the nonlinear
dynamics of complex systems in general. Many of the techniques discussed
here were either developed for (maintenance of chaos) or discovered (SR) in
biological systems and later applied to physical systems. Thus, there is a
synergy between our efforts to apply the techniques of nonlinear dynamics to
biology and our understanding of nonlinear dynamics itself.
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16

Epilepsy: multistability in a dynamic disease

JOHN G. MILTON

16.1 Introduction

Suddenly the person sitting beside you falls to the ground in the grip of a
generalized convulsion. Within seconds to minutes, the cataclysm ends as
abruptly as it began. Why did the seizure occur when it did, and why, once
started, did it stop? Even more puzzling is the centuries-old observation that a
brief sensory stimulus, such as noise, given close to the onset of a seizure might
have stopped it (Figure 1). The clinical challenge is to prevent seizures from
occurring and, thus, to restore a normal life to the sufferer. The scientific
challenge is to understand how sudden qualitative changes in brain dynamics,
reflected by changes in the electroencephalogram (EEG), occur. The hope is
that insights into mechanism translate into the development of effective thera-
peutic strategies.

A sudden change in qualitative dynamics in response to a clinical maneuver,
or to a change in an endogenous factor, is the hallmark of a dynamic disease.
Dynamic diseases can arise because of alterations in underlying physiological
control mechanisms (Mackey and Glass, 1977; Glass and Mackey, 1979;
Mackey and an der Heiden, 1982; Mackey and Milton, 1987; Milton and
Mackey, 1989; Glass, 1991; Bélair et al., 1995; Milton and Black, 1995). By
analogy with mathematical models, changes of certain physiologically import-
ant parameters into critical ranges result in the sudden appearance of qualitat-
ively different dynamical behaviors. In the mathematical models these changes
in qualitative dynamics correspond to bifurcations.

There are over 30 diseases of the nervous system in which recurrence of
symptoms or the appearance of oscillatory signs are a defining feature (Milton
and Black, 1995). The significance of identifying which of these disorders is a
dynamic disease is that it raises the possibility of devising strategies to treat
these diseases based on the manipulation of the underlying control mechan-
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Figure 1. Effect of an auditory stimulus on length of absence seizures in an adolescent
with primary generalized epilepsy. The top traces show two channels of the electroen-
cephalogram (EEG) during a typical seizure: length corresponds to the average length
of 71 spontaneously occurring seizures. The bottom traces show the EEG when a loud
noise (�) is given near seizure onset: length corresponds to an average of 69 noise-
shortened seizures.

ism. The precise nature of the control strategies that are possible depends on
the type of bifurcation that has occurred and the nature of the abnormal
dynamics that arose from the bifurcation. The simplest therapeutic strategy is
to manipulate the altered control parameter back into a range associated with
healthy dynamics. In most cases this is not possible, since the identity of the
altered parameter is not known. However, it may be possible to devise control
strategies that exploit the properties of the abnormal dynamics that arise; for
example, chaotic dynamics can be controlled using control-of-chaos techniques
(Schiff et al., 1994) and multistable dynamics can be controlled using brief
perturbations (Guttman et al., 1980).

The fact that seizures can be aborted using brief stimuli is very suggestive of
an underlying multistable dynamical system. Multistability refers to the co-
existence of multiple attractors. Multistability arises because of a bifurcation
that results in the appearance of more than one possible dynamical behavior,
e.g., there may be a subcritical Hopf bifurcation. More than 25 years of experi-
mental and theoretical work indicates that the onset of oscillations in neurons
(FitzHugh, 1969; Best, 1979; Guttman et al., 1980; Hounsgaard et al., 1988;
Canavier et al., 1993, 1994; Booth and Rinzel, 1995; Lechner et al., 1996) and in
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Figure 2. Schematic representation of the energy landscape for a hypothetical multi-
stable dynamical system. For details, see text in Section 16.1.

neuronal populations (Wilson and Cowan, 1972, 1973; Hopfield, 1982, 1984;
Kleinfeld et al., 1990; Kelso et al., 1992; Destexhe et al., 1993; Milton et al.,
1993; Zipser et al., 1993; Stadler and Kruse, 1995; Barnes et al., 1997) is
characterized by multistability. Multistable dynamical systems can be en-
visioned as a landscape, shown schematically in Figure 2, with multiple valleys
(corresponding to the basins of attraction for each attractor) separated by
ridges of varying heights (corresponding to the separatrix, or energy barrier,
which separates the basins of attraction).

In a multistable dynamical system, perturbations cause sudden changes in
dynamics because a switch between basins of attraction occurs. The observa-
tions in Figure 1 suggest that it might be possible to treat epilepsy by using
carefully honed perturbations designed to confine the dynamics within the
nonepilepticbasinof attraction.Thus,much in the spirit ofmodern implantable
cardiac defibrillators, it might prove possible to develop brain defibrillators for
the treatment of patients with medically intractable epilepsy (Glanz, 1997).

16.2 Time-delayed feedback

It has long been felt that seizures arise because the delicate mechanisms of
integrative control break down, resulting in the mass discharge of thousands
or millions of neurons (Jasper, 1969). These control mechanisms operate
through the neuronal circuitry between neurons in local aggregates, interac-
tions between distant ganglionic centers, and changes in the neurochemical
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environment of neurons regulated by neuroglia. Since finite distances separate
neurons and ganglionic centers, and conduction velocities are finite as well,
time delays are necessarily present. These time delays range from 10s to 100s of
milliseconds (Gotman, 1983; Miller, 1994; Eurich and Milton, 1996). Even an
arbitrarily small delay can have dramatic effects on the behavior of feedback
controlmechanisms (Hale, 1977; Kolmanovskii andNosov, 1991). Time delays
play a crucial role in the in-phase synchronization of neuronal populations
(Ernst et al., 1995; Gerstner et al., 1996).

As a consequence of the above observations, mathematical models of neur-
onal feedback mechanisms take the form of delay differential equations
(DDEs) (Glass and Mackey, 1988; Milton et al., 1989; Milton et al., 1990;
Milton, 1996); an example is the first-order DDE

V� (t)� �V(t)� f (V(t� �)), (1)

where V(t), V(t� �) are, respectively, the values of the state variable (such as
membrane potential) at times t, t� �. The time delay is �, � is a rate constant,
and f describes the feedback. V� is the first differential of V. In order to obtain
the solution of Equation (1) it is necessary to specify an initial function, �, on
the interval [� �,0].

An important, but only recently emphasized, property of delayed feedback
control mechanisms, is the occurrence of multistability (an der Heiden and
Mackey, 1982; Ikeda and Matsumoto, 1987; Aida and Davis, 1992; Losson et
al., 1993). Indeed, multistability arises even in a damped harmonic oscillator
with a delayed monotonic restoring force (Campbell et al., 1995), i.e.,

ẍ� bx� � ax�F[x(t� �)],

where a, b are constants and F is negative feedback. ẍ is the second differential
of x. Equations of this form arise from considerations of mechanical or
neuromechanical systems, operating under the influence of a delayed restoring
force. The necessary conditions for these complex dynamics to occur, i.e., an

underdamped control system (b��4a) with low-gain feedback, are easily
satisfied by many mechanical systems.

16.2.1 Multistability in delayed recurrent loops

Recurrent inhibitory loops play a role in epileptic seizures arising from the
amygdala—hippocampal complex (Figure 3a): an excitatory neuron, E, gives off
collateral branches that excite an inhibitory interneuron, I, which, in turn,
inhibits the firing of E (Mackey and an der Heiden, 1984; Mackey and Milton,
1987; Milton et al., 1990). To illustrate how multistability arises in a delayed
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Figure 3. (a) Schematic representation of a neuronal recurrent inhibitory feedback
loop. (b) The time course of the membrane potential (vertical axis) for an integrate-
and-fire approximation of the recurrent inhibitory loop shown in (a). The dashed line is
the firing threshold and � indicates the time for neuronal activity to traverse the
recurrent loop to deliver an inhibitory pulse of magnitude �. For details, see text.

recurrent loop, consider the integrate-and-fire approximation shown in Figure
3b. Here the membrane potential of the neuron increases linearly until it
reaches the firing threshold at which point the neuron fires, and the membrane
potential is reset to its resting value. The firing of the neuron excites the
inhibitory interneuron, I, which, in turn, at a time � later, delivers an inhibitory
pulse to the excitatory neuron, E. The advantage of this simple model is that
considerable analytical insight can be obtained into its dynamics (Foss et al.,
1996, 1997; Milton and Foss, 1997).

In dimensionless form, the dynamics of this model depend on only two
parameters: the magnitude of the inhibitory pulse, �, and the time delay, �
(Foss et al., 1996, 1997). Multistability arises when � is longer than the firing
period of the integrate-and-fire neuron (equal to 1 in the dimensionless model).
This complex behavior becomes possible because the inhibitory pulses are not
necessarily the result of the immediately preceding excitatory spike. It can be
shown that the solutions that arise can be constructed from segments of length
� (Foss et al., 1997): each segment must satisfy an equation of the form

��x�m� n�, (2)

where n, m are positive integers and 0�x� 1. For �, � fixed, the total
number of (m,n) pairs that satisfy Equation (2) is �-�/�-�, where the notation �- -�
denotes the smallest integer greater than �/�. Since the number of (m,n)
segments is finite for fixed �, �, it follows that all solutions are periodic.
Moreover, since there is a one-to-one relationship between excitatory spikes
and inhibitory pulses, and since each inhibitory pulse prolongs the period by
�, the period of these solutions is S(1��), where S is a positive integer equal

378 J. G. Milton



Figure 4. ((a)—(d)) Periodic solutions coexisting in the integrate-and-fire model for a
recurrent inhibitory loop when �� 4.1 and �� 0.8. Only the times of spiking of the
excitatory neuron are shown. (e)—(f ) Values of � and � for which the solutions shown,
respectively, in (a), (b) and (c),(d) exist. (h) The values of (�,�) for which all four solutions
coexist.

to the number of excitatory spikes per period. The mean interspike interval is
therefore (1��).

Once the (m,n) pairs have been determined fromEquation (2), it is possible to
construct the periodic spike trains that arise (Foss et al., 1997). Figure 4 shows
the four qualitatively different periodic spike trains that can be obtained when
�� 4.1 and �� 0.8: regular spiking (Figure 4a), bursting (Figure 4b) and two
more irregular spiking patterns (Figure 4c and d). The regions in �—� space for
which these four spiking patterns occur are shown, respectively in Figure 4e—g.
Figure 4h shows the intersection, %, of these regions. The fact that % has
nonzeromeasure lies at the basis of themultistability in thismodel. For choices
of (�,�) in %, all four of the above solutions coexist (see Figure 4h).

MultistableDDEs evolve in a functional space in which functions of length �
are mapped onto functions of length �, and the basins of attraction correspond
to sets of functions. Typically, the space of these functions is very complex
(Losson et al., 1993; Foss et al., 1996); however, in the simple example discussed
here it has been possible to construct this space since the functions,�(s), consist
of spiking patterns of length � (e.g., see Milton and Foss, 1997). The complexity
of these initial function spaces emphasize that perturbations must be very
carefully timed, and be of the rightmagnitude, to cause a switch between basins
of attraction.
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16.3 Noise-induced switching

The nervous system is a very noisy environment (Fatt and Katz, 1950; Stark et
al., 1958; Calvin and Stevens, 1968; Moss et al., 1994; Areili et al., 1996). The
fact that relatively large regions of the initial function space can give rise to the
same solution implies that multistable dynamical systems have a certain
robustness to noise. However, noise will eventually cause a switch to occur
between basins of attraction (Kapral et al., 1986; Foss et al., 1997). Indeed, the
conclusion that noise-induced switching between basins of attraction plays a
major role in shaping the dynamics of the nervous system seems both inescap-
able and self-evident (Longtin et al., 1991; Moss et al., 1994; Eurich andMilton,
1996). One of the earliest demonstrations for noise-induced switching between
attractors in the human brain is the observation that the distribution of
switching times for visually ambiguous figures is given by a �-distribution
(Borsellino et al., 1972).

The possibility that noise-induced switches occur between attractors would
be a simple explanation for the clinical observation that the timing of seizure
recurrence in many patients with medically refractory epilepsy is random
(Milton et al., 1987). Recently, direct evidence for switching between attractors
in the brains of epileptic patients has been obtained from intracranial EEG
recordings (Manuca et al., 1998). In these studies, time series analysis suggested
that the time variation of the EEG signals could be characterized by changes in
a single variable. The observations were most consistent with a model of
bistability in which mesoscopic collections of neurons flip between two collec-
tive states. In this context the time variation in the underlying neuronal
dynamics corresponds to time variations in the switching probabilities be-
tween the two states. Since this time variation in the dynamics occurs in a
similar way at all electrodes in the brain (even those far removed from the
seizure focus), this view leads to the speculation that there are excitation waves
that are constantly passing across the brains of these epilepsy patients, even
interictally.

A strong analogy can be drawn between the clinical observations of Manuca
et al. (1998) and previous studies of the dynamics of spatially extended popula-
tions of model neurons. Both theoretical (Wilson and Cowan, 1972, 1973) and
numerical (Milton et al., 1993; Chu et al., 1994) studies indicate that the onset
of oscillations in these populations is associated with a subcritical Hopf
bifurcation. The presence of such a bifurcation implies the existence of multi-
stability. These oscillations lead to the propagation of activity through the
population in the form of waves of neuronal activity (an der Heiden, 1991;
Milton et al., 1995; Milton, 1996).
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Although the above observations are all consistent with the notion that
noise-induced switching between attractors occurs in the human nervous
system, perhaps the most elegant demonstration was recently obtained
through a study of human postural sway (Eurich and Milton, 1996). The
experiment requires that a subject stand quietly on a pressure platform so that
fluctuations in the center of pressure can be measured (Collins and De Luca,
1993, 1994). The movement of an inverted pendulum subjected to both noisy
perturbations and a time-delayed restoring force can model human postural
sway. By taking into account the overdamped nature of the postural sway
control mechanisms and the threshold-type response of the neurons that
detect joint position, themodel for postural sway in the front to back direction,
x, becomes (in dimensionless form)

x��2D(t)�C if x(t� �)�� 1
x� � x��2D(t) if �1� x(t� �)� 1 (3)

x��2D(t)�C otherwise�
where �2D(t) is the 	-correlated Gaussian noise of intensity �2D. The
model implies that postural sway feedback operates by allowing the system to
drift for small displacements (open-loop control) with stabilizing feedback
(closed-loop control) becoming operational for larger displacements.

The dynamics of Equation (3) depends on three parameters only: the noise
intensity, D, the time delay, �, and the magnitude of the restoring force, C. In
the absence of noise, i.e., D� 0, the solution of Equation (3) is

�C� [x(t

)�C] exp (t� t


) if x(t� �)�� 1

x(t)� x(t

) exp (t� t


) if �1�x(t� �)� 1 (4)

C� [x(t

)�C] exp (t� t


) otherwise.�

For a relatively large range of C and �, two limit attractors coexist (Figure 5a):
one corresponds to the subject swaying off center to the front, the other to
swaying off center to the back.

Figure 5b shows the two-point correlation function,K(s), where s��t, as a
function of the noise intensity, D. For intermediate noise levels, K(s) contains
three scaling regions and is quantitatively identical with that observed experi-
mentally (� in Figure 5b). From the model it is estimated that �� 230ms and
the threshold for the joint position neurons is �6mm, which agree remarkably
well with the experimental observation, respectively, 200—300ms and 5—6mm.
The mechanism for the three scaling regions in the two-point correlation
function is intuitively clear. For s shorter than one period of the limit cycle
(vertical line in Figure 5b), transitions occur only in one direction between
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Figure 5. (a) Two coexistent limit-cycle attractors arise in Equation (3) in the absence
of noise when �,C satisfies �� 1nC and 0��� ln (C/(C� 1)). (b) Two-point correla-
tion function predicted by Equation (3) (vertical line) compared with that observed
experimentally (�). In order to be able to directly compare experimental observation
with the prediction the unscaled version of Equation (3) is used (for details, see Eurich
and Milton, 1996).

basins of attraction, for example 1� 2. These transitions are reflected by an
increase in K(s). For s longer than the period of the limit cycle, transitions of
the form 1� 2� 1 begin to occur and hence K(s) increases less rapidly.
Finally, for long s it becomes equally probable that the swayer is in either basin
of attraction, and K(s) reflects the mean displacement.

16.4 Brain defibrillators

I believe that if you asked patients with epilepsy what would be the seizure
frequency that would make the biggest difference to their lives, they would
emphatically answer zero! Benchtop research involving single neurons and
single ion channels naturally leads to the development of new anticonvulsant
medications. Unfortunately, for many, medications alone do not free them
from the burden of unpredictable seizure recurrences. Moreover, the very fact
that seizures occur paroxysmally and typically with low frequency questions
the logic behind therapeutic modalities administered on a daily basis. After all,
why should someone take medications every day to reduce the risk of develop-
ing an event that occurs once every few weeks or months?

The most important implication of the hypothesis that epileptic seizures
arise in a multistable nervous system is that it directly implies the possibility of
developing a brain defibrillator for the treatment of epilepsy. If multistability
lies at the heart of epilepsy, then it should be possible to construct a brain

382 J. G. Milton



defibrillator capable of first detecting seizure onset and then of delivering an
appropriate stimulus (electrical or chemical) to a localized area of the brain to
abort the seizure. A major advantage of this therapeutic approach is that it is
called upon only when needed. Indeed the possibility of using brief electrical
pulses to control the dynamics of an epileptic hippocampal slice has already
been demonstrated (Schiff et al., 1994; for details, see Ditto and Spano, Chapter
15, this volume).Moreover, many patients with implanted vagal nerve stimula-
tors have already noted that many of their seizures can be aborted if the
stimulator is turned on during their epileptic aura.

The role of pencil and paper in the development of therapeutic strategies for
application at the bedside receives little attention in modern day clinical
research. Indeed, medical students are not even required to know the simplest
concepts of control. In contrast, I strongly believe that the performance of
critically important experiments requires a theoretical knowledge of the re-
sponse of the underlying control mechanisms to perturbations. Only through
the efforts of dedicated teams involving theorists, basic scientists, and bedside
clinicians, will the scourge called epilepsy be conquered.
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17

Control and perturbation of wave propagation
in excitable systems

OLIVER STEINBOCK AND STEFAN C. MUY LLER

17.1 Introduction

A physicist who wants to get a rough estimate of the acoustics of a concert hall
just claps his hands and listens to the echoes. With this simple experiment he
can obtain valuable information from the acoustic answer of the hall (at least if
his ears are well trained). In more technical terms, one perturbs an unknown
system with a very short pulse that in the ideal case would be a delta-function
describing a perturbation of infintesimal short duration. Regardless of its
specific nature, external perturbations belong to the most important methods
for analyzing unknown systems. In this context, the perturbation by a short
pulse is only one example for enforcing a characteristic answer. Other ap-
proaches include periodic perturbations where systematic variations of ampli-
tude and frequency open ample possibilities to interrogate the system.

Although external perturbations have long proven to be a valuable tool for
science and engineering, many experiments on novel systems studied in young
emerging fields of science are dedicated to pure observation as a starting point.
Investigations on spatial pattern formation in chemical and biological systems
are an excellent example for this characteristic development of a young branch
of experimental science (Field and Burger, 1985). Most of the current research
activities in this field were triggered by the early work of Zhabotinsky and
Winfree, who reported the observation of chemical waves in a reaction system
that today is known as the Belousov—Zhabotinsky (BZ) reaction (Zaikin and
Zhabotinsky, 1970; Winfree, 1972). A main effort in the subsequent research
activities was then the systematic variation of reactant concentrations and the
exchange of certain compounds. Most of these important studies focused on
the accurate observation of chemical patterns and self-organization as complex
functions of the latter parameters. Today, however, a significant portion of
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experimental research in this field is benefiting from the possibilities of external
control and perturbation (see, e.g., Kapral and Showalter, 1995).

In this chapter, examples for the control and perturbation of chemical wave
patterns will be reviewed. The Belousov—Zhabotinsky reaction (Tyson, 1976)
serves as an experimental model system, where several features of this system,
such as the presence of ionic species or its photosensitivity are used for the
purpose of applying external perturbations. The focus of our interest are
chemical wave patterns that have the geometry of spirals (Winfree, 1974). Both,
spiral waves and the BZ reaction are briefly described in the following.

17.2 Spatial patterns in excitable systems

Propagating waves of excitation are known to occur in a variety of chemical or
biological systems (Murray, 1993; Kapral and Showalter, 1995). The classical
example is the propagation of action potentials along nerve fibers, without
which the reader would not be capable of reading this text or turning the pages.
The key idea of an excitable medium is that an initially localized impulse
spreads through the system by stimulating neighboring areas to a fast re-
sponse, thus keeping the initial impulse alive. In the wake of this travelling
front the system is refractory and cannot be excited again. This is the phase
when the system is recovering. In chemical systems the fast response could be
caused by autocatalysis, producing a certain chemical compound in a self-
accelerating fashion. In excitable reaction—diffusion systems, this autocatalytic
activity can propagate due to diffusive coupling with adjacent areas. It usually
has a constant wave velocity that is determined by the rate of the autocatalytic
reaction and the diffusion coefficient of the autocatalytic compound.

The most striking wave patterns known from (quasi) two-dimensional me-
dia are structures consisting of expanding concentric circles (target patterns)
and rotating spiral waves (Tyson and Keener, 1988). Figure 1 shows six
examples of spiral waves in quite different systems ranging from heterogeneous
catalysis on platinum to slime mold colonies and the mammalian heart (Win-
free, 1987;Murray, 1993; Scott, 1995). The occurrence of wave patterns that are
not only similar in their geometry but also in their dynamic evolution is not a
coincidence. The mathematical description of the underlying local processes
and transport phenomena (e.g., chemical reactions and short-range diffusion)
gives rise to partial differential equations that have the same nonlinear struc-
ture, thus explaining the intriguing similarities exemplified in Figure 1.

Of particular interest is the dynamics of the spiral tip, which is the openwave
end in the center of the pattern (Winfree, 1991). The tip location is defined by
the point of highest curvature of the isoconcentration line at the average level
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of concentration. Onemight think that the rotation of the spiral occurs around
a well-defined point that does not change in time. In that case, the reader could
easily simulate the dynamics of the spiral by locating the tip position in one of
the pictures of Figure 1 and rotating the book around this fixed point.
Unfortunately, this simple scheme is wrong. The tip is actually describing a
trajectory that is either a circle with a fixed center (rigid rotation) or a curve of
higher complexity. Rigid rotation leads to a circular area that is known as the
spiral core (Müller et al., 1985). This core shows only small concentration
changes in time and essentially remains in an unexcited state. Note, that
trajectories of higher complexity are not necessarily closed, even if one could
wait for an infinite time.

For the Belousov—Zhabotinsky reaction, where spiral waves have
wavelengths of the order of 0.1 to 10mm, various scenarios have been observed
(e.g., Nagy-Ungvarai et al., 1993). Under certain experimental conditions, rigid
rotation occurs, where the trajectory diameters are typically 0.5mm or less. In
reaction solutions with a very low activity, however, circular trajectories with
diameters of 5mm or larger have been observed. Nevertheless, these observa-
tions demarcate extreme cases of BZ wave dynamics. Another mode of spiral
wave rotation has been named meandering. This slightly misleading term
summarizes a class of tip trajectories that are either hypocycloidal or epicyc-
loidal (Winfree, 1991). An example for meandering motion of spirals is shown
in Figure 2, where the trajectory (white curve) is superimposed on a single
snapshot of the wave pattern. The trajectory has little loops pointing out-
wards, indicating the involvement of at least two major frequencies. The
underlying motion is similar to the motion of our moon that rotates around
the Earth, which is again orbiting around the sun. The question of whether the
loops are pointing outward or inward is determined by the relative sense of
rotation (opposite rotation, for example, gives rise to hypocycles as shown in
Figure 2). There is also evidence for various othermodes of spiral tip dynamics,
including loopy lines or irregular trajectories that might indicate deterministic
chaos (Winfree, 1991; Nagy-Ungvarai et al., 1993).

17.2.1 The Belousov–Zhabotinsky reaction

One of most intensively studied model systems for the experimental investiga-
tion of chemical wave propagation is the BZ reaction. It consists of the
bromination of certain organic compounds, such as malonic acid
(CH

�
(COOH)

�
) in a sulfuric acid solution employing appropriate redox cata-

lysts. A frequently used catalyst is the redox couple ferroin/ferriin which leads
to striking color differences (red/blue) along the profile of chemical waves.
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Figure 1 (opposite). Six examples of spiral waves in excitable media. (A) Population of
spirals with different rotation periods and wavelengths in the catalytic carbon mon-
oxide oxidation on a platinum surface, visualized with photoemission electron micro-
scopy (PEEM). Image area: 450�m� 400�m; rotation period of spirals with inter-
mediate wavelength� 20 s (from Nettesheim et al., 1993; reprinted with permission).
(B) Spiral wave in the Belousov—Zhabotinsky reaction. The distribution of light
intensity reveals the front of oxidized cerium catalyst at �� 344nm as a black band
moving through a reduced solution layer of 0.7-mm thickness (bright background).
Wavelength: 2.1mm; rotation period� 40 s. (C) Spiral Ca��-wave pattern observed in
Xenopus laevis oocytes (wavelength� 60�m, period� 3 s). IP

�
-mediated Ca��-re-

lease is detected by confocal laser scanningmicroscopy (from Lechleiter and Clapham,
1992; reprinted with permission). (D) Aggregation of social amoebae in the cellular
slime mold Dictyostelium discoideum observed with darkfield optics. In bright areas
cells move chemotactically toward the spiral core, while in dark bands no directed cell
migration is found. Wavelength� 2.5mm; rotation period� 7min (from Foerster et
al., 1990; reprinted with permission). (E) Colliding spiral-shaped fronts in neuronal
tissue: these ‘spreading depression’ waves on chicken retina are visualized by white
light scattered in zones of increased turbidity. The waves are moving through the
otherwise transparent medium at a speed of 2.2mm/min. Image area: 9mm� 10mm.
(F) Clockwise rotating wave in a slice (20mm� 20mm� 0.5mm) of isolated canine
cardiac muscle, visualized by use of a potentiometric dye (with fluorescence excited at
490nm; measured at 645 nm). Rotation period: 180ms (from Davidenko et al., 1992;
reprinted with permission).

These differences can be readily detected by two-dimensional spectro-
photometry (Müller et al., 1985). In this technique the absorption at a given
wavelength (usually 490 nm for maximal contrast) is detected as a function of
space and time by using video cameras. Sequences of video images are digitized
and then available for computer analysis.

A catalyst that has proven to enable a valuable modification of the BZ
system is the metalloorganic ruthenium complex [Ru(bpy)

�
]����� (Gaspar et

al., 1983). Using this catalyst the reaction system becomes photosensitive, thus
opening fascinating possibilities for external control and perturbation by light
(Kuhnert et al., 1989).

The chemical mechanism of the BZ reaction has been discussed in great
detail elsewhere (Field and Burger, 1985; Scott, 1995). Therefore, we simply
want to mention the most important chemical species involved in wave propa-
gation. The unstable compound HBrO

�
acts as the autocatalytic propagator

species transmitting local excitations by diffusion and is unfortunately not
easily detectable. Bromide ions play the role of the inhibitor, and, last but not
least, the concentration of the oxidized catalyst defines a control variable that
regulates the recovery process of the system.
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Figure 2. Snapshot of a rotating spiral wave in the Belousov—Zhabotinsky (BZ) reac-
tion. The bright and dark regions indicate high and low concentrations of the oxidized
catalyst, respectively. The trajectory of the spiral tip (overlaid white curve) is similar to
a hypocycloid. Such noncircular trajectories are typical for spiral meandering. In this
particular experiment a photosensitive ruthenium complex catalyzes the reaction.
Image area: 3.8mm� 3.0mm.

17.3 External control of excitation waves

In the following, threemajor approaches for the external control and perturba-
tion of excitation waves are presented. The presentation begins with a rather
modest example of external control that is established by variations of reactant
concentrations. The subsequent section describes recent research activities
aimed at control with electric fields. Finally, local and global perturbations of
photosensitive BZ systems are presented.

17.3.1 Tuning chemical parameters

Chemical oscillations in well-stirred BZ solutions reveal pronounced depend-
encies on the initial concentrations of sulfuric acid, bromate, bromide, and
malonic acid (Field and Burger, 1985). An increase in sulfuric acid concentra-
tion, for example, usually speeds up the oscillations, and the oscillation fre-
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quency might increase by a factor of 10 or more. Molecular oxygen is a
chemical parameter that is often ignored in the discussion of experiments on
spatiotemporal pattern formation in BZ systems.Dissolved oxygen reacts with
organic radicals that are formed during the oxidation of malonic acid and
bromomalonic acid by the oxidized catalyst (Neumann et al., 1995). While the
detailed chemistry of these reactions is not yet understood, there are several
studies reporting an overall trend of oxygen-induced inhibition of oscillations
andwave patterns. For spatially homogeneous systems this means that oscilla-
tion periods are usually increased or oscillations are suppressed. In spatially
extended media, such as thin layers of the reaction solution or thin BZ gel
systems, wave propagation is either suppressed or propagation velocities are
decreased due to the presence of oxygen. More interestingly, recent experi-
ments have shown that thin layers of the aerobic BZ medium (that usually
behave as a quasi two-dimensional system) can undergo stratification (typical
thickness: 1mm; Zhabotinsky et al., 1991). This stratification gives rise to two,
even thinner, sublayers of excitable medium that develop independent wave
patterns with only weak interactions. A typical example for the resulting
patterns is shown in Figure 3. It should be emphasized again that the visual
impression of crossing waves is misleading, since the patterns evolve in two
separate layers. Interference of waves, common in acoustic or electromagnetic
systems, does not occur in excitable BZ media, because excitation waves
annihilate upon mutual collision. The stratification of thin BZ gel systems is
strongly related to an oxygen concentration gradient that is formed by the
interplay of diffusive inflow from the atmosphere into the gel system and the
consumption of oxygen within the BZ system. Furthermore, one of the BZ
intermediates (bromine) is leaving the gel by diffusion into the atmosphere.
Both compounds, oxygen and bromine, act as inhibitors of wave propagation.
We are just beginning to understand the details of this interesting interaction,
but the described phenomena seem to lead to a nonmonotonic profile of
excitability that induces the observed stratification (Zhabotinsky et al., 1994).

We believe that the role of molecular oxygen in the context of the BZ
reaction opens a variety of quite promising research activities, in particular for
control experiments. The involved free-radical chemistry is far from being
understood and implies challenges for future kinetic and mechanistic investi-
gations. Furthermore, oxygen is an intriguing chemical parameter that gives
rise to unexpected modes of self-organization in the BZ reaction such as the
described stratification of thin BZ gel systems. As we will discuss in the
following, this behavior may also assist other experimental approaches on
external control and perturbation exploiting photosensitivity.
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Figure 3. Under certain experimental conditions and in the presence of oxygen, thin-
layeredBZ gel systems can undergo a vertical stratification. The top view (A) shows the
formation of two pattern-forming layers, where wave propagation proceeds without
strong interaction. White (bottom layer) and black arrow (top layer) indicate an
example of these ‘crossing’ waves. In the course of the reaction the chemical patterns
begin to couple, giving rise to sawtooth-shaped fronts (B). Interval between photo-
graphs: 40 s (Zhabotinsky et al., 1991).

17.3.2 Control of excitation waves by electric fields

Numerous chemical species in the complex BZ reaction mechanism are of an
ionic nature. The central species are the bulky iron-complex ferroin that carries
a positive charge of two or three depending on its oxidation state and the small
negatively charged bromide ion. The autocatalytic species HBrO

�
is another

important actor taking part in the chemical events that lead to wave propaga-
tion. This species, however, is electrically neutral. The question we discuss in
this section is: what happens to propagating waves and rotating spirals if an
external electric field is applied?

In 1981 Feeney et al. performed experiments in which they applied parallel
electric fields (E� 10 to 50V/cm) to spatially extended BZ media. They
observed an increased velocity of waves propagating toward the positive
anode, while waves propagating toward the cathode were decelerated. Sev-
cikova and Marek (1984) continued this work and foundmore recently that, at
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higher field strength, waves can reverse their propagation direction or split in a
fairly complex fashion (Sevcikova et al., 1992, 1996).

Figure 4 illustrates the effect of an externally applied electric field on spiral
waves in the ferroin-catalyzed BZ reaction. In these experiments a constant
electric field (E� 0 to 6V/cm) was applied to the BZ gel system via two
parallel electrodes that were realized as simple salt bridges to avoid the
contamination of the BZ medium by products of undesired electrochemical
reactions. One central finding from this work demonstrated that spiral waves
are drifting toward the anode (Steinbock et al., 1992). Figure 4A shows a
typical snapshot of a pair of drifting spiral waves (anode oriented parallel to
the bottom side of the figure). The overall drift toward the anode has an
additional component perpendicular to the field. The direction of this perpen-
dicular drift depends on the chirality of the spirals, as shown in Figure 4B.
Although the trajectory of both spirals points in the x-direction, one finds that
the clockwise rotating pattern is also pulled to the left, while the counterclock-
wise spinning wave is pulled to the right. Switching off the electric field stops
the drift immediately. Changing the polarity of the field causes a drift back
toward the initial locations. For typical experimental conditions, such as those
of the experiments described in Figure 4, the drift velocity of spiral tips is found
to be in the range 0 to 0.3mm/min. Notice, that the drift does not occur along a
straight line, but is rather characterized by a continuous trajectory with
successive loops. Although present, these loops are not fully resolved in the
experimental data displayed in Figure 4B.

Another interesting phenomenon that has been observed in experiments on
electric field-induced spiral drift is the deformation of spiral geometry (Stein-
bock et al., 1992). While spiral waves in unperturbed systems have usually an
Archimedian shape (i.e., constant pitch), the drift of its tip is generating
variations of the wavelength. The deviations from the unperturbed wavelength
reach a maximum in the back of the drift direction (compare Figure 4A).
Apparently, the increased wavelength is due to a Doppler effect. Furthermore,
the shape of the drifting spiral tip can vary significantly during different phases
of its rotation. Depending on the direction of its relative orientation to the
electric field vector, the curved tip is either elongated or strongly curled.

The perturbation of chemical wave patterns by electric fields not only opens
an interesting field of research but can also be used for the external control of
wave propagation. An intriguing example for exploiting spiral drift is discussed
in the following. Since, it is possible to induce spiral drift, one should be able to
send a pair of spirals on a collision course. Figure 5 gives a sequence of four
snapshots illustrating the outcome of a spiral wave collision (Schütze et al.,
1992). Snapshot (A) shows the initial wave pattern consisting of a pair of
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Figure 4. A pair of spiral waves in the ferroin-catalyzed BZ system is perturbed by a
constant electric field. Field lines are parallel and oriented vertically with the anode
located at the bottom side of the figure. The electric field is inducing a spiral drift
toward the anode and a strong deformation of the Archimedian spiral geometry.
(A) Snapshot of the pair of drifting spirals. (B) Trajectory of the corresponding spiral
tips. Notice, that the drift direction is also influenced by the sense of spiral rotation
(Steinbock et al., 1992).
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Figure 5. Evolution of spiral wave annihilation due to electric field-induced drift. The
electric field is orientedwith the anode to the right and the cathode to the left. Opposite
perpendicular motions of spiral tips in the initial structure (A) reduce their relative
distance (B). Annihilation occurs when the separation distance of the tips is below a
certain critical size (C). In a truly excitable system, the remaining circular waves would
continue to propagate outward leaving behind a ‘quiet’ region without chemical
activity. Since this particular BZ medium can show autonomous oscillations, we were
able to observe the birth of a nonrotating trigger wave (D) in the central region of spiral
wave annihilation. The location of its pacemaker is determined by the local phase
information created by the last spiral rotation (Schütze et al., 1992).
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counterrotating spirals that have nearly identical size and phase. A constant
electric field is applied to the BZ gel system with the anode located parallel to
the right side of the figure. The field is now pulling the spirals towards the
anode and is decreasing the relative distance between the spiral tips (Figure
5B). At a certain critical distance (�wavelength) the spiral tips annihilate, thus
removing the spinning pacemakers from the system (C). The resulting unex-
cited area in the former region of tip rotation triggers a new pattern of low
frequency (Figure 5D), since the bulk dynamics of this particular BZ system is,
in fact, not excitable but oscillatory with a rather long oscillation period. These
intrinsic oscillations of the BZ bulk were earlier suppressed by the high-
frequency spiral waves. Now, where the spirals have vanished, the system
creates an autonomous pacemaker according to the local phase gradients
created by the last spiral rotation. The collision of a spiral pair has therefore
led to spiral annihilation and eventually to the creation of a target pattern, with
its pacemaker located in the spiral collision region.

Additional experiments revealed that the electric field strength and the
initial geometry (i.e., phase and symmetry) determine whether spiral annihila-
tion can occur. If the initial symmetry line between both spirals is not parallel
to the electric field, annihilation becomes more unlikely. Furthermore, a
critical field strength of about 2V/cm was found below which no annihilation
occurred. Disregarding the trivial case where the spirals pass each other at
large distance, weak electric fields can induce another unexpected response.
Experiments showed that under these conditions colliding spiral waves can
interact without annihilation.While one of the spiral tips is proceeding its drift
along the expected straight line, the other tip is forced to deviate significantly
from its straight course. Recent numerical simulations also indicate that, under
ideal conditions, two spirals can form a bound state that keeps the tips at a
constant average distance (of the order of one wavelength) and moves them
toward the anode along a trajectory that is parallel to the electric field vector
(Schmidt and Müller, 1997).

We want to point out some striking similarities between spiral waves and
particles. A single, one-armed spiral has a topological charge (either �1 or
�1) that is determined by its sense of rotation. It is a well-known fact that the
total sum of topological charges in an excitable medium (without boundaries)
is conserved. Therefore, only spirals having a different sense of rotation can
annihilate. Depending on the sign of its topological charge, the drifting spiral
tip is experiencing different contributions to the vector of drift velocity. From a
phenomenological point of view this behavior is quite similar to moving
electrically charged particles that are subjected to a magnetic field. Further-
more, interacting spirals can form a bound state that has a topological charge

398 O. Steinbock and S. C. Müller



of 1� 1� 0 . This spiral pair is drifting with a velocity that has no component
perpendicular to the field, similar to an uncharged atom that is experiencing no
magnetic forces that would alter its velocity. It will be interesting to see how far
the concept of particles can be used fruitfully for understanding the dynamics
of spiral waves in excitable systems.

The microscopic driving force of the observed phenomena is electromigra-
tion of ionic species — an effect that is exploited by certain analytical techniques
such as electrophoresis. Ions are pulled towards the electrode along the field
lines of the electric field. This force can result in a local change of the concen-
tration c that is given by the equation

�c/�t� �E�
�
, (1)

where E is the electric field vector and �
�
the gradient vector of the local ion

concentration oriented parallel to the line of highest concentration increase.
The parameter � is the ionic mobility of the charged species defined as the
proportionality factor between the velocity of ions and the applied electric field
(Atkins, 1994). Hence, the value of �E corresponds to the migration velocity of
the particular ion in an electric field, E. Note that the electric field causes
concentration changes only in the presence of a local concentration gradient.
By adding the right-hand term of Equation (1) to the set of reaction—diffusion
equations describing the chemical system, one obtains a mathematical model
that is suitable for the numerical simulation of experimental data. On this
basis, numerous numerical studies have been carried out to reproduce and
understand the effects of electric fields on pattern formation in chemical
systems. Generally, these investigations are in good agreement with experi-
ments, although certain quantitative features of numerical studies are not quite
satisfactory yet.

Bromide ions seem to be the key species of electric field effects in the BZ
reaction. Electric fields are forcing the inhibitor bromide to migrate toward the
anode following the mathematical description discussed above. A BZ wave-
front traveling toward the cathode is now experiencing an electric field-
induced flow of bromide that is slowing down its propagation. On the other
hand, a front traveling toward the anode is always expanding into regions of
lowered inhibitor concentration and, therefore, propagating with an increased
velocity. The presented drift of spiral waves is directly related to this effect.

17.3.3 Exploiting photosensitivity

While the perturbation of spiral rotation by electric fields is an example for
perturbationsby a vectorialquantity, the following sectiondescribes a powerful
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approach for the control by a scalar quantity, which is the intensity of an
external light field. As mentioned before, it has been found that the Ru(bpy)��

�
-

catalyzedBZreaction is photosensitive (Gaspar et al., 1983). By illuminating the
system with visible light one can stimulate the production of additional
bromide,which is inhibiting the excitablebehaviorof the system.Themaximum
effect is established at a wavelength of about 454 nm via the formation of a
photochemically excited ruthenium complex (Jinguji et al., 1992). The detailed
chemistry of the light-induced inhibition is not understood yet. Nevertheless,
working models exist that were derived from the Oregonator model of the BZ
reaction by adding an additional source of bromide, where the rate of bromide
production is assumed to be simply proportional to the light intensity (Krug et
al., 1990).

17.3.3.1 Control with a laser spot

The initial goal of our experiments with the light-sensitive BZ reaction was to
develop tools for the controlled creation of spiral waves. An argon-ion laser of
relatively high intensity (0.8W attenuated by a neutral density filter, OD 2.0) is
used to irradiate small circular areas (typical diameter 0.1—2mm) of the BZ
medium. These areas are now inhibited in the sense that, locally, wave propa-
gation becomes impossible. The time required for reaching efficient inhibition
is short (about 2 s) and the effect is reversible. If a solitary chemical wave is
propagating across the inhibited spot, it breaks apart and two open wave ends
are generated. After the laser is switched off, these wave ends develop into a
pair of rotating spirals (Steinbock and Müller, 1992). Hence, the argon laser
can be used as a highly controllable tool for generating spirals. Furthermore, it
is possible to pin spiral tips to laser-inhibited spots. In this context the laser
spot acts as an artificial spiral core that forces a circular wave rotation around
the boundary of the inhibited spot. By these means, the spiral rotation period
and the wavelength of the chemical pattern can be adjusted to desired values.
Figure 6 shows a pair of spiral waves in the photosensitive BZ reaction where
this laser control is carried out. The unperturbed spiral (left) rotates with a
characteristic period of 26 s and has a wavelength (pitch) of 1.3mm. The
perturbed spiral (right) rotates around an unexcitable laser spot having a
diameter of 1.2mm. The perturbation leads to an increase in period to 49 s as
well as in wavelength to 3.4mm. In the subsequent stages of the experiment the
area covered by the perturbed spiral is continuously decreased. Eventually, the
spiral on the left conquers the whole observation area, leaving a defect at the
position of the laser spot. A series of experiments confirmed that the period of
spiral rotation (and also the wave velocity) increases monotonically, the diam-
eter of the laser spot constituting the artificial rotation center (artificial core).
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Figure 6. Argon-ion lasers allow an efficient manipulation of spiral waves in the
photosensitive BZ reaction. This example shows a pair of spiral waves, where the left
spiral is unperturbed and rotates freely. The right spiral spins around a small laser spot
(diameter 1.2mm) that creates an unexcitable disk (artificial core). This constant
perturbation induces an increase in rotation period and wavelength (Steinbock and
Müller, 1992).

An additional function of the argon laser allows shifting of the center of the
spirals through the system. If a spiral tip is pinned by the laser spot, one can
slowlymove the BZ probe and prevent further rotation (Steinbock and Müller,
1993). It is crucial that the probe is translated with a speed that is roughly
identical with the propagation velocity of planar waves. Under this condition
the tip is experiencing a permanent obstacle and follows the relative motion of
the laser spot. We found this technique to be a useful tool for removing
undesired spirals from the observation area and thus preventing the interac-
tion of spirals that might otherwise influence the measurement. In addition, we
found that a spiral that is moved to the physical boundary of the BZ system
(e.g., the boundary of a Petri dish) is transformed into a defect rotating around
the entire circumference of the probe. Using this procedure one can accumu-
late numerous spirals of identical topological charge in the central region of
the system and further use the laser beam for creating multi-armed spirals
(Steinbock and Müller, 1993).
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17.3.3.2 Control with periodic light stimuli

A quite different approach for exploiting the photosensitivity of the ruthe-
nium-catalyzed BZ reaction focuses on spatially homogeneous perturbations
that are modulated in time (Steinbock et al., 1993). We investigated a system in
which spiral tips are describing a roughly five-lobed trajectory if subject to an
average (comparatively low) light intensity (compare Figure 2). For the mini-
mum and maximum intensities applied in the following example, we observed
four- and six-lobed trajectories, respectively. Periodic modulations of the light
intensity within these bounds cause dramatic changes in the dynamics of spiral
rotation. The small variations in the trajectory shape that occur during each
period of modulation accumulate with time. As a result, the modulated pertur-
bation forces the tip to follow trajectories that differ significantly from those
observed at constant intensities. The shape depends strongly on the modula-
tion period, T

�
. The underlying effects are strongly related to the entrainment

phenomena discussed by Kaiser (Chapter 1, this volume). In contrast to the
nonlinear oscillators discussed by Kaiser, however, we now have to under-
stand the response of a spatiotemporal system, having an infinite number of
degrees of freedom, to periodic perturbations.

Figure 7 shows five examples of tip trajectories of spiral waves traced in a BZ
system under periodic modulation of light intensity. The trajectories of Figure
7B—D are members of an entrainment band of hypocyloids with one lobe
corresponding to one external period. The number of lobes continuously
increases from three to more than 12 with increasing values of T

�
. The exact

one-to-one agreement between the number of lobes and the number of modu-
lation cycles has been observed only in a well-defined interval of modulation
periods (T

�
� 20 to 35 s). For smaller periods a quite different behavior occurs,

as shown in Figure 7A. This trajectory is a deformed five-lobed curve with
exactly one lobe described during two modulation periods. Figure 7E illus-
trates one possible mode of spiral tip dynamics at slow modulation, showing a
surprising trajectory with alternating distances between neighboring lobes. In
this small frequency range the spiral tip describes a pair of lobes during one
externalmodulation. For periods between those shown in Figure 7D andE, we
observed irregular motion with epicyclic segments of the trajectories. In all
examples given in Figure 7, however, the tip motion is synchronized (or
entrained) by the external rhythm.

Numerical simulations of reaction—diffusion systems are useful supplements
for experimental investigations, since they allow a thorough scan through a
broad parameter region in a tolerable time. Based on a modified Oregonator
model describing the photosensitive BZ medium, V. Zykov has carried out
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Figure 7. Sequence of spiral tip trajectories measured under a sinusoidal modulation
of light intensity with a periodT

�
of: 17.0 s (A), 26.2 s (B), 30.4 s (C), 34.5 s (D), and 52.2 s

(E). The shading of the trajectories indicates the current intensity of illumination and
clearly shows the one-to-one phase locking of the lobes to the external rhythm
((B)—(D)). The traces in (A) and (E) obey a 1: 2 and a 2 : 1 phase locking, respectively.
Period of unperturbed spiral (0.93mWcm��) as measured in its symmetry center:
T

� 24.5 s. Scale bar: 0.2mm (Steinbock et al., 1993).

extensive computer simulations in order to achieve a more complete picture of
the entrainment of meandering spiral waves (Zykov et al., 1994). Figure 8
shows some tip trajectories obtained numerically by changing the modulation
period, T

�
, as well as the modulation amplitude, A. The value T


denotes the

wave period at the center of the unperturbed spiral. Notice that, owing to the
complex motion of a meandering spiral wave, different excitation periods are
detected at the center and at infinite distance (T

�
). For a n-lobed hypocyc-

loidal trajectory the periods obey the equation: T

�T

�
(n� 1)/n. The reader

can easily perform ‘experiments’ to check this dependence. Take a pen (or
better a slightly curved object) that will represent the spiral tip. Then move the
pen along the four-lobed tip trajectory (i.e., n� 5) shown in Figure 2 until you
are back to the starting point. The pen should be always perpendicular to the
trajectory in the plane. While carrying out this little test count how often
the pen crosses the symmetry center of the trajectory and how often it crosses
the upper right corner of the figure which is representing a point far from the
center. The reader will find these numbers to be five and four corresponding to
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Figure 8. The experimental results shown in Figure 7 are in good agreement with
numerical simulations. Tip trajectories calculated as a response to sinusoidal modula-
tion of bromide production are shown in the plane of modulation period, T

�
, and

modulation amplitude, A. The center of each tip trace is arranged at the actual
parameter pair (T

�
,A) used for calculations. Their size was varied to allow a better

resolution of details. Dashed lines indicate boundaries of entrainment bands related to
different ratios n :m, where n is the number of lobes per m periods of modulation. T

and T
�

are the excitation periods of the unperturbed spiral as measured in its
symmetry center and at a point far away from the center, respectively. The thick black
line indicates parameters for which resonance drift was found (for further details, see
text in Section 17.3.3.2; Zykov et al., 1994).

the periods T

� �/5 and T

�
� �/4 that actually fulfill the above equation (�

represents the total time it takes to move the pen).
Coming back to the numerical results shown in Figure 8 one finds that the

entrainment band of trajectories that obey a one-to-one phase locking is
located around the period T

�
�T


. The trajectories of this band correspond

to the experimental observations shown in Figure 7B—D.Figure 8 depicts three
additional entrainment bands where the number of lobes and the number of
modulation cycles have the constant ratios 1 : 3, 1 : 2 and 2 : 1. Also notice the
good agreement between the simulated curves in the 1 : 2 and 2 : 1 band and the
experimental data shown in Figure 7A and B, respectively. Similar to the
experimental observations the simulations also reveal irregular trajectories in
between the entrainment bands. The correspondingmotion in these parameter
regions shows no phase-locking with respect to the rhythm of external modu-
lation.
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Figure 9. Resonance drift of spiral waves differs significantly from the dynamics of
entrainment patterns shown in Figures 7 and 8. Parts (A) and (C) give a typical
example of resonance drift of a meandering spiral as obtained from experiments (A)
and numerical calculations (C). The simpler resonance behavior of a spiral wave with
rigid rotation is shown in (B). While entrainment is mainly determined by the period
T

of the unperturbed pattern, resonance drift occurs for modulation periods that are

approximately identical with the excitation period T
�
. Scale bar: 0.8mm (Zykov et al.,

1994; Grill et al., 1996).

The intrinsic period T

is of central importance for the structure of entrain-

ment bands. An obvious question to ask now is whether additional phenom-
ena occur at a modulation period of T

�
�T

�
. Figure 9A shows a typical

example of a spiral tip trajectory observed for this particular forcing period
(Grill et al., 1996). The experimental data reveal a complex drift of the tip.
Despite the complex local structure of the trajectory one finds an overall
translation of the tip along a straight line. This effect has been named resonance
drift and should be clearly distinguished from entrainment phenomena. The
parameter region, where resonance drift is found, has been indicated in Figure
8 as a thick black line. Resonance drift can be readily understood for the
example of rigid rotation (i.e., circular tip trajectories). If the external modula-
tion is limited to situations in which the spiral is showing rigid rotation, one
observes a periodic increase and decrease of the radius of the trajectory. If the
modulation period is furthermore identical with the rotation period of the
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unperturbed spiral, a drift along a straight line is generated. A typical example
for this simple resonance drift is shown in Figure 9B.

For a further comparison of experimental and numerical data, computer
simulations were performed (Zykov et al., 1994) that yielded the precise
trajectories of spiral tips under resonance conditions (e.g., compare the black
line at T

�
�T

�
in Figure 8). Figure 9C shows the resonance trajectory found

for A� 0.0001, which is in good qualitative agreement with our experimental
observations.

The presented experimental results demonstrate that the photosensitive BZ
reaction is an excellent model system for the investigation of excitable reac-
tion—diffusions systems by means of external control and perturbation. First of
all, spiral waves can be generated in a reproducible fashion and their location
in the system can be chosen at will. Secondly, artificial cores, created by
unexcitable laser-irradiated spots, can be exploited for the control of the
rotation period and the wavelength of spiral waves. These cores can also host
numerous spiral arms and are, therefore, stabilizing multi-armed wave pat-
terns. We have also discussed some central aspects of periodic forcing of
excitable systems that give rise to phenomena such as entrainment, phase
locking and resonance drift. It should be noted finally that other authors have
demonstrated the potential of the light-sensitive BZ media for the use of image
processing (Kuhnert et al., 1989). In this context, the BZ gel system acts as an
artifical retina that is capable of reversing or smoothening photographies
projected onto the system.

17.4 Conclusions

The application of external perturbations or constraints to excitable systems
opens new avenues for the investigation of chemical self-organization. The BZ
reactions can be perturbed in a controlled fashion by numerous techniques.
The examples discussed in this chapter involved: (1) chemical parameters, such
as oxygen; (2) electric fields acting on ionic species; and (3) light stimuli giving
rise to local and global perturbations. Additional approaches have been
discussed in the current literature. Some of them focus on the realization of
spatial constraints or even heterogeneous media that give rise to surprising
wave patterns (Steinbock et al., 1995).

All of these research activities have the potential to yield important insights
into the rules that govern biological self-organization, since living systems are
strongly influenced by periodic rhythms and constant gradients in their natu-
ral environment (such as circadian rhythms). Other perturbations might occur
from artificial sources. Our knowledge, however, of the response of nonlinear
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and, in particular, living systems to external forcing is still relatively poor. A
major complication is that the response of nonlinear systems is often hard to
anticipate by human intuition, since our intuition relies strongly on linear
extrapolation. On the basis of the intriguing similarities between certain
biological and chemical systems (compare Figure 1) it seems reasonable to
broaden our understanding of self-organization by highly reproducible experi-
ments with systems such as the Belousov—Zhabotinsky reaction.
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Changing paradigms in biomedicine: implications
for future research and clinical applications

JAN WALLECZEK

18.1 Introduction

A revolution is underway in the physical sciences, based on insights from
nonlinear dynamics, which includes the areas popularly known as chaos and
complexity studies. As described in the previous chapters, this revolution is
beginning to affect greatly the biological and medical sciences as well. Promi-
nent examples are the discovery of deterministic chaos in physiological time
series data, of fractal properties of living processes, and of dynamical informa-
tion processing in single cells and coupled cell signaling networks. The key
feature of this work is the treatment of a living system as a dynamical system of
nonlinearly interacting elements. As I have proposed in the Introduction to
this book, the field of biodynamics might therefore be defined as the study of
the complex web of nonlinear dynamical interactions between and among
molecules, cells and tissues, which give rise to the emergent functions of a
biological system as a whole.

This concluding chapter reviews major characteristics of this quickly devel-
oping research area and explores implications for basic research, clinical
applications and biological thinking. Before highlighting selected findings that
emphasize the nonlinear dynamical view, I first draw attention to the
nonequilibrium foundations of living processes.

18.2 Life as a dynamical, nonequilibrium process

Many standard textbooks of cell biology or biochemistry still stress ideas that
are based upon biochemical reaction—diffusion processes for equilibrium con-
ditions in closed systems. Yet, we now know that the decay to biochemical
equilibrium is a poor representation of living systems. As discussed in this
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book, the complex, dynamical organization of matter that we recognize as life,
which does not exist as units smaller than the cell, requires a continuous inflow
of energy and matter; hence living systems are thermodynamically open at all
levels in the hierarchy of biological organization. In any open system, whether
it is physical, chemical or biological in nature, mechanisms such as positive or
negative feedback, autocatalysis and time delays may generate self-organized
dynamical behaviors. Furthermore, energy is continuously dissipated during
the generation of such self-stabilizing states — also known as dissipative struc-
tures — and in cells they prevent biochemical reactions from reaching thermo-
dynamic equilibrium (see, e.g., Prigogine andNicolis, 1971). Thus, as Schrödin-
ger (1944) put it in his famous essay What is Life? over 50 years ago, ‘living
matter evades the decay to equilibrium’. Indeed, the only time when a cell ever
reaches equilibrium is when it has died.

The view put forward in this book suggests that it is time for mainstream
biochemistry and biology to embrace the fact that the nonequilibrium, non-
linear character of intra- and extracellular control processes is crucial to
biological function and regulation. Specifically, any comprehensive model of
regulatory biochemical dynamics, the complex responsiveness to stimuli, and
the information-processing capacity of living systems must be able to account
for the out-of-equilibrium, dissipative nature of biological processes. It is
therefore of interest to discuss the impact of this understanding on the classi-
cal notion of homeostatic, quasi-equilibrium regulation from a historical
perspective.

18.3 From homeostasis to homeodynamics?

The traditional view of physiological control systems in organisms and single
cells holds that they are governed by homeostasis. The concept that physiologi-
cal parameters are feedback regulated so that they remain close to a constant
value has a long history. Seventy years ago, Cannon (1929) introduced the term
‘homeostasis’ to describe the ‘coordinated physiological arrangements for
attaining constancy’ in a biological organism. Cannon sought to coin a term
that could appropriately define the general condition of the living state as
described, for example, by Richet (1900):

The living being is stable. It must be in order not to be destroyed, dissolved or
disintegrated by the colossal forces, often adverse, which surround it. By an apparent
contradiction it maintains its stability only if it is excitable and capable of modifying
itself according to external stimuli and adjusting its response to the stimulation. In a
sense it is stable because it is modifiable — the slight instability is the necessary
condition for the true stability of the organism.
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The true scope and power of instabilities in biological function and regula-
tion, however, could only be recognized several decades later as a result of the
application to biological studies of concepts from nonequilibrium ther-
modynamics (for an early perspective, see Prigogine and Nicolis, 1971). Im-
portantly, novel biochemical patterns and dynamical control processes may
arise at a point of instability; that is, at a bifurcation point. The recognition of
bifurcations, at which point the evolution of a biodynamical system may take
different paths, has thus revealed that instabilities are an indispensable source
of biological function and order (e.g., see Kaiser, Chapter 1, this volume).
During the past decade, researchers have become increasingly aware of the fact
that the dissipative formation of periodic or complex oscillations is at the root
of signal detection and processing events in many types of biochemical and
coupled cell signaling networks. Some examples are discussed in Sections 18.4
to 18.6, including coordinated interactions across the extracellular space that
lead to the long-range correlated dynamics of heart and brain function.

We can now recognize that, frequently, biological systems do not function
by simply dampening out or counteracting oscillations in biochemical and
physiological parameters through homeostatic feedback. On the contrary,
sustained oscillatory dynamics and complex pattern formation resulting from
instabilities under nonequilibrium constraints may be involved in biological
control at all levels of physiological organization. While it is certainly the case
that cells and organisms control biological parameters within only a limited
range of values, often the immediate or long-term goal is not the establishment
of constancy, or even regularity, in intra- or extracellular parameters. There-
fore, instead of ‘homeostasis’, the term ‘homeodynamics’ may be a more
accurate definition that captures the nonlinear regulatory principles governing
the dynamical stability of a living system (see, e.g., Bassingthwaighte et al.,
1994). Some striking examples from the previous chapters and from the related
scientific literature that emphasize this viewpoint are highlighted in subse-
quent sections.

18.4 Order and chaos in health and disease

We normally associate healthy physiological function with order, regularity
and stability.Many instances are now known, however, where regular, periodic
dynamics and stability, i.e., resistance to change, has been linked with certain
disease states. For example, there exists good evidence that normal, healthy
function can be accompanied by irregular, chaotic dynamics and that, in turn,
loss of irregularity and complex behavior may be associated with pathological
function (for an overview, see Goldberger, 1997). One specific observation
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comes from a physiological system whose seemingly clocklike, regular motion
is familiar to us all: the human heartbeat. Unexpectedly, time series recorded
from healthy subjects, however, revealed nonstationary, irregular fluctuations
in heart rate. In contrast, regular periodic dynamics was detected in similar
time series obtained from subjects with congestive heart failure. Furthermore,
the studies by Goldberger and coworkers reviewed in Chapter 3 and by others
(e.g., Poon and Merril, 1997) found that the fluctuating behavior in normal
heart rate exhibited fractal characteristics, including deterministic chaotic
dynamics, and that loss of chaotic behavior or of fractal complexity was
indicative of heart failure.

An analogous observation comes from neurology: the onset of an epileptic
seizure is characterized by a transition from irregular fluctuations to periodic,
synchronous oscillations in brain electrical activity as described in Chapters 2
and 16 by R. Larter et al. and J. Milton, respectively. Milton suggests that this
rapid transition could be symptomatic of a multistable, dynamical state of an
underlying neuronal control system, where a minute deviation in a control
parameter might lead to the dramatic change in global brain activity. As in the
case of heart dynamics, a loss of complex brain dynamics could therefore again
be related to dysfunction. Additionally, a decrease in the complexity of brain
electrical activity, as established by nonlinear analysis of electroencephalo-
gram time series recordings, was recently proposed to allow the prediction of
the onset of seizure activity (Lehnertz and Elger, 1998; Hively et al., 1999).

Together the above examples serve to show that the emergence of periodic-
ity, or a loss of biodynamical complexity, can be symptomatic of severe
pathological conditions. Importantly, the above-mentioned cases indicate that
nonlinear time series analysis, including dynamical complexity measures, can
be employed as a form of ‘dynamical diagnosis’. Clearly, more research is
needed to establish whether this concept might have broad applications in the
identification and characterization of disease states in other systems, from the
level of the single cell to the whole organism. The examples available so far are
encouraging and they propose a rewarding research direction for biomedicine.

18.4.1 Dynamical diseases and nonlinear control

The ability to define certain disease conditions in terms of pathological dy-
namical states has led to the concept of ‘dynamical diseases’ (Glass and
Mackey, 1979; Mackey and Glass, 1979). Over 30 clinical disorders have been
classified as dynamical diseases in neurology and psychiatry alone (Milton and
Black, 1995). One particularly exciting prospect concerns the application of
nonlinear control techniques in the treatment of pathophysiogical dynamics.
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A few such approaches are already under serious consideration. For example,
the synchronous electrical activity associated with an epileptic seizure might
be influenced by dynamical interventions with the goal of returning brain
electrical activity to a more complex state. In Chapter 16, J. Milton discussed
the possibility of a brain ‘defibrillator’ for the treatment of epilepsy based on
this idea (see also Glanz, 1997). One type of intervention, which eventually
might be developed into such a clinical tool, was already demonstrated in an in
vitro model, a seizing hippocampal brain slice: Schiff and coworkers (1994)
successfully applied a chaos ‘anticontrol’ strategy, and returned the regular
spiking activity of epileptic brain tissue into a more chaotic regime (see also
Ditto and Spano, Chapter 15, this volume).

On the other hand, disease states can also be characterized by decoherence,
for example by a loss of periodicity. In the case of atrial heart fibrillation, a
common form of arrhythmia, an unstable, chaotic motion defines the dynam-
ics of the arrhythmic heart. The finding that deterministic chaos may underlie
an arrhythmia has opened the door to the development of chaos control
techniques for regularizing the irregular dynamics of fibrillating heart tissue
(Garfinkel et al., 1992). As described in Chapter 15, the principal feasibility of
this approach in the treatment of heart arrhythmias has already been con-
firmed in a first clinical trial.

In summary, a loss of either irregular, chaotic dynamics or regular, periodic
behavior can result in a breakdown in the control of healthy function. There-
fore, the question of whether order or chaos are markers of healthy or patho-
logical dynamics depends on the specific situation. Importantly, the new
observations demonstrate that the tools and ideas from nonlinear dynamics,
including those from chaos studies, have opened up a new line of clinical
investigations that may fundamentally change how we view and treat certain
life-threatening illnesses.

18.5 Random fluctuations as a contributor to optimal biological function

In traditional models of homeostatic regulation, the effective maintenance of
an equilibrium-like, orderly state is seen as a sign of optimal, healthy function.
In this view, random fluctuations, due to either environmental or internal
factors, are interpreted as unwanted but unavoidable disturbances of biologi-
cal processes, which adversely affect their function. Several examples are
discussed in this book, suggesting that, under certain conditions, biological
function can instead be enhanced or optimized by stochastic perturbations.

The findings in Part III describe that the exposure to noisy fluctuation of
signal detection processes in biological or biochemical systems can increase
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the efficiency of signal transmission. The electromyography experiments re-
viewed in Chapter 10 by F. Moss indicate an improvement in the signal-to-
noise ratio in the detection of electric signals by human sensory neurons at an
optimal, intermediate noise level — the signature of stochastic resonance
(Chiou-Tan et al., 1996). In addition, recent psychophysical experiments dem-
onstrated an enhancement in human tactile sensation by imposition of an
optimal dose of noise (Collins et al., 1996). The first demonstration of stochas-
tic resonance in a brain tissue preparation was reviewed in Chapter 15 by W.
Ditto and M. Spano. The experiment established that a certain amount of
electrical noise enhanced the signal-to-noise ratio in the detection by tissue of
an applied stimulus, as measured by the noise-enhanced increase in syn-
chronous burst-firing of neuronal activity (Gluckman et al., 1996).

Evidence for stochastic resonance at the molecular level was reviewed in
Chapter 11 by S. Bezrukov and I. Vodyanoy. Their experiments showed that
electrical signal detection by voltage-gated ion channels could also be im-
proved by electrical noise addition (Bezrukov and Vodyanoy, 1995, 1997). The
theoretical analysis by D. Astumian in Chapter 12 presentedmolecular ratchet
mechanisms by which random, nonequilibrium fluctuations might be har-
nessed bymolecules such as ion pumps to perform work such as unidirectional
transport against a concentration gradient (e.g., Astumian, 1997). An experi-
mental demonstration of fluctuation-driven transport by a membrane ion
pump, a Na�,K�-ATPase, was described in Chapter 13 by T. Tsong, who
observed that the exposure of the ATPase to stochastically fluctuating electric
fields significantly enhanced the pump’s transport activity (Xie et al., 1994,
1997).

A. Arkin (Chapter 5) predicted a potentially constructive role of stochastic
processes in gene expression as a consequence of the inherent uncertainties
involved in the reaction probabilities of the small numbers of interacting
molecules during RNA transcriptional activity. Specifically, a recent theoreti-
cal analysis by Arkin and coworkers (1998) showed ‘how molecular level
thermal fluctuations can be exploited by the regulatory circuit designs of
developmental switches to produce different phenotypic outcomes’. Thus, the
indeterminism intrinsic to gene activation events might have a positive func-
tion in producing phenotypic diversity.

Many cases of noise-facilitated processes in chemical, biochemical and
biological systems have been identified in recent years. For an overview of
experimental results and of theoretical advances see a recent issue of Chaos
edited by D. Astumian and F. Moss (1998). In summary, the evidence for a
constructive role of random fluctuations at the molecular, cellular and tissue
level suggests that a more sophisticated view of physiological control mechan-
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isms than is commonly believed may be required to account for the highly
nonlinear, noise-sensitive processes that underlie critical biological operations.

18.6 Nonlinear frequency detection and processing in excitable,
nonequilibrium systems

The formation of excitable and oscillatory states in nonequilibrium systems
allows these systems to interact with external perturbations in nonlinear
dependence on frequency information. This principle holds true for chemical,
biochemical as well as biological systems. The Chapter 17 by O. Steinbock and
S.Müller demonstrated this phenomenon in a nonlinear chemical reaction, the
Belousov—Zhabotinsky system, where pulsed laser light triggered transitions
in spatiotemporal pattern formation which strictly depended on pulse fre-
quency (Steinbock et al., 1993). At the level of isolated enzyme activity, Chapter
8 discussed the frequency-dependent control of oscillatory enzyme dynamics
by physical perturbations such as oscillating magnetic stimuli (Eichwald and
Walleczek, 1998). While this prediction has not yet been tested for magnetic
stimuli, the nonlinear frequency sensitivity of collective enzyme dynamics was
confirmed in experiments with electrical and chemical oscillating stimuli (e.g.,
Förster et al., 1994, 1995). At a higher level of organization, Chapter 7 by
H. Petty reviewedwork showing that coherentmetabolic oscillations inmigra-
ting neutrophils could be enhanced or diminished by an oscillating electrical
stimulus. He also found that applied electrical signal oscillations, which were
in phase with internal cellular oscillations, stimulated cellular migration,
whereas anti-phasic signals did not (see also Adachi et al., 1999).

For electrically excitable biological systems such as muscle and neuronal
cells the sensitivity to the periodicity of an electric field perturbation, as
discussed by P. Gailey (Chapter 6), has been known for some time. A particu-
larly interesting example from the recent literature has dealt with frequency-
specific cellular amplification: oscillating electric fields centered at 60Hz, but
not at much higher or lower frequencies, were found to enhance neuronal
amplification processes (Haag and Borst, 1996). With respect to the sensitivity
to oscillating magnetic fields of neuronal processes, Chapter 9 by Engström
and coworkers reported that hippocampal brain tissue was capable of dis-
criminating between 1-Hz and 60-Hz oscillating magnetic fields. Many more
examples can be found in the literature, reporting frequency sensitivities of
diverse biological processes to oscillating inputs. With respect to practical
applications, nonlinear control techniques could be developed for influencing
molecular, cellular or tissue dynamics, which exploit the interaction specificity
on coherent frequency information (see Chapter 8).

415Changing paradigms in biomedicine



18.6.1 Biological frequency encoding and decoding

The possibility that cellular signaling processes may rely on frequency encod-
ing of information in the control of fundamental cellular processes is another
important aspect of biological frequency sensitivities (e.g., Arkin, Chapter 5,
this volume). The nonlinear control of gene expression by the ubiquitous
second messenger calcium (Ca��) is an important recent example. For many
cell types, biologists discovered that cellular Ca�� ‘homeostasis’ in response
to external stimuli is regulated dynamically. For example, rather than respon-
ding by a simple change in intracellular Ca�� concentration, [Ca��]

�
, repeti-

tive spiking or oscillations in [Ca��]
�
, which typically cover a range of fre-

quencies from 0.01 to 3Hz, were observed in single, stimulated cells. Since the
Ca�� oscillation period was observed to be a function of stimulus strength, it
was suspected that these oscillations might control basic cell functions by
frequency-encoding and decoding processes (see, e.g., Berridge and Gallione,
1988; Goldbeter et al., 1990; Meyer and Stryer, 1991). Evidence in support of
this hypothesis was recently provided by a series of remarkable experiments.
Two groups of investigators independently observed that periodically gener-
ated [Ca��]

�
perturbations were capable of controlling gene activation events

in nonlinear dependence on perturbation frequency (Dolmetsch et al., 1998;
Li et al., 1998).

The results with the cellular Ca�� oscillator andmore complex systems such
as heart and neuronal tissues suggest that the traditional view of homeostatic
regulation for maintaining equilibrium states is, at a minimum, incomplete.
Specifically, there is mounting evidence that many tissue and cell types have
evolved to actively sustain nonequilibrium dynamical states such as the oscil-
lations in [Ca��]

�
as part of complex biological regulatory networks. Import-

antly, such states are capable of detecting, amplifying and processing dynami-
cal information that is contained in many types of intra- or extracellular
signals. It may be difficult, if not impossible, for traditional, quasi-equilibrium
biological models to account for the nonlinear cell and tissue dynamics that is
at the core of important physiological control systems. The work discussed in
this book offers general principles that can be employed in the development of
more appropriate biological models.

18.7 Toward a new epistemology for biology

In the Introduction to this book, I offered several reasons why exclusively
reductionistic strategies and explanatory models were unlikely to deliver
complete answers to fundamental biological questions such as (1) how living
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systems function as a whole, (2) how they transduce and process dynamical
information, and (3) how they respond to external perturbations. To some, this
statement could pose a difficult conceptual challenge because many scientists
havemade a habit of equating rigorous scientific thinking with only reduction-
istic thinking. Modern biology, in particular, is skeptical of any explanation
that cannot be derived, at least in principle, from the sum of the microscopic
actions of individual molecules alone.

The present dominance of reductionist approaches is not surprising for two
additional reasons. The most obvious one is the remarkable success of modern
cell and molecular biology. As a result, most scientists are convinced that
current concepts and models are sufficient to deal with any research problem
that biology may encounter. The other reason is a subtler one and is related to
the apprehension of researchers to embrace any kind of ‘whole-systems’ or
holistic thinking in biology, probably for historical reasons. During the first
half of the twentieth century, scientists and philosophers contemplated the
view that new physical laws would be required to explain the seemingly
miraculous functionality and efficiency of living organisms. The fact that the
highly organized, self-stabilizing temporal and spatiotemporal patterns, which
are the hallmark of any living system, could spontaneously emerge from
random microscopic interactions of organic chemicals was simply inconceiv-
able then. Instead, they proposed a role for an unspecified unifying force or
organizing field, which would be unique to living matter and could account for
the properties of the whole that could not be derived from the parts. As a
consequence, present-day biologists still have a tendency to reject out of hand
even scientifically sound notions of holism, possibly because holistic ideas still
remind them of the mysticism often associated with the unsubstantiated
neovitalistic proposals of the past (for reviews, see, e.g., Mayr, 1982, 1988).

Today, of course, we know that the emergent formation of macroscopic,
self-stabilizing patterns in biochemical and biological systems can theoreti-
cally be accounted for by the science of nonequilibrium thermodynamics in
complex, nonlinear systems; no unknown forces or fields from outside the
realm of modern physics have to be postulated to explain many of the aston-
ishing and, frequently, counter-intuitive features of living organisms such as
nonlinear sensitivities to weak stimuli and spontaneous pattern formation.
The nonlinear dynamical systems view, which I also referred to in the Intro-
duction to this book as the paradigm of self-organization, thus provides
biology with a theoretically sound approach toward a ‘holistic biology’ for the
first time in the history of science. This new holism is firmly grounded in and
consistent with the physical laws that also govern the material processes of the
nonliving world.
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From an epistemological perspective, there is the prospect that the century-
old philosophical conflicts between holistic and reductionistic ways of know-
ing in biology could finally be resolved. Ironically, the solution might satisfy
both holists and reductionists, although concessions have to be made on either
side. Holistically inclined thinkers will have to accept the fact that all currently
known properties of living matter are fully consistent with the microscopic
properties of nonliving matter and the laws of modern chemistry and physics.
Strict reductionists, on the other hand, will have to concede that qualitatively
novel, macroscopic features may arise spontaneously in complexly organized,
nonlinear systems such as living organisms, which cannot be reduced in
explanation to the mere sum of the individual actions of the system’s micro-
scopic elements.

Finally, the paradigm of self-organization offers a powerful set of tools for
thinking about the irreducible, whole-systems properties of living processes.
By definition, the systematic development of this paradigm and its application
to biomedicine is crucial if we wish to understand (1) the power and role of
self-organization in health and disease, (2) how clinical diagnosis can benefit
from a better understanding of the nonlinear dynamics of disease processes,
and (3) how external stimuli may be best used to influence or control self-
organized biological dynamics for therapeutic purposes.

18.8 Conclusions and outlook

The observations and ideas outlined in this book suggest a new research
agenda for biology and medicine. While important steps have been taken
toward answering some of the questions posed in the Introduction to this
book, many questions remain open and even more are raised by the new
findings. Several of the reported observations still need to be confirmed and the
general applicability of some of the theoretical proposals needs to be validated
by future work. This state of the science should not serve as a criticism, but it is
a testament to the promise and vitality of the work at this new research
frontier. Most importantly, the tools and ideas from nonlinear biodynamics
have motivated researchers to design experiments and to research and develop
diagnostic and therapeutic modalities that never would have been considered
otherwise. The time and opportunity has come for biomedical scientists to
adopt an information-based, whole-systems approach to biological under-
standing and in the development of advanced biomedical technology. The
rewards for medicine could be immeasurable.
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Index

acetylcholine, 148, 220
acoustic stimuli, 102, 301, 311, 321
action potential, 55, 153, 240—244, 257, 350,

365—368, 388
timing of, 154

activation barrier, 259, 303, 318
aging, 78—80, 87—93, 248
alamethicin, 258, 267—271, 274, 275
allosteric effector, 116, 121
allosteric regulation, 46, 115
amplification factor, 200, 209
amplification properties, 6, 135, 200, 206—212, 415;

see also biochemical amplification; signal
amplification

amplitude control, 205
ampullae of Lorenzini, 157
analog circuits, 116
aperiodic oscillations, 19, 260, 276, 351; see also

chaos
Aplysia, 154
Arnold tongue, 22, 23; see also resonance horn
arrhythmias, see heart arrhythmias
astrocyte, 252
ATP, 5, 123, 175, 177, 180, 181, 185, 186, 205, 295,

297, 311, 312, 318
atrial fibrillation (AF), 330, 355—362, 369, 410
autocatalysis, 47, 251, 388, 410
autocatalytic process, 24, 47, 388, 391, 394
autocorrelation function, 75, 100, 101, 262

B12-dependent ammonia lyase, 195, 199—201
band-pass filter, 6, 135, 136, 138, 272
Belousov—Zhabotinsky (BZ) reaction, 328—339,

387—407
chaos control, 337—339
electric field control, 394—399
frequency control, 402—406
light control, 399—406
photosensitive, 251, 391, 392
stratification, 393
subexcitable, 251
wave formation, 387—392, 407, 415; see also

spiral wave

Bénard instability, 2
bifurcation

analysis, 125, 126
diagram, 50, 59, 60
global, 25
Hopf, 21, 24, 27, 40, 375, 380
local, 21
parameter, 21, 50
period-doubling, 21, 332, 334, 337
point, 31, 40, 330, 332, 411
saddle-node, 21, 104
tangent, 21

biochemical amplification, 163, 193, 200, 201, 204,
206—212; see also amplification factor;
peroxidase—oxidase reaction; zero-order
ultrasensitivity

biochemical oscillations, 33, 44, 46, 128—129, 188,
204—212; see also Ca�� oscillations; glycolytic
oscillations; NADH oscillations; neutrophil
oscillations: peroxidase—oxidase reaction

biochemical reaction networks (BRN), 4—7, 9,
112—115, 126, 127, 139—141, 208—212; see also
genetic regulatory networks; regulatory
motifs

biochemical switching, 6, 117, 123—126, 131
biodynamics, 1—10, 409, 418
bioelectromagnetics, 8, 211, 212; see also electric

field; magnetic field
biological signaling, 4, 5, 9, 134, 194, 204, 302; see

also cellular signal transduction; biochemical
reaction networks

biological state dependence, 194
birhythmicity, 46
bistability, 2, 16, 46, 47, 124, 125, 380
Boltzmann function, 159, 266, 294
Boltzmann constant, 286
brain defibrillator, 376, 382, 383, 413
brain dynamics, 7, 47, 54, 139, 374, 412; see also

epilepsy; hippocampus; psychophysics
Brownian motion, 73, 281, 286—289, 295, 297

Ca�� ATPase, 317
Ca�� channel, 58
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Ca�� oscillations, 5, 7, 16, 34—39, 41, 45, 137, 188,
416

lymphocytes, 137, 205, 208
modeling, 34—39; see also

Goldbeter—Dupont—Berridge model
neutrophils, 173

Ca�� wave, 45, 252—254
cancer, 5
cardiac arrhythmias, 44, 93, 350, 356; see also heart

arrhythmias
cardiomyopathy, 342
categorical perception, 102, 110; see also speech

perception
cell cycle, 5, 112, 118, 128, 133
cell-cycle oscillator, 118, 128; see also mitotic

oscillator
cell-to-cell communication, 34, 235, 257, 323
cellular

control, 5, 112, 410
division, 5, 133, 173; see also cell cycle
oscillations see Ca�� oscillations; cell-cycle

oscillator; glycolytic oscillations; neutrophil
oscillations

regulation, 5
reliability, 138
signal transduction, 5, 33—39, 128, 173, 180, 194,

301, 409, 416; see also biochemical reaction
networks; biological signaling; signal
transduction

central nervous system (CNS), 51, 68, 87, 90, 154,
157, 162, 163, 166, 248, 253; see also brain
dynamics; hippocampus

cGMP, 225, 229
chaos, 2, 7, 9, 17—21, 31, 33, 139, 328—334, 341, 342

atrial fibrillation, 355—362
Belousov—Zhabotinsky reaction, 337—339
cardiac arrhythmias, 350—355
epilepsy, 53, 54, 60, 61
hippocampal brain tissue, 362—364
peroxidase—oxidase reaction, 46—51

chaos control, 9, 40, 41, 328—339, 341, 344, 369
atrial fibrillation, 330, 355—362
Belousov—Zhabotinsky reaction, 337—339
cardiac arrhythmias, 350—355
hippocampal brain tissue, 218, 330, 343, 362—364
spatiotemporal systems, 41, 338

chaos maintenance, 363, 369
chemical

circuits, 112—126, 136; see also circuits;
regulatory motifs

filter, 129, 134—138; see also frequency filter
kinetics, 32, 56, 133, 140, 210; see also enzyme

kinetics
chemotaxis, 139, 176, 187, 188
Cheyne—Stokes frequency, 78, 92, 93
circadian rhythm, 33, 128, 406
circuits

analog, 116
asynchronous, 117—119
digital, 116—123
electrical, 6, 114—123
synchronous, 117—119

see also biochemical reaction networks; chemical
circuits

clinical therapy, see therapy
coexistence, 19, 25, 103, 375, 379, 381
coherence, 7, 31, 162, 251

abnormal, 51; see also epilepsy
long-range, 17, 145, 147, 149, 162—167
noise-mediated, 251; see also stochastic

resonance
quantum, 196
resonance, 31
spin, 197; see also radical pair mechanism

concentric circle, 388; see also spiral wave
context effect, 107, 110; see also speech perception
continuous-flow stirred tank reactor, 209, 330, 337,

338
control parameter, 7, 21, 102, 104, 330, 332, 337,

360, 375, 412; see also bifurcation parameter
control, see chaos control; electric field control;

feedback control; frequency control; light
control; magnetic field control; nonlinear
control

convection cells, see Bénard instability
cooperative enzyme activity, 116
cooperativity, 15, 116, 117, 138
cornu ammonis (CA3), 56, 58, 221, 226, 363; see

also hippocampus
coupled lattice model, 60, 61
current noise, 157

Dale’s Law, 55
defibrillator, 153, 376, 382, 383, 413
Degn—Olsen—Perram (DOP) model, 49, 50, 60
delayed recurrent loop, 377—379
deterministic chaos, see chaos
detrended fluctuation analysis (DFA), 73—76, 80—89
�g-mechanism, 198, 199
diagnosis, 8, 10, 66, 78, 114, 212, 236, 343, 418; see

also dynamical diagnosis
dichlorophenol, 47
dielectrophoretic potential, 296
digital circuits, 116—123
dimensionality

correlation, 19
fractal, 19, 21, 68, 343
Hausdorf, 19
information, 19

diseases
and chaos, 46, 411; see also chaos; chaos control
and stochastic resonance, see stochastic

resonance
atrial fibrillation, 355—362, 369
cancer, 5
Ebola virus infection, 188
epilepsy, 51—55, 374—383; see also epileptic

seizures
fetal distress syndrome, 92
heart arrhythmias, 9, 44, 93, 327, 343, 350—362,

413
Huntington’s disease, 88, 90, 93
in aging, 78, 80, 87
inflammatory, 186, 189
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neurodegenerative, 87, 90
Parkinson’s disease, 44, 90
pyoderma gangrenosum, 186
susceptibility, 188
ventricular fibrillation, 342—350, 369
ventricular tachycardia, 344
Wiskott—Aldrich syndrome, 184, 187
see also diagnosis; dynamical diseases; prognosis;

therapy
dissipation, 23, 32, 120, 281, 282, 283
DNA

damage, 184
inversion reaction, 112
methylation, 112
promoter, 129
replication, 5

dynamical assay, 93
dynamical biology, 10; see also biodynamics
dynamical diagnosis, 412
dynamical diseases, 9, 44, 51, 54, 218, 374—376, 412,

418
dynamical equilibrium, 16

Ecto-ATPase, 318
elasmobranch fish, 148
electric dipole, 150, 248, 267, 291, 294
electric field

amplification, 151, 152
biological interactions, 147—168, 173—187,

246—251, 301—323, 341—369
control, 167, 182—184, 350—369, 394—399, 415
detection, 147—168, 184, 185, 318, 319
endogenous, 148
external, 148—168, 305, 368, 394, 395
extremely-low-frequency (ELF), 152, 318
low-frequency, 152, 153, 158
of the Earth, 149
phase-matched, 184, 186
pulsed, 182—184
randomly fluctuating, 297, 305—311, 313—320
sensitivity, 148, 247
static (DC), 154
stimulation, 185, 220, 313
therapy, 147, 151, 162, 168
vector, 395, 398, 399

electrical filter, 135
elecrocardiogram (ECG), 78—80, 346
electroconformational coupling (ECC), 301,

308—320
electroencephalogram (EEG), 44, 52—54, 66, 216,

374, 380, 412
electromigration, 399
electromyography, 249, 414
electroporation, 152
electroreceptor, 246, 247
emergent behavior, 56
emergent complexity, 5
emergent phenomena, 2, 7, 17, 51, 417
emergent properties, 2, 4, 6
enforced conformation oscillation, 305; see also

electroconformational coupling
enhanced contrast effect, 102, 106, 107; see also

speech perception
entropy, 3, 302

Kolmogorov, 19
enzymatic futile cycle, 123, 125
enzyme—substrate complex, 49, 202, 203, 318
enzyme dynamics, 7, 415

magnetic field effects, 204—208, 210—212
see also peroxidase—oxidase reaction

enzyme kinetics, 44, 46, 47
electric field effects, 301—323
magnetic field effects, 193, 199—203, 229
see also biochemical reaction networks; chemical

circuits
ephaptic signaling, 148, 231
epigenetic control, 112
epilepsy, 44, 45, 51—55, 61, 66, 92, 167, 216, 218,

223, 231, 232, 369, 413
modeling, 55—60, 374—378
multistability, 374—378
see also hippocampus

epileptic seizures, 44, 45, 52, 61, 218, 330, 377, 382,
412, 413; see also partial seizures

epileptiform activity, 154, 218, 223—225, 365
magnetic field effects, 216, 225, 231
nitric oxide, 222—225
see also rhythmic slow activity

epistemology, 416
equilibrium, 130, 131, 258, 281, 294, 409, 410

constant, 180, 181, 268, 292, 293, 303, 306
cooperativity, 15
phase transition, 15
state, 16, 416

Escherichia coli, 114, 133
excitability, 2, 7, 35, 251, 344, 349, 393

cellular, 55, 153
chemical, see Belousov—Zhabotinsky reaction
membrane, 54, 153, 258, 267, 269
threshold, 251
tissue, 153, 154, 338

excitation, 7, 29, 45, 55, 59, 231
period, 403
wave, 380, 388—406; see also Ca�� wave; rotor;

spiral wave
excitatory neuron, 55, 59, 163, 377—379

Faraday induction, 151, 248
Farey construction rule, 23, 25
feedback, 5, 61, 86, 185, 205, 338, 381

control, 8, 129, 180, 329, 343, 377; see also
biochemical reaction networks; chaos control

excitatory, 47
loop, 47, 92, 209, 355, 378
low-gain, 377
negative, 47, 61, 377, 410
neuronal, 377
positive, 47, 61, 124, 125, 410
stabilization, 139, 381
strength, 124
time-delayed, 327, 376—379; see also time delay

effects
fetal distress syndrome, 92
FitzHugh—Nagumo model, 35, 36
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fixed point (FP), 19, 21, 27, 31, 104, 344, 358, 389
driven, 24, 28, 29, 31, 35, 37
unstable (UFP), 22, 27, 344, 353, 355, 358, 359,

360, 362
fluctuation-driven transport, 9, 295—297, 414; see

also molecular motor; ratchet; stochastic
resonance

fractal
analysis methods, 10, 68—76; see also rescaled

range analysis
complexity, 341, 412
dimension, 19, 21, 343
dynamics, 67, 76, 80, 86, 87, 91, 92
gait rhythm analysis, 80—91
heart rate analysis, 76—80
scaling analysis, 73, 78—90
torus, 50, 51, 60

fractals, 7, 18, 68
fractional dimensionality, 68
fractional Gaussian noise, 98, 100
frequency control

Belousov—Zhabotinsky reaction, 402—406
biological activity, 204, 208, 212
gene expression, 41, 205, 416
Na�,K�-ATPase, 311—313
peroxidase—oxidase reaction, 204—208

frequency encoding, 34, 416
frequency filter

band-pass, 6, 135, 136, 138, 272
chemical, 129, 134—138
electrical, 135
high-pass, 135
low-pass, 135, 136, 202, 203
notch, 137

frequency sensitivity, 8, 31, 203, 207, 318, 415, 416;
see also frequency control

�-aminobutyric acid (GABA), 55, 225, 229
GABA

�
receptor, 225

gait dynamics, 66, 87—92; see also walking
galvanotaxis, 183
gap junctions, 161, 162
gene expression, 9, 41, 112, 129—134, 144, 188, 416

stochastic processes, 133, 134
gene networks, 120, 126, 132
genetic control, 129
genetic regulatory circuits, 5, 7, 129—134
genome projects, 6, 114, 141
glutamate, 55, 224
glycolysis, 46
glycolytic oscillations, 16, 128, 173, 180
glycosylphosphatidylinositol-linkedmembrane

protein, 174, 186
Goldbeter—Dupont—Berridge (GDB) model, 35, 36

heart
arrhythmias, 9, 44, 93, 327, 343, 350—362, 413
beat regulation, 67, 76—78, 91, 330, 412
canine, 343—350, 355
chaos control, 350—362
failure, 78—80, 92, 93
human, 9, 66, 344

rabbit, 344, 346, 350, 354
rate, 66, 68, 71, 78, 80, 91, 412; see also fractal

heart rate analysis
sinus rhythm, 76

high-pass filter, 135
hippocampus, 54—61, 154, 212, 330, 343, 356, 377,

383, 413, 415
chaos control, 362—364
electric field sensitivity, 217, 218, 364—369
magnetic field sensitivity, 216—232
stochastic resonance, 364—368
see also cornu ammonis; epileptiform activity;

rhythmic slow activity
histone acetylation, 132
holism, 417, 418
Holter monitor, 83
homeodynamics, 410, 411
homeostasis, 91, 140, 410, 411, 416
hormone, 66, 138, 173, 188
horseradish peroxidase, see peroxidase—oxidase

reaction
Huntington’s disease, 88, 90, 93
Hurst exponent, 73, 101
hydrodynamic hair receptor, 241—246
hyperfine coupling (HFC), 198, 199
hyperpolarization, 155, 218
hysteresis, 6, 16, 21, 22, 25, 102, 106, 124

immune defense, 5
inflammatory disease, 186, 189; see also neutrophil

oscillations
information

dimension, 19
encoding, 25, 34, 40, 161, 166, 188, 204, 260
processing, 5, 9, 16, 34, 40, 166, 168, 196, 364,

365, 409, 410, 416
ratchet, 287, 290—294
storage, 16, 27
theory, 283
transfer, 27, 39, 40, 115

inhibitory interneuron, 56—59, 377, 378
initial state sensitivity, 8, 21, 138, 328, 332, 341, 342,

343
instability, 21, 32, 410, 411

spatial, 16
spatiotemporal, 17, 41
temporal, 16
see also Bénard instability; bifurcation;

transitions
integrin, 125, 174, 179, 180, 181, 186, 187
interictal bursting, 223, 224
interictal spikes, 363
intermediary metabolism, 114
intermittency, 17, 25, 78
ion channel, 7, 61, 128, 240, 301, 313, 368, 382, 414

noise, 157, 158—162
stochastic resonance, 165, 265—278
voltage-gated, 148, 153, 158—166, 257—278, 414

ion pump, see Ca��-ATPase; Ecto-ATPase;
mitochondrial ATPase; Na�,K�-ATPase

K� channel, 58, 153, 267, 269
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keratinocyte, 148
kinases, 123, 124, 174, 175, 180, 186, 187

pp125 focal adhesion kinase (FAK), 125
protein kinase C (PKC), 180

Kirchoff ’s Law, 120
Kolmogorov entropy, 19

light control, 244, 391, 400—406, 415
light stimuli, 7, 129, 244—246, 251, 252, 286, 297
limit-cycle oscillator, 16, 17, 21—28, 53, 54, 123, 154,

381, 382
biophysical modeling, 33—39
driven, 21—32
see also active oscillator; Van der Pol oscillator

lipid bilayer, 152, 258, 268, 273, 301
local activity, 17
low-pass filter, 135, 136, 202, 203
Lyapunov exponent, 19, 21, 343
lymphocyte, 137, 184, 194, 205, 208

magnetic field
biological interactions, 8, 147, 193—212, 216—232
control 204—212
detection, 195, 217, 320, 321, 322
of the Earth, 193, 197
oscillating, 151, 193, 201—212, 216—232, 329
pulsed, 202
radical pair mechanism, 196—199, 229
sensitivity, 193, 205, 216, 320, 415
static, 193, 199—201, 204—212, 219, 225, 226, 229
therapy, 194, 204, 212, 217

magnetic resonance imagining (MRI), 217
magnetite, 193, 194, 229
magneto-orientation, 193
magnetochemistry, 194, 196
magnetoencaphlography (MEG), 167, 216, 230
magnification factor, 68, 69, 70; see also fractal

analysis methods
Maxwell’s demon, 282, 283, 286, 287, 295
McCulloch—Pitts artificial neuron, 127
mechanical stimuli, 7, 8, 16, 34, 216, 251, 254, 311,

313
mechanoreceptor, 239, 240—243
memory, 51, 112, 216, 218

long-persistent, 101
long-range, 92, 98, 100, 101, 110
short-range, 81, 101

mitochondria, 128, 311
mitochondria ATPase, 311, 312, 320
mitotic oscillator, 5; see also cell-cycle oscillator
molecular biology, 1, 4, 417
molecular motor, 128, 290—298; see also

fluctuation-driven transport; ratchet
morphogenesis, 16
Morris—Lecar model, 56, 57
multistability, 25, 103, 327, 374—383, 412
myocyte, 153—155, 161, 162, 356

Na� channel, 153, 159, 267, 269
Na�,K�-ATPase, 297, 307, 311—320, 414
NADH oscillations, 46, 173
NADPH oscillations, 5, 173, 175—188, 204

NADPH oxidase, 180, 181
network analysis, 114
neuronal amplification, 415
neuronal assemblies, 5, 110
neuronal bursting, 218, 223, 226, 227, 230, 356, 379
neuronal circuitry, 86, 376
neuronal control, 66, 76, 80, 92, 412
neuronal dynamics, 47, 55—62, 380; see also

epilepsy; hippocampus
neuronal modeling, 55—60, 374—378
neuronal network, 127, 166, 364—368
neuronal noise, 244, 365
neuronal oscillations, 4, 51
neuronal processing, 149, 167
neuronal stochastic resonance, 364—368
neuronal subnetwork model, 60
neuronal synchronization, 377
neutrophil oscillations

actin assembly, 173, 185
adhesive events, 180
cell shape change, 173, 177
clinical abnormalities, 186—188
electric field control, 182—184
intracellular Ca��, 173
intracellular NADPH, 173, 175—188, 204
membrane potential, 173
migration velocity, 173
receptor interactions, 173—175, 180
respiratory burst, 173

nitric oxide (NO), 216, 219, 222—225, 229—231
nitric oxide synthase (NOS), 222, 223, 225
noise-induced switching, 380, 381
noise

1/f, 75, 76, 78, 88, 157
current, 157
electrical, 157, 248, 249, 313—317, 319, 320, 414
external, 35, 40, 156, 166, 167, 244, 251, 257—259,

270—278
filter, 119, 135, 138, 276
fractional Gaussian, 98, 100
internal, 31, 35, 40, 138, 156—167, 240, 241, 244,

249, 264, 365
ion channel, 157, 158—162
muscle-tension mediated, 249
network 252, 253
random telegraph, 313
shot, 157
spatiotemporal, 251
thermal, 113, 133, 148, 196, 240, 281—298
thermal voltage, 157
white, 71, 75, 76, 79, 81, 83, 93, 272, 311, 319,

320
see also fluctuation-driven transport; stochastic

resonance
nonequilibrium chemical reactions, 251, 290; see

also Belousov—Zhabotinsky reaction
nonequilibrium fluctuations, 298, 414; see also

fluctuation—driven transport; ratchet
nonlinear biochemical amplification, see

biochemical amplification
nonlinear control

goals, 6
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nonlinear control (cont.)
methods, see chaos control; feedback control;

frequency control
notch filter, 137
Nyquist frequency, 239

oscillator
active, 22, 28, 29, 35, 36, 38, 39
chaotic, see chaos
damped, 28, 46, 377; see also fixed point
Duffing, 24
limit-cycle, 16, 17, 21—28, 53, 54, 123, 154, 381,

382
mixed-mode, 50, 51, 60
overdamped, 103
passive, 24, 28, 29, 35
self-sustained, 22, 33, 204; see also limit-cycle

oscillator
Van der Pol, 23, 25; see also limit-cycle oscillator
see also Belousov—Zhabotinsky reaction;

biochemical oscillations; cellular oscillations;
heart arrhythmias; hippocampus

oscillatory activation barrier (OAB) model, 318,
319

Ott—Grebogi—Yorke (OGY) method, 329, 343; see
also chaos control

paramagnetism, 195, 197, 199; see also radical pair
mechanism

Parkinson’s disease, 44, 90
partial seizures, 44, 52, 55, 60; see also epileptic

seizures
pattern formation, 16, 103, 327, 399, 411, 417

spatial, 387
spatiotemporal, 2, 393, 415; see also Ca�� wave;

excitation wave; rotor; spiral wave
Pauli exclusion principle, 198
perceptual category, 104; see also speech

perception
peroxidase—oxidase (PO) reaction, 44, 46—51, 128,

139, 162, 208—211
amplitude control, 210
chaos, 46—51
electric field control, 415
frequency control, 415
magnetic field control, 210
modeling, 46—51
nonlinear amplification, 208—210

perturbations
acoustic, see acoustic stimuli
electromagnetic, see electric field; light stimuli;

magnetic field
mechanical, see mechanical stimuli
stochastic, see noise; nonequilibrium

fluctuations; stochastic resonance
phagocytosis, 188
phase

locking, 21, 50, 60, 154, 155, 158, 167, 174, 368,
404, 406

plane diagram, 19, 22, 25
singularity, 348
space, 21, 53, 54, 341, 358

synchronization, 377
tracking, 226—228, 230
transition, 4, 15, 29, 38, 149, 163, 165, 166, 167;
see also bifurcation; transitions

phosphatase, 123, 124, 175, 180, 187
photoreceptor, 244
photosensitivity, 251, 388, 391, 393, 399—406
Poincaré map, 16, 343, 344, 353, 354, 360, 362; see

also phase plane diagram
Polydon spathula (paddlefish), 246
population cycles, 33
power law, 71, 74, 78, 81, 100, 101, 252, 253

anti-correlations, 75
long-range correlations, 75, 78, 92

power spectral analysis, 66, 76, 86
power spectral density, 75, 100, 260, 261, 270, 272,

276
power spectrum, 19, 25, 75, 83, 102, 239, 241, 244,

262, 271
preturbulence, 17
Procambarus clarkii, 241
prognosis, 8, 78, 80, 92
proprioceptive neuron, 248—251
psychophysics, 7, 246, 414; see also sensorimotor

coordination; speech perception
pyoderma gangrenosum, 186; see also neutrophil

oscillations

quantum, 1
coherence, 196; see also spin coherence
mechanics, 120, 259

quasiperiodicity, 19, 46, 138

radical pair mechanism (RPM), 194—199, 202, 229;
see also enzyme dynamics; enzyme kinetics

random fluctuations, see noise
random telegraph noise (RTN), 313
random walk analysis, 73, 159; see also detrended

fluctuation analysis
randomly fluctuating force field, see electric field;

noise
ratchet, 281—298

electric, 310, 311; see also electroconformational
coupling

energy, 287—290, 294, 295
Feynman’s, 283—285, 291, 295
flashing, 295, 296, 298
information, 287, 290—294
macroscopic, 283
microscopic, 283
molecular, 286, 297, 414

reactive oxygen metabolites (ROM), 177—181, 184,
188

reductionism, 1, 10, 51, 416—418
regulatory motifs, 116, 126, 127—138, 140; see also

biochemical reaction networks; chemical
circuits; genetic regulatory circuits

REM sleep, 167
rescaled range analysis, 101; see also Hurst

exponent
resonance

coherence, 31
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diagram, 23
drift, 405, 406
energy transfer (RET), 174
horn, 23, 24, 27; see also Arnold tongue
metabolic, 182—185, 187
stochastic, see stochastic resonance
subharmonic, 22, 25, 29, 40
superharmonic, 22, 25, 29, 40
whole-body, 151

rhythmic slow activity (RSA), 216, 218—226, 231;
see also

epileptiform activity; hippocampus
magnetic field effects, 218—222
nitric oxide, 222, 223
phase tracking, 226—228

ribosome, 128, 129, 133, 134
RNA polymerase (RNAP), 129—134
RNA transcription, 5, 129—134, 141, 414; see also

gene expression; genetic regulatory circuits
rotating spiral wave, 344, 388, 394, 400; see also

rotor; spiral wave
rotor, 344—350

self-organization, 1—10, 17, 34, 92, 149, 393, 407
biological, 10, 406
chemical, 387, 393, 406
hydrodynamic, 2
in health and disease, 418
paradigm of, 417, 418

self-organized criticality, 110, 252
self-organized dynamics, 8, 15, 44, 97, 102, 196, 204,

212, 410, 418
self-similar time series, 69, 73, 74
self-similarity, 68—75

parameter, 69, 71, 73, 74, 75
sensitivity to frequency, see frequency sensitivity
sensitivity to initial conditions, see initial state

sensitivity
sensorimotor coordination, 97—102
shot noise, 157
signal amplification, 31, 38—40, 121, 135, 196, 209,

229, 230, 276, 277
signal detection, 147, 149, 157, 411, 414

array averaging, 156
frequency, 196, 229; see also frequency control;

frequency filter
long-range coherence, 162—166

signal processing, 112—141, 157, 165, 239, 244, 245
signal transduction, 34, 35, 120, 194, 257—278, 281,

302, 323
noise-improved, 257—278; see also stochastic

resonance
see also biological signalling; cellular signal

transduction
signal-to-noise ratio (SNR), 38, 156—160, 239, 241,

249—251, 258, 259, 260, 263, 264, 272—278, 319,
367, 414

signals
aperiodic, 31, 40, 276
coherent, 35, 38, 240, 246, 251
external, 15, 16, 21, 27, 31, 34, 35, 38, 40, 286
noise-enhanced, 249; see also stochastic

resonance
noisy, 31, 40, 134, 138, 244, 367
oscillatory, 129, 160, 173—189
periodic, 31, 40, 134, 138, 270, 276, 301, 365,

367
static, 31, 32
subthreshold, 237, 238, 239, 249, 364, 365, 366,

367; see also stochastic resonance
see also stimuli

sonoluminescence, 16
spectral maximum likelihood estimator, 98, 102
speech perception, 102—110
spin coherence, 197
spin-correlated radical pair, 197, 229; see also

radical pair mechanism
spin-orbit coupling, see �g-mechanism
spiral

annihilation, 398
core, 389, 400, 406
meandering, 389, 403
tip, 388, 389, 395, 398, 400—406

spiral wave
Belousov—Zhabotinsky reaction, 251, 252, 337,

387—407
Ca�� concentration, 45, 252—254
cardiac muscle, 344—350
collision, 395—398
formation, 347

spiraling wave, 15; see also spiral wave
stability analysis, 19
stimuli

auditory, 98, 218
electromagnetic, 8, 211
external, 6, 7, 16, 18, 22, 24, 29, 32, 34, 196, 204,

410, 416, 418
hydrodynamic, 244, 245
visual, 5, 218
see also acoustic stimuli; electric field; light

stimuli; magnetic field; mechanical stimuli;
signals

stochastic fluctuations, see noise; nonequilibrium
fluctuations; stochastic resonance

stochastic resonance (SR), 7, 9, 31, 35, 38, 40, 138,
149, 165, 236—254, 257—278, 311, 369, 414

basic principles, 237—239
hippocampus, 364—368
medical science, 248—251
Na�,K�-ATPase, 319, 320
sensory biology, 239—248
spatiotemporal systems, 251—254
voltage-gated ion channels, 257—278

stoichiometric network analysis, 126
strange attractor, 19, 53, 334, 335; see also chaos
stratification, 393
substrate inhibition kinetics, 205
synchronization, 2, 3, 7, 27, 117—119, 128, 149, 154,

162—166
error time series, 98—102, 110; see also

sensorimotor coordination
neuronal, 5, 31, 52, 56, 218, 230, 231, 232, 363,

367, 377, 402, 414
synergetics, 17, 34
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therapy, 8, 9, 10, 162, 418
drug, 187
dynamical, 218, 375
electric field, 147, 151, 168
epilepsy, 374, 382, 383
gene, 1
magnetic field, 194, 204, 212, 217
stochastic resonance, 236, 249
ventricular fibrillation, 343
see also defibrillator

thermal activation, 238, 259, 281
thermal energy, 162, 196, 302, 320
thermal gradient, 2, 282, 286
thermal noise, 113, 133, 148, 157, 196, 282—298
thermal voltage noise, 157
thermodynamics, 281, 307, 411, 417

second law of, 3, 282
threshold

crossing, 124, 238, 239, 240, 292
effect, 16, 27, 185, 222, 229, 237, 251, 296, 362,

381
firing, 154, 159, 240, 248, 378
function, 117, 239
model, 239
potential, 59, 153, 154
relative spread of, 160
stimulation, 160, 358

time delay effects, 18, 21, 34, 35, 36, 39, 118, 158,
159, 376—379, 410

tissue repair, 194, 212
transcranial magnetic stimulation (TMS), 217
transition-state theory, 259
transitions

chaos-to-order, 7, 31, 210, 412; see also chaos
control

noise-induced, 31; see also noise-induced

switching; stochastic resonance
order-to-order, 31
synchronized, 162, 165
thermal noise-activated, 281; see also

fluctuation-driven transport
see also bifurcation; phase transition

transmembrane potential, 152, 258, 265, 270, 311,
312, 344, 347, 365

transporter, see ion channel; ion pump
turbulence, 16, 17, 18, 41, 92, 328

unstable fixed point (UFP), 22, 27, 344, 353, 355,
358, 359, 360, 362

unstable periodic orbit (UPO), 40, 51, 344, 358
urokinase receptor, 174

vagal nerve stimulation, 61, 383
Van der Pol oscillator, 23, 25; see also limit-cycle

oscillator
Van’t Hoff—Arrhenius Law, 259
ventricular fibrillation (VF), 342—350, 369
ventricular tachycardia, 344

walking, 80—90
metronomic, 86
see also gait dynamics

wavebreak, 346, 348
wavefront, 346, 348, 399
waves, see Ca�� wave; excitation wave; rotor;

spiral wave
white noise, 71, 75, 76, 79, 81, 83, 93, 272, 311, 319,

320
Wigner spin conservation rule, 197
Wiskott—Aldrich syndrome (WAS), 184, 187
wound healing, 147

zero-order ultrasensitivity, 124
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