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Preface to the Third Edition

In the thirteen years since the first edition of this book appeared the growth of mathe-
matical biology and the diversity of applications has been astonishing. Its establishment
as a distinct discipline is no longer in question. One pragmatic indication is the in-
creasing number of advertised positions in academia, medicine and industry around the
world; another is the burgeoning membership of societies. People working in the field
now number in the thousands. Mathematical modelling is being applied in every ma-
jor discipline in the biomedical sciences. A very different application, and surprisingly
successful, is in psychology such as modelling various human interactions, escalation
to date rape and predicting divorce.

The field has become so large that, inevitably, specialised areas have developed
which are, in effect, separate disciplines such as biofluid mechanics, theoretical ecology
and so on. It is relevant therefore to ask why I felt there was a case for a new edition of
a book called simply Mathematical Biology. It is unrealistic to think that a single book
could cover even a significant part of each subdiscipline and this new edition certainly
does not even try to do this. I feel, however, that there is still justification for a book
which can demonstrate to the uninitiated some of the exciting problems that arise in
biology and give some indication of the wide spectrum of topics that modelling can
address.

In many areas the basics are more or less unchanged but the developments during
the past thirteen years have made it impossible to give as comprehensive a picture of the
current approaches in and the state of the field as was possible in the late 1980s. Even
then important areas were not included such as stochastic modelling, biofluid mechanics
and others. Accordingly in this new edition only some of the basic modelling concepts
are discussed—such as in ecology and to a lesser extent epidemiology—but references
are provided for further reading. In other areas recent advances are discussed together
with some new applications of modelling such as in marital interaction (Volume I),
growth of cancer tumours (Volume II), temperature-dependent sex determination (Vol-
ume I) and wolf territoriality (Volume II). There have been many new and fascinating
developments that I would have liked to include but practical space limitations made
it impossible and necessitated difficult choices. I have tried to give some idea of the
diversity of new developments but the choice is inevitably prejudiced.

As to general approach, if anything it is even more practical in that more emphasis
is given to the close connection many of the models have with experiment, clinical
data and in estimating real parameter values. In several of the chapters it is not yet
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possible to relate the mathematical models to specific experiments or even biological
entities. Nevertheless such an approach has spawned numerous experiments based as
much on the modelling approach as on the actual mechanism studied. Some of the more
mathematical parts in which the biological connection was less immediate have been
excised while others that have been kept have a mathematical and technical pedagogical
aim but all within the context of their application to biomedical problems. I feel even
more strongly about the philosophy of mathematical modelling espoused in the original
preface as regards what constitutes good mathematical biology. One of the most exciting
aspects regarding the new chapters has been their genuine interdisciplinary collaborative
character. Mathematical or theoretical biology is unquestionably an interdisciplinary
science par excellence.

The unifying aim of theoretical modelling and experimental investigation in the
biomedical sciences is the elucidation of the underlying biological processes that re-
sult in a particular observed phenomenon, whether it is pattern formation in develop-
ment, the dynamics of interacting populations in epidemiology, neuronal connectivity
and information processing, the growth of tumours, marital interaction and so on. I
must stress, however, that mathematical descriptions of biological phenomena are not
biological explanations. The principal use of any theory is in its predictions and, even
though different models might be able to create similar spatiotemporal behaviours, they
are mainly distinguished by the different experiments they suggest and, of course, how
closely they relate to the real biology. There are numerous examples in the book.

Why use mathematics to study something as intrinsically complicated and ill un-
derstood as development, angiogenesis, wound healing, interacting population dynam-
ics, regulatory networks, marital interaction and so on? We suggest that mathematics,
rather theoretical modelling, must be used if we ever hope to genuinely and realistically
convert an understanding of the underlying mechanisms into a predictive science. Math-
ematics is required to bridge the gap between the level on which most of our knowledge
is accumulating (in developmental biology it is cellular and below) and the macroscopic
level of the patterns we see. In wound healing and scar formation, for example, a mathe-
matical approach lets us explore the logic of the repair process. Even if the mechanisms
were well understood (and they certainly are far from it at this stage) mathematics would
be required to explore the consequences of manipulating the various parameters asso-
ciated with any particular scenario. In the case of such things as wound healing and
cancer growth—and now in angiogensesis with its relation to possible cancer therapy—
the number of options that are fast becoming available to wound and cancer managers
will become overwhelming unless we can find a way to simulate particular treatment
protocols before applying them in practice. The latter has been already of use in under-
standing the efficacy of various treatment scenarios with brain tumours (glioblastomas)
and new two step regimes for skin cancer.

The aim in all these applications is not to derive a mathematical model that takes
into account every single process because, even if this were possible, the resulting model
would yield little or no insight on the crucial interactions within the system. Rather the
goal is to develop models which capture the essence of various interactions allowing
their outcome to be more fully understood. As more data emerge from the biological
system, the models become more sophisticated and the mathematics increasingly chal-
lenging.
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In development (by way of example) it is true that we are a long way from be-
ing able to reliably simulate actual biological development, in spite of the plethora of
models and theory that abound. Key processes are generally still poorly understood.
Despite these limitations, I feel that exploring the logic of pattern formation is worth-
while, or rather essential, even in our present state of knowledge. It allows us to take
a hypothetical mechanism and examine its consequences in the form of a mathemat-
ical model, make predictions and suggest experiments that would verify or invalidate
the model; even the latter casts light on the biology. The very process of constructing
a mathematical model can be useful in its own right. Not only must we commit to a
particular mechanism, but we are also forced to consider what is truly essential to the
process, the central players (variables) and mechanisms by which they evolve. We are
thus involved in constructing frameworks on which we can hang our understanding. The
model equations, the mathematical analysis and the numerical simulations that follow
serve to reveal quantitatively as well as qualitatively the consequences of that logical
structure.

This new edition is published in two volumes. Volume I is an introduction to the
field; the mathematics mainly involves ordinary differential equations but with some
basic partial differential equation models and is suitable for undergraduate and graduate
courses at different levels. Volume II requires more knowledge of partial differential
equations and is more suitable for graduate courses and reference.

I would like to acknowledge the encouragement and generosity of the many peo-
ple who have written to me (including a prison inmate in New England) since the ap-
pearance of the first edition of this book, many of whom took the trouble to send me
details of errors, misprints, suggestions for extending some of the models, suggesting
collaborations and so on. Their input has resulted in many successful interdisciplinary
research projects several of which are discussed in this new edition. I would like to
thank my colleagues Mark Kot and Hong Qian, many of my former students, in partic-
ular Patricia Burgess, Julian Cook, Tracé Jackson, Mark Lewis, Philip Maini, Patrick
Nelson, Jonathan Sherratt, Kristin Swanson and Rebecca Tyson for their advice or care-
ful reading of parts of the manuscript. I would also like to thank my former secretary
Erik Hinkle for the care, thoughtfulness and dedication with which he put much of the
manuscript into LATEX and his general help in tracking down numerous obscure refer-
ences and material.

I am very grateful to Professor John Gottman of the Psychology Department at the
University of Washington, a world leader in the clinical study of marital and family in-
teractions, with whom I have had the good fortune to collaborate for nearly ten years.
Without his infectious enthusiasm, strong belief in the use of mathematical modelling,
perseverance in the face of my initial scepticism and his practical insight into human in-
teractions I would never have become involved in developing with him a general theory
of marital interaction. I would also like to acknowledge my debt to Professor Ellworth
C. Alvord, Jr., Head of Neuropathology in the University of Washington with whom I
have collaborated for the past seven years on the modelling of the growth and control of
brain tumours. As to my general, and I hope practical, approach to modelling I am most
indebted to Professor George F. Carrier who had the major influence on me when I went
to Harvard on first coming to the U.S.A. in 1956. His astonishing insight and ability to
extract the key elements from a complex problem and incorporate them into a realistic
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and informative model is a talent I have tried to acquire throughout my career. Finally,
although it is not possible to thank by name all of my past students, postdoctorals, nu-
merous collaborators and colleagues around the world who have encouraged me in this
field, I am certainly very much in their debt.

Looking back on my involvement with mathematics and the biomedical sciences
over the past nearly thirty years my major regret is that I did not start working in the
field years earlier.

Bainbridge Island, Washington J.D. Murray
January 2002
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Mathematics has always benefited from its involvement with developing sciences. Each
successive interaction revitalises and enhances the field. Biomedical science is clearly
the premier science of the foreseeable future. For the continuing health of their subject,
mathematicians must become involved with biology. With the example of how mathe-
matics has benefited from and influenced physics, it is clear that if mathematicians do
not become involved in the biosciences they will simply not be a part of what are likely
to be the most important and exciting scientific discoveries of all time.

Mathematical biology is a fast-growing, well-recognised, albeit not clearly defined,
subject and is, to my mind, the most exciting modern application of mathematics. The
increasing use of mathematics in biology is inevitable as biology becomes more quan-
titative. The complexity of the biological sciences makes interdisciplinary involvement
essential. For the mathematician, biology opens up new and exciting branches, while for
the biologist, mathematical modelling offers another research tool commensurate with
a new powerful laboratory technique but only if used appropriately and its limitations
recognised. However, the use of esoteric mathematics arrogantly applied to biologi-
cal problems by mathematicians who know little about the real biology, together with
unsubstantiated claims as to how important such theories are, do little to promote the
interdisciplinary involvement which is so essential.

Mathematical biology research, to be useful and interesting, must be relevant bio-
logically. The best models show how a process works and then predict what may fol-
low. If these are not already obvious to the biologists and the predictions turn out to be
right, then you will have the biologists’ attention. Suggestions as to what the governing
mechanisms are may evolve from this. Genuine interdisciplinary research and the use
of models can produce exciting results, many of which are described in this book.

No previous knowledge of biology is assumed of the reader. With each topic dis-
cussed I give a brief description of the biological background sufficient to understand
the models studied. Although stochastic models are important, to keep the book within
reasonable bounds, I deal exclusively with deterministic models. The book provides a
toolkit of modelling techniques with numerous examples drawn from population ecol-
ogy, reaction kinetics, biological oscillators, developmental biology, evolution, epidemi-
ology and other areas.

The emphasis throughout the book is on the practical application of mathemati-
cal models in helping to unravel the underlying mechanisms involved in the biological
processes. The book also illustrates some of the pitfalls of indiscriminate, naive or un-
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informed use of models. I hope the reader will acquire a practical and realistic view
of biological modelling and the mathematical techniques needed to get approximate
quantitative solutions and will thereby realise the importance of relating the models and
results to the real biological problems under study. If the use of a model stimulates
experiments—even if the model is subsequently shown to be wrong—then it has been
successful. Models can provide biological insight and be very useful in summarising,
interpreting and interpolating real data. I hope the reader will also learn that (certainly
at this stage) there is usually no ‘right’ model: producing similar temporal or spatial pat-
terns to those experimentally observed is only a first step and does not imply the model
mechanism is the one which applies. Mathematical descriptions are not explanations.
Mathematics can never provide the complete solution to a biological problem on its
own. Modern biology is certainly not at the stage where it is appropriate for mathemati-
cians to try to construct comprehensive theories. A close collaboration with biologists is
needed for realism, stimulation and help in modifying the model mechanisms to reflect
the biology more accurately.

Although this book is titled mathematical biology it is not, and could not be, a
definitive all-encompassing text. The immense breadth of the field necessitates a re-
stricted choice of topics. Some of the models have been deliberately kept simple for
pedagogical purposes. The exclusion of a particular topic—population genetics, for
example—in no way reflects my view as to its importance. However, I hope the range
of topics discussed will show how exciting intercollaborative research can be and how
significant a role mathematics can play. The main purpose of the book is to present
some of the basic and, to a large extent, generally accepted theoretical frameworks for a
variety of biological models. The material presented does not purport to be the latest de-
velopments in the various fields, many of which are constantly expanding. The already
lengthy list of references is by no means exhaustive and I apologise for the exclusion of
many that should be included in a definitive list.

With the specimen models discussed and the philosophy which pervades the book,
the reader should be in a position to tackle the modelling of genuinely practical prob-
lems with realism. From a mathematical point of view, the art of good modelling relies
on: (i) a sound understanding and appreciation of the biological problem; (ii) a realistic
mathematical representation of the important biological phenomena; (iii) finding use-
ful solutions, preferably quantitative; and what is crucially important; (iv) a biological
interpretation of the mathematical results in terms of insights and predictions. The math-
ematics is dictated by the biology and not vice versa. Sometimes the mathematics can
be very simple. Useful mathematical biology research is not judged by mathematical
standards but by different and no less demanding ones.

The book is suitable for physical science courses at various levels. The level of
mathematics needed in collaborative biomedical research varies from the very simple to
the sophisticated. Selected chapters have been used for applied mathematics courses in
the University of Oxford at the final-year undergraduate and first-year graduate levels. In
the U.S.A. the material has also been used for courses for students from the second-year
undergraduate level through graduate level. It is also accessible to the more theoretically
oriented bioscientists who have some knowledge of calculus and differential equations.

I would like to express my gratitude to the many colleagues around the world who
have, over the past few years, commented on various chapters of the manuscript, made
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valuable suggestions and kindly provided me with photographs. I would particularly
like to thank Drs. Philip Maini, David Lane, and Diana Woodward and my present
graduate students who read various drafts with such care, specifically Daniel Bentil,
Meghan Burke, David Crawford, Michael Jenkins, Mark Lewis, Gwen Littlewort, Mary
Myerscough, Katherine Rogers and Louisa Shaw.

Oxford, UK J.D. Murray
January 1989
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1. Continuous Population Models for
Single Species

The increasing study of realistic and practically useful mathematical models in popula-
tion biology, whether we are dealing with a human population with or without its age
distribution, population of an endangered species, bacterial or viral growth and so on, is
a reflection of their use in helping to understand the dynamic processes involved and in
making practical predictions. The study of population change has a very long history:
in 1202 an exercise in an arithmetic book written by Leonardo of Pisa involved building
a mathematical model for a growing rabbit population; we discuss it later in Chapter 2.
Ecology, basically the study of the interrelationship between species and their environ-
ment, in such areas as predator–prey and competition interactions, renewable resource
management, evolution of pesticide resistant strains, ecological and genetically engi-
neered control of pests, multi-species societies, plant–herbivore systems and so on is
now an enormous field. The continually expanding list of applications is extensive as
are the number of books on various aspects1 of the field. There are also highly prac-
tical applications of single-species models in the biomedical sciences; in Section 1.5
we discuss two examples of these which arise in physiology. Here, and in the follow-
ing three chapters, we consider some deterministic models by way of an introduction
to the field. The excellent books by Hastings (1997) and Kot (2001) are specifically
on ecological modelling. Elementary introductions are also given in the textbooks by
Edelstein-Keshet (1988) and Hoppensteadt and Peskin (1992).

1.1 Continuous Growth Models
Single-species models are of relevance to laboratory studies in particular but, in the real
world, can reflect a telescoping of effects which influence the population dynamics. Let
N (t) be the population of the species at time t , then the rate of change

d N

dt
= births − deaths + migration, (1.1)

1Kingsland (1995) gives a fascinating historical and highly readable account of some of the major ideas
introduced in the 20th century and of some of the scientists involved together with vignettes on how their
egos, often inflated, affected the progress of the field.
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Table 1.1.

Mid 17th Early 19th
Date Century Century 1918–1927 1960 1974 1987 2000 2050 2100

Population
in billions 0.5 1 2 3 4 5 6.3 10 11.2

is a conservation equation for the population. The form of the various terms on the right-
hand side of (1.1) necessitates modelling the situation with which we are concerned. The
simplest model has no migration and the birth and death terms are proportional to N .
That is,

d N

dt
= bN − d N ⇒ N (t) = N0e(b−d)t ,

where b, d are positive constants and the initial population N (0) = N0. Thus if b > d
the population grows exponentially while if b < d it dies out. This approach, due to
Malthus2 in 1798, is fairly unrealistic. However, if we consider the past and predicted
growth estimates for the total world population from the 17th to 21st centuries it is
perhaps less unrealistic, as seen in Table 1.1 (United Nations median projections for the
21st century). Since 1900 it has grown exponentially.

Notwithstanding such growth, many demographers now fret about whether or not
there will be enough people in the future! In 1975 about 18% of the world population
lived in countries where the fertility rate was at or below replacement level (approxi-
mately 2.1 children per woman) while in 1997 it was 44% with 67% predicted (United
Nations) by 2015. Later in Chapter 4 we discuss in detail how to calculate a survival
reproductive level. In 1970 there were 10 countries below replacement fertility levels
while by 1995 there were 51 and by 2015 it is estimated that 88 of the approximately
180 countries in the world will join the group with less than replacement fertility. To
mark the 20th anniversary of the World Health Organisation their report (1992) on hu-
man reproduction gave some interesting estimates for the world, such as 100 million
acts of sexual intercourse every day which resulted in 910,000 conceptions and 356,000
cases of sexually transmitted diseases. They estimate that 300 million couples do not
want any more children but lack family planning services. Of the 910,000 conceptions
every day about half are unplanned. There are 150,000 abortions every day, a third in
unsafe conditions resulting in 500 deaths.

One of the reasons for this digression is to highlight the problems of modelling such
population problems. It is difficult to make long term, or even relatively short term,
predictions unless we know sufficient facts to incorporate in the model to make it a
reliable predictor although general trends can in themselves be useful even if ultimately

2Malthus’ essay, first published anonymously, was immensely influential (on Charles Darwin, for example,
who first read it in 1838), but also roused much wrath in various quarters for much of the following century. He
said in effect that unbounded population growth would be controlled by war, pestilence or famine. After the
carnage of the First World War his predictions were again brought to the fore and widely discussed. Malthus,
who married at 38, spent much of his life as an English country parson who, by all accounts, was a happy
family man who thoroughly enjoyed life.
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quantitatively wrong. There is no doubt, however, that, in spite of widespread available
contraception, sterilisation being the most commonly used method (female sterilisation
accounting for 26% of the total with male sterilisation accounting for 10%), enforced
size of families, local famines, new diseases, increasing nonreplacement fertility rates
and so on, the world population continues to increase alarmingly.

In the long run of course there must be some adjustment to such exponential growth.
Verhulst (1838, 1845) proposed that a self-limiting process should operate when a pop-
ulation becomes too large. He suggested

d N

dt
= r N (1 − N/K ), (1.2)

where r and K are positive constants. This he called logistic growth in a population. In
this model the per capita birth rate is r(1 − N/K ); that is, it is dependent on N . The
constant K is the carrying capacity of the environment, which is usually determined by
the available sustaining resources.

There are two steady states or equilibrium states for (1.2), namely, N = 0 and N =
K , that is, where d N/dt = 0. N = 0 is unstable since linearization about it (that is,
N 2 is neglected compared with N ) gives d N/dt ≈ r N , and so N grows exponentially
from any small initial value. The other equilibrium N = K is stable: linearization about
it (that is, (N − K )2 is neglected compared with | N − K |) gives d(N − K )/dt ≈
−r(N − K ) and so N → K as t → ∞. The carrying capacity K determines the
size of the stable steady state population while r is a measure of the rate at which it is
reached; that is, it is a measure of the dynamics: we could incorporate it in the time by
a transformation from t to r t . Thus 1/r is a representative timescale of the response of
the model to any change in the population.

If N (0) = N0 the solution of (1.2) is

N (t) = N0 K ert
[
K + N0 (ert − 1)

] → K as t → ∞, (1.3)

and is illustrated in Figure 1.1. From (1.2), if N0 < K , N (t) simply increases mono-
tonically to K while if N0 > K it decreases monotonically to K . In the former case
there is a qualitative difference depending on whether N0 > K/2 or N0 < K/2; with
N0 < K/2 the form has a typical sigmoid character, which is commonly observed.

In the case where N0 > K this would imply that the per capita birth rate is negative!
Of course all it is really saying is that in (1.1) the births plus immigration are less than
the deaths plus emigration. The point about (1.2) is that it is more like a metaphor for
a class of population models with density-dependent regulatory mechanisms—a kind
of compensating effect of overcrowding—and must not be taken too literally as the
equation governing the population dynamics. In spite of its limitations, from time to
time, it has been rediscovered and widely hyped as some universal law of population
growth.3 One example is in the 1925 book by the biologist Pearl (1925). Kingsland
(1995) describes the episode in fascinating detail: Pearl toured the country pushing his

3As late as 1985 I heard it put forward, with missionary zeal, as a universal law by Dr. Jonas Salk (of polio
vaccine renown) in a major lecture he gave at the University of Utah.
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K

t , time

N0

N0

N0

N (t)

Figure 1.1. Logistic population growth. Note the qualitative difference for the two cases N0 < K/2 and
K > N0 > K/2.

theory. He certainly confirmed Charles Darwin’s maxim: ‘Great is the power of steady
misinterpretation.’ The main point about the logistic form is that it is a particularly
convenient form to take when seeking qualitative dynamic behaviour in populations
in which N = 0 is an unstable steady state and N (t) tends to a finite positive stable
steady state. The logistic form will occur in a variety of different contexts throughout the
book primarily because of its algebraic simplicity and because it provides a preliminary
qualitative idea of what can occur with more realistic forms.

It is instructive to try to understand why the logistic form was accepted since it high-
lights an important point in modelling in the biomedical sciences. The logistic growth
form in (1.3) has three parameters, N0, K and r with which to assign to compare with
actual data. These were used by Pearl (1925) to fit the census population data for various
countries including the United States, Sweden and France for various periods. Figure 1.2
shows the results for France and the U.S. If we look at the U.S. data there is a good fit
for the population roughly from 1790 until about 1910; here the lower part of the curve
is fitted. However, the rest of the curve is nowhere near the actual population data. The
same holds for France but the data were fitted to the upper part of the curve but even
there the subsequent population growth prediction is wrong. The main point is not that
the predictions are so inaccurate but rather that curve fitting only part of the data, and
particularly the part which does not cover the major part of the growth curve makes
comparison with data and future predictions extremely unreliable. Of course, we could
produce an algebraic expression with a few more parameters (and derive some differ-
ential equation for which it is the solution) and do a better job but then all we would be
doing would be curve fitting without increasing our understanding of the actual mech-
anism governing the phenomenon. The motivation for modelling such as we discuss in
this book is to further our understanding of the underlying processes since it is only in
this way that we can make justifiable predictions.



1.1 Continuous Growth Models 5

50 50 50 50 507525 25 25 25 2575 75 75 751500 1600 1700 1800 1900 2000

PO
PU

L
A

T
IO

N
 I

N
 M

IL
L

IO
N

S

0

10

50

40

30

20

France

YEAR

(b)

YEAR

(a)

1700 604020 80 1800 21002000190020 20 2040 40 4060 60 6080 80 80

PO
PU

L
A

T
IO

N
 I

N
 M

IL
L

IO
N

S

200

175

150

125

100

75

50

25

0

U.S.

asymptote ≈197

asymptote ≈0

asymptote ≈42.6

asymptote ≈6.6

Figure 1.2. Logistic population growth (1.3) used to fit the census data for the population of (a) the U.S. and
(b) France. The data determine the parameters only over a small part of the growth curve. (Redrawn from
Pearl 1925)

In general if we consider a population to be governed by

d N

dt
= f (N ), (1.4)

where typically f (N ) is a nonlinear function of N then the equilibrium solutions N∗
are solutions of f (N ) = 0 and are linearly stable to small perturbations if f ′(N∗) < 0,
and unstable if f ′(N∗) > 0. This is clear from linearising about N ∗ by writing

n(t) ≈ N (t) − N ∗, | n(t) | � 1
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and (1.4) becomes

d N

dt
= f (N ∗ + n) ≈ f (N ∗) + n f ′(N∗) + · · · ,

which to first order in n(t) gives

d N

dt
≈ n f ′(N ∗) ⇒ n(t) ∝ exp

[
f ′ (N ∗) t

]
. (1.5)

So n grows or decays accordingly as f ′(N ∗) > 0 or f ′(N∗) < 0. The timescale of the
response of the population to a disturbance is of the order of 1/| f ′(N∗) |; it is the time
to change the initial disturbance by a factor e.

There may be several equilibrium, or steady state, populations N ∗ which are so-
lutions of f (N ) = 0: it depends on the system f (N ) models. Graphically plotting
f (N ) against N immediately gives the equilibria as the points where it crosses the
N -axis. The gradient f ′(N ∗) at each steady state then determines its linear stability.
Such steady states may, however, be unstable to finite disturbances. Suppose, for ex-
ample, that f (N ) is as illustrated in Figure 1.3. The gradients f ′(N ∗) at N = 0, N2
are positive so these equilibria are unstable while those at N = N1, N3 are stable to
small perturbations: the arrows symbolically indicate stability or instability. If, for ex-
ample, we now perturb the population from its equilibrium N1 so that N is in the range
N2 < N < N3 then N → N3 rather than returning to N1. A similar perturbation from
N3 to a value in the range 0 < N < N2 would result in N (t) → N1. Qualitatively
there is a threshold perturbation below which the steady states are always stable, and
this threshold depends on the full nonlinear form of f (N ). For N1, for example, the
necessary threshold perturbation is N2 − N1.

( d N
dt

) = f (N )

N1 N2 N3 N

StableStable

Unstable

0

Figure 1.3. Population dynamics model d N/dt = f (n) with several steady states. The gradient f ′(N ) at the
steady state, that is, where f (N ) = 0, determines the linear stability.
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1.2 Insect Outbreak Model: Spruce Budworm

A practical model which exhibits two positive linearly stable steady state populations is
that for the spruce budworm which can, with ferocious efficiency, defoliate the balsam
fir; it is a major problem in Canada. Ludwig et al. (1978) considered the budworm
population dynamics to be modelled by the equation

d N

dt
= rB N

(
1 − N

K B

)
− p(N ).

Here rB is the linear birth rate of the budworm and K B is the carrying capacity which
is related to the density of foliage (food) available on the trees. The p(N )-term repre-
sents predation, generally by birds: its qualitative form is important and is illustrated
in Figure 1.4. Predation usually saturates for large enough N . There is an approximate
threshold value Nc, below which the predation is small, while above it the predation
is close to its saturation value: such a functional form is like a switch with Nc being
the critical switch value. For small population densities N , the birds tend to seek food
elsewhere and so the predation term p(N ) drops more rapidly, as N → 0, than a linear
rate proportional to N . To be specific we take the form for p(N ) suggested by Ludwig
et al. (1978), namely, B N 2/(A2 + N 2) where A and B are positive constants, and the
dynamics of N (t) is then governed by

d N

dt
= rB N

(
1 − N

K B

)
− B N 2

A2 + N 2
. (1.6)

This equation has four parameters, rB , KB, B and A, with A and K B having the same
dimensions as N , rB has dimension (time)−1 and B has the dimensions of N (time)−1.
A is a measure of the threshold where the predation is ‘switched on,’ that is, Nc in
Figure 1.4. If A is small the ‘threshold’ is small, but the effect is just as dramatic.

Before analysing the model it is essential, or rather obligatory, to express it in
nondimensional terms. This has several advantages. For example, the units used in the
analysis are then unimportant and the adjectives small and large have a definite relative
meaning. It also always reduces the number of relevant parameters to dimensionless
groupings which determine the dynamics. A pedagogical article with several practical
examples by Segel (1972) discusses the necessity and advantages for nondimensionali-

p(N )

0 NNc

Figure 1.4. Typical functional form of the
predation in the spruce budworm model; note the
sigmoid character. The population value Nc is an
approximate threshold value. For N < Nc predation
is small, while for N > Nc, it is ‘switched on.’
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sation and scaling in general. Here we introduce nondimensional quantities by writing

u = N

A
, r = ArB

B
, q = K B

A
, τ = Bt

A
(1.7)

which on substituting into (1.6) becomes

du

dτ
= ru

(
1 − u

q

)
− u2

1 + u2
= f (u; r, q), (1.8)

where f is defined by this equation. Note that it has only two parameters r and q, which
are pure numbers, as also are u and τ of course. Now, for example, if u � 1 it means
simply that N � A. In real terms it means that predation is negligible in this population
range. In any model there are usually several different nondimensionalisations possible
and this model is no different. For example, we could write u = N/KB, τ = t/rB and
so on to get a different form to (1.8) for the dimensionless equation. The dimensionless
groupings to choose depend on the aspects you want to investigate. The reasons for the
particular form (1.7) become clear below.

The steady states are solutions of

f (u; r, q) = 0 ⇒ ru

(
1 − u

q

)
− u2

1 + u2
= 0. (1.9)

Clearly u = 0 is one solution with other solutions, if they exist, satisfying

r

(
1 − u

q

)
= u

1 + u2
. (1.10)

Although we know the analytical solutions of a cubic (Appendix B), they are often
clumsy to use because of their algebraic complexity; this is one of these cases. It is
convenient here to determine the existence of solutions of (1.10) graphically as shown
in Figure 1.5(a). We have plotted the straight line, the left of (1.10), and the function
on the right of (1.10); the intersections give the solutions. The actual expressions are
not important here. What is important, however, is the existence of one, three, or again,
one solution as r increases for a fixed q, as in Figure 1.5(a), or as also happens for a
fixed r and a varying q. When r is in the appropriate range, which depends on q, there
are three equilibria with a typical corresponding f (u; r, q) as shown in Figure 1.5(b).
The nondimensional groupings which leave the two parameters appearing only in the
straight line part of Figure 1.5 are particularly helpful and was the motivation for the
nondimensionalisation introduced in (1.7). By inspection u = 0, u = u2 are linearly
unstable, since ∂ f/∂u > 0 at u = 0, u2, while u1 and u3 are stable steady states, since
at these ∂ f/∂u < 0. There is a domain in the r, q parameter space where three roots
of (1.10) exist. This is shown in Figure 1.6; the analytical derivation of the boundary
curves is left as an exercise (Exercise 1).

This model exhibits a hysteresis effect. Suppose we have a fixed q, say, and r
increases from zero along the path ABC D in Figure 1.6. Then, referring also to Fig-
ure 1.5(a), we see that if u1 = 0 at r = 0 the u1-equilibrium simply increases monoton-
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u

Figure 1.5. Equilibrium states for the spruce budworm population model (1.8). The positive equilibria are
given by the intersections of the straight line r(1 − u/q) and u/(1 + u2). With the middle straight line in (a)
there are 3 steady states with f (u; r, q) typically as in (b).
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Figure 1.6. Parameter domain for the number of positive steady states for the budworm model (1.8). The
boundary curves are given parametrically (see Exercise 1) by r(a) = 2a3/(a2 + 1)2, q(a) = 2a3/(a2 − 1)

for a ≥ √
3, the value giving the cusp point P .
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ically with r until C in Figure 1.6 is reached. For a larger r this steady state disappears
and the equilibrium value jumps to u3. If we now reduce r again the equilibrium state
is the u3 one and it remains so until r reaches the lower critical value, where there is
again only one steady state, at which point there is a jump from the u3 to the u1 state. In
other words as r increases along ABC D there is a discontinuous jump up at C while as
r decreases from D to A there is a discontinuous jump down at B. This is an example
of a cusp catastrophe which is illustrated schematically in Figure 1.7 where the letters
A, B, C and D correspond to those in Figure 1.6. Note that Figure 1.6 is the projection
of the surface onto the r, q plane with the shaded region corresponding to the fold.

The parameters from field observation are such that there are three possible steady
states for the population. The smaller steady state u1 is the refuge equilibrium while u3
is the outbreak equilibrium. From a pest control point of view, what should be done to
try to keep the population at a refuge state rather than allow it to reach an outbreak sit-
uation? Here we must relate the real parameters to the dimensionless ones, using (1.7).
For example, if the foliage were sprayed to discourage the budworm this would reduce
q since K B , the carrying capacity in the absence of predators, would be reduced. If
the reduction were large enough this could force the dynamics to have only one equi-
librium: that is, the effective r and q do not lie in the shaded domain of Figure 1.6.
Alternatively we could try to reduce the reproduction rate rB or increase the threshold
number of predators, since both reduce r which would be effective if it is below the crit-
ical value for u3 to exist. Although these give preliminary qualitative ideas for control,
it is not easy to determine the optimal strategy, particularly since spatial effects such as
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Figure 1.7. Cusp catastrophe for the equilibrium states in the (usteadystate, r, q) parameter space. As r in-
creases from A, the path is ABCC D while as r decreases from D, the path is DC B B A. The projection of
this surface onto the r, q plane is given in Figure 1.5. Three equilibria exist where the fold is.
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budworm dispersal must be taken into effect; we shall discuss this aspect in detail in
Chapter 2, Volume II.

It is appropriate here to mention briefly the timescale with which this model is con-
cerned. An outbreak of budworm during which balsam fir trees are denuded of foliage
is about four years. The trees then die and birch trees take over. Eventually, in the com-
petition for nutrient, the fir trees will drive out the birch trees again. The timescale for
fir reforestation is of the order of 50 to 100 years. A full model would incorporate the
tree dynamics as well; see Ludwig et al. (1978). So, the model we have analysed here
is only for the short timescale, namely, that related to a budworm outbreak.

Hassell et al. (1999) have considered the original highly complex (more than 80
variables and parameters) multi-species interaction model involving large and small
larvae, fecundity, foliage mortality with and without the budworm, and other players
in the interaction. They show, using gross, but reasonably justifiable assumptions, that
the model can be simplified without losing the basic budworm–forest interaction. They
obtain several simplifications using asymptotic limits, eventually reducing the system
to three difference (as opposed to differential) equations for larvae, foliage and area
fraction of old trees. Analysis showed that the mechanism for oscillations could be
captured with only two equations. A more in depth analysis than we have done here, but
very much less than that by Hassell et al. (1999), is given in the very practical book on
modelling by Fowler (1997).

Catastrophes in Perception

Although the following does not strictly belong in a chapter on population dynamics, it
seemed appropriate to include it in the section where we discuss hysteresis and catas-
trophic change.

There is a series of now classic figures developed by Fisher (1967) which demon-
strate sudden changes in visual perception. Here we describe one of these picture series
and show that it is another example of a cusp catastrophe; it also exhibits an initial per-
ceptual hysteresis. We also present the results of an experiment carried out by the author
which confirms the hypothesis. The specific example we describe has been studied in
more depth by Zeeman (1982) and more generally by Stewart and Peregoy (1983).

The mind can be triggered, or moved in a major new thought or behavioural direc-
tion, by a vast variety of cues in ways we cannot yet hope to describe in any biologi-
cal detail. A step in this direction, however, is to be able to describe the phenomenon
and demonstrate its existence via example. Such sudden changes in perception and be-
haviour are quite common in psychology and therapy.4

The series of pictures, numbered 1 to 8 are shown in Figure 1.8.

4An interesting example of a major change in a patient undergoing psychoanalysis treated by the French
psychoanalyst Marie Claire Boons is described by Zeeman (1982). The case involved a frigid woman whom
she had been treating for two years without much success. ‘One day the patient reported dreaming of a frozen
rabbit in her arms, which woke and said hello. The patient’s words were “un lapin congelé,” meaning a frozen
rabbit, to which the psychoanalyst slowly replied “la pin con gelé?” This is a somewhat elaborate pun. The
word “pin” is the French slang for penis, the female “la” makes it into the clitoris, “con” is the French slang
for the female genitals, and “gelé” means both frozen and rigid. The surprising result was that the patient did
not respond for 20 minutes and the next day came back cured. Apparently that evening she had experienced
her first orgasm ever with her husband.’
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Figure 1.8. Series of pictures exhibiting abrupt
(catastrophic) visual change during the variation
from a man’s face to a sitting woman. (After
Fisher 1967)

The picture numbered 1 in the figure is clearly a man’s face while picture 8 is
clearly a sitting woman. An experiment which demonstrates the sudden jump from see-
ing the face of a man to the picture of the woman is described by Zeeman (1982). The
author carried out a similar experiment with a group of 57 students, none of whom had
seen the series before nor knew of such an example of sudden change in visual per-
ception. The experiment consisted of showing the series three times starting with the
man’s face, picture 1, going up to the woman, picture 8, then reversing the sequence
down to 1 and again in ascending order; that is, the figures were shown in the order
1234567876543212345678. The students were told to write down the numbers where
they noticed a major change in their perception; the results are presented in Table 1.2.

The predictions were that during the first run through the series, that is, from 1 to 8,
the perception of most of the audience would be locked into the figure of the face until
it became obvious that the picture was in fact a woman at which stage there would be
sudden jump in perception. As the pictures were shown in the reverse order the audience
was now aware of the two possibilities and so could make a more balanced judgement
as to what a specific picture represented. The perception change would therefore more
likely occur nearer the middle, around 5 and 4. During the final run through the series
the change would again occur near the middle.

The results of Table 1.2 are shown schematically in Figure 1.9 where the vertical
axis is perception, p, and the horizontal axis, the stimulus, the picture number. The

Table 1.2. Numbers for the perceptual catastrophe experiment involving 57 undergraduates, none of whom
had seen the series nor had heard of the phenomenon before.

Sequence Sequence
Direction Picture Sequence Mean Direction

→ 1 2 3 4 5 6 7 8
number switching 0 0 0 0 5 8 25 19 7.0

1 2 3 4 5 6 7 8 ←
number switching 0 1 1 17 29 6 3 — 4.8
→ 1 2 3 4 5 6 7 8
number switching — 0 3 19 19 12 3 1 4.9



1.3 Delay Models 13

woman

perception

man

switch 3

switch 2

switch 1

D W

M

stimulus

biifurcation
point

Maxwell
point

biifurcation
point

1 2 3 4 5 6 7 8

A

D

C

Figure 1.9. Schematic representation of the visual catastrophe based on the data in Table 1.2 on three runs
(1234567876543212345678) through the series of pictures in Figure 1.8. The stimulus switches occurred at
points denoted by 1, 2 and 3 in that order.

graph of perception versus stimulus is multi-valued in a traditional cusp catastrophe
way. Here, over part of the range there are two possible perceptions, a face or a woman.
The relation with the example of the budworm population problem is clear. On the first
run through the switch was delayed until around picture 7 while on the run through
the down sequence it occurred mainly at 5 and again around 5 on the final run through
the pictures. There is, however, a fundamental difference between the phenomenon here
and the budworm. In the latter there is a definite and reproducible hysteresis while in the
former this hysteresis effect occurs only once after which the dynamics is single valued
for each stimulus.

If we had started with picture 8 and again run the series three times the results would
be similar except that the jump would have occurred first around 2, as in the figure, with
the second and third switch again around 5. The phenomenon of catastrophic change in
behavior and perception is widespread and an understanding of the underlying dynamics
would clearly be of great help. Several other qualitative examples in psychology are
described by Zeeman (1977).

1.3 Delay Models

One of the deficiencies of single population models like (1.4) is that the birth rate is
considered to act instantaneously whereas there may be a time delay to take account
of the time to reach maturity, the finite gestation period and so on. We can incorporate
such delays by considering delay differential equation models of the form

d N (t)

dt
= f (N (t), N (t − T )) , (1.11)



14 1. Continuous Population Models for Single Species

where T > 0, the delay, is a parameter. One such model, which has been used, is an
extension of the logistic growth model (1.2), namely, the differential delay equation

d N

dt
= r N (t)

[
1 − N (t − T )

K

]
, (1.12)

where r , K and T are positive constants. This says that the regulatory effect depends
on the population at an earlier time, t − T , rather than that at t . This equation is itself
a model for a delay effect which should really be an average over past populations and
which results in an integrodifferential equation. Thus a more accurate model than (1.12)
is, for example, the convolution type

d N

dt
= r N (t)

[
1 − 1

K

∫ t

−∞
w(t − s)N (s) ds

]
, (1.13)

where w(t) is a weighting factor which says how much emphasis should be given to
the size of the population at earlier times to determine the present effect on resource
availability. Practically w(t) will tend to zero for large negative and positive t and will
probably have a maximum at some representative time T . Typically w(t) is as illustrated
in Figure 1.10. If w(t) is sharper, in the sense that the region around T is narrower
or larger, then in the limit we can think of w(t) as approximating the Dirac function
δ(t − T ), where

∫ ∞

−∞
δ(t − T ) f (t) dt = f (T ).

Equation (1.13) in this case then reduces to (1.12)

∫ t

−∞
δ(t − T − s)N (s) ds = N (t − T ).

The character of the solutions of (1.12), and the type of boundary conditions re-
quired are quite different from those of (1.2). Even with the seemingly innocuous equa-
tion (1.12) the solutions in general have to be found numerically. Note that to compute
the solution for t > 0 we require N (t) for all −T ≤ t ≤ 0 . We can however get
some qualitative impression of the kind of solutions of (1.12) which are possible, by the
following heuristic reasoning.

w(t)

0 T t

Figure 1.10. Typical weighting function w(t) for
an integrated delay effect on growth limitation for
the delay model represented by (1.13).
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N(t)

K

t1 t1+T t2 t1+T t

Figure 1.11. Schematic periodic solution of the delay equation population model (1.12).

Refer now to Figure 1.11 and suppose that for some t = t1, N (t1) = K and that
for some time t < t1, N (t − T ) < K . Then from the governing equation (1.12), since
1 − N (t − T )/K > 0, d N (t)/dt > 0 and so N (t) at t1 is still increasing. When
t = t1 + T , N (t − T ) = N (t1) = K and so d N/dt = 0. For t1 + T < t < t2,
N (t − T ) > K and so d N/dt < 0 and N (t) decreases until t = t2 + T since then
d N/dt = 0 again because N (t2 + T − T ) = N (t2) = K . There is therefore the
possibility of oscillatory behaviour. For example, with the simple linear delay equation

d N

dt
= − π

2T
N (t − T ) ⇒ N (t) = A cos

π t

2T
,

where A is a constant. This solution, which can be easily verified, is periodic in time.
In fact the solutions of (1.12) can exhibit stable limit cycle periodic solutions for a

large range of values of the product rT of the birth rate r and the delay T . If tp is the
period then N (t+tp) = N (t) for all t . The point about stable limit cycle solutions is that
if a perturbation is imposed the solution returns to the original periodic solution as t →
∞, although possibly with a phase shift. The periodic behaviour is also independent of
any initial data.

From Figure 1.11 and the heuristic argument above, the period of the limit cycle
periodic solutions might be expected to be of the order of 4T . From numerical calcu-
lations this is the case for a large range of rT , which, incidentally, is a dimensionless
grouping. The reason we take this grouping is because (1.12) in dimensionless form
becomes

d N ∗

dt∗
= N∗(t∗)

[
1 − N ∗ (

t∗ − T ∗)] , where N∗ = N

K
, t∗ = r t, T ∗ = rT .

What does vary with rT , however, is the amplitude of the oscillation. For example,
for rT = 1.6, the period tp ≈ 4.03T and Nmax/Nmin ≈ 2.56; rT = 2.1, tp ≈
4.54, Nmax/Nmin ≈ 42.3; rT = 2.5, tp ≈ 5.36T, Nmax/Nmin ≈ 2930. For large values
of rT , however, the period changes considerably.

This simple delay model has been used for several different practical situations.
For example, it has been applied by May (1975) to Nicholson’s (1957) careful experi-
mental data for the Australian sheep-blowfly (Lucila cuprina), a pest of considerable
importance in Australian sheep farming. Over a period of nearly two years Nicholson



16 1. Continuous Population Models for Single Species

observed the population of flies which were maintained under carefully regulated tem-
perature and food control. He observed a regular basic periodic oscillation of about 35
to 40 days. Applying (1.12) to the experimental arrangement, K is set by the food level
available. T , the delay, is approximately the time for a larva to mature into an adult.
Then the only unknown parameter is r , the intrinsic rate of population increase. Fig-
ure 1.12 illustrates the comparison with the data for rT = 2.1 for which the period
is about 4.54T . If we take the observed period as 40 days this gives a delay of about
9 days; the actual delay is closer to 11 days. The model implies that if K is doubled
nothing changes from a time periodic point of view since it can be scaled out by writing
N/K for N ; this lack of change with K is what was observed.

It is encouraging that such a simple model as (1.12) should give such reasonable
results. This is some justification for using delay models to study the dynamics of sin-
gle populations which exhibit periodic behaviour. It is important, however, not to be too
easily convinced as to the validity or reasonableness of a model simply because some
solutions agree even quantitatively well with the data; this is a phenomenon, or rather a
pitfall, we encounter repeatedly later in the book particularly when we discuss models
for generating biological pattern and form in Chapter 2 to Chapter 6, Volume II. From
the experimental data reproduced in Figure 1.12 we see a persistent ‘second burst’ fea-
ture that the solutions of (1.12) do not mimic. Also the difference between the calculated
delay of 9 days and the actual 11 days is really too large. Gurney et al. (1980) inves-
tigated this problem with a more elaborate delay model which agrees even better with
the data, including the two bursts of reproductive activity observed; see also the book
by Nisbet and Gurney (1982) where this problem is discussed fully as a case study.

Another example of the application of this model (1.12) to extant data is given
by May (1981) who considers the lemming population in the Churchill area of Canada.
There is approximately a 4-year period where, in this case the gestation time is T = 0.72
year. The vole population in the Scottish Highlands, investigated by Stirzaker (1975)
using a delay equation model, also undergoes a cycle of just under 4 years, which is
again approximately 4T where here the gestation time is T = 0.75 year. In this model
the effect of predation is incorporated into the single equation for the vole population.

Figure 1.12. Comparison of Nicholson’s (1957) experimental data for the population of the Australian sheep-
blowfly and the model solution from (1.12) with rT = 2.1. (From May 1975).
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The article by Myers and Krebs (1974) discusses population cycles in rodents in general:
they usually have 3 to 4 year cycles.

Not all periodic population behaviour can be treated quite so easily. One such ex-
ample which is particularly dramatic is the 13- and 17-year cycle exhibited by a species
of locusts; that is, their emergences are synchronized to 13 or 17 years.

It should perhaps be mentioned here that single (nondelay) differential equation
models for population growth without delay, that is, like d N/dt = f (N ), cannot exhibit
limit cycle behaviour. We can see this immediately as follows. Suppose this equation
has a periodic solution with period T ; that is, N (t + T ) = N (t). Multiply the equation
by d N/dt and integrate from t to t + T to get

∫ t+T

t

(
d N

dt

)2

dt =
∫ t+T

t
f (N )

d N

dt
dt

=
∫ N (t+T )

N (t)
f (N ) d N

= 0

since N (t + T ) = N (t). But the left-hand integral is positive since (d N/dt)2 cannot
be identically zero, so we have a contradiction. So, the single scalar equation d N/dt =
f (N ) cannot have periodic solutions.

1.4 Linear Analysis of Delay Population Models: Periodic Solutions

We saw in the last section how the delay differential equation model (1.12) was capable
of generating limit cycle periodic solutions. One indication of their existence is if the
steady state is unstable by growing oscillations, although this is certainly not conclusive.
We consider here the linearisation of (1.12) about the equilibrium states N = 0 and
N = K . Small perturbations from N = 0 satisfy d N/dt ≈ r N , which shows that
N = 0 is unstable with exponential growth. We thus need only consider perturbations
about the steady state N = K .

It is again expedient to nondimensionalise the model equation (1.12) by writing

N ∗(t) = N (t)

K
, t∗ = r t, T ∗ = rT, (1.14)

where the asterisk denotes dimensionless quantities. Then (1.12) becomes, on dropping
the asterisks for notational simplicity, but keeping in mind that we are now dealing with
nondimensional quantities,

d N (t)

dt
= N (t) [1 − N (t − T )] . (1.15)

Linearising about the steady state, N = 1, by writing
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N (t) = 1 + n(t) ⇒ dn(t)

dt
≈ −n(t − T ). (1.16)

We look for solutions for n(t) in the form

n(t) = ceλt ⇒ λ = −e−λT , (1.17)

from (1.16), where c is a constant and the eigenvalues λ are solutions of the second of
(1.17), a transcendental equation in which T > 0.

It is not easy to find the analytical solutions of (1.17). However, all we really want
to know from a stability point of view is whether there are any solutions with Re λ > 0
which from the first of (1.17) implies instability since in this case n(t) grows exponen-
tially with time.

Set λ = µ + iω. There is a real number µ0 such that all solutions λ of the second
of (1.17) satisfy Re λ < µ0. To see this take the modulus to get |λ | = e−µT and so, if
|λ | → ∞ then e−µT → ∞ which requires µ → −∞. Thus there must be a number
µ0 that bounds Re λ from above. If we introduce z = 1/λ and w(z) = 1 + ze−T/z then
w(z) has an essential singularity at z = 0. So by Picard’s theorem, in the neighbourhood
of z = 0, w(z) = 0 has infinitely many complex roots. Thus there are infinitely many
roots λ.

We now take the real and imaginary parts of the transcendental equation in (1.17),
namely,

µ = −e−µT cos ωT, ω = e−µT sin ωT, (1.18)

and determine the range of T such that µ < 0. That is, we want to find the conditions
such that the upper limit µ0 on µ is negative. Let us first dispense with the simple case
where λ is real; that is, ω = 0. From (1.18), ω = 0 satisfies the second equation and the
first becomes µ = −e−µT . This has no positive roots µ > 0 since e−µT > 0 for all µT
or as can be seen on sketching each side of the equation as a function of µ and noting
that they can only intersect with T > 0 if µ < 0.

Consider now ω �= 0. From (1.18) if ω is a solution then so is −ω, so we can
consider ω > 0 without any loss of generality. From the first of (1.18), µ < 0 requires
ωT < π/2 since −e−µT < 0 for all µT . In principle (1.18) defines µ(T ), ω(T ).
We are interested in the value of T when µ(T ) first crosses from µ < 0 to µ > 0.
As T increases from zero µ = 0 first when ωT = π/2. From (1.18) we see that if
µ = 0 the second equation gives as the only relevant solution ω = 1 occurring at
T = π/2. Since this is the first zero of µ as T increases, this gives the bifurcating value
T = Tc = π/2. Another way of deriving this is to show, from (1.18), that the gradient
of µ(T )at µ = 0, namely, (∂µ/∂T )T =π/2 > 0. Anticipating the result of the following
analysis that ω < 1 for T > π/2, note in passing that (∂ω/∂T )T =π/2 < 0. So we have

0 < T <
π

2
(1.19)

as the condition on T for stability.
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Returning now to dimensional quantities we thus have that the steady state N (t) =
K is stable if 0 < rT < π/2 and unstable for rT > π/2. In the latter case we expect
the solution to exhibit stable limit cycle behaviour. The critical value rT = π/2 is the
bifurcation value, that is, the value of the parameter, rT here, where the character of the
solutions of (1.12) changes abruptly, or bifurcates, from a stable steady state to a time-
varying solution. The effect of delay in models is usually to increase the potential for
instability. Here as T is increased beyond the bifurcation value Tc = π/2r , the steady
state becomes unstable.

Near the bifurcation value we can get a first estimate of the period of the bifurcating
oscillatory solution as follows. Consider the dimensionless form (1.15) and let

T = Tc + ε = π

2
+ ε, 0 < ε � 1. (1.20)

The solution λ = µ + iω, of (1.18), with the largest Re λ when T = π/2 is µ = 0,
ω = 1. For ε small we expect µ and ω to differ from µ = 0 and ω = 1 also by small
quantities so let

µ = δ, ω = 1 + σ, 0 < δ � 1, | σ | � 1, (1.21)

where δ and σ are to be determined. Substituting these into the second of (1.18) and
expanding for small δ, σ and ε gives

1 + σ = exp
[
−δ

(π

2
+ ε

)]
sin

[
(1 + σ)

(π

2
+ ε

)]
⇒ σ ≈ −πδ

2

to first order, while the first of (1.18) gives

δ = − exp
[
−δ

(π

2
+ ε

)]
cos

[
(1 + σ)

(π

2
+ ε

)]
⇒ δ ≈ ε + πσ

2
.

Thus on solving these simultaneously

δ ≈ ε

1 + π2

4

, σ ≈ − επ

2
(

1 + π2

4

) , (1.22)

and hence, near the bifurcation, the first of (1.17) with (1.16) gives

N (t) = 1 + Re {c exp [δt + i(1 + σ)t]}

≈ 1 + Re

{

c exp

[
εt

1 + π2

4

]

exp

[

i t

{

1 − επ

2(1 + π2

4

}]}

.
(1.23)

This shows that the instability is by growing oscillations with period

2π

1 − επ

2(1+ π2
4 )

≈ 2π
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to O(1) for small ε. In dimensional terms this is 2π/r and, since to O(1), rT = π/2,
the period of oscillation is then 4T as we expected from the intuitive arguments above.
From the numerical results for limit cycles quoted above the solution with rT = 1.6
had period 4.03T . With rT = π/2 + ε = 1.6, this gives ε ≈ 0.029 so the dimensional
period to O(ε) is obtained from the last equation as

2T

π

2π

1 − επ

2
(

1+ π2
4

)
≈ 4.05T,

which compares well with the numerical computed value of 4.03T . When rT = 2.1
this gives ε ≈ 0.53 and corresponding period 5.26T which is to be compared with the
computed period of 4.54T . This ε is too large for the above first order analysis to hold
(ε2 is not negligible compared with ε); a more accurate result would be obtained if the
analysis were carried out to second order.

The natural appearance of a ‘slow time’ εt in N (t) in (1.23) suggests that a full
nonlinear solution near the bifurcation value rT = π/2 is amenable to a two-time
asymptotic procedure to obtain the (uniformly valid in time) solution. This can in fact be
done; see, for example, Murray’s (1984) book on asymptotic methods for a pedagogical
description of such techniques and how to use them.

The subject of delay or functional differential equations is now rather large. An
introductory mathematical book on the subject is Driver’s (1977). The book by Mac-
Donald (1979) is solely concerned with time lags in biological models. Although the
qualitative properties of such delay equation models for population growth dynamics
and nonlinear analytical solutions near bifurcation can often be determined, in general
numerical methods have to be used to get useful quantitative results.

A very useful technique for determining the necessary conditions for stability of
the solutions of linear delay equations is given by van den Driessche and Zou (1998)
and which we now give: it is a Liapunov function technique (for example, Jordan and
Smith 1999) which gives an estimate for the stability parameter space. Equation (1.16)
above is a special case of the general equation

dy

dt
= ay(t) + by(t − τ), t > 0, (1.24)

where τ is the delay and a and b are constant parameters. We could, of course, carry out
an equivalent analysis as we did on (1.16) and get the necessary and sufficient conditions
for stability and thereby determine the parameter space where the steady state is stable.
If ys is a steady state L[y(t)] is a Liapunov function if L[y(t)] > 0 for all y(t) �= ys ,
L[y(t)] = 0 for y(t) = ys (that is, L positive definite) and d L[y(t)]/dt < 0 for all
y(t) �= ys . If such a function can be found then ys is globally asymptotically stable
and no closed solution orbits are possible. Such a Liapunov function can be found for
(1.24); it is given by

L[y(t)] = y2(t) + | b |
∫ t

t−τ

y2(s) ds, (1.25)

where y(t) is a solution of (1.24).
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We have to show that it is indeed a Liapunov function. Certainly L > 0 for all
y �= 0 and L = 0 when y(t) = ys = 0. Furthermore

d L

dt
= 2y(t)

dy

dt
+ | b |[y2(t) − y2(t − τ)]

= 2ay2(t) + 2| b |y(t)y(t − τ) + | b |[y2(t) − y2(t − τ)]
≤ 2ay2(t) + | b |[y2(t) + y2(t − τ)] + | b |[y2(t) − y2(t − τ)]
= 2(a + | b |)y2(t)

≤ 0, for a < −| b |.

(1.26)

So, L[y(t)] satisfies all the conditions of a Liapunov function and so the steady state
ys = 0 is globally stable for all a < −| b | which gives the parameter space where
y = 0 is stable—and not just linearly stable. If a full stability analysis is carried out as
we did for (1.16) the stability domain is actually larger but not markedly so; they are
both, however, of the same broad general shape.

1.5 Delay Models in Physiology: Periodic Dynamic Diseases

There are many acute physiological diseases where the initial symptoms are manifested
by an alteration or irregularity in a control system which is normally periodic, or by
the onset of an oscillation in a hitherto nonoscillatory process. Such physiological peri-
odic diseases have been termed dynamical diseases by Glass and Mackey (1979) who
have made a particular study of several important physiological examples. The sym-
posium proceedings of a meeting specifically devoted to temporal disorders in human
oscillatory systems edited by Rensing et al. (1987) is particularly apposite to the ma-
terial and modelling in this section, as is the nontechnical intuitive book by Glass and
Mackey (1988) (which has many applications) and that edited by Othmer et al. (1993).
Other examples are discussed by Mackey and Milton (1990) and Milton and Mackey
(1989). Here we discuss two specific examples which have been modelled, analysed and
related to experimental observations by Mackey and Glass (1977). The review article
on dynamic diseases by Mackey and Milton (1988) is of direct relevance to the mate-
rial discussed here; it also describes some examples drawn from neurophysiology. The
book by Keener and Sneyd (1998) has other examples. Although the second model we
consider is concerned with populations of cells, the first does not relate to any popula-
tion species but rather to the concentration of a gas. It does, however, fit naturally here
since it is a scalar delay differential equation model the analysis for which is directly
applicable to the second problem. It is also interesting in its own right.

Cheyne–Stokes Respiration

The first example, Cheyne–Stokes respiration, is a human respiratory ailment mani-
fested by an alteration in the regular breathing pattern. Here the amplitude of the breath-
ing pattern, directly related to the breath volume—the ventilation V —regularly waxes
and wanes with each period separated by periods of apnea, that is where the volume per
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Figure 1.13. A spirogram of the breathing pattern of a 29-year-old man with Cheyne–Stokes respiration. The
typical waxing and waning of the volume of breath is interspersed with periods of low ventilation levels; this
is apneic breathing. (Redrawn with permission from Mackey and Glass 1977)

breath is exceedingly low. Figure 1.13 is typical of spirograms of those suffering from
Cheyne–Stokes respiration.

We first need a few physiological facts for our model. The level of arterial carbon
dioxide (CO2), c(t) say, is monitored by receptors which in turn determine the level of
ventilation. It is believed that these CO2-sensitive receptors are situated in the brainstem
so there is an inherent time lag, T say, in the overall control system for breathing levels.
It is known that the ventilation response curve to CO2 is sigmoidal in form. We assume
the dependence of the ventilation V on c to be adequately described by what is called a
Hill function, of the form

V = Vmax
cm(t − T )

am + cm(t − T )
, (1.27)

where Vmax is the maximum ventilation possible and the parameter a and the Hill co-
efficient m are positive constants which are determined from experimental data. (We
discuss the biological relevance of Hill functions and how they arise later in Chapter 6.)
We assume the removal of CO2 from the blood is proportional to the product of the
ventilation and the level of CO2 in the blood.

Let p be the constant production rate of CO2 in the body. The dynamics of the CO2
level is then modelled by

dc(t)

dt
= p − bV c(t) = p − bVmaxc(t)

cm(t − T )

am + cm(t − T )
, (1.28)

where b is a positive parameter which is also determined from experimental data. The
delay time T is the time between the oxygenation of the blood in the lungs and moni-
toring by the chemoreceptors in the brainstem. This first order differential-delay model
exhibits, as we shall see, the qualitative features of both normal and abnormal breathing.

As a first step in analysing (1.28) we introduce the nondimensional quantities

x = c

a
, t∗ = pt

a
, T ∗ = pT

a
, α = abVmax

p
, V ∗ = V

Vmax
(1.29)
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and the model equation becomes

x ′(t) = 1 − αx(t)
xm(t − T )

1 + xm(t − T )
= 1 − αxV (x(t − T )) , (1.30)

where for notational simplicity we have omitted the asterisks on t and T .
As before we get an indication of the dynamic behaviour of solutions by investigat-

ing the linear stability of the steady state x0 given from (1.30) by

1 = α
xm+1

0

1 + xm
0

= αx0V (x0) = αx0V0, (1.31)

where V0, defined by the last equation, is the dimensionless steady state ventilation.
A simple plot of 1/αx0 and V (x0) as functions of x0 shows there is a unique positive
steady state. If we now consider small perturbations about the steady state x0 we write
u = x − x0 and consider | u | small. Substituting into (1.30) and retaining only linear
terms we get, using (1.31),

u′ = −αV0u − αx0V ′
0u(t − T ), (1.32)

where V ′
0 = dV (x0)/dx0 is positive. As in the last section we look for solutions in the

form

u(t) ∝ eλt ⇒ λ = −αV0 − αx0V ′
0e−λT . (1.33)

If the solution λ with the largest real part is negative, then the steady state is stable.
Since here we are concerned with the oscillatory nature of the disease we are interested
in parameter ranges where the steady state is unstable and, in particular, unstable by
growing oscillations in anticipation of limit cycle behaviour. So, as before, we must
determine the bifurcation values of the parameters such that Re λ = 0.

Set λ = µ + iω. In the same way as in the last section it is easy to show that a
real number µ0 exists such that for all solutions λ of (1.33), Re λ < µ0 and also that
no real positive solution exists. For notational simplicity let us write the transcendental
equation (1.33) as

λ = −A − Be−λT , A = αV0 > 0, B = αx0V ′
0 > 0. (1.34)

Equating real and imaginary parts gives

µ = −A − Be−µT cos ωT, ω = Be−µT sin ωT . (1.35)

Simultaneous solutions of these give µ and ω in terms of A, B and T : we cannot de-
termine them explicitly of course as we saw in Section 1.4. The bifurcation we are
interested in is when µ = 0 so we consider the parameter ranges which admit such a
solution. With µ = 0 the last equations give, with s = ωT ,
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cot s = − AT

s
, ⇒ π

2
< s1 < π (1.36)

for all finite AT > 0 where s1 is a solution. We can see that such a solution s1 exists
on sketching cot s and −AT/s as functions of s. There are of course other solutions
sm of this equation in the ranges [(2m + 1)π/2, (m + 1)π] for m = 1, 2, . . . but we
need only consider the smallest positive solution s1 since that gives the bifurcation for
the smallest critical T > 0. We now have to determine the parameter ranges so that
with µ = 0 and s1 substituted back into (1.35) a solution exists. That is, what are the
restrictions on A, B and T so that

0 = −A − B cos s1, s1 = BT sin s1

are consistent? These imply

BT =
[
(AT )2 + s2

1

]1/2
. (1.37)

If B, A and T , which determine s1, are such that the last equality cannot hold then no
solution with µ = 0 exists.

Since A and B are positive, the solution is stable in the limiting case T = 0 since
then Re λ = µ = −A − B < 0. Now consider (1.35) and increase T from T = 0. From
the last equation and (1.36) a solution with µ = 0 cannot exist if

BT <
[
(AT )2 + s2

1

]1/2

s1 cot s1 = −AT,
π

2
< s1 < π

(1.38)

and, from continuity arguments from T = 0 we must have µ < 0. So the bifurcation
condition which just gives µ = 0 is (1.37). Or, put in another way, if (1.38) holds, the
steady state solution of (1.30) is linearly, and in fact globally, stable. In terms of the
original dimensionless variables from (1.34) the conditions are thus

αx0V ′
0T <

[
(αV0T )2 + s2

1

]1/2
,

s1 cot s1 = −αV0T .
(1.39)

If we now have A and B fixed, a bifurcation value Tc is given by the first of (1.38) with
an equality sign in the inequality.

Actual parameter values for normal humans have been obtained by Mackey and
Glass (1977). The concentration of gas in blood is measured in terms of the partial
pressure it sustains and so it is measured in mmHg (that is, in torr). Relevant to the
dimensional system (1.28), they estimated

c0 = 40 mmHg p = 6 mmHg/min, V0 = 7 litre/min,

V ′
0 = 4 litre/min mmHg, T = 0.25 min.

(1.40)
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From (1.31), which defines the dimensionless steady state, we have αV0 = 1/x0. So,
with (1.39) in mind, we have, using (1.40) and the nondimensionalisation (1.29),

αV0T = T

x0
= pTdimensional

c0
= 0.0375.

The solution of the second of (1.39) with such a small right-hand side is s1 ≈ π/2 and
so s1  αV0T which means that the inequality for stability from the first of (1.39) is
approximately, but quite accurately,

V ′
0 <

π

2αx0T
. (1.41)

So, if the gradient of the ventilation at the steady state becomes too large the steady
state becomes unstable and limit cycle periodic behaviour ensues. With the values in
(1.40) the critical dimensional V ′

0 = 7.44 litre/min mmHg. The gradient increases with
the Hill coefficient m in (1.27). Other parameters can of course also initiate periodic
behaviour; all we require is that (1.41) is violated.

In dimensional terms we can determine values for m and a in the expression (1.27)
for the ventilation, which result in instability by using (1.41) with (1.29) and V0 from
(1.31). Figures 1.14(a) and (b) show the dimensional results of numerical simulations
of (1.28) with two values for V ′

0.
Note that the period of oscillation in both solutions in Figure 1.14 is about 1 minute,

which is 4T where T = 0.25 min is the estimate for delay given in (1.40). This is as we
would now expect from the analysis in the last section. A perturbation analysis in the
vicinity of the bifurcation state in a similar way to that given in the last section shows

Figure 1.14. (a) The solution behaviour of the model equation (1.30) presented in dimensional terms for
V ′

0 = 7.7 litre/min mmHg. (b) The solution behaviour for V ′
0 = 10.01 litre/min mmHg. Note the pronounced

apneic regions, that is where the ventilation is very low: this should be compared with the spirogram in
Figure 1.10. (Redrawn from Glass and Mackey 1979).
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that the period of the growing unstable solution is approximately 4T . This is left as an
exercise (Exercise 6).

In fact, the experimentally observed period is of the order of two to three times the
estimated delay time. The model here for carbon dioxide in the blood is a simple one
and to make detailed quantitative comparison with the actual process that takes place
is not really justified. It does, however, clearly show how a delay model can arise in a
genuine physiological context and produce oscillatory behaviour such as is observed in
Cheyne–Stokes respiration.

The problem of periodic breathing that we have just discussed has also been studied
in some detail by Fowler and Kalamangalam (2000; see other references there). They
put forward a very different explanation for the disease. They suggest that the dynamics
of the system are determined by the interaction between the carbon dioxide in the differ-
ent compartments of the body and that, in fact, the production is more or less irrelevant.
They show that the respiratory system is subject to an oscillatory instability when, as
with patients with heart failure, the cardiac output is severely reduced. They further
show that the cycle time is approximately twice the brain arterial delay and show that
this is consistent with recent observational studies on patients with cardiac problems.
They go further and include variable cardiac response to blood gas levels, which in turn
introduces variable delays, and show that this has a stabilising effect. An important as-
pect of their work is the extensive discussion they give of the physiological implications
of parameter variation in their model.

There are many fascinating and challenging modelling problems associated with
breathing; see, for example, the book of articles edited by Benchetrit et al. (1987). Also,
periodic breathing is not restricted to pathologies of the heart and brain. See also the
book by Hoppensteadt and Peskin (1992) for other physiological examples.

Regulation of Haematopoiesis

The second example we consider briefly has certain similarities to the last and so we
do not go through the analysis in as much detail. It is concerned with the regulation of
haematopoiesis, the formation of blood cell elements in the body. For example, white
and red blood cells, platelets and so on are produced in the bone marrow from where
they enter the blood stream. When the level of oxygen in the blood decreases this leads
to a release of a substance which in turn causes an increase in the release of the blood
elements from the marrow. There is thus a feedback from the blood to the bone marrow.
Abnormalities in the feedback system are considered major suspects in causing periodic
haematological diseases in general and this one is no exception. Further details of the
process and the model we discuss are given in Mackey and Glass (1977) and Glass and
Mackey (1979).

Let c(t) be the concentration of cells (the population species) in the circulating
blood; the units of c are, say, cells/mm3. We assume that the cells are lost at a rate pro-
portional to their concentration, that is, like gc, where the parameter g has dimensions
(day)−1. After the reduction in cells in the blood stream there is about a 6-day delay
before the marrow releases further cells to replenish the deficiency. We thus assume
that the flux λ of cells into the blood stream depends on the cell concentration at an
earlier time, namely, c(t − T ), where T is the delay. Such assumptions suggest a model
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equation of the form

dc(t)

dt
= λ(c(t − T )) − gc(t). (1.42)

Mackey and Glass (1977) proposed two possible forms for the function λ(c(t − T )).
The one we consider gives

dc

dt
= λamc(t − T )

am + cm(t − T )
− gc, (1.43)

where λ, a, m, g and T are positive constants. This equation can be analysed in the same
way as (1.28) above (Exercise 5). The procedure is to nondimensionalise it, look for the
steady state, investigate the linear stability and determine the conditions for instability.

Figure 1.15. (a) Numerical solution of (1.43), the model for haematopoiesis (regulation of blood cells) with
parameter values g = 0.1 day−1, λ = 0.2 day−1, m = 10, and delay T = 6 days. The low amplitude
oscillation has a period of about 20 days. (b) The numerical simulation with parameter values as in (a) except
for an increase in the delay to T = 20 days. Note the aperiodic behaviour of the solution. (c) Circulating
blood count of a 12-year-old girl suffering from chronic leukaemia. The rough period of the oscillation is
about 72 days. (Redrawn from Mackey and Glass 1977).
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Near the bifurcation values of the parameters which initiate an oscillatory growing so-
lution a perturbation analysis provides an estimate for the period of the ensuing limit
cycle behaviour. Figures 1.15(a) and (b) show the numerical simulation of (1.43) for
two values of the delay time T and parameters in the range for which the steady state is
unstable.

One manifestation of leukaemia is the periodic oscillations observed in, for exam-
ple, the white cell count. Figure 1.15(c) is an example from a 12-year-old patient with
chronic myelogenous leukaemia. Although the overall character is quasi-periodic, it is
in fact aperiodic. Note the comparison between Figures 1.15(b) and (c).

The qualitative change in the solution behaviour as the delay is increased is indica-
tive of what is now referred to as chaos. We discuss this concept in more detail in the
following chapter. Basically chaos is when the solution pattern is not repetitive in any
regular way. A working definition of chaos is aperiodic behaviour in a deterministic
system which depends intimately on the initial conditions: very small changes in the
initial conditions can give rise to major differences in the solution at later times. An
indication of periodic behaviour and of the onset of chaos can be obtained from the plot
of c(t − T ) against c(t) for various values of the parameters. Figure 1.16 shows a series
of bifurcating periodic solutions of (1.43) as the parameter m increases.

The behaviour in Figure 1.16(a), where the phase plane trajectory is a simple closed
curve, implies the solution is a simple periodic solution. For example, if we start at P
say, the solution trajectory moves round the curve and eventually returns to P after a
finite time. In other words if c(t) = c1 at time t1, c(t) is again equal to c1 when time t
increases by the period: Figure 1.15(a) is a typical solution c(t) as a function of time in
this situation. If we now look at Figure 1.16(b) it looks a bit like a double loop trajectory
of the kind in (a); you have to go round twice to return to where you started. A typical
solution here is like that shown in Figure 1.17(a).

The solutions c(t) implied by Figure 1.16 illustrate a common and important feature
of many model systems, namely, different periodic solution behaviour as a parameter
passes through specific bifurcation values; here it is the Hill coefficient m in (1.43).

Referring now to Figure 1.17(b), if you start at P the solution first decreases with
time and then increases as you move along the trajectory of the first, inner, loop. Now
when c(t) reaches Q, instead of going round the same loop past P again it moves onto
the outer loop through R. It eventually goes through P again after the second circuit. As
before the solution is still periodic of course, but its appearance is like a mixture of two
solutions of the type in Figure 1.15(a) but with different periods and amplitudes. As m
increases, the phase plane trajectories become progressively more complex suggesting
quite complex solution behaviour for c(t). For the case in Figure 1.16(e) the solution
undergoes very many loops before it possibly returns to its starting point. In fact it never
does! The solutions in such cases are not periodic although they have a quasi-periodic
appearance. This is an example of chaotic behaviour.

Figure 1.15(b) is a solution of (1.43) which exhibits this chaotic behaviour while
Figure 1.15(c) shows the dynamic behaviour of the white cell count in the circulating
blood of a leukaemia patient. Although Figures 1.15(b) and (c) exhibit similar aperiodic
behaviour, it is dangerous to presume that this model is therefore the one governing
white cell behaviour in leukaemia patients. However, what this modelling exercise has
demonstrated, among other things, is that delay can play a significant role in physiologi-
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Figure 1.16. Numerical solutions of bifurcating periodic solutions of the model for haematopoiesis given by
(1.43) with γ = a = 1, λ = 2, T = 2, and a range of m from m = 7 to m = 20. Note the progression from
a simple periodic solution, as indicated by (a), to the complex chaotic behaviour indicated by (e). For larger
m, regular periodic solutions again emerge prior to another chaotic range as in (i). See text for a detailed
explanation. (Reproduced with permission from Mackey and Milton 1988)

cal pattern disruption. In turn this suggests that a deficiency in bone marrow cell produc-
tion could account for the erratic behaviour in the white cell count. So although such a
model can highlight important questions for a medical physiologist to ask, for it to be of
practical use it is essential that close interdisciplinary collaboration is maintained so that
realism is retained in making suggestions and drawing conclusions, however plausible
they may be.
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Figure 1.17. (a) Qualitative solution for c(t) when the parameters in the differential delay equation (1.28)
have a phase plane trajectory as in (b), namely, the case in Figure 1.13(b).

The numerical simulations of this differential delay model (1.43), which is clearly
illustrative of a whole class, indicates a cascading sequence of bifurcating periodic solu-
tions which become chaotic. The sequence then passes through a coherent periodic stage
and again becomes chaotic and so on as a parameter in the model itself passes through
successive bifurcating values. As we said, this behaviour arises in a different context in
the following chapter on discrete models where it is discussed in some detail: periodic
doubling can be shown analytically. This phenomenon of cascading period doubling
leading to chaos with chaotic regimes separated by coherent period doubling is often a
fractal structure. We discuss such a fractal in the next chapter and fractals in other con-
texts later in Chapter 14. The existence of this kind of sequential bifurcating behaviour
in such model equations is of considerable potential importance in its biomedical im-
plications: see, for example, the book edited by Othmer et al. (1993), most chapters of
which deal with real medical and physiological examples of oscillatory phenomena.

1.6 Harvesting a Single Natural Population

It is clearly necessary to develop an ecologically acceptable strategy for harvesting any
renewable resource be it animals, fish, plants, or whatever. We also usually want the
maximum sustainable yield with the minimum effort. The inclusion of economic factors
in population models of renewable resources is increasing and these introduce impor-
tant constraints: see, for example, the seminal books by Clark (1976b, 1985, 1990). The
book by Kot (2001) has a chapter on harvest models and optimal control theory. The re-
view article by Plant and Mangel (1987) is concerned with insect pest management. The
model we describe here is a simple logistic one with the inclusion of a harvesting con-
tribution: it was discussed by Beddington and May (1977). Although it is a particularly
simple one it brings out several interesting and important points which more sophisti-
cated models must also take into account. Rotenberg (1987) also considered the logistic
model with harvesting, with a view to making the model more quantitative. He also
examined the effects of certain stochastic parameters on possible population extinction.

Most species have a growth rate, depending on the population, which more or less
maintains a constant population equal to the environment’s carrying capacity K . That
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is, the growth and death rates are about equal. Harvesting the species affects the mor-
tality rate and, if it is not excessive, the population adjusts and settles down to a new
equilibrium state Nh < K . The modelling problem is how to maximise the sustained
yield by determining the population growth dynamics so as to fix the harvesting rate
which keeps the population at its maximum growth rate.

We discuss here a basic model which consists of the logistic population model (1.2)
in which the mortality rate is enhanced, as a result of harvesting, by a term linearly
proportional to N ; namely,

d N

dt
= r N

(
1 − N

K

)
− E N = f (N ). (1.44)

Here r, K and E are positive constants and E N is the harvesting yield per unit time
with E a measure of the effort expended. K and r are the natural carrying capacity and
the linear per capita growth rate respectively. The new nonzero steady state from (1.44)
is

Nh(E) = K

(
1 − E

r

)
> 0 if E < r (1.45)

which gives a yield

Y (E) = E Nh(E) = E K

(
1 − E

r

)
. (1.46)

Clearly if the harvesting effort is sufficiently large so that it is greater than the linear
growth rate when the population is low, the species will die out. That is, if E > r the
only realistic steady state is N = 0. If E < r (which was possibly not the case, for
example, with whaling in the early 1970’s) the maximum sustained yield and the new
harvesting steady state are, from (1.46) and (1.45),

YM = Y (E)|E=r/2 = r K

4
, Nh|YM = K

2
. (1.47)

Does an analysis of the dynamic behavior tell us anything different from the naive, and
often used, steady state analysis just given here?

Figure 1.18 illustrates the growth rate f (N ) in (1.44) as a function of N for various
efforts E . Linearising (1.44) about Nh(E) gives

d (N − Nh)

dt
≈ f ′ (Nh(E)) (N − Nh) = (E − r) (N − Nh) , (1.48)

which shows linear stability if E < r : arrows indicate stability or instability in Fig-
ure 1.18.

We can consider the dynamic aspects of the process by determining the time scale
of the recovery after harvesting. If E = 0 then, from (1.44), the recovery time T =
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increasing E
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N

Figure 1.18. Growth function f (N ) for the logistic model with harvesting according to (1.44). Note how the
positive steady state decreases with increasing E , eventually tending to zero as E → r .

O(1/r), namely, the timescale of the reproductive growth. This is the order of magni-
tude of the recovery time of N to its carrying capacity K after a small perturbation from
K since, for N (t) − K small and Nh(0) = K , (1.48) shows

d(N − K )

dt
≈ −r(N − K ) ⇒ N (t) − K ∝ e−r t .

If E �= 0, with 0 < E < r , then the recovery time in a harvesting situation, from (1.48),
is

TR(E) = O

(
1

r − E

)

and so

TR(E)

TR(0)
= O

(
1

1 − E
r

)

. (1.49)

Thus for a fixed r , a larger E increases the recovery time since TR(E)/TR(0) increases
with E . When E = r/2, the value giving the maximum sustained yield YM , TR(E) =
O(2TR(0)).

The usual definition of a recovery time is the time to decrease a perturbation from
equilibrium by a factor e. Then, on a linear basis,

TR(0) = 1

r
, TR(E) = 1

r − E
⇒ TR

(
E = r

2

)
= 2TR(0). (1.50)

Since it is the yield Y that is recorded, if we solve (1.46) for E in terms of Y we have

TR(Y )

TR(0)
= 2

1 ±
[
1 − Y

YM

]1/2
(1.51)
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Figure 1.19. (a) Ratio of the recovery times as a function of the yield for the logistic growth model, with
yield proportional to the population: equation (1.44). (b) Graphical method for determining the steady state
yield Y for the harvested logistic model (1.44).

which is sketched in Figure 1.19(a) where L+ and L− denote the positive and negative
roots of (1.51). It is clearly advantageous to stay on the L+ branch and potentially
disastrous to get onto the L− one. Let us now see what determines the branch.

Suppose we start harvesting with a small effort E ; then, as is clear from Fig-
ure 1.19(b), the equilibrium population Nh(E) is close to K and Nh(E) > K/2, the
equilibrium population for the maximum yield YM . The recovery time ratio TR(E)/

TR(0) from (1.50) is then approximately 1. So increasing E , and hence the yield, we
are on branch L+. As E increases further, Nh(E) decreases towards K/2, the value
for the maximum sustained yield YM and we reach the point A in Figure 1.19(a) when
Nh(E) = K/2. As E is increased further, Nh(E) < K/2 and the recovery time is
further increased but with a decreasing yield; we are now on the L− branch.

We can now see what an optimal harvesting strategy could be, at least from this
deterministic point of view. An effort E should be made which keeps the equilibrium
population density Nh(E) > K/2, but as close as possible to K/2, the value for the
maximum sustained yield. The closer to K/2, however, the more delicate the situation
becomes since we might inadvertently move onto branch L− in Figure 1.19(a). At this
stage, when Nh(E) is close to K/2, a stochastic analysis should be carried out; this
was done by Beddington and May (1977). Stochastic elements of course reduce the
predictability of the catch. In fact, with this model, they decrease the average yield for
a given effort.

Before leaving this model, we can see how it is difficult to use models such as these
for determining a maximum yield in practice. Often a maximum yield is only found in
practice when attempts have been made to obtain an even greater yield. If the model
here were valid such a scenario could be catastrophic, since if one moves onto the upper
branch the reduction in effort might not be sufficient to move onto the bottom curve. So
even without a stochastic analysis we can see how random variations could play havoc
with the concept of a maximum sustainable yield.

As an alternative harvesting resource strategy suppose we harvest with a constant
yield Y0 as our goal, a model studied by Brauer and Sanchez (1975). The model equation
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Figure 1.20. (a) Equilibrium states for the logistic growth harvested with a constant yield Y0: equation (1.52).
(b) Growth rate f (N ) in (1.52) as the yield Y0 increases.

is then

d N

dt
= r N

(
1 − N

K

)
− Y0 = f (N ; r, K , Y0). (1.52)

Figure 1.20(a) shows the graphical way of determining the steady states as Y0 varies. It
is trivial to find the equilibria analytically of course, but often the behavioural traits
as a parameter varies are more obvious from a figure, such as here. If 0 < Y0 <

r K/4 = YM , the maximum sustainable yield here, there are two positive steady states
N1(Y0), N2(Y0) > N1(Y0) which from Figure 1.20(b) are respectively unstable and sta-
ble. As Y0 → r K/4, the maximum sustainable yield of the previous model is even more
sensitive to fluctuations since if a perturbation from N2 takes N to a value N < N1 the
mechanism then drives N to zero; see Figure 1.20(b). Not only that, N → 0 in a finite
time since for small enough N , (1.52) becomes d N/dt ≈ −Y0 and so for any starting
N0 at t0, N (t) ≈ N0 − Y0(t − t0) and N (t) = 0 when t = t0 + N0/Y0.

For easy comparison with the constant effort model we evaluate the equivalent
recovery time ratio TR(Y0)/TR(0). The recovery time TR(Y0) is only relevant to the
stable equilibrium N2(Y0) which from (1.52) is

N2(Y0) = K

2

{

1 +
[

1 − 4Y0

Kr

]1/2
}

, Y0 < r K/4.

The linearised form of (1.52) is then

d(N − N2(Y0))

dt
≈ (N − N2)

[
∂ f

∂N

]

N2(Y0)

= −(N − N2) r

[
1 − 4Y0

Kr

]1/2

.
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Thus

TR(Y0)

TR(0)
= 1

(
1 − Y0

YM

)1/2
, YM = r K

4
(1.53)

which shows that TR(Y0)/TR(0) → ∞ as Y0 → YM . This model is thus a much more
sensitive one and, as a harvesting strategy, is not really adequate.

One conclusion from this modelling exercise is that a constant effort rather than a
constant yield harvesting strategy is less potentially catastrophic. It also calls into ques-
tion, even with this simple model, the fishing laws, for example, which regulate catches.
A more realistic model, on the lines described here, should take into account the eco-
nomic costs of harvesting and other factors. This implies a feedback mechanism which
can be a stabilising factor; see Clark (1976b, 1985, 1990). With the unpredictability
of the real world it is probably essential to include feedback. Nevertheless such sim-
ple models can pose highly relevant ecological and long term financial questions which
have to be considered in any more realistic and more sophisticated model.

The problems of sustainable harvesting of renewable resources are crucially im-
portant, whether it is in fisheries, forestry management or any other renewable resource
which depends on the maintenance of a reproductive surplus in a population. In the
above very simple example we saw how it is possible to move onto a catastrophic path
if we do not have sufficient information such as knowing, a priori, what the maximum
sustainable yield can be. The basic concept of a sustainable resource depends on a re-
productive surplus being maintained under a variety of circumstances many of which
are difficult to quantify. With the difficulty of obtaining accurate data it makes it even
more difficult to produce a workable model system on which to base decisions. Ludwig
and his colleagues (Ludwig 1993, 1994, 1995, 1996a, 1996b, Ludwig et al. 1993, 1997
and other references given in these) persuasively argue the case for a more sophisticated
and realistic modelling in which stochastic elements play a crucial role. Numerous real
case studies are discussed which highlight potentially serious problems with overly sim-
ple models. They demonstrate the importance of assessing the possibility of population
extinction because of, among other things, uncertainty about crucial parameters, small
stochastic elements and the effect of rare catastrophes. For anyone seriously considering
working in the ecological field of harvesting of renewable resources these papers should
be required reading. The book by Getz and Haight (1989) gives a good survey of the
field of population harvesting and resource management in diverse areas. It discusses
numerous mathematical models and applications to specific case studies for which field
data are available. The book edited by Levin (1994, Parts V and VI)) contains arti-
cles which are also particularly relevant. The book by Hilborn and Mangel (1997) is
also relevant: it confronts models with data and discusses numerous practical case stud-
ies which require a probabilistic approach. They provide the necessary statistics and
probability background necessary for the study of the various models. The 1990’s have
witnessed several population collapses of what were hitherto thought of as sustainable
resources, such as cod in the north Atlantic and what looks like being another with
salmon in the north east Pacific coast to mention but two. Sadly even when the scien-
tific knowledge is available as to a future catastrophe, politics and short term economics
prevent its implementation.
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1.7 Population Model with Age Distribution

For some populations, one of the deficiencies of the above ordinary differential equation
models is that they do not take into account any age structure which, in many situations,
can influence population size and growth in a major way. Although most natural popu-
lations have some structure, such as age, stage or whatever, it is not always of primary
importance but, when it is, we must know how to incorporate it in a model. So, we
consider here a first extension to include age dependence in the birth and death rates.

One way of incorporating structure in a population is by Leslie matrices after
Leslie5 (1945). For example, these can incorporate different age classes, such as juvenile
and adult, and quantify movement from one to the other. The Leslie matrix model then
relates the adult and juvenile population at a later time in terms of those at the earlier
time: the terms in the matrix incorporate, for example, the data on births and survival.
The books by Charlesworth (1980), Metz and Diekmann (1986) and Kot (2001) give a
good survey as well as the wide spectrum of applicability of age-structured models.

Let n(t, a) be the population density at time t in the age range a to a +da. Let b(a)

and µ(a) be the birth and death rates which are functions of age a: for man, for example,
they qualitatively look like the curves in Figure 1.21. For example, in a small increment
of time dt the number of the population of age a that dies is µ(a)n(t, a) dt . The birth
rate only contributes to n(t, 0); there can be no births of age a > 0. The conservation
law for the population now says that

dn(t, a) = ∂n

∂t
dt + ∂n

∂a
da = −µ(a)n(t, a) dt.

The (∂n/∂a) da term is the contribution to the change in n(t, a) from individuals getting
older. Dividing this equation by dt and noting that da/dt = 1 since a is chronological

(a) (b)
b(a)

00 1010 50 70

µ(a)

a (years)a (years)

Figure 1.21. Qualitative birth (a) and death (b) rates for man as functions of age in years.

5Patrick Leslie was a mathematician who worked with the founding father of animal ecology, Charles
Elton, in his Bureau of Animal Population in Oxford in the mid-1930’s. In spite of the increasing use of
mathematical modelling, Elton never really embraced such interdisciplinary research and was on occasion
outspokenly critical. I met Elton once at a Fellows’ garden party in Corpus Christi College, Oxford, in the
1970’s. When I expressed an interest in animal ecology and mentioned his seminal work on the data from
the Hudson Bay Company (see Chapter 2) he started to talk enthusiastically about oscillatory behaviour
in populations. When I said I was a mathematician working in biology there was a notable cooling of his
enthusiasm and he said, ‘Oh, you’re one of them’ and added, ‘I thought you were somebody else.’
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age, n(t, a) satisfies the linear partial differential equation

∂n

∂t
+ ∂n

∂a
= −µ(a)n, (1.54)

which holds for t > 0 and a > 0. For example, if µ = 0, it reduces to a conservation
equation which says that the time rate of change of the population at time t and age a,
∂n/∂t , simply changes by the rate at which the population gets older, namely, ∂n/∂a.

Equation (1.54) is a first order partial differential equation which requires a condi-
tion on n(t, a) in t and in a. The initial condition

n(0, a) = f (a), (1.55)

says that the population at time t = 0 has a given age distribution f (a). The other
boundary condition on a comes from the birth rate and is

n(t, 0) =
∫ ∞

0
b(a)n(t, a) da, (1.56)

where, for mathematical simplicity, we have taken the upper limit of ∞ for the age;
b(a) of course will tend to zero for large a, as in Figure 1.21(a), for example, and so we
could replace ∞ by am say, where b(a) = 0 for a > am . Note that the birth rate b(a)

only appears in the integral equation expression (1.56) and not in the differential equa-
tion. Equation (1.54) is often referred to in the ecological literature as the Von Foerster
equation; the equation arises in a variety of different disciplines and theoretical biology
areas, such as cell proliferation models, for example, where cell age is important. The
main question we wish to answer with the model here is how the birth and death rates
b(a) and µ(a) affect the growth of the population after a long time.

One way to solve (1.54) is by characteristics (see, for example, the book by Kevor-
kian, 2000) which are given by

da

dt
= 1 on which

dn

dt
= −µn. (1.57)

These are the straight lines

a =
{

t + a0, a > t
t − t0, a < t

(1.58)

as shown in Figure 1.22. Here a0, t0 are respectively the initial age of an individual at
time t = 0 in the original population and the time of birth of an individual. The second
of (1.57), which holds along each characteristic, has a different solution accordingly as
a > t and a < t , that is, one form for the population that was present at t = 0, namely,
a > t , and the other for those born after t = 0, that is, a < t . On integrating the second
of (1.57), using da/dt = 1 and (1.58), the solutions are
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t
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a = t + a0

Figure 1.22. Characteristics for the Von Foerster equation (1.54).

n(t, a) = n(0, a0) exp

[
−

∫ a

a0

µ(s) ds

]
, a > t,

where n(0, a0) = n(0, a − t) = f (a − t) from (1.55), and so

n(t, a) = f (a − t) exp

[
−

∫ a

a−t
µ(s) ds

]
, a > t. (1.59)

For a < t ,

n(t, a) = n(t0, 0) exp

[
−

∫ a

0
µ(s) ds

]
,

and so, since n(t0, 0) = n(t − a, 0)

n(t, a) = n(t − a, 0) exp

[
−

∫ a

0
µ(s) ds

]
, a < t. (1.60)

In the last equation n(t − a, 0) is determined by solving the integral equation (1.56),
using (1.59) and (1.60) to get

n(t, 0) =
∫ t

0
b(a)n(t − a, 0) exp

[
−

∫ a

0
µ(s) ds

]
da

+
∫ ∞

t
b(a) f (a − t) exp

[
−

∫ a

a−t
µ(s) ds

]
da.

(1.61)

Although this is a linear equation it is not easy to solve; it can be done by iteration
however.

We are mainly interested in the long time behaviour of the population and in partic-
ular whether it will increase or decline. If t is large so that for practical purposes t > a
for all a then f (a − t) = 0 and all we require in (1.61) is the first integral term on the
right-hand side. The solution is then approximated by n(t, a) in (1.60), although it does
not satisfy the boundary condition on a in (1.56). It is still not trivial to solve so let us
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return to the original partial differential equation (1.54) and see if other solution forms
are possible.

We can look for a similarity solution (see, for example, Kevorkian 2000) of (1.54)
in the form

n(t, a) = eγ t r(a). (1.62)

That is, the age distribution is simply changed by a factor which either grows or decays
with time according to whether γ > 0 or γ < 0. Substitution of (1.62) into (1.54) gives

dr

da
= − [µ(a) + λ] r

and so

r(a) = r(0) exp

[
−γ a −

∫ a

0
µ(s) ds

]
. (1.63)

With this r(a) in (1.62) the resulting n(t, a) when inserted into the boundary condition
(1.56), gives

eγ t r(0) =
∫ ∞

0
b(a)eγ t r(0) exp

[
−γ a −

∫ a

0
µ(s) ds

]
da

and hence, on cancelling eγ t r(0),

1 =
∫ ∞

0
b(a) exp

[
−γ a −

∫ a

0
µ(s) ds

]
da = φ(γ ), (1.64)

which defines φ(γ ). This equation determines a unique γ, γ0 say, since φ(γ ) is a mono-
tonic decreasing function of γ . The sign of γ is determined by the size of φ(0); see
Figure 1.23. That is, γ0 is determined solely by the birth, b(a), and death, µ(a), rates.
The critical threshold S for population growth is thus

S = φ(0) =
∫ ∞

0
b(a) exp

[
−

∫ a

0
µ(s) ds

]
da, (1.65)

where S > 1 implies growth and S < 1 implies decay. In (1.65) we can think of
exp [− ∫ a

0 µ(s) ds] almost like the probability that an individual survives to age a, only
the integral over all a is not 1.

The solution (1.62) with (1.63) cannot satisfy the initial condition (1.55). The ques-
tion arises as to whether it approximates the solution of (1.54)–(1.56), the original prob-
lem, after a long time. If t is large so that for all practical purposes n(t, 0) in (1.61)
requires only the first integral on the right-hand side, then

n(t, 0) ≈
∫ t

0
b(a)n(t − a, 0) exp

[
−

∫ a

0
µ(s) ds

]
da, t → ∞. (1.66)
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Figure 1.23. The growth factor γ0 is determined by the intersection of φ(γ ) = 1: γ0 > 0 if φ(0) > 1, γ0 < 0
if φ(0) < 1.

If we now look for a solution of this equation in the similarity form (1.62), substitution
of it into (1.66) then gives (1.64) again as the equation for γ . We thus conjecture that
the solution (1.62) with r(a) from (1.63) and γ from (1.64) is the solution for large
time t of equation (1.54), with initial and boundary conditions (1.55) and (1.56). It is of
course undetermined to the extent of a constant r(0) but, since our main question is one
of growth or decay, it is not important to know r(0) since it does not affect either. The
important parameter is the threshold parameter S in (1.65) from which long time effects
of alterations in the birth and death rates can be assessed.

Exercises

1 A model for the spruce budworm population u(t) is governed by

du

dt
= ru

(
1 − u

q

)
− u2

1 + u2
,

where r and q are positive dimensionless parameters. The nonzero steady states are
thus given by the intersection of the two curves

U(u) = r

(
1 − u

q

)
, V (u) = u

1 + u2
.

Show, using the conditions for a double root, that the curve in r, q space which
divides it into regions where there are 1 or 3 positive steady states is given paramet-
rically by

r = 2a3

(1 + a2)2
, q = 2a3

a2 − 1
.
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Show that the two curves meet at a cusp, that is, where dr/da = dq/da = 0, at
a = √

3. Sketch the curves in r, q space noting the limiting behaviour of r(a) and
q(a) as a → ∞ and a → 1.

2 In Section 1.3 we showed that it was not possible to have a limit cycle (periodic)
solution for a simple first order (nondelay) equation

d N

dt
= f (N ).

A seeming counterexample is N (t) = 2 + sin t (and any number of similar forms).
Determine the f (N ) for which this is a solution of the differential equation and
explain why it is not a counterexample.

3 If the per capita birth rate of a population is given by r [1 − a(N − b)2] where r , a
and b are positive parameters, write down a population model equation of the form
d N/dt = f (N ). Nondimensionalise the equation so that the dynamics depend on a
single dimensionless parameter k = b(a/r)1/2. If u is your nondimensional popula-
tion, sketch f (u) for k > 1 and k < 1 and discuss how the qualitative behaviour of
the solution changes with k and the initial condition.

4 The predation P(N ) on a population N (t) is very fast and a model for the prey N (t)
satisfies

d N

dt
= RN

(
1 − N

K

)
− P

{

1 − exp

[

− N 2

εA2

]}

, 0 < ε � 1,

where R, K , P and A are positive constants. By an appropriate nondimensionalisa-
tion show that the equation is equivalent to

du

dτ
= ru

(
1 − u

q

)
−

(

1 − exp

[

−u2

ε

])

,

where r and q are positive parameters. Demonstrate that there are three possible
nonzero steady states if r and q lie in a domain in r, q space given approximately by
rq > 4. Could this model exhibit hysteresis?

5 A continuous time model for the baleen whale (a slightly more complicated model
of which the International Whaling Commission used) is the delay equation

d N

dt
= −µN (t) + µN (t − T )[1 + q{1 − [N (t − T )/K ]z}].

Here µ(> 0) is a measure of the mortality, q(> 0) is the maximum increase in
fecundity the population is capable of, K is the unharvested carrying capacity, T is
the time to sexual maturity and z > 0 is a measure of the intensity of the density-
dependent response as the population drops.

Determine the steady state populations. Show that the equation governing small
perturbations n(t) about the positive equilibrium is
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dn(t)

dt
≈ −µn(t) − µ(qz − 1)n(t − T ),

and hence that the stability of the equilibrium is determined by Re λ where

λ = −µ − µ(qz − 1)e−λT .

Deduce that the steady state is stable (by considering the limiting case Re λ = 0) if

µT < µTc = π − cos−1 1
b

(b2 − 1)1/2
, b = qz − 1 > 1

and stable for all T if b < 1.
For T = Tc + ε, 0 < ε � 1 show that to O(1) the period of the growing

oscillation is 2π/[µ(b2 − 1)1/2], b > 1.

6 The concentration of carbon dioxide in the blood is believed to control breathing lev-
els through a delay feedback mechanism. A simple delay model for the concentration
in dimensionless form is

dx(t)

dt
= 1 − axV (x(t − T )), V (x) = xm

1 + xm
,

where a and m are positive constants and T is the delay. For given a and m a critical
delay Tc exists such that for T > Tc the steady state solution becomes linearly
unstable. For T = Tc + ε, where 0 < ε � 1, carry out a perturbation analysis and
show that the period of the exponentially growing solution is approximately 4Tc.

7 A model for the concentration c(t) of arterial carbon dioxide, which controls the
production of certain blood elements, is given by

dc(t)

dt
= p − V (c(t − T ))c(t) = p − bVmaxc(t)cm(t − T )

am + cm(t − T )
,

where p, b, a, T and Vmax are positive constants. (This model is briefly discussed
in Section 1.5.) Nondimensionalise the equation and examine the linear stability of
the steady state. Obtain a relation between the parameters such that the steady state
is stable and hence establish the existence of a bifurcation value Tc for the delay.
Obtain an estimate for the period of the periodic solution which bifurcates off the
steady state when T = Tc + ε for small ε.

8 A similarity solution of the form n(t, a) = eγ t r(a) of the age distribution model
equation

∂n

∂t
+ ∂n

∂a
= −µ(a)n

satisfies the age boundary equation

n(t, 0) =
∫ ∞

0
b(a)n(t, a) da
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if
∫ ∞

0
b(a) exp

[
−γ a −

∫ a

0
µ(s) ds

]
da = 1.

Show that if the birth rate b(a) is essentially zero except over a very narrow range
about a0 > 0 the population will die out whatever the mortality rate µ(a). If there
is a high, linear in age, mortality rate, say what you can about the birth rate if the
population is not to die out.



2. Discrete Population Models
for a Single Species

2.1 Introduction: Simple Models

Differential equation models, whether ordinary, delay, partial or stochastic, imply a
continuous overlap of generations. Many species have no overlap whatsoever between
successive generations and so population growth is in discrete steps. For primitive or-
ganisms these can be quite short in which case a continuous (in time) model may be a
reasonable approximation. However, depending on the species the step lengths can vary
widely. A year is common. With fruit fly emergence from pupae it is a day, for cells it
can be a number of hours while for bacteria and viruses it can be considerably less. In
the models we discuss in this chapter and later in Chapter 5 we have scaled the time-step
to be 1. Models must thus relate the population at time t + 1, denoted by Nt+1, in terms
of the population Nt at time t . This leads us to study difference equations, or discrete
models, of the form

Nt+1 = Nt F(Nt ) = f (Nt), (2.1)

where f (Nt) is in general a nonlinear function of Nt . The first form is often used to
emphasise the existence of a zero steady state. Such equations are usually impossible to
solve analytically but again we can extract a considerable amount of information about
the population dynamics without an analytical solution. The mathematics of difference
equations is now being studied in depth and applied in diverse fields: it is a fascinating
subject having given rise to some totally unexpected phenomena some of which we
discuss later. Difference equation models are also proving of use in a surprisingly wide
spectrum of biomedical areas such as cancer growth (see, for example, the article by
Cross and Cotton 1994), aging (see, for example, the article by Lipsitz and Goldberger
1992), cell proliferation (see, for example, the article by Hall and Levinson 1990) and
genetics (see, for example, the chapter on inheritance in the book by Hoppensteadtand
Peskin 1992 and the book by Roughgarden 1996.) It has recently been shown to be of
astonishing use in dynamic modelling of marital interaction and divorce prediction; we
discuss this application in Chapter 5. The largest use to date is probably in ecology; the
book by Hassell (1978) gives numerous examples, see also the more recent excellent
book by Kot (2001).

From a practical point of view, if we know the form of f (Nt) it is a straightforward
matter to evaluate Nt+1 and subsequent generations by simply using (2.1) recursively.
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Of course, whatever the form of f (Nt), we are only interested in nonnegative popula-
tions.

The skill in modelling a specific population’s growth dynamics lies in determining
the appropriate form of f (Nt) to reflect known observations or facts about the species
in question. To do this with any confidence we must understand the major effects on the
solutions of changes in the form of f (Nt ) and its parameters, and also what solutions
of (2.1) look like for a few specimen examples of practical interest. The mathematical
problem is a mapping one, namely, that of finding the orbits, or trajectories, of nonlinear
maps given a starting value N0 > 0. It should be noted here that there is no simple con-
nection between difference equation models and what might appear to be the continuous
differential equation analogue, even though a finite difference approximation results in
a discrete equation. This becomes clear below.

Suppose the function F(Nt) = r > 0; that is, the population one step later is simply
proportional to the current population. Then from (2.1),

Nt+1 = r Nt ⇒ Nt = r t N0. (2.2)

So the population grows or decays geometrically according to whether r > 1 or r < 1
respectively; here r is the net reproductive rate. This particularly simple model is not
very realistic for most populations nor for long times but, even so, it has been used with
some justification for the early stages of growth of certain bacteria. It is the discrete
version of Malthus’ model in Chapter 1. A slight modification to bring in crowding
effects could be

Nt+1 = r NS, NS = N 1−b
t , b constant,

where NS is the population that survives to breed. There must be restrictions on b of
course, so that NS ≤ Nt otherwise those surviving to breed would be more than the
population of which they form a part.

Fibonacci Sequence

Leonardo of Pisa, who was only given the nickname Fibonacci in the 18th century, in
his arithmetic book of 1202 set a modelling exercise involving an hypothetical growing
rabbit population. It consists of starting at the beginning of the breeding season with
a pair of immature rabbits, male and female, which after one reproductive season pro-
duce two pairs of male and female immature rabbits after which the parents then stop
reproducing. Their offspring pairs then do exactly the same and so on. The question is
to determine the number of pairs of rabbits at each reproductive period. If we denote the
number of pairs of (male and female) rabbits by Nt then normalising the reproductive
period to 1 we have at the t th reproductive stage

Nt+1 = Nt + Nt−1, t = 2, 3, . . . . (2.3)

This gives, with N0 = 1, what is known as the Fibonacci sequence, namely

1, 1, 2, 3, 5, 8, 13, . . . .
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Each term in the sequence is simply the sum of the previous two. Equation (2.3) is a
linear difference equation which we can solve by looking for solutions in the form

Nt ∝ λt

which on substituting into (2.3) gives the equation for the λ as solutions of

λ2 − λ − 1 ⇒ λ1,2 = 1

2

(
1 ± √

5
)

.

So, with N0 = 1, N1 = 1 the solution of (2.3) is

Nt = 1

2

(
1 + 1√

5

)
λt

1 + 1

2

(
1 − 1√

5

)
λt

2

λ1 = 1

2

(
1 + √

5
)

, λ2 = 1

2

(
1 − √

5
)

.

(2.4)

For large t , since λ1 > λ2,

Nt ≈ 1

2

(
1 + 1√

5

)
λt

1.

Equation (2.3) is a renewal equation. We can intuitively see age structure in this
model by considering age to reproduction and that after it there is no reproduction. This
approach gives rise to renewal matrices and Leslie matrices which include age structure
(see, for example, the book edited by Caswell 1989).

If we take the ratio of successive Fibonacci numbers we have, for t large, Nt/Nt+1
≈ (

√
5 − 1)/2. This is the so-called golden mean or golden number. In classical paint-

ings, for example, it is the number to strive for in the ratio of say, sky to land in a
landscape.

This sequence and the limiting number above occur in a surprising number of
places. Pine cones, sunflower heads, daisy florets, angles between successive branch-
ing in many plants and many more. On a sunflower head, it is possible to see sets of
intertwined spirals emanating from the centre (you can see them on pine cones starting
at the base). It turns out that the number of spirals varies but are always a number in the
Fibonacci sequence.

Figure 2.1 illustrates two examples of these naturally occurring intertwined loga-
rithmic spirals. For example, in Figure 2.1(b) each scale belongs to both a clockwise
and anticlockwise spiral: a careful counting gives 8 clockwise spirals and 13 anticlock-
wise ones, which are consecutive numbers in the Fibonacci series. On the daisy head
there are 21 clockwise and 34 anticlockwise spirals, again consecutive numbers in the
Fibonacci series.

In the case of branching in phyllotaxis, if you project the branching of many plants
and trees onto the plane the angle between successive branches is essentially constant,
close to 137.5◦. To relate this to the Fibonacci series, if we multiply 360◦ by the limiting
number of the ratio of Fibonacci numbers above, (

√
5 − 1)/2, we get 222.5◦. Since this

is more than 180◦ we should subtract 222.5◦ from 360◦ which gives 137.5◦, which is
known as the Fibonacci angle.
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(a)

(b)

Figure 2.1. Examples of sets of intertwining spirals which occur on (a) the floret of a daisy, and (b) the
pattern of scales on a pine cone. Each element is part of a clockwise and anticlockwise spiral. (Photographs
by Dr. Scott Camazine and reproduced with permission)

There have been several attempts at modelling the patterning process in plant mor-
phology to generate the Fibonacci angle between successive branches and the Fibonacci
sequence for the number of spirals on sunflower heads, pine cones, and so on but to date
the problem is still unsolved. The attempts range from manipulating a reaction diffu-
sion mechanism (for example, Thornley 1976) to looking at algebraic relations between
permutations of the first n natural numbers with each number corresponding to the ini-
tiation order of a given leaf (Kunz and Rothen 1992) to experiments involving magnetic
droplets in a magnetic field (Douady and Couder 1992). Later in the book we discuss
in considerable detail various possible mechanisms for generating spatial patterns, in-
cluding reaction diffusion systems. I firmly believe that the process here is mechanistic
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and not genetic. The work of Douady and Couder (1992, 1993a, 1993b), although of a
physical rather than a biological nature, lends support to this belief.

The work of Douady and Couder (1992) is clever and particularly interesting and
illuminating even though it is a physical as opposed to a biological process involved.
They considered the sequential appearance of the primordia in branching phyllotaxis to
form at the growing apex and at equal time intervals to move out onto a circle around
the growing tip. They considered these primordia to repel each other as they move out,
consequently maximising the distance between them. In this way they self-organise
themselves highly efficiently in a regular spatial pattern. If this is the case, they argued,
then an experiment which mimics this scenario should give a distribution of elements,
the angle between which should be the Fibonacci angle. They took a circular dish of
8 cm diameter, filled it with silicone oil and put it in a vertical magnetic field with
the field increasing towards the dish perimeter. Then, at equal intervals, they dropped
small amounts of a ferromagnetic fluid onto the centre of the dish onto a small truncated
cone (to simulate the plant apex). The drops were then polarised by the magnetic field.
Because of the polarisation the drops formed small magnetic dipoles which repelled
each other and, because of the gradient in the magnetic field, moved outwards towards
the perimeter and ended up being regularly distributed. Because of the interaction with
the previous drops, new drops fell from the cone in the direction of minimum energy. To
prevent accumulation of drops at the periphery, they ultimately fell into a ditch there.
The time between the drops of magnetic fluid affected the spirals generated and the
final angle between the drops when they reached the perimeter: in a surprising number
of runs the angle was essentially the Fibonacci angle and the number of spirals a number
in the Fibonacci series. They then confirmed the results with computer simulations.

Generally, because of crowding and self-regulation, we expect f (Nt) in (2.1) to
have some maximum, at Nm say, as a function of Nt with f decreasing for Nt > Nm ;
Figure 2.2 illustrates a typical form. A variety of f (Nt) has been used in practical
situations such as those described above: see, for example, the book by Kot (2001) for
some specific practical forms in ecology. One such model, sometimes referred to as the

Nt+1

0
Nm

f (Nt )

Nt

Figure 2.2. Typical growth form in the model Nt+1 = f (Nt ).
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Verhulst process, is

Nt+1 = r Nt

(
1 − Nt

K

)
, r > 0, K > 0, (2.5)

which might appear to be a kind of discrete analogue of the continuous logistic growth
model but is not all: the steady state is not N = K . As we shall show, however, the
solutions and their dependence on the parameter r are very different. An obvious draw-
back of this specific model is that if Nt > K then Nt+1 < 0. A more appropriate way
of deriving it (see also the legend in Figure 2.11) from the continuous Verhulst equation
is to replace the derivative d N/dt with a difference form with time step 1 to obtain

N (t + 1) − N (t) = r N (t)

[
1 − N (t)

K

]
⇒ N (t + 1) =

[
1 + r − r

K
N (t)

]
. (2.6)

Now rescaling with N (t) = ((1 + r)/r)K x(t) and setting 1 + r = r ′ the last
equation becomes the same form as (2.2), namely,

x(t + 1) = r ′x(t)[1 − x(t)]. (2.7)

A more realistic model should be such that for large Nt there should be a reduction
in the growth rate but Nt+1 should remain nonnegative; the qualitative form for f (Nt ) in
Figure 2.2 is an example. One such frequently used model, known as the Ricker curve,
after Ricker (1954), is

Nt+1 = Nt exp

[
r

(
1 − Nt

K

)]
, r > 0, K > 0 (2.8)

which we can think of as a modification of (2.2) where there is a mortality factor
exp (−r Nt/K ) which is more severe the larger Nt . Here Nt > 0 for all t if N0 > 0.

Since t increases by discrete steps there is, in a sense, an inherent delay in the
population to register change. Thus there is a certain heuristic basis for relating these
difference equations to delay differential equations discussed in Chapter 1, which, de-
pending on the length of the delay, could have oscillatory solutions. Since we scaled the
time-step to be 1 in the general form (2.1) we should expect the other parameters to be
the controlling factors as to whether or not solutions are periodic. With (2.5) and (2.8)
the determining parameter is r , since K can be scaled out by writing Nt for Nt/K .

2.2 Cobwebbing: A Graphical Procedure of Solution

We can elicit a considerable amount of information about the population growth be-
haviour by simple graphical means. Consider (2.1) with f as in Figure 2.2. The steady
states are solutions N∗ of

N ∗ = f (N ∗) = N∗F(N ∗) ⇒ N ∗ = 0 or F(N ∗) = 1. (2.9)
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Figure 2.3. (a) Graphical determination of the steady state and demonstration of how Nt approaches it. (b)
Time evolution of the population growth using (a). We use a continuous curve joining up the populations at
different time-steps for visual clarity; strictly the population changes abruptly at each time-step.

Generally, we use only the first form in (2.9); the second is mainly used to empha-
sise the fact that N ∗ = 0 is always a steady state. Graphically the steady states are
intersections of the curve Nt+1 = f (Nt) and the straight line Nt+1 = Nt as shown
in Figure 2.3(a) for a case where the maximum of the curve Nt+1 = f (Nt ), at Nm

say, has Nm > N∗. The dynamic evolution of the solution Nt of (2.1) can be obtained
graphically as follows. Suppose we start at N0 in Figure 2.3(a). Then N1 is given by
simply moving along the Nt+1 axis until we intersect with the curve Nt+1 = f (Nt ),
which gives N1 = f (N0). The line Nt+1 = Nt is now used to start again with N1 in
place of N0. We then get N2 by proceeding as before and then N3, N4 and so on: the
arrows show the path sequence. The path is simply a series of reflections in the line
Nt+1 = Nt . We see that Nt → N∗ as t → ∞ and it does so monotonically as illus-
trated in Figure 2.3(b). If we started at N ′

0 > N ∗ in Figure 2.3(a), again Nt → N ∗
and monotonically after the first step. If we start close enough to the steady state N ∗
the approach to it is monotonic as long as the curve Nt+1 = f (Nt) crosses Nt+1 = Nt
appropriately; here that means

0 <

[
d f (Nt )

d Nt

]

Nt =N∗
= f ′(N ∗) < 1. (2.10)

The value f ′(N ∗), where the prime denotes the derivative with respect to Nt , is an
important parameter as we shall show; it is the eigenvalue of the system at the steady
state N ∗. Since any small perturbation about N ∗ simply decays to zero, N ∗ is a linearly
stable equilibrium state.
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Suppose now f (Nt ) is such that the equilibrium N∗ > Nm as in Figure 2.4. The
dynamic behaviour of the population depends critically on the geometry of the intersec-
tion of the curves at N ∗ as seen from the inset enlargements in Figures 2.4(a), (b) and
(c): these respectively have −1 < f ′(N∗) < 0, f ′(N ∗) = −1 and f ′(N∗) < −1. The
solution Nt is oscillatory in the vicinity of N ∗. If the oscillations decrease in amplitude
and Nt → N∗ then N∗ is stable as in Figure 2.4(a), while it is unstable if the oscilla-
tions grow as in Figure 2.4(c). The case Figure 2.4(b) exhibits oscillations which are
periodic and suggest that periodic solutions to the equation Nt+1 = f (Nt ) are possible.
The steady state is strictly unstable if a small perturbation from N∗ does not tend to
zero. The population’s dynamic behaviour for each of the three cases in Figure 2.4 is
illustrated in Figure 2.5.

The parameter λ = f ′(N ∗), the eigenvalue of the equilibrium N∗ of Nt+1 =
f (Nt ), is crucial in determining the local behaviour about the steady state. The cases in
which the behaviour is clear and decisive are when 0 < λ < 1 as in Figure 2.3(a) and
−1 < λ < 0 and λ < −1 as in Figures 2.4(b) and (c) respectively. The equilibrium is
stable if −1 < λ < 1 and is said to be an attracting equilibrium. The critical bifurcation
values λ = ±1 are where the solution Nt changes its behavioural character. The case
λ = 1 is where the curve Nt+1 = f (Nt) is tangent to Nt+1 = Nt at the steady state
since f ′(N∗) = 1, and is called a tangent bifurcation for obvious reasons. The case

Figure 2.4. Local behaviour of Nt near a steady state where f ′(N∗) < 0. The enlargements show the cases
where (a) −1 < f ′(N∗) < 0, N∗ is stable with decreasing oscillations for any small perturbation from
the steady state. (b) f ′(N∗) = −1, N∗ is neutrally stable. (c) f ′(N∗) < −1, N∗ is unstable with growing
oscillations.
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Figure 2.5. Local behaviour of small perturbations about the equilibrium population N∗ with (a), (b), and
(c) corresponding to the situations illustrated in Figures 2.3 (a), (b) and (c) respectively: (a) is the stable case
and (c) the unstable case.

λ = −1 for reasons that will become clear used to be called a pitchfork bifurcation but
is now referred to as a period-doubling bifurcation.

The reason for the colourful description ‘cobwebbing’for this graphical procedure
is obvious from Figures 2.3, 2.4 and 2.6. It is an exceedingly useful procedure for sug-
gesting the dynamic behaviour of the population Nt for single equations of the type
(2.1). Although we have mainly concentrated on the local behaviour near an equilib-
rium it also gives the quantitative global behaviour. If the steady state is unstable, it
can presage the peculiar behaviour that solutions of such equations can exhibit. As an
example suppose λ = f ′(N∗) < −1; that is, the local behaviour near the unstable N∗
is as in Figure 2.4(c). If we now cobweb such a case we have a situation such as shown
in Figure 2.6. The solution trajectory cannot tend to N∗. On the other hand, the popu-
lation must be bounded by Nmax in Figure 2.6(a) since there is no way we can generate
a larger Nt although we could start with one. Thus the solution is globally bounded but
does not tend to a steady state. In fact it seems to wander about in a seemingly random

Figure 2.6. (a) Cobweb for Nt+1 = f (Nt ) where the eigenvalue λ = f ′(N∗) < −1. (b) The corresponding
population behaviour as a function of time.
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way if we look at it as a function of time in Figure 2.6(b). Solutions which do this are
called chaotic.

With the different kinds of solutions of models like (2.1), as indicated by the cob-
web procedure and the sensitivity hinted at by the special critical values of the eigen-
value λ, we must now investigate such equations analytically. The results suggested by
the graphical approach can be very helpful in the analysis.

2.3 Discrete Logistic-Type Model: Chaos

As a concrete example consider the nonlinear logistic-type model

ut+1 = rut (1 − ut ), r > 0, (2.11)

where we assume 0 < u0 < 1 and we are interested in solutions ut ≥ 0. From the
relation to the continuous differential equation logistic model the ‘r ’ here is strictly
‘1 + r ’. The steady states and corresponding eigenvalues λ are

u∗ = 0, λ = f ′(0) = r,

u∗ = r − 1

r
, λ = f ′(u∗) = 2 − r.

(2.12)

As r increases from zero but with 0 < r < 1 the only realistic, that is, non-
negative, equilibrium is u∗ = 0 which is stable since 0 < λ < 1. It is also clear from
a cobwebbing of (2.11) with 0 < r < 1 or analytically from equation (2.11) on noting
that u1 < u0 < 1 and ut+1 < ut for all t , which implies that ut → 0 as t → ∞.

The first bifurcation comes when r = 1 since u∗ = 0 becomes unstable since its
eigenvalue λ > 1 for r > 1, while the positive steady state u∗ = (r − 1)/r > 0, for
which −1 < λ < 1 for 1 < r < 3, is stable for this range of r . The second bifurcation
is at r = 3 where λ = −1. Here f ′(u∗) = −1, and so, locally near u∗, we have the
situation in Figure 2.4(b) which exhibits a periodic solution.

To see what is happening when r passes through the bifurcation value r = 3, let us
first introduce the following notation for the iterative procedure,






u1 = f (u0)

u2 = f ( f (u0)) = f 2(u0)
...

ut = f t(u0)

. (2.13)

With the example (2.11) the first iteration is simply the equation (2.11) while the
second iterate is

ut+2 = f 2(ut ) = r [rut (1 − ut )][1 − rut (1 − ut )]. (2.14)

Figure 2.7(a) illustrates the effect on the first iteration as r varies; the eigenvalue
λ = f ′(u∗) decreases as r increases and λ = −1 when r = 3. We now look at the
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t12

(a) (b)
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Figure 2.7. (a) First iteration as a function of r for ut+1 = rut (1−ut ): u∗ = (r −1)/r , λ = f ′(u∗) = 2−r.
(b) Sketch of the second iteration ut+2 = f 2(ut ) as a function of ut for r = 3 + ε where 0 < ε � 1. The
dashed line reproduces the first iteration curve of ut+1 as a function of ut ; it passes through B, the unstable
steady state. The curve is symmetric about ut = 1/2.

second iteration (2.14) and ask if it has any equilibria, that is, where ut+2 = ut = u∗
2.

A little algebra shows that u∗
2 satisfies

u∗
2[ru∗

2 − (r − 1)][r2u∗2

2 − r(r + 1)u∗
2 + (r + 1)] = 0 (2.15)

which has solutions

u∗
2 = 0 or u∗

2 = r − 1

r
> 0 if r > 1,

u∗
2 = (r + 1) ± [(r + 1)(r − 3)]1/2

2r
> 0 if r > 3.

(2.16)

We thus see that there are 2 more real steady states of ut+2 = f 2(ut ) with f (ut )

from (2.11) if r > 3. This corresponds to the situation in Figure 2.7(b) where A, B and
C are the positive equilibria u∗

2, with B equal to (r − 1)/r , lying between the two new
solutions for u∗

2 in (2.16) which appear when r > 3.
We can think of (2.14) as a first iteration in a model where the iterative time step

is 2. The eigenvalues λ of the equilibria can be calculated at the points A, B and C .
Clearly λB = f ′(u∗

B) > 1 from Figure 2.7(b) where u∗
B denotes u∗

2 at B and similarly
for A and C . For r just greater than 3, −1 < λA < 1 and −1 < λC < 1 as can be
seen visually or, from (2.14), by evaluating ∂ f 2(ut)/∂ut at u∗

Aand u∗
C given by the last

two solutions in (2.16). Thus the steady states, u∗
A and u∗

C , of the second iteration (2.14)
are stable. What this means is that there is a stable equilibrium of the second iteration
(2.14) and this means that there exists a stable periodic solution of period 2 of equation
(2.11). In other words if we start at A, for example, we come back to it after 2 iterations,
that is u∗

A+2 = f 2(u∗
A) but u∗

A+1 = f (u∗
A) �= u∗

A. In fact u∗
A+1 = u∗

C and u∗
C+1 = u∗

A.
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As r continues to increase, the eigenvalues λ at A and C in Figure 2.7(b) pass
through λ = −1 and so these 2-period solutions become unstable. At this stage we look
at the 4th iterate and we find, as might now be expected, that ut+4 as a function of ut will
have four humps as compared with two in Figure 2.7(b) and a 4-cycle periodic solution
appears. Thus as r passes through a series of bifurcation values the character of the
solution ut passes through a series of bifurcations, here in period doublingof the periodic
solutions. The bifurcation situation is illustrated in Figure 2.8(a). These bifurcations
when λ = −1 were originally called pitchfork bifurcations for obvious reasons from
the picture they generate in Figure 2.8(a). However, since it is only a pitchfork from the
point of view of two-cycles it is now called a period-doubling bifurcation. For example,
if 3 < r < r4, where r4 is the bifurcation value to a 4-period solution, then the periodic
solution is between the two u∗ in Figure 2.8(a) which are the intersections of the vertical
line through the r value and the curve of equilibrium states. Figure 2.8(b) is an example
of a 4-cycle periodic solution, that is, r4 < r < r8 with the actual ut values again given
by the 4 intersections of the curve of equilibrium states with the vertical line through
that value of r .

As r increases through successive bifurcations, every even p-periodic solution
branches into a 2p-periodic solution and this happens when r is such that the eigen-
value of the p-periodic solution passes through −1. The distance between bifurcations
in r -space gets smaller and smaller: this is heuristically plausible since higher order it-
erates imply more humps (compare with Figure 2.7(b)) all of which are fitted into the
same interval (0, 1). There is thus a hierarchy of solutions of period 2n for every n, and
associated with each, is a parameter interval in which it is stable. There is a limiting
value rc at which instability sets in for all periodic solutions of period 2n . For r > rc

all the original 2n-cycles are unstable. The behaviour is quite complex. For r > rc

odd cycles begin to appear and a simple 3-cycle eventually appears when r ≈ 3.828
and locally attracting cycles with periods k, 2k, 4k, . . . appear but where now k is odd.
Another stable 4-cycle, for example, shows up when r ≈ 3.96.

This critical parameter value rc in our model (2.11) is when odd period solutions
are just possible. When the third iterate has 3 steady states which are tangent to the line

(b)(a)u∗
1 1

0
1 2 3 r4 r8 4 r

ut

t

Figure 2.8. (a) Stable solutions (schematic) for the logistic model (2.11) as r passes through bifurcation
values. At each bifurcation, the previous state becomes unstable and is represented by the dashed lines. The
sequence of stable solutions has periods 2, 22, 23, . . . . (b) An example (schematic) of a 4-cycle periodic
solution where r4 < r < r8 where r4 and r8 are the bifurcation values for 4-period and 8-period solutions
respectively.
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1
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Figure 2.9. Schematic third iterate ut+3 = f 3(ut ) for (2.11) at r = rc, the parameter value where the three
steady states A, B and C all have eigenvalue λ = 1. The curve is symmetric about ut = 1/2.

ut+3 = ut , that is, the eigenvalue λ = 1 at these steady states of ut+3 = f 3(ut ), we
have a 3-cycle. This situation is shown schematically in Figure 2.9. For the model (2.11)
the critical r ≈ 3.828.

Sarkovskii (1964) published an important paper on one-dimensional maps, which
has dramatic practical consequences, and is directly related to the situation in Figure 2.9.
He proved, among other things, that if a solution of odd (≥ 3) period exists for a value r3
then aperiodic or chaotic solutions exist for r > r3. Such solutions simply oscillate in an
apparently random manner. The bifurcation here, at r3, is called a tangent bifurcation:
the name is suggestive of the situation illustrated in Figure 2.9. Figure 2.10 illustrates
some solutions for the model equation (2.4) for various r , including chaotic examples
in Figures 2.10(d) and (f). Note the behaviour in Figure 2.10(f), for example: there is
population explosion, crashback and slow recovery.

Sarkovskii’s theorem was further extended by Stefan(1977). Li and Yorke’s (1975)
result, namely, that if a period 3 solution exists then solutions of period n exist for all
n ≥ 1, is a special case of Sarkovskii’s theorem.

Although we have concentrated here on the logistic model (2.11) this kind of
behaviour is typical of difference equation models with the dynamics like (2.1) and
schematically illustrated in Figure 2.2; that is, they all exhibit bifurcations to higher
periodic solutions eventually leading to chaos.

Figures 2.10(d)–(f) illustrate an interesting aspect of the paths to chaos. As r in-
creases from its value giving the aperiodic solution in Figure 2.10(d) we again get pe-
riodic solutions, as in Figure 2.10(e). For larger r , aperiodic solutions again appear as
in Figure 2.10(f). So as r increases beyond where chaos first appears there are windows
of parameter values where the solution behaviour is periodic. There are thus parameter
windows of periodicity interlaced with windows of aperiodicity. Figure 2.11 shows a
typical figure obtained when the iterative map is run after a long time, the order of sev-
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Figure 2.10. Solutions ut of the model system ut+1 = ut exp [r(1 − ut )] for various r . Here the first bifur-
cation to periodicity occurs at r = 2. The larger the parameter r , the larger the amplitude of the oscillatory
solution. (a), (b), and (c) exhibit 2-, 4- and 8-cycle periodic solutions, (d) and (f) chaotic behaviour and (e) a
3-cycle solution.

eral thousand iterations, and then run for many more iterations during which the values
ut were plotted.

Refer now to Figure 2.11 and consider the effect on the solutions of increasing r .
For r2 < r < r4 the solution ut simply oscillates between the two points, A and B,
for example, which are the intersections of a vertical line through the r -value. For
r4 < r < r8, ut exhibits a 4-period solution with the values again given by the in-
tersection of the curves with the vertical line through the r -value as shown. For values
of rc < r < rp the solutions are chaotic. For a small window of r -values greater than rp

the solutions again exhibit regular periodic solutions after which they are again aperi-
odic. The sequence of aperiodicity–periodicity–aperiodicity is repeated. If we now look
at the inset which is an enlargement of the small rectangle, we see the same sequence of
bifurcations repeated in a fractal sense. A brief introduction to fractals is given in Chap-
ter 14, and a short discussion of them in a biological context in Chapter 3, Section 3.9.
The elegant book by Peitgen and Richter (1986) shows a colourful selection of spec-
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Figure 2.11. Long time asymptotic iterates for the discrete equation xt+1 = xt + r xt (1 − xt ) for 1.9 <

r < 3. By a suitable rescaling, (ut = [r/(r + 1)]xt , ‘r ’ = 1 + r), this can be written in the form (2.11).
These are typical of discrete models which exhibit period doubling and eventually chaos and the subsequent
path through chaos. Another example is that used in Figure 2.10; see text for a detailed explanation. The
enlargement of the small window (with a greater magnification in the r -direction than in the xt direction)
shows the fractal nature of the bifurcation sequences. (Reproduced with permission from Peitgen and Richter
1986; some labelling has been added)

tacular figures and fractal sequences which can arise from discrete models, particularly
with two-dimensional models: we discuss a practical application in Chapter 5.

There is increasing interest and a large amount of research going on in chaotic
behaviour related to what we have been discussing, much of it prompted by new and
potential applications in a variety of different fields. In the popular press it is now re-
ferred to as chaos theory or the new(!) nonlinear theory. (There is nothing like a really
immediately recognisable name to get the public’s attention; catastrophe theory and
fractal theory are others.) The interest is not restricted to discrete models of course: it
was first demonstrated by a system of ordinary differential equations—the Lorenz sys-
tem (Lorenz 1963: see Sparrow 1982, 1986 for a review). This research into chaos has
produced many interesting and unexpected results associated with models such as we
have been discussing here, namely, those which exhibit periodic doubling. For example,
if r2, r4, . . . r2n, . . . is the sequence of period doubling bifurcation values, Feigenbaum
(1978) proved that

lim
n→∞

r2(n+1) − r2n

r2(n+2) − r2(n+1)

= δ = 4.66920 . . . .
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He showed that δ is a universal constant; that is, it is the value for the equivalent ratio for
general iterative maps of the form ut+1 = f (ut ), where f (ut ) has a maximum similar
to that in Figure 2.2, and which exhibit period doubling.

A useful, practical and quick way to show the existence of chaos has been given by
Li et al. (1982). They proved that if, for some ut and any f (ut ), an odd integer n exists
such that

f n(ut ; r) < ut < f (ut ; r)

then an odd periodic solution exists, which thus implies chaos. For example, with

ut+1 = f (ut ; r) = ut exp [r(1 − ut )]

if r = 3.0 and u0 = 0.1, a computation of the first few terms shows

u7 = f 5(u2) < u2 < f (u2) = u3,

that is, n = 5 in the above inequality requirement. Hence this f (ut ; r) with r = 3 is
chaotic.

2.4 Stability, Periodic Solutions and Bifurcations

All relevant population models involve at least one parameter, r say. From the above
discussion, as this parameter varies the solutions of the general model equation

ut+1 = f (ut ; r), (2.17)

will usually undergo bifurcations at specific values of r . Such bifurcations can be to
periodic solutions with successively higher periods ultimately generating chaotic solu-
tionsfor r greater than some finite critical rc. From the graphical analysis such bifurca-
tions occur when the appropriate eigenvalues λ pass through λ = 1 or λ = −1. Here we
discuss some analytical results associated with these bifurcations. For algebraic simplic-
ity we shall often omit the r in f (ut ; r) (unless we want to emphasise a point) by writing
f (ut ) but the dependence on a parameter will always be understood. The functions f
we have in mind are qualitatively similar to that illustrated in Figure 2.2.

The equilibrium points or fixed points of (2.17) are solutions of

u∗ = f (u∗; r) ⇒ u∗(r). (2.18)

To investigate the linear stability of u∗ we write, in the usual way,

ut = u∗ + vt , | vt | � 1. (2.19)

Substituting this into (2.17) and expanding for small vt , using a Taylor expansion, we
get
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u∗ + vt+1 = f (u∗ + vt )

= f (u∗) + vt f ′(u∗) + O(v2
t ), | vt | � 1.

Since u∗ = f (u∗) the linear (in vt ) equation which determines the linear stability of u∗
is then

vt+1 = vt f ′(u∗) = λvt , λ = f ′(u∗),

where λ is the eigenvalue of the first iterate (2.17) at the fixed point u∗. The solution is

vt = λtv0 →
{

0
±∞ as t → ∞ if |λ |

{
< 1
> 1

.

Thus

u∗ is

{
stable
unstable

if

{−1 < f ′(u∗) < 1
| f ′(u∗) | > 1

. (2.20)

If u∗ is stable, any small perturbation from this equilibrium decays to zero, monotoni-
cally if 0 < f ′(u∗) < 1, or with decreasing oscillations if −1 < f ′(u∗) < 0. On the
other hand, if u∗ is unstable any perturbation grows monotonically if f ′(u∗) > 1, or
by growing oscillations if f ′(u∗) < −1. This is all as we deduced before by graphical
arguments.

As an example, the rescaled model (2.8) is

ut+1 = ut exp [r(1 − ut )], r > 0. (2.21)

Here the steady states are

u∗ = 0 or 1 = exp [r(1 − u∗)] ⇒ u∗ = 1. (2.22)

Thus the corresponding eigenvalues are

λu∗=0 = f ′(0) = er > 1 for r > 0,

so u∗ = 0 is unstable (monotonically), and

λu∗=1 = f ′(1) = 1 − r. (2.23)

Hence u∗ = 1 is stable for 0 < r < 2 with oscillatory return to equilibrium if 1 <

r < 2. It is unstable by growing oscillations for r > 2. Thus r = 2 is the first bifurcation
value. On the basis of the above we expect a periodic solution to be the bifurcation from
u∗ = 1 as r passes through the bifurcation value r = 2. For | 1 − ut | small (2.21)
becomes

ut+1 ≈ ut [1 + r(1 − ut )]
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which is exactly the form simulated in Figure 2.11. If we write it in the form

Ut+1 = (1 + r)Ut [1 − Ut ], where Ut = rut

1 + r
,

we get the same as the logistic model (2.11) with r + 1 in place of r . There we saw that
a stable periodic solution with period 2 appeared at the first bifurcation. With example
(2.21) the next bifurcation, to a 4-periodic solution, occurs at r = r4 ≈ 2.45 and a
6-periodic one at r = r6 ≈ 2.54 with aperiodic or chaotic behaviour for r > rc ≈ 2.57.
The successive bifurcation values of r for period doubling again become progressively
closer. The sensitivity of the solutions to small variations in r > 2 is quite severe in this
model: it is in most of them in fact, at least for the equivalent of r beyond the first few
bifurcation values.

After t iterations of u0, ut = f t (u0), using the notation defined in (2.13). A trajec-
tory or orbit generated by u0 is the set of points {u0, u1, u2, . . . } where

ui+1 = f (ui ) = f i+1(u0), i = 0, 1, 2, . . . .

We say that a point is periodic of period m or m-periodic if

f m(u0; r) = u0

f i (u0; r) �= u0 for i = 1, 2, . . . , m − 1
(2.24)

and that u0, a fixed point of the mapping f m in (2.24), is a period-m fixed point of the
mapping f in (2.17). The points u0, u1, . . . , um−1 form an m-cycle.

For the stability of a fixed point (solution) we require the eigenvalue; for the equi-
librium state u∗ it was simply f ′(u∗). We now extend this definition to an m-cycle of
points u0, u1, . . . , um−1. For convenience, introduce

F(u; r) = f m(u; r), G(u; r) = f m−1(u; r).

Then the eigenvalue λm of the m-cycle is defined as

λm = ∂ f m(u; r)

∂u

]

u=ui

i = 0 or 1 or 2 or . . . m − 1, (2.25)

= F ′(ui ; r)

= f ′(G(ui ; r))G ′(ui ; r)

= f ′(ui−1; r)G ′(ui ; r)

= f ′(ui−1; r)

[
∂ f m−1(ui ; r)

∂u

]

u=ui

and so

λm =
m−1∏

i=0

f ′(ui ; r), (2.26)

which shows that the form (2.25) is independent of i .



62 2. Discrete Population Models for a Single Species

In summary then, a bifurcation occurs at a parameter value r0 if there is a qualitative
change in the dynamics of the solution for r < r0 and r > r0. From the above discussion
we now expect it to be from one periodic solution to another with a different period. Also
when the sequence of even periods bifurcates to an odd-period solution the Sarkovskii
(1964) theorem says that cycles of every integer period exist, which implies chaos.
Bifurcations with λ = −1 are the period-doubling bifurcations while those with λ = 1
are the tangent bifurcations.

Using one of the several computer packages currently available which carry out al-
gebraic manipulations, it is easy to calculate the eigenvalues λ for each iterate and hence
generate the sequence of bifurcation values r using (2.25) or (2.26). There are system-
atic analytic ways of doing this which are basically extensions of the above; see, for ex-
ample, Gumowski and Mira (1980). There are also several approximate methods such as
that by Hoppensteadt and Hyman (1977). Since we are mentioning books here, that by
Strogatz (1994) is an excellent introductory text. You get some idea of the early interest
in chaosfrom the collection of reprints, put together by Cvitanović (1984), of some of
the frequently quoted papers, and the book of survey articles edited by Holden (1986);
in chemistry, the book by Scott (1991) is a good starting point. Chaos can also be used
to mask secret messages by superimposing on the message a chaotic mask, the chaos
model being available only to the sender and the recipient, who, on receiving the mes-
sage unmasks the chaos element. Strogatz (1994) discusses this in more detail. These
illustrate only very few of the diverse areas in which chaos has been found and studied.

2.5 Discrete Delay Models

All of the discrete models we have so far discussed are based on the assumption that
each member of the species at time t contributes to the population at time t + 1: this
is implied by the general form (2.1), or (2.17) in a scaled version. This is of course
the case with most insects but is not so with many other animals where, for example,
there is a substantial maturation time to sexual maturity. Thus the population’s dynamic
model in such cases must include a delay effect: it is, in a sense, like incorporating an
age structure. If this delay, to maturity say, is T time-steps, then we are led to study
difference delay models of the form

ut+1 = f (ut , ut−T ). (2.27)

In the model for baleen whales, which we discuss below, the delay T is of the order of
several years.

To illustrate the problems associated with the linear stability analysis of such mod-
els and to acquire a knowledge of what to expect from delay equations we consider the
following simple model, which, even so, is of practical interest.

ut+1 = ut exp [r(1 − ut−1)], r > 0. (2.28)

This is a delay version of (2.21). The equilibrium states are again u∗ = 0 and u∗ = 1.
The steady state u∗ = 0 is unstable almost by inspection; a linearisation about u∗ = 0
immediately shows it.
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We linearise about u∗ = 1 by setting, in the usual way,

ut = 1 + vt , | vt | � 1

and (2.28) then gives

1 + vt+1 = (1 + vt ) exp [−rvt−1] ≈ (1 + vt )(1 − rvt−1)

and so

vt+1 − vt + rvt−1 = 0. (2.29)

We look for solutions of this difference equation in the form

vt = zt ⇒ z2 − z + r = 0

which gives two values for z, z1 and z2, where

z1, z2 = 1

2
[1 ± (1 − 4r)1/2], r <

1

4
, z1, z2 = ρe±iθ , r >

1

4
(2.30)

with

ρ = r1/2, θ = tan−1(4r − 1)1/2, r >
1

4
.

The solution of (2.29), for which the characteristic equation is the quadratic in z, is then

vt = Azt
1 + Bzt

2, (2.31)

where A and B are arbitrary constants.
If 0 < r < 1/4, z1 and z2 are real, 0 < z1 < 1, 0 < z2 < 1 and so from (2.31),

vt → 0 as t → ∞ and hence u∗ = 1 is a linearly stable equilibrium state. Furthermore
the return to this equilibrium after a small perturbation is monotonic.

If r > 1/4, z1 and z2 are complex with z2 = z1, the complex conjugate of z1. Also
z1z2 = | z1 |2 = ρ2 = r . Thus for 1/4 < r < 1, | z1 || z2 | < 1. In this case the solution
is

vt = Azt
1 + Bzt

1

and, since it is real, we must have B = A and so, with (2.30), the real solution

vt = 2| A |ρ t cos(tθ + γ ), γ = arg A, θ = tan−1(4r − 1)1/2. (2.32)

As r → 1, θ → tan−1
√

3 = π/3.
As r passes through the critical rc = 1, | z1 | > 1 and so vt grows unboundedly with

t → ∞ and u∗ is then unstable. Since θ ≈ π/3 for r ≈ 1 and vt ≈ 2| A | cos(tπ/3+γ ),
which has a period of 6, we expect the solution of (2.28), at least for r just greater than
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Figure 2.12. Solutions of the delay
difference equation (2.28), ut+1 = ut
exp[r(1 − ut−1)] for three values of
r > rc = 1. (a) r = 1.02. This shows the
6-period solution which bifurcates off the
steady state at r = rc. (b) r = 1.1. Here,
elements of a 6-cycle still exist but these are
lost in (c), where r = 1.4.

rc(= 1), to exhibit a 6-cycle periodic solution. Figure 2.12 illustrates the computed
solution for three values of r > 1. In Figure 2.12(b) there are still elements of a 6-
cycle, but they are irregular. In Figure 2.12(c) the element of 6-periodicity is lost and
the solution becomes more spikelike, often an early indication of chaos.

In the last chapter we saw how delay had a destabilising effect and it increased with
increasing delay. It has a similar destabilising effect in discrete models as is clear from
comparing the r -values in Figures 2.10 and 2.12. In the former, the critical rc = 2 and
the solution bifurcates to a 2-period solution, whereas in the latter delay case the critical
rc = 1 and bifurcation is to a 6-period solution. Again, the longer the delay the greater
the destabilising effect. This is certainly another reason why the modelling and analysis
in the following example gave cause for concern. Higher period solutions are often
characterised by large population swings and if the crash-back to low population levels
from a previous very high one is sufficiently severe, extinctionis a distinct possibility.
Section 2.7 briefly discusses a possible path to extinction.

To conclude this section we briefly describe a practical model used by the Inter-
national Whaling Commission (IWC) for the baleen whale. The aim of the IWC is to
manage the whale population for a sustained yield, prevent extinction, and so on. The
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commercial and cultural pressures on the IWC are considerable. To carry out its charter
requirements in a realistic way it must understand the dynamics of whale population
growth and its ecology.

A model for the now protected baleen whale which the IWC used is based on the
discrete-delay model for the population Nt of sexually mature whales at time t ,

Nt+1 = (1 − µ)Nt + R(Nt−T ). (2.33)

Here (1 − µ)Nt , with 0 < µ < 1, is the surviving fraction of whales that contribute
to the population a year later and R(Nt−T ) is the number which augments the adult
population from births T years earlier. The delay T is the time to sexual maturity and is
of the order of 5–10 years. This model assumes that the sex ratio is 1 and the mortality
is the same for each sex. The crux of the model is the form of the recruitment term
R(Nt−T ) which in the IWC model (see, for example, IWC 1979) is

R(N ) = 1

2
(1 − µ)T N

{
P + Q

[
1 −

(
N

K

)z]}
. (2.34)

Here K is the unharvested equilibrium density, P is the per capita fecundity of females
at N = K with Q the maximum increase in the fecundity possible as the population
density falls to low levels, and z is a measure of the severity with which this density
is registered. Finally 1 − µ is the probability that a newborn whale survives each year
and so (1 −µ)T is the fraction that survives to adulthood after the required T years: the
1/2 is because half the whales are females and so the fecundity of the females has to
be multiplied by N/2. This specific model has been studied in detail by Clark (1976a).
Further models in fisheries management generally, are discussed by Getz and Haight
(1989).

The parameters µ, T and P in (2.33) and (2.34) are not independent. The equilib-
rium state is

N∗ = Nt+1 = Nt = Nt−T = K ⇒ µ = 1

2
(1 − µ)T P = h (2.35)

which, as well as defining h, relates the fecundity P to the mortality µ and the delay T .
Independent measurement of these gives a rough consistency check. If we now rescale
the model with ut = Nt/K , (2.33), with (2.34), becomes

ut+1 = (1 − µ)ut + hut−T [1 + q(1 − uz
t−T )], (2.36)

where h is defined in (2.35) and q = Q/P . Linearising about the steady state u∗ = 1
by writing ut = 1 + vt the equation for the perturbation is

vt+1 = (1 − µ)vt + h(1 − qz)vt−T . (2.37)

On setting vt ∝ st ,

sT +1 − (1 − µ)sT + h(qz − 1) = 0, (2.38)
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which is the characteristic equation. The steady state becomes unstable when | s | > 1.
Here there are 4 parameters µ, T , h, and qz and the analysis centres around a study
of the roots of (2.38); see the paper by Clark (1976b). Although they are complicated,
we can determine the conditions on the parameters such that | s | < 1 by using the Jury
conditions (see Appendix B). The Jury conditions are inequalities that the coefficients of
a real polynomial must satisfy for the roots to have modulus less than 1. For polynomials
of order greater than about 4, the conditions are prohibitively unwieldy. When | s | > 1,
as is now to be expected, solutions of (2.33) exhibit bifurcations to periodic solutions
with progressively higher periods ultimately leading to chaos; the response parameter z
is critical.

Chaos and Data

Chaos is not really a particularly good name for the seemingly random chaotic be-
haviour exhibited by the solutions of deterministic equations such as we have been
discussing. When we look at complex experimental data and seek to model it with a
simple model we are implying that the underlying mechanism is actually quite simple.
So, when confronting real data it is important to know whether or not the random nature
is truly stochastic or chaotic in the deterministic sense here. Not surprisingly this turns
out to be a difficult and controversial problem. Although we may have some biological
insight as to what the mechanism might be governing the process and generating the
data it is unlikely we shall know it with sufficient certainty to be able to write down an
exact model for the mechanism. There are several methods which have been developed
to try to determine whether or not the data are stochastic or deterministically chaotic but
none is foolproof.

To appreciate the difficulty suppose we have data points, Nt say, which measure
some population at discrete times, t . If we plot Nt against Nt+1 and we obtain a rel-
atively smooth curve, say, one qualitatively like that in Figure 2.2, then it would be
reasonable to suggest a deterministic model for the generating mechanism, namely, a
model such as we have discussed here which can give rise to deterministic chaos. In
other words, we are finding a qualitative form for the f (Nt ) in (2.1). However, if it does
not give any sort of reasonable curve we cannot deduce that the underlying mechanism
is not deterministic. For example, in this section we saw that delay can be involved quite
naturally in a renewal process. In that case perhaps we could do a three-dimensional plot
with Nt−1 and Nt against Nt+1. If a relatively smooth surface results then it could be a
deterministic mechanism. Once again if it still gives a random number of points in this
space it again does not necessarily point to a nondeterministic model since the relation-
ship between Nt and Nt+1, or indeed Nt−1 or any other population value at earlier times
might simply be a more complex discrete model or involve more than one delay. The
choices are almost unlimited when seeking to determine the relationship from data.

A sound knowledge of the biology can, of course, considerably reduce the number
of possibilities. So, one approach is, for example, to try to determine a plausible model
a priori and, if it seems that only Nt and Nt+1 say, are involved at any time-step then
the data can sometimes be used to determine the quantitative details of the functional
relationship between the Nt and Nt+1. A surprisingly successful example of this arose
in the unlikely area of marital interaction and divorce prediction which we discuss in
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Chapter 5; see Cook et al. (1995) and the book by Gottman et al. (2002) on a general
theory of marriage. Here discrete coupled equations constitute the preliminary model.

A totally different example of how chaotic solutions of discrete equations can give
insight into a biological process is given by Cross and Cotton (1994). We discuss the
problem and their model and analysis below in Section 2.8.

2.6 Fishery Management Model

Discrete models have been used in fishery management for some considerable time.
They have often proven to be useful in evaluating various harvesting strategies with a
view to optimising the economic yield and to maintaining it. However, the comments
made at the end of Section 1.6 in Chapter 1 should very much be kept in mind. Just a few
of the relevant books on management strategies are those by Clark (1976b, 1985, 1990),
Goh (1982), Getz and Haight (1989), Hilborn and Mangel (1997), the series of papers
edited by Cohen (1987) and appropriate sections in the collection of articles edited by
Levin (1994). The following model is applicable, in principle, to any renewable resource
which is harvested; the detailed analysis applies to any population whose dynamics can
be described by a discrete model.

Suppose that the population density is governed by Nt+1 = f (Nt) in the absence
of harvesting. If we let ht be the harvest taken from the population at time t , which
generates the next population at t + 1, then a model for the population dynamics is

Nt+1 = f (Nt ) − ht . (2.39)

The questions we address here are: (i) What is the maximum sustained biological yield?
(Compare with Section 1.5 in Chapter 1.) (ii) What is the maximum economic yield?

In equilibrium, Nt = N∗ = Nt+1, ht = h∗ where, from (2.39),

h∗ = f (N∗) − N∗. (2.40)

The maximum sustained steady state yield YM is when N∗ = NM where

∂h∗

∂N∗ = 0 ⇒ f ′(N∗) = 1 and YM = f (NM) − NM . (2.41)

The only situation of interest of course is when YM ≥ 0.
A management strategy could be simply to maintain the population so as to get the

maximum yield YM . Since it is hard to know what the actual fish population is, this can
be difficult to accomplish. What is known is the actual yield and how much effort has
gone into getting it. So it is better to formulate the optimization problem in terms of
yield and effort.

Let us suppose that a unit effort to catch fish results in a harvest cN from a pop-
ulation N . The constant c is the ‘catchability’ parameter which is independent of the
population density N . Then the effort to reduce N by 1 unit is 1/cN and f (N ) by 1
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unit is 1/(c f (N )). Thus the effort EM to provide for a yield

YM = f (NM) − NM is EM =
f (NM )∑

Ni =NM

(cNi )
−1.

Now if cN is large compared with 1 unit, we can approximate the summation in the last
equation by an integral and so

EM ≈ 1

c

∫ f (NM )

NM

N−1d N = 1

c
ln

{
f (NM)

NM

}
. (2.42)

The two equations (2.41) and (2.42) give the relation between EM and YM parametri-
cally in NM .

As an example suppose the unharvested dynamics is governed by Nt+1 = f (Nt ) =
bNt/(a + Nt ) with 0 < a < b; then

NM : 1 = f ′(NM) = ab

(a + NM)2 ⇒ NM = a1/2(b1/2 − a1/2).

Substituting this into (2.41) and (2.42) gives

YM = bNM

(a + NM )
− NM , EM = 1

c
ln

{
b

(a + NM )

}
. (2.43)

In this example we can get an explicit relation between YM and EM , on eliminating
NM , as

YM = [b exp (−cEM) − a][exp (cEM) − 1]. (2.44)

Figure 2.13(a) illustrates the YM −EM relation. Using this, a crucial aspect of a manage-
ment strategy is to note that if an increase in effort reduces the yield, then the maximum

YM

Yc

Yc

0 0
Ec Ec EMEM Er

R(EM)

YM (EM)

Yr

(a) (b)

Figure 2.13. (a) The yield–effort relation (schematic) for the maximum sustained yield with the model dy-
namics Nt+1 = bNt /(a + Nt ), 0 < a < b. (b) The maximum revenue R as a function of the effort E as
compared with the YM − EM curve.
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sustained yield is exceeded, and the effort has to be reduced so that the population
can recover. The effort can subsequently be retuned to try to achieve Yc with Ec in
Figure 2.13(a), both of which can be calculated from (2.44). This analysis is for the
maximum sustained biological yield. The maximum economic yield must include the
price for the harvest and the cost of the effort. As a first model we can incorporate these
in the expression for the economic return R = pYM − k EM where p is the price per
unit yield and k is the cost per unit effort. Using (2.43) for YM(NM ) and EM(NM) we
thus have R(NM) which we must now maximise. We thus get a curve for the maximum
revenue R as a function of the effort E ; it is illustrated in Figure 2.13(b).

Such ‘model’ results must not be taken too seriously unless backed up by experi-
mental observation. They can, however, give some important qualitative pointers. Our
analysis here has been based on the fact that the harvested population has a steady state.
Fish, in particular, have a high per capita growth rate which, in the detailed models we
have analysed, is related to the parameter r . We would expect, therefore, that the fish
population would exhibit periodic fluctuations and this is known to be the case. It is
possible that the growth rate is sufficiently high that the behaviour may, in some cases,
be in the chaotic regime. Since harvesting is, in a sense, an effective lowering of the
reproduction rate it is feasible that it could have a stabilising effect, for example, from
the chaotic to the periodic or even to a steady state situation.

2.7 Ecological Implications and Caveats

A major reason for modelling the dynamics of a population is to understand the prin-
ciple controlling features and to be able to predict the likely pattern of development
consequent upon a change of environmental parameters. In making the model we may
have, to varying degrees, a biological knowledge of the species and observational data
with which to compare the results of the analysis of the model. It may be helpful to
summarise what we can learn about a population’s dynamics from the type of models
we have considered and to point out a few of their difficulties and limitations.

When a plausible model for a population’s growth dynamics has been arrived at,
the global dynamics can be determined. Using graphical methods the changes in the
solutions as a major environment parameter varies can also be seen. From Figure 2.4,
for example, we see that if we start with a low population, it simply grows for a while,
then it can appear to oscillate quasi-regularly and then settle down to a constant state,
or exhibit periodic behaviour or just oscillate in a seemingly random way with large
populations at one stage and crash to very low densities in the following time-step.
Whatever the model, as long as it has a general form such as in Figure 2.6 the population
density is always bounded.

This seemingly random dynamics poses serious problems from a modelling point
of view. Are the data obtained which exhibit this kind of behaviour generated by a
deterministic model or by a stochastic situation? It is thus a problem to decide which is
appropriate and it may not actually be one we can resolve in a specific situation. What
modelling can do, however, is to point to how sensitive the population dynamics can be
to changes in environmental parameters, the estimation of which is often difficult and
usually important.
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The type of dynamics exhibited with f (Nt) such as in Figure 2.6, shows that the
population is always bounded after a long time by some maximum Nmax and minimum
Nmin: the first few iterations can lie below Nmin if N0 is sufficiently small. With Fig-
ure 2.6 in mind the maximum Nmax is given by the first iteration of the value where
Nt+1 = f (Nt) has a maximum, Nm say. That is,

d f

d Nt
= 0 ⇒ Nm, Nmax = f (Nm).

The minimum Nmin is then the first iterative of Nmax, namely,

Nmin = f (Nmax) = f ( f (Nm)) = f 2(Nm). (2.45)

These ultimately limiting population sizes are easy to work out for a given model. For
example, with

Nt+1 = f (Nt ) = Nt exp

[
r

(
1 − Nt

K

)]
, f ′(Nt ) = 0 ⇒ Nm = K

r

Nmax = f (Nm) = K

r
er−1,

Nmin = f ( f (Nm)) = K

r
exp [2r − 1 − er−1].

(2.46)

With a steeply decreasing behaviour of the dynamics curve Nt+1 = f (Nt) for
Nt > Nm , the possibility of a dramatic drop in the population to low values close to
Nmin brings up the question of extinction of a species. If the population drops to a value
Nt < 1 the species is clearly extinct. In fact extinction is almost inevitable if Nt drops
to low values. At this stage a stochastic model is required. However an estimate of
when the population drops to 1 or less, and hence extinction, can be obtained from the
evaluation of Nmin for a given model. The condition is, using (2.45),

Nmin = f 2(Nm) ≤ 1,
d f

d N

∣
∣∣
∣
N=Nm

= 0. (2.47)

With the example in (2.46) this condition is

K

r
exp [2r − 1 − er−1] ≤ 1.

So if r = 3.5 say, and if K < 1600 approximately, the population will eventually
become extinct.

An important phenomenon is indicated by the analysis of this model (2.46); the
larger the reproduction parameter r the smaller is Nmin and the more likelihood of a
population crash which will make the species extinct. Note also that it will usually
be the case that the population size immediately before the catastrophic drop is large.
With the above example if r = 3.5 it is almost 3500, from (2.46). An interesting and
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potentially practical application of the concept of extinctionis that of introducing sterile
species of a pest to try to control the numbers; see Exercise 6 below. The high cost of
such a procedure, however, is often prohibitive.

An important group of models not specifically discussed up to now but which come
into the general class (2.1) is those which exhibit the Allee effect. Biological populations
which show this effect decrease in size if the population falls below a certain threshold
level Nc say. A typical density-dependent population model which illustrates this is
shown in Figure 2.14. If we start with a population, N0 say, such that f 2(N0) < Nc

then Nt → 0. Such models usually arise as a result of predation. The continuous time
model for the budworm equation (1.6) in Chapter 1, has such a behaviour. The region
Nt < Nc is sometimes called the predation pit. Here Nt = 0, Nc, N∗ are all steady
states with Nt = 0 stable, Nc unstable and N ∗ stable or unstable depending on f ′(N∗)
in the usual way. With this type of dynamics, extinction is inevitable if Nt < Nc, irre-
spective of how large Nc may be. Models which show an Allee effect display an even
richer spectrum of behaviour than those we considered above, namely, all of the exotic
oscillatory behaviour plus the possibility of extinction if any iterate f m(Nt) < Nc for
some m.

The implications from nonlinear discrete models such as we have considered in
this chapter rely crucially on the biological parameters obtained from an analysis of
observational data. Southwood (1981) discussed, among other things, these population
parameters and presented hard facts about several species. Hassell et al. (1976) have
analysed a large number of species life data and fitted them to the model Nt+1 =
f (Nt ) = r Nt/(1 + aNt )

b with r , a and b positive parameters; see also the book by
Kot (2001). With b > 1 this f (Nt) has one hump like those in Figure 2.2. For example,
the Colorado beetle is well within the stable periodic regime while Nicholson’s (1954)
blowflies could be in the chaotic regime.

Finally, it should be emphasised here that the richness of solution behaviour is a
result of the nonlinearity of these models. It is also interesting that many of the qualita-

Nt+1

0
Nc N0 N∗ Nt

Nt+1 = f (Nt)

Nt+1 = Nt

Figure 2.14. A population model which exhibits the Allee effect, whereby if the population Nt < Nc at any
time t then Nt → 0, that is, extinction.
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tive features can be found by remarkably elementary methods even though they present
some sophisticated and challenging mathematical problems.

2.8 Tumour Cell Growth

Cross and Cotton (1994) discuss a problem in pathology, in which the data are given for
a population, denoted by Nt , consisting of tumour cells. In their analysis they chose the
simple logistic form given by (2.5) with K = 1, namely,

Nt+1 = r Nt (1 − Nt ), (2.48)

where r reflects the growth rate of the tumour cells. The normalisation of Nt to 1 means
that Nt is the fraction of the total population of cells that can be sustained in the cell cul-
ture container. We know from the analysis in Sections 2.2 through 2.4 that for r < 3 the
population Nt simply increases until it reaches its steady state (r − 1)/r , which it does
relatively quickly if N0 is not too small: for example, if N0 = 0.001 and r = 2 the popu-
lation roughly doubles with each time-step. For r > 3 periodic solutions appear, eventu-
ally giving rise to chaos for r > rc. With r in the chaotic regime the population of cells
at any time, t , would depend critically on the initial conditions. Figure 2.15 illustrates
typical population growth for different values of r . In Figure 2.15(b) Nt approaches a
periodic solution but in the early stages also exhibits a quasi-sigmoidal growth curve.
In Figure 2.15(c) the solution is chaotic.

Suppose multi-clonality is included in the model with the various cell clones having
different initial populations. Let us further suppose that their growth rates are different
but all with an r > rc and so they all exhibit chaotic behaviour. A major pathologi-
cal interest is in the total size of the tumour, that is, the total number of cells. Cross
and Cotton (1994) considered first 5 clones and summed their populations to obtain
the total population. A typical result is illustrated in Figure 2.16(a). We begin to see
the beginning of a smoothing of the chaotic behaviour and the tentative appearance of
the sigmoidlike character of the population in Figure 2.15(a). When they included 200
clones the smoothing effect was much more pronounced as illustrated in Figure 2.16(b).
Multi-clonality is common in tumour growth and data exhibit growth patterns such as
in Figure 2.16(b). With this simple example it is clear that multi-clonality could obscure
an underlying deterministic chaos. There are gross assumptions in this model such as
assuming that the growth parameter r is constant for each clone for all time. Modelling
how cell division varies with time is an interesting problem in its own right because
of the transition from discrete division to essential continuous division for an initial
group of new cells. It was discussed by Murray and Frenzen (1986). A varying growth
parameter in the multi-clone situation suggests that an age-structured model might be
more appropriate. It would be interesting to investigate the growth characteristics of a
multi-clone system with age structure with each clone in the chaotic growth regime and
how variable growth rates and age structure could manifest themselves in experimental
observations.

Many biological processes are chaotic, or if not strictly chaotic in the sense here, at
the least stochastic, but nevertheless when seen in neurology, pathology and physiology,
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Figure 2.15. Starting with the same initial populations the graphs display typical cell growth curves—
sigmoidal growth curves for various r : (a) 0 < r < 3, (b) 3 < r < rc. For r > rc we get typical chaotic
behaviour (see also Figure 2.16). Initial value: N0 = 10−6.
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Figure 2.16. Total mean population fraction Nt with (a) 5 clones and (b) 200 clones; r = 3.98 (> rc). The
chaotic smoothing is greater the larger the number of clones, each of which individually exhibits deterministic
chaos. The initial conditions were N0 = 10−6 times a random number. (These curves are equivalent to those
in Cross and Cotton 1994.)
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for example, seem to exhibit considerable order. A recent review of the possible connec-
tion with epilepsy is given by Iasemidis and Sackellares (1996). Among other things,
one reason they feel it is of relevance is that in many chaotic sytems there are sharply in-
termittent transitions between regions of chaos—highly disordered states—and highly
ordered regions; Figure 2.11 is a typical example. They hypothesize that epilepsy may
be an example of chaos and the careful analysis of electroencephalograms with this in
mind has provided some new insights into the whole epileptogenetic process. They feel
it could have possible use in both the diagnosis and treatment of epilepsy.

An interesting study (Larter et al. 1999) on the role of chaos in brain activity also
suggests that chaos is the norm but during an epileptic seizure the activity becomes
abnormally regular. In epileptic fits called partial seizures (patients with these are least
responsive to medication) only part of the brain starts to exhibit regularity and this
spreads and the seizure spreads accordingly. They studied a thousand interconnecting
neurons and subjected the equation system to perturbations to try to understand how
communication takes place. Among other things they were interested in what affects the
rate of transfer from regular behaviour in one region to a neighbouring chaotic region.
Their aim also is to apply the results in treating patients who suffer from partial seizures.

In the case of wave activity in the heart (see Chapter 1, Volume II) it is quite the
opposite. If regular activity becomes chaotic, a disorder called cardiac fibrillation, it
is fatal unless the heart can be shocked back into regularity: the usual method is by a
massive electric shock.

Another example, mentioned by Cross and Cotton (1994), is that the growth of
human hair is normally asynchronous but there are circumstances when it is synchro-
nised by various (usually disease) stimuli. A common example is during pregnancy and
delivery when all the hairs are synchronised in the telogen stage, that is, the resting
stage in the cell cycle, the consequence of which is temporary baldness; the condition
is called telogen effluvium (Benedict et al. 1991). From the graphs in Figure 2.16 there
is increasing order with the number of clones which suggests there is a mechanism for
‘antichaos,’ a word that is increasingly appearing in the literature. It has similarities to
synchronisation which occurs in a variety of biological situations. One example is with
certain cells in culture which initially had different cell cycles but can be induced, with
an appropriate stimulus, to become synchronised. Another is the synchronisation of fire-
flies which we discuss later in Chapter 9 where we discuss biological oscillators. A very
different type of antichaos has been found by Benchetrit et al. (1987) and Demongeot
et al. (1987 and 1996) in the analysis of chaotic breathing patterns. The latter used the
concepts of the new field of variability theory, developed by Aubin (1991), and showed
how a certain coherent order could be extracted from underlying chaos (in the sense
of this chapter). An interesting approach to the concept of attractors and confiners was
developed by Demongeot and Jacob (1989) and Cosnard and Demongeot (1985).

Exercises

1 All the following discrete time population models are of the form Nt+1 = f (Nt) and
have been taken from the ecological literature and all have been used in modelling
real situations. Determine the nonnegative steady states, discuss their linear stabil-
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ity and find the first bifurcation values of the parameters, which are all taken to be
positive.

(i) Nt+1 = Nt

[
1 + r

(
1 − Nt

K

)]
,

(ii) Nt+1 = r N 1−b
t , if Nt > K ,

= r Nt , if Nt < K ,

(iii) Nt+1 = r Nt

(1 + aNt )b
,

(iv) Nt+1 = r Nt

1 +
(

Nt
K

)b
.

2 Construct cobweb maps for:

(i) Nt+1 = (1 + r)Nt

1 + r Nt
,

(ii) Nt+1 = r Nt

(1 + aNt )b
, a > 0, b > 0, r > 0

and discuss the global qualitative behaviour of the solutions. Determine, where pos-
sible, the maximum and minimum Nt , and the minimum for (ii) when b � 1.

3 Verify that an exact solution exists for the logistic difference equation

ut+1 = rut (1 − ut ), r > 0

in the form ut = A sin2 αt by determining values for r , A and α. Is the solution (i)
periodic? (ii) oscillatory? Describe it! If r > 4 discuss possible solution implications.

4 The population dynamics of a species is governed by the discrete model

Nt+1 = f (Nt ) = Nt exp

[
r

(
1 − Nt

K

)]
,

where r and K are positive constants. Determine the steady states and their cor-
responding eigenvalues. Show that a period-doubling bifurcation occurs at r = 2.
Briefly describe qualitatively the dynamic behaviour of the population for r = 2+ε,
where 0 < ε � 1. In the case r > 1 sketch Nt+1 = f (Nt) and show graphically or
otherwise that, for t large, the maximum population is given by Nm = f (K/r) and
the minimum possible population by Nm = f ( f (K/r)). Since a species becomes
extinct if Nt ≤ 1 for any t > 1, show that irrespective of the size of r > 1 the species
could become extinct if the carrying capacity K < r exp [1 + er−1 − 2r ].

5 The population of a certain species subjected to a specific kind of predation is mod-
elled by the difference equation
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ut+1 = a
u2

t

b2 + u2
t
, a > 0.

Determine the equilibria and show that if a2 > 4b2 it is possible for the population
to be driven to extinction if it becomes less than a critical size which you should find.

6 It has been suggested that a means of controlling insect numbers is to introduce
and maintain a number of sterile insects in the population. One such model for the
resulting population dynamics is

Nt+1 = RN 2
t

(R − 1)
N2

t
M + Nt + S

,

where R > 1 and M > 0 are constant parameters, and S is the constant sterile insect
population.

Determine the steady states and discuss their linear stability, noting whether
any type of bifurcation is possible. Find the critical value Sc of the sterile population
in terms of R and M so that if S > Sc the insect population is eradicated. Construct
a cobweb map and draw a graph of S against the steady state population density, and
hence determine the possible solution behaviour if 0 < S < Sc.

7 A discrete model for a population Nt consists of

Nt+1 = r Nt

1 + bN 2
t

= f (Nt ),

where t is the discrete time and r and b are positive parameters. What do r and b
represent in this model? Show, with the help of a cobweb, that after a long time the
population Nt is bounded by

Nmin = 2r2

(4 + r2)
√

b
≤ Nt ≤ r

2
√

b
.

Prove that, for any r , the population will become extinct if b > 4.
Determine the steady states and their eigenvalues and hence show that r =

1 is a bifurcation value. Show that, for any finite r , oscillatory solutions for Nt are
not possible.

Consider a delay version of the model given by

Nt+1 = r Nt

1 + bN 2
t−1

= f (Nt ), r > 1.

Investigate the linear stability about the positive steady state N∗ by setting Nt =
N∗ + nt . Show that nt satisfies

nt+1 − nt + 2(r − 1)r−1nt−1 = 0.
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Hence show that r = 2 is a bifurcation value and that as r → 2 the steady state
bifurcates to a periodic solution of period 6.

8 A basic delay model used by the International Whaling Commission (IWC) for mon-
itoring whale populations is

ut+1 = sut + R(ut−T ), 0 < s < 0,

where T ≥ 1 is an integer.

(i) If u∗ is a positive equilibrium show that a sufficient condition for linear stability
is | R′(u∗) | < 1 − s. [Hint: Use Rouché’s theorem on the resulting character-
istic polynomial for small perturbations about u∗.]

(ii) If R(u) = (1 − s)u[1 + q(1 − u)], q > 0 and the delay T = 1, show that
the equilibrium state is stable for all 0 < q < 2. [With this model, T is the
time from birth to sexual maturity, s is a survival parameter and R(ut−T ) the
recruitment to the adult population from those born T years ago.]

9 Consider the effect of regularly harvesting the population of a species for which the
model equation is

ut+1 = bu2
t

1 + u2
t

− Eut = f (ut ; E), b > 2, E > 0,

where E is a measure of the effort expended in obtaining the harvest, Eut . [This
model with E = 0 is a special case of that in Exercise 5.] Determine the steady
states and hence show that if the effort E > Em = (b − 2)/2, no harvest is obtained.
If E < Em show, by cobwebbing ut+1 = f (ut ; E) or otherwise, that the model is
realistic only if the population ut always lies between two positive values which you
should determine analytically.

With E < Em evaluate the eigenvalue of the largest positive steady state.
Demonstrate that a tangent bifurcation exists as E → Em .
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When species interact the population dynamics of each species is affected. In general
there is a whole web of interacting species, sometimes called a trophic web, which
makes for structurally complex communities. We consider here systems involving 2
or more species, concentrating particularly on two-species systems. The book by Kot
(2001) discusses such models (including age-structured interacting population systems)
with numerous recent practical examples. There are three main types of interaction. (i) If
the growth rate of one population is decreased and the other increased the populations
are in a predator–prey situation. (ii) If the growth rate of each population is decreased
then it is competition. (iii) If each population’s growth rate is enhanced then it is called
mutualism or symbiosis.

All of the mathematical techniques and analytical methods in this chapter are di-
rectly applicable to Chapter 6 on reaction kinetics, where similar equations arise; there
the ‘species’ are chemical concentrations.

3.1 Predator–Prey Models: Lotka–Volterra Systems

Volterra (1926) first proposed a simple model for the predation of one species by another
to explain the oscillatory levels of certain fish catches in the Adriatic. If N (t) is the prey
population and P(t) that of the predator at time t then Volterra’s model is

d N

dt
= N (a − bP), (3.1)

d P

dt
= P(cN − d), (3.2)

where a, b, c and d are positive constants.
The assumptions in the model are: (i) The prey in the absence of any predation

grows unboundedly in a Malthusian way; this is the aN term in (3.1). (ii) The effect of
the predation is to reduce the prey’s per capita growth rate by a term proportional to the
prey and predator populations; this is the −bN P term. (iii) In the absence of any prey
for sustenance the predator’s death rate results in exponential decay, that is, the −d P
term in (3.2). (iv) The prey’s contribution to the predators’ growth rate is cN P; that is, it
is proportional to the available prey as well as to the size of the predator population. The
N P terms can be thought of as representing the conversion of energy from one source
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to another: bN P is taken from the prey and cN P accrues to the predators. We shall see
that this model has serious drawbacks. Nevertheless it has been of considerable value in
posing highly relevant questions and is a jumping-off place for more realistic models;
this is the main motivation for studying it here.

The model (3.1) and (3.2) is known as the Lotka–Volterra model since the same
equations were also derived by Lotka (1920; see also 1925) from a hypothetical chem-
ical reaction which he said could exhibit periodic behaviour in the chemical concentra-
tions. With this motivation the dependent variables represent chemical concentrations;
we touch on this again in Chapter 6.

As a first step in analysing the Lotka–Volterra model we nondimensionalise the
system by writing

u(τ ) = cN (t)

d
, v(τ ) = bP(t)

a
, τ = at, α = d/a, (3.3)

and it becomes

du

dτ
= u(1 − v),

dv

dτ
= αv(u − 1). (3.4)

In the u, v phase plane (a brief summary of basic phase plane methods is given in Ap-
pendix A) these give

dv

du
= α

v(u − 1)

u(1 − v)
, (3.5)

which has singular points at u = v = 0 and u = v = 1. We can integrate (3.5) exactly
to get the phase trajectories

αu + v − ln uαv = H, (3.6)

where H > Hmin is a constant: Hmin = 1 + α is the minimum of H over all (u, v) and
it occurs at u = v = 1. For a given H > 1 + α, the trajectories (3.6) in the phase plane
are closed as illustrated in Figure 3.1.

A closed trajectory in the u, v plane implies periodic solutions in τ for u and v

in (3.4). The initial conditions, u(0) and v(0), determine the constant H in (3.6) and
hence the phase trajectory in Figure 3.1. Typical periodic solutions u(τ ) and v(τ) are
illustrated in Figure 3.2. From (3.4) we can see immediately that u has a turning point
when v = 1 and v has one when u = 1.

A major inadequacy of the Lotka–Volterra model is clear from Figure 3.1—the
solutions are not structurally stable. Suppose, for example, u(0) and v(0) are such that
u and v for τ > 0 are on the trajectory H4 which passes close to the u and v axes. Then
any small perturbation will move the solution onto another trajectory which does not
lie everywhere close to the original one H4. Thus a small perturbation can have a very
marked effect, at the very least on the amplitude of the oscillation. This is a problem with
any system which has a first integral, like (3.6), which is a closed trajectory in the phase
plane. They are called conservative systems; here (3.6) is the associated ‘conservation
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0 u

H1 H2 H3

H5H4

1 + α < H1 < H2 < H3 < H4

Figure 3.1. Closed (u, v) phase plane trajectories, from (3.6) with various H , for the Lotka–Volterra system
(3.4): H1 = 2.1, H2 = 2.4, H3 = 3.0, H4 = 4. The arrows denote the direction of change with increasing
time τ .

law.’ They are usually of little use as models for real interacting populations (see one
interesting and amusing attempt to do so below). However, the method of analysis of
the steady states is typical.

Returning to the form (3.4), a linearisation about the singular points determines
the type of singularity and the stability of the steady states. A similar linear stability
analysis has to be carried out on equivalent systems with any number of equations. We
first consider the steady state (u, v) = (0, 0). Let x and y be small perturbations about
(0, 0). If we keep only linear terms, (3.4) becomes






dx

dτ

dy

dτ




 ≈

(
1 0
0 −α

)(
x
y

)
= A

(
x
y

)
. (3.7)

The solution is of the form

1

0 τ

u (prey)
v (predator)

Figure 3.2. Periodic solutions for the prey u(τ ) and the predator v(τ ) for the Lotka–Volterra system (3.4)
with α = 1 and initial conditions u(0) = 1.25, v(0) = 0.66.
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(
x(τ )

y(τ )

)
= Beλτ ,

where B is an arbitrary constant column vector and the eigenvalues λ are given by the
characteristic polynomial of the matrix A and thus are solutions of

| A − λI | =
∣∣
∣∣
1 − λ 0

0 −α − λ

∣∣
∣∣ = 0 ⇒ λ1 = 1, λ2 = −α.

Since at least one eigenvalue, λ1 > 0, x(τ ) and y(τ ) grow exponentially and so u =
0 = v is linearly unstable. Since λ1 > 0 and λ2 < 0 this is a saddle point singularity
(see Appendix A).

Linearising about the steady state u = v = 1 by setting u = 1 + x , v = 1 + y with
| x | and | y | small, (3.4) becomes






dx

dτ

dy

dτ




 = A

(
x
y

)
, A =

(
0 −1
α 0

)
(3.8)

with eigenvalues λ given by
∣
∣∣
∣
−λ −1
α −λ

∣
∣∣
∣ = 0 ⇒ λ1, λ2 = ±i

√
α. (3.9)

Thus u = v = 1 is a centre singularity since the eigenvalues are purely imaginary. Since
Re λ = 0 the steady state is neutrally stable. The solution of (3.8) is of the form

(
x(τ )

y(τ )

)
= lei

√
ατ + me−i

√
ατ ,

where l and m are eigenvectors. So, the solutions in the neighbourhood of the singular
point u = v = 1 are periodic in τ with period 2π/

√
α. In dimensional terms from (3.3)

this period is T = 2π(a/d)1/2; that is, the period is proportional to the square root of the
ratio of the linear growth rate, a, of the prey to the death rate, d, of the predators. Even
though we are only dealing with small perturbations about the steady state u = v = 1
we see how the period depends on the intrinsic growth and death rates. For example,
an increase in the growth rate of the prey will increase the period; a decrease in the
predator death rate does the same thing. Is this what you would expect intuitively?

In this ecological context the matrix A in the linear equations (3.7) and (3.8) is
called the community matrix, and its eigenvalues λ determine the stability of the steady
states. If Re λ > 0 then the steady state is unstable while if both Re λ < 0 it is stable.
The critical case Re λ = 0 is termed neutral stability.

There have been many attempts to apply the Lotka–Volterra model to real-world
oscillatory phenomena. In view of the system’s structural instability, they must essen-
tially all fail to be of quantitative practical use. As we mentioned, however, they can be
important as vehicles for suggesting relevant questions that should be asked. One par-
ticularly interesting example was the attempt to apply the model to the extensive data
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on the Canadian lynx–snowshoe hare interaction in the fur catch records of the Hudson
Bay Company from about 1845 until the 1930’s. We assume that the numbers reflect
a fixed proportion of the total population of these animals. Although this assumption
is of questionable accuracy, as indicated by what follows, the data nevertheless repre-
sent one of the very few long term records available. Figure 3.3 reproduces this data.
Williamson’s (1996) book is a good source of population data which exhibit periodic or
quasi-periodic behaviour.

Figure 3.3 shows reasonable periodic fluctuations and Figure 3.3(c) a more or less
closed curve in the phase plane as we now expect from a time-periodic behaviour in
the variables. Leigh (1968) used the standard Lotka–Volterra model to try to explain the
data. Gilpin (1973) did the same with a modified Lotka–Volterra system. Let us examine
the results given in Figure 3.3 a little more carefully. First note that the direction of
the time arrows in Figure 3.3(c) is clockwise in contrast to that in Figure 3.1. This is
reflected in the time curves in Figures 3.3(a) and (b) where the lynx oscillation, the
predator’s, precedes the hare’s. The opposite is the case in the predator–prey situation
illustrated in Figure 3.2. Figure 3.3 implies that the hares are eating the lynx! This poses
a severe interpretation problem! Gilpin (1973) suggested that perhaps the hares could
kill the lynx if they carried a disease which they passed on to the lynx. He incorporated
an epidemic effect into his model and the numerical results then looked like those in
Figure 3.3(c); this seemed to provide the explanation for the hare “eating” the lynx.
A good try, but no such disease is known. Gilpin (1973) also offered what is perhaps
the right explanation, namely, that the fur trappers are the ‘disease.’ In years of low
population densities they probably did something else and only felt it worthwhile to
return to the trap lines when the hares were again sufficiently numerous. Since lynx
were more profitable to trap than hare they would probably have devoted more time to
the lynx than the hare. This would result in the phenomenon illustrated by Figures 3.3(b)
and (c). Schaffer (1984) has suggested that the lynx–hare data could be evidence of a
strange attractor (that is, they exhibit chaotic behaviour) in Nature. The moral of the
story is that it is not enough simply to produce a model which exhibits oscillations
but rather to provide a proper explanation of the phenomenon which can stand up to
ecological and biological scrutiny.

3.2 Complexity and Stability

To get some indication of the effect of complexity on stability we briefly consider the
generalised Lotka–Volterra predator–prey system where there are k prey species and k
predators, which prey on all the prey species but with different severity. Then in place
of (3.1) and (3.2) we have

d Ni

dt
= Ni

[

ai −
k∑

j=1

bi j Pj

]

i = 1, . . . , k (3.10)

d Pi

dt
= Pi

[
k∑

j=1

ci j N j − di

]

,
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Figure 3.3. (a) Fluctuations in the number of pelts sold by the Hudson Bay Company. (Redrawn from Odum
1953) (b) Detail of the 30-year period starting in 1875, based on the data from Elton and Nicholson (1942).
(c) Phase plane plot of the data represented in (b). (After Gilpin 1973)



3.2 Complexity and Stability 85

where all of the ai , bi j , ci j and di are positive constants. The trivial steady state is
Ni = Pi = 0 for all i , and the community matrix is the diagonal matrix

A =









a1 0
. . . 0

0 ak

−d1 0

0
. . .

0 −dk









.

The 2k eigenvalues are thus

λi = ai > 0, λk+i = −di < 0, i = 1, . . . , k

so this steady state is unstable since all λi > 0, i = 1, . . . , k.
The nontrivial steady state is the column vector solution N∗, P∗ where

k∑

j=1

bi j P∗
j = ai ,

k∑

j=1

ci j N∗
j = di , i = 1, . . . , k

or, in vector notation, with N∗, P∗, a, and d column vectors,

BP∗ = a, CN∗ = d, (3.11)

where B and C are the k × k matrices [bi j ] and [ci j ] respectively.
Equations (3.10) can be written as

dN
dt

= NT · [a − BP], dP
dt

= PT · [CN − d],

where the superscript T denotes the transpose. So, on linearising about (N∗, P∗) in
(3.11) by setting

N = N∗ + u, P = P∗ + v,

where | u |, | v | are small compared with | N∗ | and | P∗ |, we get

du
dt

≈ −N∗T · Bv,
dv
dt

≈ P∗T · Cu.

Then






du
dt
dv
dt




 ≈ A

(
u
v

)
, A =

(
0 −N∗T · B

P∗T · C 0

)

, (3.12)
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where here the community matrix A is a 2k × 2k block matrix with null diagonal
blocks. Since the eigenvalues λi , i = 1, . . . , 2k are solutions of | A − λI | = 0 the
sum of the roots λi satisfies

2k∑

i=1

λi = trA = 0, (3.13)

where trA is the trace of A. Since the elements of A are real, the eigenvalues, if complex,
occur as complex conjugates. Thus from (3.13) there are two cases: all the eigenvalues
are purely imaginary or they are not. If all Re λi = 0 then the steady state (N∗, P∗) is
neutrally stable as in the 2-species case. However if there are λi such that Re λi �= 0
then, since they occur as complex conjugates, (3.13) implies that at least one exists with
Re λ > 0 and hence (N∗, P∗) is unstable.

We see from this analysis that complexity in the population interaction web in-
troduces the possibility of instability. If a model by chance resulted in only imaginary
eigenvalues (and hence perturbations from the steady state are periodic in time) only
a small change in one of the parameters in the community matrix would result in at
least one eigenvalue with Re λ �= 0 and hence an unstable steady state. This of course
only holds for community matrices such as in (3.12). Even so, we get indications of the
fairly general and important result that complexity usually results in instability rather
than stability.

3.3 Realistic Predator–Prey Models

The Lotka–Volterra model, unrealistic though it is, does suggest that simple predator–
prey interactions can result in periodic behaviour of the populations. Reasoning heuris-
tically this is not unexpected since if a prey population increases, it encourages growth
of its predator. More predators however consume more prey the population of which
starts to decline. With less food around the predator population declines and when it is
low enough, this allows the prey population to increase and the whole cycle starts over
again. Depending on the detailed system such oscillations can grow or decay or go into
a stable limit cycle oscillation or even exhibit chaotic behaviour, although in the latter
case there must be at least 3 interacting species, or the model has to have some delay
terms.

A limit cycle solution is a closed trajectory in the predator–prey space which is
not a member of a continuous family of closed trajectories such as the solutions of the
Lotka–Volterra model illustrated in Figure 3.1. A stable limit cycle trajectory is such
that any small perturbation from the trajectory decays to zero. A schematic example of
a limit cycle trajectory in a two-species predator(P)–prey(N ) interaction is illustrated
in Figure 3.4. Conditions for the existence of such a solution are given in Appendix A.

One of the unrealistic assumptions in the Lotka–Volterra models, (3.1) and (3.2),
and generally (3.10), is that the prey growth is unbounded in the absence of predation.
In the form we have written the model (3.1) and (3.2) the bracketed terms on the right
are the density-dependent per capita growth rates. To be more realistic these growth
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Figure 3.4. Typical closed predator–prey
trajectory which implies a limit cycle
periodic oscillation. Any perturbation
from the limit cycle tends to zero
asymptotically with time.

rates should depend on both the prey and predator densities as in

d N

dt
= N F(N , P),

d P

dt
= PG(N , P), (3.14)

where the forms of F and G depend on the interaction, the species and so on.
As a reasonable first step we might expect the prey to satisfy a logistic growth, say,

in the absence of any predators, that is, like (1.2) in Chapter 1, or have some similar
growth dynamics which has some maximum carrying capacity. So, for example, a more
realistic prey population equation might take the form

d N

dt
= N F(N , P), F(N , P) = r

(
1 − N

K

)
− P R(N ), (3.15)

where R(N ) is one of the predation terms discussed below and illustrated in Figure 3.5
and K is the constant carrying capacity for the prey when P ≡ 0.

The predation term, which is the functional response of the predator to change in the
prey density, generally shows some saturation effect. Instead of a predator response of
bN P , as in the Lotka–Volterra model (3.1), we take P N R(N ) where N R(N ) saturates
for N large. Some examples are

Figure 3.5. Examples of predator response N R(N ) to prey density N . (a) R(N ) = A, the unsaturated Lotka–
Volterra type. (b) R(N ) = A/(N + B). (c) R(N ) = AN/(N 2 + B2). (d) R(N ) = A(1 − e−aN )/N .
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R(N ) = A

N + B
, R(N ) = AN

N 2 + B2 , R(N ) = A[1 − e−aN ]
N

, (3.16)

where A, B and a are positive constants; these are illustrated in Figures 3.5(b) to (d).
The second of (3.16), illustrated in Figure 3.5(c), is similar to that used in the budworm
model in equation (1.6) in Chapter 1. It is also typical of aphid (Aphidicus zbeckistani-
cus) predation. The examples in Figures 3.5(b) and (c) are approximately linear in N for
low densities. The saturation for large N is a reflection of the limited predator capability,
or perseverance, when the prey is abundant.

The predator population equation, the second of (3.14), should also be made more
realistic than simply having G = −d + cN as in the Lotka–Volterra model (3.2). Pos-
sible forms are

G(N , P) = k

(
1 − h P

N

)
, G(N , P) = −d + eR(N ), (3.17)

where k, h, d and e are positive constants and R(N ) is as in (3.16). The first of (3.17)
says that the carrying capacity for the predator is directly proportional to the prey den-
sity.

The models given by (3.14)–(3.17) are only examples of the many that have been
proposed and studied. They are all more realistic than the classical Lotka–Volterra
model. Other examples are discussed, for example, in the book by Nisbet and Gurney
(1982) and that edited by Levin (1994), to mention but two.

3.4 Analysis of a Predator–Prey Model with Limit Cycle Periodic
Behaviour: Parameter Domains of Stability

As an example of how we analyze such realistic 2-species models we consider one of
them in detail, namely,

d N

dt
= N

[
r

(
1 − N

K

)
− k P

N + D

]
,

d P

dt
= P

[
s

(
1 − h P

N

)]
,

(3.18)

where r , K , k, D, s and h are positive constants, 6 in all. It is, as always, extremely
useful to write the system in nondimensional form. Although there is no unique way of
doing this it is often a good idea to relate the variables to some key relevant parame-
ter. Here, for example, we express N and P as fractions of the predator-free carrying
capacity K . Let us write

u(τ ) = N (t)

K
, v(τ ) = h P(t)

K
, τ = r t,

a = k

hr
, b = s

r
, d = D

K

(3.19)

and (3.18) become



3.4 Analysis of a Predator–Prey Model with Limit Cycle Periodic Behaviour 89

du

dτ
= u − (1 − u) − auv

u + d
= f (u, v),

dv

dτ
= bv

(
1 − v

u

)
= g(u, v),

(3.20)

which have only 3 dimensionless parameters a, b and d. Nondimensionalisation re-
duces the number of parameters by grouping them in a meaningful way. Dimensionless
groupings generally give relative measures of the effect of dimensional parameters. For
example, b is the ratio of the linear growth rate of the predator to that of the prey and so
b > 1 and b < 1 have definite ecological meanings; with the latter the prey reproduce
faster than the predator.

The equilibrium or steady state populations u∗, v∗ are solutions of du/dτ = 0,
dv/dτ = 0; namely,

f (u∗, v∗) = 0, g(u∗, v∗) = 0

which, from the last equations, are

u∗(1 − u∗) − au∗v∗

u∗ + d
= 0, bv∗

(
1 − v∗

u∗

)
= 0. (3.21)

We are only concerned here with positive solutions, namely, the positive solutions of

v∗ = u∗, u∗2 + (a + d − 1)u∗ − d = 0,

of which the only positive one is

u∗ = (1 − a − d) + {(1 − a − d)2 + 4d}1/2

2
, v∗ = u∗. (3.22)

We are interested in the stability of the steady states, which are the singular points in
the phase plane of (3.20). A linear stability analysis about the steady states is equivalent
to the phase plane analysis. For the linear analysis write

x(τ ) = u(τ ) − u∗, y(τ ) = v(τ) − v∗ (3.23)

which on substituting into (3.20), linearising with | x | and | y | small, and using (3.21),
gives






dx

dτ

dy

dτ




 = A

(
x
y

)
,

A =





∂ f

∂u

∂ f

∂v
∂g

∂u

∂g

∂v






u∗,v∗

=





u∗
[

au∗

(u∗ + d)2
− 1

] −au∗

u∗ + d

b −b




 .

(3.24)
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A, the community matrix, has eigenvalues λ given by

| A − λI | = 0 ⇒ λ2 − (trA)λ + det A = 0. (3.25)

For stability we require Re λ < 0 and so the necessary and sufficient conditions for
linear stability are, from the last equation,

trA < 0 ⇒ u∗
[

au∗

(u∗ + d)2
− 1

]
< b,

det A > 0 ⇒ 1 + a

u∗ + d
− au∗

(u∗ + d)2
> 0.

(3.26)

Substituting for u∗ from (3.22) gives the stability conditions in terms of the parameters
a, b and d, and hence in terms of the original parameters r , K , k, D, s and h in (3.18).

In general there is a domain in the a, b, d space such that, if the parameters lie
within it, (u∗, v∗) is stable, that is, Re λ < 0, and if they lie outside it the steady state is
unstable. The latter requires at least one of (3.26) to be violated. With (3.22) for u∗ and
using the first of (3.21) and v∗ = u∗,

det A =
[

1 + a

u∗ + d
− au∗

(u∗ + d)2

]
bu∗

=
[

1 + ad

(u∗ + d)2

]
bu∗

> 0

(3.27)

for all a > 0, b > 0, d > 0 and so the second of (3.26) is always satisfied. The
instability domain is thus determined solely by the first inequality of (3.26), namely,
tr A < 0 which, with (3.22) for u∗ and again using (3.21), becomes

b >
[
a − {(1 − a − d)2 + 4d}1/2

] [
1 + a + d − {(1 − a − d)2 + 4d}1/2

]

2a
. (3.28)

This defines a three-dimensional surface in (a, b, d) parameter space.
We are only concerned with a, b, and d positive. The second square bracket in

(3.28) is a monotonic decreasing function of d and always positive. The first square
bracket is a monotonic decreasing function of d with a maximum at d = 0. Thus, from
(3.28),

bd=0

{
> 2a − 1
> 1/a

if

{
0 < a ≤ 1
1 ≤ a

and so for 0 < a < 1/2 and all d > 0 the stability condition (3.28) is satisfied with any
b > 0. That is, the steady state u∗, v∗ is linearly stable for all 0 < a < 1/2, b > 0,
d > 0. On the other hand if a > 1/2 there is a domain in the (a, b, d) space with b > 0
and d > 0 where (3.28) is not satisfied and so the first of (3.26) is violated and hence
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one of the eigenvalues λ in (3.25) has Re λ > 0. This in turn implies the steady state
u∗, v∗ is unstable to small perturbations. The boundary surface is given by (3.28) and it
crosses the b = 0 plane at d = dm(a) given by the positive solution of

a = {(1 − a − dm)2 + 4dm}1/2 ⇒ dm(a) = db=0 = (a2 + 4a)1/2 − (1 + a).

Thus dm(a) is a monotonic increasing function of a bounded above by d = 1. Note also
that d < a for all a > 1/2. Figure 3.6 illustrates the stability/instability domains in the
(a, b, d) space.

When Re λ < 0 the steady state is stable and either both λ’s are real in (3.25), in
which case the singular point u∗, v∗ in (3.21) is a stable node in the u, v phase plane
of (3.20), or the λ’s are complex and the singular point is a stable spiral. When the
parameters result in Re λ > 0 the singular point is either an unstable node or spiral.
In this case we must determine whether or not there is a confined set, or bounding
domain, in the (u, v) phase plane so as to use the Poincaré–Bendixson theorem for the
existence of a limit cycle oscillation; see Appendix A. In other words we must find a
simple closed boundary curve in the positive quadrant of the (u, v) plane such that on
it the phase trajectories always point into the enclosed domain. That is, if n denotes the
outward normal to this boundary, we require

Figure 3.6. Parameter domains (schematic) of stability of the positive steady state for the predator–prey
model (3.20). For a < 1/2 and all parameter values b > 0, d > 0, stability is obtained. For a fixed a > 1/2,
the domain of instability is finite as in (a) and (b). The three-dimensional bifurcation surface between stability
and instability is sketched in (c) with dm (a) = (a2 + 4a)1/2 − (1 + a). When parameter values are in the
unstable domain, limit cycle oscillations occur in the populations.
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n ·
(

du

dτ
,

dv

dτ

)
< 0

for all points on the boundary. If this inequality holds at a point on the boundary it
means that the ‘velocity’ vector (du/dτ, dv/dτ) points inwards. Intuitively this means
that no solution trajectory can leave the domain if once inside, since, if it did reach
the boundary, its ‘velocity’ points inwards and so the trajectory moves back into the
domain.

To find a confined set it is essential and always informative to draw the null clines
of the system, that is, the curves in the phase plane where du/dτ = 0 and dv/dτ = 0.
From (3.20) these are the curves f (u, v) = 0 and g(u, v) = 0 which are illustrated in
Figure 3.7. The sign of the vector components of ( f (u, v), g(u, v)) indicate the direc-
tion of the vector (du/dτ, dv/dτ) and hence the direction of the (u, v) trajectory. So if
f > 0 in a domain, du/dτ > 0 and u is thus increasing there. On DE , E A, AB and
BC , the trajectories clearly point inwards because of the signs of f (u, v) and g(u, v)

on them. It can be shown simply but tediously that a line DC exists such that on it
n · (du/dτ, dv/dτ) < 0; that is, n · ( f (u, v), g(u, v)) < 0 where n is the unit vector
perpendicular to DC .

We now have a confined set appropriate for the Poincaré–Bendixson theorem to
apply when (u∗, v∗) is unstable. Hence the solution trajectory tends to a limit cycle
when the parameters a, b and d lie in the unstable domain in Figure 3.6(c). Basically
the Poincaré–Bendixson theorem says that since any trajectory coming out of the un-
stable steady state (u∗, v∗) cannot cross the confining boundary ABC DE A, it must
evolve into a closed limit cycle trajectory qualitatively similar to that illustrated in Fig-
ure 3.4. With our model (3.20), Figure 3.8(a) illustrates such a closed trajectory with
Figure 3.8(b) showing the temporal variation of the populations with time. With the
specific parameter values used in Figure 3.8 the steady state is an unstable node in the
phase plane; that is, both eigenvalues are real and positive. Any perturbation from the
limit cycle decays quickly.

Figure 3.7. Null clines f (u, v) = 0, g(u, v) = 0 for the system (3.20); note the signs of f and g on
either side of their null clines. ABC DE A is the boundary of the confined set about (u∗, v∗) on which the
trajectories all point inwards; that is, n · (du/dτ , dv/dτ ) < 0 where n is the unit outward normal on the
boundary ABC DE A.
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Figure 3.8. (a) Typical phase trajectory limit cycle solution for the predator–prey system (3.20). (b) Cor-
responding periodic behaviour of the prey (u) and predator (v) populations. Parameter values: a = 1, b =
5, d = 0.2, which give the steady state as u∗ = v∗ = 0.36. Relations (3.19) relate the dimensionless to the
dimensional parameters.

This model system, like most which admit limit cycle behaviour, exhibits bifur-
cation properties as the parameters vary, although not with the complexity shown by
discrete models as we see in Chapters 2 and 5, nor with delay models such as in Chap-
ter 1. We can see this immediately from Figure 3.6. To be specific, consider a fixed
a > 1/2 so that a finite domain of instability exists, as illustrated in Figure 3.9, and let
us choose a fixed 0 < d < dm corresponding to the line DE F . Suppose b is initially
at the value D and is then continuously decreased. On crossing the bifurcation line at
E , the steady state becomes unstable and a periodic limit cycle solution appears; that is,
the uniform steady state bifurcates to an oscillatory solution. A similar situation occurs
along any parameter variation from the stable to the unstable domains in Figure 3.6(c).

The fact that a dimensionless variable passes through a bifurcation value provides
useful practical information on equivalent effects of dimensional parameters. For ex-
ample, from (3.19), b = s/r , the ratio of the linear growth rates of the predator and
prey. If the steady state is stable, then as the predators’ growth rate s decreases there is
more likelihood of periodic behaviour since b decreases and, if it decreases enough, we
move into the instability regime. On the other hand if r decreases, b increases and so
probably reduces the possibility of oscillatory behaviour. In this latter case it is not so
clear-cut since, from (3.19), reducing r also increases a, which from Figure 3.6(c) tends
to increase the possibility of periodic behaviour. The dimensional bifurcation space is
6-dimensional which is difficult to express graphically; the nondimensionalisation re-
duces it to a simple 3-dimensional space with (3.19) giving clear equivalent effects of

Figure 3.9. Typical stability bifurcation curve for the
predator–prey model (3.20). As the point in parameter
space crosses the bifurcation curve, the steady state
changes stability.
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different dimensional parameter changes. For example, doubling the carrying capacity
K is exactly equivalent to halving the predator response parameter D. The dimension-
less parameters are the important bifurcation ones to determine.

3.5 Competition Models: Principle of Competitive Exclusion

Here two or more species compete for the same limited food source or in some way
inhibit each other’s growth. For example, competition may be for territory which is
directly related to food resources. Some interesting phenomena have been found from
the study of practical competition models; see, for example, Hsu et al. (1979). Here we
discuss a very simple competition model which demonstrates a fairly general principle
which is observed to hold in Nature, namely, that when two species compete for the
same limited resources one of the species usually becomes extinct.

Consider the basic 2-species Lotka–Volterra competition model with each species
N1 and N2 having logistic growth in the absence of the other. Inclusion of logistic
growth in the Lotka–Volterra systems makes them much more realistic, but to high-
light the principle we consider the simpler model which nevertheless reflects many of
the properties of more complicated models, particularly as regards stability. We thus
consider

d N1

dt
= r1 N1

[
1 − N1

K1
− b12

N2

K1

]
, (3.29)

d N2

dt
= r2 N2

[
1 − N2

K2
− b21

N1

K2

]
, (3.30)

where r1, K1, r2, K2, b12 and b21 are all positive constants and, as before, the r ’s are the
linear birth rates and the K ’s are the carrying capacities. The b12 and b21 measure the
competitive effect of N2 on N1 and N1 on N2 respectively: they are generally not equal.
Note that the competition model (3.29) and (3.30) is not a conservative system like its
Lotka–Volterra predator–prey counterpart.

If we nondimensionalise this model by writing

u1 = N1

K1
, u2 = N2

K2
, τ = r1t, ρ = r2

r1
,

a12 = b12
K2

K1
, a21 = b21

K1

K2

(3.31)

(3.29) and (3.30) become

du1

dτ
= u1(1 − u1 − a12u2) = f1(u1, u2),

du2

dτ
= ρu2(1 − u2 − a21u1) = f2(u1, u2).

(3.32)

The steady states, and phase plane singularities, u∗
1, u∗

2, are solutions of f1(u1, u2) =
f2(u1, u2) = 0 which, from (3.32), are
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u∗
1 = 0, u∗

2 = 0; u∗
1 = 1, u∗

2 = 0; u∗
1 = 0, u∗

2 = 1;
u∗

1 = 1 − a12

1 − a12a21
, u∗

2 = 1 − a21

1 − a12a21
.

(3.33)

The last of these is only of relevance if u∗
1 ≥ 0 and u∗

2 ≥ 0 are finite, in which case
a12a21 �= 1. The four possibilities are seen immediately on drawing the null clines
f1 = 0 and f2 = 0 in the u1, u2 phase plane as shown in Figure 3.10. The crucial part
of the null clines are, from (3.32), the straight lines

1 − u1 − a12u2 = 0, 1 − u2 − a21u1 = 0.

The first of these together with the u2-axis is f1 = 0, while the second, together with
the u1-axis is f2 = 0.

The stability of the steady states is again determined by the community matrix
which, for (3.32), is

(a) (b)

(c) (d)
u2u2

u2u2

1
a12

1
a12

1
a12

1
a12

11

11

1

1

1

1

1−u2−a21u1=0

1−u1−a12u2=0

1
a21

1
a21

1
a21

1
a21

u1u1

u1u1

00

00

f1<0

f1>0

f2<0

f2>0

Figure 3.10. The null clines for the competition model (3.32). f1 = 0 is u1 = 0 and 1 − u1 − a12u2 = 0
with f2 = 0 being u2 = 0 and 1 − u2 − a21u1 = 0. The intersection of the two solid lines gives the positive
steady state if it exists as in (a) and (b): the relative sizes of a12 and a21 as compared with 1 for it to exist are
obvious from (a) to (d).
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A =





∂ f1

∂u1

∂ f1

∂u2
∂ f2

∂u1

∂ f2

∂u2






u∗
1,u∗

2

=
(

1 − 2u1 − a12u2 −a12u1
−ρa21u2 ρ(1 − 2u2 − a21u1)

)

u∗
1,u∗

2

.

(3.34)

The first steady state in (3.33), that is, (0, 0), is unstable since the eigenvalues λ of its
community matrix, given from (3.34) by

| A − λI | =
∣
∣∣
∣
1 − λ 0

0 ρ − λ

∣
∣∣
∣ = 0 ⇒ λ1 = 1, λ2 = ρ,

are positive. For the second of (3.33), namely, (1, 0), (3.34) gives

| A − λI | =
∣∣
∣∣
−1 − λ −a12

0 ρ(1 − a21) − λ

∣∣
∣∣ = 0 ⇒ λ1 = −1,

λ2 = ρ(1 − a21)

and so

u∗
1 = 1, u∗

2 = 0 is

{
stable
unstable

if

{
a21 > 1
a21 < 1

. (3.35)

Similarly, for the third steady state, (0, 1), the eigenvalues are λ = −ρ, λ2 = (1 − a12)

and so

u∗
1 = 0, u∗

2 = 1 is

{
stable
unstable

if

{
a12 > 1
a12 < 1

. (3.36)

Finally for the last steady state in (3.33), when it exists in the positive quadrant, the
matrix A from (3.34) is

A = (1 − a12a21)
−1

(
a12 − 1 a12(a12 − 1)

ρa21(a21 − 1) ρ(a21 − 1)

)

which has eigenvalues

λ1, λ2 = [
2(1 − a12a21)

]−1[
(a12 − 1) + ρ(a21 − 1)

± {[
(a12 − 1) + ρ(a21 − 1)

]2 − 4ρ(1 − a12a21)(a12 − 1)(a21 − 1)
}1/2]

.

(3.37)

The sign of λ, or Re λ if complex, and hence the stability of the steady state, depends
on the size of ρ, a12 and a21. There are several cases we have to consider, all of which
have ecological implications which we come to below.
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Before discussing the various cases note that there is a confined set on the boundary
of which the vector of the derivatives, (du1/dτ, du2/dτ), points along it or inwards:
here it is a rectangular box in the (u1, u2) plane. From (3.32) this condition holds on the
u1- and u2-axes. Outer edges of the rectangle are, for example, the lines u1 = U1 where
1 − U1 − a12u2 < 0 and u2 = U2 where 1 − U2 − a21u1 < 0. Any U1 > 1, U2 > 1
suffice. So the system is always globally stable.

The various cases are: (i) a12 < 1, a21 < 1, (ii) a12 > 1, a21 > 1, (iii) a12 <

1, a21 > 1, (iv) a12 > 1, a21 < 1. All of these are analyzed in a similar way. Fig-
ures 3.10(a) to (d) and Figures 3.11(a) to (d) relate to these cases (i) to (iv) respectively.
By way of example, we consider just one of them, namely, (ii). The analysis of the other
cases is left as an exercise. The results are encapsulated in Figure 3.11. The arrows in-

(a) (b)

(c) (d)u2u2

u2u2

1
a12

1
a12

1
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Figure 3.11. Schematic phase trajectories near the steady states for the dynamic behaviour of competing
populations satisfying the model (3.32) for the various cases. (a) a12 < 1, a21 < 1. Only the positive steady
state S is stable and all trajectories tend to it. (b) a12 > 1, a21 > 1. Here, (1, 0) and (0, 1) are stable steady
states, each of which has a domain of attraction separated by a separatrix which passes through (u∗

1, u∗
2). (c)

a12 < 1, a21 > 1. Only one stable steady state exists, u∗
1 = 1, u∗

2 = 0 with the whole positive quadrant its
domain of attraction. (d) a12 > 1, a21 < 1. The only stable steady state is u∗

1 = 0, u∗
2 = 1 with the positive

quadrant as its domain of attraction. Cases (b) to (d) illustrate the competitive exclusion principle whereby 2
species competing for the same limited resource cannot in general coexist.
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dicate the direction of the phase trajectories. The qualitative behaviour of the phase
trajectories is given by the signs of du1/dτ , namely, f1(u1, u2), and du2/dτ which is
f2(u1, u2), on either side of the null clines.

Case a12 > 1, a21 > 1. This corresponds to Figure 3.10(b). From (3.35) and (3.36),
(1, 0) and (0, 1) are stable. Since 1 − a12a21 < 0, (u∗

1, u∗
2), the fourth steady state

in (3.33), lies in the positive quadrant and from (3.37) its eigenvalues are such that
λ2 < 0 < λ1 and so it is unstable to small perturbations: it is a saddle point. In this
case, then, the phase trajectories can tend to either one of the two steady states, as
illustrated in Figure 3.11(b). Each steady state has a domain of attraction. There is a
line, a separatrix, which divides the positive quadrant into 2 nonoverlapping regions I
and II as in Figure 3.11(b). The separatrix passes through the steady state (u∗

1, u∗
2): it is

one of the saddle point trajectories in fact.
Now consider some of the ecological implications of these results. In case (i) where

a12 < 1 and a21 < 1 there is a stable steady state where both species can exist as
in Figure 3.10(a). In terms of the original parameters from (3.31) this corresponds to
b12K2/K1 < 1 and b21 K1/K2 < 1. For example, if K1 and K2 are approximately the
same and the interspecific competition, as measured by b12 and b21, is not too strong,
these conditions say that the two species simply adjust to a lower population size than
if there were no competition. In other words, the competition is not aggressive. On the
other hand if the b12 and b21 are about the same and the K1 and K2 are different, it is not
easy to tell what will happen until we form and compare the dimensionless groupings
a12 and a21.

In case (ii), where a12 > 1 and a21 > 1, if the K ’s are about equal, then the b12
and b21 are not small. The analysis then says that the competition is such that all three
nontrivial steady states can exist, but, from (3.35) to (3.37), only (1, 0) and (0, 1) are
stable, as in Figure 3.11(b). It can be a delicate matter which ultimately wins out. It
depends crucially on the starting advantage each species has. If the initial conditions
lie in domain I then eventually species 2 will die out, u2 → 0 and u1 → 1; that is,
N1 → K1 the carrying capacity of the environment for N1. Thus competition here has
eliminated N2. On the other hand if N2 has an initial size advantage so that u1 and u2
start in region II then u1 → 0 and u2 → 1 in which case the N1-species becomes extinct
and N2 → K2, its environmental carrying capacity. We expect extinction of one species
even if the initial populations are close to the separatrix and in fact if they lie on it, since
the ever present random fluctuations will inevitably cause one of ui , i = 1, 2 to tend to
zero.

Cases (iii) and (iv) in which the interspecific competition of one species is much
stronger than the other, or the carrying capacities are sufficiently different so that a12 =
b12K2/K1 < 1 and a21 = b21 K1/K2 > 1 or alternatively a12 > 1 and a21 < 1, are
quite definite in the ultimate result. In case (iii), as in Figure 3.11(c), the stronger dimen-
sionless interspecific competition of the u1-species dominates and the other species, u2,
dies out. In case (iv) it is the other way round and species u1 becomes extinct.

Although all cases do not result in species elimination, those in (iii) and (iv) always
do and in (ii) it is inevitable due to natural fluctuations in the population levels. This
work led to the principle of competitive exclusion which was mentioned above. Note
that the conditions for this to hold depend on the dimensionless parameter groupings a12
and a21: the growth rate ratio parameter ρ does not affect the gross stability results, just
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the dynamics of the system. Since a12 = b12 K2/K1, a21 = b21 K1/K2 the conditions
for competitive exclusion depend critically on the interplay between competition and
the carrying capacities as well as the initial conditions in case (ii).

Suppose, for example, we have 2 species comprised of large animals and small
animals, with both competing for the same grass in a fixed area. Suppose also that
they are equally competitive with b12 = b21. With N1 the large animals and N2 the
small, K1 < K2 and so a12 = b12 K2/K1 < b21 K2/K1 = a21. As an example if
b12 = 1 = b21, a12 < 1 and a21 > 1 then in this case N1 → 0 and N2 → K2; that is,
the large animals become extinct.

The situation in which a12 = 1 = a21 is special and, with the usual stochastic vari-
ability in nature, is unlikely in the real world to hold exactly. In this case the competitive
exclusion of one or the other of the species also occurs.

The importance of species competition in Nature is obvious. We have discussed
only one particularly simple model but again the method of analysis is quite general.
A review and introductory article by Pianka (1981) deals with some practical aspects
of competition as does the book of lectures by Waltman (1984). A slightly simpler
competition model (see Exercise 2) was applied by Flores (1998) to the extinction of
Neanderthal man by Early Modern man. Flores’ model is based on a slightly different
mortality rate of the two species and he shows that coexistence is not possible. He
estimates the relevant parameter from independent sources and his extinction period is
in line with the accepted palaeontological data of 5000 to 10,000 years. In Chapters 1
and 14, Volume II we discuss some practical cases of spatial competition associated
with squirrels, wolf–deer survival and the release of genetically engineered organisms.

3.6 Mutualism or Symbiosis
There are many examples where the interaction of two or more species is to the advan-
tage of all. Mutualism or symbiosis often plays the crucial role in promoting and even
maintaining such species: plant and seed dispersal is one example. Even if survival is
not at stake the mutual advantage of mutualism or symbiosis can be very important. As
a topic of theoretical ecology, even for two species, this area has not been as widely
studied as the others even though its importance is comparable to that of predator–prey
and competition interactions. This is in part due to the fact that simple models in the
Lotka–Volterra vein give silly results. The simplest mutualism model equivalent to the
classical Lotka–Volterra predator–prey one is

d N1

dt
= r1 N1 + a1 N1 N2,

d N2

dt
= r2 N2 + a2 N2 N1,

where r1, r2, a1 and a2 are all positive constants. Since d N1/dt > 0 and d N2/dt > 0,
N1 and N2 simply grow unboundedly in, as May (1981) so aptly put it, ‘an orgy of
mutual benefaction.’

Realistic models must at least show a mutual benefit to both species, or as many
as are involved, and have some positive steady state or limit cycle type oscillation.
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Some models which do this are described by Whittaker (1975). A practical example is
discussed by May (1975).

As a first step in producing a reasonable 2-species model we incorporate limited
carrying capacities for both species and consider

d N1

dt
= r1 N1

(
1 − N1

K1
+ b12

N2

K1

)

d N2

dt
= r2 N2

(
1 − N2

K2
+ b21

N1

K2

)
,

(3.38)

where r1, r2, K1, K2, b12 and b21 are all positive constants. If we use the same nondi-
mensionalisation as in the competition model (the signs preceding the b’s are negative
there), namely, (3.31), we get

du1

dτ
= u1(1 − u1 − a12u2) = f1(u1, u2),

du2

dτ
= ρu2(1 − u2 − a21u1) = f2(u1, u2),

(3.39)

where

u1 = N1

K1
, u2 = N2

K2
, τ = r1t, ρ = r2

r1
,

a12 = b12
K2

K1
, a21 = b21

K1

K2
.

(3.40)

Analysing the model in the usual way we start with the steady states (u∗
1, u∗

2) which
from (3.39) are

(0, 0), (1, 0), (0, 1),
(

1 + a12

δ
,

1 + a21

δ

)
, positive if δ = 1 − a12a21 > 0.

(3.41)

After calculating the community matrix for (3.39) and evaluating the eigenvalues λ for
each of (3.41) it is straightforward to show that (0, 0), (1, 0) and (0, 1) are all unstable:
(0, 0) is an unstable node and (1, 0) and (0, 1) are saddle point equilibria. If 1−a12a21 <

0 there are only three steady states, the first three in (3.41), and so the populations
become unbounded. We see this by drawing the null clines in the phase plane for (3.39),
namely, f1 = 0, f2 = 0, and noting that the phase trajectories move off to infinity in a
domain in which u1 → ∞ and u2 → ∞ as in Figure 3.12(a).

When 1 − a12a21 > 0, the fourth steady state in (3.41) exists in the positive quad-
rant. Evaluation of the eigenvalues of the community matrix shows it to be a stable
equilibrium: it is a node singularity in the phase plane. This case is illustrated in Fig-
ure 3.12(b). Here all the trajectories in the positive quadrant tend to u∗

1 > 1 and u∗
2 > 1;

that is, N1 > K1 and N2 > K2 and so each species has increased its steady state
population from its maximum value in isolation.

This model has certain drawbacks. One is the sensitivity between unbounded growth
and a finite positive steady state. It depends on the inequality a12a21 < 1, which from
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Figure 3.12. Phase trajectories for the mutualism model for two species with limited carrying capacities
given by the dimensionless system (3.39). (a) a12a21 > 1: unbounded growth occurs with u1 → ∞ and
u2 → ∞ in the domain bounded by the null clines—the solid lines. (b) a12a21 < 1: all trajectories tend to
a positive steady state S with u∗

1 > 1, u∗
2 > 1 which shows the initial benefit that accrues since the carrying

capacity for each species is greater than if no interaction were present.

(3.40) in terms of the original parameters in (3.38) is b12b21 < 1: the b’s are dimen-
sionless. So if symbiosis of either species is too large, this last condition is violated and
both populations grow unboundedly.

3.7 General Models and Some General and Cautionary Remarks

All of the models we have discussed in this chapter result in systems of nonlinear dif-
ferential equations of the form

d Ni

dt
= Ni Fi (N1, N2, . . . , Nn), i = 1, 2, . . . , (3.42)

which emphasises the fact that the vector of populations N has N = 0 as a steady state.
The two-species version is sometimes referred to as the Kolmogorov model or as the
Kolmogorov equations.

Although we have mainly considered 2-species interactions in this chapter, in na-
ture, and in the sea in particular, there are many species or trophic levels where energy,
in the form of food, flows from one species to another. That is, there is a flow from one
trophic level to another. The mass of the total number of individuals in a species is often
referred to as its biomass, here the population times the unit mass. The ultimate source
of energy is the sun, and in the sea, for example, the trophic web runs through plankton,
fish, sharks up to whales and finally man, with the myriad of species in between. The
species on one trophic level may predate several species below it. In general, models
involve interaction between several species.
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Multi-species models are of the form

du
dt

= f(u) or
dui

dt
= fi (u1, . . . , un), i = 1, . . . , n, (3.43)

where u(t) is the n-dimensional vector of population densities and f(u) describes the
nonlinear interaction between the species. The function f(u) involves parameters which
characterise the various growth and interaction features of the system under investiga-
tion, with fi (u1, . . . , un) specifying the overall rate of growth for the i th species. The
stability of the steady states is determined in exactly the same way as before by linearis-
ing about the steady states u∗, where f(u∗) = 0 and examining the eigenvalues λ of the
community or stability matrix

A = (ai j ) =
(

∂ fi

∂u j

)

u=u∗
. (3.44)

The necessary and sufficient conditions for the eigenvalues λ, solutions of polynomial
| A − λI | = 0, to have Re λ > 0 are given by the Routh–Hurwitz conditions which are
listed in Appendix B.

If a steady state is unstable then the solution u may grow unboundedly or evolve
into another steady state or into a stable oscillatory pattern like a limit cycle. For 2-
species models the theory of such equations is essentially complete: they are phase
plane systems and a brief review of their analysis is given in Appendix A. For three or
more interacting species considerably less general theory exists. Some results, at least
for solutions near the steady state when it becomes unstable, can often be found us-
ing Hopf bifurcation theory; see, for example, the book by Strogatz (1994) for a good
pedagogical discussion of Hopf bifurcation. At its simplest this theory says that if a
parameter of the system, p say, has a critical value pc such that for p < pc the eigen-
value with the largest Re λ < 0, and for p = pc Re λ = 0, Im λ �= 0 and for p > pc

Re λ > 0, Im λ �= 0 then for p − pc > 0 and small, the solution u will exhibit small
amplitude limit cycle behaviour around u∗. Smith (1993) has developed a new approach
to the study of 3 (and higher) competitive or cooperative species. His approach lets you
apply the Poincaré–Bendixson theorem to three-species systems by relating the flows to
topologically equivalent flows in two dimensions.

The community matrix A, defined by (3.44), which is so crucial in determining the
linear stability of the steady states, has direct biological significance. The elements ai j

measure the effect of the j-species on the i-species near equilibrium. For example, if
Ui is the perturbation from the steady state u∗

i , the equation for Ui is

dUi

dt
=

n∑

j=1

ai j U j (3.45)

and so ai jU j is the effect of the species U j on the growth of Ui . If ai j > 0 then U j

directly enhances Ui ’s growth while if ai j < 0 it diminishes it. If ai j > 0 and a ji > 0
then Ui and U j enhance each other’s growth and so they are in a symbiotic interaction.
If ai j < 0 and a ji < 0 then they are in competition. May (1975) gives a survey of some
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generalised models and, in his discussion on stability versus complexity, gives some
results for stability based on properties of the community matrix.

There has been a considerable amount of study of systems where the community
matrix has diagonal symmetry or antisymmetry or has other rather special properties,
where general results can be given about the eigenvalues and hence the stability of the
steady states. This has had very limited practical value since models of real situations
do not have such simple properties. The stochastic element in assessing parameters
mitigates against even approximations by such models. However, just as the classical
Lotka–Volterra system is not relevant to the real world, these special models have often
made people ask the right questions. Even so, a preoccupation with such models or their
generalizations must be avoided if the basic aim is to understand the real world.

An important class of models which we have not discussed is interaction models
with delay. If the species exhibit different or distributed delays, such models open up a
veritable Pandora’s box of solution behaviour which to a large extent is still relatively
unexplored.

If we consider three or more species, aperiodic behaviour can arise. Lorenz (1963)
first demonstrated this with the model system

du

dt
= a(v − u),

dv

dt
= −uw + bu − v,

dw

dt
= uv − cw,

where a, b and c are positive parameters. (The equations arose in a fluid flow model.)
As the parameters are varied the solutions exhibit period doubling and eventually chaos
or aperiodicity. Many authors have considered such systems. For example, Rössler
(1976a,b, 1979, 1983), Sparrow (1982, 1986) and Strogatz (1994) have made a par-
ticular study of such systems and discovered several other basic examples which show
similar properties; see also the book edited by Holden (1986). It would be surprising
if certain population interaction models of three or more species did not display simi-
lar properties. Competition models of three or more species produce some unexpected
results.

Evidence for chaos (even complex oscillations) in wild populations is difficult to
find as well as difficult to verify unequivocably. It has been suggested therefore that
evolution tends to preserve populations from such chaotic behaviour. Possible chaotic
population dynamics which results from natural selection has been investigated in an
interesting article by Ferrière and Gatto (1993). From their results they hypothesize that
evolution might support considerably more chaotic population dynamics than believed
up to now. Controversially they suggest that chaos is possibly optimal in population
dynamics. They suggest, in fact, that chaos could be an optimal behaviour for various
biological systems. This conclusion is in line with the views expressed by Schaffer and
Kot (1986) with regard to epidemics.

Notwithstanding the above, evolutionary development of complex population in-
teractions seems to have generally produced reasonably stable systems. From our study
of interaction models up to now we know that a system can be driven unstable if certain
parameters are changed appropriately, that is, pass through bifurcation values. It should
therefore be a matter of considerable scientific study before any system is altered by
external manipulation. The use of models to study the effect of artificially interfering in
such trophic webs is essential and can be extremely illuminating. Had this been done it
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is likely that the following catastrophe would have been avoided. Although the use of
realistic dynamic models cannot give the complete answer, in the form of predictions
which might result from introducing another species or eradicating one in the chain,
they can certainly point to various danger signs that must be seriously considered. By
the same arguments it is essential that not too much credence be put on models since
the interactions can often be extremely complicated and the modeller might simply not
construct a sufficiently good model. To conclude this section we describe a major eco-
logical catastrophe which came from one such attempt to manipulate a complex trophic
web in East Africa.

Lake Victoria and the Nile Perch Catastrophe 1960

In 1960, the Nile perch (Latis niloticus) was introduced into Lake Victoria, the largest
lake in East Africa. The lake is bordered by Kenya, Tanzania and Uganda and it was
used to support hundreds of small fishing communities along the shore. It was thought
that the introduction of this large carnivorous species, which can weigh up to 100 Kg
or more, would provide a high-yielding and valuable source of protein. Its introduction
was supported at the time by the United Nations Food and Agriculture Organisation.
There were dissenting views from some scientists but these were ignored.

The presence of the large carnivorous perch over the past 35 years has essentially
wiped out the several hundred smaller cichlid fish in the lake; many of these provided
the main basis of the fishing communities’ economy on the lake’s shore. Markets were
flooded with perch. It was estimated that in 1984 the overall productivity of the lake
was reduced by about 80% of its pre-1960 level.

Within the lake, the unplanned introduction of such a major, new and unsuitable
species was a mistake of horrifying dimensions and caused an ecological disaster. There
are, however, other knock-on effects outside the lake over and above the economic catas-
trophe which engulfed the shore communities: these effects should certainly have been
anticipated. For example, the large perch are oily and cannot be dried in the sun but have
to be preserved by smoking. This resulted in major felling of valuable trees to provide
fuel.

Even more serious is the fact that many of the cichlid species, which have all but
disappeared and which used to flourish in the lake, helped to control the level of a
particular snail which lives in and around the lake.

These freshwater snails, which live in many of the major reservoirs of large dams,
are an essential link in the cycle of the parasitic disease called schistosomiasis (also
known as bilharzia), a disease which is considered to rank second only to malaria in
importance. It is a disease which is not attacked by the body’s immune system and is
invariably fatal to humans if not treated. Since the best mathematical biology is usually
carried out within a truly interdisciplinary environment, it is often the case that in trying
to make a model certain questions and answers are elicited from the ecologists, which in
turn initiate other related questions not directly connected with the model. These knock-
on effects would have been important examples. In spite of the disaster caused by this
introduction of an unsuitable species into such a delicate and complex trophic web there
were (in 1987) plans to introduce Nile perch into other large lakes in the region, such as
Lake Malawi.
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Schistosomiasis1 is a particularly nasty disease which affects more than 200 million
people in 74 countries. In Egypt, for example, it is linked to cancer and is the primary
cause of death among men between 20 and 44 years old. The snails shed parasites,
called (schistosome) cercariae, into the water: a single snail releases cercariae at a rate
of up to 3000 a day. These penetrate the human skin (when wading or swimming in
infected waters), migrate to the lung, liver, the bladder and elsewhere. After about five
weeks the worms mate and lay eggs at a rate of about 300 a day, about half of which are
eventually excreted. Those not secreted tend to lodge mainly in the liver. The eggs cause
the damage since they are recognised as a foreign invader and the immune system forms
scar tissue in a capsule which contains the egg. Chronic infection causes more capsules
and scar tissue leading to high blood pressure. The body tries to cope by making new
fragile and leaky blood vessels; eventually the patients in effect bleed to death. The
excreted eggs, on reaching the freshwater, hatch to become miracadia which then pass
into the snail and undergo asexual reproduction to produce cercariae thereby completing
the cycle. One of the interesting ideas to treat the disease is to try to get the immune
system to attack the eggs without forming these capsules.

Lately (1990’s) yet another catastrophe struck Lake Victoria in which water hy-
acinths (Eichorria crassipes) are ringing the lake with a wide thick mat which is de-
stroying fish breeding grounds, clogging hydroelectric plants and more. About 80% of
Uganda’s coastline is now infected. Although it is partially controlled in its native Brazil
with a predator (a rust fungus) there is some hesitancy in using an introduced predator.
However, this and chemical herbicides are being seriously mooted.

3.8 Threshold Phenomena
With the exception of the Lotka–Volterra predator–prey model, the 2-species models,
which we have considered or referred to in this chapter, have either had stable steady
states where small perturbations die out, or unstable steady states where perturbations
from them grow unboundedly or result in limit cycle periodic solutions. There is an
interesting group of models which have a nonzero stable state such that if the pertur-
bation from it is sufficiently large or of the right kind, the population densities undergo

1An interesting speculation arose from a dinner discussion in Corpus Christi College, Oxford one evening
concerning this disease, which I was working on at the time. Others in the discussion included an ancient
historian and an archaeologist who asked me to describe some of the symptoms of schistosomiasis. I briefly
described them and how it manifested itself. When a male has the disease from early childhood he begins
to pass blood in his urine around the age of 11 or so, roughly the time that girls start to menstruate in warm
climates. Infected males (and females) eventually die (if untreated) in their twenties or thirties. The ancient
historian then noted that in ancient Egypt it was believed that both males and females had ‘periods,’ starting
about the same age. Schistosomiasis was endemic in ancient Egypt (and is still highly prevalent today—
the Aswan Dam made the problem worse!). He went on to add that if a boy did not ‘menstruate’ he was
clearly singled out by the gods and was destined to become a priest. The archaeologist then pointed out that
it was interesting that most of the Egyptian mummies were of young people and that the mummies of older
people were primarily priests. One can speculate that the reason the priests as young boys did not develop the
disease is that they had some natural immunity and offers an explanation as to why priests frequently lived
considerably longer than the average life span in ancient Egypt. A touch fanciful perhaps but it is not totally
outside the possibility of reality and gives justification for a truly interdisciplinary society!
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large variations before returning to the steady state. Such models are said to exhibit a
threshold effect. We study one such group of models here.

Consider the model predator–prey system

d N

dt
= N [F(N ) − P] = f (N , P), (3.46)

d P

dt
= P[N − G(P)] = g(N , P), (3.47)

where for convenience all the parameters have been incorporated in the F and G by
a suitable rescaling: the F(N ) and G(P) are qualitatively as illustrated in Figure 3.13.
The specific form of F(N ) demonstrates the Allee effect which means that the per capita
growth rate of the prey initially increases with prey density but reaches a maximum at
some Nm and then decreases for larger prey densities.

The steady states N∗, P∗ from (3.46) and (3.47) are N∗ = 0 = P∗ and the non-
negative solutions of

P∗ = F(N∗), N∗ = G(P∗). (3.48)

As usual, it is again helpful to draw the null clines f = 0, g = 0 which are sketched in
Figure 3.14. Depending on the various parameters in F(N ) and G(P), the steady state
can be typically at S or at S′. To be specific we consider the case where N ∗ > Nm ; that
is, the steady state is at S in Figure 3.14.

From (3.46) and (3.47) the community matrix A for the zero steady state N∗ =
0, P∗ = 0 is

A =





∂ f

∂N

∂ f

∂ P
∂g

∂N

∂g

∂ P






N=0=P

=
(

F(0) 0

0 −G(0)

)

.

The eigenvalues are λ = F(0) > 0 and λ = −G(0) < 0. So, with the F(N ) and G(N )

in Figure 3.13, (0, 0) is unstable: it is a saddle point singularity in the (N , P) phase
plane.

Figure 3.13. (a) Qualitative form of the prey’s per capita growth rate F(N ) in (3.46) which exhibits the Allee
effect. (b) Predators’ per capita mortality rate.
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Figure 3.14. Null clines N = 0, P = 0, N = G(P), P = F(N ) for the predator–prey system (3.46) and
(3.47): f = N [F(N ) − P], g = P[N − G(P)]. S and S′ are possible stable steady states.

For the positive steady state (N∗, P∗) the community matrix is, from (3.46)–(3.48),

A =
(

N ∗F ′(N ∗) −N ∗

P∗ −P∗G ′(P∗)

)

,

where the prime denotes differentiation and, from Figure 3.14, G ′(P∗) > 0 and F ′(N ∗) <

0 when (N∗, P∗) is at S and G ′(P∗) > 0 and F ′(N∗) > 0 when at S′. The eigenvalues
λ are solutions of

| A − λI | = 0 ⇒ λ2 − (trA)λ + detA = 0, (3.49)

where

tr A = N∗F ′(N ∗) − P∗G′(P∗)
det A = N∗ P∗[1 − F ′(N ∗)G ′(P∗)]. (3.50)

When the steady state is at S in Figure 3.14, trA < 0 and detA > 0 and so it is stable
to small perturbations for all F(N ) and G(P) since Re λ < 0 from (3.49). If the steady
state is at S′, trA and detA can be positive or negative since now F ′(N∗) > 0. Thus S′
may be stable or unstable depending on the particular F(N ) and G(P). If it is unstable
then a limit cycle solution results since there is a confined set for the system; refer to
Section 3.4 for a worked example of a qualitatively similar problem and Figure 3.8
which illustrates such a solution behaviour.

The case of interest here is when the steady state is at S and is thus always stable.
Suppose we perturb the system to the point X in the phase plane as in Figure 3.15(a).
Since here f < 0 and g < 0, equations (3.46) and (3.47) imply that d N/dt < 0
and d P/dt < 0 and so the trajectory starts to move qualitatively as on the trajectory
shown in Figure 3.15(a): it eventually returns to S but only after a large excursion in
the phase plane. The path is qualitatively indicated by the signs of f and g and hence
of d N/dt and d P/dt . If the perturbation takes (N , P) to Y then a similar behaviour
occurs. If, however, the perturbation is to Z then the perturbation remains close to S.
Figures 3.15(b) and (c) illustrate a typical temporal behaviour of N and P .
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Figure 3.15. (a) Null clines for the predator–prey threshold model (3.46) and (3.47). The steady state S
is always stable. A perturbation to X results in a large excursion in phase space before returning to S. A
perturbation to Z is under the threshold and hence returns to S without a large excursion. (b) and (c) Schematic
time evolution of the solutions illustrating the effect of a perturbation to X and to Z as in (a).

There is clearly a rough threshold perturbation below which the perturbation always
remains close to the steady state and above which it does not, even though the solution
ultimately returns to the steady state. The threshold perturbation is more a threshold
curve or rather domain and is such that if the perturbation results in the trajectory get-
ting past the maximum Nm in Figure 3.15(a) then the trajectories are typically like those
from X and Y . If the trajectory crosses f = 0 at N > Nm then no large perturbation
occurs. The reason that such a threshold property exists is a consequence of the form
of the null cline f = 0 which has a maximum as shown; in this case this is a con-
sequence of the Allee effect in the dynamics of the model (3.46). With the problems
we have discussed earlier in this chapter it might appear from looking at the tempo-
ral behaviour of the population that we were dealing with an unstable situation. The
necessity for a careful drawing of the null clines is clear. The definition of a thresh-
old at this stage is rather imprecise. We show later in Chapter 1, Volume II that if one
of the species is allowed to disperse spatially, for example, by diffusion, then thresh-
old travelling waves are possible. These have important biological consequences. In
this context the concept of a threshold can be made precise. This threshold behaviour
arises in an important way later in the book in biochemical contexts which are for-
mally similar since the equations for reaction kinetics are mathematically of the same
type as those for the dynamics of interacting populations such as we have discussed
here.

A final remark on the problem of modelling interacting populations is that there
can be no ‘correct’ model for a given situation since many models can give qualitatively
similar behaviour. Getting the right qualitative characteristics is only the first step and
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must not be considered justification for a model. This important caveat for all models
will be repeated with regularity throughout the book. What helps to make a model a
good one is the plausibility of the growth dynamics based on observation, real facts
and whether or not a reasonable assessment of the various parameters is possible and,
finally, whether predictions based on the model are borne out by subsequent experiment
and observation.

3.9 Discrete Growth Models for Interacting Populations

We now consider two interacting species, each with nonoverlapping generations, which
affect each other’s population dynamics. As in the continuous growth models, there
are the same main types of interaction, namely, predator–prey, competition and mutu-
alism. In a predator–prey situation the growth rate of one is enhanced at the expense
of the other whereas in competition the growth rates of both are decreased while in
mutualism they are both increased. These topics have been widely studied but nowhere
near to the same extent as for continuous models for which, in the case of two species,
there is a complete mathematical treatment of the equations. The book by Hassel (1978)
deals with predator–prey models. Beddington et al. (1975) present some results on the
dynamic complexity of coupled predator–prey systems. The book by Gumowski and
Mira (1980) is more mathematical, dealing generally with the mathematics of coupled
systems but also including some interesting numerically computed results; see also the
introductory article by Lauwerier (1986). The review article by May (1986) is appo-
site to the material here and that in the previous chapters, the central issue of which
is how populations regulate. He also discusses, for example, the problems associated
with unpredictable environmental factors superimposed on deterministic models and
various practical aspects of resource management. In view of the complexity of solu-
tion behaviour with single-species discrete models it is not surprising that even more
complex behaviour is possible with coupled discrete systems. Even though we expect
complex behaviour it is hard not to be overwhelmed by the astonishing solution diver-
sity when we see the baroque patterns that can be generated as has been so beautifully
demonstrated by Peitgen and Richter (1986). Their book is devoted in large part to the
numerically generated solutions of discrete systems. They show, in striking colour, a
wide spectrum of patterns which can arise, for example, with a system of only two cou-
pled equations; the dynamics need not be very complicated. They also show, among
other things, how the solutions relate to fractal generation (see, for example, Mandel-
brot 1982), Julia sets, Hubbard trees and other exotica. Most of the text is a technical but
easily readable discussion of the main topics of current interest in dynamical systems.
In Chapter 14 we give a brief introduction to fractals.

Here we are concerned with predator–prey models. An important aspect of evolu-
tion by natural selection is the favouring of efficient predators and cleverly elusive prey.
Within the general class, we have in mind primarily insect predator–prey systems, since
as well as the availability of a substantial body of experimental data, insects often have
life cycles which can be modelled by two-species discrete models.

We consider the interaction for the prey (N ) and the predator (P) to be governed
by the discrete time (t) system of coupled equations
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Nt+1 = r Nt f (Nt , Pt ), (3.51)

Pt+1 = Nt g(Nt , Pt ), (3.52)

where r > 0 is the net linear rate of increase of the prey and f and g are functions which
relate the predator-influenced reproductive efficiency of the prey and the searching effi-
ciency of the predator respectively. The techniques we discuss are, of course, applicable
to other population interactions. The theory discussed in the following chapter is differ-
ent in that the interaction is overlapping. The techniques for it have similarities but with
some fundamental differences. The crucial difference, however, is that the ‘species’ in
Chapter 5 are marital states.

3.10 Predator–Prey Models: Detailed Analysis

We first consider a simple model in which predators simply search over a constant area
and have unlimited capacity for consuming the prey. This is reflected in the system

Nt+1 = r Nt exp [−a Pt ],
Pt+1 = Nt {1 − exp [−a Pt ]}.

a > 0 (3.53)

Perhaps it should be mentioned here that it is always informative to try and get an intu-
itive impression of how the interaction affects each species by looking at the qualitative
behaviour indicated by the equations. With this system, for example, try and decide
what the outcome of the stability analysis will be. In general if the result is not what
you anticipated such a preliminary qualitative impression can often help in modifying
the model to make it more realistic.

The equilibrium values N ∗, P∗ of (3.53) are given by

N∗ = 0, P∗ = 0
or 1 = r exp [−a P∗], P∗ = N ∗(1 − exp [−a P∗])

and so positive steady state populations are

P∗ = 1

a
ln r, N∗ = r

a(r − 1)
ln r, r > 1. (3.54)

The linear stability of the equilibria can be determined in the usual way by writing

Nt = N ∗ + nt , Pt = P∗ + pt ,

∣∣
∣

nt

N∗
∣∣
∣ � 1,

∣∣
∣

pt

P∗
∣∣
∣ � 1, (3.55)

substituting into (3.53) and retaining only linear terms. For the steady state (0, 0) the
analysis is particularly simple since

nt+1 = rnt , pt+1 = 0,
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and so it is stable for r < 1 since Nt → 0 as t → ∞ and unstable for r > 1, that is, the
range of r when the positive steady state (3.54) exists. For this positive steady state we
have the linear system of equations

nt+1 = nt − N ∗apt , pt+1 = nt

(
1 − 1

r

)
+ N ∗a

r
pt , (3.56)

where we have used the relation 1 = r exp [−a P∗] which defines P∗.
A straightforward way to solve (3.56) is to iterate the first equation and then use

the second to get a single equation for nt . That is,

nt+2 = nt+1 − N ∗apt+1

= nt+1 − N ∗a

[
nt

(
1 − 1

r

)
+ N∗a

r
pt

]

= nt+1 − N ∗a

[
nt

(
1 − 1

r

)
+ 1

r
(nt − nt+1)

]

and so

nt+2 −
(

1 + N∗a

r

)
nt+1 + N ∗ant = 0. (3.57)

We now look for solutions in the form

nt = Axt ⇒ x2 −
(

1 + N∗a

r

)
x + N ∗a = 0.

With N∗ from (3.54) the characteristic polynomial is thus

x2 −
{

1 + 1

r − 1
ln r

}
x + r

r − 1
ln r = 0, r > 1 (3.58)

of which the two solutions x1 and x2 are

x1, x2 = 1

2






[
1 + ln r

r − 1

]
±
{[

1 + ln r

r − 1

]2

− 4
r ln r

r − 1

}1/2




. (3.59)

Thus

nt = A1xt + A2xt , (3.60)

where A1, A2 are arbitrary constants. With this, or by a similar analysis, we then get pt

as

pt = B1xt + B2xt , (3.61)

where B1 and B2 are arbitrary constants.
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A more elegant, and easy to generalise, way to find x1 and x2 is to write the linear
perturbation system (3.56) in matrix form

(
nt+1
pt+1

)
= A

(
nt

pt

)
, A =

(
1 −N ∗a

1 − 1
r

N∗a
r

)
(3.62)

and look for solutions in the form
(

nt

pt

)
= B

(
1
1

)
xt ,

where B is an arbitrary constant 2 × 2 matrix. Substituting this into (3.62) gives

B

(
xt+1

xt+1

)
= AB

(
xt

xt

)
⇒ x B

(
xt

xt

)
= AB

(
xt

xt

)

which has a nontrivial solution B

(
xt

xt

)
if

| A − x I | = 0 ⇒
∣
∣∣
∣
1 − x −N∗a
1 − 1

r
N∗a

r − x

∣
∣∣
∣ = 0

which again gives the quadratic characteristics equation (3.58). The solutions x1 and x2
are simply the eigenvalues of the matrix A in (3.62). This matrix approach is the discrete
equation analogue of the one we used for the continuous interacting population models.
The generalization to higher-order discrete model systems is clear.

The stability of the steady state (N ∗, P∗) is determined by the magnitude of | x1 |
and | x2 |. If either of | x1 | > 1 or | x2 | > 1 then nt and pt become unbounded as
t → ∞ and hence (N∗, P∗) is unstable since perturbations from it grow with time. A
little algebra shows that in (3.59),

[
1 + ln r

r − 1

]2

− 4r ln r

r − 1
< 0 for r > 1

and so the roots x1 and x2 are complex conjugates. The product of the roots, from (3.58),
or (3.59), is

x1x2 = | x1 |2 = (r ln r)/(r − 1) > 1, for all r > 1,=> | x1 | > 1.

(An easy way to see that (r ln r)/(r − 1) > 1 for all r > 1 is to consider the graphs of
ln r and (r − 1)/r for r > 1 and note that d(ln r)/dr > d[(r − 1)/r ]/dr for all r > 1.)
Thus the solutions (nt , pt ) from (3.60) and (3.61) become unbounded as t → ∞ and
so the positive equilibrium (N∗, P∗) in (3.54) is unstable, and by growing oscillations
since x1 and x2 are complex. Numerical solutions of the system (3.53) indicate that the
system is unstable to finite perturbations as well: the solutions grow unboundedly. Thus
this simple model is just too simple for any practical applications except possibly under
contrived laboratory conditions and then only for a limited time.
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Density-Dependent Predator–Prey Model

Let us reexamine the underlying assumptions in the simple initial model (3.53). The
form of the equations implies that the number of encounters a predator has with a prey
increases unboundedly with the prey density: this seems rather unrealistic. It is more
likely that there is a limit to the predators’ appetite. Another way of looking at this
equation as it stands, and which is formally the same, is that if there were no predators
Pt = 0 and then Nt would grow unboundedly, if r > 1, and become extinct if 0 < r <

1: it is the simple Malthusian model (2.2). It is reasonable to modify the Nt equation
(3.53) to incorporate some saturation of the prey population or, in terms of predator
encounters, a prey-limiting model. We thus take as a more realistic model

Nt+1 = Nt exp

[
r

(
1 − Nt

K

)
− a Pt

]
,

Pt+1 = Nt{1 − exp [−a Pt ]}.
(3.63)

Now with Pt = 0 this reduces to the single-species model (2.8) in Section 2.1. There
is a stable positive equilibrium N∗ = K for 0 < r < 2 and oscillatory and periodic
solutions for r > 2. We can reasonably expect a similar bifurcation behaviour here,
although probably not with a first bifurcation at r = 2 and certainly not the same values
for r with higher bifurcations. This model has been studied in detail by Beddington et
al. (1975).

The nontrivial steady states of (3.63) are solutions of

1 = exp

[
r

(
1 − N ∗

K

)
− a P∗

]
, P∗ = N ∗(1 − exp [−a P∗]). (3.64)

The first of these gives

P∗ = r

a

(
1 − N∗

K

)
(3.65)

which on substituting into the second gives N∗ as solutions of the transcendental equa-
tion

r
(

1 − N∗
K

)

aN ∗ = 1 − exp

[
−r

(
1 − N∗

K

)]
. (3.66)

Clearly N∗ = K , P∗ = 0 is a solution. If we plot the left- and right-hand sides of (3.66)
against N ∗ as in Figure 3.16 we see there is another equilibrium 0 < N ∗

E < K , the
other intersection of the curves: it depends on r , a and K . With N ∗

E determined, (3.65)
then gives P∗

E .
The linear stability of this equilibrium can be treated in exactly the same way as

before with the eigenvalues x again being given by the eigenvalues of the matrix of
the linearised system. It has to be done numerically. It can be shown that for some
r > 0 the equilibrium is stable and that it bifurcates for larger r . Beddington et al.
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Figure 3.16. Graphical solution for the positive
equilibrium N∗

E of the model system (3.63).

(1975) determine the stability boundaries in the r, N ∗
E/K parameter space where there

is a bifurcation from stability to instability and where the solutions exhibit periodic
and ultimately chaotic behaviour. The stability analysis of realistic two-species models
often has to be carried out numerically. For three-species and higher, the Jury conditions
(see Appendix B) can be used to determine the conditions which the coefficients must
satisfy so that the linear solutions x satisfy | x | < 1. For higher-order systems, however,
they are of little use except within a numerical scheme.

Biological Pest Control: General Remarks

The use of natural predators for pest control is to inhibit any large pest increase by a
corresponding increase in the predator population. The aim is to keep both populations
at acceptably low levels. The aim is not to eradicate the pest, only to control its pop-
ulation. Although many model systems of real predators and real pests are reasonably
robust from a stability point of view, some can be extremely sensitive. This is why the
analysis of realistic models is so important. When the parameters for a model are taken
from observations it is fortunate that many result in either steady state equilibria or
simple periodic behaviour: chaotic behaviour is much less common. Thus effective pa-
rameter manipulation is more predictable in a substantial number of practical situations.

There are many notable successes of biological pest control particularly with long-
standing crops such as fruit and forest crops and so on, where there is a continuous
predator–prey interaction. With the major ecological changes caused by harvesting in
perennial crops it has been less successful. The successes have mainly been of the
predator–prey variety where the predator is a parasite. This can be extremely impor-
tant in many human diseases. Kot (2001) gives a full discussion of the dynamics of
harvesting models, including the important aspect of optimal control.

In the models we have analysed we have concentrated particularly on the model
building aspects, the study of stability in relation to parameter ranges and the existence
of either steady states or periodic behaviour. What we have not discussed is the influ-
ence of initial conditions. Although not generally the case, they can be important. One
such example is the control of the red spider mite which is a glass-house tomato plant
pest where the initial predator–prey ratio is crucial. We should expect initial data to be
important particularly in those cases where the oscillations show outbreak, crashback
and slow recovery. The crashback to low levels may bring the species close enough to
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extinction to actually cause it. There are several books on biological pest control; see,
for example, DeBach (1974) and Huffaker (1971).

A moderately new and, in effect, virgin territory is the study of coupled systems
where the time-steps for the predator and prey are not equal. This clearly occurs in
the real world. With the wealth of interesting and unexpected behaviour displayed by
the models in this chapter and Chapter 2, it would be surprising if different time-step
models did not produce equally unexpected solution behaviour.

Exercises

1 In the competition model for two species with populations N1 and N2

d N1

dt
= r1 N1

(
1 − N1

K1
− b12

N2

K1

)
,

d N2

dt
= r2 N2

(
1 − b21

N1

K2

)
,

where only one species, N1, has limited carrying capacity. Nondimensionalise the
system and determine the steady states. Investigate their stability and sketch the
phase plane trajectories. Show that irrespective of the size of the parameters the
principle of competitive exclusion holds. Briefly describe under what ecological cir-
cumstances the species N2 becomes extinct.

2 Flores (1998) proposed the following model for competition between Neanderthal
man (N) and Early Modern man (E).

d N

dt
= N [A − D(N + E) − B] ,

d E

dt
= E [A − D(N + E) − s B] ,

where A, B, D are positive constants and s < 1 is a measure of the difference in
mortality of the two species. Nondimensionalise the system and describe the mean-
ing of any dimensionless parameters. Show that the populations N and C are related
by

N (t) ∝ C(T ) exp[−B(1 − s)t].
Hence give the order of magnitude of the time for Neanderthal extinction.
If the lifetime of an individual is roughly 30 to 40 years and the time to extinction

is (from the palaeontological data) 5000 to 10,000 years, determine the range of
the mortality difference parameter s. [An independent estimate (Flores 1998) is of
s = 0.995.]

Construct a competition model for this situation using the model system
in Section 3.5 with equal carrying capacities and linear birth rates in the absence
of competition but with slightly different competition efficiencies. Determine the
conditions under which Neanderthal man will become extinct and the conditions
under which the two species could coexist.
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3 Determine the kind of interactive behaviour between two species with populations
N1 and N2 that is implied by the model

d N1

dt
= r1 N1

[
1 − N1

K1 + b12 N2

]
,

d N2

dt
= r2 N2

[
1 − N2

K2 + b21 N1

]
.

Draw the null clines and determine the steady states and their stability. Briefly de-
scribe the ecological implications of the results of the analysis.

4 A predator–prey model for herbivore(H )–plankton(P) interaction is

d P

dt
= r P

[
(K − P) − B H

C + P

]
,

d H

dt
= DH

[
P

C + P
− AH

]
,

where r, K , A, B, C and H are positive constants. Briefly explain the ecological
assumptions in the model. Nondimensionalise the system so that it can be written in
the form

dp

dτ
= p

[
(k − p) − h

1 + p

]
,

dh

dτ
= dh

[
p

1 + p
− ah

]
.

Sketch the null clines and note any qualitative changes as the parameter k varies.
Hence, or otherwise, demonstrate that a positive steady state (p0, h0) exists for all
a > 0, k > 0.

By considering the community matrix determine the signs of the partial
derivatives of the right-hand sides of the equation system evaluated at (p0, h0) for
this steady state to be stable. By noting the signs of dp/dτ and dh/dτ relative to the
null clines in the p, h phase plane, show that (i) for k < 1 the positive steady state
is stable and (ii) that for k > 1, and small enough a, the positive steady state may be
stable or unstable. Hence show that in the a, k parameter plane a necessary condition
for a periodic solution to exist is that a, k lie in the domain bounded by a = 0 and
a = 4(k −1)/(k +1)3. Hence show that if a < 4/27 there is a window of values of k
where periodic solutions are possible. Under what conditions can the system exhibit
a threshold phenomenon?

5 The interaction between two populations with densities N1 and N2 is modelled by

d N1

dt
= r N1

(
1 − N1

K

)
− aN1 N2(1 − exp [−bN1]),

d N2

dt
= −d N2 + N2e(1 − exp [−bN1]),

where a, b, d, e, r and K are positive constants. What type of interaction exists
between N1 and N2? What do the various terms imply ecologically?
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Nondimensionalise the system by writing

u = N1

K
, v = aN2

r
, τ = r t, α = e

r
, δ = d

r
, β = bK .

Determine the nonnegative equilibria and note any parameter restrictions. Discuss
the linear stability of the equilibria. Show that a nonzero N2-population can exist if
β > βc = − ln (1 − δ/α). Briefly describe the bifurcation behaviour as β increases
with 0 < δ/α < 1.

6 The sterile insect release method (SIRM) for pest control releases a number of ster-
ile insects into a population. If a population n of sterile insects is maintained in a
population, a possible simple model for the population of fertile insects N (t) is

d N

dt
=
[

aN

N + n
− b

]
N − k N (N + n),

where a > b > 0 and k > 0 are constant parameters. Briefly discuss the assumptions
which lie behind the model.

Determine the critical number of sterile insects nc which would eradicate
the pests and show that this is less than a quarter of the environmental carrying
capacity.

Suppose that a single release of sterile insects is made and that the sterile
insects have the same death rate as fertile insects. Write down the appropriate model
system for N (t) and n(t) and show that it is not possible to eradicate the insect pests
with a single release of sterile insects.

If a fraction γ of the insects born are sterile, a suggested model is

d N

dt
=
[

aN

N + n
− b

]
N − k N (N + n),

dn

dt
= γ N − bn.

Determine the condition on γ for eradication of the pest and briefly discuss the real-
ism of the result.

7 A general form for models for insect predator(P)–prey(N ), or insect parasitism is

Nt+1 = r Nt f (Nt , Pt ), Pt+1 = Nt [1 − f (Nt , Pt )],
where f is a nonlinear function which incorporates assumptions about predator
searching, and r > 0 is the rate of increase of prey population. The scaling is such
that 0 < f < 1. Here f is an increasing function as Nt increases, and a decreasing
function as Pt increases. Does this model make sense ecologically?

Show that a positive equilibrium state (N∗, P∗) can exist and give any
conditions on r required. Show that the linear stability of the steady state is ensured
if the roots of

x2 −
[

1 + r N∗ ∂ f

∂Nt
− N ∗ ∂ f

∂ Pt

]
x − r N∗ ∂ f

∂ Pt
= 0

have magnitudes less than 1, where ∂ f/∂Nt and ∂ f/∂ Pt are evaluated at (N ∗, P∗),
and hence determine the conditions for linear stability.
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8 A model for the regulation of a host population by a microparasite population ut

which was proposed and studied by May (1985) is, in dimensionless form,

1 − It = exp [−Itut ], ut+1 = λut (1 − It ),

where λ > 0 and It denotes the fraction of the host population which has been
infected by the time the epidemic has run its course. The assumption in this specific
form is that the parasite epidemic has spread through each generation before the
next population change. [This is why the host population equation does not involve
It+1.] Determine the steady states and note any restrictions on λ for a positive steady
state to exist for both the host and microparasite populations. Investigate the linear
stability of the positive steady state. Show that it is always unstable and that the
instability arises via a pitchfork bifurcation.

[May (1985) studies this model in depth and shows that the positive steady
state and all periodic solutions are unstable; that is, the model only exhibits chaotic
behaviour without going through the usual period doubling. He also discusses the
epidemiological implications of such a simple, yet surprising, system.]



4. Temperature-Dependent Sex Determination
(TSD): Crocodilian Survivorship

4.1 Biological Introduction and Historical Asides on the Crocodilia

It is a fascinating subject why some species become extinct and others do not. Why, for
example, have the three families of crocodilia (alligators, crocodiles and gavials) not
become extinct during the past 100 million or so years? They have survived essentially
unchanged for around 63 million years after the dinosaurs became extinct and clearly
have great survival powers. As pointed out by Benton (1997), however, those that have
survived are only a small group of around the 150 fossil genera of crocodilians that
have been documented. Crocodiles and alligators were around in the later part of the
Cretaceous (63 to 135 million years ago). As several have noted, such as Benton (1997),
they were very much more widespread than they are now, with fossils found as far north
as Sweden and Canada. Colbert and Morales (1991) point out that the late Cretaceous
was the peak of their evolution with the largest genus being the Deinosuchus with the
most impressive jaws of any reptiles of the period: one fossil had a skull 6 feet in length
which suggests it must have had a total length of 40 to 50 feet—certainly a predator
to take notice of. Carroll (1988) suggests that the decline of the genera was probably
due to climatic deterioration from around the beginning of the Caenozoic (63 million
years ago) era. In spite of the massive extinctions, the families that have survived are
rightly viewed as living fossils. Meyer (1984) gives a general overview of them while
Pooley and Gans (1976) focus on the Nile crocodile and describe, among other things,
its unique biology and social behaviour which have contributed so much to its long
survival.

Over the millennia the crocodilia have been vilified like no other animal and the
wildest stories associated with them abound. The description of Leviathan in the Old
Testament (Job 41:1–34) is just a start. It is clearly the prototype dragon. It was regularly
used to scare children in the 19th century and no doubt earlier. One example is in the
Sunday School Advocate (Volume XVII, January 22, 1888) where it is described as

‘This hideous monster. . . . it is an ugly creature—a huge river dragon . . . ’

The article concludes:

‘But though this scaly monster does not haunt the rivers of the North, yet
there is another great dragon ever prowling. . . . It is more terrible than the
alligator. . . . The name of this monster is Sin!’
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Unbridled prejudiced dislike of crocodiles, however, was also expressed surpris-
ingly by some serious scientists. A well-known naturalist, Edward Topsell, in his 1607
(London) bestiary, Historie of Foure-footed Beastes wrote:

‘The nature of the beast is to be fearful, ravening, malitious and treacher-
ous. The tayle of the Crocodile is his strongest part, and they never kill any
beast or man, but first of all they strike him downe and astonish him with
their tailles. The males of this kind do love their females above all mea-
sure, yea even to jealousie. And it is no wonder if they made much of one
another, for beside themselves they have few friends in the world.’

Perhaps the most shameful, however, is the description of crocodiles by the influ-
ential Swedish naturalist Carl von Linné, better known as Linnaeus. In 1766 in a section
on Reptiles-Crocodiles he wrote:

‘These foul and loathsome animals are distinguished by a heart with a sin-
gle ventricle and a single auricle, doubtful lungs and a double penis. Most
are abhorrent because of their cold body, pale colour, cartilagenous skele-
ton, filthy skin, fierce aspect, calculating eye, offensive smell, harsh voice,
squalid habits and terrible venom; and so their creator has not exerted his
powers to make many of them.’

Modesty was not one of Linnaeus’ traits. Describing himself, appropriately in the ele-
vated third person, he wrote:

‘God has suffered him to peep into his secret cabinet.

God has permitted him to see more of his created work than any mortal
before him.

God has bestowed upon him the greatest insight into nature-study, greater
than anyone has gained . . .

None before him has so totally reformed a whole science and made a new
epoch.

None before him has arranged all the products of nature with such lucidity.’

A crucial difference between the crocodilia and most other species is that their sex
is determined by the incubation temperature of the egg during gestation, basically fe-
males at low temperatures and males at high temperatures. It is interesting to speculate
whether this could be a possible explanation, or at least a significant contributory factor,
for their incredible survivorship, and if so, how. In this chapter we discuss models to in-
vestigate this hypothesis. We first give some biological background and introduce terms
used in their study. We shall frequently use the word crocodile or alligator to represent
the crocodilia in general and the exact name, such as Alligator mississippiensis or A.
mississippiensis when we mean the specific reptile. An excellent and comprehensive
review of the reproductive biology of the crocodilians is given by Ferguson (1985).

In genetic sex determination (GSD), such as for mammals and birds, sex is fixed
at conception. Environmental sex determination (ESD) is when sex is determined by
environmental factors and occurs in other vertebrates and some invertebrates (see, for
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example, Charnov and Bull 1977, Deeming and Ferguson 1988, 1989a,b). Temperature-
dependent sex determination (TSD) is often observed in reptiles. Other than crocodiles,
alligators and the rest of the crocodilia, several reptiles, such as some lizards and certain
turtles, the temperature of egg incubation is the major factor determining sex. Gutzke
and Crews (1988), for example, specifically studied the leopard gecko (Eublepharis
macularius) which has a similar pattern to the crocodilia but with a lower temperature
range from 26 to 32◦ C. With turtles it is the high temperature that gives only females,
except for the snapping turtle which is like the crocodile.

The temperatures that produce all male or all female hatchlings vary little between
the different species of crocodilia. Females are produced at one or both extremes of
the range of viable incubation temperatures, and the intermediate temperatures produce
males. For example, in Alligator mississippiensis artificial incubation of eggs at low
temperatures, 30◦ C and below, produces females; 33◦ C produces all males; while high
temperatures, 35◦ C, give 90% female hatchlings (but these are usually not viable).
Ferguson and Joanen (1983) incubated 500 alligator eggs and found that all the young
are male if the eggs are incubated in the range 32.5–33◦ C. Temperatures in between,
that is, 32◦ C and from 33.5–34.5◦ C produce both sexes. Reproductive fitness of males
and females are strongly influenced in different ways by environment. Sex starts to
be determined quite early in gestation, by about the twelfth day into gestation, but is
not irrevocably fixed until as late as 32 to 35 days. For Alligator mississippiensis the
gestation is around 65 days for males and up to 75 days for females. Exact data can be
found in the review by Ferguson (1985).

A key question is why has TSD evolved? It has been postulated that TSD is the
ancestral form and GSD evolved from it. Deeming and Ferguson (1988, 1989a,b) have
proposed an explanation of the mechanism of temperature-dependent sex determination
in crocodilians. Their hypothesis is that the temperatures producing males are those that
are best for the expression of the gene for the male-determining factor. In a warm nest
eggs develop faster (see, for example, the graphs in Section 4.2 below and Murray et
al. 1990) than in a colder one and this means the young hatch more quickly. The adults
are also bigger when developed in a higher temperature; this turns out to be crucial in
determining the stripe pattern in alligators (Chapter 4, Volume II). One possible expla-
nation in the case of the crocodile is that it is better for the male to be big to fight off
competitors whereas for the turtle it is better for the female to be big so that she can lay
more eggs. The latter, however, could just as well apply to the crocodile. In this chapter
we offer a different possible explanation, which we believe could be a significant factor
in their long survival.

Observations of TSD in the natural habitat of A. mississippiensis in Louisiana,
U.S.A., indicate there are basically three different types of nest site: wet marsh, dry
marsh and levee (elevated firm ground). Broadly, levee nests are hot (34◦ C and hatch
approximately 100% males while in the wet marsh, nests are cool (30◦ C) and hatch
approximately 100% females. There are also temperature variations within the nest but
we do not include this aspect in our models, although they could be incorporated in a
more sophisticated version. Dry marsh nests have an intermediate temperature profile,
the hot (34◦ C) top centre hatching males, and the cold (30◦ C) peripheries and base,
hatching females (Ferguson and Joanen 1982, 1983). Since so few viable reproductive
female alligators are hatched at temperatures higher than 34◦ C we do not include this
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cohort in our modelling. Those that are incubated at these temperatures have very low
relative fitness.

The female alligator (and crocodile) does not choose the sex of her offspring per se.
However, she tries to take temperature into account when selecting her nest site since
she requires a good thermal environment for herself for the three-month period she stays
by the nest until the eggs are ready to hatch and she opens the nest. The female alligators
take great care in selecting their nest sites, nuzzling the ground with their snouts, which
contain very sensitive temperature sensors, to get it right. Good sites are frequently
reused. Although the precise factors for nest site selection are not known we shall as-
sume that a limited number of nest sites provides a density-dependent mechanism for
population regulation. In particular, a limited number of marsh nest sites will prevent a
totally female population from occurring although female alligators and crocodiles tend
to seek a temperature environment that is as close as possible to that of their own in-
cubation (Pooley 1977) and so the preferred habitat of females is marsh. Joanen (1969)
gives some field data for the relative size of these different nest site areas; we give these
at the appropriate place in the modelling below when we estimate parameter values.

The situation with alligators is not quite so simple as perhaps implied above. In fact
since alligators grow faster at higher temperatures it is best for a female to be incubated
near the upper end of the viable female temperature scale, which is around 32◦ C. It
is also best for the male around this temperature, its approximate lower limit. In fact
relative fitness, essentially survival times fertility, as compared with others of the same
sex is highest for both males and females in the middle range of temperatures, around
32◦ C. In the models we develop here we focus on the principal feature of TSD, namely,
the effect of temperature on sex determination. Aspects such as relative fitness could
be built into a more complex model as well as other features of crocodilian develop-
ment.

It is likely that skewed sex ratios, specifically spanandrous ones, that is, ratios other
than 1 : 1 and biased in favour of females, occur in species which exhibit ESD as a
consequence of skewed environmental types. So, natural selection favours ESD when
the reproductive fitness of an individual (male or female) is strongly influenced by the
environment (Charnov and Bull 1977). However, the heavily biased sex ratio, as high as
10:1 in favour of females in crocodilians (Ferguson and Joanen 1982, 1983, Smith and
Webb 1985, Webb and Smith 1987), is difficult to account for in terms of traditional sex
ratio theory (Deeming and Ferguson 1988, 1989b, Nichols and Chabreck 1980, Phelps
1992, Webb and Smith 1984). Webb and Smith (1984) say that from a sex ratio point
of view crocodilians could be equally well if not better adapted with GSD. However,
one of the selective advantages of TSD is the association of maximum potential for
adult growth with sex. Male alligators and crocodiles control harems of females; large
males control bigger harems, mate more often and for a longer season (Deeming and
Ferguson 1989b). However, as first pointed out by Fisher (1958, 1930), under natural
selection females nesting at higher temperatures and producing all male offspring would
have an advantage until a 1:1 equilibrium sex ratio, the ‘optimal’ sex ratio as suggested
by Fisher, is reached and then the two sexes would be produced in equal numbers.
Selective advantages for TSD in alligators and crocodiles is possibly explained in terms
of survival of the species rather than fitness of the individual which is a fundamentally
different approach to that of the selfish gene.



4.1 Crocodilia Biological Introduction and Historical Asides 123

Temperature, of course, controls more than just the sex of embryos: it affects growth
and development from embryo to adulthood as mentioned above, influences pigmenta-
tion pattern, and the adult’s ability to regulate its own body temperature (Deeming and
Ferguson 1988, 1989b, Lang 1987, Murray et al. 1990, Webb et al. 1987). We dis-
cuss some of the implications of pigment patterning in A. mississippiensis in Chapter 4,
Volume II. The association of TSD with potential population growth we believe can not
only protect populations from environmental catastrophe but also enable them to exploit
changing habitats by adjusting the metabolic requirements, growth rates and maximum
size of their offspring to prevailing conditions. Deeming and Ferguson (1988, 1989a,b)
postulated that this occurs by a setting of the embryonic hypothalamus. It is interesting,
and perhaps highly significant, that the reptiles (crocodiles, turtles, a few lizards and
others) with TSD have persisted with virtually the same morphologies for many mil-
lion years of evolution (Deeming and Ferguson 1989b).They seem optimally adapted
for survival not only in their present environment but also capable of survival with the
changing climatic changes since the beginning of the Caenozoic era. They have other
impressive and unusual characteristics (see, for example, the book of articles edited by
Gans et al. 1985) which have no doubt also contributed to their survival.

Here we mainly focus on the link between temperature-dependent sex determi-
nation, sex ratio and survivorship in crocodile populations. We first describe a sim-
ple density-dependent model involving only time to highlight the ideas and motivate
the more complex density-dependent age-structured model for the population dynam-
ics of crocodilians based on the fact that sex is determined by temperature of egg in-
cubation. In the age-structured case we follow the model of Woodward and Murray
(1993). Our modelling reflects the stability of crocodilian populations in the wild, and
this stability suggests selective advantages for environmental sex determination over
genetic sex determination that can not be explained in terms of traditional sex ratio
theory.

That population growth may be controlled by life history data was first realised
by Sadler in 1830 (see Cole 1954). However it was the age-dependent linear models
originally devised by Lotka (1907a,b, 1913), Sharpe and Lotka (1911), McKendrick
(1926) and von Foerster (1959) that provided methods for investigating the relation-
ships between life history parameters and population dynamics. Nichols et al. (1976)
used discrete linear models to numerically simulate commercially harvested alligator
populations as did Smith and Webb (1985; see also Webb and Smith 1987 and other ref-
erences there) for crocodile populations in the wild. These linear models lack density-
dependent mechanisms, so the population either grows or decays exponentially in a
Malthusian way as we saw in Chapters 1 and 2. Nonlinearities in the birth and death
processes provide a mechanism by which the population might stabilize to a nonzero
equilibrium (see Gurtin and MacCamy 1974, Hoppensteadt 1975, Webb 1985). Our
nonlinear age-structured model is based on life history data from studies of alligator
and crocodile populations in the wild (Dietz and Hines 1980, Goodwin and Marion
1978, Joanen 1969, Joanen and McNease 1971, Metzen 1977, Nichols et al. 1976,
Smith and Webb 1985, Webb and Smith 1987). We first describe the basic assump-
tions and a time-dependent model which demonstrates the key ideas. Even it, when
compared to an equivalent GSD model, indicates some of the benefits of TSD for the
crocodilia.
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4.2 Basic Nesting Assumptions and Simple Population Model

Here we describe a basic three-region model for the populations of males and females
which depends only on time. We incorporate some crucial spatial elements in the model
based on the observations of Ferguson and Joanen (1982, 1983). We assume that there
are 3 distinct nesting regions:

I wet marsh, producing all female hatchlings because of low incubation tempera-
tures in these nest sites,

II dry marsh, producing 50% male and 50% female hatchlings,

III dry levees, producing all male hatchlings because of higher incubation tempera-
tures.

Figure 4.1 schematically illustrates what we have in mind for these three regions.
We further assume that there is a limited number of nest sites near the water which

prevents a totally female population: typical figures for percentages of the total nest
sites in each of these regions are given by Joanen (1969) as 79.7% for region I, 13.6%
for region II and 6.7% for region III.

The population at time, t , is divided into four classes, f1(t) and f2(t) denoting
females themselves incubated in regions I and II respectively and m2(t) and m3(t) de-
noting males incubated in II and III.

Figure 4.1. The three basic nesting regions, representing the environmental influence. I: The wet marsh with
low temperatures giving all female hatchlings, II: the dry marsh in which half of the hatchlings are females
and half males and III: the dry levees where all hatchlings are males.
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I. Wet marsh – all female hatchlings: f1(t)

II. Dry marsh – 50% female, 50% male hatchlings: f2(t), m2(t)

III. Dry levees – all male hatchlings: m3(t)

Total female population = f (t) = f1(t) + f2(t),

Total male population = m(t) = m2(t) + m3(t).

(4.1)

An idealised spatial distribution of the sex ratio of males to the total population in
the three-region scenario in Figure 4.1 is shown in Figure 4.2(a).

Only a fraction of females can incubate their eggs in the wet marsh region (I). Let
k1 denote the carrying capacity of region I. This fraction, F say, must be a function of
k1 and the female population f1 and it must satisfy certain criteria. If there are only a
few females f1, F ≈ 1 since essentially all of them can nest in region I while for a very

(a)

(b)
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Figure 4.2. (a) Idealised sex ratio of total number of males, m, to the total population of males plus females,
m + f for a three-region situation schematically shown in Figure 4.1. The continuous curve is more realistic.
(b) Schematic curves for relative fitness (survival times fertility) as compared with others of the same sex.
Note that it is highest for both males and females in the middle range of temperatures, around 32◦ C.
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large number of females f1, F ≈ 0 since in this situation most of them have to move
away from the wet marsh region I. As an approximation to this function, the fraction

F = k1

k1 + f1
(4.2)

satisfies the following,

F = k1

k1 + f1
→ 0 as f1 → ∞ , F = k1

k1 + f1
→ 1 as f1 → 0,

as required. It is, of course, just an approximation to the actual fraction function. Strictly
F( f1, k1) is zero until f1 reaches the carrying capacity k1 of region I after which the
extra females have to move away from the wet marsh region. The fraction (4.2) is clearly
not the best approximation we could choose (for example, if the total f1 = k1, the
carrying capacity, F = 0.5 whereas it should still be zero). We use this form, (4.2),
for algebraic simplicity; it broadly has the required qualtitative behaviour. We use the
same fraction approximation in the other regions and also in the age-dependent analysis
below.

If b is the effective birth rate, that is, it includes clutch size, C , and the high mor-
tality of hatchlings and egg predation, in other words survival, S, then, in a simple
population model such as we discussed in Chapter 1, we have a dynamic equation for
the population in region I (all females)

d f1
dt

= b

[
k1

k1 + f1

]
f1 − d f1. (4.3)

Here we have taken the death rate as proportional to the population with d a parameter.
If f1 is large the maximum reproduction is then proportional to k1 which accounts for
its role as a measure of habitat capacity. The birth rate, b, is a function of the total male
population, m, and is reasonably taken as

b = b(m) = b0m

(c + m)
→ b0, for small c, (4.4)

where c is a constant which, from field data, is indeed very small. With c small, equation
(4.3) is uncoupled from the other equations in the model system below.

If we now consider region II where both females and males are produced, the frac-
tion of females which have to move from the wet marsh region I to the dry marsh
region II is simply

1 − k1

k1 + f1
= f1

k1 + f1
. (4.5)

So, the total number of females who want to nest in region II is the number who like
this temperature plus those that had to move from region I:
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f 2
1

k1 + f1
+ f2.

There is also a limited number of nest sites in region II and only a fraction of females
can incubate in II, which is (cf. (4.2)):

k2

k2 + f 2
1

k1+ f1
+ f2

,

where, in the same way as we saw for (4.2), k2 relates to the maximum number of
hatchlings possible in the dry marsh region II. For algebraic simplicity we approximate
this fraction by

k2

k2 + f1 + f2
,

which has roughly the same qualitative behaviour. Compared with other assumptions
and approximations this approximation is minor. It can, of course, easily be included
in a numerical simulation of the equations: this was done and the resulting solutions
were in general qualitative agreement. Thus the equations for the females and males in
region II are:

number of females
who want to

incubate eggs in II

|
d f2

dt
= b0

2

[
f 2
1

k1 + f1
+ f2

][
k2

k2 + f1 + f2

]
− d f2

dm2

dt
= b0

2

[
f 2
1

k1 + f1
+ f2

][
k2

k2 + f1 + f2

]
− dm2

|
fraction of

females able to
nest in region II

(4.6)

The factor 1/2 is because half the hatchlings are male and half are female.
Finally in region III, the dry levees, the number of females forced to move from

region II to III to nest is

[
f 2
1

k1 + f1
+ f2

]


f 2
1

k1+ f1
+ f2

k2 + f 2
1

k1+ f1
+ f2
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and the fraction able to incubate eggs in region III is

k3

k3 + f 2
1

k1+ f1
+ f2

,

where k3 is a direct measure of the carrying capacity of III. For the same algebraic
reasons as above we approximate these expressions for the two fractions respectively
by

[
f 2
1

k1 + f1
+ f2

][
f1 + f2

k2 + f1 + f2

]
and

k3

k3 + f1 + f2
.

The remaining females cannot nest in any suitable site. So, with these expressions
the equation for males in region III (in our model there are only males here) is

dm3

dt
= b0

[
k3

k3 + f1 + f2

][
f 2
1

k1 + f1
+ f2

][
f1 + f2

k2 + f1 + f2

]
− dm3. (4.7)

The system of equations (4.3), (4.6) and (4.7) constitute the model for the populations in
the various regions and from which we can obtain the sex ratio of the total population.

The steady state populations are given by setting the right-hand sides of (4.3), (4.6)
and (4.7) equal to zero and solving the algebraic equations. Zero for all the groups is
of course one solution and it is easy to see from linearising the model equations that it
is always unstable (recall the analyses in Chapters 1 and 3). A little algebra gives the
positive steady states, denoted by asterisks, as

f ∗
1 =

(
b0

d
− 1

)
k1, m∗

2 = f ∗
2 = 1

2

[
−A + (A2 + C)1/2

]
,

m∗
3 = 2k3 f ∗

2 ( f ∗
1 + f ∗

2 )

k2(k3 + f ∗
1 + f ∗

2 )
, A = f ∗

1 − k2

(
b0

2d
− 1

)
, C = 2k2 f ∗2

1

k1
.

(4.8)

Since, from field studies, b0/d, the effective births over the lifetime of an alligator, or
other crocodilia, is of the order of 100 to 300, we can approximate these steady states
by

f ∗
1 ≈ b0k1

d
, m∗

2 = f ∗
2 ≈ b0

d
F2(k1, k2), m∗

3 ≈ b0

d
F3(k1, k2, k3), (4.9)

where F2(k1, k2) and F3(k1, k2, k3) are obtained from (4.8).
We are particularly interested in the sex ratio, R. This is given by (4.9) for large

b0/d as

R = m∗
2 + m∗

3

f ∗
1 + f ∗

2 + m∗
2 + m∗

3
≈ F2(k1, k2) + F3(k1, k2, k3)

k1 + 2F2(k1, k2) + F3(k1, k2, k3)
= φ(k1, k2, k3),

(4.10)
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where φ is defined by (4.10). In this asymptotic case the sex ratio is independent of
b0/d, and so the parameters, ki with i = 1, 2 and 3, that is, those parameters propor-
tional to the carrying capacities in the various regions I–III, are the key parameters. The
environment is clearly seen to have a crucial influence on the sex ratio. With the esti-
mates for the percentage carrying capacity in the three regions given by Joanen (1969)
above, namely, 79.7 : 13.6 : 6.7, the sex ratio of males to the total population is given by
(4.10) as approximately 0.13 which means there are roughly 7 to 8 females to 1 male.
Although we do not do it here, it is possible to carry out a stability analysis of these
steady states with the methods we described earlier in the book but it is algebraically
complex. Interestingly, such an analysis shows that there can be no periodic solutions:
the positive steady state is always stable. Using the equations we can also investigate the
effect of some catastrophe which greatly reduced the populations and obtain estimates
for the recovery time to their steady states: this has to be done numerically except for
small perturbations about the steady states where linear theory could apply. If the equa-
tions are to be studied in depth numerically then more appropriate fractional functions
could be used but the general results would not be qualitatively different.

It is intuitively clear how the crocodilia, because of TSD, can recover from a
catastrophic reduction in their population. Following a major reduction, all the female
crocodiles will be able to build their nests in region I and hence produce only females;
this then allows the remaining males to have larger harems. The skewed sex ratio in the
crocodilia thus maintains a large breeding population which provides the mechanism
for rapid repopulation after a disaster. What is certainly not in doubt is that TSD has
been a very effective reproductive mechanism in view of the remarkable survivorship
of the crocodilia.

Catastrophes, natural or otherwise, raise the question of extinction. If we con-
sider extinction this would certainly happen if we have, from (4.3), b < d. With
b = b0m/(c + m) this implies that m < cd/(b0 − d) = O(1/b0) for c small and
b0 large, which implies that essentially all the males have to be eliminated. The natural
habitat of males is in the water where it is virtually impossible to kill them all which,
in turn, implies the almost impossibility of extinction except through the elimination
of all the nest sites, that is, by completely destroying their habitat. With the increasing
encroachment of their habitat by human population pressures it is certainly possible
that alligators could disappear at least from the southern U.S. Figure 4.3(b) shows the
approximate area in the U.S. where they are currently found.

The survival of alligators in the U.S. could depend on alligator farms which are
already on the increase in these states. These, however, must be commercially viable
and so the sale of alligator skins for shoes, belts, or whatever products appeal to con-
sumers, is perhaps to be encouraged. Conservation takes on a different hue in these
circumstances. Bustard (1984) discusses one such conservation strategy for the captive
breeding of the gharial (Gavialis gangeticus) in India. After an extensive survey of the
situation in India he made a strong case for captive breeding programmes. He also dis-
cussed the crocodile situation in Australia. It is clear we have to redefine what we mean
by ‘conservation’ and survival of a species if it means only managed survival. It is a
subject which already gives rise to heated discussion—and not only between conserva-
tionists and evolutionary biologists.
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(a)

(b)

Figure 4.3. (a) Approximate areas around the equator where crocodilia are found. (b) Approximate region
in the U.S. where alligators are currently found.

4.3 Age-Structured Population Model for the Crocodilia

The problem with population models which involve only time is that if age, a, plays
an important role in survival or reproduction, it should be taken into account. In the
case of the crocodilia it is important since both reproductive maturity and death rates
vary significantly with age; Figure 4.4 shows typical averaged forms of the death rate,
d(a), and the birth rate, b(a) taken from the literature (Smith and Webb 1985, Webb
and Smith 1987). Since we are ultimately interested in survivorship we must develop
an age-structured model using the ideas in Sections 4.1 and 4.2. We introduced age-
structure in population models in Chapter 1 and developed the techniques necessary to
investigate the solutions. It would be helpful for the reader to briefly review that section
prior to continuing with what follows.

We consider the nesting region to be divided into the three regions I, II and III
as in Section 4.2 and analogously denote the four population classes by f1(a, t) and
f2(a, t) denoting females themselves incubated in regions I and II, and m2(a, t), and
m3(a, t) denoting males incubated in regions II and III where a refers to age, and aM is
the maximum attainable age; they can live a long time, of the order of 70 years. So, for
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Figure 4.4. Typical averaged birth, b(a)

(solid line), and death, d(a) (dotted line),
rates as a function of age, for the Australian
freshwater crocodile (Crocodylus johnstoni).
(Drawn from Smith and Webb 1985)

example, f1(a, t) denotes the population density at time t in the age range a to a + da.
We get the total time-dependent population, F1(t), by integrating over all ages from
a = 0 to a = aM ,

F1(t) =
∫ aM

0
f1(a, t) da.

We assume, as we tacitly did above, that the population is ‘closed,’ that is, it changes
in size only through the processes of birth and death. The extensive radiotelemetric
studies of Joanen and McNease (1970, 1972) show this is a biologically reasonable
assumption if we consider fairly large home ranges. The death rate, d(a), and birth rate,
b(a), are assumed to be only functions of age and typically as illustrated in Figure 4.4.
Since differential sexual mortality is unknown we assume it is independent of sex. The
birth processes are more complicated to describe as we shall show.

Just as described above, we consider sex is allocated to newborn alligators accord-
ing to the availability of male and female producing nest sites. We further assume that
all female alligators themselves incubated in wet marsh areas prefer to nest in region I
since they seek a temperature environment that is as close as possible to that of their
own incubation. Also, because of the limited number of nest sites in region I, only a
fraction of females are able to incubate their eggs in wet marsh areas. Following (4.2)
(and for similar algebraic reasons) we take that fraction to be k1/(k1 + Q1), where k1 is
the maximum number of nests that can be built in the wet marsh. Q1(t) denotes the total
number of sexually mature (reproducing) females themselves incubated in region I; that
is,

Q1(t) =
∫ aM

0
q1(a) f1(a, t) da. (4.11)

Here q1(a) is a weight function which reflects the effect of age: for example, older
females cease to be reproductive. Q1(t) is a weighted average with respect to age of the
age density distribution of females in region I. The fraction of females who stay in the
wet marsh has the same properties as in Section 4.2. For the reasons given there we take
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the approximate fraction with the properties

k1

k1 + Q1
→ 1 as Q1 → 0,

k1

k1 + Q1
→ 0 as Q1 → ∞,

which again is as we want, namely, when Q1 is small nearly all the females themselves
incubated in region I can nest there and when Q1 is large the vast majority have to
move away from the wet marsh and nest elsewhere in regions II or III. As we pointed
out above this fraction is an approximation to a more complicated but more accurate
form for the fraction of females that can nest in region I. The arguments for using the
approximate forms for the various fractions used in the age-independent model carry
over to those used here and below.

Eggs incubated in region I produce all female, f1, hatchlings because of low incuba-
tion temperatures. The density-dependent age-specific maternity function b11(a, Q1(t)),
where b11 is the average number of offspring (per unit time) successfully hatched from
eggs laid in region I by a female of age a who was herself incubated in region I, is given
by

b11(a, Q1(t)) = C Sb(a)
k1

k1 + Q1
, (4.12)

where C is the clutch size, S is the survival rate of eggs and hatchlings and b(a) is the
age-dependent birth rate. The clutch size may be anything up to 70 eggs with an average
around 40, but their survival is extremely small; there are many predators for the eggs
as well as the hatchlings.

We assume that those females who cannot build nests in region I move to region II.
Female alligators themselves incubated in dry marsh areas prefer to construct nests in
region II. However in region II there is also a limited number of nest sites so that only
a fraction k2/(k2 + [Q1(t) + Q2(t)]), is successful. Here k2 is the maximum number
of nests that can be built in the dry marsh, and Q2(t) is the total number of sexually
mature females themselves incubated in region II. As before we consider eggs incubated
in region II produce 50% female, f2, and 50% male, m2, hatchlings. For i = 1, 2, the
density-dependent age-specific maternity functions bi2(a, Q1(t), Q2(t)) are the average
number of offspring (per unit time) successfully hatched from eggs laid in region II by
a female of age a who was herself incubated in region i , so

b12(a, Q1(t), Q2(t)) = C Sb(a)

[
k2

k2 + Q1(t) + Q2(t)

] [
Q1(t)

k1 + Q1(t)

]
,

b22(a, Q1(t), Q2(t)) = C Sb(a)

[
k2

k2 + Q1(t) + Q2(t)

]
.

(4.13)

The remaining females are forced to move to region III where the approximate frac-
tion able to incubate eggs is k3/(k3 + [Q1(t) + Q2(t)]) where k3, as before, relates
to the maximum number of nests that can be built in the levees. Eggs incubated in re-
gion III produce all male, m3, hatchlings because of higher incubation temperatures. For
i = 1, 2, the density-dependent age-specific maternity function bi3(a, Q1(t), Q2(t)) is
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the average number of offspring (per unit time) successfully hatched from eggs laid in
region III by a female of age a who was herself incubated in region i , i = 1, 2,

b13(a, Q1(t), Q2(t)) = C Sb(a)

[
k3

k3 + Q1(t) + Q2(t)

] [
Q1(t) + Q2(t)

k2 + Q1(t) + Q2(t)

]

×
[

Q1(t)

k1 + Q1(t)

]
,

b23(a, Q1(t), Q2(t)) = C Sb(a)

[
k3

k3 + Q1(t) + Q2(t)

] [
Q1(t) + Q2(t)

k2 + Q1(t) + Q2(t)

]
.

(4.14)

Indications from available data suggest that even though there are fewer males than
females in alligator and crocodile populations, the male population size is rarely if ever
a limiting factor in reproduction (Webb and Smith 1987, Nichols et al. 1976). For this
reason the maternity functions (4.14) depend only on f1, and f2 (via Q1(t), and Q2(t))
and the model is said to be female dominant (Keyfitz 1968, Sowunmi 1976).

The life history data given by the clutch size, C , the egg and hatchling survival, S,
the death rate d(a), the reproduction rate b(a) and the carrying capacity parameters k1,
k2, k3, contain a great deal of information about the potentialities of the population and
its relationship to the environment (Cole 1954, Stearns 1976). The clutch size, C , ranges
from 1 to 68 for A. mississippiensis (Ferguson 1985). There are five primary classes of
survivorship: (i) egg survivorship (to hatchling), (ii) hatchling survivorship (to one year
of age), (iii) juvenile survivorship (to maturity), (iv) middle age survivorship (to a de-
cline in reproductive output) and (v) old age survivorship (through senescence). Egg
and hatchling survivorship is extremely low due to predation, flooding, cannibalism,
desiccation and freeze mortalities, as well as eggs cracking during laying and the fail-
ure of the nest to open. Juveniles are also at risk, mainly due to predation, but middle
age survivorship is high (crocodilia have almost 100% survivorship during their middle
years), declining again in old age. Averaging over each of these classes gives the age-
specific death rate, d(a). Typically the reproduction rate, b(a), is constant in middle
age, and zero for both immature and senescent crocodilia. It is obtained by averaging
estimates of the age at which females begin breeding (approximately 9 to 12 years old),
the proportion of females capable of breeding that do breed each year (between 33 and
84%), and the age at which females cease breeding. Typical averaged forms of d(a)

and b(a) from Smith and Webb (1985) are shown in Figure 4.4. As before k1, k2, k3
are proportional to the size of the wet marsh, dry marsh and levees carrying capacities
respectively.

4.4 Density-Dependent Age-Structured Model Equations

We can now write down the model equations for the several populations f1(a, t),
f2(a, t), m2(a, t) and m3(a, t) respectively females themselves incubated in regions
I and II and males incubated in regions II and III as described above.

Here a refers to age, and aM is the maximum attainable age. We now write down
the conservation equations as we did in Chapter 1, Section 1.7 remembering that a is
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chronological age and t is time. The equations are

∂

∂t
fi (a, t) + ∂

∂a
fi (a, t) = −d(a) fi (a, t), for i = 1, 2 (4.15)

∂

∂t
mi (a, t) + ∂

∂a
mi (a, t) = −d(a)mi (a, t), for i = 2, 3, (4.16)

where d(a) is the age-specific death rate and typically as in Figure 4.4. As above we
assume a female alligator seeks a nesting region which provides her with a temperature
as close as possible to that at which she was incubated. Then the birth processes by
which individuals are introduced into the population are the usual renewal-type equa-
tions. Hatchlings are born at age a = 0 and so

f1(0, t) =
∫ aM

0
f1(a, t)b11(a, Q1(t)) da,

f2(0, t) = 1

2

∫ aM

0
f1(a, t)b12(a, Q1(t), Q2(t)) da

+ 1

2

∫ aM

0
f2(a, t)b22(a, Q1(t), Q2(t)) da,

m2(0, t) = 1

2

∫ aM

0
f1(a, t)b12(a, Q1(t), Q2(t)) da

+ 1

2

∫ aM

0
f2(a, t)b22(a, Q1(t), Q2(t)) da,

m3(0, t) =
∫ aM

0
f1(a, t)b13(a, Q1(t), Q2(t)) da

+
∫ aM

0
f2(a, t)b23(a, Q1(t), Q2(t)) da,

(4.17)

where from (4.11) and the equivalent for Q2(t)

Q1(t) =
∫ aM

0
q1(a) f1(a, t)da, Q2(t) =

∫ aM

0
q2(a) f2(a, t) da. (4.18)

For i = 1, 2, j = 1, 3, the density-dependent age-specific maternity functions bi j (a,

Q1(t), Q2(t)) are given in (4.12) through (4.14) which are the average number of off-
spring (per unit time) successfully hatched from eggs laid in region j by a female of
age a who was herself incubated in region i . We assume that density-dependent con-
straints act on births in the form of a limited number of nest sites. Remember that the
‘sizes’ Q1(t) and Q2(t) are weighted averages, with respect to age, of the age-density
distributions of the females in regions I and II respectively.

To complete the model equation formulation we finally must assume some known
initial age-structure of the populations,

fi (a, 0) = φi (a), i = 1, 2, mi (a, 0) = φi (a), i = 2, 3. (4.19)

Biologically, of course, φi (a), d(a) and bi j (a, Q1(t), Q2(t)) are all nonnegative.
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Birth and Death Data

We use the (smoothed) data from Smith and Webb (1985) to construct the reproduction,
b(a), death, d(a), rates and the initial population φ(a); see Figure 4.4.

The effective birth rate is C Sb(a) where C = 13.2 is average clutch size, S =
0.295×0.12 is survival rate of eggs and hatchlings, and the age-structured reproduction
function and age-structured death function are given by

b(a) =






0.000 0 < a ≤ 8

0.286 8 < a < 12

0.844 12 ≤ a < aM

d(a) =






0.151 1 < a < 11

0.000 11 ≤ a < 31

0.139 31 ≤ a < aM

. (4.20)

To be specific we assume that the initial population, φ(a), has a simple exponential
dependence on age, a,

φ(a) = c1 + (c2 − c1)e
−c3a, where






c1 = 3.376,

c2 = 135.970,

c3 = 0.155,

(4.21)

where the ci were determined from a nonlinear least squares regression fit to the initial
(smoothed) data of Smith and Webb (1985).

It is not possible to solve the above model system of equations analytically as we
were able to do in Chapter 1, Section 1.7, but we can solve them numerically if the initial
age distribution of the population is given and the pertinent life history parameters, C ,
S, d(a), b(a), k1, k2, k3 are constant (with respect to time). In this way we can compute
the future populations. Intuitively with fixed life history features there must ultimately
be a stable age distribution and hence a fixed sex ratio (Cole 1954).

4.5 Stability of the Female Population in the Wet Marsh Region I

The females in region I can be considered as a single isolated species since the birth and
death processes depend only on age, a, and the size of the sexually mature female popu-
lation in region I, Q1(t). For a species to survive it must possess reproductive capacities
sufficient to replace the existing generation by the time it has disappeared. We define
the net reproductive rate, R1, to be the expected number of female offspring born to an
individual female during her lifetime when the population size is Q1(t). The number of
female offspring born to a female between age a and a + da is b11(a, Q1(t))da, so if
we sum over a, we have

net reproductive expected number of female offspring born
rate in region I to an individual female during her lifetime

R1[Q1(t)] =
∫ aM

0
b11(a, Q1(t))π(a) da,

(4.22)
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where π(a) is the probability that an individual will survive to age a; that is,

π(a) = e− ∫ a
0 d(s) ds . (4.23)

The female population in region I will either be increasing or decreasing, or it will
remain constant, depending on whether R1 > 1, R1 < 1 or R1 = 1. As long ago as
1760, Euler investigated the mortality and survivorship of humans, in effect using the
idea of a net reproductive rate (see the translation of his article in Euler 1970 (1760)). So,
for there to be a stable age distribution it is necessary and sufficient that R1(Q∗

1) = 1
has a nonzero solution, Q∗

1; that is, for each female member throughout her life, the
expected number of female births is 1. Gurtin and MacCamy (1974), Sowunmi (1976)
and Webb (1985) point out that in classical (linear) theory R1 is independent of Q1. It
would be fortuitous if this were to be the case; however, in most problems of interest
here there is at least one value of Q∗

1 for which R1(Q∗
1) = 1 as we see in Figure 4.5.

This figure shows, for several clutch sizes and survival rates, the numerical simulations
for the net reproductive rate as a function of the number of sexually mature females
in region I as a function of the number of mature females in region I relative to the
available nesting space in region I, namely, Q1/k1.

We have assumed throughout that the environment is stable (that is, k1, k2 and k3
are constants) whereas, in reality, annual recruitment (and the sex ratio of recruits) is
subject to extreme environmental variation (Webb and Smith 1984, 1987). However
Gurney and Nisbet (1980a) showed that in age- and density-dependent populations,
environmental fluctuations are not significant if the members of the population have a
long reproductively active stage, with or without an immature phase and a period of
senescence. This agrees with the observation of Deeming and Ferguson (1989b) that
only if the skew is consistently toward males for at least the entire reproductive life
span of a whole generation, does a species run into serious problems.

Figure 4.5. Numerically calculated net reproduction rate, R1, as a function of the number of sexually mature
females in region I relative to the space, k1, available for nesting in region I, Q1/k1. This graph shows that
provided the number of eggs producing surviving hatchlings, that is, the product C S with C and S the clutch
size and survival respectively, is sufficiently large there is a value Q∗

1 for which the R1(Q∗
1) = 1; that is, a

stable age distribution exists. A biologically realistic value of the parameter C S is approximately 0.5. (From
Woodward and Murray 1993)
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Figure 4.6. Numerical solution of the three-region model showing the equilibrium age distributions of (a)
females incubated in regions I (solid line) and II (dotted line), and (b) males incubated in regions II (solid
line) and III (dotted line). The sex ratio at the steady state is (m2 +m3)/( f1 + f2) = 0.122 or, in other words,
12.2% of the population are males. (From Woodward and Murray 1993)

A stable solution of the equations for the female population in region I inevitably
gives a stable solution of both the male and female populations in regions II and III. The
three-region density-dependent age-structured model was solved numerically (Wood-
ward and Murray 1993) by replacing the derivatives by finite differences and the inte-
grals by quadrature formulae (Kostova 1990). Figure 4.6 shows the female and male
stable age distributions, f1, f2 = m2, and m3 in the case k1 : k2 : k3 = 79.7 : 13.6 : 6.7
(Joanen 1969). The population is flat for 11 < a < 31 because we assumed 100% sur-
vivorship during the middle years. At equilibrium, the sex ratio, (m2 + m3)/( f1 + f2),
expressed as percentage of the population that is male, is 12.2%, roughly one male to
every eight females.

4.6 Sex Ratio and Survivorship

In view of the analytical complexity of the full model we simplify by assuming that
f2 = 0, which is biologically fairly realistic since, compared to the number of females
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nesting in region I, only a small fraction of females nest in region II (Joanen 1969);
see also Figure 4.6. We now use this simpler model to investigate the effects of the life
history phenomena on sex ratio.

The model system we consider in this situation consists of two populations f1(a, t):
namely, females incubated in region I and m3(a, t), males incubated in region III. We
have no region II, in effect, in this scenario. The equations, boundary and initial condi-
tions are, from (4.15) through (4.17) and (4.19),

∂

∂t
f1(a, t) + ∂

∂a
f1(a, t) = −d(a) f1(a, t),

∂

∂t
m3(a, t) + ∂

∂a
m3(a, t) = −d(a)m3(a, t),

(4.24)

with

f1(0, t) =
∫ aM

0
f1(a, t)b11(a, Q1(t)) da,

m3(0, t) =
∫ aM

0
f1(a, t)b13(a, Q1(t), Q2(t)) da

(4.25)

with initial conditions

f1(a, 0) = φ1(a), m3(a, 0) = φ3(a). (4.26)

The equation for f1(a, t) in (4.24) with the boundary and initial conditions in (4.25) and
(4.26) is the same as the population equation in Chapter 1, equations (1.54) to (1.56).
We could not write down an analytical solution exactly (we ended up with an integral
equation), but we were able to carry out some relevant similarity analysis. Here we solve
the equation numerically.

Since the death rate is assumed independent of sex, the sex ratio does not depend
on age and, at equilibrium, the sex ratio of the population density equals the primary (at
hatching) sex ratio. Defining the net reproductive rate, R3, to be the expected number
of male offspring born to an individual female during her lifetime when the population
size is Q1(t), we have

net reproductive expected number of male offspring born
rate in region III to an individual female during her lifetime

R3[Q1(t)] =
∫ aM

0
b13(a, Q1(t))π(a) da,

(4.27)

where the maternity function b13(a, Q1(t)) is given by (4.14) with Q2 ≡ 0, and k2 ≡ 0,
and π(a) given by (4.23), namely,

b13(a, Q1(t)) = C Sb(a)

[
k3

k3 + Q1(t)

] [
Q1(t)

k2 + Q1(t)

] [
Q1(t)

k1 + Q1(t)

]
.

At equilibrium, Q1(t) ≡ Q∗
1, and the ratio of the expected number of male off-

spring to the expected number of female offspring is given by
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Figure 4.7. Numerically calculated sex ratio for the two-region model as a function of clutch size, C , and
hatchling and egg survival, S, for various carrying capacities: (i) k1 = 500, k3 = 100, and (ii) k1 = k3 = 500.
Here k1 and k3 are directly related to the maximum number of nests that can be constructed in the wet marsh
and the levees, respectively. The minimum value of C S for a nonzero stable age distribution of the TSD model
is 0.22 which is half that for the minimum necessary for the existence of a nonzero equilibrium in the GSD
model, which is 0.44. (Redrawn from Woodward and Murray 1993 who give the accurate quantitative forms
plus another case in which the carrying capacities k1 = 500, k3 = ∞)

R3(Q∗
1)

R1(Q∗
1)

=
∫ aM

0
b13(a, Q∗

1)π(a) da, (4.28)

since from Figure 4.5, R1(Q∗
1) = 1. Hence, for a stable age distribution, it is neces-

sary that the expected number of male births equals the neonatal male/female sex ratio
(Sowunmi 1976).

For a given reproduction rate, b(a), and a given death rate, d(a), the sex ratio will
be skewed depending on the number of eggs producing surviving hatchlings, C S, and
on k1 and k3. Numerical simulations of the two-region model illustrate this result and
are represented in Figure 4.7. There is a range of values of C S, m < C S < M , for
which the TSD model has a nonzero stable age distribution, but the only equilibrium of
the corresponding GSD model is the zero solution as we show in Section 4.7 below.

4.7 Temperature-Dependent Sex Determination (TSD) Versus
Genetic Sex Determination (GSD)

At the most basic level the easiest way to compare the two methods of sex determina-
tion is to consider a two-region model without age-dependence. We showed in the last
section how the sex ratio and survival depended on the product of the clutch size and
hatchling survival. To get some idea of how these play a role in genetic sex determina-
tion and for ease of comparison we consider here a particularly simple model in which
the populations depend only on time. As in the previous section we again consider only
a two-region model, region I where only females are incubated and a region III where
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only males are incubated. This is a simplified version of the model in Section 4.2 and is
the age-independent equivalent of the model in Section 4.4.

With these assumptions the birth rate, b, and death rate, d, are constant parameters.
Let the clutch size, C , and the survival, S, be as before. The female and male populations
are denoted by f1(t) and m3(t) respectively.

The equation for the female population is then (cf. (4.3))

d f1

dt
= C Sb

[
k1

k1 + f1

]
f1 − d f1 (4.29)

but where here we have included C S explicitly in the birth rate for ease of comparison
with the previous section. The equation for the male population is (4.7) but with f2 =
k2 = 0, namely,

dm3

dt
= C Sb

[
k3

k3 + f1

][
f 2
1

k1 + f1

]

− dm3 (4.30)

with initial conditions f1(0) = f0 and m3(0) = m0.
The steady state populations are

f ∗
1 = k1

(
C Sb

d
− 1

)
, m∗

3 = C Sb

d

(
k3

k3 + f ∗
1

)(
f ∗2
1

k1 + f ∗
1

)

(4.31)

which are nonnegative if C Sb > d. The sex ratio, male to female offspring, is given by

R = m∗
3

f ∗
1

= k3(C Sb − d)

k3d + k1(C S − d)
. (4.32)

If we now suppose that the crocodile sex was genetically determined there is no
region variation in sex but there is the equivalent limitation of nest sites; here k1 + k3
is the available carrying capacity. The corresponding equations for females f (t) and
males m(t) are then

d f1

dt
= C Sb

2

[
k1 + k3

k1 + k3 + f1

]
f1 − d f1

dm3

dt
= C Sb

2

[
k1 + k3

k1 + k3 + f1

]
f1 − dm3

(4.33)

with initial conditions f1(0) = f0, m3(0) = m0 and where again we have included C S
explicitly in the birth rate. There is symmetry between males and females in this case,
with half the births being female and the other half male. The steady state populations
are given by

m∗
3 = f ∗

1 = (k1 + k3)

(
C Sb

2d
− 1

)
, (4.34)
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which are nonnegative only if C Sb > 2d. The sex ratio of males to females is always
1 : 1.

Even with the steady state solutions (4.31) and (4.34) we can see the advantages of
TSD over GSD for the crocodilia. From (4.31), that is, with TSD, a positive steady state
exists if C Sb/d > 1 whereas for GSD it requires C Sb/d > 2. To be more specific,
from Figure 4.7 we see that in the age-dependent situation the sex ratio under TSD
tends to zero when C S = m = 0.22, that is, the value when the species becomes
extinct. To relate that to the analysis here means we have C Sb/d = 1 corresponding
to C S = 0.22 and so the critical C S for GSD is simply C S = M = 0.44; this is the
value we used in Figure 4.7 for comparison. With GSD there is extinction therefore for
C S < M = 0.44.

The minimum value of C S, namely, M , for a nonzero equilibrium solution of the
GSD model is approximately twice the minimum, m, necessary for the existence of a
nonzero stable age distribution of the TSD model. In this range, the smaller the value of
C S, the larger the skew in favour of females. Outside this range, both the TSD and GSD
model have nonzero stable age distributions. For large values of C S, the sex ratio of the
TSD model tends to k1 : k3, whereas for the GSD model it is 1 : 1. These comparisons
of theoretical and empirical population phenomena suggest that survival of the species
is much more important than an optimal sex ratio.

The modelling and analysis in this chapter on an age-structured model for crocodilia
populations are based on parameter values obtained as far as possible from field data.
The model demonstrates a selective evolutionary advantage for temperature-dependent
sex determination in crocodilian populations even though the probability that any one
female will successfully reproduce herself is low. In this case, it is the population as a
whole that is benefited, not a particular individual as in traditional sex ratio theory.

Animals whose sex is determined genetically maintain a 1 : 1 sex ratio. So, if a
species exhibits GSD it is necessary for each female to produce two (one male, one
female) net offspring for the population density to be stable and survive. Actually the
figure is closer to 2.1 offspring per female. However, if a species exhibits temperature-
dependent sex determination, or more generally environmental sex determination, ESD,
it is likely that a skewed sex ratio will occur as a consequence of skewed environmental
types. If the sex ratio is spanandrous (biased in favour of females), as is the case for
the crocodilia, a stable population density can be maintained with fewer net offspring.
In the wild, each female alligator or crocodile will lay approximately 600 to 800 eggs
per lifetime but, on average, less than two of these (as few as 1.1 in a population that
has a sex ratio of 10 : 1 in favour of females) will survive to successfully reproduce
themselves. Thus, as a result of evolving TSD, alligator and crocodile populations are
extremely stable despite the high mortality of eggs, hatchlings and immatures.

In addition to the advantage of producing more females than males, the crocodilia
have evolved life history tactics (namely, early maturity, many small young, reduced
parental care and multiple broods) that minimize the probability of leaving no young at
all (Stearns 1976). Temperature-dependent sex determination may also be important in
enabling populations to survive environmental changes and catastrophes as mentioned
above. Not only is a rapid expansion of the population associated with the production of
large numbers of females but also different incubation temperatures produce a popula-
tion adapted to a range of environments after they hatch, independent of sex (Deeming
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and Ferguson 1989b). Another plus is that male- and female-producing nests are located
near the natural habitat of the adults.

4.8 Related Aspects on Sex Determination

An interesting and fundamental question not addressed in the models in this chapter,
is how a single temperature can operate to give hatchlings of both sexes such as in
region II, or more specifically at an incubation temperature of around 32◦ C. There
clearly cannot be a simple switch that is the trigger for determining sex. There has been
considerable interest in the molecular mechanism of TSD (Deeming and Ferguson 1988,
1989a, Johnston et al. 1995) and it is on it that temperature almost certainly operates.
Also, in the wild the temperature of eggs in the nest fluctuates over a 24-hour period and
even during the breeding season. Changes in the average incubation affect the ability of
a member of the species to develop as a male or female. This is also a feature for many
turtles. Georges (1989) suggested that, in the natural nests of fresh water turtles with
TSD, it is perhaps the duration of time during incubation, or proportion of development
at given temperatures which are crucial. Georges (1989) put forward an interesting basic
model (see the exercise) to explore this idea. Georges et al. (1994), using this model,
present experimental data (in a controlled experimental situation) on the marine turtle
(Caretta caretta) that it could indeed be the proportion of development at a temperature
rather than the daily duration of exposure that is the determining factor in sex selection.
The work of Rhen and Lang (1995) on the snapping turtle is particularly relevant.

In the case of A. mississippiensis Deeming and Ferguson (1988, 1989b) hypothe-
sised that the effect of temperature appears to be cumulative rather than at a particular
developmental stage. They suggested that the development of the testes depends on the
production of some male determining factor (MDF) during a critical period of develop-
ment. There could be an optimal temperature to produce this factor, such as 33◦ C, but
that it can also be produced at lower temperatures on either side of the optimal temper-
atures for a male, namely, around 32◦ C. If the threshold of MDF in the embryo does
not reach the threshold level for a male it develops as a female. This hypothesis would
explain why some temperatures can produce either males or females.

An interesting application (Ferguson, personal communication 1993) of their hy-
pothesis is based on the belief that the basic molecular mechanism of sex determination
in alligators is the same as for chickens even though they have GSD. The prediction is
that it should be possible to manipulate the sex of birds by environmental manipulation,
such as temperature pulses, early in incubation. He found that a specific temperature
pulse early on did indeed affect sex determination: 10% of the chickens had a reversal
in their sex.

It seems to be generally accepted that the default body plan in mammals, includ-
ing humans, is female. A fetus becomes male if it is exposed to sufficient testosterone
at an appropriate time or times in development. The gene which triggers the produc-
tion of testosterone comes from the Y chromosome, which is inherited from the fa-
ther. Women usually have two X chromosomes; the fetus inherits the X chromosomes
from the mother. In the U.S. about 2% of men and 1% of women are attracted to their
own sex. Recent interesting research by McFadden and Pasanen (1998) suggests that
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lesbianism could be a result of a female’s fetus being subjected to male hormones at
specific times in development and hence acquire characteristics more associated with
males. They based their tentative conclusions on the study of what are called click-
evoked otoacoustic emissions (CEOAES) which are noises the ear makes in response
to clicks: these emissions seem to be related to cochlear amplification which is how
very low sounds can be heard. The experiments consisted of examining the strength
of CEOAES of 237 people, homosexual, bisexual and heterosexual men and women.
They found that homosexual and bisexual women had more malelike responses than
heterosexuals. Of course there are many caveats and questions concerning the tentative
conclusions. One is where the testosterone comes from. Women produce testosterone as
well as men (who also produce small amounts of estrogen) but at a greatly reduced level.
It is possible that a surge in the mother’s testosterone at a crucial period in development
could account for the results of McFadden and Pasanen (1998).

Hormone levels have an effect on the human sex ratio; see for example, James
(1996, 1999) who suggests that parental hormone levels at the time of conception play
a role in the sex of the offspring. James (2000) presents further data to support the
influence of hormones on sex determination. Among other things James (2000) cites
the fact that schizophrenic woman have significantly more daughters while epileptics
have significantly more male siblings. Steroid hormones affect neurotransmitters in the
brain so he suggests that these abnormal sex ratios support the hypothesis that hormone
levels at conception in part control the sex of the offspring. Poisons also possibly affect
sex ratios and certainly fertility. James (1995) implicates dioxin in reduced levels of
testosterone in workers exposed to the poison. This affects fertility as do sodium borates
(Whorton et al. 1994).

As we have seen, the sex ratio plays a crucial role in alligator population dynamics
and survival. In an interesting article Johnson (1994) puts forward a simple, but, as
he shows, a highly informative model to investigate the effect of male to female sex
ratio on the per capita growth rate in a population (not involving temperature in a TSD
way). He suggests that the model could be useful in investigating how the sex ratio
could be exploited by a population to ensure survival. The paper is a nice example
of how a simple model based on some basic biological hypotheses can give rise to
some interesting implications and pose some highly relevant questions. Since female
age has an important effect on the per capita birth rate it would be interesting to put
age distribution into Johnson’s (1994) model. Although the world average human male
to female sex ratio has been fairly constant (slightly more female to male births) there
is increasingly convincing evidence of some shift in the sex ratio in humans; see, for
example, Alpert (1998) who asks where all the boys have gone. This is very different
to the situation which still exists in rural China where the ratio of boys to girls is very
much higher than the world norm due to external interference before and after birth.

Johnston et al. (1995) review the various molecular mechanisms which have been
proposed and suggest what is required to get a fuller understanding. They make the case
for also considering a possible female determining factor (FDF) and its accumulation
and how either a MDF or FDF may be temperature-dependent. There is a temperature-
sensitive period (TSP) in the development of sex. They hypothesise that if a threshold
level of FDF to result in a female is not reached by the beginning of the TSP then
the embryo has the potential to develop into a male. If it has reached the threshold
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for a female by the start of the TSP then it will develop into a female whatever the
subsequent temperature of incubation. From their experiments Johnston et al. (1995)
suggest that a particular type of protein—an SRY-type protein—could play a role in
male sex determination.

Various experiments have been carried out on alligator embryos (Lang and An-
drews 1994) to investigate the effect of moving the egg from one temperature to an-
other, both single-shift and double-shift experiments. The results are consistent with
the hypothesis that temperature controls the production of some sex-determining fac-
tors whether MDF, FDF, hormones or whatever. If these are produced at a sufficient
rate over a long enough time they result in what is referred to as a sex determination
cascade (Wibbels et al. 1991). Wibbels et al. (1994) describe a mechanistic approach
to sex determination but ‘mechanistic’ in a different sense to what we understand by a
mechanism used in this book.

The phenomenon of TSD is still far from understood. The above discussion of the
possible molecular mechanism involved in sex determination and the results of incuba-
tion at different temperatures during gestation seems ripe for further modelling which
could highlight implications of various scenarios and suggest further enlightening ex-
periments.

There are many aspects of modelling TSD that have not been discussed in this
chapter and several alternative and modified versions that would be interesting to study.
An age-independent model with delay representing the time to maturity would be of
interest to see how the results from it compared with the age-dependent model. It would
certainly be much easier to study various scenarios of control and so on with such a
model since it would be possible to carry out some preliminary analysis. A comparison
of models would be informative, even with only two regions. As we learn more about
TSD (not only with regard to the crocodilia), development and temperature, the effect of
environmental fluctuations and so on, the more closely models will be able to reflect the
biology and ecology of these remarkable creatures and give pointers as to their future
survival.

Exercise

1 Certain turtles have temperature-dependent sex determination with females incu-
bated at high temperatures and males at low temperatures. Since the temperature
fluctuates during the day an egg spends only a fraction of its time in a high temper-
ature. Assume that a threshold temperature T0 exists below which no development
takes place and that the development rate is approximated by

d S

dt
= k (T − T0) ,

where k is a positive constant. Suppose that the temperature varies daily according
to

T = R cos t + M, 0 ≤ R < M,
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where R is the amplitude and M is the mean with M > T0. Here t = 2π corresponds
to 24 hours. The condition on M , R and T0 is that the nest temperature is always
greater than or equal to the threshold temperature.

Suppose that females are produced if more than half of embryonic devel-
opment occurs above an effective nest temperature T1. Show that T1 is given by

T1 = R cos t1 + M, t1 = π

2
− R

M − T0
sin t1.

Show graphically how to determine t1 and discuss how T0 varies with the ratio of
the daily temperature amplitude, R, to the difference between the mean temperature,
M , and the threshold T0. What are the implications for the sex ratio outcome as the
parameters vary?



5. Modelling the Dynamics of Marital
Interaction: Divorce Prediction and
Marriage Repair

This chapter introduces a new use of mathematical modelling and a new approach to the
modelling of social interaction using difference equation models such as we discussed
in Chapter 3. These equations express, in mathematical form, a proposed mechanism of
change of marital interaction over time. The modelling is designed to suggest a precise
mechanism of change. In much of this book the aim of the methodology is quantitative.
That is, on the basis of our psychological understanding we write down, in mathematical
form, the causes of change in the dependent variables. In the field of family psychology,
however, statistical analysis is the usual analytical approach and, furthermore, gener-
ally based on linear models. In recent years it has become increasingly clear that most
systems are highly nonlinear. The new approach to studying marital interaction with
mathematical models was initiated by J. M. Gottman, based on his extensive studies of
family interaction, and J.D. Murray (see the book by Gottman et al. 2002 for consider-
ably more psychological detail and several case studies which have used the modelling
technique and philosophy described in this chapter). The material we discuss here is
based in large part on the paper by Cook et al. (1995).

The motivation for including this chapter is in part because it is a novel applica-
tion of mathematical modelling. It is, however, pertinent to ask why we choose to study
marriage rather than some other psychological phenomenon. The case is very convinc-
ingly made by Gottman (1998) who gives, among other things, some of the basic facts
about modern marriage, such as the escalating divorce rate in developed countries. For
example, from 50 to 67% of first marriages in the U.S.A. end in divorce in a 40-year
period with second marriages roughly 10% higher. Intervention therapy has not been
uniformly successful so any theory of marriage, such as we discuss in this chapter,
which might shed light on marital interaction, divorce prediction and possible thera-
pies is certainly worth pursuing. It should be kept in mind that the use of mathematical
modelling in marital interaction is very much in the early stages of development. The
purpose of this chapter is to introduce the new approach and to show how such models
can actually be used both predictively and therapeutically.

In modelling marital interaction we confronted a dilemma. We could not come up
with any theory we knew of to write down the time-varying equations of change in mar-
ital interaction. We did not have, for example, the equivalent of the Law of Mass Action
or the usual type of qualitative behaviour observed in population interactions to provide
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a basis for constructing the model equations. So, instead, we developed an approach
that uses both the data and difference equations to generate the interaction terms. The
expressions were then used with the data to ‘test’ these qualitative forms. The basic
difference with this approach was that we needed to use the modelling approaches to
generate the equations themselves. So here, the objectives of the mathematical mod-
elling were to generate theory: this is fundamentally different from the usual mode of
model building in biology.

We believed that the ‘test’ of these qualitative forms of change should not be an
automatic process, such as a statistical t-test. Instead, we suggest that the data be used
to guide the scientific intuition so that equations of change are theoretically meaning-
ful. It is this use of mathematical modelling, namely, generating a theory of change in
marriages, that we explore in this chapter. In an area where it is difficult a priori to use
quantitative theory for describing the processes of interaction, a qualitative mathemat-
ical modelling approach, whose purpose is the generation of mathematical theory we
believe is useful, valuable and possibly quite general. There are two main reasons for
pursuing the approach here. First it provides a new language for thinking about marital
interaction and change over time; and second, once interactive equations are compiled
for a couple, we can simulate their behaviour in circumstances other than those that gen-
erated the data. We can then do precise experiments to test whether these simulations
are valid. In this manner, theory is built and tested through the modelling.

In the best tradition of realistic mathematical modelling, we must have reliable and
scientifically sound information on the problem we are studying. Here we began with a
phenomenon, reported by Gottman and Levenson (1992), that one variable descriptive
of specific interaction patterns of the balance between negativity and positivity was
predictive of marital dissolution. We set out to try to generate theory that might explain
this phenomenon. It is perhaps appropriate here for the reader to realise that with the use
of mathematical modelling in an area customarily considered less ‘scientific’ than the
traditional sciences many of the terms used cannot be so easily quantified in terms of
some unit. Accordingly, the ultimate aim of the modelling is qualitative but nevertheless
definite.1

5.1 Psychological Background and Data: Gottman and
Levenson Methodology

Gottman and Levenson (1992) used a methodology for obtaining synchronized physio-
logical, behavioural, and self-report data in a sample of 73 couples who were followed
longitudinally between 1983 and 1987. They used an observational coding system of

1Among most people, particularly biophysical scientists, there is considerable skepticism expressed when
it is proposed to try to use mathematical modelling in the psychological arena. Even when such an endeavour
has been shown to be extremely useful as, for example, in the case of Zeeman (1977) in his seminal work on
anorexia, the prejudice remains. Initially the research here was no exception. Interestingly, during the original
discussions and meetings, without exception all of the mathematicians involved were initially skeptical (as
was I). Also, without exception everyone involved became totally convinced in a very short time as to its
relevance and practical use. Perhaps no one likes to believe that their emotions and reactions can be so starkly
predicted with such simple mathematical models.
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interactive behaviour called the Rapid Couples Interaction Scoring System (RCISS;
Krokoff et al. (1989), which we describe below in the subsection on Observational
Coding, in which couples were divided into two groups, called regulated and nonreg-
ulated. The scoring took place during a videotaped interactive discussion between the
couple and detailed aspects of their emotions were coded. The regulated and nonreg-
ulated classification was based on a graphical method originally proposed by Gottman
(1979) in a predecessor of the RCISS.2 On each conversational turn the total number
of positive RCISS speaker codes (where the spouse says something positive) minus the
total number of negative speaker codes was computed for each spouse. Then the cumu-
lative total of these points was plotted for each spouse. The slopes of these plots, which
were thought to provide a stable estimate of the difference between positive and negative
codes over time, were determined using linear regression analysis. If both husband and
wife graphs had a positive slope, they were called ‘regulated’; if not, they were called
‘nonregulated.’ This classification is the Gottman–Levenson variable. All couples, even
happily married ones, have some amount of negative interaction; similarly, all couples,
even unhappily married ones, have some degree of positive interaction. Computing the
graph’s slope was guided by a balance theory of marriage, namely, that those processes
most important in predicting marriage dissolution would involve a balance, or a regu-
lation, of positive and negative interaction. Thus, the terms regulated and nonregulated
have a very precise meaning here.

Regulated couples were defined as those for whom both husband and wife speaker
slopes were significantly positive; nonregulated couples had at least one of the speaker
slopes that was not significantly positive. By definition, regulated couples were those
who showed, more or less consistently, that they displayed more positive than negative
RCISS codes. Classifying couples in the current sample in this manner produced two
groups consisting of 42 regulated couples and 31 nonregulated couples.3 Figure 5.1
illustrates typical data from a low risk and high risk (for dissolution) couple.

In 1987, four years after the initial assessment, the original participants were re-
contacted and at least one spouse (70 husbands and 72 wives) from 73 of the original
79 couples (92.4%) agreed to participate in the follow-up. Marital status information
was obtained. During these four years 49.3% of the couples considered dissolving their
marriage and 24.7% separated for an average of 8.1 months. Of the 73 couples 12.5%
actually divorced. As pointed out by Gottman and Levenson (1992), a major reason for
the low annual rate of divorce over the short four-year period points to the difficulty in
predicting marital dissolution over such short periods. Formal dissolution of an unsat-
isfactory marriage can take many more years. The results also highlight the problem of
the small size of the sample. Longer term longitudinal studies clearly show much higher
divorce rates. Among the interesting results reported by Gottman and Levenson (1992)
was how the follow-up data related to the regulated (low risk for dissolution) and non-
regulated (high risk) couples. Cook et al. (1995) summarise their results which show
that approximately (i) 32% of the low risk couples considered dissolution as compared

2These codes were derived by reviewing the research literature for all types of interaction correlated with
marital satisfaction. Behaviours such as criticism and defensiveness were related to marital misery, whereas
behaviours such as humour and affection were related to marital happiness. In this manner behaviours were
identified as either ‘negative’ or ‘positive.’

3We model the unaccumulated data later in the chapter.
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(a)

(b)

Figure 5.1. Cumulative RCISS speaker point graphs for a regulated (low risk) and a nonregulated (high risk)
couple. Pos–Neg = Positive–Negative. (From Gottman and Levenson 1992. Copyright 1992 by the American
Psychological Association and reproduced with permission.)

with 70% of the high risk couples, (ii) 17% of the low risk as compared with 37% of
the high risk couples separated in the four-year period, and (iii) 7% of the low risk and
19% of the high risk couples actually divorced. More extensive studies are reported in
the book by Gottman et al. (2002).

Observational Coding

The couple was asked to choose a problem area to discuss in a 15-minute session; de-
tails of the exchange were tracked by video cameras. The problem area could be sex,
money, in-laws, in effect any area they had a persistent problem with. The videotapes
of the problem area interaction were coded using the following two observational cod-
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ing systems. The RCISS provided the means for classifying couples into the regulated
and nonregulated marital types, as well as providing base rates of specific positive and
negative speaker and listener codes. Other marital codes were also used to give validity
measures of the RCISS scoring. For the purposes of the modelling in this chapter we do
not require these. They are discussed by Gottman and Levenson (1992); see also Cook
et al. (1995) and Gottman et al. (2002). Figure 5.1 shows typical RCISS results for a
low risk and a high risk couple.

One of the first things to disappear when a marriage is ailing is positive affect,
particularly humor and smiling. In this chapter, the parameters of our equations, which
we derive below, were also correlated with the amount of laughter (assessed with the
RCISS), and the amount of smiling measured by coding facial expressions with Ekman
and Friesen’s (1978) Facial Action Coding System. Only what are called Duchenne
smiles (which include both zygomaticus, which is the muscle from the zygomatic bone
to the angle of the mouth, and contraction of the orbicularis oculi, which are the muscles
around the eyes), were measured, since these have been found to be related to genuine
felt positive affect.

5.2 Marital Typology and Modelling Motivation

Gottman (1994) proposed and validated a typology of three types of longitudinally
stable marriages and those couples heading for dissolution. There were three groups
of stable couples: Validators, Volatiles, and Avoiders, who could be distinguished on
problem-solving behaviour, specific affects, and on one variable designed to provide an
index of the amount and timing of persuasion attempts.

There were two groups of unstable couples: Hostile and Hostile-detached, who
could be distinguished from one another on problem-solving behaviour and on specific
negative and positive affects; the hostile-detached group was significantly more negative
(more defensive and contemptuous) than the hostile group and they were more detached
listeners. Gottman (1993) reported that there was a rough constant that was invariant
across each of the three types of stable couples. This constant, the ratio of positive to
negative RCISS speaker codes during conflict resolution, was about 5, and it was not
significantly different across the three types of stable marriages. Perhaps each adapta-
tion to achieve a stable marriage represents a similar kind of adaptation, for each stable
couple type, although the marriages were quite different. The volatile couples reach the
ratio of 5 by mixing a lot of positive affect with a lot of negative affect. The validators
mix a moderate amount of positive affect with a moderate amount of negative affect. The
avoiders mix a small amount of positive affect with a small amount of negative affect.
Each do so in a way that achieves roughly the same balance between positive and neg-
ative. We can speculate that each type of marriage has its risks, benefits and costs. It is
possible to speculate about these risks, costs and benefits based on what we know about
each type of marriage. The volatile marriage tends to be quite romantic and passionate,
but has the risk of dissolving to endless bickering. The validating marriage (which is the
current model used in marital therapy) is calmer and intimate; these couples appear to
place a high degree of value on companionate marriage and shared experiences, not on
individuality. The risk may be that romance will disappear over time, and the couple will
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become merely close friends. Couples in the avoiding marriage avoid the pain of con-
frontation and conflict, but they risk emotional distance and loneliness. Gottman (1994)
also found that the three types of stable marriages differed in the amount and timing of
persuasion attempts. Volatile couples engaged in high levels of persuasion and did so
at the very outset of the discussion. Validators engaged in less persuasion than volatile
couples and waited to begin their persuasion attempts until after the first third of the
interaction. Conflict-avoiding couples hardly ever attempted to persuade one another.
We wondered whether these five types of marriage could be discriminated using the
parameters and functions derived from the mathematical modelling.

The goal of the mathematical modelling was to dismantle the RCISS point graphs
of (unaccumulated) positive minus negative behaviours at each turn into components
that had theoretical meaning; recall that Figure 5.1 is a graph of the cumulated data. This
is an attempt at understanding the ability of these data to predict marital dissolution via
the interactional dynamics. We begin with the Gottman–Levenson dependent variable
and dismantle it into components that represent: (i) a function of interpersonal influence
from spouse to spouse, and (ii) terms containing parameters related to an individual’s
own dynamics. This dismantling of RCISS scores into influenced and uninfluenced be-
haviour represents our theory of how the dependent variable may be decomposed into
components that suggest a mechanism for the successful prediction of marital stability
or dissolution. The qualitative portion of our equations lies in writing down the mathe-
matical form of the influence functions.

An influence function is used to describe the couple’s interaction. The mathemat-
ical form is represented graphically with the horizontal axis as the range of values of
the dependent variable (positive minus negative at a turn of speech) for one spouse and
the vertical axis the average value of the dependent variable for the other spouse’s im-
mediately following behaviour, averaged across turns at speech. This suggested that a
discrete model is possibly more appropriate than a continuous one although recent work
shows a continuous model is equally appropriate (K.-K. Tung, personal communication
2000). To illustrate the selection of an analytical form for the influence function, we
can begin with the simple assumption that there is a threshold before a positive value
has an effect in a positive direction and another threshold before a negative value has
an effect in a negative direction. A more reactive spouse has a lower threshold of re-
sponse. The parameters of these influence functions (for example, the point at which
the spouse’s negativity starts having an effect) might vary as a function of culture, mar-
ital satisfaction, the level of stress the spouses were under at the time, their individual
temperaments and so forth. These latter ideas can be used at a later time to improve
the model’s generality and predictive ability. We then assume that the amount of influ-
ence will remain constant across the remainder of the ranges of the variable. This is,
of course, only one kind of influence function that we could have proposed. For ex-
ample, we could have proposed that the more negative the dependent variable, the more
negative the influence, and the more positive the dependent variable the more positive
the influence. Two options are depicted in Figure 5.2; Figure 5.2(a) shows an influence
function that remains constant once there is an effect (either positive or negative), and
Figure 5.2(b) shows an influence function in which the more positive the previous be-
haviour, the more positive the effect on the spouse, and the more negative the behaviour
the more negative the effect on the spouse.
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(a)

(b)

Impact on Wife (Positive)

Impact on Wife (Positive)

Impact on Wife (Negative)

Impact on Wife (Negative)

Husband (Negative)

Husband (Negative)

Husband (Positive)

Husband (Positive)

Figure 5.2. Two possible functional forms for the influence functions: For the influence function of the
husband on the wife, the horizontal axis is the husband’s previous RCISS score, Ht , the vertical axis is
the influenced component, IH W (Ht+1), of the wife’s following score, Wt+1. The wife’s influence on the
husband, IW H (Wt+1), could be graphed in a similar way. In (a) there is no influence unless the partner’s
previous score lies outside some range. Outside that range the influence takes either a fixed positive value or
a fixed negative value. In (b) influence increases linearly with the value of the previous score, but negative
scores can have either a stronger or less strong influence than positive scores. In both graphs, a score of zero
has zero influence on the partner’s next score (one of the assumptions of the model).

We begin with a sequence of RCISS scores Wt , Ht , Wt+1, Ht+1, . . . . In the process
of modelling, two parameters are obtained for each spouse. One parameter is their emo-
tional inertia (positive or negative), which is their tendency of remaining in the same
state for a period of time, and their natural uninfluenced steady state, which is their av-
erage level of positive minus negative scores when their spouse’s score was zero, that is,
equally positive and negative.4 For purposes of estimation we assumed that zero scores
had no influence on the partner’s subsequent score. Having estimated these parameters

4This uninfluenced steady state need not be viewed as an individual variable, such as the person’s mood
or temperament. It could be thought of as the cumulative effect of both the marriage up to the time of ob-
servation as well as any propensities this individual has to act positively or negatively at this time. So, if a
second interaction is observed (particularly following an intervention) it might be of some interest to attempt
to predict changes in this parameter over time. It might be of some interest to determine the stability of a
person’s uninfluenced steady state across other relationships, for example, comparing marital, parent–child or
friendship interactions.
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from a subset of the data, we then subtracted the uninfluenced effects from the entire
time series to reveal the influence function, which summarises the partner’s influence.
What emerges from our modelling is the influenced steady state (or states) of the in-
teraction. In our marital interaction context this means a sequence of two scores (one
for each partner) that would be repeated ad infinitum if the theoretical model exactly
described the time series; if such a steady state (or states) is stable, then sequences of
scores will approach the point over time. We thought it might be interesting to exam-
ine whether the influenced steady state was more positive than the uninfluenced steady
state—that is, did the marital interaction pull the individual in a more positive or a more
negative direction?

5.3 Modelling Strategy and the Model Equations

The modelling strategy follows the philosophy espoused in this book, in that we start
by constructing fairly simple nonlinear models for what are clearly complex processes,
namely, those involved in human relations. Usually the strategy of model construction
is first to propose the simplest reasonable equations that encapsulate the key elements
of the underlying biology. Subsequently, the models and their qualitative solutions are
extended and amended by other factors and further information. So, here we also begin
with as simple a model as is reasonable for marital interaction as reflected in the data
from the laboratory experiments. We expect to extend the model equations by suggest-
ing later that some of the parameters may not actually be fixed constants but may vary
with other variables in the experiments.

We want the model to reproduce the sequence of RCISS speaker scores. We use
a deterministic model, regarding any score as being determined only by the two most
recent scores. In this way, we use a discrete model to describe the individual’s level
of positivity in each turn at speech. That is, we seek to understand interactions as if
individual behaviour were based purely on predefined reactions to (and interpretations
of) recent actions (one’s own and one’s partner’s). This scenario may not be true in
the main, but it may be true enough that the results of the model would then suggest
underlying patterns that affect the way any particular couple interacts when trying to
resolve conflict.5

We denote by Wt and Ht the husband’s and wife’s scores respectively at turn t , and
assume that each person’s score is determined solely by their own and their partner’s
previous score. The sequence of scores is then given by an alternating pair of coupled
difference equations:

Wt+1 = f (Wt , Ht ),

Ht+1 = g(Wt+1, Ht),
(5.1)

5The form of the model is in marked contrast to game theory models, in which there is a presumed matrix
of rewards and costs, and a goal of optimizing some value. We posit no explicit optimization or individual
goal. Each individual simply has a natural state of positivity or negativity and an inertia (related to how quickly
displacements from the natural state are damped out), on top of which the partner’s influences and random
factors act. We do not introduce any concept of a ‘strategy.’
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where the functions f and g have to be determined. The asymmetry in the indices is due
to the fact that we are assuming, without loss of generality, that the wife speaks first.
We therefore label the turns of speech W1, H1, W2, H2, . . . . To select a reasonable f
and g we make some simplifying assumptions. First we assume that the past two scores
contribute separately and that the effects can be added together. Hence, a person’s score
is regarded as the sum of two components, one of which depends on their previous score
only and the other on the score of their partner’s last turn of speech. We term these the
uninfluenced and the influenced components, respectively.

Consider the uninfluenced component of behaviour first. This is the behaviour one
would exhibit if not influenced by one’s partner. It could primarily be a function of
the individual rather than the couple, or, it could be a cumulative effect of previous
interactions, or both. It seems reasonable to assume that some people would tend to be
more negative when left to themselves while others would naturally be more positive
in the same situation. This baseline temperament we term the individual’s uninfluenced
steady state. We suppose that each individual would eventually approach that steady
state after some time regardless of how happy or how sad they were made by a previous
interaction. The simplest way to model the sequence of uninfluenced scores is to assume
that uninfluenced behaviour can be modeled by a simple linear equation:

Pt+1 = ri Pt + ai , (5.2)

where Pt is the score at turn t , ri determines the rate at which the individual returns to
the uninfluenced steady state and ai is a constant. This equation can be solved by simply
iterating. If P0 is the starting state at t = 0, we have

P1 = ri P0 + a

P2 = ri P1 + a = ri [ri P0 + a] + a = r2
i P0 + a(1 + ri )

...

Pt = r t
i P0 + a(1 + ri + · · · + r t−1

i )

= r t
i P0 + a(1 − r t

i )

1 − ri
.

(5.3)

The parameter ri from now on will be referred to as the inertia. The uninfluenced
steady state is given by setting Pt+1 = Pt = P and solving to get P = ai (1− ri ) which
is, of course, the limiting solution in (5.3) but only if ri is less than one. The behaviour
depends crucially on the value of ri . If | ri | < 1, then the system will tend toward the
steady state regardless of the initial conditions, while if | ri | > 1 the steady state is
unstable.

Clearly the natural state needs to be stable so we are only interested in the case in
which | ri | < 1. The magnitude of ri determines how quickly the uninfluenced state
is reached from some other state, or how easily a person changes their frame of mind,
hence the use of the word inertia. The larger ri is, the slower the convergence back to
the steady state after a perturbation.
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To select the form of the influenced component of behaviour, various approaches
can be taken. The influence function is a plot of one person’s behaviour at turn t on the
horizontal axis, and the subsequent turn t + 1 behaviour of the spouse on the vertical
axis. Averages are plotted across the whole interaction. The first approach is to write
down a theoretical form for these influence functions (recall Figure 5.2). For example,
we can posit a two-slope function of two straight lines going through the origin, with
two different slopes, one for the positive range and one for the negative range. An-
other possible function is a sigmoidal, or S-shaped, figure which we can approximate
by piecewise constant line segments. With this function, again around zero on the hor-
izontal axis there is no influence, and there is an influence only after one passes some
threshold in positivity after which the influence is positive and constant throughout the
positive ranges. Similarly, on passing a threshold in negativity, the influence is negative
and then constant throughout the negative range. Of course, other forms of the influence
function are also reasonable; for example, one could combine the two functions and
have a threshold and two slopes. We simply assume there are slopes for negative and
positive influences only once the thresholds are exceeded. In line with the philosophy
in this book, it is best to start with as simple a form as is reasonable which implies
fewer parameters to estimate. The model can be made more complex later, once this
complexity is shown to be necessary. In this chapter we discuss both the two-slope and
the sigmoidal functions.

An alternative approach to the selection of influence functions is to make no attempt
to predetermine the form of the function; Cook et al. (1995) in effect followed this ap-
proach. We expected the influence functions to vary from person to person and decided
that one of the aims of the model building was to uncover the shape of the influence
function from the data. In the first study we proceeded entirely empirically and used
the data to reveal the influence functions. We summarised the results using a two-slope
form of the influence function. This means that the goal of our mathematical modelling
at this point is to generate theory. We denote the influence functions by IAB(At), the
influence of person A’s state at turn t on person B’s state. With these assumptions the
model is:

Wt+1 = IH W (Ht) + r1Wt + a, (5.4)

Ht+1 = IW H (Wt+1) + r2 Ht + b. (5.5)

Again, the asymmetry in the indices is due to the fact that we are assuming that the wife
speaks first. The key problem now is the estimation of the four parameters, r1, a, r2, and
b, and the empirical determination of the two unknown influence functions.

Estimation of Parameters and the Influence Functions

To isolate and estimate the uninfluenced behaviour we look only at pairs of scores for
one person for which the intervening score of their partner was zero (about 15% of the
data). For example, consider the procedure for determining the wife’s parameters. We
look at the subset of points (Wt+1, Wt ) where Ht = 0 and so, by assumption, IH W = 0
and equation (5.4) becomes a linear (uncoupled) equation like (5.2). We then carry out a
least squares fit to determine the parameters r1 and a1. We do the same for the husband’s
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set of scores when Wt = 0 and determine r2 and a2 in exactly the same way.6 We can
now calculate the uninfluenced steady states and inertia of each partner.

Once we have estimated the uninfluenced component of the scores we can subtract
it from the scores at turn t + 1 to find the observed influenced component. That is, we
compute IH W (Ht) = Wt+1 − rt Wt − a1 for each Ht . For each value of the husband’s
score during the conversation there is likely to be a range of observed values of the
influence component due to noise in the data. To convert these into estimates for the
influence function IH W (Ht) we simply average the observations for each of the hus-
band’s scores, Ht . We then do the same for the husband’s influence function IW H (Wt )

as a function of the wife’s score Wt . In this way the raw influence data and the averaged
influence function can be plotted for each member of each couple.

To validate the estimation process, we then form a reconstructed conversation from
the model equations. We simply start by taking both people to be at their uninfluenced
state (non-integer values are allowed in this reconstruction) and then iterate forwards
for the approximately 80 turns of speech typically observed in 15 minutes. This is done
by computing the components separately and then summing to generate the next score.
The uninfluenced component is derived from linear equations like (5.2). The influenced
behaviour is computed by simply rounding the partner’s last score to the nearest integer
and reading off the influence from that person’s average influence function referred
to above. The reconstructed conversation therefore lacks any randomness; we do not
pretend that this ‘expected’ conversation would ever be observed in practice. Rather, it
represents an underlying trend.

5.4 Steady States and Stability

For each couple we plot the model’s null clines in the (Wt ,Ht) phase plane. Here, a point
in the plane is the pair of numbers representing the husband’s and the wife’s scores for a
particular interaction (a two-turn unit). As time progresses, this point moves, and traces
out a trajectory in phase space. We are interested in the stability of the steady states,
the points where the null clines intersect. These steady states are clearly very important
since they provide crucial information on the state of the marriage, and on guiding
potential repair therapy. Since the null clines are obtained from the data we determine
the steady states by looking for the intersections of the null clines in the usual way.
Here, however, we have coupled discrete equations and so must consider what we mean
by a null cline for such equations. Recall what a null cline is from Chapter 3. They are
curves in the phase plane where values stay the same over time. A person’s null cline is
a function of their partner’s last score and gives the value of their own score when this is
unchanged over one iteration, in other words when Wt+1 = Wt and Ht+1 = Ht . As we
saw in Chapter 3, plotting null clines provides a simple graphical means of determining

6If these zero influence points were rare, it would be hard to obtain accurate estimates for the model
parameters since the confidence intervals around these parameters would be large. While it seems like a
strong assumption, the assumption that zero scores have zero influence is arbitrary. We could assume nonzero
influences, make these additional parameters, and estimate these parameters as well. In fact, an asymmetry in
these parameters would be theoretically interesting in characterizing a couple’s interaction. In the interest of
parsimony, we took these parameters to be zero.
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steady states. From (5.4) and (5.5) the null clines NH W and NW H are given respectively
by

NH W : W (Ht ) = IH W (Ht) + a

(1 − r1)
, NW H : H (Wt ) = IW H (Wt ) + b

(1 − r2)
. (5.6)

These equations are simply the influence functions respectively translated by the con-
stants a and b and scaled by the constants 1 − r1 and 1 − r2. Steady states are then
given by the intersections of the null clines, since, by definition, if the (Wt , Ht ) started
at such a point then it would stay there. The concept is exactly the same as for differen-
tial equations. Also, just as for these, the stability of the steady states provides crucial
information. Since we have not specified the functional form of the influence functions
analytically, we proceed qualitatively.

However, it is instructive to discuss what would happen if we settled on a functional
form for the influence functions. For example, suppose we consider IH W (Ht) to be sim-
ilar to the piecewise linear sigmoidal form illustrated in the upper figure in Figure 5.2
with a similar form for IW H (Ht). This assumption is reasonable since it presumes two
thresholds of influence and that the influence is bounded in both negative and positive
ranges. The pair of equations (5.6) can easily be solved graphically by simply plot-
ting the influence functions and translating and stretching them according to (5.6). The
steady states are given in the usual way by the points of intersections of the null clines.

These steady states, the intersection points, are where both the wife’s and the hus-
band’s scores remain constant on consecutive turns of speech. These points we call the
influenced steady states. If a couple were to reach one of these states during a conver-
sation, whether or not they remain there with each partner scoring the same on each
of their future turns of speech depends on the stability of the steady states. Although
there may be several influenced steady states (depending on the influence functions and
the uninfluenced parameters), to date we have usually found only one. Figure 5.3 is a
possible null cline scenario in which there are 5 possible steady, influenced, states. With
the typical form in the upper figure in Figure 5.2, the null clines, denoted by NH W and
NW H , are illustrated in Figure 5.3.

We analyse the stability of the steady states below. We are familiar with the concept
of stability and instability from the models we have discussed in earlier chapters. The
concepts are exactly the same here except that we are dealing with RCISS scores. If
a theoretical conversation were continued for some time, then pairs of scores would
approach a stable steady state and move away from an unstable one. Although it is
theoretically possible to have periodic behaviour we do not discuss this possibility here.
Each stable steady state has a basin of attraction.

Let us now examine the stability of the steady states of WS , HS of (5.4) and (5.5).
In the usual way we set

Wt = WS + wt

Ht = HS + ht ,
(5.7)

where |wt | and | ht | are small. Substituting these into (5.4) and (5.5), expanding in a
Taylor series and keeping only linear terms, we get:



Wt

Ht

NULL CLINES
NW H (husband’s null cline)

NH W (wife’s
null cline)

(a)

Wt

Ht

NULL CLINES

NW H (husband’s null cline)

(b)

Figure 5.3. The null clines determine the steady states for typical piecewise linear forms of the influence
functions as in Figure 5.2(a). The null clines have the same general shape as the influence function but are
translated and stretched (see (5.6)). When the null clines are plotted against their respective axes, the steady
states of the system are the points of intersection. In (a) the intersection of the two null clines shows that 5
steady states are possible with this form of the influence function; note that the influence functions of the wife
and husband are plotted in mirror-image relationship. The stability of these is crucial. In (b) there are only 2
possible steady states (both of them cannot be stable). In (a) the stable steady states (filled circles) alternate
with unstable steady states as we show in the text. Depending on the form of the interaction functions there
are other possibilities.

158
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Wt+1 = WS + wt+1 = IH W (HS + ht ) + r1(WS + wt ) + a

≈ IH W (HS) + ht I ′
H W (HS) + r1(WS + wt ) + a,

(5.8)

where I ′
H W (HS) is d IH W (Ht)/d Ht evaluated at the steady state HS and similarly for

I ′
W H (WS). But IH W (HS) + r1WS + a = WS by definition of the steady state WS , so,

the last equation simplifies to

wt+1 = r1wt + I ′
H W (HS)ht . (5.9)

Similarly, with the husband’s equation (5.5), we get

ht+1 = r2ht + I ′
W H (WS)wt+1, (5.10)

which on substituting for wt+1 gives, together with (5.9), the following system of linear
difference equations,




wt+1

ht+1



 =



r1 I ′

H W (HS)

r1 I ′
W H (WS) r2 + I ′

W H (WS)I ′
H W (HS)








wt

ht



 = M




wt

ht



 , (5.11)

where M , defined by (5.11), is the stability matrix.
In the usual way we look for solutions of (5.11) in the form

wt

ht





∝ λt (5.12)

and determine the λ. Since the system is second-order, there are in general two λ’s.
Stability is then obtained if the magnitude of both λ’s (which can be positive or negative)
is less than 1, since then the perturbation solutions of the form (5.12) decay as t increases
and eventually tend to zero.

Substituting (5.12) into (5.11) requires the λ to be solutions of the determinant

∣
∣∣
∣∣∣

r1 − λ I ′
H W (HS)

r1 I ′
W H (WS) r2 + I ′

W H (WS)I ′
H W (HS) − λ

∣
∣∣
∣∣∣
= 0, (5.13)

that is

λ2 − (r1 + r2 + I ′
W H I ′

H W )λ + r1r2 = 0

and so the λ’s are

λ1, λ2 = 1

2

[
(r1 + r2 + I ′

W H I ′
H W ) ±

{
(r1 + r2 + I ′

W H I ′
H W )2 − 4r1r2

}1/2
]

. (5.14)
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The solutions for the perturbations wt and ht are then given by




wt

ht



 = Aλt
1 + Bλt

2, (5.15)

where A, B are constant column matrices. If |λ1 | > 1 or |λ2 | > 1, then wt and ht will
grow with each increase in t and the steady state is linearly unstable. Stability therefore
requires

−1 < λ1 < 1 and − 1 < λ2 < 1, (5.16)

in which case wt and ht tend to zero as t increases.
We now substitute the expressions for λ1 and λ2 from (5.14) into (5.16) to obtain the

conditions on r1, r2, I ′
H W (HS) and I ′

W H (WS) for stability of the steady state WS, HS .
Although we can do this for general r1 and r2, there is little point since we know that
0 ≤ r1 < 1 and 0 ≤ r2 < 1. If either were greater than 1 there would be no uninfluenced
steady state, since from (5.3), it (the Pt ) would get infinitely large for t large. So with
these practical restrictions, dictated by the model (and actually confirmed by the data),
we need consider only nonnegative r1 < 1 and r2 < 1.

The stability condition is then given by requiring the square bracket in (5.14) to be
less than 2. A little algebra shows that we must have at the steady state WS, HS ,

I ′
W H (WS)I ′

H W (HS) < (1 − r1)(1 − r2), (5.17)

where I ′
W H (WS) = d IW H (Wt )/dWt evaluated at the steady state WS, HS and similarly

for I ′
H W (HS). So, if we want to assess the stability of a steady state, we have to evaluate

the derivatives of the influence functions and use (5.17).
In general, we can say that steep influence functions and high inertia, the r -param-

eters, are destabilizing for a steady state. Recall that high inertia means r close to 1. For
example, if each influence function has a slope greater than one then the steady state
would be unstable irrespective of inertia values. This agrees with our intuitive expec-
tations if we interpret instability as the amplification of small perturbations. Influence
is a measure of the effect that one partner has on the other and is so large that changes
in influence will result in amplification, or mutual instability. On the other hand, even
couples with relatively flat (low derivative) influence functions can have unstable steady
states if either of the partners’ inertia is high (close to 1).

Condition (5.17) can be interpreted graphically. The null clines could intersect ei-
ther as shown in Figure 5.4(a) or (b). From (5.4) and (5.5), the equations for the null
clines are (5.6); namely,

NH W : W = IH W (H ) + a

(1 − r1)
, NW H : H = IW H (W ) + b

(1 − r2)
, (5.18)
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(a) unstable (b) stable

WW

HH

NW H (H )

NW H (H )

NH W (W )

NH W (W )

Figure 5.4. Null clines and the stability of steady states for the marriage model. Steady states correspond to
points at which the null clines intersect. The stability of a steady state can be determined graphically (see text
for details): when the null clines intersect as is shown in (a), the steady state is unstable; when they intersect
as is shown in (b), the steady state is stable. H = Husband; W = Wife.

where NH W is the wife’s null cline and NW H is the husband’s. If we now take the
derivatives of these, respectively, with respect to H and W , we get

dW

d H

⌋

On wife’s
null-cline, NH W

= I ′
H W (H )

1 − r1
,

d H

dW

⌋

On husband’s
null-cline, NW H

= I ′
W H (W )

1 − r2
.

So, the stability condition (5.17) becomes simply

[
d H

dW

]

On husband’s
null-cline, NW H ,

at WS, HS

×
[

dW

d H

]

On wife’s
null-cline, NH W ,

at WS, HS

< 1

as the conditions on the gradients at a steady state. With the axes chosen, namely, W the
vertical axis and H the horizontal one, the last expression guaranteeing stability can be
written as

[
dW

d H

]

On wife’s
null-cline, NH W ,

at WS, HS

<

[
dW

d H

]

On husband’s
null-cline, NW H ,

at WS, HS

. (5.19)

So, all we need to do is evaluate the gradients and stability or instability is immediately
obtained at each steady state. Let us now consider some examples using the null clines
and steady states in Figures 5.4(a) and 5.4(b).

Consider first the positive steady state in Figure 5.4(a). By inspection, the gradient
on the wife’s null cline is greater than that on the husband’s null cline. So the condition
(5.19) is not satisfied and thus the positive steady state is unstable. If we now look at
Figure 5.4(b) we see that condition (5.19) is satisfied so the steady state is stable.
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Now consider Figure 5.3. At the open circle steady states the gradients are infinite
so the stability criterion (5.19) is violated, so these are unstable steady states. On the
other hand, the filled circles have zero gradients and (5.19) is satisfied so they are stable.
As we now should expect, the steady states alternate in stability and instability. In con-
clusion then, under these conditions on the inertia parameter (0 ≤ r1 < 1, 0 ≤ r2 < 1)

we can graphically determine not only the location of the steady states but also their
stability. A simple corollary to this null cline intersection stability condition is that the
stable and unstable steady states must alternate; that is, any two stable steady states are
separated by an unstable one and vice versa. If we assume that the influence functions
are monotonic increasing functions then the steady states can be ordered. By this we
mean that the steady state values, WS and HS, will both increase as we move from one
steady state to the next. If we assume, as is reasonable, that influence functions satu-
rate, then the highest and lowest steady state are clearly stable (they must intersect as in
Figure 5.4(b) (see also Figure 5.5): there must be an odd number of steady states that
alternate between stable and unstable, with the first and last being stable. In all of the
above, by stability we mean linear stability since it is clear that we can perturb a stable
steady state so that it will fall in the basin of attraction of another stable steady state.

Wt

Ht

NULL CLINES
(W3, H3)

(W2, H2)

(W1, H1)

Curve separating two basins
of attraction (the ‘separatrix’)

NH W

NW H

Figure 5.5. Null clines and a typical sequence of theoretical RCISS scores in the case of three steady states.
The solid null cline is the husband’s influence on the wife, while the dotted null cline is the wife’s influence on
the husband. Two stable steady states (large filled circles) are separated by an unstable steady state (large open
circle). A possible sequence of scores is shown approaching the positive steady state (small filled circles).
Each point corresponds to a consecutive pair of scores (Wt , Ht ). Both stable steady states have a basin of
attraction consisting of points starting from which a sequence of theoretical RCISS scores will approach the
steady state in question. The separatrix curve delineating the basins of attraction is shown as a dotted line.
Pairs of scores gradually approach one of the positive stable states; the long term behaviour of the sequence
is therefore dependent upon the basin of attraction in which the initial pair of scores lies.
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To determine the basins of attraction of each stable steady state we have to deter-
mine the separatrices. This, as in most differential equation systems, has to be done
numerically. However, at least in the neighbourhood of each stable steady state we can
get some idea of the strength of attraction. With differential equations, one way to mea-
sure the strength of attraction of a steady state is to construct an energy type of function,
such as a Liapunov function. This is not always easy. For difference equation systems,
such as we have in the marriage interaction model here, there is, as far as we know, no
such equivalent. However, in the neighbourhood of a stable steady state, essentially in
the linear neighbourhood, we can give a parameter which provides at least some com-
parative basis for the strength of the stable steady state attractor.

The linear perturbation solutions wt and ht about a steady state are given by (5.15).
For stable steady states, |λ1 | < 1 and |λ2 | < 1. To be specific suppose |λ2 | < |λ1 |.
As t increases the term involving λt

1 eventually dominates the solution. The closer |λ1 |
is to 1, the slower the perturbations about the steady state die out and hence the weaker is
the attraction of the steady state. So, a measure, albeit a linear measure, of the strength,
S, of an attracting stable steady state is given by

S = maximum(|λ1 | and |λ2 |).
The closer S is to unity, the weaker is the attractor, or alternatively the closer S is to zero
the stronger the attractor. This result may have considerable importance. For example,
one effect of marital therapy may be to strengthen the positive attractor and weaken the
negative attractor; we discuss the application of the theory to marital therapy below.

An example of a hypothetical sequence of scores is shown in Figure 5.5 approach-
ing the more positive steady state. This theoretical conversation would be constructed
by simply iterating equations (5.4) and (5.5) from some initial pair of scores. The po-
tential existence of multiple stable steady states each with its own basin of attraction has
practical implications. The model suggests that the final outcome (positive or negative
trend) of a conversation could depend critically on the opening scores of each partner.
Where one begins in the phase space is determined by the couple’s actual initial con-
ditions, in other words which basin of attraction you start in. We have generally found
that the end points can depend critically on starting values.7

An observed or a ‘reconstructed’ conversation can be represented in the phase plane
as a series of connected points. In addressing the issue of stability of the steady states,
we are asking whether the mathematical equations imply that the reconstructed series
will approach a given steady state. Analytically, we ask the question of where a steady
state will move once it is slightly perturbed from its position. Of course the theoretical
behaviour of the model in response to perturbations of the steady states is only possible
once we have a functional form for the influence functions. For example, as we have

7Notwithstanding what has been termed the punctuation fallacy, in which where one starts in an interaction
is quite arbitrary, we have found in practice that the couple’s starting values of the interaction appear to be
very important in determining the couple’s eventual trajectory. We have considered modifying the influence
functions to include a repair component, whose existence would be capable of moving a couple from a
negative to a positive steady state. If there were a repair component operating, the cumulative graph could
look like a check mark, starting downward and then changing direction. Unfortunately, this occurred in our
data for only 4% of the cases. Perhaps effective marital therapy might add such a repair component to the
influence functions. This is discussed in detail by Gottman et al. (2002).
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noted, for the sigmoidal influence function, we can have 1, 3 or 5 steady states (see
Figure 5.3). With the latter, from the null cline plot (see Figure 5.3) we can see that
there are 3 stable and 2 unstable states.

What does it mean practically for there to be multiple steady states? These are all
possible states for a particular couple. Even if we only observe the couple near one
of them in our study, all are possible for this couple, given the equations. Each stable
steady state will have a basin of attraction. This is the set of starting points from which
a reconstructed time series will approach the steady state in question. If there is a single
steady state, then its basin of attraction is the whole plane—that is, no matter what the
initial scores were, the sequence would approach this one steady state. We have found
this tendency toward a single steady state to be the usual situation in our data. If, on
the other hand, there are two stable steady states (and, necessarily, one unstable one)
the plane will be divided into two regions, the basins of attraction (see Figure 5.5). If
the scores start in the first stable steady state’s basin of attraction, then, in time, the se-
quence of scores will approach that steady state. The same goes for the second steady
state and its basin of attraction. This situation is depicted in Figure 5.5. The couple be-
gins at the point (W1, H1) in phase space, next moves to the point (W2, H2), and next
moves to the point (W3, H3), and so on, heading for the large black dot that represents
the stable steady state intersection of the two null clines. The eventual trend that the
conversation follows can be highly dependent on the initial conditions. Thus, high in-
ertia, high influence couples (who are more likely to have multiple steady states) could
potentially exhibit a positive conversation on one day and yet not be able to resolve
conflict on another. The only difference could be the way the conversation began (their
initial RCISS scores). The influence functions and uninfluenced parameters would be
identical on each day. This discussion makes concrete the general systems theory no-
tion of first-order (or more superficial, surface structure) change and second-order (or
more meaningful, deeper structure) change (Watzlawick et al. 1967). In our model, first-
order change means that the steady states may change but not the influence functions;
second-order change would imply a change in the influence functions as well.

5.5 Practical Results from the Model

Influence Functions

Note that influence functions are arbitrarily attributed to the influencer, although we
recognize that the influenced spouse will also play a part in determining the influence.
As a rough approximation to the shape of the influence functions, obtained from the
data by least squares, we used the two-slope function and computed the slope of the
influence function separately for negative and positive value of the partner’s behaviour.
The horizontal axis represented the range of positivity or negativity in each group. Only
data close to the natural steady state for each group could be trusted to avoid infrequent
numbers of instances of RCISS values within a group. This means that we get more
reliable information for regulated couples in the positive ranges and for nonregulated
couples in the negative ranges of the horizontal axis. Figure 5.6 is a summary of the
empirically obtained functions for five groups of couples, the three stable marriages
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Figure 5.6. Empirically obtained influence functions using a two-slope bilinear functional form for the influ-
ence function. The top three marriage types all fall into the category of low risk marriages and it is possible
to determine a theoretical influence function for each type of marriage. The bottom two belong to the high
risk category of marriages: note the mismatch in slopes. For example, in the Hostile-Detached graphs the hus-
band has an influence function characteristic of validator husbands while the wife has an influence function
characteristic of avoiding wives. Because of this mismatch it is not possible to determine theoretical influence
functions for these marriage types. (From Cook et al. 1995)
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(Volatile, Validating and Avoiding), and for the two unstable marriages (Hostile and
Hostile-Detached). For heuristic purposes we used the two-slope model of the influence
function. We now discuss this figure. The top three graphs represent the influence func-
tions for the three regulated marriages. The Validators have an influence function that
creates an influence toward negativity in a spouse if the partner’s behaviour is negative,
and an influence toward positivity if the partner’s behaviour is positive. Volatile and
Conflict-Avoider influence functions appear to be, respectively, one half of the valida-
tors, with volatiles having the right half of the curve with a slope close to zero, and the
Conflict-Avoiders having the left half with a slope near zero. This observation of match-
ing functions is summarised in the third column, labelled theoretical influence function.
Now examine the influence functions for the Hostile and the Hostile-Detached couples.
It looks as if these data would support a mismatch hypothesis. Hostile couples appear to
have mixed a Validator husband influence function with a Conflict-Avoider wife influ-
ence function, and Hostile-Detached couples appear to have mixed a Validator husband
influence function with a Volatile wife influence function.

From examining the data, we can propose that validating couples were able to in-
fluence their spouses with both positive or negative behaviour; positive behaviour had
a positive sloping influence while negative behaviour also had a positive sloping influ-
ence. This means that the negative horizontal axis values had a negative influence while
the positive horizontal axis values had a positive influence. For validators, across the
whole range of RCISS point values, the slope of the influence function was a constant,
upwardly sloping straight line. The data might have been generated by the process that
in validating low risk marriages there is a uniform slope of the influence function across
both positive and negative values: Overall negative behaviour has a negative influence,
while positive behaviour has a positive influence in low risk marriages. Here we see that
a full range of emotional balance is possible in the interaction. However, avoiders and
volatile couples were nearly opposite in the shape of their influence functions. Avoiders
influenced one another only with positivity (the slope was flat in the negative RCISS
point ranges), while volatile couples influenced one another primarily with negativity
(the slope was flat in the positive RCISS point ranges). The influence function of the
avoiding couple is nearly the reverse of that of the volatile couple.

Mismatch Theory: The Possibility that Unstable Marriages Are the Results of Failed
Attempts at Creating a Pure Type

The shape of the influence curves leads us to propose that the data on marital stabil-
ity and instability can be organized by the rather simple hypothesis that Hostile and
Hostile-detached couples are simply failures to create a stable adaptation to marriage
that is either Volatile, Validating, or Avoiding. In other words, the hypothesis is that the
longitudinal marital stability results are an artifact of the prior inability of the couple to
accommodate to one another and have one of the three types of marriage. For example,
in the unstable marriage, a person who is more suited to a Volatile or a Conflict-Avoiding
marriage may have married one who wishes a validating marriage. Their influence func-
tions are simply mismatched.

These mismatch results are reminiscent of a well-known empirical observation in
the area of marital interaction which is called the ‘demand–withdraw’ pattern. In this
pattern one person wishes to pursue the issue and engage in conflict while the other
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attempts to withdraw and avoid the conflict. Gottman et al. (2002) suggest that the
demand–withdraw pattern is an epiphenomenon of a mismatch between influence func-
tions and that the underlying dynamic is that the two partners prefer different styles of
persuasion. The person who feels more comfortable with Avoider influence patterns that
only use positivity to influence will be uncomfortable with either Validator or Volatile
patterns in which negativity is used to influence. Usually it is the wife who is the deman-
der and the husband who is the withdrawer. These general results are consistent with the
findings on criticism being higher in wives and stonewalling being higher in husbands.

Unfortunately, it is easier to propose this hypothesis than it is to test it. The problem
in testing this hypothesis is that the marital interaction is a means for classifying cou-
ples. The result of this classification process is that the marriage is described as volatile,
validating, or avoiding, rather than describing each person’s style or preferences. What
is needed to test this hypothesis is an independent method for classifying each person’s
conflict resolution style. To begin to test this hypothesis, we computed the difference
between husbands and wives on the RCISS positive and negative speaker codes. If the
mismatch hypothesis were true, we would expect that the results of an analysis of vari-
ance between the groups would show greater discrepancies between husbands and wives
for the hostile and hostile-detached group than for the three stable groups. This was in-
deed the case as found by Cook et al. (1995) who pooled the stable groups into one
group and the unstable groups into another. Thus, it could be the case that the unstable
groups are examples of discrepancies in interactional style between husbands and wives
that are reflective of their differences in preferred type of marital adaptation. Or these
differences may have emerged over time as a function of dissatisfaction.

This analysis is incomplete without a discussion of the other parameters of our
model for these five groups of couples, namely, inertia and influenced and uninfluenced
steady states. We should note that we present no statistical tests here. Our purpose is the
qualitative description of the data for generating theory. By theory we mean a suggested
mechanism for the Gottman–Levenson prediction of marital instability.

Steady States and Inertia

Table 5.1 summarises the mean steady states and inertias for the types of couples. Let
us begin by examining the inertia parameter. Nonregulated couples have higher mean
emotional inertia than regulated (low risk) couples; the differences are greater for wives
than for husbands (a fourfold difference, 0.29 versus 0.07, respectively). Wives in non-
regulated (high risk) marriages have greater emotional inertia than husbands, but this is
not the case in regulated marriages. Both the influenced and uninfluenced steady states
are more negative in nonregulated compared to regulated marriages, and this is espe-
cially true for wives (although we should reiterate that the influenced steady state is an
attribute of the couple, not the individual). The three stable (Low Risk) types of couples
also differed from each other. Volatile couples had the highest steady states, followed
by Validators and then Avoiders. Also, the effect of influence in nonregulated marriages
is to make the steady state more negative, while, in general, the reverse is true in reg-
ulated marriages. Perhaps it is the case that volatile couples need to have a very high
steady state to offset the fact that they influence one another primarily in the negative
range of their interaction. The behaviour of the wives was quite different from that of
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Table 5.1. Parameter estimates in the mathematical modelling of the RCISS unaccumulated point graphs.

Husband’s Wife’s
Steady State Steady State

Group Inertia Uninfl. Infl. Inertia Uninfl. Infl.

Low Risk Couples

Volatile .33 .68 .75 .20 .68 .61
Validating .37 .38 .56 .14 .52 .59
Avoiding .18 .26 .53 .25 .46 .60

AVERAGE .29 .44 .61 .20 .55 .60

High Risk Couples

Hostile .32 .10 .03 .51 −.64 −.45
Host-Det. .40 −.42 −.50 .46 −.24 −.62

AVERAGE .36 −.16 −.24 .49 −.44 −.54

Host-Det. = Hostile-Detached Couples
Uninfl. = Uninfluenced
Infl. = Influenced

the husbands. Wives in regulated marriages had a steady state that was equal to or more
positive than their husbands. However, wives in hostile marriages had a steady state that
was more negative than their husbands, while the reverse was true in hostile-detached
marriages. The steady states of wives in nonregulated marriages were negative, and
more negative than the steady states of wives in regulated marriages. Wives in hostile
marriages had a more negative steady state than wives in hostile-detached marriages.

Parameters and Divorce Prediction

For predicting marital dissolution, these results, when used in conjunction with the re-
sults in Gottman and Levenson (1992) suggest that: (i) the regulated–nonregulated clas-
sification (which was the Gottman–Levenson predictor of marital dissolution) is related
to the wife’s emotional inertia, and to both the husband and wife’s uninfluenced steady
states; and, (ii) both the husbands’ and wives’ steady states are significantly predictive
of divorce. We (Gottman et al. 2002) have recently extended our analysis to study the
marital interactions of newlyweds and found that couples who eventually divorced in
the first few months of marriage initially had more negative uninfluenced husband and
wife steady states, more negative influenced husband steady state and lower negative
threshold in the influence function.

We can get some idea of how a parameter variation could have catastrophic con-
sequences. Let us consider, by way of example, influence functions similar to those in
Figure 5.2(a) with multiple steady states. Let us suppose that the marriage has multiple
possible stable steady states and it is at the stable positive steady state in Figure 5.5. If
the null clines become displaced as shown in Figure 5.7 the sequential pathway of any
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Figure 5.7. A change in one or both of the null clines can affect both the number and stability of the steady
states. If the null cline situation changes in Figure 5.3(a) to that shown here the stable positive steady state
disappears and the solution pathway moves into the basin of attraction of the negative steady state.

conversation which starts above the separatrix will move into the basin of attraction of
the negative steady state, a recipe for divorce. Even with the simpler bilinear form of
the interaction functions the same situation can occur. There is a direct relation between
the parameters and the number of steady states so some aspects of marital therapy can
be focused in restoring the existence of a positive steady state.

For future research, we would like to know to what extent uninfluenced steady
states are independent of partner or independent of conversation—that is, to what extent
are they intrinsic to the individual, and to what extent do they describe a cumulative
quality of the relationship?

Emotional Inertia. This is clearly an important parameter in marital interaction.
When another coding system (called the MICS system) is used (it measures criticism,
withdrawal (of attention), defensiveness and contempt) with the data from Gottman and
Levenson (1992), the husband’s inertia was related to his criticism in the interaction
while the wife’s inertia was related to his withdrawal and to her own contempt. For the
RCISS codes, the husband’s inertia was related to their contempt and the wife’s inertia
was related to all the subscales of the RCISS.

Steady States. For the MICS coding, the husbands’ steady state variable was related
to their criticism, contempt, and withdrawal and to the wives’ criticism and withdrawal.
For this MICS coding, the wives’ steady state variable was related to all the variables
for both spouses. For the RCISS coding, the husbands’ steady state was related to all of
their behaviour and to all of the wives’ behaviour except for criticism; the wives’ steady
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state was related to all the husbands’ codes except for criticism and to all the wives’
codes.

Positive Affect. Cook et al. (1995) also observed the following relationships. Wives
with more emotional inertia made fewer Duchenne smiles than wives with less emo-
tional inertia. Husband and wife steady states were related to fewer Duchenne smiles,
but only for wives. On the RCISS scores, husbands with higher steady states laughed
more, while wives laughed more when either the husband’s or the wife’s steady state
was higher.

5.6 Benefits, Implications and Marriage Repair Scenarios

The purpose of the dynamic mathematical modelling proposed in this chapter was to
generate theory that might explain the ability of the RCISS point graphs to predict the
longitudinal course of marriages. We found that the uninfluenced steady state, when
group averaged, was enough to accomplish this task. This alone is an interesting result.
Subsequent attempts at theory construction may profit from making this parameter a
function of other dynamic (time-varying) variables in the experiment such as indices
of physiological activity. Perhaps the uninfluenced steady state represents a cumulative
summary of the marriage and reflects what each individual brings to each marital con-
flict discussion. It might be useful to study what other variables (for example, stress,
coping, power differences) are related to this index.

Gottman (1994), on the basis of the interactive behaviour on the RCISS scoring
of the initial interview of the couple as reported in Gottman and Levenson (1992), de-
scribed three distinct types of couples who were more likely to have stable marriages
and two groups of couples who were more likely to have unstable marriages. In this
chapter we examined the influence functions for these five groups of couples and sug-
gested that the influence functions might provide insight into the classification. Validat-
ing couples seemed to have a pattern of linear influence over the whole range of their
interaction; when they were more negative than positive they had a negative impact on
their partner’s subsequent behaviour, and, conversely, when they were more positive
than negative they had a positive impact on their partner’s behaviour. Conflict-avoiding
couples, on the other hand, resembled validating couples, but only in the positive ranges
of their behaviour. In the negative ranges they had nearly no influence on their spouses.
Volatile couples resembled couples headed for marital dissolution in that they had no in-
fluence in the positive ranges of their partner’s behaviour. They differed from this group
of couples only in having a more positive uninfluenced steady state.

These results provide insight into the potential costs and benefits of each type of
stable marriage. The volatile marriage is clearly a ‘high risk’ style. Without the high
level of positivity, volatile couples may drift to the interactive style of a couple headed
for dissolution. The ability to influence one another only in the negative ranges of their
behaviour may suggest a high level of emphasis on change, influence, and conflict in
this type of marriage. However, the conflict-avoiding style seems particularly designed
for stability without change and conflict. The validating style seems to combine ele-
ments of both styles, with an ability to influence one another across the entire range
of interactive behaviour. On the other hand, the marriages headed for dissolution had
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influence functions that were mismatched. In the hostile marriage the husband, as with
a validating husband, influenced his wife in both the positive and the negative ranges
but she, as with a conflict-avoider, only influenced him by being positive. If we can gen-
eralize from validator and avoiding marriages, the wife is likely to seem quite aloof and
detached to the husband, while he is likely to seem quite negative and excessively con-
flictual to her. In the hostile-detached marriage we see another kind of mismatch. The
husband, again as with a validating husband, influenced his wife in both the positive and
the negative ranges but she, as with a wife in a volatile marriage, only influenced him by
being negative. If we can generalize from validator and volatile marriages, he is likely
to seem quite aloof and detached to her, while she is likely to seem quite negative and
excessively conflictual to him. These two kinds of mismatches are likely to represent
the probable mismatches that might survive courtship; we do not find a volatile style
and a conflict-avoiding style within a couple in our data; perhaps they are just too dif-
ferent for the relationship to survive, even temporarily. These results suggest evidence
for a mismatch of influence styles in the marriage being predictive of marital instability.
This is an interesting result in the light of the general failure or weak predictability of
mismatches in personality or areas of agreement in predicting dissolution (Fowers and
Olson 1986; Bentler and Newcomb 1978); it suggests that a study of process may be
more profitable in understanding the marriage than a study of individual characteristics.

What have we gained from our mathematical modelling approach? As soon as we
write down the deterministic model we already gain a great deal. Instead of empirical
curves that predict marital stability or dissolution, we now have a set of concepts that
could potentially explain the prediction. We have parameters of uninfluenced steady
state, influenced steady state, emotional inertia and the influence functions. We gain a
language, and one that is precise and mathematical for talking about the point graphs.
Marriages that last have more positive uninfluenced steady states. Furthermore, interac-
tion usually moves the uninfluenced steady states more positive, except for the case of
the volatile marriage, in which the only way anyone influences anyone else is by being
negative—in that case a great deal of positivity is needed to offset this type of influence
function. Marriages that last have less emotional inertia, they are more flexible, less pre-
dictable, and the people in them are more easily moved by their partners. Depending on
the type of marriage the couple has, the nature of their influence on one another is given
by the shape of the influence functions. We hypothesize that couples headed for divorce
have not yet worked out a common influence pattern, and that most of their arguments
are about differences in how to argue, about differences in how to express emotion, and
about differences in issues concerning closeness and distance; all these are entailed by
mismatches in influence functions (see Gottman 1994). Of course, we have no way of
knowing from our data whether the mismatches in influence functions were there at the
start of the marriage, or emerged over time. We are currently studying these processes
among newlyweds as they make the transition to parenthood.

As a new methodology for examining an experimental effect and building theory,
we suggest that the use of these model equations is a method that can help a researcher
get at the mechanism for an observed effect, as opposed to using a statistical model. A
statistical model tells us whether variables are related but it does not propose a mecha-
nism for understanding this relationship. For example, we may find that socioeconomic
status is related to divorce prediction, but we will have no insight from this fact as to



172 5. Modelling the Dynamics of Marital Interaction

how this effect may operate as a mechanism to explain marital dissolution. The differ-
ence equation model approach here is able to suggest a theoretical and mathematical
language for such a theory of mechanism. The mathematical model differs fundamen-
tally from a statistical model in presenting an equation linking a particular husband and
wife over time, instead of a representation of husbands and wives, aggregated across
couples as well as time.

The use of the sigmoidal influence function is a next step in developing the model.
To accomplish this next step we need to use an observational system that provides much
more data than the RCISS. Gottman (1994) found that the Specific Affect Coding Sys-
tem (SPAFF) is highly correlated with the RCISS speaker slopes, and the advantages
of the SPAFF are that the couple’s interaction can be coded online in real time, without
a transcript, and the data are summarised second-by-second instead of at each turn of
speech; thus the SPAFF will make it possible to obtain much more data for each couple.
With the sigmoidal influence function, there is the possibility of 5 steady states (five
intersection points for the null clines), 3 of which are stable. The possible existence
of more than one stable steady state for a given couple can be inferred from their data
once we have written down the model. This means that we can describe the couple’s
behaviour even in conditions in which they have not been observed in our study. So, the
model can be used to create simulations of that couple’s interaction that go beyond our
data.

By varying parameters slightly we can even make predictions of what will happen
to this couple if we could change specific aspects of their interaction, which is a sort
of quantitative thought experiment of what is possible for this particular couple. We are
currently using this approach in a series of specific intervention experiments designed to
change a couple’s second interaction about a particular issue. The model can be derived
from the couple’s first interaction in the laboratory, and the intervention designed to
change a model parameter (whether it does or not could be assessed). Coupled with an
experimental approach, we can test whether the mechanism for change described by the
model is accurate by seeing if the model’s predictions of what would happen when a
model parameter changed is accurate. In this way the model can be tested and expanded
by an interplay of modelling and experimentation.

The qualitative assumptions that form the underpinnings of this effort are also laid
bare by the process. For example, the choice of the shape of the influence functions can
be modified with considerable effect on the model. Following our qualitative approach,
subsequent correlational data can quantitatively test the theory. This can proceed in two
ways: the influence functions can be specified in functional (mathematical or graphi-
cal) form; and the equations themselves can be made progressively more complex, as
needed. To date our empirical fitting of this has suggested that the sigmoidal form would
best fit the data.

One simple way we suggest changing the equations is to assume that the parameters
are not fixed constants, but instead are functions of other more fundamental theoretical
variables. In the Gottman–Levenson paradigm there are two central classes of variables
we wish to consider. The first class of variables indexes the couple’s physiology, and
the second class of variables indexes the couple’s perception of the interaction derived
from our video recall procedure. We expect that physiological measures that are indica-
tive of diffuse physiological arousal (Gottman 1990) will relate to less ability to process
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information, less ability to listen, and greater reliance on behaviours that are more es-
tablished in the repertoire in upsetting situations (for example, fight or flight). Hence,
it seems reasonable to predict that measures indicative of more diffuse physiological
arousal may predict more emotional inertia. Similarly, we expect that a negative per-
ception of the interaction would go along with feeling flooded by the negative affect
(see Gottman 1993) and negative attributions (see Fincham et al. 1990) of one’s partner.
Hence, it seems reasonable to predict that variables related to the video recall rating dial
would predict the uninfluenced steady state. If someone has an interaction with their
spouse that one rates negatively, the next interaction may be characterized by a slightly
less positive uninfluenced steady state. The uninfluenced steady state, to some extent,
may index the cumulative effects of the marital balance of positivity over negativity, in-
tegrated over time. There is also the possibility that the uninfluenced steady state might
best be understood by an integration of personality traits with marital interaction pat-
terns.

It is interesting to note that the model is, in some ways, rather grim. Depending
on the parameters, the initial conditions determine the eventual slope of the cumulative
RCISS curves. Unfortunately, this is essentially true of most of our data. However, an-
other way the model can be developed further is to note that a number of couples began
their interaction by starting negatively but then changed the nature of their interaction
to a positively sloping cumulative RCISS point graph; their cumulative graph looked
somewhat like a check mark. This was quite rare (characterizing only 4% of the sam-
ple), but it did characterize about 14% of the couples for at least part of their interaction.
This more optimistic type of curve suggests adding to the model the possibility of repair
of the interaction once it has passed some threshold of negativity. This addition could
be incorporated by changing the influence function so that its basic sigmoidal shape had
the possibility of a repair jolt (or perhaps ‘repair nudge’ would be closer to the data) in
the negative parts of the horizontal axis of Figure 5.2. The size of the repair jolts would
add two other parameters to the model, each of which would have to be estimated from
the data. The jolt would, however, have to be quite sizable to bring the couple far enough
away from the zero stable steady state and toward the more positive stable steady state,
that is, move from one basin of attraction to another. We might also then inquire as to
what the correlates are of these repair jolts. This process would suggest some strength in
the marriage that could be explored further; Gottman et al. (2002) discuss this in detail.

Finally, the potential precision of the equations suggests experiments in which only
one parameter is altered and the effect of the experiment is assessed, thus refining the
equation and potentially revealing the structure of the interaction itself. Here is how this
would work. After a baseline marital interaction, a standard report based on the obser-
vational data would be used to compute the parameters of the model and the influence
function. Then, an experiment could be done that changes one variable presumed to be
related to the model parameters. For example, we would have participants either relax
and lower their heart rates, or bicycle until their heart rates increased to 125 beats per
minute; then they would have a second interaction, and the model parameters would
be recomputed. Order could be counterbalanced. The experiment could reveal the func-
tional relationship between heart rate and the inertia parameter. What is perhaps even
more exciting is that the modelling process leads us naturally to design experiments.
We think that this is so because we are modelling the mechanism. We are building a
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theory and the theory naturally suggests experiments. Hopefully the experiments will
help build the theory. So the process involves both the mathematics and the laboratory,
and that is a new approach in the field of family psychology.

We plan to build this model in subsequent studies by continuous coding that would
provide more reliable data for each individual couple, and more of them. This would
also make it possible to move perhaps from difference to differential equations. The time
delay (we used a delay of one time unit in this model) would then become a parameter
for each couple; time delays, as we know, in differential equations are capable of gener-
ating periodic solutions of considerable complexity. The experiments we are conducting
make simulations and subsequent tests of the model possible. What would happen, for
example, if we successfully lowered only the couple’s heart rate, and thus lowered their
emotional inertia? Would other parameters of the model change? Would the influence
functions change shape? Another development we plan is to study the newlywed cou-
ple’s transition to parenthood, and the effects of the marital conflict on the developing
family. When the baby is three-months old we will attempt to model triadic interaction
with three equations, perhaps estimating key parameters from the dyadic marital inter-
action. A system of three nonlinear equations is capable of modelling many complex
patterns, including chaos.

The mathematical approach to such basic psychological problems and human re-
lations that we have discussed in this chapter is completely new and very much in the
developmental stage. Some of the extensions just mentioned are discussed more fully to-
gether with other applications in the field of marital interaction in the book by Gottman
et al. (2002). Perhaps the most encouraging aspect of this whole theoretical approach
is that key elements of it have already been incoroporated in some clinical marital ther-
apies with highly encouraging results (Dr. John M. Gottman, personal communication
2000).



6. Reaction Kinetics

6.1 Enzyme Kinetics: Basic Enzyme Reaction

Biochemical reactions are continually taking place in all living organisms and most of
them involve proteins called enzymes, which act as remarkably efficient catalysts. En-
zymes react selectively on definite compounds called substrates. For example, haemo-
globin in red blood cells is an enzyme and oxygen, with which it combines, is a
substrate. Enzymes are important in regulating biological processes, for example, as
activators or inhibitors in a reaction. To understand their role we have to study enzyme
kinetics which is mainly the study of rates of reactions, the temporal behaviour of the
various reactants and the conditions which influence them. Introductions with a math-
ematical bent are given in the books by Rubinow (1975), Murray (1977) and the one
edited by Segel (1980). Biochemically oriented books, such as Laidler and Bunting
(1977) and Roberts (1977), go into the subject in more depth.

The complexity of biological and biochemical processes is such that the develop-
ment of a simplifying model is often essential in trying to understand the phenomenon
under consideration. For such models we should use reaction mechanisms which are
plausible biochemically. Frequently the first model to be studied may itself be a model
of a more realistic, but still too complicated, biochemical model. Models of models
are often first steps since it is a qualitative understanding that we want initially. In this
chapter we discuss some model reaction mechanisms, which mirror a large number of
real reactions, and some general types of reaction phenomena and their corresponding
mathematical realisations; a knowledge of these is essential when constructing models
to reflect specific known biochemical properties of a mechanism.

Basic Enzyme Reaction

One of the most basic enzymatic reactions, first proposed by Michaelis and Menten
(1913), involves a substrate S reacting with an enzyme E to form a complex SE which
in turn is converted into a product P and the enzyme. We represent this schematically
by

S + E
k1�

k−1
SE

k2→ P + E . (6.1)

Here k1, k−1 and k2 are constant parameters associated with the rates of reaction; they
are defined below. The double arrow symbol � indicates that the reaction is reversible
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while the single arrow → indicates that the reaction can go only one way. The overall
mechanism is a conversion of the substrate S, via the enzyme catalyst E , into a product
P . In detail it says that one molecule of S combines with one molecule of E to form
one of SE , which eventually produces one molecule of P and one molecule of E again.

The Law of Mass Action says that the rate of a reaction is proportional to the product
of the concentrations of the reactants. We denote the concentrations of the reactants in
(6.1) by lowercase letters

s = [S], e = [E], c = [SE], p = [P], (6.2)

where [ ] traditionally denotes concentration. Then the Law of Mass Action applied to
(6.1) leads to one equation for each reactant and hence the system of nonlinear reaction
equations

ds

dt
= −k1es + k−1c,

de

dt
= −k1es + (k−1 + k2)c

dc

dt
= k1es − (k−1 + k2)c,

dp

dt
= k2c.

(6.3)

The k’s, called rate constants, are constants of proportionality in the application of the
Law of Mass Action. For example, the first equation for s is simply the statement that
the rate of change of the concentration [S] is made up of a loss rate proportional to
[S][E] and a gain rate proportional to [SE].

To complete the mathematical formulation we require initial conditions which we
take here as those at the start of the process which converts S to P , so

s(0) = s0, e(0) = e0, c(0) = 0, p(0) = 0. (6.4)

The solutions of (6.3) with (6.4) then give the concentrations, and hence the rates
of the reactions, as functions of time. Of course in any reaction kinetics problem we are
only concerned with nonnegative concentrations.

The last equation in (6.3) is uncoupled from the first three; it gives the product

p(t) = k2

∫ t

0
c(t ′) dt ′, (6.5)

once c(t) has been determined, so we need only be concerned (analytically) with the
first three equations in (6.3).

In the mechanism (6.1) the enzyme E is a catalyst, which only facilitates the reac-
tion, so its total concentration, free plus combined, is a constant. This conservation law
for the enzyme also comes immediately from (6.3) on adding the 2nd and 3rd equations,
those for the free (e) and combined (c) enzyme concentrations respectively, to get

de

dt
+ dc

dt
= 0 ⇒ e(t) + c(t) = e0 (6.6)
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on using the initial conditions (6.4). With this, the system of ordinary differential equa-
tions reduces to only two, for s and c, namely,

ds

dt
= −k1e0s + (k1s + k−1)c,

dc

dt
= k1e0s − (k1s + k−1 + k2)c,

(6.7)

with initial conditions

s(0) = s0, c(0) = 0. (6.8)

The usual approach to these equations is to assume that the initial stage of the
complex, c, formation is very fast after which it is essentially at equilibrium, that is,
dc/dt ≈ 0 in which case from the second of (6.7) we get c in terms of s,

c(t) = e0s(t)

s(t) + Km
, Km = k−1 + k2

k1
(6.9)

which on substituting into the first of (6.7) gives

ds

dt
= − k2e0s

s + Km
, (6.10)

where Km is called the Michaelis constant. Since the enzyme is traditionally considered
to be present in small amounts compared with the substrate the assumption is that the
substrate concentration effectively does not change during this initial transient stage. In
this case the (approximate) dynamics is governed by (6.10) with the initial condition
s = s0. This is known as the pseudo- or quasi-steady state approximation. Solving
(6.10) with the initial condition on s(t) we obtain an implicit solution; namely,

s(t) + Km ln s(t) = s0 + Km ln s0. (6.11)

If we now substitute this into (6.9) we get an expression for the complex c(t). But this
does not satisfy the initial condition on c(t) in (6.8). However, perhaps it is a reasonable
approximation for most of the time; this is the belief in the usual application of this
approach. In fact for many experimental situations it is sufficient, but crucially not al-
ways. There are in fact two timescales involved in this system: one is the initial transient
timescale near t = 0 and the other is the longer timescale when the substrate changes
significantly during which the enzyme complex is reasonably approximated by (6.9)
with s(t) from (6.11). This basic reasoning raises several important questions such as
(i) how fast is the initial transient; (ii) for what range of the parameters is the approxi-
mation (6.9) and (6.11) a sufficiently good one; (iii) if the enzyme concentration is not
small compared with the substrate concentration, how do we deal with it?

Other questions arise, and are also dealt with, later. As a first step we must clearly
nondimensionalise the system. There are several ways this can be done, of course. A key
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dimensionless quantity is the time since the basic assumptions above depend on how
short the transient period is. The standard way of doing the quasi-steady state analysis
is to introduce dimensionless quantitites

τ = k1e0t, u(τ ) = s(t)

s0
, v(τ ) = c(t)

e0
,

λ = k2

k1s0
, K = k−1 + k2

k1s0
= Km

s0
, ε = e0

s0

(6.12)

which is a reasonable nondimensionalisation if ε � 1. Substituting these into (6.7)
together with (6.8) gives the dimensionless system for the traditional quasi-steady state
approximation

du

dτ
= −u + (u + K − λ)v, ε

dv

dτ
= u − (u + K )v

u(0) = 1, v(0) = 0.

(6.13)

Note that K − λ > 0 from (6.12). With the solutions u(τ ), v(τ) we then immediately
get e and p from (6.6) and (6.5) respectively.

From the original reaction (6.1), which converts S into a product P , we clearly
have the final steady state u = 0 and v = 0; that is, both the substrate and the substrate–
enzyme complex concentrations are zero. We are interested here in the time evolution of
the reaction so we need the solutions of the nonlinear system (6.13), which we cannot
solve analytically in a simple closed form. However, we can see what u(τ ) and v(τ)

look like qualitatively. Near τ = 0, du/dτ < 0 so u decreases from u = 1 and since
there dv/dτ > 0, v increases from v = 0 and continues to do so until v = u/(u + K ),
where dv/dτ = 0 at which point, from the first of (6.13), u is still decreasing. After
v has reached a maximum it then decreases ultimately to zero as does u, which does
so monotonically for all t . The dimensional enzyme concentration e(t) first decreases
from e0 and then increases again to e0 as t → ∞. Typical solutions are illustrated
in Figure 6.1 below. Quite often a qualitative feel for the solution behaviour can be
obtained from just looking at the equations; it is always profitable to try.

6.2 Transient Time Estimates and Nondimensionalisation

It is widespread in biology that the remarkable catalytic effectiveness of enzymes is
reflected in the small concentrations needed in their reactions as compared with the
concentrations of the substrates involved. In the Michaelis–Menten model in dimen-
sionless form (6.13) this means ε = e0/s0 � 1. However, as mentioned above, it is not
always the case that e0/s0 � 1. Segel (1988) and Segel and Slemrod (1989) extended
the traditional analysis with a new nondimensionalisation which includes this case but
which also covers the situation where e0/s0 = O(1). It is their analysis which we now
describe.

We first need estimates for the two timescales, the fast transient, tc, and the longer,
or slow, time, ts , during which s(t) changes significantly. During the initial transient the
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complex c(t) increases rapidly while s(t) does not change appreciably so an estimate
of this fast timescale is obtained from the second of (6.7) with s(t) = s0, that is,

dc

dt
= k1e0s0 − k1(s0 + Km)c. (6.14)

The solution involves an exponential, the timescale of which is

tc = 1

k1(s0 + Km)
. (6.15)

To estimate the long timescale, ts , in which s(t) changes significantly we take the
maximum change possible in the substrate, namely, s0, divided by the size of the maxi-
mum rate of change of s(t) given by setting s = s0 in (6.10). So,

ts ≈ s0∣∣ ds
dt

∣∣
max

≈ s0 + Km

k2s0
. (6.16)

One assumption on which the quasi-steady state approximation is valid is that the
fast initial transient time is much smaller than the long timescale when s(t) changes
noticeably which means that necessarily tc � ts . With the expressions (6.15) and (6.16),
this requires the parameters to satisfy

k2e0

k1(s0 + Km)2
� 1. (6.17)

Another requirement of the quasi-steady state approximation is that the initial condi-
tion for s(t) can be taken as the first of (6.8). This means that the substrate depletion
�s(t) during the fast transient is only a small fraction of s0; that is, |�s/s0 | � 1. An
overestimate of �s(t) is given by the maximum rate of depletion possible from the first
of (6.7), which is k1e0s0 multiplied by tc. So, dividing this by s0 gives the following
requirement on the parameters,

ε = e0

s0 + Km
� 1. (6.18)

But condition (6.17), with Km from (6.9), can be written as

e0

s0 + Km
· 1

1 + (k−1/k2) + (s0k1/k2)
� 1 (6.19)

so the condition in (6.18) is more restrictive than (6.19) which is therefore the condition
that guarantees the quasi-steady state approximation. With this condition we see that
even if e0/s0 = O(1), condition (6.19) can still be satisfied if Km is large as is actually
the case in many reactions.

Since the nondimensionalisation depends crucially on the timescale we are focus-
ing on, we have two timescales, tc and ts , from which we can choose. Which we use
depends on where we want the solution: with tc we are looking at the region near t = 0
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while with ts we are interested in the long timescale during which s(t) changes signifi-
cantly. A problem which involves two such timescales is generally a singular pertuba-
tion problem for which there are standard techniques (see, for example, the small book
by Murray 1984). We carry out, in detail, the singular pertubation analysis for such a
problem in the following section.

If we use the fast transient timescale tc from (6.15) we introduce the following
nondimensional variables and parameters,

u(τ ) = s(t)

s0
, v(τ ) = (s0 + Km)c(t)

e0s0
, τ = t

tc
= k1(s0 + Km)t,

Km = k−1 + k2

k1
, ρ = k−1

k2
, σ = s0

Km
, ε = e0

s0 + Km

(6.20)

which on substituting into (6.7) and (6.8) give

du

dτ
= ε

[
−u + σ

1 + σ
uv + ρ

(1 + σ)(1 + ρ)
v

]

dv

dτ
= u − σ

1 + σ
uv − v

1 + σ

u(0) = 1, v(0) = 0.

(6.21)

With the long or slow timescale, ts , we nondimensionalise the time by writing

T = (1 + ρ)t/ts = (1 + ρ)k2e0

s0 + Km
t = ε(1 + ρ)k2t. (6.22)

The reason for the scale factor (1 + ρ) is simply for algebraic simplicity. With the
dimensionless forms in (6.20) but with the dimensionless time T from the last equation,
the model equations (6.7) become

du

dT
= −(1 + σ)u + σuv + ρ

1 + ρ
v,

ε
dv

dT
= (1 + σ)u − σuv − v.

(6.23)

We should keep in mind that the system we are investigating is (6.7). The three
equation systems (6.13), (6.21) and (6.23) are exactly the same; they only differ in the
way we nondimensionalised them, important though that is. They both have the small
parameter, ε, but it appears in the equations in a different place. Where a small parameter
appears determines the analytical procedure we use. We discuss a specific example in
the next section and introduce asymptotic, or singular perturbation, techniques. These
very powerful techniques provide a uniformly valid approximate solution for all time
which is a remarkably good approximation to the exact solution of the system.

Before leaving the topic of nondimensionalisation it is relevant to ask what we must
do if the enzyme is in excess such that ε in (6.20) is not small. This occurs in various
enzyme reactions but also arises in a quite different situation involving T-cell prolif-
eration in response to an antigen. This was studied by De Boer and Perelson (1994).
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Here the ‘substrate’ is a replicating cell, the ‘enzyme’ the site on the antigen-presenting
cell and the ‘complex’ is the bound T-cell and antigen-presenting cell. The kinetics is
represented by

E + S
k1�

k−1
C

k2→ E + 2S.

Borghans et al. (1996) investigated this reaction system in which the enzyme is in excess
and extended the above analysis to obtain a uniformly valid asymptotic solution. They
did this by replacing the substrate, s-equation in (6.7) by the equation for the total
substrate,

s̄(t) = s(t) + c(t)

which is given by adding the first and third equations in (6.3). The system they studied
is this equation for s̄(t) and the third of (6.3) written in terms of c and s̄, together with
the boundary conditions. It is

ds̄

dt
= −k2c,

dc

dt
= k1 [(e0 − c)(s̄ − c) − Kmc] , s̄(0) = s0, c(0) = 0.

The analysis is a little more involved but the concepts are similar. They derive condi-
tions for an equivalent quasi-steady state approximation and discuss several examples
including a general class of predator–prey models.

6.3 Michaelis–Menten Quasi-Steady State Analysis

Here we carry out a singular perturbation analysis on one of the above possible dimen-
sionless equation systems. The technique can be used on any of them but to be specific
we carry out the detailed pedagogical analysis on (6.13) to explain the background rea-
soning for the technique and show how to use it. We thereby obtain a very accurate
approximate, or rather asymptotic, solution to (6.13) for 0 < ε � 1. Before doing this
we should reiterate that the specific nondimensionalisation (6.12) is only one of several
we could choose. In the following section we analyse a system, a somewhat more com-
plex one, which arises in a class of practical enzyme reactions using the more general
formulation, since there, e0/s0 is not small but Km is sufficiently large that ε as defined
in (6.20) is small. Another practical reaction in which it is the large Michaelis constant
Km which makes 0 < ε � 1 was studied by Frenzen and Maini (1988), who used the
same type of analysis we discuss in the case study in Section 6.4.

Let us consider then the system (6.13). Suppose we simply look for a regular Taylor
expansion solution to u and v in the form

u(τ ; ε) =
∑

n=0

εnun(τ ), v(τ ; ε) =
∑

n=0

εnvn(τ ), (6.24)

which, on substituting into (6.13) and equating powers of ε, gives a sequence of dif-
ferential equations for the un(τ ) and vn(τ ). In other words we assume that u(τ ; ε) and
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v(τ ; ε) are analytic functions of ε as ε → 0. The O(1) equations are

du0

dτ
= −u0 + (u0 + K − λ)v0, 0 = u0 − (u0 + K )v0,

u0(0) = 1, v0(0) = 0.

(6.25)

We can already see a difficulty with this approach since the second equation is simply
algebraic and does not satisfy the initial condition; in fact if u0 = 1, v0 = 1/(1 + K ) �=
0. If we solve (6.25)

v0 = u0

u0 + K
⇒ du0

dτ
= −u0 + (u0 + K − λ)

u0

u0 + K
= −λ

u0

u0 + K

and so

u0(τ ) + K ln u0(τ ) = A − λτ,

which is the same as (6.11). If we require u0(0) = 1 then A = 1. Thus we have a
solution u0(τ ), given implicitly, and the corresponding v0(τ ),

u0(τ ) + K ln u0(τ ) = 1 − λτ, v0(τ ) = u0(τ )

u0(τ ) + K
, (6.26)

which is the same as the solution (6.9). However, this solution is not a uniformly valid
approximate solution for all τ ≥ 0 since v0(0) �= 0. This is not surprising since (6.25)
involves only one derivative; it was obtained on setting ε = 0 in (6.13). The system of
equations (6.25) has only one constant of integration from the u-equation so it is not
surprising that we cannot satisfy initial conditions on both u0 and v0.

The fact that a small parameter 0 < ε � 1 multiplies a derivative in (6.13) indicates
that it is a singular perturbation problem. One class of such problems is immediately
recognised if, on setting ε = 0, the order of the system of differential equations is
reduced; such a reduced system cannot in general satisfy all the initial conditions. Sin-
gular perturbation techniques are very important and powerful methods for determining
asymptotic solutions of such systems of equations for small ε. Asymptotic solutions are
usually remarkably accurate approximations to the exact solutions. A practical and ele-
mentary discussion of some of the key techniques is given in Murray’s (1984) book on
asymptotic analysis. In the following, the philosophy and actual technique of the singu-
lar perturbation method is described in detail and the asymptotic solution to (6.13) for
0 < ε � 1 derived. The main reason for doing this is to indicate when we can neglect
the ε-terms in practical situations.

Since the solution (6.26), specifically v0(τ ), does not satisfy the initial conditions
(and inclusion of higher-order terms in ε cannot remedy the problem) we must conclude
that at least one of the solutions u(τ ; ε) and v(τ ; ε) is not an analytic function of ε as
ε → 0. By assuming εdv/dτ is O(e) to get (6.25) we tacitly assumed v(τ ; ε) to be
analytic; (6.24) also requires analyticity of course. Since the initial condition v(0) = 0
could not be satisfied because we neglected εdv/dτ we must therefore retain this term
in our analysis, at least near τ = 0. So, a more appropriate timescale near τ = 0 is
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σ = τ/ε rather than τ ; this makes εdv/dτ = dv/dσ . The effect of the transformation
σ = τ/ε is to magnify the neighbourhood of τ = 0 and let us look at this region more
closely since, for a fixed 0 < τ � 1, we have σ 
 1 as ε → 0. That is, a very small
neighbourhood near τ = 0 corresponds to a very large domain in σ . We now use this to
analyse (6.13) near τ = 0, after which we shall get the solution away from τ = 0 and
finally show how to get a uniformly valid solution for all τ ≥ 0.

With the transformations

σ = τ

ε
, u(τ ; ε) = U(σ ; ε), v(τ ; ε) = V (σ ; ε) (6.27)

the equations in (6.13) become

dU

dσ
= −εU + ε(U + K − λ)V,

dV

dσ
= U − (U + K )V,

U(0) = 1, V (0) = 0.

(6.28)

If we now set ε = 0 to get the O(1) system in a regular perturbation solution

U(σ ; ε) =
∑

n=0

εnUn(σ ), V (σ ; ε) =
∑

n=0

εn Vn(σ ), (6.29)

we get

dU0

dσ
= 0,

dV0

dσ
= U0 − (U0 + K )V0,

U0(0) = 1, V0(0) = 0
(6.30)

which is not of lower order than the original system (6.28). The solution of (6.30) is

U0(σ ) = 1, V0(σ ) = 1

1 + K
(1 − exp [−(1 + K )σ ]). (6.31)

The last solution cannot be expected to hold for all τ ≥ 0, since if it did it would mean
that dv/dσ = εdv/dτ is O(1) for all τ . The part of the solution given by (6.31) is
the singular or inner solution for u and v and is valid for 0 ≤ τ � 1, while (6.26) is
the nonsingular or outer solution valid for all τ not in the immediate neighbourhood of
τ = 0. If we now let ε → 0 we have for a fixed 0 < τ � 1, however small, σ → ∞.
Thus in the limit of ε → 0 we expect the solution (6.26) as τ → 0 to be equal to
the solution (6.31) as σ → ∞; that is, the singular solution as σ → ∞ matches the
nonsingular solution as τ → 0. This is the essence of matching in singular perturbation
theory. From (6.31) and (6.26) we see in fact that

lim
σ→∞[U0(σ ), V0(σ )] =

[
1,

1

1 + K

]
= lim

τ→0
[u0(τ ), v0(τ )].

Figure 6.1 illustrates the solution u(τ ) and v(τ), together with the dimensionless en-
zyme concentration e/e0 given by the dimensionless form of (6.6); namely, e/e0 =



184 6. Reaction Kinetics

Figure 6.1. Schematic behaviour of the
solutions of (6.13) for the dimensionless
substrate (u), substrate–enzyme complex
(v) and free enzyme (e/e0 = 1 − v)

concentrations as functions of the time τ .

1 − v(τ). The thin O(ε) layer near τ = 0 is sometimes called the boundary layer and
is the τ -domain where there are very rapid changes in the solution. Here, from (6.31),

dV

dτ

]

τ=0
∼ ε−1 dV0

dσ

]

σ=0
= ε−1 
 1.

Of course from the original system (6.13) we can see this from the second equation and
the boundary conditions.

To proceed in a systematic singular perturbation way, we first look for the outer
solution of the full system (6.13) in the form of a regular series expansion (6.24). The
sequence of equations is then

O(1) : du0

dτ
= −u0 + (u0 + K − λ)v0, 0 = u0 − (u0 + K )v0,

O(ε) :
du1

dτ
= u1(v0 − 1) + (u0 + K − λ)v1,

dv0

dτ
= u1(1 − v0) − (u0 + K )v1,

(6.32)

which are valid for τ > 0. The solutions involve undetermined constants of integration,
one at each order, which have to be determined by matching these solutions as τ → 0
with the singular solutions as σ → ∞.

The sequence of equations for the singular part of the solution, valid for 0 ≤ τ � 1,
is given on substituting (6.29) into (6.28) and equating powers of ε; namely,

O(1) : dU0

dσ
= 0

dV0

dσ
= U0 − (U0 + K )V0,

O(ε) :
dU1

dσ
= −U0 + (V0 + K − λ)V0,

dV1

dσ
= (1 − V0)U1 − (V0 + K )V1,

(6.33)

and so on. The solutions of these must satisfy the initial conditions at σ = 0; that is,
τ = 0,
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1 = U(0; ε) =
∑

n=0

εnUn(0) ⇒ U0(0) = 1, Un≥1(0) = 0,

0 = V (0; ε) =
∑

n=0

εn Vn(0) ⇒ Vn≥0(0) = 0.
(6.34)

In this case the singular solutions of (6.33) are determined completely. This is not gener-
ally the case in singular perturbation problems (see, for example, Murray 1984). Match-
ing of the inner and outer solutions requires choosing the undetermined constants of
integration in the solutions of (6.32) so that to all orders of ε,

lim
σ→∞[U(σ ; ε), V (σ ; ε)] = lim

τ→0
[u(τ ; ε), v(τ ; ε)]. (6.35)

Formally from (6.32), but as we had before,

u0(τ ) + K ln u0(τ ) = A − λτ, v0(τ ) = u0(τ )

u0(τ ) + K
,

where A is the constant of integration we must determine by matching. The solution of
the first of (6.33) with (6.34) has, of course, been given before in (6.31). We get it now
by applying the limiting process (6.35) to (6.31) and the last equations

lim
σ→∞ V0(σ ) = 1

1 + K
= lim

τ→0
v0(τ )

⇒ v0(0) = 1

1 + K
= u0(0)

u0(0) + K

⇒ u0(0) = 1 ⇒ A = 1.

We thus get the uniformly valid asymptotic solution for 0 < ε � 1 to O(1), derived
heuristically before and given by (6.26) for τ > 0 and (6.31) for 0 < τ � 1, although
the singular part of the solution is more naturally expressed in terms of 0 ≤ τ/ε < ∞.

We can now proceed to calculate U1(σ ) and V1(σ ) from (6.33) and u1(τ ) and v1(τ )

from (6.32) and so on to any order in ε; the solutions become progressively more com-
plicated even though all the equations are linear. In this way we get a uniformly valid
asymptotic solution for 0 < ε � 1 for all τ ≥ 0 of the nonlinear kinetics represented
by (6.13). In summary, to O(1) for small ε,

u(τ ; ε) = u0(τ ) + O(ε), u0(τ ) + K ln u0(τ ) = 1 − λτ,

v(τ ; ε) = V0(σ ) + O(ε), V0(σ ) = 1

1 + K

(
1 − exp

[
−(1 + K )

τ

ε

])
,

0 < τ � 1;
= v0(τ ) + O(ε), v0(τ ) = u0(τ )

u0(τ ) + K
, 0 < ε � τ.

(6.36)
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Since in most biological applications 0 < ε � 1, we need only evaluate the O(1) terms:
the O(ε) terms’ contributions are negligible.

To complete the analysis of the original kinetics problem (6.3) with (6.4), if we
write the dimensionless product and free enzyme concentrations as

z(τ ) = p(t)

s0
, w(τ) = e(t)

e0

then, using (6.36) for u and v, (6.5) and (6.6) give

z(τ ) = λ

∫ τ

0
v(τ ′) dτ ′, w(τ) = 1 − v(τ).

The rapid change in the substrate–enzyme complex v(τ ; ε) takes place in dimen-
sionless times τ = O(ε) which is very small. The equivalent dimensional time t is also
very short, O(1/k1s0) in fact, and for many experimental situations is not measurable.
Thus in many experiments the singular solution for u(τ ) and v(τ) is never observed.
The relevant solution is then the O(1) outer solution u0(τ ), v0(τ ) in (6.26), obtained
from the kinetics system (6.13) on setting ε = 0 and satisfying only the initial condi-
tion on u(τ ), the substrate concentration. In other words we say that the reaction for the
complex v(τ) is essentially in a steady state, or mathematically that εdv/dτ ≈ 0. That
is, the v-reaction is so fast it is more or less in equilibrium at all times. This is the usual
Michaelis and Menten’s pseudo- or quasi-steady state hypothesis.

The form of (6.13) is generally like

du

dτ
= f (u, v),

dv

dτ
= ε−1g(u, v), 0 < ε � 1, (6.37)

which immediately shows that dv/dτ 
 1 if g(u, v) is not approximately equal to zero.
So the v-reaction is very fast compared with the u-reaction. The v-reaction reaches a
quasi-steady state very quickly, which means that for times τ = O(1) it is essentially at
equilibrium and the model mechanism is then approximated by

du

dτ
= f (u, v), g(u, v) = 0, u(0) = 1. (6.38)

If we solve the algebraic equation g(u, v) = 0 to get v = h(u) then

du

dτ
= f (u, h(u)), (6.39)

which is the rate or uptake equation for the substrate concentration. Much model-
ling of biological processes hinges on qualitative assumptions for the uptake function
f (u, h(u)).

What is of interest biologically is the rate of reaction, or the rate of uptake; that is,
du/dτ when u(τ ) has been found. It is usually determined experimentally by measuring
the dimensional substrate concentration s(t) at various times, then extrapolating back
to t = 0, and the magnitude r of the initial rate [ds/dt]t=0 calculated. Since the time
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measurements are almost always for τ 
 ε, that is, t 
 1/k1s0, which is usually of
the order of seconds, the equivalent analytical rate is given by the nonsingular or outer
solution. Thus, from the first of (6.36) the O(1) solution with 0 < ε � 1 for the rate r ,
r0 say, is

r0 =
[

du0(τ )

dτ

]

τ=0
= λ

u0(0)

u0(0) + Km
= λ

1 + K
. (6.40)

In dimensional terms, using (6.12), the O(1) rate of reaction R0 is

R0 = k2e0s0

s0 + Km
= Qs0

s0 + Km
, Km = k−1 + k2

k1
, Q = [R0]max = k2e0, (6.41)

where Q is the maximum velocity, or rate, of the reaction and Km is the Michaelis
constant of (6.9). This rate, based on the pseudo-steady state hypothesis, is what is
usually wanted from a biological point of view. From (6.13), the exact initial rate for
the substrate is [du/dτ ]τ=0 = −1 while for the complex it is [dv/dτ ]τ=0 = 1/ε.

When the uptake of a substrate, or whatever, is described as a Michaelis–Menten
uptake, what is understood is a rate of reaction like (6.41) and which is illustrated in
Figure 6.2. The rate of reaction, which in fact varies with time, is the magnitude of ds/dt
from the outer solution du0/dτ and written in dimensional form. Thus the (Michaelis–
Menten) uptake of S is governed by the equation

ds

dt
= − Qs

Km + s
. (6.42)

This is simply the dimensional form of (6.39) (and the same as (6.10)) on carrying
out the algebra for f (u, v), g(u, v) in (6.38), with (6.13) defining them. For s � Km
the uptake is linear in s; the right-hand side of (6.42) is approximately −Qs/Km . The
maximum rate Q = k2e0, from (6.41), depends on the rate constant k2 of the product
reaction SE → P + E ; this is called the rate limiting step in the reaction mechanism
(6.1).

Useful and important as the quasi-steady state hypothesis is, something is lost by
assuming εdv/dt is negligible in (6.13) and by applying experimental results to a theory
which cannot satisfy all the initial conditions. What can be determined, using experi-

Figure 6.2. Michaelis–Menten rate of uptake
R0 = Qs0/(Km + s0) as a function of the
substrate concentration s0: Q is the maximum
rate and Km is the Michaelis constant.
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mental results with a Michaelis–Menten theory, is a curve such as in Figure 6.2, which
gives values for the maximum rate Q and the Michaelis constant Km . This does not
determine all three rate constants k1, k−1 and k2, only k2 and a relationship between
them all. To determine all of them, measurements for τ = O(ε) would be required.
Usually, however, the rate of uptake from the quasi-steady state hypothesis, that is, a
Michaelis–Menten theory, is all that is required.

6.4 Suicide Substrate Kinetics
An enzyme system of considerable experimental interest (see, for example, Seiler et
al. 1978, Walsh 1984) is the mechanism-based inhibitor, or suicide substrate system,
represented by Walsh et al. (1978),

E + S
k1�

k−1
X

k2→ Y
k3→ E + P,

�k4

Ei

(6.43)

where E , S and P denote enzyme, substrate and product, respectively, X and Y enzyme–
substrate intermediates, Ei inactivated enzyme, and the k’s are positive rate constants.
In this system, Y can follow one of two pathways, namely, to E + P with rate k3 or to Ei
with rate k4. The ratio of these rates, k3/k4, is called the partition ratio and is denoted
by r . Both of these pathways are considered to be irreversible over the timescale of the
reaction (Waley 1980). S is known as a suicide substrate because it binds to the active
site of an enzyme—like a substrate—but the enzyme converts it into an inhibitor which
irreversibly inactivates the enzyme. Thus, the enzyme ‘commits suicide.’

Suicide substrates are important because they provide a way to target a specific en-
zyme for inactivation. They are especially useful in drug administration, since they are
not harmful in their common form and only the designated enzyme can convert them to
their inhibitor form. For example, suicide substrates have been investigated for use in
the treatment of depression (monoamine oxidase inhibitors, Seiler et al. 1978), epilepsy
(brain GABA transaminase inhibitors, Walsh 1984), and some tumors (ornithine decar-
boxylase inhibitors, Seiler et al. 1978).

Suicide substrate kinetics have been considered by Waley (1980) and by Tatsunami
et al. (1981), who were interested in the factor which determined whether the substrate
was exhausted before all the enzyme was inactivated. Waley suggested it was rµ, where
µ is the ratio of the initial concentration of enzyme to that of substrate, namely, e0/s0,
our ε in (6.12). Tatsunami et al. (1981), on the other hand, found the determining factor
to be (1+r)µ. When (1+r)µ > 1 the substrate is exhausted, while for (1+r)µ < 1, all
the enzyme is inactivated. When (1 + r)µ = 1, both occur. An in depth analysis using
singular perturbation analysis is given by Burke et al. (1990). It is their analysis we fol-
low below. The interest is when e0/s0 is not small, which was in effect assumed since
both Waley (1980) and Tatsunami et al. (1981) used a quasi-steady state approxima-
tion. From our experience above, the validity decreases for increasing values of e0/s0.
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Duggleby (1986) pointed out that in fact e0/s0 is not small. So, we must use a singular
perturbation technique but in this case we must use an equivalent nondimensionalisation
to (6.20) rather than (6.12), since here it is e0/(s0 + Km) which is small, while e0/s0 is
O(1).

The rate equations obtained from (6.43) using the Law of Mass Action are:

d[S]
dt

= −k1[E][S] + k−1[X ] (6.44)

d[E]
dt

= −k1[E][S] + k−1[X ] + k3[Y ] (6.45)

d[X ]
dt

= k1[E][S] − k−1[X ] − k2[X ] (6.46)

d[Y ]
dt

= k2[X ] − k3[Y ] − k4[Y ] (6.47)

d[Ei ]
dt

= k4[Y ] (6.48)

d[P]
dt

= k3[Y ], (6.49)

where, as before, [ ] denotes concentration, and t time. Typical experimental initial con-
ditions which complete the mathematical formulation are

E(0) = e0, S(0) = s0,

X (0) = Y (0) = Ei (0) = P(0) = 0.
(6.50)

Again, (6.49) is uncoupled and [P] can be evaluated by integration after [Y ] has been
found.

The order of the system can be further reduced using conservation of enzyme, since
adding (6.45)–(6.48) gives

d

dt
{[E] + [X ] + [Y ] + [Ei ]} = 0 (6.51)

⇒ [E] + [X ] + [Y ] + [Ei ] = e0. (6.52)

Using (6.52) to eliminate [E], we obtain the reduced system

d[S]
dt

= −k1 (e0 − [X ] − [Y ] − [Ei ]) [S] + k−1[X ] (6.53)

d[X ]
dt

= k1 (e0 − [X ] − [Y ] − [Ei ]) [S] − (k−1 + k2)[X ] (6.54)

d[Y ]
dt

= k2[X ] − (k3 + k4)[Y ] (6.55)

d[Ei ]
dt

= k4[Y ]. (6.56)
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Nondimensional Form

There are several ways to nondimensionalise the system. Since e0/s0 = O(1), we fol-
low the appropriate procedure in Section 6.2, equivalent to (6.20) for the outer region
and (6.22) for the inner region.

We nondimensionalise the variables by setting

[S] = s0s, [X ] = e0s0

s0 + Km
x,

[Y ] = e0 y, [Ei ] = e0ei ,

(6.57)

where

Km = k−1 + k2

k1
. (6.58)

The fast-transient timescale is (cf. (6.20)) taken as

τ = t/tc = tk1(s0 + Km) (6.59)

and the quasi-steady state timescale as

T = (1 + ρ)t/ts = tε(k−1 + k2)(1 + ρ) (6.60)

with ρ as in (6.66) below and

ε = e0

e0 + Km
. (6.61)

Using the scalings in (6.57) with τ as the timescale, equations (6.53) to (6.56) for
the fast-transient phase are

ds

dτ
= ε

[
−s + σ

1 + σ
sx + sy + sei + ρ

(1 + ρ)(1 + σ)
x

]
(6.62)

dx

dτ
= s −

(
σ

1 + σ

)
sx − sy − sei − x

1 + σ
(6.63)

dy

dτ
=

(
σ

(1 + σ)2(1 + ρ)

)
x −

(
ψ

(1 + σ)

)
y (6.64)

dei

dτ
=

(
φ

1 + σ

)
y, (6.65)

where

σ = s0

Km
, ρ = k−1

k2
, ψ = k3 + k4

k−1 + k2
, φ = k4

k−1 + k2
. (6.66)
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The initial conditions (6.50) become, on using (6.57),

s(0) = 1, x(0) = 0, y(0) = 0, ei (0) = 0. (6.67)

Equations (6.62)–(6.65) are the equivalent of (6.21); they give the singular or inner
solution.

With T as the timescale, the rate equations for the nonsingular, or outer, quasi-
steady state phase are

ds

dT
= −s [(σ + 1) − σ x − (σ + 1)y − (σ + 1)ei ] + ρ

1 + ρ
x (6.68)

ε
dx

dT
= s [(σ + 1) − σ x − (σ + 1)y − (σ + 1)ei ] − x (6.69)

ε
dy

dT
=

(
σ

(1 + σ)(1 + ρ)

)
x − ψy (6.70)

ε
dei

dT
= φy, (6.71)

where ε, σ , ρ, ψ and φ are given by (6.66). These are the equivalent here of (6.23).

Asymptotic Technique and Solutions

We now exploit the fact that 0 < ε � 1 for ε in (6.61) and solve for the equations by the
singular perturbation technique discussed in detail in the last section. There are some
significant differences in the analysis, however, other than just being more complicated
algebraically.

Inner or Singular Solutions

We begin with the fast-transient phase equations, (6.62)–(6.65), with initial conditions
(6.67), and because ε is small we look for a Taylor series solution in the form

s(τ ) = s(0)(τ ) + εs(1)(τ ) + ε2s(2)(τ ) + . . . (6.72)

for each of the variables s, x , y and ei . Substituting these into (6.62)–(6.65) and equating
like powers of ε, we find

ds(0)

dτ
= 0 ,

dy(0)

dτ
= − ψ

1 + σ
y(0), (6.73)

which with (6.67) give as the unique solutions s(0)(τ ) ≡ 1, y(0)(τ ) ≡ 0. In the same
way, (6.65) yields, to O(1),

de(0)
i

dτ
= − φ

1 + σ
y(0) = 0 (6.74)

which implies that e(0)
i (τ ) ≡ 0 since ei (0) = 0. Finally, substituting the series solutions
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into (6.65), we obtain

dx (0)

dτ
= s(0) − s(0)y(0) − s(0)e(0)

i − x (0)

1 + σ
− σ s(0)x (0)

1 + σ
. (6.75)

With the above solutions for s(0), y(0) and e(0)
i , this becomes

dx (0)

dτ
= 1 − x (0) (6.76)

which, with x(0) = 0, gives x (0)(τ ) = 1 − e−τ .
To obtain nonzero solutions for y and ei , we need to determine at least the O(ε)

terms, y(1)(τ ) and e(1)
i (τ ). This involves matching the coefficients of O(ε) terms.

Note that, from (6.61), with (6.66),

ε = e0

s0(1 + Km/s0)
= e0

s0

σ

1 + σ
(6.77)

which implies that

σ =
(

s0

e0

)
ε + O(ε2). (6.78)

Since s0/e0 = O(1), this implies that σ = O(ε). Here we introduce a similarity vari-
able for σ ,

σ = εp, (6.79)

where p is a constant of O(1). We show the ε factor explicitly so that we can match it
with the O(ε) terms. Substituting (6.79) for σ in (6.64), we equate terms of O(ε):

dy(1)

dτ
= p

(1 + ρ)
x (0) − ψy(1). (6.80)

Since we already know x(0)(τ ) = 1−e−τ , we can solve this linear equation for y(1)(τ ):

y(1)(τ ) = p

ψ(1 + ρ)

(
1 − e−ψτ

ψ
+ e−ψτ − e−τ

ψ − 1

)
. (6.81)

Now, matching coefficients in (6.65) to O(ε) gives an equation for dei/dτ in terms
of y(1). A little algebra gives the solution as

e(1)
i (τ ) = φp

(1 + ρ)

(
τ

ψ
+ e−τ − 1

ψ − 1
+ 1 − e−ψτ

ψ2(ψ − 1)

)
. (6.82)
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In obtaining e(1)
i (τ ), we assumed φ = O(1). If it were the case that φ = O(ε), we

would have used another similarity variable, q = εφ, and found that e(1)
i (τ ), but that

e(2)
i (τ ) gives the same result as e(1)

i (τ ) above.
In a similar manner, we can find the coefficients of higher-order terms in the series.

For example, the O(ε) terms of (6.62) give

s(1)(τ ) = − τ

1 + ρ
+ ρ

1 + ρ
(e−τ − 1). (6.83)

All of these solutions satisfy the initial conditions, (6.67).

Outer or Quasi-Steady State Solutions

We now proceed to look for solutions in the long timescale which gives the quasi-steady
state approximation. We then want to match the two time period solutions. Recall that
these long timescale solutions will not in general satisfy the initial conditions. Undeter-
mined constants of integration are evaluated by matching the solution domains as we
did in Section 6.3.

Here we look for solutions to (6.68)–(6.71) in the form

s(T ) = s(0)(T ) + εs(1)(T ) + ε2s(2)(T ) + . . . (6.84)

for each of the variables s, x , y and ei . Substituting these into (6.68)–(6.71), we again
equate coefficients of powers of ε. Here, however, we must solve for the undetermined
constants of integration, which we do by the method of matched asymptotic expansions;
that is, the inner solution as τ → ∞ must match the outer solution as T → 0.

Taking the O(1) terms, we get, remembering that σ = εp = O(ε) from (6.79),

0 = s(0) − s(0)y(0) − x(0) − s(0)ei(0) (6.85)

from (6.69), and, assuming ψ = O(1), y(0) = 0 from (6.71). Together, these give

x(0) = s(0)

(
1 − ei(0)

)
. (6.86)

Similarly, we obtain

y(1) = p

ψ(1 + ρ)
x(0). (6.87)

To equate coefficients further, we need to determine the order of magnitude of
each of the terms. Experimentally, we know that there are two fundamentally different
outcomes: either all of the substrate is exhausted, or all of the enzyme is inactivated.
These correspond to φ = O(1) with ψ = O(1), and ψ = O(1) with φ = O(ε) (refer
to (6.66) for the parameter relations). We must therefore solve the equations for each of
these sets of constraints.

Case 1 ρ = O(1), ψ = O(1), φ = O(1)

This is the case when all of the rate constants are of the same order of magnitude.
By assuming φ = O(1), (6.68) with (6.79), (6.84) and (6.86) give
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ds(0)

dT
= − 1

1 + ρ
s(0)(1 − ei(0)). (6.88)

From (6.69), with (6.79), (6.84), (6.86) and (6.87), we get

dei(0)

dT
= φρ

ψ(1 + ρ)
s(0)(1 − ei(0)). (6.89)

The last two equations give, on dividing and integrating,

ei(0)(T ) = 1

β

(
B − s(0)(T )

)
, (6.90)

where B is a constant of integration and

β = ψ

φρ
. (6.91)

We determine B by using the matching condition discussed in detail in Section 6.3
(or for more detail, see Murray 1984). This is the condition that s(0)(T ), x(0)(T ), y(0)(T )

and ei(0)(T ) as T → 0 must match with the values, respectively, of s(0)(τ ), x (0)(τ ),

y(0)(τ ) and e(0)
i (τ ) as τ → ∞. We know that s(0)(τ ) ≡ 1, x (0)(τ ) = 1−e−τ , y(0)(τ ) ≡

0, e(0)
i (τ ) ≡ 0 so the conditions on the O(1) outer solution are

s(0)(T ) → 1, x(0)(T ) → 1, y(0)(T ) → 0 and ei(0)(T ) → 0 as T → 0. (6.92)

With these we see that B = 1 in (6.90) which then, on substituting into (6.88), gives

ds(0)

dT
= − (β − 1)

β(1 + ρ)
s(0)

[
1 − s(0)

1 − β

]

which on integrating and using the condition as T → 0 from (6.92) gives s(0)(T ) and
ei(0)(T ) as

s(0)(T ) = 1 − β

1 − βeT [1−(1/β)]/(1+ρ)
,

ei(0)(T ) = 1 − s(0)(T )

β
.

(6.93)

Case 2 ρ = O(1), ψ = O(1), φ = O(ε)

Assuming φ = O(ε) gives

s(0)(T ) = e−T/(1+ρ), ei(0) = 0, εei(1)(T ) = 1 − e−T/(1+ρ)

β
, (6.94)

where again we have matched with the inner solutions.
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In both the inner and outer solutions, we could continue to solve for terms of higher-
order of ε in the series, (6.72) and (6.84). The solutions would become progressively
more complicated, but in each case the equations are linear. For most practical purposes
the first nonzero terms are sufficiently accurate.

Uniformly Valid Solution for All Time

Now that we have solutions for the fast transient and the quasi-steady state time periods,
we can obtain composite solutions that are valid for all time t ≥ 0 by a simple method
detailed, for example, in Kevorkian and Cole (1996). We add the first term of the inner
solutions to the corresponding term of the outer solutions and subtract their common
part—the limit of the inner solution as time (τ ) goes to infinity, which is the same as
the limit of the outer solutions as time (T ) tends toward zero. For example, the inner
solution for s is s(0)(τ ) = 1. The outer solution for Case 2 is s(0)(T ) = exp (−T/(1 +
ρ)). The limits described above are both 1, so the composite solution is:

s0
comp = 1 + e−T/(1+ρ) − 1 = e−t/ts = e−ε(k−1+k2)t (6.95)

on using (6.60).
Doing the same for the other solutions, we obtain two sets of composite solutions,

one for Case 1 and one for Case 2, which are valid for all time.
Case 1:

s0
comp(t) = 1 − β

1 − βet (1−1/β)/ts
, e0

i comp(t) = 1 − s0
comp

β
,

x0
comp(t) = s0

comp

(
1 − e0

i comp

)
− e−t/tc , y0

comp(t) = 0,

εy1
comp(t) = σ

ψ(1 + ρ)

(
e−ψ t/tc − ψe−t/tc

ψ − 1
+ s0

comp

(
1 − e0

comp

))
.

(6.96)

Case 2:

s0
comp(t) = e−t/ts , e0

i comp(t) = 0, εe1
i comp(t) = 1 − s0

comp

β
,

x0
comp(t) = s0

comp − e−t/tc , y0
comp(t) = 0,

εy1
comp(t) = σ

ψ(1 + ρ)

(
e−ψ t/tc − ψe−t/tc

ψ − 1
+ s0

comp

)
,

(6.97)

where β = ψ/φp and σ , ρ and ψ are as in (6.66).
Note that the important parameter distinguishing Cases 1 and 2 is β. When β < 1,

Case 1 holds, and when β > 1, Case 2 holds. This β is, in fact, the same parameter that
Tatsunami et al. (1981) called (1 + r)µ. The above expressions show that for β < 1,
ei → 1 as T → ∞ (to first-order in ε), while for β > 1, s → 0 as T → ∞ (to first-
order in ε). These directly relate to the amount of inactivated enzyme as we discussed
at the beginning of this section.
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Numerical Solutions and Comparison with Analytic Solutions

Now that we have approximate asymptotic solutions to our nondimensionalised sys-
tems, we compare them to the numerical solutions obtained by Burke et al. (1990) to
highlight their accuracy.

They solved the dimensional system, (6.53)–(6.56), numerically. Since the numer-
ical analysis was carried out on the dimensional system, the nondimensional concen-
trations were multiplied by their scale factors before plotting for ease of comparison.
The first two terms of the composite solutions are compared to the numerical solutions
in Figure 6.3. These graphs illustrate that the composite solutions are far more accurate
than previous solutions in the inner domain.

Figure 6.4 shows the numerical solutions compared to the composite solutions for
intermediate concentrations X and Y . The first term of the Case 2 composite solution as
previously given was used for each of X and Y . These intermediate results are more ac-
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Figure 6.3. First two terms of the Case 2 composite series solutions (– – –) compared to numerical solutions
(——) and previous approximations: Waley (1985) (- - -) and Tatsunami et al. (1981) (— — —). (a) Substrate
concentration; (b) inactive enzyme concentration. Parameters: k1 = 2, k−1 = 4, k2 = 12, k3 = 10, k4 = 2,
e0 = 0.5, s0 = 0.5. These give ε = 5.88 × 10−2, ρ = 0.333, β = 5.647. (From Burke et al. 1990)
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Figure 6.4. Case 2 composite (– – –) solutions compared to numerical solutions (——) for X and Y , the
intermediate concentrations. Parameters are the same as in Figure 6.3. (From Burke et al. 1990)

curate than any quasi-steady state method achieves, since the method here incorporates
the variation of the intermediate time derivatives prior to the quasi-steady state.

The above results show that the analytical solutions are a very good approximation
of the kinetics of the suicide substrate system represented by (6.43). It does not appear
much more complex than the basic enzyme reaction (6.1) but, as we have seen, the
analysis is much more involved. The method developed here is particularly useful in es-
timating the intermediate (X and Y ) concentrations which no previous analysis had been
able to do. Perhaps the most important result of the method described here is that the
solutions are obtained analytically in terms of the kinetic parameters. These solutions
may be used to estimate the parameters by the methods described by Waley (1985) and
Duggleby (1986). Such analytical solutions are especially important when the equations
are stiff, that is, when small parameters multiply derivatives in the differential equation
system, when numerical solutions can be delicate to compute accurately.

6.5 Cooperative Phenomena

In the model mechanism (6.1) one enzyme molecule combines with one substrate mole-
cule; that is, the enzyme has one binding site. There are many enzymes which have
more than one binding site for substrate molecules. For example, haemoglobin (Hb),
the oxygen-carrying protein in red blood cells, has 4 binding sites for oxygen (O2)
molecules. A reaction between an enzyme and a substrate is described as cooperative if
a single enzyme molecule, after binding a substrate molecule at one site can then bind
another substrate molecule at another site. Such phenomena are common.

Another important cooperative behaviour is when an enzyme with several binding
sites is such that the binding of one substrate molecule at one site can affect the activity
of binding other substrate molecules at another site. This indirect interaction between
distinct and specific binding sites is called allostery, or an allosteric effect, and an en-
zyme exhibiting it, an allosteric enzyme. If a substrate that binds at one site increases
the binding activity at another site then the substrate is an activator; if it decreases the
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activity it is an inhibitor. The detailed mathematical analysis for the kinetics of such
allosteric reactions is given briefly in the book by Murray (1977) and in more detail in
the one by Rubinow (1975). The latter book also gives a graph-theoretic approach to
enzyme kinetics.

As an example of a cooperative phenomenon we consider the case where an enzyme
has 2 binding sites and calculate an equivalent quasi-steady state approximation and the
substrate uptake function. A model for this consists of an enzyme molecule E which
binds a substrate molecule S to form a single bound substrate–enzyme complex C1.
This complex C1 not only breaks down to form a product P and the enzyme E again;
it can also combine with another substrate molecule to form a dual bound substrate–
enzyme complex C2. This C2 complex breaks down to form the product P and the
single bound complex C1. A reaction mechanism for this model is then

S + E
k1�

k−1
C1

k2→ E + P,

S + C1
k3�

k−3
C2

k4→ C1 + P,

(6.98)

where the k’s are the rate constants as indicated.
With lowercase letters denoting concentrations, the mass action law applied to

(6.98) gives

ds

dt
= −k1se + (k−1 − k3s)c1 + k−3c2,

dc1

dt
= k1se − (k−1 + k2 + k3s)c1 + (k−3 + k4)c2,

dc2

dt
= k3sc1 − (k−3 + k4)c2,

de

dt
= −k1se + (k−1 + k2)c1,

dp

dt
= k2c1 + k4c2.

(6.99)

Appropriate initial conditions are

s(0) = s0, e(0) = e0, c1(0) = c2(0) = p(0) = 0. (6.100)

The conservation of the enzyme is obtained by adding the 2nd, 3rd and 4th equations in
(6.99) and using the initial conditions; it is

dc1

dt
+ dc2

dt
+ de

dt
= 0 ⇒ e + c1 + c2 = e0. (6.101)

The equation for the product p(t) is again uncoupled and given, by integration, once c1
and c2 have been found. Thus, using (6.101), the resulting system we have to solve is
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ds

dt
= −k1e0s + (k−1 + k1s − k3s)c1 + (k1s + k−3)c2,

dc1

dt
= k1e0s − (k−1 + k2 + k1s + k3s)c1 + (k−3 + k4 − k1s)c2,

dc2

dt
= k3sc1 − (k−3 + k4)c2,

(6.102)

with initial conditions (6.100).
As always, we nondimensionalise the system. As we saw above, there are several

ways we can do this. If e0/s0 � 1, we write

τ = k1e0t, u = s

s0
, v1 = c1

e0
, v2 = c2

e0
,

a1 = k−1

k1s0
, a2 = k2

k1s0
, a3 = k3

k1
, a4 = k−3

k1s0
,

a5 = k4

k1s0
, e = e0

s0
,

(6.103)

and (6.102) becomes

du

dτ
= −u + (u − a3u + a1)v1 + (a4 + u)v2 = f (u, v1, v2), (6.104)

ε
dv1

dτ
= u − (u + a3u + a1 + a2)v1 + (a4 + a5 − u)v2 = g1(u, v1, v2), (6.105)

ε
dv2

dτ
= a3uv1 − (a4 + a5)v2 = g2(u, v1, v2), (6.106)

which, with the initial conditions

u(0) = 1, v1(0) = v2(0) = 0, (6.107)

represents a well-posed mathematical problem.
This problem, just as the Michaelis–Menten one (6.13) analyzed in Section 6.5, is a

singular perturbation one for 0 < ε � 1. The complete inner and outer solution can be
found in a comparable way using the method set out there so we leave it as an exercise.
What is of interest here, however, is the form of the uptake function for the substrate
concentration u, for times τ 
 ε, that is, for times in the experimentally measurable
regime. So, we only need the outer, or nonsingular, solution which is given to O(1) for
0 < ε � 1 by (6.104)–(6.107) on setting the ε-terms to zero. This gives

du

dτ
= f (u, v1, v2), g1(u, v1, v2) = 0, g2(u, v1, v2) = 0.

The last two equations are algebraic, which on solving for v1 and v2 give

v2 = a3uv1

a4 + a5
, v1 = u

a1 + a2 + u + a3u2(a4 + a5)−1
.
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Substituting these into f (u, v1(u), v2(u)) we get the uptake equation, or rate equation,
for u as

du

dτ
= f (u, v1(u), v2(u))

= −u
a2 + a3a5u(a4 + a5)

−1

a1 + a2 + u + a3u2(a4 + a5)−1

= −r(u) < 0.

(6.108)

The dimensionless velocity of the reaction is thus r(u). In dimensional terms, using
(6.103), the Michaelis–Menten velocity of the reaction for 0 < e0/s0 � 1, denoted by
R0(s0) say, is, from (6.108),

R0(s0) =
∣
∣∣∣

ds

dt

∣
∣∣∣
t=0

= e0s0
k2 K ′

m + k4s0

Km K ′
m + K ′

ms0 + s2
0

Km = k2 + k−1

k1
, K ′

m = k4 + k−3

k3
,

(6.109)

where Km and K ′
m are the Michaelis constants for the mechanism (6.98), equivalent to

the Michaelis constant in (6.41).
The rate of the reaction R0(s0) is illustrated in Figure 6.5. If some of the parameters

are zero there is a point of inflexion: for example, if k2 = 0 it is clear from (6.109)
since then for s0 small, R0 ∝ s2

0 . A good example of such a cooperative behaviour is
the binding of oxygen by haemoglobin; the experimental measurements give an uptake
curve very like the lower curve in Figure 6.5. Myoglobin (Mb), a protein in abundance
in red muscle fibres, on the other hand has only one oxygen binding site and its uptake
is of the Michaelis–Menten form also shown in Figure 6.5 for comparison.

When a cooperative phenomenon in an enzymatic reaction is suspected, a Hill plot
is often made. The underlying assumption is that the reaction velocity or uptake function
is of the form

R0(S0) = Qsn
0

Km + sn
0
, (6.110)

where n > 0 is not usually an integer; this is often called a Hill equation. Solving the

Figure 6.5. Rate of reaction, or substrate
uptake, as a function of substrate
concentration s0 for the cooperative reaction
(6.98). Note the inflexion in the cooperative
uptake curve when k2 = 0.



6.6 Autocatalysis, Activation and Inhibition 201

last equation for sn
0 we have

sn
0 = R0 Km

Q − R0
⇒ n ln s0 = ln Km + ln

R0

Q − R0
.

A Hill plot is the graph of ln [R0/(Q − R0)] against ln s0, the slope of which gives n,
and is a constant if the Hill equation is a valid description for the uptake kinetics. If
n < 1, n = 1 or n > 1 we say that there is negative, zero or positive cooperativity
respectively. Although the Hill equation may be a reasonable quantitative form to de-
scribe a reaction’s velocity in a Michaelis–Menten sense, the detailed reactions which
give rise to it are not too realistic: essentially it is (6.1) but now instead of E + S we
require E + nS combining to form the complex in one step. This is somewhat unlikely
if n is not an integer although it could be a stoichiometric form. If n is an integer and
n ≥ 2, the reaction is then trimolecular or higher. Such reactions do not occur except
possibly through what is in effect a telescoping together of several reactions, because
intermediary reactions are very fast.

Even with such drawbacks as regards the implied reaction mechanisms, empirical
rate forms like the Hill equation are extremely useful in modelling. After all, what we
want from a model is some understanding of the underlying dynamics and mechanisms
governing the phenomena. A very positive first step is to find a biologically reasonable
model which qualitatively describes the behaviour. Detailed refinements or amendments
come later.

6.6 Autocatalysis, Activation and Inhibition

Many biological systems have feedback controls built into them. These are very impor-
tant and we must know how to model them. In the next chapter on biological oscillators,
we shall describe one area where they are essential. A review of theoretical models and
the dynamics of metabolic feedback control systems is given by Tyson and Othmer
(1978). Here we describe some of the more important types of feedback control. Basi-
cally feedback is when the product of one step in a reaction sequence has an effect on
other reaction steps in the sequence. The effect is generally nonlinear and may be to
activate or inhibit these reactions. The next chapter gives some specific examples with
actual reaction mechanisms.

Autocatalysis is the process whereby a chemical is involved in its own production.
A very simple pedagogical example is

A + X
k1�

k−1
2X, (6.111)

where a molecule of X combines with one of A to form two molecules of X . If A
is maintained at a constant concentration a, the Law of Mass Action applied to this
reaction gives the rate of reaction as

dx

dt
= k1ax − k−1x2 ⇒ x(t) → xS = k1a

k−1
, (6.112)
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where x = [X ] and xS is the final nonzero steady state as t → ∞. The zero steady state
is unstable by inspection. This autocatalytic reaction exhibits a strong feedback with the
‘product’ inhibiting the reaction rate. It is obvious that some back reaction (k−1 �= 0) is
necessary. This is the chemical equivalent of logistic growth discussed in Chapter 1.

Suppose, instead of (6.111), the reaction system is

A + X
k1�

k−1
2X, B + X

k2→ C. (6.113)

That is, X is used up in the production of C . This mechanism exhibits a simple bifurca-
tion as we show. If B, as well as A, are maintained at constant concentrations, a and b,
then

dx

dt
= k1ax − k−1x2 − k2bx = (k1a − k2b)x − k−1x2. (6.114)

Here k1a is the unit production rate of x and k2b the unit loss rate. From (6.114) we see
that if k1a > k2b the steady state x = 0 is unstable and x(t) → xS = (k1a − k2b)/k−1
> 0 as t → ∞, which is stable. On the other hand if k1a < k2b then x = 0 is stable,
which is not surprising since the inequality implies that the loss rate is greater than the
production rate. In this case mathematically there is still, of course, another steady state
but it is negative (so unrealistic) and unstable. The simple bifurcation exhibited by this
reaction is summarised in Figure 6.6 where the steady states xS are given in terms of the
parameter k1a − k2b. The bifurcation is at k1a − k2b = 0 where the stability changes
from one steady state to another.

Anticipating the next chapter on biological oscillators, the classical Lotka (1920)
reaction mechanism which he proposed as a hypothetical model oscillator is another
example of autocatalysis. It is

A + X
k1→ 2X, X + Y

k2→ 2Y, Y
k3→ B, (6.115)

where A is maintained at a constant concentration a. The first two reactions are auto-
catalytic. The Law of Mass Action gives

Figure 6.6. Stability of the steady states xS of the reaction system (6.113) and (6.114). As the parameter
k1a − k2b, the difference between the production and loss rates, changes sign, so does the stability, namely,
from xS = 0 to xS �= 0.
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dx

dt
= k1ax − k2xy,

dy

dt
= k2xy − k3y,

which, with the nondimensional variables

u = k2x

k3
, v = k2 y

k1a
, τ = k1at, α = k3/k1a,

become

du

dτ
= u(1 − v),

dv

dτ
= αv(u − 1).

These are the Lotka–Volterra equations (3.4) discussed in detail in Section 3.1 in Chap-
ter 3; the solutions u and v are periodic in time but, as we saw, are structurally unstable.

In almost all biological processes we do not know the detailed biochemical reac-
tions that are taking place. However, we often do know the qualitative effect of varying
a known reactant or of changing the operating conditions in one way or another. So,
in modelling such biological processes it is usually much more productive and illumi-
nating to incorporate such known qualitative behaviour in a model mechanism. It is
such model mechanisms which have proved so useful in interpreting and unravelling
the basic underlying processes involved, and in making useful predictions in a remark-
ably wide spectrum of biomedical problems. Since we know how to represent a reaction
sequence as a differential equation system we can now construct models which incor-
porate the various qualitative behaviours directly into the differential equations for the
concentrations. It is then the differential equation system which constitutes the model.

Suppose we have a differential equation system, the model for which can be re-
duced, through asymptotic procedures such as we discussed above, to two key elements
which are governed by the dimensionless mechanism

du

dτ
= a

b + v
− cu = f (u, v),

dv

dτ
= du − ev = g(u, v),

(6.116)

where a, b, c, d and e are positive constants. The biological interpretation of this model
is that u activates v, through the term du, and both u and v are degraded linearly propor-
tional to their concentrations; these are the −cu and −ev terms. This linear degradation
is referred to as first-order kinetics removal. The term a/(b + v) shows a negative feed-
back by v on the production of u, since an increase in v decreases the production of u,
and hence indirectly a reduction in itself. The larger v, the smaller is the u-production.
This is an example of feedback inhibition.

We can easily show that there is a stable positive steady state for the mechanism
(6.116). The relevant steady state (u0, v0) is the positive solution of

f (u0, v0) = g(u0, v0) = 0

⇒ v0 = du0

e
, u2

0 + ebu0

d
− ae

cd
= 0.
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The differential equation system (6.116) is exactly the same type that we analysed in
detail in Chapter 3. The linear stability then is determined by the eigenvalues λ of the
linearised Jacobian or reaction matrix or stability matrix (equivalent to the community
matrix in Chapter 3), and are given by

∣
∣∣
∣∣
∣∣

∂ f

∂u
− λ

∂ f

∂v
∂g

∂u

∂g

∂v
− λ

∣
∣∣
∣∣
∣∣
u0,v0

=
∣∣
∣∣
∣

−c − λ −c
u0

v0 + b
d −e − λ

∣∣
∣∣
∣
= 0.

Thus

λ2 + (c + e)λ +
[

ce + cdu0

b + v0

]
= 0 ⇒ Reλ < 0,

and so (u0, v0) is linearly stable. It is also a globally attracting steady state: it is straight-
forward to construct a rectangular confined set in the (u, v) plane on the boundary of
which the vector (du/dt, dv/dt) points inwards.

Several specific model systems have been proposed as the mechanisms governing
certain basic biological phenomena such as oscillatory behaviour, pattern formation in
developing embryos, mammalian coat patterns and so on. We study some of these in
detail in subsequent chapters. Here we briefly look at two.

The Thomas (1975) mechanism, is based on a specific reaction involving the sub-
strates oxygen and uric acid which react in the presence of the enzyme uricase. The
dimensionless form of the empirical rate equations for the oxygen (v) and the uric acid
(u) can be written as

du

dt
= a − u − ρR(u, v) = f (u, v),

dv

dt
= α(b − v) − ρR(u, v) = g(u, v),

R(u, v) = uv

1 + u + K u2 ,

(6.117)

where a, b, α, ρ and K are positive constants. Basically u and v are supplied at constant
rates a and αb, degrade linearly proportional to their concentrations and both are used
up in the reaction at a rate ρR(u, v). The form of R(u, v) exhibits substrate inhibition.
For a given v, R(u, v) is O(uv) for u small and is thus linear in u, while for u large it is
O(v/K u). So, for u small R increases with u, but for u large it decreases with u. This is
what is meant by substrate inhibition. The parameter K is a measure of the severity of
the inhibition. From Figure 6.7, giving R(u, v) as a function of u, we see that the uptake
rate is like a Michaelis–Menten form for small u, reaches a maximum at u = 1/

√
K

and then decreases with increasing u. The value of the concentration for the maximum
R(u, v), and the actual maximum rate, decreases with increasing inhibition, that is, as
K increases.

It is always informative to draw the null clines for the reaction kinetics in the (u, v)

phase plane in the same way as for the interacting population models in Chapter 3. Here
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Figure 6.7. Reaction rate R(u, v) in (6.117) for a fixed v. The reduction in R as u increases for u > 1/
√

K
is a typical example of substrate (u) inhibition: the larger the K the greater the inhibition.

the null clines for (6.117) are

f (u, v) = 0 ⇒ v = (a − u)
1 + u + K u2

ρu
,

g(u, v) = 0 ⇒ v = αb
1 + u + K u2

ρu + α(1 + u + K u2)
,

which are sketched in Figure 6.8. Depending on the parameters there can be one or three
positive steady states. Although these null clines are for a specific substrate–inhibition
mechanism they are fairly typical of general substrate–inhibition models, the f = 0
null cline in particular; see also Figure 6.9.

The question of the stability of the steady states will be discussed in detail and in
some generality in the next chapter. At this stage, however, we can get an intuitive indi-
cation of the stability from looking at the null clines in the (u, v) phase plane. Consider
the situation in Figure 6.8 when there are three steady states at P1, P2 and P3 and, to
be specific, look at P1(u1, v1) first. Now let us move along a line, v = v1 say, through
P1 and note the signs of f (u, v1) as we cross the f = 0 null cline. Let us stay in the
neighbourhood of P1. On the left of the f = 0 null cline, f > 0 and on the right f < 0.

Figure 6.8. Schematic null clines for the substrate–inhibition kinetics (6.117). There may be one, S, or three,
P1, P2, P3 (dashed g = 0 curve) steady states where f = 0 and g = 0 intersect. Note the signs of f and g
on either side of their null clines.
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Figure 6.9. Typical null clines for the
activator–inhibitor model (6.118).

So with v = v1, a constant, ∂ f/∂u < 0 at P1. If we now consider the kinetics equation
for u with v = v1, namely, du/dt = f (u, v1), we see that locally ∂ f/∂u < 0 at P1
and so, from our discussion in Section 1.1 in Chapter 1, if this were an uncoupled scalar
equation for u it would mean that P1 is a linearly stable steady state. But of course from
(6.117) the u-equation is not uncoupled and maybe the coupling has a destabilising
affect.

Let us still consider P1 and use the same kind of argument to move across the
g = 0 null cline along a line, u = u1 say, through P1. We now see that ∂g/∂v < 0 so
locally dv/dt = g(u1, v) with ∂g/∂v < 0 at P1 and by the same argument about scalar
equations this would reinforce our intuition that P1 is linearly stable. So intuitively
from both these analyses we would expect P1 to be linearly stable. These kinds of
arguments are developed rigorously in the next chapter where we show that our intuition
is indeed correct. In a similar way we can intuitively deduce that P3 is also stable. If we
apply the above sign arguments to P2 with v = v2 at P2 we see, from Figure 6.8, that
∂ f (u, v2)/∂u > 0 so we expect P2 to be unstable. When there is a single steady state at
S, the situation needs a careful analysis (see Chapter 7).

Without carrying out any analysis, it is clear that there must be certain parame-
ter ranges where there is a single steady state and where there are three steady states.
An informative analysis therefore is to determine the parameter domains for each situa-
tion. Although this is simple in principle—you determine the positive steady states from
the simultaneous algebraic equations f (u, v) = g(u, v) = 0—it is usually hard alge-
braically and has to be carried out numerically. Such analyses produce some interesting
results which we discuss in more detail in Section 6.7.

Another model mechanism, algebraically simpler than the Thomas system (6.117),
is the hypothetical but biologically plausible reaction scheme

du

dt
= a − bu + u2

v(1 + K u2)
= f (u, v),

dv

dt
= u2 − v = g(u, v),

(6.118)

where a, b and K are constants. This is an activator (u)–inhibitor (v) system and is
a dimensionless version of the kinetics of a model proposed by Gierer and Meinhardt
(1972). It has been used in a variety of modelling situations which we point out in
subsequent chapters. Here there is an autocatalytic production of the activator u via the
u2/[v(1 + K u2)] term, but which saturates to 1/(Kv) for u large. The inhibitor v is
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activated by u according to the second equation, but it inhibits its activator production
since u2/v(1 + K u2) decreases as v increases. The null clines f = 0 and g = 0
from (6.118) are illustrated in Figure 6.9. Note the qualitative similarity between the
null clines in Figures 6.8 and 6.9, particularly in the vicinity of the steady state and for
large u; we consider the implications of this later. In the next chapter we introduce other
reaction systems while in Chapter 8 we discuss in detail a specific system which is of
considerable experimental importance and biological relevance.

For a general system

du

dt
= f (u, v),

dv

dt
= g(u, v), (6.119)

u is an activator of v if ∂g/∂u > 0 while v is an inhibitor of u if ∂ f/∂v < 0. De-
pending on the detailed kinetics a reactant may be an activator, for example, only for a
range of concentrations or parameters. There are thus many possibilities of bifurcation
phenomena which have biologically important implications as we see later in the book.

With the mathematical parallel between interacting populations and reaction kinet-
ics model systems, we also expect to observe threshold phenomena such as we discussed
in Section 3.8 in Chapter 3. This is indeed the case and the model system (6.117) ex-
hibits a similar threshold behaviour if the parameters are such that the steady state is at
S, or at S′, as in Figure 6.10. The analysis in Section 3.8 is directly applicable here.

We can now start to build model reactions to incorporate a variety of reaction kinet-
ics behaviour such as autocatalysis, activation and inhibition and so on, since we know
qualitatively what is required. As an example suppose we have cells which react to the
local concentration level of a chemical S by activating a gene so that the cells produce
a product G. Suppose that the product is autocatalytically produced in a saturable way
and that it degrades linearly with its concentration, that is, according to first-order ki-
netics. With lowercase letters for the concentrations, a rate equation for the product g
which qualitatively incorporates all of these requirements is, for example,

dg

dt
= k1s + k2g2

k3 + g2
− k4g = f (g), (6.120)

where the k’s are positive constants. This model has some useful biological switch prop-
erties which we consider and use later in Chapter 3, Volume II when we discuss models
for generating biological spatial patterns.

Figure 6.10. Reaction kinetics null clines which
illustrate a threshold behaviour. With a perturbation
to P , the solution embarks on a large excursion in
the phase space before returning to the stable
steady state S. A similar threshold behaviour is
possible if the null clines intersect at the steady
state S′.
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It is now clear that the study of the reaction kinetics of n reactions results in an nth
order system of first-order differential equations of the form

dui

dt
= fi (u1, . . . , un), i = 1, . . . , n. (6.121)

This is formally the same type of general system which arose in interacting popula-
tion models, specifically equations (3.43) in Chapter 3. There we were only concerned
with nonnegative solutions and so also here, since u(t) is a vector of concentrations.
All of the methods for analysing stability of the steady states, that is, solutions of
f (u1, . . . , un) = 0, are applicable. Thus all of the conditions for limit cycles, threshold
phenomena and so on also hold here.

The interaction details between reactants and those for interacting populations are
of course quite different both in form and motivation. In biological systems there is
generally more complexity as regards the necessary order of the differential equation
model. As we have seen, however, this is often compensated by the presence of en-
zyme catalysts and thus a biological justification for reducing the order considerably.
For example, a system which results in the dimensionless equations

dui

dt
= fi (u1, . . . , un), i = 1, 2

εi
dui

dt
= fi (u1, . . . , un), i = 3, . . . , n

0 < εi � 1, i = 3, . . . , n

(6.122)

reduces, for almost all practical purposes, to a second-order system

dui

dt
= fi (u1, u2, u3(u1, u2), . . . , un(u1, u2)), i = 1, 2

for small enough εs. Here fi (u1, . . . , un) = 0 for i = 3, . . . , n are algebraic equations
which are solved to give un≥3 as functions of u1 and u2. It is this general extension
of the quasi-steady state approximation to higher-order systems which justifies the ex-
tensive study of two-reactant kinetics models. Mathematically the last equation is the
O(1) asymptotic system, as εi → 0 for all i , for the nonsingular solution of (6.122).
Biologically this is all we generally require since it is the relatively long time behaviour
of mechanisms which usually dominates biological development.

6.7 Multiple Steady States, Mushrooms and Isolas

We saw in Figure 6.8 that it is possible to have multiple positive steady states. The
transition from a situation with one steady state to three occurs when some parameter
in the model passes through a bifurcation value. Figure 6.11 illustrates typical scenarios
where this occurs. For example, referring to Figure 6.9 and the kinetics in (6.118) the
steady state would behave qualitatively like that in Figure 6.11 (a) with the inhibition
parameter K playing the role of p.
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Figure 6.11. (a) Typical variation of the steady state us as a function of a parameter p in the kinetics for
a fixed value k1 of another kinetics parameter k. (b) As the parameter k passes through a bifurcation value
kc , multiple steady states are possible when p1 < p < p2. The steady state that lies on the branch DC is
unstable.

Now suppose that as a parameter, k say, varies the us versus p curve changes in
such a way that for a range of k the qualitative form of the curve is as in Figure 6.11 (b).
For a fixed k and p1 < p < p2 there are three steady states, one on each branch BC ,
C D and DE . This is equivalent to the three steady state situation in Figure 6.8. From
the discussion in the last section we expect the steady states lying on the C D branch to
be linearly unstable; this is proved in the next chapter.

The form of the (us, p) graph in Figure 6.11 (b) suggests the possibility of hystere-
sis (recall Section 1.1) as p varies. Assume, as is the case, that a steady state lying on
the branches ABC and DE F is stable. Now suppose we slowly increase the parameter
p from a value p < p1 to a value p > p2. Until p reaches p2, us simply increases
and is given by the appropriate value on the branch ABC . When p passes through p2,
us changes abruptly, moving onto the branch E F ; with increasing p it is given by the
appropriate value on this branch. Now suppose we slowly decrease p. In this situation
us stays on the lower branch F E D until p reaches p1 since solutions on this branch are
stable. Now the abrupt change takes place at p1 where us jumps up onto the upper B A
branch. This is a typical hysteresis loop. For increasing p, the path is along ABC E F ,
while the path through decreasing values of p is F E DB A.

Mushrooms

Instead of the (us, p) variation in Figure 6.11 (a) another common form simply has us
increasing with increasing p as in Figure 6.12 (a): the transition to three steady states
is then as illustrated. It is not hard to imagine that even more complicated behaviour
is possible with the simple curve in Figure 6.12 (a) evolving to form the mushroomlike
shape in Figure 6.12 (b) with two regions in p-space where there are multi-steady states.

The mushroomlike (us, p) relationship in Figure 6.12 (b) has two distinct p-ranges
where there are three steady states. Here the steady states lying on the branches C D and
G H are unstable. There are two hysteresis loops equivalent to Figure 6.11 (b), namely,
BC E D and I H FG.

Isolas

The situation shown in Figure 6.12 (c), namely, that of a separate breakaway region, is
an obvious extension from Figure 6.12 (b). Such a solution behaviour is called an isola.
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Figure 6.12. (a) Another typical example of a steady state dependence on a parameter with transition to
multiple steady states; compare with Figure 6.11 (a). (b) Typical mushroom dependence of the steady state
as a function of a parameter p. (c) This shows an example of an isola: it can be a natural evolution from the
form in (b).

Now we expect the solutions lying on the branch DCG to be unstable. The physical
situation represented by this situation is rather different from that which obtains with
a mushroom. First there is no hysteresis in the usual way since us simply stays on the
branch AB I J as the parameter p increases from a value p < p1 to a value p > p2:
it stays on this branch on the return sweep through the multi-steady state region p1 <

p < p2. Isolas are isolated closed curves of solution branches and can only arise as
solutions of nonlinear equations.

Referring still to Figure 6.12 (c), if us lies on the branch B I it is only possible to
move onto the other stable branch DFG if us is given a finite perturbation so that u
moves into the domain of attraction of the stable steady state on the DFG branch. The
various possible scenarios are now clear.

It is possible to predict quite complex solution behaviour by simply manipulating
the curves, in effect as we have just done. The appearance of multi-steady states is not
difficult to imagine with the right kinetics. Dellwo et al. (1982) present a general theory
which describes analytically the structure of a class of isolas, namely, those which tend
to a point as some parameter tends to a critical value. The question immediately arises
as to whether isolas, for example, can exist in the real world. Isolas have been found in
a variety of genuine practical situations including chemical reactions; an early review
is given by Uppal et al. (1976) with other references in the paper by Gray and Scott
(1986).

A simple model kinetics system has been proposed by Gray and Scott (1983, 1986)
which exhibits, among other things, multi-steady states with mushrooms and isolas: it
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Figure 6.13. Model autocatalytic mechanism
which exhibits multi-steady states with
mushrooms and isolas. The system is a
continuously stirred flow tank reactor (CSTR)
mechanism with Y being produced
autocatalytically and by a simple uncatalysed
process. X and Y are fed into the process and
Y degrades with first-order kinetics. The
mechanism is described by the differential
equation system (6.123). The lowercase
letters x and y denote the concentrations of X
and Y .

involves autocatalysis in a continuously stirred tank reactor (CSTR). It consists of the
following hypothetical reactions involving two reactants X and Y with concentrations x
and y respectively. The specific mechanism is represented schematically in Figure 6.13.

The process in the figure involves the trimolecular autocatalytic step X +2Y → 3Y
and the specific equation system which describes the process is

dx

dt
= k0(x0 − x) − k1xy2 − k3x,

dy

dt
= k0(y0 − y) + k1xy2 + k3x − k2y,

(6.123)

where the k’s are the positive rate constants. An appropriate nondimensionalisation is

u = x

x0
, v = y

x0
, t∗ = tk1x2

0 , c = y0

x0
,

a = k0

k1x2
0

, b = k3

k1x2
0

, d = k2

k1x2
0

,
(6.124)

with which (6.123) become, on omitting the asterisk for notational simplicity, the di-
mensionless system

du

dt
= a(1 − u) − uv2 − bu = f (u, v),

dv

dt
= a(c − v) + uv2 + bu − dv = g(u, v),

(6.125)

which now involve four dimensionless parameters a, b, c and d.
Here we are only interested in the steady states us and vs which are solutions of

f (u, v) = g(u, v) = 0. A little algebra shows that

us(1 + c − us)
2 = a

(
1 + d

a

)2

(1 − us) − bus
(a + d)2

a2
, (6.126)

which is a cubic, namely,
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u3
s − 2(1 + c)u2

s +
[

(1 + c)2 + (a + d)2

a
+ b

(a + d)2

a2

]

us − (a + d)2

a
= 0.

(6.127)

Since there are three changes in sign in the cubic there is thus, using Descartes’ rule
of signs (see Appendix B), the possibility of three positive solutions. Certain analytical
solutions for these can be found asymptotically for large and small values of the param-
eters. The full picture, however, has to be obtained numerically as was done by Gray
and Scott (1986). Typical results are illustrated schematically in Figure 6.14. A good re-
view of this reaction and its complex behaviour together with analytical and numerical
results is given by Gray (1988).

It is, of course, always possible to construct more and more complex solution be-
haviours mathematically and to postulate hypothetical reactions which exhibit them.
So, the key question at this stage is to ask whether there are any real reaction pro-
cesses which exhibit these interesting phenomena, such as mushrooms and isolas. The
inorganic iodate–arsenous acid reaction under appropriate conditions has been shown
experimentally to have the required kinetics. This has been convincingly demonstrated
by Ganapathisubramanian and Showalter (1984) whose model and experimental results
are described below. Although this is not an enzymatic or biological reaction it never-
theless shows that real reaction mechanisms, which have mushroom and isola solution
behaviour, exist. With the richness and complexity of biological processes it would be
unbelievable if such reaction systems did not exist within the biomedical sciences. So,
it is with this conviction in mind that we describe here the elements of this inorganic
reaction and present the relevant experimental results.

Iodate–Arsenous Acid Reaction: Bistability, Mushrooms, Isolas

The iodate–arsenous acid reaction in a continuous flow stirred tank reactor can be de-
scribed by two composite reactions, namely,

IO−
3 + 5I− + 6H+ → 3I2 + 3H2O, (6.128)

I2 + H3AsO3 + H2O → 2I− + H3AsO4 + 2H+. (6.129)

The net reaction, given by the (6.128) + 3 × (6.129) , is

IO−
3 + 3H3AsO3 → I− + 3H3AsO4. (6.130)

The rate of the reaction (6.128) is slow compared with (6.129) and so it is the rate
limiting step in the overall process (6.129). If we denote this rate for (6.128) by R, an
empirical form has been determined experimentally as

R = −d[IO−
3 ]

dt
= (k1 + k2[I−])[I−][H+]2[IO−

3 ]. (6.131)

A simple model reaction mechanism, which quantitatively describes the iodate–arsenous
acid reaction in a continuous flow stirred tank reactor, consists of rate equations for the
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Figure 6.14. The steady states us of (6.125) as a function of the parameter a for various values of b, c
and d . For a fixed c, less than a critical value, and an increasing d from d = 0, the progression of steady
state behaviours is from the mushroom situation (c), through the isola region (b), to the single steady state
situation (a).

Figure 6.15. Computed steady state iodide concentration Xs from (6.135) as a function of k0 + k3. The
continuous lines represent stable solution branches and the dashed lines unstable branches. Parameter values:
k1 = 4.5 × 103 M−3s−1, k2 = 4.5 × 108 M−4s−1, Y0 = 1.01 × 10−3 M , X0 = 8.40 × 10−5 M , [H+] =
7.59 × 10−3 M; (a) k3 = 0, (b) k3 = 1.20 × 10−3s−1. (c) k3 = 1.30 × 10−3s−1, (d) k3 = 1.42 × 10−3s−1.
Compare (a) to (d) respectively with the schematic forms in Figure 6.11 (b) and Figures 6.12 (b), (c) and (a).
(Redrawn from Ganapathisubramanian and Showalter 1984)
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iodide, I−, and iodate, IO−
3 , in (6.130), with appropriate flow terms and decay terms,

given by

d[I−]
dt

= R + k0[I−]0 − (k0 + k3)[I−], (6.132)

d[IO−
3 ]

dt
= −R + k0[IO−

3 ]0 − (k0 + k3)[IO−
3 ], (6.133)

where k0 and k3 are positive constants, [I−]0 and [IO−
3 ]0 are the concentrations in the

inflow and R is given by (6.131).
If we now write

X = [I−], Y = [IO−
3 ], X0 = [I−]0,

Y0 = [IO−
3 ]0, k∗

1 = k1[H+]2, k∗
2 = k2[H+]2,

(6.134)

the steady states Xs and Ys are given by the solutions of

Figure 6.16. Experimentally determined steady state iodide concentrations for the iodate–arsenous acid
reaction as a function of k0 + k3 for different values of k3. Parameter values: X0 = 1.01 × 10−3 M ,
Y0 = 8.40×10−5 M with the flow of [H3AsO3]0 = 4.99×10−3 M; (a) k3 = 0, (b) k3 = 1.17×10−3s−1, (c)
k3 = 9.71×10−4s−1, (d) k3 = 1.37×10−3s−1. Compare with Figures 6.15 (a), (b), (c) and (d) respectively.
(Redrawn from Ganapathisubramanian and Showalter 1984)
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0 = R + k0 X0 − (k0 + k3)X, 0 = −R + k0Y0 − (k0 + k3)Y,

R = (k∗
1 + k∗

2 X)XY.

These give the cubic polynomial for Xs

k∗
2(k0 + k3)X3

s + [k∗
1(k0 + k3) − k∗

2k0(X0 + Y0)]X2
s

+ [(k0 + k3)
2 − k∗

1k0(X0 + Y0)]Xs − k0(k0 + k3)X0 = 0.
(6.135)

Values for k1 and k2 have been determined experimentally and X0 and Y0 and [H+]
can be imposed, and so, from (6.134), k∗

1 and k∗
2 can be determined. Figure 6.15 shows

the positive steady state iodide concentration Xs calculated numerically from the cubic
equation (6.135) as a function of k0 + k3 for different values of k3.

When the above iodate–arsenous acid reaction model is compared with the full re-
action system, good quantitative results are obtained. Figure 6.15 shows that mushroom
and isola multi-steady state behaviour is possible. The final step in demonstrating the
existence of this type of behaviour is experimental confirmation. This has also been
done by Ganapathisubramanian and Showalter (1984), whose results are reproduced
in Figure 6.16. Note the comparison between these experimental results and those ob-
tained with the model mechanism for this iodate–arsenous acid reaction. The results in
Figure 6.16 clearly show the various hysteresis behaviours suggested by Figures 6.11
and 6.12.

Exercises

1 An allosteric enzyme E reacts with a substrate S to produce a product P according
to the mechanism

S + E
k1�

k−1
C1

k2→ E + P,

S + C1
k3�

k−3
C2

k4→ C1 + P,

where the k’s are rate constants and C1 and C2 enzyme–substrate complexes. With
lowercase letters denoting concentrations, and initial conditions s(0) = s0, e(0) =
e0, c1(0) = c2(0) = p(0) = 0, write down the differential equation model based on
the Law of Mass Action. If

ε = e0

s0
� 1, τ = k1e0t, u = s

s0
, vi = ci

e0

show that the nondimensional reaction mechanism reduces to

du

dτ
= f (u, v1, v2), ε

dvi

dτ
= gi (u, v1, v2), i = 1, 2.
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Determine f , g1 and g2 and hence show that for τ 
 ε the uptake of u is governed
by

du

dτ
= −r(u) = −u

A + Bu

C + u + Du2
,

where A, B, C and D are positive parameters.
When k2 = 0 sketch the uptake rate r(u) as a function of u and compare it with

the Michaelis–Menten uptake.

2 Two dimensionless activator–inhibitor mechanisms have reaction kinetics described
by

(i)
du

dt
= a − bu + u2

v
,

dv

dt
= u2 − v,

(ii)
du

dt
= a − u + u2v,

dv

dt
= b − u2v,

where a and b are positive constants. Which is the activator and which the inhibitor
in each of (i) and (ii)? What phenomena are indicated by the nonlinear terms? Sketch
the null clines. Is it possible to have positive multi-steady states with these kinetics?
What can you say if substrate inhibition is included in (i); that is, u2/v is replaced
by u2/[v(1 + K u2)].

3 A gene product with concentration g is produced by a chemical S, is autocatalysed
and degrades linearly according to the kinetics equation

dg

dt
= s + k1

g2

1 + g2
− k2g = f (g; s),

where k1 and k2 are positive constants and s = [S] is a given concentration. First
show that if s = 0 there are two positive steady states if k1 > 2k2, and determine
their stability. Sketch the reaction rate dg/dt as a function of g for s = 0 (that is,
f (g; 0)). By considering f (g; s) for s > 0 show that a critical value sc exists such
that the steady state switches to a higher value for all s > sc. Thus demonstrate
that, if g(0) = 0 and s increases from s = 0 to a sufficiently large value and then
decreases to zero again, a biochemical switch has been achieved from g = 0 to
g = g2 > 0, which you should find.

4 Consider the reaction system whereby two reactants X and Y degrade linearly and
X activates Y and Y activates X according to

dx

dt
= k1

y2

K + y2
− k2x,

dx

dt
= h1

x2

H + x2
− h2 y,
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where x = [X ], y = [Y ], and k1, k2, h1, h2, K and H are positive constants.
Nondimensionalise the system to reduce the relevant number of parameters. Show
(i) graphically and (ii) analytically that there can be two or zero positive steady states.
[Hint for (ii): use Descartes’ Rule of Signs (see Appendix B).]

5 If the reaction kinetics f(u) in a general mechanism

du
dt

= f(u)

is a gradient system, that is,

f(u) = ∇u F(u),

which is guaranteed if curl f(u) = 0, show that the solution u cannot exhibit limit
cycle behaviour. [Hint: Use an energy method; that is, first multiply the system by
du/dt .]



7. Biological Oscillators and Switches

7.1 Motivation, Brief History and Background

Although living biological systems are immensely complex, they are at the same time
highly ordered and compactly put together in a remarkably efficient way. Such systems
concisely store the information and means of generating the mechanisms required for
repetitive cellular reproduction, organisation, control and so on. To see how efficient
they can be you need only compare the information storage efficiency per weight of
the most advanced computer chip with, say, the ribonucleic acid molecule (mRNA) or
a host of others: we are talking here of factors of the order of billions. This chapter,
and the next two, are mainly concerned with oscillatory processes. In the biomedical
sciences these are common, appear in widely varying contexts and can have periods
from a few seconds to hours to days and even weeks. We consider some in detail in
this chapter, but mention here a few others from the large number of areas of current
research involving biological oscillators.

The periodic pacemaker in the heart is, of course, an important example, which is
touched on in Chapter 9. The book by Keener and Sneyd (1998) dicsusses this aspect at
length: it is an excellent introduction to mathematical models in physiology in general,
covering a wide spectrum of topics. The approximately 24-hour periodic emergence of
fruit flies from their pupae might appear to be governed by the external daily rhythm,
but this is not the case; see the elegant books by Winfree (1987, 2000) for a detailed ex-
position of biological clocks and biological time in general. We briefly discuss this fruit
fly phenomenon in Chapter 9. There is the now classical work of Hodgkin and Huxley
(1952) on nerve action potentials, which are the electrical impulses which propagate
along a nerve fibre. This is now a highly developed mathematical biology area (see, for
example, the review article by Rinzel 1981 and the book by Keener and Sneyd 1998).
Under certain circumstances such nerve fibres exhibit regular periodic firing. The propa-
gation of impulses in neurons normally relies on a threshold stimulus being applied, and
is an important practical example of an excitable medium. We discuss a major model
for the regular periodic firing behaviour and threshold behaviour in Section 7.5 below
and its application to the wave phenomena in Chapter 1, Volume II.

Breathing is a prime example of another physiological oscillator, here the period is
of the order of a second. There are many others, such as certain neural activity in the
brain, where the cycles have very small periods. A different kind of oscillator is that
observed in the glycolytic pathway. Glycolysis is the process that breaks down glucose
to provide the energy for cellular metabolism; oscillations with periods of several min-



7.1 Motivation, Brief History and Background 219

utes are observed in the concentrations of certain chemicals in the process. The book on
biochemical oscillations and cellular rhythms by Goldbeter (1996) gives a thorough and
extensive discussion of this as well as other phenomena; he also discusses the molecu-
lar basis for chaotic behaviour. Blood testosterone levels in man are often observed to
oscillate with periods of the order of 2–3 hours. In Section 7.6 we discuss the modelling
of this physiological process and relate it to the practice of chemical castration for a va-
riety of reasons, one of which is to control the growth of prostate tumours. This model
is also related to recent work on a male contraceptive pill.

At certain stages in the life cycle of the cellular slime mould, Dictyostelium dis-
coideum, the cells emit the chemical cyclic-AMP periodically, with a period of a few
minutes. This important topic has been extensively studied theoretically and experimen-
tally; see, for example, the relevant chapter on the periodic aspects in Segel (1984), the
models proposed by Martiel and Goldbeter (1987), Monk and Othmer (1989) and the
book by Goldbeter (1996). Othmer and Schaap (1999) give an extensive review which
covers the major aspects of this important area of signal transduction and the properties
of this slime mould in general. Wave phenomena associated with this slime mould are
also rich in structure as we shall show in Chapter 1, Volume II; the review by Othmer
and Schaap (1999) particularly deals with such spatial wave phenomena. The process of
regular cell division in Dictyostelium, where the period is measured in hours, indicates
a governing biological oscillator of some kind.

All of the above examples are different to the biological clocks associated with
circadian or daily rhythms, which are associated with external periodicities, in that they
are more reasonably described as autonomous oscillators. Limit cycle oscillators, of the
kind we consider here, must of course be open systems from thermodynamic arguments,
but they are not periodic by virtue of some external periodic forcing function.

Since the subject of biological oscillators is now so large, it is quite impossible to
give a remotely comprehensive coverage of the field here. Instead we concentrate on a
few general results and some useful simple models which highlight different concepts;
we analyse these in detail. We also discuss some of the areas and mechanisms of prac-
tical importance and current interest. A knowledge of these is essential in extending
the mathematical modelling ideas to other situations. We have already seen periodic
behaviour in population models such as discussed in Chapters 1–3, and, from Chap-
ter 6, that it is possible in enzyme kinetics reactions. Other well-known examples, not
yet mentioned, are the more or less periodic outbreaks of a large number of common
diseases; we shall briefly touch on these in Chapter 10 and give references there.

The history of oscillating reactions really dates from Lotka (1910) who put forward
a theoretical reaction which exhibits damped oscillations. Later Lotka (1920, 1925) pro-
posed the reaction mechanism which now carries the Lotka–Volterra label and which
we discussed in its ecological context in Chapter 3 and briefly in its chemical context in
the last chapter. Experimentally oscillations were found by Bray (1921) in the hydrogen
peroxide–iodate ion reaction where temporal oscillations were observed in the concen-
trations of iodine and rate of oxygen evolution. He specifically referred to Lotka’s early
paper. This interesting and important work was dismissed and widely disbelieved since,
among other criticisms, it was mistakenly thought that it violated the second law of
thermodynamics. It doesn’t of course since the oscillations eventually die out, but they
only do so slowly.
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The next major discovery of an oscillating reaction was made by Belousov (1951,
1959), the study of which was continued by Zhabotinskii (1964) and is now known
as the Belousov–Zhabotinskii reaction. This important paradigm reaction is the subject
matter of Chapter 8. There are now many reactions which are known to admit peri-
odic behaviour; the book of articles edited by Field and Burger (1985) describes some
of the detailed research in the area, in particular that associated with the Belousov–
Zhabotinskii reaction. Other areas are treated in the books by Goldbeter (1996) and
Keener and Sneyd (1998).

In the rest of this section we comment generally about differential equation systems
for oscillators and in the following section we describe some special control mecha-
nisms, models which have proved particularly useful for demonstrating typical and un-
usual behaviour of oscillators. They are reasonable starting points for modelling real and
specific biological phenomena associated with periodic behaviour. Some of the remarks
are extensions or generalisations of what we did for two-species systems in Chapters 3
and 6.

The models for oscillators which we are concerned with here, with the exception
of that in Section 7.6, all give rise to systems of ordinary differential equations (of the
type (3.43) studied in Chapter 3) for the concentration vector u(t); namely,

du
dt

= f(u), (7.1)

where f describes the nonlinear reaction kinetics, or underlying biological oscillator
mechanism. The mathematical literature on nonlinear oscillations is large and daunting,
but much of it is not of relevance to real biological modelling. Even though quite old, a
good practical review from a mathematical biology point of view, is given by Howard
(1979). Mostly we are interested here in periodic solutions of (7.1) such that

u(t + T ) = u(t), (7.2)

where T > 0 is the period. In the phase space of concentrations this solution trajectory
is a simple closed orbit, γ say. If u0(t) is a limit cycle solution then it is asymptotically
stable (globally) if any perturbation from u0, or γ , eventually tends to zero as t → ∞.

It is always the case with realistic, qualitative as well as quantitative, biological
models that the differential equations involve parameters, generically denoted by λ, say.
The behaviour of the solutions u(t; λ) varies with the values or ranges of the parameters
as we saw, for example, in Chapter 3. Generally steady state solutions of (7.1), that is,
solutions of f(u) = 0, are stable to small perturbations if λ is in a certain range, and
become unstable when λ passes through a critical value λc, a bifurcation point. When
the model involves only two dependent variables the analysis of (7.1) can be carried out
completely in the phase plane (see Appendix A) as we saw in Chapters 3 and 6. For
higher-order systems the theory is certainly not complete and each case usually has to
be studied individually. A major exception is provided by the Hopf bifurcation theorem,
the results for which strictly hold only near the bifurcation values. A basic, useful and
easily applied result of the Hopf theorem is the following.
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Let us suppose that u = 0 is a steady state of (7.1) and that a linearization about
it gives a simple complex conjugate pair of eigenvalues α(λ) = Re α ± i Im α. Now
suppose this pair of eigenvalues has the largest real part of all the eigenvalues and is
such that in a small neighbourhood of a bifurcation value λc, (i) Re α < 0 if λ < λc,
(ii) Re α = 0 and Im α �= 0 if λ = λc and (iii) Re α > 0 if λ > λc. Then, in a small
neighbourhood of λc, λ > λc the steady state is unstable by growing oscillations and,
at least, a small amplitude limit cycle periodic solution exists about u = 0. Furthermore
the period of this limit cycle solution is given by 2π/T0 where T0 = Im [α(λc)]. The
value λc is a Hopf bifurcation value. The theorem says nothing about the stability of
such limit cycle solutions although in practice with real biological systems they usually
are when numerically simulated.

7.2 Feedback Control Mechanisms

It is well documented that in a large number of cell cultures some of the enzymes in-
volved show periodic increases in their activity during division, and these reflect pe-
riodic changes in the rate of enzyme synthesis; Goldbeter (1996) has some examples
of this. The article by Tyson (1979, see also 1983) lists several specific cases where
this happens. Regulatory mechanisms require some kind of feedback control. In a clas-
sic paper, mainly on regulatory mechanisms in cellular physiology, Monod and Jacob
(1961) proposed several models which were capable of self-regulation and control and
which are known to exist in bacteria. One of these models suggests that certain metabo-
lites repress the enzymes which are essential for their own synthesis. This is done by
inhibiting the transcription of the molecule DNA to messenger RNA (mRNA), which is
the template which makes the enzyme. Goodwin (1965) proposed a simple model for
this process which is schematically shown in Figure 7.1 in the form analysed in detail
by Hastings et al. (1977).

A generalisation of Goodwin’s (1965) model which also reflects a version of the
process in Figure 7.1 is

d M

dt
= V

D + Pm − aM,

d E

dt
= bM − cE, (7.3)

d P

dt
= d E − eP,

where M , E and P represent respectively the concentrations of the mRNA, the enzyme
and the product of the reaction of the enzyme and a substrate, assumed to be available
at a constant level. All of V , K , m (the Hill coefficient) and a, b, c, d and e are constant
positive parameters. Since DNA is externally supplied in this process we do not need
an equation for its concentration. With the experience gained from Chapter 6 we inter-
pret this model (7.3) as follows. The creation of M is inhibited by the product P and is
degraded according to first-order kinetics, while E and P are created and degraded by
first-order kinetics. Clearly more sophisticated kinetics could reasonably be used with
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Figure 7.1. Schematic control system for the production of an enzyme (E) according to the model system
(7.3). Here, the enzyme combines with the substrate to produce a product (P) which represses the transcrip-
tion of DNA to mRNA (M), the template for making the enzyme.

the methods described in Chapter 6. By considering the stability of the steady state,
Griffith (1968) showed that oscillations are not possible unless the Hill coefficient m in
the first of (7.3) is sufficiently large (see Exercise 4), roughly greater than 8—an unnat-
urally high value. For m in this range the system does exhibit limit cycle oscillations.

A more biologically relevant modification is to replace the P-equation in (7.3) by

d P

dt
= d E − eP

k + P
.

That is, degradation of the product saturates for large P according to Michaelis–Menten
kinetics. With this in place of the linear form, limit cycle oscillations can occur for low
values of the Hill coefficient m, even as low as m = 2.

The concept of a sequence of linked reactions is a useful one and various mod-
ifications have been suggested. In one, which has been widely used and studied, the
number of reactions has been increased generally to n and the feedback function made
more more general and hence widely applicable. In a suitable nondimensional form the
system is

du1

dt
= f (un) − k1u1,

dur

dt
= ur−1 − kr ur , r = 2, 3, . . . , n,

(7.4)

where the kr > 0 and f (u), which is always positive, is the nonlinear feedback function.
If f (u) is an increasing function of u, f ′(u) > 0, (7.4) represents a positive feedback
loop, while if f (u) is a monotonic decreasing function of u, f ′(u) < 0, the system rep-
resents a negative feedback loop or feedback inhibition. Positive feedback loops are not
common metabolic control mechanisms, whereas negative ones are; see, for example,
Tyson and Othmer (1978) and Goldbeter (1996). Yagil and Yagil (1971) suggested spe-
cific forms for f (u) for several biochemical situations.

Steady state solutions of (7.4) are given by

f (un) = k1k2 . . . knun,

un−1 = knun, . . . , u1 = k2k3 . . . knun
(7.5)
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the first of which is most easily solved graphically by plotting f (u) and noting the
intersections with the straight line k1k2 . . . knu. With positive feedback functions f (u),
multiple steady states are possible whereas with feedback inhibition there is always a
unique steady state (see Exercise 3).

Although with higher-dimensional equation systems there is no equivalent of the
Poincaré–Bendixson theorem for the two-dimensional phase plane (see Appendix A),
realistic systems must have some enclosing domain with boundary B, that is, a confined
set, such that

n · du
dt

< 0 for u on B, (7.6)

where n is the outward unit normal to B.
In the case of the more important negative feedback systems of the type (7.4),

the determination of such a domain is quite simple. As we noted, we are, of course,
only interested in nonnegative values for u. Consider first the two-species case of (7.4),
namely,

du1

dt
= f (u2) − k1u1,

du2

dt
= u1 − k2u2,

where f (u2) > 0 and f ′(u2) < 0. Consider first the rectangular domain bounded by
u1 = 0, u2 = 0, u1 = U1 and u2 = U2, where U1 and U2 are to be determined. On the
boundaries

u1 = 0, n · du
dt

= −du1

dt
= − f (u2) < 0 for all u2 ≥ 0,

u2 = 0, n · du
dt

= −du2

dt
= −u1 < 0 for u1 > 0,

u1 = U1, n · du
dt

= f (u2) − k1U1 < 0

if U1 >
f (u2)

k1
for all 0 ≤ u2 ≤ U2 ⇒ U1 >

f (0)

k1

u2 = U2, n · du
dt

= u1 − k2U2 < 0

if U2 >
u1

k2
for all 0 < u1 ≤ U1.

(7.7)

If we now choose U1 and U2 to satisfy the inequalities

U1 >
f (0)

k1
, U2 >

U1

k2
(7.8)

then (7.7) shows that there is a confined set B on which (7.6) is satisfied. We can always
find such U1 and U2 when f (u) is a monotonic decreasing function of u. Note that the
positive steady state, given by the unique solution of
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u1 = k2u2, f (u2) = k1k2u2

always lies inside the domain B defined by (7.7) and (7.8), and, since f ′(u) < 0, it is
always linearly stable, since the eigenvalues of the stability (or community) matrix are
both negative. Thus the two-species model cannot admit limit cycle oscillations.

It is now clear how to generalise the method to determine a domain boundary B
on which (7.6) is satisfied for an n-species negative feedback loop. The appropriate
confined set is given by the box bounded by the planes ur = 0, r = 1, 2, . . . , n and
ur = Ur , r = 1, 2, . . . , n, where any Ur , r = 1, . . . , n satisfying

U1 >
f (0)

k1
, U2 >

U1

k2
, . . . , Un >

U1

k1k2 . . . kn
(7.9)

will suffice. As in the two-species case the steady state always lies inside such a bound-
ary B.

Whether or not such systems with n ≥ 3 admit periodic solutions is more difficult
to determine than in the two-species case (see Exercise 4). As the order of the system
goes up the possibility of periodic solutions increases. If we consider the oscillator (7.3)
or, in its dimensionless form (7.4) for u1, u2, u3 with f (u3) = 1/(1 + u3), it can be
shown that the steady state is always stable (Exercise 4). If we have f (u3) = 1/(1+um

3 )

then (Exercise 4), using the Routh–Hurwitz conditions on the cubic for the eigenvalues
of the stability matrix, the steady state is only unstable if m > 8, which, as we have
mentioned, is an unrealistically high value for the implied cooperativity. As the number
of reactions, n, goes up, Tyson and Othmer (1978) have shown that the steady state
goes unstable if the cooperativity m and the length of the feedback loop n are such that
m > m0(n) = secn(π/n). When n = 3 this gives m = 8 as above: some values for
higher n are n = 4, m = 4; n = 10, m = 1.65 and n → ∞, m → 1.

By linearising (7.4) about the steady state (7.5), conditions on the function and pa-
rameters can be found such that limit cycle periodic solutions exist: MacDonald (1977),
for example, used bifurcation theory while Rapp (1976) developed a numerical search
procedure for the full nonlinear system and gave quantitative estimates for the period of
oscillation.

We can get some analytical approximations for the period of the solutions, when
they exist, using a method suggested by Tyson (1979). First we use a result pointed out
by Hunding (1974), namely, that most of the kinetics parameters k1, k2, . . . , kn must
be approximately equal or oscillatory solutions will not be possible for low values of
m. To see this, first note that each kr is associated with the inverse of the dimensionless
half-life time of ur . Suppose, for example, that one of the constants, say ks , is much
larger than all the others, and choose a time t1 such that t1 
 1/ks and t1 � 1/kr for
all r �= s. As the system evolves over a time interval 0 ≤ t ≤ t1, since kr t1 � 1 for all
r �= s, from (7.4) us−1 does not change much in this time interval. So, the solution of
the ordinary differential equation for us(t) from (7.4) with us−1 constant, is

us(t) ≈ us(0) exp [−kst] + us−1

ks
{1 − exp [−kst]}, 0 ≤ t ≤ t1.
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But, since kst1 
 1, the last equation gives us(t) ≈ us−1/ks which means that the sth
species is essentially at its pseudo-steady state (since dus/dt = us−1 − ksus ≈ 0) over
the time interval that all the other species change appreciably. This says that the sth
species is effectively not involved in the feedback loop process and so the order of the
loop is reduced by one to n − 1.

Now let K be the smallest of all the kinetics parameters and denote the half-life
of uK by H ; this is the longest half-life of all the species. Using the above result, the
effective length of the feedback loop is equal to the number N of species whose half-
lives are all roughly the same as H or, what is the same thing, have rate constants k ≈ K .
All the other reactions take place on a faster timescale and so are not involved in the
reaction scheme.

Suppose now we have a periodic solution and consider one complete oscillation
in which each of the species undergoes an increase, then a decrease, to complete the
cycle. Start off with u1 which first increases, then u2, then u3 and so on to uN . Then
u1 decreases, then u2 and so on until uN decreases. There is thus a total of 2N steps
involved in the oscillation with each increase and decrease taking approximately the
same characteristic time 1/K . So, the approximate period T of the oscillation is T ≈
2N/K . A more quantitative result for the period has been given by Rapp (1976) who
showed that the frequency 	 is given by

	 = K tan
( π

N

)
⇒ T = 2π

	
,

which reduces to T ≈ 2N/K for large N .
The dynamic behaviour of the above feedback control circuits, and generalisations

of them, in biochemical pathways have been treated in depth by Tyson and Othmer
(1978), and from a more mathematical point of view by Hastings et al. (1977). The
latter prove useful results for the existence of periodic solutions for systems with more
general reactions than the first-order kinetics feedback loops we have just considered.

It is encouraging from a practical point of view that it is very often the case that
if (i) a steady state becomes unstable by growing oscillations at some bifurcation value
of a parameter, and (ii) there is a confined set enclosing the steady state, then a limit
cycle oscillation solution exists. Of course in any specific example it has to be demon-
strated, and if possible proved, that this is indeed the case. But, as this can often be
difficult to do, it is better to try predicting from experience and heuristic reasoning and
then simulate the system numerically rather than wait for a mathematical proof which
may not be forthcoming. An unstable steady state with its own confined set (7.6), al-
though necessary, are not sufficient conditions for an oscillatory solution of (7.1) to
exist. One particularly useful aspect of the rigorous mathematical treatment of Hast-
ings et al. (1977) is that it gives some general results which can be used on more re-
alistic feedback circuits which better mimic real biochemical feedback control mecha-
nisms.

Tyson (1983) proposed a negative feedback model similar to the above to explain
periodic enzyme synthesis. He gives an explanation as to why the period of synthesis is
close to the cell cycle time when cells undergo division.



226 7. Biological Oscillators and Switches

7.3 Oscillators and Switches Involving Two or More Species:
General Qualitative Results

We have already seen in Chapter 3 that two-species models of interacting populations
can exhibit limit cycle periodic oscillations. Here we derive some general results as
regards the qualitative character of the reaction kinetics which may exhibit such periodic
solutions.

Let the two species u and v satisfy reaction kinetics given by

du

dt
= f (u, v),

dv

dt
= g(u, v), (7.10)

where, of course, f and g are nonlinear. Steady state solutions (u0, v0) of (7.10) are
given by

f (u0, v0) = g(u0, v0) = 0, (7.11)

of which only the positive solutions are of interest. Linearising about (u0, v0) we have,
in the usual way (see Chapter 3),






d(u − u0)

dt
d(v − v0)

dt




 = A

(
u − u0
v − v0

)
, A =

(
fu fv
gu gv

)

u0,v0

. (7.12)

The linear stability of (u0, v0) is determined by the eigenvalues λ of the stability matrix
A, given by

| A − λI | = 0 ⇒ λ2 − (trA)λ + | A | = 0.

⇒ λ = 1

2

{
trA ± [(trA)2 − 4| A |]1/2

}
.

(7.13)

Necessary and sufficient conditions for stability are

trA = fu + gv < 0, | A | = fu gv − fvgu > 0, (7.14)

where here, and in what follows unless stated otherwise, the derivatives are evaluated at
the steady state (u0, v0).

Near the steady state S(u0, v0) in the (u, v) phase plane the null clines f (u, v) = 0
and g(u, v) = 0 locally can intersect in different ways, for example, as illustrated in
Figure 7.2. Note that Figure 7.2(b) is effectively equivalent to Figure 7.2(a): it is simply
Figure 7.2(a) rotated. Figure 7.2(c) is qualitatively different from the others.

Let us assume that the kinetics f (u, v) and g(u, v) are such that (7.10) has a con-
fined set in the positive quadrant. Then, by the Poincaré–Bendixson theorem, limit cy-
cle solutions exist if (u0, v0) is an unstable spiral or node, but not if it is a saddle point
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Figure 7.2. Local behaviour of the reaction null clines f = 0, g = 0 at a steady state S(u0, v0).

(see Appendix A). For an unstable node or spiral to occur, we require

trA > 0, | A | > 0, (trA)2
{
>

<
4| A | ⇒ unstable

{
node
spiral

. (7.15)

Consider now Figure 7.2(a). At the steady state (u0, v0) on each of f = 0 and
g = 0 the gradient dv/du > 0 with dv/du]g=0 > dv/du] f =0, so

dv

du

]

g=0
= −gu

gv

>
dv

du

]

f =0
= − fu

fv
> 0

⇒ | A | = fu gv − fvgu > 0,

provided fv and gv have the same sign. Since dv/du > 0 it also means that at S, fu

and fv have different signs, as do gu and gv . Now from (7.13), trA > 0 requires at least
that fu and gv are of opposite sign or are both positive. So, the matrix A (the stability
matrix or community matrix in interaction population terms) in (7.12) has terms with
the following possible signs for the elements,

A =
(+ −

+ −
)

or

(− +
− +

)
(7.16)

with each of which it is possible to have tr A > 0. We have already shown that | A | > 0.
To proceed further we need to know individually the signs of fu , fv , gu and gv at the
steady state. With Figure 7.2(a) there are 4 possibilities as illustrated in Figure 7.3.
These imply that the elements in the matrix A in (7.12) have the following signs,

A =
(− +

+ −
)

(a)

or

(− +
− +

)

(b)

or

(+ −
+ −

)

(c)

or

(+ −
− +

)

(d)

. (7.17)

For example, to get the sign of fu at S in Figure 7.3(a) we simply note that as we move
along a line parallel to the u-axis through S, f decreases since f > 0 on the lower
u-side and f < 0 on the higher u-side. If we now compare these forms with those in
(7.16) we see that the only possible forms in (7.17) are (b) and (c). With (d), | A | < 0
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Figure 7.3. The various possible signs of the kinetics functions f (u, v) and g(u, v) on either side of their
null clines for the case illustrated in Figure 7.2(a). The arrows indicate, qualitatively, directions of typical
trajectories in the neighbourhood of the steady state S.

which makes S a saddle point (which is unstable, of course) and so there can be no limit
cycle solution enclosing S (see Appendix A).

For any given kinetics functions it is easy to determine from the null clines the
qualitative behaviour in the neighbourhood of a steady state, and hence the signs in the
matrix A in (7.12). If the null clines look locally like those in Figures 7.2(b) and (c)
similar results can easily be obtained for the allowable type of kinetics which can admit
periodic solutions for (7.10).

Let us now consider two typical examples which illustrate the qualitative approach
we have just described. Let us suppose a parameter λ of the kinetics is such that the null
clines for (7.10) look like those in Figure 7.4 for different ranges of the parameter λ.
(This is in fact the null cline situation for the real biological oscillator, Thomas 1975,
briefly discussed in Chapter 6, Section 6.7.) To be specific we choose specific signs for f
and g on either side of the null clines as indicated (these are in accord with the practical
Thomas 1975 kinetics situation). Note that there is a confined set on the boundary of
which the vector (du/dt, dv/dt) points into the set: one such set is specifically indicated
by ABC D A in Figure 7.4(a).

Let us now consider each case in Figure 7.4 in turn. Figure 7.4(a) is equivalent to
that in Figure 7.2(c). Here, in the neighbourhood of S,

dv

du

]

f =0
= − fu

fv
< 0, fu < 0, fv < 0,

dv

du

]

g=0
= −gu

gv

> 0, gu > 0, gv < 0.
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Figure 7.4. Qualitative form of the null clines for a specimen kinetics in (7.10) as a parameter λ varies:
λ1 �= λ2 �= λ3 �= λ4. With the signs of f and g as indicated, there is a confined set for (7.10): it is, for
example, the rectangular box ABC D A as indicated in (a).

So, the stability matrix A in (7.12) has the signs

A =
(− −

+ −
)

⇒ trA < 0, | A | > 0

which does not correspond to any of the forms in (7.16); from (7.13), Re λ < 0 and so
the steady state in Figure 7.4(a) is always stable and periodic solutions are not possi-
ble for (7.10) in this situation. This case, however, is exactly the same as that in Fig-
ure 7.4(c) and so the same conclusion also holds for it. By a similar analysis we get for
Figure 7.4(b)

A =
(+ −

+ −
)

which is the same as (c) in (7.17), and is one of the possible forms for (7.10) to admit
periodic solutions.

If we now consider the multi-steady state situation in Figure 7.4(d), we have already
dealt with S1 and S3, which are the same as in Figures 7.4(a) and (c)—they are always
linearly stable. For the steady state S2 we have

fu > 0, fv < 0, gu > 0, gv < 0

0 <
dv

du

]

g=0
<

dv

du

]

f =0
⇒ 0 < −gu

gv

< − fu

fv

⇒ | A | = fu gv − fvgu < 0,
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Figure 7.5. Threshold phenomena for various kinetics for (7.10). In (c) a suitable perturbation from one
linearly stable steady state can effect a permanent change to the other stable steady state.

which, from (7.15), shows that the steady state is a saddle point, and although it means
S2 is unstable, it is the type of singularity which does not admit periodic solutions for
(7.10) according to the Poincaré–Bendixson theorem (Appendix A).

This last case, Figure 7.4(d), is of considerable general importance. Recall the
threshold phenomenon described in the last chapter in Section 6.7. There we saw that
in a situation similar to that in Figures 7.4(a) and (c) that, although the steady state
is linearly stable, if a perturbation is sufficiently large the values of u and v can un-
dergo large perturbations before returning to the steady state (refer to Figure 6.10). This
phenomenon is illustrated in Figures 7.5(a) and (b).

Now consider Figure 7.4(d). S1 and S3 are respectively equivalent to the S in Fig-
ures 7.5(a) and (b). We now see, in Figure 7.5(c), that if we perturb (u, v) from say, S1
to P1, the solution trajectory will be qualitatively as shown. Now, instead of returning to
S1 the solution moves to S3, the second stable steady state. In this way a switch has been
effected from S1 to S3. In a similar way a switch can be effected from S3 to S1 by, for
example, a perturbation from the steady state S3 to P3. It is possible that a parameter in
the kinetics function g, say, can be varied in such a way that the null cline is translated
vertically as the parameter is, for example, increased. In this case it is possible for the
system to exhibit hysteresis such as we discussed in detail in Chapter 1, Section 1.2
and Chapter 6, Section 6.7. If the reaction kinetics give rise to mushrooms and isolas,
even more baroque dynamic, threshold and limit cycle behaviour is possible. Biological
switches, not only those exhibiting hysteresis and more exotic behaviour, are of consid-
erable importance in biology. We discuss one important example below in Section 7.5.
We also see a specific example of its practical importance in the wave phenomenon ob-
served in certain eggs after fertilization, a process and mechanism for which is discussed
in detail in Chapter 13, Section 13.6 below and Chapter 6, Volume II, Section 6.8.

It is clear from the above that the qualitative behaviour of the solutions can often
be deduced from a gross geometric study of the null clines and the global phase plane
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behaviour of trajectories. We can carry this approach much further, as has been done,
for example by Rinzel (1986), to predict even more complex solution behaviour of such
differential equation systems. Here I only want to give a flavour of what can be found.

Let us suppose we have a general system governed by

du
dt

= f(u, α),
dα

dt
= εg(u, α), (7.18)

where 0 < ε � 1, u is a vector of concentrations and α is a parameter, which is
itself governed by an equation, but which changes only slowly. The fast subsystem
of (7.18) is the O(1) system, as ε → 0, in which α is simply a constant parameter,
since dα/dt ≈ 0. The slow dynamics governs the change in α with time. We analyse
some specific systems like this in the following chapter, when we discuss relaxation
oscillators.

Suppose a uniform steady state u0 depends on α as indicated schematically in Fig-
ure 7.6(a). That is, there is a region α1 < α < α2 where three possible steady states u0
exist; recall also the discussion in Section 6.7 in the last chapter. To be more specific let
us suppose that α varies periodically in such a way that in each cycle it sweeps back and
forth through the window which gives three solutions for u0, the one on the dashed line
in Figure 7.6(a) being unstable as to be expected. At the start suppose α = α1 and u0 is
at A in Figure 7.6(a). Now as α increases, u0 slowly varies until α passes through α2.
At α2, u0 jumps discontinuously from B to C , after which it again varies slowly with
α. On the return α-trip, u0 remains on the lower branch of the S-curve until it reaches
D, where it jumps up to A again. The limit cycle behaviour of this system is illustrated
schematically in Figure 7.6(b). The rapidly varying region is where u drops from B
to C and increases from D to A. This is a typical relaxation oscillator behaviour; see
Chapter 8, Section 8.4 below.

The fast dynamics subsystem in (7.18) may, of course, have as its steady state
a periodic solution, say, uper. Now the parameter α affects an oscillatory solution. A
relevant bifurcation diagram is then one which shows, for example, a transition from
one oscillation to another. Figure 7.7(a) illustrates such a possibility. The branch AB
represents, say, a small amplitude stable limit cycle oscillation around u0 for a given α.

Figure 7.6. (a) Schematic steady state u0 dependence on the parameter α: steady states on the dashed line
are unstable. (b) Typical limit cycle behavior of u if α slowly varies in a periodic way. The oscillation is
described as a relaxation oscillator: that is, there are slowly varying sections of the solution interspersed with
rapidly varying regions.
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Figure 7.7. (a) Schematic bifurcation for periodic solutions of the fast dynamics subsystem of (7.18) as α

varies periodically. The dashed lines are unstable branches. (b) Typical periodic behaviour as α slowly varies
in a periodic way back and forth through the (α1, α2) window, for the bifurcation picture in (a). (c) Another
example of a periodic solution bifurcation diagram for the subsystem of (7.18) as α varies. (d) Qualitative
periodic solution behaviour as α varies periodically through α1 and α2 in (c). These are examples of ‘periodic
bursting.’

Solutions on the branch BC are unstable. Now as α increases there is a slow variation in
the solution until it passes through α2 at B, after which the periodic solution undergoes
a bifurcation to a larger amplitude oscillation with bounds for u on the curves E F
and H I . The transition from one solution type to another is fast, as in the relaxation
oscillator situation in Figure 7.6. Now let α decrease. The bifurcation to the AB branch
now occurs at D, where α = α1. So, as α varies periodically such that it includes a
window with α < α1 and α > α2, the solution behaviour will be qualitatively like that
shown in Figure 7.7(b).

Figure 7.7(c) shows another possible example. The line AB represents a nonoscilla-
tory solution which bifurcates for α = α0 to a periodic solution at B. These branches ter-
minate at D and C , where α = α2. The branch E F is again a uniform stable steady state.
Suppose we now consider α to vary periodically between α > α2 and α0 < α < α1. To
be specific, let us start at F in Figure 7.7(c). As α decreases we move along the branch
F E ; that is, the uniform steady state uss varies slowly. At E , where α = α1, the uniform
steady state bifurcates to a periodic solution on the branches B D and BC . Now as α

increases the periodic solution remains on these branches until α reaches α2 again, after
which the solution jumps down again to the homogeneous steady state branch E F . A
typical time behaviour for the solution is illustrated in Figure 7.7(d). Both this behaviour
and that in Figure 7.7(b) are described as ‘periodic bursting.’ Keener and Sneyd (1998)
devote a chapter to this phenomenon and describe some specific models of biological
examples where it occurs.
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The complexity of solution behaviour of such systems (7.18) can be spectacular.
The specific behaviour just described in Figures 7.6 and 7.7 has been found in models
for real biological systems; an example of the former is in the following chapter, while
qualitatively similar curves to those in Figure 7.7 have been found by Rinzel (1985).
The system studied by Rinzel (1985) is specifically related to the model described be-
low in Section 7.5 on neural periodic behaviour. The model system given by (6.125) in
Section 6.7 in the last chapter, and the iodate–arsenous model reaction scheme (6.132)
and (6.133), exhibit comparable solution behaviour but with the potential for even more
complex dynamic phenomena. Othmer and Schaap (1999) discuss the kinetics (firmly
based on the biology) associated with cyclic-AMP emission by cells of the slime mould
Dictyostelium discoideum; see also the article by Dallon and Othmer (1997) who put
forward a discrete cell model for its adaptive signalling. This slime mould exhibits
some remarkable complex dynamics. Decroly and Goldbeter (1987) considered a model
3-variable system associated with cyclic-AMP emission by the cells of Dictyostelium
discoideum as a vehicle to demonstrate the transition from simple to complex oscillatory
behaviour. As well as obtaining increasingly complex patterns of bursting they showed
period doubling leading to chaos; see also Goldbeter (1996).

Figure 7.7 shows some of the complex effects which appear when oscillators inter-
act or when reaction schemes have fast and slow subschemes. This is mathematically
a very interesting and challenging field and one of continuing research. We consider in
some detail some important aspects of oscillator interaction in Chapter 9. In Chapter 12
we discuss another important and quite different aspect of interacting oscillations.

Canards

A canard is the word associated with oscillatory systems which undergo sudden ma-
jor changes in the amplitude and period of the oscillatory solution as some parameter
passes through a narrow range of values. Canards were first discussed in association
with the van der Pol equation by Benoit et al. (1981) and have been studied since in a
variety of applications. Canard systems give rise to interesting and sometimes baroque
dynamical behaviour. The discovery of canards in relatively simple chemical reaction
systems stems from the second half of the 1980’s; one is the two-variable Oregonator
(Brøns and Bar-Eli 1991), a system we discuss in some detail in Chapter 8.

Canards were found by Gáspár and Showalter (1990) in the oscillatory iodate–
sulphite–ferrocyanide reaction, known as the EOB reaction which was discovered by
Edblom and Epstein (1986). The analysis of these sytems can be quite complicated and
analytically interesting since, among other things, they usually involve the interplay of
fast and slow dynamics and hence singular perturbation theory is generally appropriate.
The EOB reaction can be described by a ten-variable empirical-rate-law model system
which like the Belousov–Zhabotinsky reaction (see Chapter 8) can be reduced (Gáspár
and Showalter 1990) in this case to a four-variable system which retains the essential
experimental features of the full system. This four-variable system is given by

A + Y
k1�

k−1
X, X

k2→ Y, 2Y
k3→ Z , Z + X

k4→ 3Y, Z
k5→,
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where A = SO2−
3 , X = H SO−

3 , Y = H+ and Z = I2. Gáspár and Showalter (1990)
used a singular perturbation approach which eliminated the A and Z variables and ob-
tained the minimal set of equations

d X

dt
= k1 AsY − (k−1 + k2 + k4 Zs + k0)X,

dY

dt
= −k1 AsY + (k−1 + k2 + 3k4 Zs)X − 2k3Y 2 + k0(Y0 − Y ),

where As and Zs are functions of X and Y given by

As = k−1 X + k0 A0

k1Y + k0
, Zs = k3Y 2

k1 X + k5 + k0

and k0, A0 and Y0 are constants associated with the experimental parameters. Peng et al.
(1991) analyse this system and other practical model chemical systems which display
canards.

7.4 Simple Two-Species Oscillators: Parameter Domain
Determination for Oscillations

If we restrict our reaction system to only two species it was shown by Hanusse (1972)
that limit cycle solutions can only exist if there are trimolecular reactions. These would
be biochemically unrealistic if they were the only reactions involved, but as we have
shown in Chapter 6 such two-reactant models can arise naturally from a higher-order
system if typical enzyme reactions, for example, are part of the mechanism being con-
sidered. So, it is reasonable to consider trimolecular two-species models and not just for
algebraic and mathematical convenience in demonstrating principles and techniques.
Schnackenberg (1979) considered the class of two-species ‘simplest,’ but chemically
plausible, trimolecular reactions which will admit periodic solutions. The simplest such
reaction mechanism is

X
k1�

k−1
A, B

k2→ Y, 2X + Y
k3→ 3X, (7.19)

which, using the Law of Mass Action, results in the nondimensional equations for u and
v, the dimensionless concentrations of X and Y , given by

du

dt
= a − u + u2v = f (u, v),

dv

dt
= b − u2v = g(u, v), (7.20)

where a and b are positive constants. Typical null clines are illustrated in Figure 7.8. In
the vicinity of the steady state S these are equivalent to the situation in Figure 7.2(b).
With (7.20) it is easy to construct a confined set on the boundary of which the vec-
tor (du/dt, dv/dt) points inwards or along it; the quadrilateral in Figure 7.8 is one
example. Hence, because of the Poincaré–Bendixson theorem, the existence of a peri-
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Figure 7.8. Typical null clines f = 0 and
g = 0 for the ‘simplest’ oscillator (7.20)
for a > 0 and b > 0. The quadrilateral
ABCDA is a boundary of a confined set
enclosing the steady state S.

odic solution is assured if, for (7.20), the stability matrix A for the steady state satisfies
(7.15).

Determination of Parameter Space for Oscillations

For any model involving parameters it is always useful to know the ranges of parameter
values where oscillatory solutions are possible and where they are not. For all but the
simplest kinetics this has to be done numerically, but the principles involved are the
same for them all. Here we carry out the detailed analysis for the simple model reaction
(7.20) to illustrate the general principles: the model involves only two parameters a and
b and we can calculate the (a, b) parameter space analytically. The requisite space is
the range of the parameters a and b which make the steady state an unstable node or
spiral: that is, the parameter range where, from (7.15), trA > 0 and | A | > 0. Later we
shall develop a more powerful and general parametric method which can be applied to
less simple kinetics.

The steady state (u0, v0) for (7.20) is given by

f (u0, v0) = a − u0 + u2
0v0 = 0, g(u0, v0) = b − u2

0v0 = 0,

⇒ u0 = b + a, v0 = b

(a + b)2
, with b > 0, a + b > 0.

(7.21)

Substituting these into the stability matrix A in (7.12), we get

trA = fu + gv = (−1 + 2u0v0) + (−u2
0) = b − a

a + b
− (a + b)2,

| A | = fu gv − fvgu = (a + b)2 > 0 for all a, b.

(7.22)

The domain in (a, b) space where (u0, v0) is an unstable node or spiral is, from (7.15),
where trA > 0 and so the domain boundary is

trA = 0 ⇒ b − a = (a + b)3. (7.23)

Even with this very simple model, determination of the boundary involves the so-
lution of a cubic, not admittedly a major problem, but a slightly tedious one. Care has
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Figure 7.9. Parameter space where limit cycle
periodic solutions of (7.20) exist for a > 0 and
b > 0. The boundary curve is given by (7.23),
although it was in fact calculated using the
more easily applied parametric form (7.27).

to be taken since the solution, say, of b in terms of a, involves three branches. Fig-
ure 7.9 gives the parameter domain where oscillations are possible for b > 0. There
is another more powerful way (Murray 1982) of determining the boundary, namely,
parametrically, which is much easier and which also avoids the multiple branch prob-
lem. Furthermore, it is a method which has wider applicability, can be used with more
complicated systems and provides the numerical procedure for the determination of the
parameter domain for systems where it is not feasible to do it analytically. We again
use the simple model system (7.20) to illustrate the method; see the exercises for other
examples.

Let us consider the steady state u0 as a parameter and determine b and a in terms
of u0. From (7.21),

v0 = u0 − a

u2
0

, b = u2
0v0 = u0 − a, (7.24)

and

A =
(

fu fv
gu gv

)
=




−1 + 2u0v0 u2

0

−2u0v0 −u2
0



 =






1 − 2a

u0
u2

0

−2 + 2a

u0
−u2

0




 .

Since | A | = u2
0 > 0 the required necessary condition for oscillations from (7.15) is

trA > 0; that is,

fu + gv > 0 ⇒ 1 − 2a

u0
− u2

0 > 0 ⇒ a <
u0(1 − u2

0)

2
. (7.25)

We also have from (7.24)

b = u0 − a >
u0(1 + u2

0)

2
. (7.26)

The last two inequalities define, parametrically in u0, the boundary curve where trA =
0. Since the parameter u0 is the steady state, the only parameter range of interest is
u0 ≥ 0. Thus, one of the boundary curves in (a, b) space, which defines the domain
where the necessary condition for oscillations is satisfied (in this example it is only
trA > 0), is defined by
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a = u0(1 − u2
0)

2
, b = u0(1 + u2

0)

2
, for all u0 > 0. (7.27)

Sufficient conditions for an oscillatory solution are given by (7.15) together with the
existence of a confined set. Since a confined set has been obtained for this mechanism
(see Figure 7.8) the conditions (7.25) and (7.26) are sufficient. Figure 7.9 was calculated
using (7.27) and shows the space given by (7.23). The mechanism (7.20) will exhibit a
limit cycle oscillation for any parameter values which lie in the shaded region; for all
other values in the positive quadrant the steady state is stable.

This pedagogically very useful model (7.20) is a particularly simple one for which
to determine the parameter space for periodic solutions. This is because the requirement
| A | > 0 was automatically satisfied for all values of the parameter and the necessary
and sufficient condition for existence boiled down to finding the domain where trA was
positive. Generally, once a confined set has been found (which in itself can often put
constraints on the parameters), the parameter space for periodic solutions is determined
by the two boundary curves in parameter space defined by trA = 0, | A | = 0.

Although we envisage the biochemical mechanism (7.20) to have a > 0 the math-
ematical problem need not have such a restriction as long as u0 and v0 are nonnegative.

To show how the parametric procedure works in general, let us allow a to be pos-
itive or negative. Now the necessary and sufficient conditions are satisfied if trA > 0,
namely, (7.25) with (7.26), and | A | > 0. Since | A | = u2

0 > 0, the condition | A | > 0
is automatically satisfied. With the requirement u0 ≥ 0 this gives the curve in (a, b)

space as

b + a > 0 ⇒ a > −u0, b > u0, (7.28)

as a particularly simple parametric representation. Thus the two sets of inequalities are
bounded in parameter space by the curves

a = u0(1 − u2
0)

2
, b = u0(1 + u2

0)

2
,

a = −u0 b = u0





for all u0 ≥ 0. (7.29)

Figure 7.10 gives the general parameter space defined by (7.29). The inequality (7.28)

Figure 7.10. Parameter space in which solutions
(u, v) of (7.20) are periodic limit cycles. Note
that a < 0 is possible, although it is not of
biochemical interest.
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is satisfied by values (a, b) which lie above the straight line given by (7.29) while the
inequality (7.26) is satisfied for values lying below the curve given by (7.29). Together
they define a closed domain.

λ − ω Systems

These are particularly simple systems of equations which have exact limit cycle so-
lutions, and which have been widely used in prototype studies of reaction diffusion
systems. The equations can be written in the form

du

dt
= λ(r)u − ω(r)v,

dv

dt
= ω(r)u + λ(r)v,

r = (u2 + v2)1/2,

(7.30)

where λ is a positive function of r for 0 ≤ r ≤ r0 and negative for r > r0, and so
λ(r0) = 0, and ω(r) is a positive function of r . It does not seem possible to derive
such equations from any sequence of reasonable biochemical reactions. However, their
advantage primarily lies in the fact that explicit analytic results can be derived when they
are used as the kinetics in the study of wave phenomena in reaction diffusion models.
Such analytical solutions can often provide indications of what to look for in more
realistic systems. So although their use is in an area discussed later, it is appropriate to
introduce them here simply as examples of nontrivial mathematical oscillators.

If we express the variables (u, v) in the complex form c = u + iv, equations (7.30)
become the complex equation

dc

dt
= [λ(| c |) + iω(| c |)]c, c = u + iv. (7.31)

From this, or by multiplying the first of (7.30) by u and adding it to v times the second,
we see that a limit cycle solution is a circle in the (u, v) plane or complex c-plane
since

d| c |
dt

= λ(| c |)| c | ⇒ | c | = r0, (7.32)

because λ(| c |) is positive if 0 ≤ | c | < r0 and negative if | c | > r0.
An alternative way to write (7.31) in the complex plane is to set

c = reiθ ⇒ dr

dt
= rλ(r),

dθ

dt
= ω(r) (7.33)

for which the limit cycle solution is

r = r0, θ(t) = ω(r0)t + θ0, (7.34)

where θ0 is a constant.
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7.5 Hodgkin–Huxley Theory of Nerve Membranes:
FitzHugh–Nagumo Model

Neural communication is clearly a very important field. We make no attempt here to give
other than a basic introduction to it and discuss one of the key mathematical models
which has been studied extensively. Rinzel (1981) gives a short review of models in
neurobiology; see also Keener and Sneyd (1998).

Electric signalling or firing by individual nerve cells or neurons is particularly com-
mon. The seminal and now classical work by Hodgkin and Huxley (1952) on this aspect
of nerve membranes was on the nerve axon of the giant squid. (They were awarded a
Nobel prize for their work.) Basically the axon is a long cylindrical tube which extends
from each neuron and electrical signals propagate along its outer membrane, about 50 to
70 Ångströms thick. The electrical pulses arise because the membrane is preferentially
permeable to various chemical ions with the permeabilities affected by the currents and
potentials present. The key elements in the system are potassium (K+) ions and sodium
(Na+) ions. In the rest state there is a transmembrane potential difference of about −70
millivolts (mV) due to the higher concentration of K+ ions within the axon as compared
with the surrounding medium. The deviation in the potential across the membrane, mea-
sured from the rest state, is a primary observable in experiments. The membrane per-
meability properties change when subjected to a stimulating electrical current I : they
also depend on the potential. Such a current can be generated, for example, by a local
depolarisation relative to the rest state.

In this section we are concerned with the space-clamped dynamics of the system;
that is, we consider the spatially homogeneous dynamics of the membrane. With a real
axon the space-clamped state can be obtained experimentally by having a wire down
the middle of the axon maintained at a fixed potential difference to the outside. Later,
in Chapter 1, Volume II, we shall discuss the important spatial propagation of action
potential impulses along the nerve axon; we shall refer back to the model we discuss
here. We derive here the Hodgkin–Huxley (1952) model and the reduced analytically
tractable FitzHugh–Nagumo mathematical model (FitzHugh 1961, Nagumo et al. 1962)
which captures the key phenomena. The analysis of the various mathematical models
has indicated phenomena which have motivated considerable experimental work. The
theory of neuron firing and propagation of nerve action potentials is one of the major
successes of real mathematical biology.

Basic Mathematical Model

Let us take the positive direction for the membrane current, denoted by I , to be out-
wards from the axon. The current I (t) is made up of the current due to the individual
ions which pass through the membrane and the contribution from the time variation in
the transmembrane potential, that is, the membrane capacitance contribution. Thus we
have

I (t) = C
dv

dt
+ Ii , (7.35)
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where C is the capacitance and Ii is the current contribution from the ion movement
across the membrane. Based on experimental observation Hodgkin and Huxley (1952)
took

Ii = INa + IK + IL ,

= gNam3h(V − VNa) + gK n4(V − VK ) + gL(V − VL ),
(7.36)

where V is the potential and INa , IK and IL are respectively the sodium, potassium
and ‘leakage’ currents; IL is the contribution from all the other ions which contribute to
the current. The g’s are constant conductances with, for example, gNam3h the sodium
conductance, and VNa , VK and VL are constant equilibrium potentials. The m, n and h
are variables, bounded by 0 and 1, which are determined by the differential equations

dm

dt
= αm(V )(1 − m) − βm(V )m,

dn

dt
= αn(V )(1 − n) − βn(V )n,

dh

dt
= αh(V )(1 − h) − βh(V )h,

(7.37)

where the α and β are given functions of V (again empirically determined by fitting
the results to the data); see, for example, Keener and Sneyd (1998). αn and αm are
qualitatively like (1+ tanh V )/2 while αh(V ) is qualitatively like (1− tanh V )/2, which
is a ‘turn-off’ switch if V is moderately large. Hodgkin and Huxley (1952) fitted the data
with exponential forms.

If an applied current Ia(t) is imposed the governing equation using (7.35) becomes

C
dV

dt
= −gNam3h(V − VNa) − gK n4(V − VK ) − gL(V − VL) + Ia . (7.38)

The system (7.38) with (7.37) constitute the 4-variable model which was solved numer-
ically by Hodgkin and Huxley (1952).

If Ia = 0, the rest state of the model (7.37) and (7.38) is linearly stable but is
excitable in the sense discussed in Chapter 6. That is, if the perturbation from the steady
state is sufficiently large there is a large excursion of the variables in their phase space
before returning to the steady state. If Ia �= 0 there is a range of values where regular
repetitive firing occurs; that is, the mechanism displays limit cycle characteristics. Both
types of phenomena have been observed experimentally. Because of the complexity
of the equation system various simpler mathematical models, which capture the key
features of the full system, have been proposed, the best known and particularly useful
one of which is the FitzHugh–Nagumo model (FitzHugh 1961, Nagumo et al. 1962),
which we now derive.

The timescales for m, n and h in (7.37) are not all of the same order. The timescale
for m is much faster than the others, so it is reasonable to assume it is sufficiently fast
that it relaxes immediately to its value determined by setting dm/dt = 0 in (7.37). If
we also set h = h0, a constant, the system still retains many of the features experi-
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Figure 7.11. Phase plane for the model system (7.39) with Ia = 0. As the parameters vary there can be (a)
one stable, but excitable state or, (b) three possible steady states, one unstable, namely, S1, and two stable,
but excitable, namely, (0, 0) and S2.

mentally observed. The resulting 2-variable model in V and n can then be qualitatively
approximated by the dimensionless system

dv

dt
= f (v) − w + Ia,

dw

dt
= bv − γw,

f (v) = v(a − v)(v − 1),

(7.39)

where 0 < a < 1 and b and γ are positive constants. Here v is like the membrane
potential V , and w plays the role of all three variables m, n and h in (7.37).

With Ia = 0, or just a constant, the system (7.39) is simply a 2-variable phase
plane system, the null clines for which are illustrated in Figure 7.11. Note how the

Figure 7.12. (a) The phase portrait for (7.39) with Ia = 0, a = 0.25, b = γ = 2 × 10−3 which exhibits the
threshold behaviour. With a perturbation from the steady state v = w = 0 to a point, P say, where w = 0,
v < a, the trajectory simply returns to the origin with v and w remaining small. A perturbation to A initiates
a large excursion along ABCD and then back to (0, 0), effectively along the null cline since b and γ are small.
(b) The time variation of v and w corresponding to the excitable trajectory ABC D0 in (a). (Redrawn from
Rinzel 1981)
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phase portrait varies with different values of the parameters a, b and γ . There can, for
example, be 1 or 3 steady states as shown in Figures 7.11(a) and (b) respectively. The
situation corresponds to that illustrated in Figure 7.5, except that here it is possible for v

to be negative—it is an electric potential. The excitability characteristic, a key feature in
the Hodgkin–Huxley system, is now quite evident. That is, a perturbation, for example,
from 0 to a point on the v-axis with v > a, undergoes a large phase trajectory excursion
before returning to 0. Figure 7.12 shows a specific example.

Periodic Neuron Firing

With Ia = 0 the possible phase portraits, as illustrated in Figure 7.11, show there can
be no periodic solutions (see Section 7.3). Suppose now that there is an applied current
Ia . The corresponding null clines for (7.39) are illustrated in Figures 7.13(a) to (c)
for several Ia > 0. The effect on the null clines is simply to move the v null cline,
with Ia = 0, up the w-axis. With parameter values such that the null clines are as in
Figure 7.13(a) we can see that by varying only Ia there is a window of applied currents
(I1, I2) where the steady state can be unstable and limit cycle oscillations possible, that
is, a null cline situation like that in Figure 7.13(b). The algebra to determine the various
parameter ranges for a, b, γ and Ia for each of these various possibilities to hold is
straightforward. It is just an exercise in elementary analytical geometry, and is left as an
exercise (Exercise 7). With the situation exhibited in Figure 7.13(d) limit cycle solutions
are not possible. On the other hand this form can exhibit switch properties.

The FitzHugh–Nagumo model (7.39) is a model of the Hodgkin–Huxley model.
So, a further simplification of the mechanism (7.39) is not unreasonable if it simplifies
the analysis or makes the various solution possibilities simpler to see. Of course such a
simplification must retain the major elements of the original, so care must be exercised.

Figure 7.13. Null clines for the FitzHugh–Nagumo model (7.39) with different applied currents Ia . Cases
(a), where Ia < I1, and (c), where Ia > I2, have linearly stable, but excitable, steady states, while in (b),
where I1 < Ia < I2, the steady state can be unstable and limit cycle periodic solutions are possible. With the
configuration (d), the steady states S1, S3 are stable with S2 unstable. Here a perturbation from either S1 or
S3 can effect a switch to the other.
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Figure 7.14. (a) Phase plane null clines for a piecewise linear approximation to the v null cline in the
FitzHugh–Nagumo model (7.30) with Ia = 0, where (v1, w1) and (v2, w2) are given by (7.40). (b) The
geometric conditions for possible periodic solutions, which require Ia > 0, are shown in terms of the
angle θ = tan−1[(w2 − w1)/(v2 − v1)]. (c) Geometric conditions for multiple roots and threshold switch
possibilities from one steady state S1 to S3 and vice versa.

From Figure 7.11 we can reasonably approximate the v null cline by a piecewise linear
approximation as in Figure 7.14, which in Figure 7.14(a) has zeros at v = 0, a, 1. The
positions of the minimum and maximum, (v1, w1) and (v2, w2) are obtained from (7.39)
as

v2, v1 = 1

3

[
a + 1 ±

{
(a + 1)2 − 3a

}1/2
]

,

wi = −vi (a − vi )(1 − vi ) + Ia, i = 1, 2.

(7.40)

The line from (v1, w1) to (v2, w2) passes through v = a if a = 1/2. The acute angle θ

the null cline makes with the v-axis in Figure 7.14 is given by

θ = tan−1
[

w2 − w1

v2 − v1

]
. (7.41)

We can now write down very simply a necessary condition for limit cycle oscil-
lations for the piecewise model, that is, conditions for the null clines to be as in Fig-
ure 7.14(b). The gradient of the v null cline at the steady state must be less than the
gradient, b/γ , of the w null cline; that is,

tan θ = w2 − w1

v2 − v1
<

b

γ
. (7.42)

Sufficient conditions for a limit cycle solution to exist are obtained by applying the re-
sults of Section 7.3 and demonstrating that a confined set exists. Analytical expressions
for the limits on the applied current Ia for limit cycles can also be found (Exercise 7).

A major property of this model for the space-clamped axon membrane is that it
can generate regular beating of a limit cycle nature when the applied current Ia is in
an appropriate range I1 < Ia < I2. The bifurcation to a limit cycle solution when Ia

increases past I1 is essentially a Hopf bifurcation and so the period of the limit cycle
is given by an application of the Hopf bifurcation theorem. This model with periodic
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beating solutions will be referred to again in Chapter 9 when we consider the effect of
perturbations on the oscillations. All of the solution behaviour found with the model
(7.39) have also been found in the full Hodgkin–Huxley model, numerically of course.
The various solution properties have also been demonstrated experimentally.

Some neuron cells fire with periodic bursts of oscillatory activity like that illustrated
in Figures 7.7(b) and (d). We would expect such behaviour if we considered coupled
neuronal cells which independently undergo continuous firing. By modifying the above
model to incorporate other ions, such as a calcium (Ca++) current, periodic bursting
is obtained; see Plant (1978, 1981). There are now several neural phenomena where
periodic bursts of firing are observed experimentally. With the knowledge we now have
of the qualitative nature of the terms and solution behaviour in the above models and
some of their possible modifications, we can now build these into other models to reflect
various observations which indicate similar phenomena. The field of neural signalling,
both temporal and spatial, is a fascinating and important one which will be an area of
active research for many years.

7.6 Modelling the Control of Testosterone Secretion
and Chemical Castration

The hormone testosterone, although present in very small quantities in the blood, is
an extremely important hormone; any regular imbalance can cause dramatic changes.
In man, the blood levels of testosterone can fluctuate periodically with periods of the
order of two to three hours. In this section we discuss the physiology of testosterone
production and construct and analyse a model, rather different from those we have so far
discussed in this chapter, to try and explain the periodic levels of testosterone observed.
Although the phenomenon is interesting in its own right, another reason for discussing
it is to demonstrate the procedure used to analyse this type of model. Perhaps most
important, however, is to try and understand the mechanism of production with a view
to aiding current research in controlling testosterone production in its use in (chemical)
male contraception and prostate cancer control.

Before describing the important physiological elements in the process of testos-
terone production, there are some interesting effects and ideas associated with this im-
portant hormone. Men have a testosterone level of between 10 to 35 nanomoles per litre
of blood, with women having between 0.7 to 2.7 nanomoles per litre. Reduced levels of
testosterone, or rather the level of a sex hormone binding globulin (SHBG) directly re-
lated to free testosterone, are often accompanied by personality changes—the individual
tends to become less forceful and commanding. On the other hand increased levels of
testosterone induce the converse. Although the actual differences in testosterone levels
are minute, the effects can be major.

In men the high level of testosterone primarily comes from the testes, which pro-
duces about 90%, with the rest from other parts of the endocrine system, which is why
women also produce it. The drug Goserelin, for example, which was introduced to treat
cancer of the prostate, can achieve chemical castration within a few weeks after the start
of treatment. The patient’s testosterone level is reduced to what would be achieved by
removal of the testes. The body does not seem to adjust to the drug and so effective
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castration continues only as long as the treatment is maintained. How the drug works
in blocking the production of testosterone is pointed out below when we discuss the
physiological production process. Enthusiasm for sex, or sex drive, depends on many
factors and not only the level of testosterone, which certainly plays a very significant
role. If we consider the problem of an excessive sex drive, it is not uncommon for
men sentenced for rape to ask to be treated with drugs to induce castration. There are
now several drugs which effect castration: the already mentioned Goserelin, such as
Lupron and Depo-provera which is more long lasting. The use of drugs to suppress
the production of testosterone has been used in Europe for more than 10 years. In fact
it is often a condition of release for convicted sex offenders. In Europe Depo-provera
has reduced the recidivism rate of child molesters to 2% whereas in the U.S., where
drugs are not generally used it is of the order of 50%. The role of testosterone-reducing
drugs, or generally chemical castration, is a controversial area of treatment for sex of-
fenders.

The full physiological process is not yet fully understood although there is general
agreement on certain key elements. The following shows how a first model had to be
modified to incorporate key physiological facts and points the way to more recent and
complex models. We first derive a model for testosterone (T) production in the male
suggested by Smith (1980); it is based on accepted basic experimental facts. We then
discuss a modification which results in a delay model which incorporates more realistic
physiology associated with the spatial separation of the various control regions. A more
complicated delay model which is consistent with a wider range of experiments was
proposed by Cartwright and Husain (1986): it incorporates more of the physiological
process. We discuss it very briefly below.

Let us now consider the basic physiology. The secretion of testosterone from the
gonads is stimulated by a pituitary hormone called the luteinising hormone (LH). The
secretion of LH from the pituitary gland is stimulated by the luteinising hormone releas-
ing hormone (LHRH). This LHRH is normally secreted by the hypothalmus (part of the
third ventricle in the brain) and carried to the pituitary gland by the blood. Testosterone
is believed to have a feedback effect on the secretion of LH and LHRH. Based on these,
Smith (1980) proposed a simple negative feedback compartment model, such as we dis-
cussed in Section 7.2, involving the three hormones T, LH and LHRH and represented
schematically in Figure 7.15.

Denote the concentrations of the LHRH, LH and T respectively by R(t), L(t) and
T (t). At the simplest modelling level we consider each of the hormones to be cleared
from the bloodstream according to first-order kinetics with LH and T produced by their
precursors according to first-order kinetics. There is a nonlinear negative feedback by
T (t) on R(t). The governing system reflecting this scheme is essentially the model
feedback system (7.3), which here is written as

d R

dt
= f (T ) − b1 R,

d L

dt
= g1 R − b2L ,

dT

dt
= g2L − b3T,

(7.43)
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Figure 7.15. Compartment model for the control of testosterone production in the male. The hypothalmus
secretes luteinising hormone release hormone (LHRH), denoted by R(t), which controls the release of lutein-
ising hormone (LH), denoted by L(t), by the pituitary which controls the production of testosterone, T (t), by
the gonads. The dashed line denotes the feedback control to the hypothalmus from the testes.

where b1, b2, b3, g1 and g2 are positive parameters and the negative feedback function
f (T ) is a positive monotonic decreasing function of T . At this stage we do not need a
specific form for f (T ) although we might reasonably take it to be typically of the form
A/(K + T m) as in the prototype feedback model (7.3).

As we mentioned, the blood level of testosterone in men oscillates in time. Exper-
iments in which the natural state is disturbed have also been carried out; see the brief
surveys given by Smith (1980) and Cartwright and Husain (1986). Our interest here is
mainly related to the observed periodic fluctuations.

From the analysis in Section 7.2, or simply by inspection, we know that a positive
steady state R0, L0 and T0 exists for the model (7.43). With the specific form (7.3)
for f (T ) oscillations exist for a Hill coefficient m ≥ 8 (Exercise 4), which we noted
before is an unrealistically high figure. We can modify the specific form of f (T ) so
that periodic solutions exist but this is essentially the same as choosing the form in
(7.3) with m ≥ 8. We assume therefore that the feedback function f (T ) is such that
the steady state is always stable. Thus we must modify the model to include more of
the physiology. If we consider the actual process that is taking place there must be a
delay between production of the hormone at one level and its effect on the production
of the hormone it stimulates, simply because of their spatial separation and the fact that
the hormones are transported by circulating blood. Accordingly W. R. Smith and J. D.
Murray in the early 1980’s suggested a simple delay model based on the modification
to the system (7.3) with m = 1, similar to the delay control model suggested by Murray
(1977), in which the production of testosterone is delayed. Although it is reasonable
to consider a delay in each hormone’s production they incorporated them all in the T -
equation so as to be able to investigate the system analytically and hence get an intuitive
feel for the effect of delay on the system. They took, in place of (7.43),

d R

dt
= f (T ) − b1 R,

d L

dt
= g1 R − b2 L ,

dT

dt
= g2 L(t − τ) − b3T,

(7.44)
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where τ is a delay associated with the blood circulation time in the body. The steady
state is again (R0, L0, T0) determined by

L0 = b3T0

g2
, R0 = b3b2T0

g1g2
, f (T0) − b1b2b3T0

g1g2
= 0, (7.45)

which always exists if f (0) > 0 and f (T ) is a monotonic decreasing function. If we
now investigate the stability of the steady state by writing

x = R − R0, y = L − L0, z = T − T0 (7.46)

the linearised system from (7.44) is

dx

dt
= f ′(T0)z − b1x,

dy

dt
= g1x − b2 y,

dz

dt
= g2 y(t − τ) − b3z.

(7.47)

Now look for solutions in the form



x
y
z



 = A exp [λt], (7.48)

where A is a constant vector. On substitution into (7.47) we have

λ3 + aλ2 + bλ + c + de−λτ = 0,

a = b1 + b2 + b3, b = b1b2 + b2b3 + b3b1,

c = b1b2b3, d = − f ′(T0)g1g2 > 0.

(7.49)

We now want to determine the conditions for the steady state to be linearly unstable;
that is, we require the conditions on a, b, c, d and τ such that there are solutions of
(7.49) with Re λ > 0.

We know that with τ = 0 the steady state (R0, L0, T0) is stable; that is, if τ = 0 in
(7.49), Re λ < 0. Using the Routh–Hurwitz conditions on the cubic in λ given by (7.49)
with τ = 0 this means that a, b, c and d necessarily satisfy

a > 0, c + d > 0, ab − c − d > 0. (7.50)

We know that delay can be destabilising so we now try to determine the critical delay
τc > 0, in terms of a, b, c and d so that a solution with Re λ > 0 exists for τ > τc. We
determine the conditions by considering (7.49) as a complex variable mapping problem.

From the analysis on transcendental equations in Chapter 1 we know that all so-
lutions of (7.49) have Re λ bounded above. The critical τc is that value of τ such that
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Figure 7.16. (a) λ-plane. (b) w-plane.

Re λ = 0, that is, the bifurcation between stability and instability in the solutions (7.48).
Consider the transformation from the λ-plane to the w-plane defined by

w = λ3 + aλ2 + bλ + c + de−λτ , τ > 0. (7.51)

Setting λ = µ + iν this gives

w =[µ3 − 3µν2 + a(µ2 − ν2) + bµ + c + de−µτ cos ντ ]
+ i[−ν3 + 3µ2ν + 2aµν + bν − de−µτ sin ντ ]. (7.52)

We wish to find the conditions on a, b, c, d and τ such that w = 0 has solutions µ > 0;
the bifurcation state is µ = 0.

Consider the contour in the λ-plane consisting of the imaginary axis and a semi-
circle of infinite radius as shown schematically in Figure 7.16(a). Without any delay
τ = 0 and we know that in this case Re λ < 0 so w as a function of λ in (7.51) does
not pass through the origin in the w-plane; that is, the map in the w-plane of AG H A
in Figure 7.16(a) does not pass through w = 0. Consider first τ = 0 and the mapping
(7.52). AG in Figure 7.16(a), and on which µ = 0, is mapped by

w = [(c − aν2) + d] + i[bν − ν3] (7.53)

onto A′G ′ in Figure 7.16(b) with D′(= c + d + i0) in the w-plane corresponding to
D(= 0+i0) in the λ-plane. The domain V is mapped into V ′; the hatches in Figure 7.16
point into the respective domains. The points A, B, C , D, E , F and G in Figure 7.16(a)
are mapped onto their primed equivalents as
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A (∞eiπ/2) A′ (∞e3iπ/2)

B (
√

beiπ/2) B ′ ((ab − c − d)eiπ)

C

([
c + d

a

]1/2

eiπ/2

)

C ′
([

c + d

a

]1/2 (
b − c + d

a

)
eiπ/2

)

D (0) D′ (c + d)

E

([
c + d

a

]1/2

e−iπ/2

)

E ′
([

c + d

a

]1/2 (
b − c + d

a

)
e−iπ/2

)

F (
√

be−iπ/2) F ′ ((ab − c − d)e−iπ)

G (∞e−iπ/2) G ′ (∞e−3iπ/2).

(7.54)

As the semi-circle G H A is traversed λ moves from ∞e−iπ/2 to ∞eiπ/2 and so w(∼ λ3)

moves from ∞e−3iπ/2, namely, G ′, to ∞, namely, H ′, and then to ∞e3iπ/2, that is, A′,
all as shown in Figure 7.16(b).

Now consider the mapping in the form (7.52) with τ > 0. The line AG in Fig-
ure 7.16(a) has µ = 0 as before, so it now maps onto

w = [(c − aν2) + d cos ντ ] + i[bν − ν3 − d sin ντ ]. (7.55)

The effect of the trigonometric terms is simply to add oscillations to the line
A′B ′C ′D′E ′F ′G ′ as shown schematically in Figure 7.17(a) which is now the map of

Figure 7.17. Map in the w-plane of the contour in Figure 7.16(a) in the λ-plane under the transformation
(7.55): (a) τ < τc; (b) τ > τc. In the latter case, the map encloses the origin.
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ABC DE FG H A under (7.55). Now let τ increase. As soon as the transformed curve
passes through the origin in the w-plane this gives the critical τc. For τ > τc, the map-
ping is schematically as shown in Figure 7.17(b) and the origin in the w-plane is now
enclosed in V ′, that is, the transformation of V under (7.55).

If we now traverse the boundary of V ′ and compute the change in arg w we imme-
diately get the number of roots of w(λ) defined by (7.51). It helps to refer to both Fig-
ures 7.17(a) and (b). Let us start at A′ where arg w = 3π/2. On reaching B ′, arg w = π

and so on, giving

Point A′ B′ C ′ D′ E ′ F ′ G ′ A′ (via H ′)

arg w
3π

2
π

3π

2
2π

5π

2
3π

5π

2

5π

2
+ 3π

(
= 11π

2

)
.

Thus the change in arg w is 4π which implies two roots with Re λ > 0 in the domain
V ; the roots are complex conjugates.

Let us now obtain expressions for the critical τc such that the curve A′ B ′C ′ D′E ′
F ′G ′H ′ A′ just passes through the origin in the w-plane. The bifurcation value we are
interested in for Re λ is of course µ = 0 so we require the value of τ such that w = 0
in (7.55), namely,

c − aν2 + d cos ντ = 0, bν − ν3 − d sin ντ = 0, (7.56)

from which we get

cot ντ = aν2 − c

ν(b − ν2)
⇒ ν = ν(τ). (7.57)

If we plot each side of (7.57) as a function of ν, as shown schematically in Figure 7.18
where for illustration we have taken

√
b < π/τ , we see that there is always a solution,

Figure 7.18. Schematic graphical solution ν of (7.57) in
the case where

√
b < π/τ .
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given by the intersection of the curves, such that

0 < ν(τ) <
π

τ
, 0 < ν(τ) <

√
b. (7.58)

Furthermore, the solution ν(τ) as a function of τ satisfies

ν(τ1) < ν(τ2) if τ1 > τ2.

If
√

b > π/τ then (7.58) still holds but another solution exists with π/τ < ν(τ) <
√

b.
Consider now the solution ν(τ) which satisfies (7.58). A solution of the simultane-

ous equations (7.56) must satisfy (7.57) and one of (7.56), which to be specific we take
here to be the second. With ν(τ) the solution of (7.57) satisfying (7.58), the second of
(7.56) gives

d = [b − ν2(τ )]ν(τ)

sin(ν(τ )τ )
. (7.59)

If τ is such that this equation cannot be satisfied with the corresponding ν(τ) then no
solution can exist with Re λ > 0. We can not get an analytical solution of (7.57) for
ν(τ) but an indication of how the solution behaves is easily obtained for τ large and
small. For the case in (7.58), we have from (7.57),

ν(τ) = √
b − (ab − c)

τ

2
√

b
+ O(τ 2) for 0 < τ � 1 (7.60)

and the second of (7.56) becomes

bν(τ) − ν3(τ ) − d sin[ν(τ)τ ] ≈ (ab − c)τ
√

b − dτ
√

b + · · ·
= τ(ab − c − d)

√
b + O(τ 2)

> 0

from conditions (7.50). Thus for small enough τ no solution exists with Re λ > 0. Now
let τ increase until a solution to (7.59) can be satisfied: this determines the critical τc as
the solution (7.58) of (7.57) which also satisfies (7.59). The procedure is to obtain ν(τ)

from (7.57) and then the value τc which satisfies (7.59).
Now suppose τ � 1. From (7.57) we get

ν(τ) ∼ π

τ
− πb

cτ 2
+ O

(
1

τ 3

)
for τ � 1,

and now the second of (7.56) gives

bν − ν3 − d sin[ν(τ)τ ] ∼ bπ

τ
− bdπ

cτ
+ O

(
1

τ 2

)

< 0 if d > c.

Thus there is a range of τ > τc > 0 such that a solution λ exists with Re λ > 0 if d > c.
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An approximate range for ν(τ) can be found by noting that with ν <
√

b < π/τ ,
the specific case we are considering and which is sketched in Figure 7.18,

g(ν) = c − aν2 + d cos ντ

is monotonic decreasing in 0 ≤ ντ < π . Furthermore,

g

([
c + d

a

]1/2
)

= −d + d cos

(

τ

[
c + d

a

]1/2
)

< 0, g(0) = c + d > 0

which implies that

0 < ν <

[
c + d

a

]1/2

<
√

b <
π

τ
.

We have thus demonstrated that there is a critical delay τc such that the steady state
(R0, L0, T0) is linearly unstable by growing oscillations. Since the model system (7.44)
has a confined set we might thus expect limit cycle periodic solutions to be generated;
this is indeed what happens when the parameters are chosen so that the steady state is
linearly unstable.

The model proposed by Cartwright and Husain (1986) is based on further exper-
imental results and includes further delays in the production of each of R, L and T .
They also incorporate feedback by L H as well as T . Their model is necessarily more
complex. Analytical results such as we have derived above, even if possible, would nec-
essarily be much more complicated. Numerical simulations of their model system with
reasonable parameter values show stable periodic solutions in all of R, L and T . They
also carry out mathematical ‘experiments’ which mimic certain laboratory experiments,
with encouraging results.

Chemical Castration

Returning to the effect of drugs, such as Lupron, mentioned above, they effect chemical
castration by blocking the production of the hormone L H produced by the pituitary.
That is, in the model system (7.44), g1 = 0. In this case, the governing equation for
L(t), that is, the concentration of L H , is uncoupled from the other equations and L → 0
with time, which in turn implies from the T -equation in (7.44) that T → 0 with time,
which is the equivalent of castration. This castration procedure could be used to replace
the widely used surgical methods currently used by veterinarians on farm and domestic
animals. Such a vaccine has been developed by Carelli et al. (1982).

More recent work related to chemical castration by Ferro and Stimson (1996) and
Ferro et al. (1995) is based on gonadotrophin releasing hormone (GnRH) in the form
of a GnRH-releasing vaccine which blocks the production of the leutinising hormone
LH; it has a possible application to human sex-hormone-dependent disorders. It is also
a potential treatment for oestrogen-dependent breast cancer (Ferro and Stimson 1998).

Before leaving the subject of interfering with testosterone production, it is relevant
to mention that there has been much research trying to develop a contraceptive ‘pill’
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for men. One avenue was to use artificial hormones to try and fool the body’s system
into shutting down the production of testosterone. In the past, for example, overload-
ing the body with testosterone shut down the pituitary gland’s production of LH. The
pituitary gland also produces another hormone (not included in our simple model), the
follicle-stimulating hormone, FSH, which promotes sperm formation by inducing them
to multiply. LH also helps this process. If there is no LH and low levels of testosterone
in the testes no sperm are produced. The problem is that if there is a high level of
testosterone in the blood there are some unpleasant side effects such as irritability, acne
and weight gain. Recently Anderson et al. (1997) developed a combination of an arti-
ficial form of progesterone (a major ingredient in the female contraceptive pill) and a
slow-release testosterone pill which has less serious side effects. The testosterone pill
is placed under the skin and provides a sufficient supply of testosterone for the body’s
needs for some months without requiring the testes to produce testosterone. Apparently
men involved in the clinical trials have greatly enjoyed participating.

Another approach is being developed (Ferro and Stimson 1998) which is totally
different, namely, to eliminate FSH entirely. It is a vaccine which produces antibodies
which attach to FSH and makes it inactive. This has not yet reached human trials—only
in rats—but if it works it will require about one treatment a year. In spite of the obvious
benefits and the potentially enormous profits for companies which develop such male
contraceptive procedures1 few have so far become involved, in part, apparently, because
of fear of litigation in the U.S.A.

Exercises

1 The ‘Brusselator’ reaction mechanism proposed by Prigogene and Lefever (1968) is

A
k1→ X, B + X

k2→ Y + D, 2X
k3→ 3X, X

k4→ E,

where the ks are the rate constants, and the reactant concentrations of A and B are
kept constant. Write down the governing differential equation system for the con-
centrations of X and Y and nondimensionalise the equations so that they become

du

dτ
= 1 − (b + 1)u + au2v,

dv

dτ
= bu − au2v,

where u and v correspond to X and Y , τ = k4t , a = k3(k1 A)2/k3
4 and b = k2 B/k4.

Determine the positive steady state and show that there is a bifurcation value b =
bc = 1 + a at which the steady state becomes unstable in a Hopf bifurcation way.
Hence show that in the vicinity of b = bc there is a limit cycle periodic solution with
period 2π/

√
a.

2 In the reaction mechanism du/dt = f(u) the kinetics f is curl free, that is, curluf(u) =
0. This implies that f can be written in terms of a gradient of a potential F(u); that

1The World Health Organisation reported in 1994 that in 70% of couples it is the women who are respon-
sible for contraception.
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is,

curluf(u) = 0 ⇒ f(u) = ∇u F(u).

The model system becomes

du
dt

= f(u) = ∇u F(u),

which is called a gradient system. By supposing that u(t) is a periodic solution with
period T , show, by considering

∫ t+T

t

(
du
dt

)2

ds,

that a gradient system cannot have periodic solutions.

3 In the feedback control system governed by

du1

dt
= f (un) − k1u1,

dur

dt
= ur−1 − kr ur , r = 2, 3, . . . n

the feedback function is given by

(i) f (u) = a + um

1 + um
, (ii) f (u) = 1

1 + um
,

where a and m are positive constants. Determine which of these represents a positive
feedback control and which a negative feedback control. Determine the steady states
and hence show that with positive feedback multi-steady states are possible while if
f (u) represents negative feedback there is only a unique steady state.

4 Consider the negative feedback mechanism

du1

dt
= 1

1 + um
3

− k1u1,

dui

dt
= ui−1 − ki ui , i = 2, 3.

(i) For the case m = 1, show that a confined set B is given by a rectangular box
whose sides are bounded by the ui = 0, i = 1, 2, 3 axes and Ui , i = 1, 2, 3,
where

1

1 + U3
< k1U1 < k1k2U2 < k1k2k3U3,



Exercises 255

and hence determine Ui , i = 1, 2, 3. For the case m 
= 1 show that U3 is given
by the appropriate solution of the equation

Um+1
3 + U3 − 1

k1k2k3
= 0.

(ii) Prove, using the Routh–Hurwitz conditions (see Appendix B), that the model
with m = 1 cannot have limit cycle periodic solutions.

(iii) Prove that limit cycle solutions are possible if m > 8. [At one stage in the
analysis for this case you will need to use the general inequality

k1 + k2 + k3

3
≥

[
k1 + k2 + k3

3

]1/2

≥ (k1k2k3)
1/3.]

5 Sketch the null clines for the system (Exercise 1):

du

dτ
= 1 − (b + 1)u + au2v = f (u, v),

dv

dτ
= bu − au2v = g(u, v).

Note the signs of f and g in the (u, v) phase plane and find a confined set (not a
trivial exercise) enclosing the steady state. Determine the (a, b) parameter domain
where the system has periodic solutions.

6 Consider the dimensionless activator (u)–inhibitor (v) system represented by

du

dt
= a − bu + u2

v
= f (u, v),

dv

dt
= u2 − v = g(u, v),

where a, b(> 0) are parameters. Sketch the null clines, append the signs of f and g,
and examine the signs in the stability matrix for the steady state. Is there a confined
set? Show that the (a, b) parameter space in which u and v may exhibit periodic
behaviour is bounded by the curve

b = 2

1 − a
− 1,

and hence sketch the domain in which the system could have periodic solutions.
Consider the modified system in which there is inhibition by u. In this

case u2/v is replaced by u2/[v(1 + K u2)] in the u equation, where K (> 0) is the
inhibition parameter. Sketch the null clines. Show that the boundary curve in (a, b)

space for the domain in which periodic solutions may exist is given parametrically
by

b = 2

u0(1 + K u2
0)

2
− 1,

a = 2

(1 + K u2
0)

2
− u0 − 1

(1 + K u2
0)

,

b ≥ 0
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and sketch the domain. Indicate how the domain for periodic solutions changes as
the inhibition parameter K varies.

7 The two-variable FitzHugh–Nagumo model for space-clamped nerve axon firing
with an external applied current Ia is

dv

dt
= v(a − v)(v − 1) − w + Ia,

dw

dt
= bv − γw,

where 0 < a < 1 and b, γ and Ia are positive constants. Here v is directly related
to the transmembrane potential and w is the variable which represents the effects of
the various chemical ion-generated potentials.

Determine the local maximum and minimum for the v null cline in terms
of a and Ia and hence give the corresponding piecewise linear approximate form.

Show that there is a confined set for the model system. Using the piece-
wise linear model, determine the conditions on the parameters such that the positive
steady state is stable but excitable. Find the conditions on the parameters, and the rel-
evant window (I1, I2) of applied currents, for the positive steady state to be linearly
unstable and hence for a limit cycle solution to exist. For a fixed set of parameters
a, b and γ , find the period of the small amplitude limit cycle when Ia is just greater
than the bifurcation value I1. [Use the Hopf bifurcation result near bifurcation.]

8 Consider a simplified model for the control of testosterone secretion given by

d R

dt
= f (T ) − b1 R,

dT

dt
= b2 R(t − τ) − b3T,

where R denotes the luteinising hormone releasing hormone (L H RH ), T denotes
the hormone testosterone and f (T ) is a positive monotonic decreasing function of
T . The delay τ is associated with the blood circulation time in the body and b1, b2
and b3 are positive constants. When τ = 0, show that the steady state is stable. Using
the method in Section 7.6 investigate the possibility of periodic solution behaviour
when τ > 0.



8. BZ Oscillating Reactions

8.1 Belousov Reaction and the Field–Körös–Noyes (FKN) Model

The reaction known as the Belousov–Zhabotinskii reaction is an important oscillating
reaction discovered by the Russian Boris Belousov (1951), a biochemist, and is de-
scribed in an unpublished paper, which was contemptuously rejected by a journal editor;
at the time the accepted dogma was that oscillating reactions were simply not possible.
A translation of the original article is given in the book edited by Field and Burger
(1985). Eventually Belousov (1959) published a brief note in the obscure proceedings
of a Russian medical meeting. Basically he found oscillations in the ratio of concen-
trations of the catalyst; in Belousov’s reaction it was cerium in the oxidation of citric
acid by bromate. The oscillation manifested itself via a colour change as the cerium
changed from Ce3+ to Ce4+ although it is more dramatic with an iron ion, ferroin
where the colour is brick red when in the Fe2e state and bright blue in the Fe3e state.
The study of this reaction was continued by Zhabotinskii (1964) and is now known
as the Belousov–Zhabotinskii reaction or simply the BZ reaction. When the details of
this important reaction and some of its dramatic oscillatory and wavelike properties
finally reached the West in the 1970’s it provoked widespread interest and research.
Belousov’s seminal work was finally, but posthumously, recognised in 1980 by his be-
ing awarded the Lenin Prize. Winfree (1984) gives a brief interesting description of
the history of the Belousov–Zhabotinskii reaction. When the reactants can also diffuse
a diverse menagerie of complex patterns can be formed and it is the latter which has
sustained the continuing widespread interest among both biological and physical scien-
tists. It provided an enormous incentive to those who were interested in the fundamental
question of spatiotemporal self-organisation with all the implications for the generation
of biological pattern and form. We discuss such aspects in considerable detail in later
chapters.

Before discussing the reaction in detail it is highly pertinent to mention its analogy
with real biological oscillators, not at the molecular level, of course, but in the similarity
it has with an increasing number of real biological cyclical behaviour. Approximate
equations for the BZ reaction are identical to those that have arisen in a realistic model
for the periodic signalling exhibited by cells during the self-organisation of the slime
mould Dictyostelium discoideum (see, for example, the book by Goldbeter 1996). There
is, of course, no analogy at the molecular level but nevertheless a knowledge of the
behaviour from similar equations can still be very useful. Winfree (1987) also used it in a



258 8. BZ Oscillating Reactions

highly original and elegant way in modelling three-dimensional activity in the ventricle
of the heart. The analogy has also been applied by Tyson (1991) in his investigations
into the molecular biology of the cell cycle. This reaction is certainly not just some
academic curiosity.

There are now many such chemical reactions which can exhibit periodic behaviour
and the term BZ reaction now refers to a general class of such reactions, essentially
where an organic substance is oxidised by bromate ions facilitated by a metal ion in an
acid medium. Typical metal ions are cerium and ferroin. Although it is a chemical rather
than a biological oscillator the BZ reaction is now considered the prototype oscillator.
The detailed reactions involved are more or less understood, as are many, but certainly
not all, of the complex spatial phenomena it can exhibit: we shall describe some of the
wavelike properties in Chapter 1, Volume II. The book of articles edited by Field and
Burger (1985) is a good and varied introduction to the BZ reaction. It also has several
articles on chemical oscillators and wave phenomena. The book by Winfree (2000),
among other things, also discusses some of the reaction’s properties, both temporal
and spatial. The article by Tyson (1994) is a succinct and more recent summary of the
phenomena exhibited by the BZ kinetics, both temporal and spatial. In this chapter we
consider the reaction in some detail not only because of its seminal importance in the
field, but also because it illustrates techniques of analysis which have wide applicability.
References to the more detailed kinetics are given at the appropriate places. Almost all
the phenomena theoretically exhibited by reaction and reaction diffusion mechanisms
have been found in this real and practical reaction—but many of these only after the
mathematics predicted them.

The BZ reaction (the general class of them) is probably the most widely studied
oscillating reaction both theoretically and experimentally. Here we briefly describe the
key steps in the reaction and develop the Field–Körös–Noyes (Field and Noyes 1974)
model system which quantitatively mimics the actual chemical reactions (Field et al.
1972). The models for the BZ reaction are prototypes to study since the theoretical
developments can be tested against experiments. The experience gained from this is
directly transferable to biochemical oscillators as mentioned above. The literature on
the subject is now large. A succinct review of the detailed reaction and its properties is
given by Tyson (1994).

In the original Belousov (1951) reaction, the basic mechanism consists of the ox-
idation of malonic acid, in an acid medium, by bromate ions, BrO3

−, and catalyzed
by cerium, which has two states Ce3+ and Ce4+. Sustained periodic oscillations are
observed in the cerium ions. With other metal ion catalysts and appropriate dyes, for
example, iron Fe2+ and Fe3+ and phenanthroline, the regular periodic colour change
is visually dramatic, oscillating as mentioned between red and blue. It is not only the
catalyst ion concentrations which vary with time, of course, other reactants also vary.
Figure 8.1 illustrates the temporal variations in the bromide ion concentration [Br−] and
the cerium ion concentration ratio [Ce4+]/[Ce3+] measured by Field et al. (1972), who
studied the mechanism in depth; see Tyson (1994) for more references and technical
details.

Basically the reaction can be separated into two parts, say I and II, and the concen-
tration [Br−] determines which is dominant at any time. When [Br−] is high, near A in
Figure 8.1, I is dominant and during this stage Br− is consumed; that is, we move along
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Figure 8.1. Experimentally measured periodic limit cycle type of temporal variation in the concentrations in
the ratio of the cerium metal ion concentration [Ce4+]/[Ce3+] and the bromide ion concentration [Br−] in
the Belousov–Zhabotinskii reaction. (Redrawn from Field et al. 1972)

AB, and the cerium ion is mainly in the Ce3+ state. As [Br−] decreases further it passes
through a critical value, B, and then drops quickly to a low level, that is, C in Figure 8.1.
At this stage process II takes over from I. During II the Ce3+ changes to Ce4+. However,
in the II-process Ce4+ reacts to produce Br− again while it reverts to the Ce3+ state.
Now [Br−] increases, that is, along C D A, and, when its value is sufficiently high, pro-
cess I again becomes dominant. The whole sequence is continually repeated and hence
produces the observed oscillations. This qualitative description is not, of course, suffi-
cient to show that the reaction will actually oscillate. The two pathways, I and II, could
simply reach some steady state of coexistence. In fact for certain parameter ranges this
is exactly what can happen. The parameter range required for oscillatory behaviour is
derived in detail below and depends on a careful analysis of the kinetics equations.

The rapid variation along BC and D A is typical of a relaxation oscillator, which is
just an oscillator in which parts of the limit cycle are traversed quickly. This behaviour
suggests a particular asymptotic technique which often allows us to get analytical results
for the period in terms of the parameters; we discuss this later in Section 8.4.

Although there are many reactions involved they can be rationally reduced to 5 key
reactions, with known values for the rate constants, which capture the basic elements of
the mechanism. These five reactions can then be represented by a 3-chemical system in
which the overall rate constants can be assigned with reasonable confidence. This model
is known as the Field–Körös–Noyes or FKN model and is the specific model proposed
by Field and Noyes (1974) based on the Field–Körös–Noyes (1972) mechanism. We
give this simpler model system and derive the 3-species model. A complete derivation
from the chemistry together with estimates for the various rate constants are given by
Tyson (1994).

The key chemical elements in the 5-reaction FKN model are

X = HBrO2, Y = Br−, Z = Ce4+,

A = BrO−
3 , P = HOBr,

(8.1)

and the model reactions can be approximated by the sequence
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A + Y
k1→ X + P, X + Y

k2→ 2P

A + X
k3→ 2X + 2Z , 2X

k4→ A + P Z
k5→ f Y,

(8.2)

where the rate constants k1, . . . , k5 are known and f is a stoichiometric factor, usually
taken to be 0.5. The first two reactions are roughly equivalent to the process I, described
above, while the last three relate approximately to process II. The form used by Field
and Noyes (1974) is actually slightly different in that the last reaction is B + Z →
f Y + Q where B represents organic acids and Q is C O2. [B] is a constant and can
be incorporated into the rate constant in the model equation system. It is reasonable to
take the concentration [A] of the bromate ion to be constant; the concentration [P] is
not of interest here. So, using the Law of Mass Action on (8.2), we get the following
third-order system of kinetics equations for the concentrations, denoted by lowercase
letters:

dx

dt
= k1ay − k2xy + k3ax − k4x2,

dy

dt
= −k1ay − k2xy + f k5z,

dz

dt
= 2k3ax − k5z.

(8.3)

This oscillator system is sometimes referred to as the ‘Oregonator’ since it exhibits limit
cycle oscillations and the research by Field et al. (1972) was done at the University of
Oregon.

Oscillatory behaviour of (8.3) depends critically on the parameters involved. For
example, if k5 = 0, the bromide ion (Br−) concentration y decays to zero according to
the second equation, so no oscillations can occur. On the other hand if f = 0.5 and k5 is
very large, the last reaction in (8.2) is very fast and the third and fifth reactions in (8.2)
effectively collapse into the single reaction

A + X
k3→ 2X + Y.

The system then reduces to a two-species mechanism, which is bimolecular, and so
cannot oscillate (Hanusse 1972). There is clearly a domain in the ( f, k5) plane where
periodic behaviour is not possible.

The only sensible way to analyse the system (8.3) is in a dimensionless form. There
are usually several ways to nondimensionalise the equations; see, for example, Murray
(1977) and Tyson (1982, 1985), both of whom give a fuller description of the chemistry
and justification for the model. Here we give only the more recent one suggested by
Tyson (1985) which incorporates the estimated values of the rate constants in the above
model (8.3). Often different nondimensionalisations highlight different features of the
oscillator. Following Tyson (1985), introduce

x∗ = x

x0
, y∗ = y

y0
, z∗ = z

z0
, t∗ = t

t0
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x0 = k3a

k4
≈ 1.2 × 10−7 M, y0 = k3a

k2
≈ 6 × 10−7 M,

z0 = 2(k3a)2

k4k5
≈ 5 × 10−3 M, t0 = 1

k5
≈ 50s,

ε = k5

k3a
≈ 5 × 10−5, δ = k4k5

k2k3a
≈ 2 × 10−4,

q = k1k4

k2k3
≈ 8 × 10−4, ( f ≈ 0.5)

(8.4)

which we substitute into (8.3). Field and Noyes (1974) suggested the value for f , based
on experiment. As said before, since the model telescopes a number of reactions the
parameters cannot be given unequivocally; the values are ‘best’ estimates. For our pur-
poses here we need only the fact that ε, δ and q are small. With (8.4) we get the fol-
lowing dimensionless system, where for algebraic convenience we have omitted the
asterisks,

ε
dx

dt
= qy − xy + x(1 − x),

δ
dy

dt
= −qy − xy + 2 f z,

dz

dt
= x − z.

(8.5)

In vector form with r = (x, y, z)T we can write this as

dr
dt

= F(r; ε, δ, q, f ) =






ε−1(qy − xy + x − x2)

δ−1(−qy − xy + 2 f z)

x − z




 . (8.6)

8.2 Linear Stability Analysis of the FKN Model and Existence of
Limit Cycle Solutions
Even though the system (8.5) is third-order, the linear stability analysis procedure is
standard and described in detail in Chapter 3; namely, first find the positive steady state
or states, determine the eigenvalues of the linear stability matrix and look for a confined
set, which is a finite closed surface S enclosing the steady state such that any solution at
time t0 which lies inside S always remains there for all t > t0. This was done by Murray
(1974) for the original, but only slightly different, FKN equation system; it is his type
of analysis we apply here to (8.6).

The nonnegative steady states (xs, ys, zs) of (8.5) are given by setting the left-hand
sides to zero and solving the resulting system of algebraic equations, to get
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(0, 0, 0) or zs = xs, ys = 2 f xs

q + xs
,

xs = 1

2

{
(1 − 2 f − q) + [(1 − 2 f − q)2 + 4q(1 + 2 f )]1/2

}
.

(8.7)

The other nonzero steady state is negative.
Linearising about (0, 0, 0) we obtain the stability matrix A with eigenvalues λ given

by

| A − λI | =

∣
∣∣
∣∣
∣∣∣

ε−1 − λ qε−1 0

0 −qδ−1 − λ 2 f δ−1

1 0 −1 − λ

∣
∣∣
∣∣
∣∣∣

= 0

⇒ λ3 + λ2(1 + qδ−1 − ε−1) − λ[ε−1(1 + qδ−1) − qδ−1] − q(1 + 2 f )

εδ
= 0.

If we simply sketch the left-hand side of this cubic as a function of λ for λ ≥ 0 we see
that there is at least one positive root. Alternatively note that the product of the three
roots is q(1+2 f )/εδ > 0, which implies the same thing. Thus the steady state (0, 0, 0)

is always linearly unstable.
If we now linearise (8.5) about the positive steady state (xs, ys, zs) in (8.7) the

eigenvalues λ of its stability matrix are given, after a little algebra, by

| A − λI | =

∣
∣∣
∣∣
∣∣∣
∣∣
∣

1 − 2xs − ys

ε
− λ

q − xs

ε
0

−ys

δ
− xs + q

δ
− λ

2 f

δ

1 0 −1 − λ

∣
∣∣
∣∣
∣∣∣
∣∣
∣

= 0

⇒ λ3 + Aλ2 + Bλ + C = 0,

(8.8)

where, on using the quadratic for xs , the simultaneous equations for xs , ys from (8.6)
and some tedious but elementary algebra, we get

A = 1 + q + xs

δ
+ E

ε
,

E = 2xs + ys − 1 = x2
s + q(xs + 2 f )

q + xs
> 0,

B = q + xs

δ
+ E

ε
+ (q + xs)E + ys(q − xs)

εδ
,

C = (q + xs)E − 2 f (q − xs) + ys(q − xs)

εδ

= x2
s + q(2 f + 1)

εδ
> 0.

(8.9)

Note that A > 0, since E > 0, and that C > 0, on using the expression for xs from (8.7);
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B can be positive or negative. It follows from Descartes’ rule of signs (see Appendix B)
that at least one eigenvalue λ in (8.8) is real and negative. The remaining necessary and
sufficient condition for all of the solutions λ to have negative real parts is, from the
Routh–Hurwitz conditions (see Appendix B), AB − C > 0. Substituting for A, B and
C from (8.9) gives a quadratic in 1/δ for the left-hand side and hence the condition for
stability of the positive steady state in (8.7). This is given by

AB − C = φ(δ, f, ε) = Nδ2 + Mδ + L

δ2
> 0,

L = (q + xs)

{
(q + xs) + xx (1 − q − 4 f ) + 2q(1 + 3 f )

ε

}
,

N = [x2
s + q(xs + 2 f )] 1 + E/ε

ε(q + xs)
> 0

(8.10)

with M also determined as a function of xs , f , q and ε; we do not require it in the
subsequent analysis and so do not give it here. With xs from (8.7), L , M and N are
functions of f , q and ε. Thus for the steady state to be linearly unstable, δ, f and ε must
lie in a domain in (δ, f, ε) space where φ(δ, f, ε) < 0. The boundary or bifurcation
surface in (δ, f, ε) space is given by φ(δ, f, ε) = 0.

We can get an indication of the eigenvalue behaviour asymptotically for large pos-
itive and negative B. If B � 1 the asymptotic solutions of (8.8) are given by

λ ∼ −C

B
, − A

2
± i

√
B, (8.11)

while if B < 0 and | B | � 1,

λ ∼ C

| B | , ±√| B |. (8.12)

So, for large positive B condition (8.10) is satisfied and from (8.11), Re λ < 0 and the
steady state is linearly stable, while if B is large and negative, it is unstable.

When the parameters are such that B = C/A, the bifurcation situation, we can
solve for the roots λ in (8.8), namely,

λ = −A, ±i
√

B, when B = C

A
. (8.13)

If B = (C/A) − ω, 0 < ω � 1, it can be seen by looking for asymptotic solutions to
(8.8) in the form λ = ±i(C/A)1/2 + O(ω) that the O(ω) term has a positive real part.
Thus, near the bifurcation surface in the unstable region, the steady state is unstable by
growing oscillations. The conditions of the Hopf bifurcation theorem (see, for example,
Strogatz 1994) are satisfied and so in the vicinity of the surface φ(δ, f, ε) = 0 the
system exhibits a small amplitude limit cycle solution with period

T = 2π
(C

A

)1/2
. (8.14)
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With the parameter values obtained from experiment, and given in (8.4), the amplitudes
of the oscillations in fact are not small, so the last expression is of pedagogical rather
than practical use. However, the bifurcation surface φ(δ, f, ε) = 0 given by (8.10) is of
practical use and this we must discuss further.

The surface φ(δ, f, ε) = 0, namely, Nδ2 + Mδ + L = 0 in (8.10), where N > 0,
is quadratic in δ. So, for the steady state to be unstable, that is, δ, f and ε make φ < 0,
δ must be such that

0 < δ <
1

2N

{
−M + [M2 − 4L N ]1/2

}
. (8.15)

But there is a nonzero range of positive δ only if the right-hand side of this inequality is
positive, which requires, with L from (8.10),

L = (q + xs)

{
(q + xs) + xs(1 − q − 4 f ) + 2q(1 + 3 f )

ε

}
< 0.

With xs from (8.7) this gives an algebraic equation relating f , q and ε. From (8.4) ε is
small, so to first-order the last inequality gives the numerator in the ε−1 term equal to
zero, which reduces to

(1 − 4 f − q){(1 − 2 f − q) + [(1 − 2 f − q)2 + 4q(1 + 2 f )]1/2}
+ 4q(1 + 3 f ) < 0,

(8.16)

which (with an equals sign in place of <) defines the critical f , fc, for a given q. In fact
there are two critical f ’s, namely, 1 fc and 2 fc and f must lie between them:

1 fc < f < 2 fc.

With q = 8 × 10−4 we can determine accurate values for 1 fc and 2 fc by exploiting the
fact that 0 < q � 1. The critical fc are given by (8.16) on replacing the inequality sign
with an equals sign. Suppose first that (1 − 2 f − q) > 0; that is, 2 f < 1 to O(1). Then
on letting q → 0,

(1 − 4 f )(1 − 2 f ) ≈ 0 ⇒ 1 fc ≈ 1

4
.

With (1 − 2 f − q) < 0, that is, 2 f > 1 to O(1), the limiting situation q → 0 has to be
done carefully; this gives 2 fc. To O(q), (8.16), again with an equals sign, now becomes

(1 − 4 f )

{
−(2 f + q − 1) + (2 f + q − 1)

[
1 + 2q(1 + 2 f )

(2 f + q − 1)2

]}

+ 4q(1 + 3 f ) ≈ 0,

which reduces to
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4 f 2 − 4 f − 1 ≈ 0 ⇒ 2 fc ≈ 1 + √
2

2
.

So, for small q, the range of f for which the positive steady state in (8.7) is linearly
unstable is

1

4
≈ 1 fc < f < 2 fc ≈ 1 + √

2

2
. (8.17)

Finally the stability bifurcation curve of δ against f for each ε is given by (8.15),
namely,

δ = 1

2N

{
−M + [M2 − 4L N ]1/2

}
. (8.18)

with 1 fc < f < 2 fc, where the critical fc are obtained from (8.16), and L , M and N
are defined by (8.10), with (8.9), in terms of f , q and ε.

8.3 Nonlocal Stability of the FKN Model

We showed in the last section that for each ε, if δ and f lie in the appropriate domain, the
positive steady state is linearly unstable, and indeed by growing oscillations if (δ, f ) are
close to the bifurcation curve. Wherever (δ, f ) lies in the unstable domain, we must now
consider global stability. Even though we do not have the equivalent of the Poincaré–
Bendixson theorem here since we are dealing with a third-order system, the existence
of a periodic solution with finite amplitudes requires the system to have a confined set,
S say. That is, with n the unit outward normal to S, we must have

n · dr
dt

< 0, r on S, (8.19)

where dr/dt is given by (8.6).
Although the existence of a confined set and a single unstable steady state (by grow-

ing oscillations) is not sufficient to prove the existence of a periodic limit cycle, they
give sufficient encouragement to pursue the analysis further. With three equations it is
possible to have chaotic solutions, such as we found with discrete models in Chapter 2.
Chaotic behaviour in this sense has been found in the BZ reaction (see, for example,
Scott 1991). (The now classical Lorenz (1963) model is a 3-equation system and it ex-
hibits chaos; it models a fluid dynamics situation.) Hastings and Murray (1975) gave a
rigourous proof, together with a procedure which determines the general trajectory path
over a cycle, showing that the FKN model system (8.5) possesses at least one limit cycle
periodic solution. The procedure they developed has wider applications to a fairly broad
class of feedback control systems as has been demonstrated by Hastings et al. (1977).

Let us look for the simplest surface S, namely, a rectangular box defined by the
faces
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x = x1, x = x2; y = y1, y = y2; z = z1, z = z2

enclosing the steady state (xs, ys, zs) in (8.7) . Let us first determine the planes x = x1
and x = x2 where 0 < x1 < xs < x2. Let i, j and k be the unit normals in the positive
x , y and z directions. On x = x1, n = −i and (8.19) requires

−i · dr
dt

]

x=x1

= −dx

dt

]

x=x1

< 0 ⇒ qy − xy + x − x2
]

x=x1
> 0.

Since, from (8.4), 0 < q � 1, and assuming x1 = O(q), the last inequality requires x1
to satisfy

y(q − x1) + x1 − x2
1 ≈ y(q − x1) + x1 > 0 for all y1 ≤ y ≤ y2.

So, at the least, a natural boundary for x < xs is x1 = q, which we choose as a first
approximation. Then on x = x1 = q,

−i · dr
dt

]

x=x1=q
= −q(1 − q)

ε
< 0 if q < 1.

On x = x2, n = i and (8.19) now requires

i · dr
dt

]

x=x2

= dx

dt

]

x=x2

< 0 ⇒ [y(q − x) + x − x2]x=x2 < 0.

If we choose x2 = 1, we get

i · dr
dt

]

x=x2

= ε−1 y(q − 1) < 0 if q < 1, for all y > 0.

With xs as given by (8.7) a little algebra shows that

q = x1 < xs < 1 if q < 1.

With typical values for the parameters these conditions are satisfied.
Consider now the planes z = z1 and z = z2, where z1 < zs < z2. On z = z1,

n = −k and (8.19) requires

−k · dr
dt

]

z=z1

= −dz

dt

]

z=z1

= −(x − z)]z=z1 < 0

and since, on the boundary S, x ≥ x1 we have a natural lower boundary for z of z =
z1 = q. Strictly z1 should be just less than q since x1 = q. Now on z = z2, n = k and
we require

k · dr
dt

]

z=z2

< 0 ⇒ (x − z)]z=z2 < 0.
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Since x ≤ 1, an upper boundary for z is z = z2 = 1; again we should have z2 just
greater than 1.

Finally let us consider the planes y = y1 and y = y2 where y1 < ys < y2. On
y = y1, n = −j and (8.19) requires

−j · dr
dt

]

y=y1

= [y(q + x) − 2 f z]y=y1 < 0

and so we must have

y1 <
2 f z

q + x
for all q ≤ x ≤ 1 and q ≤ z ≤ 1.

So,

y1 <
2 f q

q + 1
= 2 f zminimum

1 + xmaximum
.

Thus, an appropriate lower boundary for y is

y1 = 2 f q

q + 1
.

When y = y2, n = j and we need

j · dr
dt

]

y=y2

< 0 ⇒ 2 f z − y(q + x)]y=y2 < 0

which implies

y2 >
2 f z

q + x
for all q ≤ x ≤ 1 and q ≤ z ≤ 1

and so we can take

y2 = 2 f zmaximum

q + xminimum
= f

q
.

Again using (8.4), for typical values of q and f , y1 < ys < y2.
Finally we have (8.19) satisfied on the surface S of the rectangular box given by

x = q, x = 1; y = 2 f q

q + 1
, y = f

q
; z = q, z = 1 (8.20)

within which the steady state (8.7) lies if f and q satisfy certain inequalities, which are
indeed satisfied by the parameter values in the Belousov–Zhabotinskii reaction.



268 8. BZ Oscillating Reactions

Figure 8.2. Comparison of the observed oscillations in the BZ reaction with the numerically computed so-
lution of the limit cycle solution of the model FKN system (8.5) with f = 0.3, δ = 1/3, q = 5 × 10−3,
ε = 0.01. (Redrawn from Tyson 1977)

This bounding surface could be refined to give more accurate bounds on any so-
lutions of (8.5). Since the ultimate limit cycle solutions have to be found numerically,
or asymptotically as in the following section, all that is needed is a demonstration that
such a confined set exists.

Figure 8.2 shows the numerical solution of the system (8.5) as compared with the
observed oscillations.

8.4 Relaxation Oscillators: Approximation for the
Belousov–Zhabotinskii Reaction

If we look again at Figure 8.1 we see that certain parts of the cycle are covered very
quickly. This is particularly evident in the trace of the Br− ion where it suddenly rises
along D A and drops as quickly along BC . As we mentioned above when parts of a
limit cycle are traversed quickly in comparison with other parts it is often referred to as
a relaxation oscillator. What this means from a modelling point of view is that a small
parameter must be present in the differential equation system in a crucial place to cause
this rapid variation in the solution.

To be specific, and to show how we can exploit such behaviour, consider first the
simple relaxation oscillator

ε
dx

dt
= y − f (x),

dy

dt
= −x, 0 < ε � 1, (8.21)

where f (x) is a continuous function such that, say, f (x) → ±∞ as x → ±∞. The
classic example, where f (x) = (1/3)x3 − x , is known as the Van der Pol oscillator.
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Figure 8.3. (a) Typical limit cycle phase trajectory ABCDA for a relaxation oscillator. The two horizon-
tal parts of the trajectory are traversed very quickly. (b) The solution x(t) corresponding to the limit cycle
trajectory in (a).

System (8.21) is a typical singular perturbation problem (see, for example, the book by
Murray 1984) since ε multiplies one of the derivatives. Figure 8.3(a) illustrates a typ-
ical limit cycle phase plane trajectory for (8.21), with Figure 8.3(b) the corresponding
solution x(t).

From the first of (8.21), except where y ≈ f (x), x changes rapidly by O(1/ε). So,
referring now to Figure 8.3(a), along D A and BC , x(t) changes quickly. Along these
parts of the trajectory the appropriate independent variable is τ = t/ε rather than t .
With this transformation the second of (8.21) becomes, as ε → 0,

dy

dτ
= −εx ⇒ y ≈ constant,

as it is on D A and BC in Figure 8.3(a). From (8.21), along the null cline y = f (x)

between AB and C D the second equation becomes

f ′(x)
dx

dt
≈ −x (8.22)

which can be integrated to give x implicitly as a function of t . If f (x) is the Van der Pol
cubic above, or can be reasonably approximated by a piecewise linear function, then we
can integrate this equation exactly. We can then estimate (which we do in detail below)
the period T of the oscillation since the major contribution comes from the time it takes
to traverse the branches AB and C D: the time to move across D A and BC is small,
o(1). It can be shown that if T is the limit cycle period calculated in this manner from
(8.22), then the asymptotic limit cycle period of (8.21) has a correction of O(ε2/3). For
our purposes all we need is the O(1) approximation for T .

By way of example, suppose f (x) = (1/3)x3 − x , that is, (8.21) is the simple Van
der Pol oscillator, and let us calculate the O(1) period T . The null cline y = f (x) here
and the limit cycle relaxation trajectory are very similar in shape to those illustrated
in Figure 8.3 except that the origin has been moved to a point halfway down DB in
Figure 8.3(a) and to a point in Figure 8.3(b) such that the solution is symmetrical about
the x = 0 axis. From the above analysis, on integrating from the equivalent of A to B
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in Figure 8.3(a) and from the equivalent of C to D, as ε → 0 the period T to O(1) is
given by (8.22), with f (x) = (1/3)x3 − x . A little algebra gives A as (2, 2/3) and B as
(1,−2/3). Because of the symmetry, and to be specific if we take t = 0 at A, the O(1)

period T is given by

∫ 1

2

(
x − 1

x

)
dx = −

∫ T/2

0
dt ⇒ T = 3 − 2 ln 2. (8.23)

Note that even if we cannot integrate f ′(x)/x simply, to get the period, we can still
determine the maxima and minima of the limit cycle variables simply from the algebra
of the null clines y = f (x). These correspond to A and C for x(t) and D or A and B
or C for y(t).

On comparing the bromide ion concentration [Br−] as a function of time in Fig-
ure 8.1 and the limit cycle time-dependent solution sketched in Figure 8.3(b) it is rea-
sonable to look for a relaxation oscillator type of approximation for the BZ oscillator.
This has been done by Tyson (1976, 1977) whose analysis we effectively follow in the
next section.

Let us again consider the FKN mechanism in the dimensionless form (8.5); namely,

ε
dx

dt
= qy − xy + x(1 − x),

δ
dy

dt
= −qy − xy + 2 f z,

dz

dt
= x − z,

(8.24)

with the dimensionless parameters given by (8.4). Note that ε � δ, in which case we
can reduce the order of the system (8.24) by setting ε dx/dt ≈ 0. This gives

0 = qy − xy + x(1 − x) ⇒ x = x(y) = 1

2

{
(1 − y) + [(1 − y)2 + 4qy]1/2

}
.

(8.25)

With this (8.24) reduces to the second-order differential equation system in y and z:

δ
dy

dt
= 2 f z − y[x(y) + q],

dz

dt
= x(y) − z,

(8.26)

which of course can now be analyzed completely in the (y, z) phase plane. We can,
in the usual way, determine the steady state, analyze the linear stability, show there is
a confined set and hence determine the conditions on the parameters for a limit cycle
solution to exist.
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8.5 Analysis of a Relaxation Model for Limit Cycle Oscillations in
the Belousov–Zhabotinskii Reaction

Here we exploit the relaxation oscillator aspects of (8.26) and hence determine the ap-
proximate period of the limit cycle, the maxima and minima of the dependent variables
and then compare the results with the experimental observations of the oscillating re-
action. To do this we first give approximations for x(y) using the fact that 0 < q � 1
from (8.4), and then sketch the null clines.

From (8.25), with q � 1, the z-null cline from (8.26) is

z = x(y) ≈
{

1 − y
qy

y − 1
for

{
q � 1 − y ≤ 1
q � y − 1

. (8.27)

The y-null cline, from (8.26), is

z = y[x(y) + q]
2

≈






y(1 − y)

2 f

y
[

qy
y−1 + q

]

2 f
qy

f

for






q � 1 − y � 1
q � y − 1
y � 1

. (8.28)

The z-null cline is a monotonically decreasing function of y; it is sketched in Figure 8.4.
The y-null cline, also shown in Figure 8.4 for various ranges of f , has a local maximum,
zmax (= zD = z A in Figure 8.4(a))

zmax = 1

8 f
at ymax = 1

2
, (8.29)

obtained from the first of (8.28). From the second of (8.28), z has a local minimum, zmin
(= zB = zC in Figure 8.4(a)) at

dz

dy
=

{
q

2 f (y − 1)2

}
{2y2 − 4y + 1} = 0

⇒ ymin = 2 + √
2

2
,

⇒ zmin = q(1 + √
2)2

2 f
= q(3 + 2

√
2)

2 f
.

(8.30)

The values of z and y at the relevant points A, B, C and D are obtained from (8.27)
and (8.28), with zD(= z A) and yD given by (8.29) and zB(= zC ) and yB from (8.30).
For yC , we have from the first of (8.28), with q � 1 and zC = zmin from (8.30),
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Figure 8.4. Schematic null clines for the reduced BZ model system (8.26) using the asymptotic forms for
0 < q � 1 from (8.27) and (8.28). The points B and C correspond to zmin given by (8.30) and the points
D and A to zmax in (8.29). The asymptotic expressions for A, B, C and D are gathered together in (8.31)
below. Note how the position of the steady state changes with f : (a) 1/4 < f < (1 + √

2)/2; (b) f < 1/4;
(c) (1 + √

2)/2 < f .

zC = yC (1 − yC )

2 f
⇒ yC = 1 − [1 − 8 f zC ]1/2

2

≈ 1 − [1 − 4q(3 + 2
√

2)]1/2

2
≈ q(3 + 2

√
2).

For yA, we have, from the second of (8.27) for y large, z ∼ qy/ f , and z A = zmax from
(8.29),

1

8 f
= z A ≈ qyA

f
⇒ yA ≈ 1

8q
� 1.

Gathering together these results, and those from (8.29) and (8.30), we have, for the
points ABC D in Figure 8.4(a),

yA ≈ 1

8q
, z A = 1

8 f
; yB ≈ 2 + √

2

2
, zB ≈ q(3 + 2

√
2)

2 f
;

yC ≈ q(3 + 2
√

2), zC ≈ q(3 + 2
√

2)

2 f
; yD ≈ 1

2
, zD ≈ 1

8 f
.

(8.31)
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Figures 8.4(a) to (c) illustrate the various null cline possibilities for the reduced BZ
model (8.26). From (8.27), (8.28) and (8.31) we can get the f -ranges where each holds.
Figure 8.4(b) is when the local maximum at zD lies to the right of the steady state. This
requires that on the z-null cline, given by (8.27),

z]y=yD < zD ⇒ x(yD) ≈ 1 − yD < zD ⇒ f <
1

4
, (8.32)

on using (8.31). Figure 8.4(a) holds when z on the z-null cline is such that

z]y=yD > zD and z]y=yB < zB,

which gives

x(yD) ≈ 1 − yD >
1

8 f
and x(yB) ≈ qyB

yB − 1
<

q(3 + 2
√

2)

2 f
,

which reduces to

1

4
< f <

1 + √
2

2
. (8.33)

Finally Figure 8.4(c) holds when, on the z-null cline,

z]y=yB > zB ⇒ f >
1 + √

2

2
. (8.34)

We know from Chapter 7 that Figure 8.4(a) is a case in which a limit cycle oscilla-
tion is possible. So, with f in the range (8.33) and the steady state unstable, the reduced
BZ model system (8.26) will exhibit limit cycle solutions. Now comparing Figure 8.4(a)
with the relaxation limit cycle oscillator in Figure 8.3(a) gives the O(1) period of the
oscillatory solution of (8.26) for 0 < δ � 1 as

T ≈
∫

AB
dt +

∫

C D
dt =

(∫ z B

z A

+
∫ zD

zC

)(
dz

dt

)−1

dz (8.35)

with dz/dt given by (8.26). So,

TAB =
∫ zB

z A

[x(y) − z]−1dz. (8.36)

To get an exact evaluation to O(1) for q � 1, it is convenient to change the variable
to y, with z as a function of y given by the second of (8.28), since AB is part of the
y-null cline. It is a tedious integration. All we want here is a reasonable approximation
to the period. So, using the expressions for q � 1 in (8.27), we have, along most of
AB,

x(y) ≈ qy

y − 1
∼ q,
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and so, using (8.31),

TAB =
∫ z B

z A

(q − z)−1dz = ln

[
z A − q

zB − q

]

∼ ln






[
1

8 f

]

[
q(3+2

√
2)

2 f − q
]






∼ − ln [4(3 − 2 f + 2
√

2)q], q � 1.

(8.37)

This, in fact, is an upper bound for TAB since on AB, x(y) ≈ qy/(y − 1), which
asymptotes to q only for y � 1. On AB, x(y) goes from

x(yA) =
q
[

1
8q

]

[
1

8q − 1
] ∼ q + O(q2), q � 1,

to

x(yB) =
q
[

2+√
2

2

]

[
2+√

2
2 − 1

] = q(1 + √
2).

Returning to the integral in (8.36) we have TAB bounded above by (8.37) and below by
the expression there with q(1 + √

2) replacing q. That is,

ln [4(3 − 2 f + 2
√

2)q] < TAB < − ln [4(3 − 2 f + 2
√

2)(1 + √
2)q]. (8.38)

Let us now evaluate the TC D contribution to the period in (8.35), namely,

TC D =
∫ zD

zC

[x(y) − z]−1dz.

It is also convenient here to change to y as the integration variable. Between C and D
in Figure 8.4(a) and on C D

x(y) ≈ 1 − y, z ≈ y(1 − y)

2 f
⇒ dz =

[
1 − 2y

2 f

]
dy

so the last integral gives, after some further tedious algebra,

TC D ≈
∫ yD

yC

[
1−2y

2 f

]

[
(1 − y) − y(1−y)

2 f

] dy

= −
[

4 f − 1

2 f − 1

]
ln

[
21/(4 f −1) 4 f − 1

4 f

]
.

(8.39)
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The period to O(1) for q � 1 is then given as a function of f and q by TAB + TC D ,
using (8.38) and (8.39). The dimensional period is given by multiplying T by t0 from
(8.4).

To complete the analysis of the relaxation oscillator we have to integrate the ap-
proximate equations on the branches AB and C D. We have effectively already done
this when we evaluated TAB and TC D . Let us take t = tA = 0 and hence z(0) = z A

for algebraic convenience. Then on AB, with x(y) ∼ q for y large from (8.27), (8.26)
gives

dz

dt
≈ q − z ⇒ z(t) = z Ae−t + q(1 − e−t ), (8.40)

and so there is an exponential decay in time from z A to zB = O(q) for times of O(1).
On C D, x(y) ≈ 1 − y and z ≈ y(1 − y)/(2 f ) so the second of (8.26) on changing

to the variable y, gives

[
1 − 2y

2 f

]
dy

dt
≈ (1 − y) − y(1 − y)

2 f

which integrates to give y implicitly as a function of t from

ln

[
1 − y

(2 f − y)4 f −1

]
= K + (2 f − 1)t, (8.41)

where K is an integration constant. Since the time to traverse the horizontal part of the
trajectory, namely, BC , is negligible, we can determine K by taking y(tC) = yC , where
t = tC ≈ tB , with tB given by (8.40) on setting z = zB ; that is,

tB = ln

[
z A(1 − q)

zB − q

]
. (8.42)

From (8.41) and the last equation we thus have

K = ln

[
1 − yC

(2 f − yC )4 f −1

]
− (2 f − 1)tB . (8.43)

Now with y(t) given implicitly by (8.41), we get z from z ∼ y(1 − y)/(2 f ). Finally
the time to traverse D A is also negligible. We thus have analytical expressions for the
dependent variables in the relaxation oscillator as functions of time for 0 < q � 1.

Let us now return to the actual BZ reaction and recall from (8.1) that z and y
are the dimensionless variables associated with the catalyst form Ce4+ and bromide
ion Br− respectively. Referring to Figure 8.4(a) and starting at A, say, the limit cycle
oscillation trajectory then goes through BC D to A again. This trajectory corresponds
to the experimentally obtained cycle illustrated in Figure 8.1 with corresponding letters.
The [Br−] decreases exponentially to B, then there is a rapid drop to the value at C . The
value at B is the threshold Br− concentration described in Section 8.1 where process II
takes over from process I. There is then an increase in times O(1) from C to D, given
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Table 8.1. Comparison of values obtained from the relaxation oscillator approximation (8.26) for the BZ
reaction with observed values. (From Field et al. 1972)

Calculated Values Experimental Values

Period 183–228 s 110 s
[Br−]B = [Br−]crit 1.7 × 10−5 [BrO3

−] 2 × 10−5 [BrO3
−]

[Br−]C = [Br−]jumpup 0.3 [Br−]crit 0.3 [Br−]crit

[Br−]A = [Br−]max 1.6 × 10−3 [BrO3
−] = 90 [Br−]crit 3 [Br−]crit

by (8.42) with (8.43), followed by a rapid increase in [Br−] to its value at A again. Thus
the relaxation oscillator approximation (8.26) mimics the real experimental oscillator of
Figure 8.1. To go further we must compare actual measurable quantities.

The experimentally suggested value for f from Field and Noyes (1974) is f =
0.5. Taking the limit f → 0.5 in (8.39), by setting f = 0.5 + ω and then letting
ω → 0, TC D = 2 ln (2) − 1. Because of the smallness of q the major part of the
period comes from TAB . Now take the values in (8.4), which also gives y0 used in the
nondimensionalisation of the bromide ion concentration y, and substitute them into the
limiting values for y0y(=[Br−]) from (8.31), and in the expressions for the TAB bounds
and TC D from (8.38) and (8.39); Table 8.1 lists the values obtained. The table also gives
the experimentally observed values of Field et al. (1972). Considering the complexity
of the reaction and the number of approximations used in reducing the mechanism to
manageable proportions and finally to the relaxation oscillator model, the results are
very good.

When the parameter f is in the ranges which give null clines typically as in Fig-
ures 8.4(b) and (c), oscillations are not possible for the mechanism (8.26) as we saw
in Chapter 7, Section 7.3. However the mechanism in these cases can exhibit threshold
behaviour; compare with Figures 7.5(a) and (b). Further, if reversibility is allowed in
the basic FKN model mechanism (8.2) it is possible to have three positive steady states
of which two are stable, as in Figure 7.4(d). This corresponds to the biological switch
behaviour also discussed in Chapter 7, Section 7.3 and schematically illustrated in Fig-
ure 7.5(c). Numerical studies of the reversible model also indicate bursting behaviour
and chaos. Various plausible models for the Belousov–Zhabotinskii reaction have pre-
dicted a variety of unexpected phenomena which should be experimentally exhibited by
the real reaction, and many have now been confirmed; see, for example, Tyson (1985),
Field and Burger (1985) and Scott (1991). Barkley et al. (1987) demonstrated the exis-
tence of quite complex behaviour including periodic bursting, hysteresis and periodic-
chaotic sequences. Györgyi and Field (1991) presented some models for the BZ reaction
which demonstrate deterministic chaos.

Here we have considered only homogeneous or well-stirred systems. When we
investigate, in later chapters, coupled biological oscillators and unstirred systems, where
diffusion effects must be included, a new and astonishing range of phenomena appear.
Once again the Belousov–Zhabotinskii reaction is the key reaction used in experiments
to verify the theoretical results.
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Exercises

1 Another scaling (Murray 1977) of the FKN model results in the third-order system

ε
dx

dt
= y − xy + x(1 − qx),

dy

dt
= −y − xy + 2 f z,

dz

dt
= δ(x − z),

where ε and q are small. Determine the steady states, discuss their linear stability
and show that a confined set for the positive steady state is

1 < x <
1

q
,

2 f q

1 + q
< y <

f

q
, 1 < z <

1

q
.

2 With the system in Exercise 1, derive the relevant reduced second-order system on
the basis that 0 < ε � 1. Sketch the null clines in the phase plane, exploiting the
fact that 0 < q � 1, and hence determine the necessary conditions on f for a limit
cycle solution to exist.

3 A relaxation oscillator is given by

ε
dx

dt
= f (x) − y,

dy

dt
= x, f (x) = x − 1

3
x3,

where 0 < ε � 1. Sketch the limit cycle trajectory in the y, x phase plane, noting
the direction of motion. Determine the period T to O(1) as ε → 0.

Approximate the function f (x) by a piecewise linear function, and sketch
the corresponding phase plane limit cycle. Integrate the equations using the piece-
wise linear approximation. Hence, sketch the solution x as a function of t . Also
evaluate the O(1) period and compare the result with that in the first part of the
question.

4 A possible relaxation oscillator model for the FKN mechanism is governed by the
dimensionless system

ε
dx

dt
= 2 f z(q − x)

x + q
+ x(1 − x),

dz

dt
= x − z,

where 0 < ε � 1, 0 < q � 1 and f = O(1). Using the results in Exercise 2, when a
limit cycle solution is possible, sketch the relaxation oscillator trajectory, determine
the maximum and minimum values for x and z, and obtain expressions for the O(1)

estimate for the limit cycle period.



9. Perturbed and Coupled Oscillators and
Black Holes

9.1 Phase Resetting in Oscillators

With the plethora of known biological oscillators, and their generally accepted impor-
tance, it is natural to ask what effects external perturbations can have on the subsequent
oscillations. In his pioneering work on circadian rhythms in the 1960’s, A.T. Winfree
asked this basic and deceptively simple question in a biological context in connec-
tion with his experimental work on the periodic emergence of the fruit fly, Drosophila
melanogaster, from their pupae. Since then a series of spectacular discoveries of hitherto
unknown properties of perturbed oscillators, spatially coupled oscillators, oscillators
coupled to diffusion processes and so on (see, for example, Chapter 12 and Chapter 1,
Volume II), have been made as a result of this simple yet profound question. Winfree
has developed a new conceptual geometric theory of biological time, which poses many
challenging and interesting mathematical problems. Winfree’s (2000) seminal book,
which has a full bibliography, discusses the area in detail. He also gives numerous im-
portant examples of biological situations where a knowledge of such effects is crucial
to understanding certain phenomena which are observed.

The periodic pacemaker in the heart is an important oscillator and one which is
being widely studied, in particular the effects of imposed perturbations. For example,
Jalife and Antzelevitch (1979), whose results we discuss in Section 9.4, deal with pace-
maker activity in cardiac tissue; Krinsky (1978) discusses cardiac wave arrhythmias;
Winfree (1983a,b) discusses, among other things, the topological aspects of sudden
cardiac death. There is also interesting work on the sophisticated neural control of syn-
chrony of breathing to stride in runners and horses (see, for example, Hoppensteadt
1985 and the references there).

We saw in Section 7.5 above that under certain conditions nerve cells can exhibit
regular periodic firing. In view of the crucial importance of neuronal signalling it is
clearly of considerable interest to study the effect of external stimuli on such oscilla-
tions. The work of Best (1979) is of particular relevance to this and the following three
sections. He subjected one of the accepted models for the propagation of nerve action
potentials, namely, the FitzHugh–Nagumo model (see Section 7.5, equations (7.39)), to
periodic impulses and demonstrated some of the important phenomena we discuss in
this chapter.

As we shall show in Chapter 1, Volume II, the spatial propagation of impulses in
neurons normally relies on a threshold stimulus being applied, and is an important prac-
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tical example of an excitable medium. The heart pacemaker problem and some kinds of
cardiac failure are probably related to wave phenomena associated with perturbed oscil-
lators; see, for example, the general scientific article by Winfree (1983b). This area has
been studied over a period of some years, specifically in relation to heart failure and is
one of the motivations for the material described in this section. The results and conclu-
sions in this section, however, are quite general and are, in effect, model-independent,
even though we use specific models for pedagogical reasons.

By way of introduction we briefly describe some of the experimental observations
made on the approximately 24-hour rhythmic emergence of fruit flies from their pupae.
During the pupal stage of the flies’ development, a metamorphosis takes place which
culminates in the emergence of an adult fruit fly. If metamorphosing pupae are simply
left alone in a typical diurnal cycle of light and dark the flies emerge in quanta over a
period of about 6 to 8 hours roughly every 24 hours. If such pupae are now placed in
complete darkness the flies continue to emerge in almost exactly the same way; Fig-
ure 9.1 illustrates the aggregated results of numerous experiments.

If the pupae, in the dark environment, are now subjected to a brief pulse of light,
the timing, or phase, of the periodic emergence of the flies is shifted. In other words
there is a phase shift in the underlying biological clock. The phase shift depends both
on the timing T of the light pulse and its duration or rather the number D in ergs/cm2

transmitted by the light. We are interested in the emergence time TE after the pulse
of light; TE depends on T and D. If the dose D = 0 is given at T then clearly the
phase shift is zero; TE = 24 − T hours. Winfree (1975) gives the results of numerous
experiments in which T and D are varied and TE recorded. The important point to
note at this stage about these experiments is that there is a critical dose D∗ which, if
administered at a specific time T ∗, results in no further periodic emergences but rather a

Figure 9.1. Fruit fly pupae were placed in a completely dark environment. Fly emergence (eclosion) takes
place approximately every 24 hours over a period of about 7 hours until all the pupae have matured. Here we
are concerned with the periodic peak timing, not the number emerging at each peak. (Redrawn from Winfree
1980 with permission)
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continuous emergence. In other words the periodic behaviour has been destroyed. What
is also surprising from the data is just how small the dose was which caused this; see
Winfree (1975). Basically these experimental results suggest that there is a critical phase
and stimulus which destroy the basic underlying periodic behaviour or biological clock.
This has important implications for oscillators in general.

This section and the following three are principally concerned with biological oscil-
lators, the effect of stimulus and timing on the periodic behaviour and the experimental
evidence and implications. With the fruit fly experiments there is a singularity (or sin-
gularities) in the stimulus-timing-response space of the oscillator at which point the
oscillator simply quits or does unpredictable things. Away from this singularity the sub-
sequent behaviour is more or less predictable. Later, in Section 9.4, we describe other
stimulus experiments, namely, on cardiac tissue, which exhibit similar phase singularity
behaviour.

Prior to doing the analysis, which is very easy for the illustrative example we con-
sider, it is helpful to consider the simple pendulum to demonstrate the phenomena of
phase resetting and stimulus-timing-phase singularity that we have just described. Sup-
pose a pendulum is swinging with period ω, and suppose we measure zero phase or time
t = 0 from the time the pendulum bob is at S, its highest point, at the right, say. Then
every time t = nω for all integers n, the bob is again at S. If, during the regular oscilla-
tion, we give an impulse to the bob, we can clearly upset the regular periodic swinging.
After such an impulse or stimulus, eventually the pendulum again exhibits simple har-
monic motion, but now the bob does not arrive at S every t = nω but at some other time
t = ts + nω, where ts is some constant. In other words the phase has been reset. If we
now give a stimulus to the bob when it is exactly at the bottom of its swing we can, if
the stimulus is just right, stop the pendulum altogether. That is, if we give a stimulus of
the right size at the right phase or time we can stop the oscillation completely; this is
the singular point in the stimulus-phase-response space we referred to above in the fruit
fly experiments.

Suppose that an oscillator is described by some vector state variable u which satis-
fies the differential equation system

du
dt

= f(u, λ), (9.1)

where f is the nonlinear rate function and λ denotes the parameters of the oscillator. For
visual clarity and algebraic simplicity, suppose (9.1) describes a limit cycle oscillator
involving only 2 species, x and y. Then typically the limit cycle trajectory is a simple
plane closed curve, γ say, in the two-dimensional species plane as in Figure 9.2(a). By
a suitable change of variable we can transform this limit cycle into one in which the
closed trajectory is a circle and the state of the oscillator is essentially described by an
angle θ , the ‘phase,’ with its origin at some arbitrary point on the circle. The limit cycle
is traversed with speed v = dθ/dt . In one complete traversal of the orbit, θ increases
by 2π .

A simple example of such a limit cycle system is

dr

dt
= R(r),

dθ

dt
= Φ(r), (9.2)
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Figure 9.2. (a) A typical limit cycle solution trajectory γ in the phase plane. (b) Typical solutions to the
system (9.2) with conditions (9.3). With any initial conditions, the solution evolves to the limit cycle given
by r = 1, dθ/dt = 1. (c) Typical time periodic behaviour of the point P in (a): note that the velocity of the
point P is in general not constant as is the case in (b).

where

R(r)

{
> 0
< 0

for

{
0 < r < r0
r > r0

, R(r0) = 0, Φ(r0) = 1. (9.3)

These conditions imply that (9.2) has a unique attracting limit cycle r = r0, dθ/dt = 1.
(A particularly simple case, mentioned before in Chapter 3, has R(r) = r(1 − r),
Φ(r) = 1, for which the solution can be given trivially.) If we normalise the circle with
respect to r0 we can then take the limit cycle to be r = 1.

Figure 9.2(b) illustrates a typical phase plane limit cycle solution. Figure 9.2(c)
shows, for example, how the point xP = xS + cos θ(t), where xS is the steady state in
Figure 9.2(a), might vary as a function of t, with equivalent values of θ marked at two
points.

The fact that limit cycle solutions can be visualised as motion around a circle has
been developed in an intuitive way by Winfree (2000) under the general topic of ring
dynamics. The topological aspects are interesting and produce some unexpected results
and new concepts. Here we consider only the basic elements of the subject but they are
sufficient to demonstrate certain important concepts.

With the modelling of physiological oscillators in mind we envisage some event,
a heart beat, for example, to occur at some specific value of the phase, which we can
normalise to θ = 0. The pacemaker goes through a repeating cycle during which it fires
at this specific phase (that is, time), then is refractory for part of the cycle, after which
it again fires, and so on. With the ring or circle concept for an oscillator, we can think
of the pacemaker as a point moving round a ring at a constant velocity with firing oc-
curring every time the point passes through the position on the circle with phase θ = 0.
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Although from a time point of view, t increases linearly, at specific times (multiples of
the period) the pacemaker fires. To appreciate the basic concept of phase resetting of an
oscillator by a stimulus we take, as an illustrative example, the simplest nontrivial limit
cycle oscillator system

dr

dt
= r(1 − r),

dθ

dt
= 1, (9.4)

for which the phase θ(t) = θ0 + t , modulo 2π ; see Figure 9.2(b). With it we discuss the
two basic types of phase resetting, namely, Type 1 and Type 0.

9.2 Phase Resetting Curves

Type 1 Phase Resetting Curves

Suppose we first perturb only the phase so that the governing equation becomes

r = 1,
dθ

dt
= 1 + v(θ, I ), (9.5)

where v(θ, I ) represents the imposed velocity change, that is, the stimulus, on the an-
gular velocity dθ/dt . I is a parameter which represents the magnitude of the impulse
imposed on the oscillator. Again for pedagogical reasons let us take a simple, but non-
trivial, v which depends on θ and I , and which was used by Winfree (1980), namely,

dθ

dt
= 1 + I cos 2θ, (9.6)

where I may be positive or negative. If the stimulus I is imposed at t = 0 and main-
tained for a time T then integrating (9.6) gives the new phase φ in terms of the old phase
θ when the stimulus was started. From (9.6),

∫ φ

θ

(1 + I cos 2s)−1ds =
∫ T

0
dt = T, (9.7)

which integrates to give

| I | < 1: tan φ = A tan[T B + tan−1(A−1 tan θ)],
I = 1: tan φ = 2T + tan θ

I = −1: tan φ = tan θ

1 − 2T tan θ

| I | > 1: tan φ = A
| K | + 1

| K | − 1
if | tan φ | > A

tan φ = A
| K | − 1

| K | + 1
if | tan φ | < A

K =
[

A + tan θ

A − tan θ

]
exp (2T B),

(9.8)
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where

A =
[ | 1 + I |
| 1 − I |

]1/2

, B = [| 1 − I 2 |]1/2. (9.9)

These give, explicitly, the new phase φ as a function of the old phase θ and the
strength I and duration T of the stimulus. So, applying a stimulus causes a phase shift
in the oscillator; in other words it resets the phase. For t > T the oscillator simply
reverts to dθ/dt = 1 but now there is a phase shift. This means that the oscillator will
fire at different times but at the same value of the phase that it did before; the subsequent
period, of course, is also the same as it was before the stimulus. That is, the periodic
‘wave’ form such as in Figure 9.2(c) will simply be moved along a bit.

We are interested in the phase resetting curve of φ as a function of θ for various
stimulus magnitudes, which depend on I and its duration T . An important point with
stimuli like that in (9.5) is that dφ/dθ > 0 for all I , T and θ . This says that a later new
phase φ results if the impulse is applied at a later old phase. This is seen immediately
with the v in (9.6) by differentiating (9.8) with respect to θ and noting that it gives an
expression for dφ/dθ which is strictly positive. If we now plot the new phase φ against
the old phase θ when the impulse was applied, we obtain the phase resetting curve,
which is typically as shown in Figure 9.3. Note that whatever the stimulus I , the values
of the new phase φ cover the complete phase cycle, here 0 to 2π . In other words any new
phase 0 < φ ≤ 2π can be obtained by a suitable choice of an old phase 0 < θ ≤ 2π

and the stimulus I . For a given I and T the new phase φ is uniquely determined by
the old phase θ . This is known as a Type 1 phase resetting curve and it is characterised
by the fact that dφ/dθ > 0 for all 0 < θ ≤ 2π : the average gradient over a cycle is
1—hence the name. Although in Figure 9.3 there is an advance for I in 0 < θ < π ,
another oscillator could well display a delay. The main point is that dφ/dθ > 0 in Type
1 resetting.

Figure 9.3. Typical Type 1 phase resetting curves,
giving the new phase in terms of the old phase for
the phase velocity stimulus given by (9.6) for I ≥ 0
and T ≥ 0. This case shows a phase advance for an
impulse in 0 < θ < π and a delay for π < θ < 2π .
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If I is sufficiently strong, | I | > 1 in fact, the phase velocity dθ/dt = 1 + v(θ, I )
can become negative for some phases: in the case of (9.6) this is for θ satisfying 1 +
I cos 2πθ < 0. This means that during the time of stimulation there is a phase attractor
and a phase repellor, where dθ/dt = 0 and where d[dθ/dt]/dθ is negative and positive
respectively (recall the stability analysis of single population models in Chapter 1). The
stimulus is not sustained for all time, so the oscillator resumes its periodic cycle after
the stimulus is removed—but of course with a different phase as determined by (9.8).

Type 0 Phase Resetting Curves

Consider the same limit cycle (9.4) but now let us subject it to a stimulus I which moves
the solution off the limit cycle r = 1. To be specific, let us take I as an impulse parallel
to the y-axis as shown in Figure 9.4. The analysis goes through with any perturbation
but the algebra is more complicated and simply tends to obscure the main point. Let us
decide on the notation that I > 0 is the situation illustrated in Figure 9.4; that is, with
0 < θ < π/2 the new phase φ is less than the old phase θ and the new position in
general has r = ρ 
= 1. We now want the new phase φ in terms of the old phase θ and
the stimulus I . From the figure

ρ cos φ = cos θ, ρ sin φ + I = sin θ (9.10)

which, on eliminating ρ gives φ = φ(θ, I ) implicitly; this is a three-dimensional surface
in (φ, θ, I ) space. As we shall see, it is the projection of this surface onto the (I, θ)

plane which is of particular interest. Before considering this, however, let us construct
phase resetting curves equivalent to those in Figure 9.3, namely, the new phase φ as a
function of the old phase θ for various stimuli I : these are the projections of the surface
φ = φ(θ, I ) onto the (φ, θ) plane for various I .

From (9.10),

tan φ = tan θ − I

cos θ
, (9.11)

Figure 9.4. The impulse I takes the point P (r = 1, old phase = θ) instantaneously to S (r =
ρ, new phase = φ). (a) 0 < I < 1. (b) I > 1.
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Figure 9.5. (a) Phase resetting curves from (9.11) for 0 < I < 1. From (9.12) note that dφ/dθ > 0 for all
such I . (b) Phase resetting curves from (9.11) for I > 1. Here for a range of θ , dφ/dθ < 0 and not all new
phases φ can be obtained.

which gives φ in terms of θ for a given I . Let us suppose first that 0 < I < 1. Then it is
clear qualitatively from Figure 9.4 that for 0 < θ < π/2 and 3π/2 < θ < 2π , φ < θ ,
while for π/2 < θ < 3π/2, φ > θ . Thus the qualitative phase resetting curve φ against
θ is as shown in Figure 9.5(a): it crosses the zero stimulus diagonal at θ = π/2, 3π/2.
The quantitative details are not important here. From (9.11), differentiating with respect
to θ gives

(1 + tan2 φ)
dφ

dθ
= 1 + tan2 θ − I sin θ

cos2 θ

= 1 − I sin θ

cos2 θ




> 0 for all 0 < θ < 2π, if | I | < 1.

< 0 for θ such that sin θ >
1

I
.

(9.12)

So, on the phase resetting curves, if 0 < I < 1, dφ/dθ > 0 for all θ as illustrated in
Figure 9.5(a). Comparing these with the curves in Figure 9.3, they are all topologically
equivalent, so Figure 9.5(a) is a Type 1 phase resetting curve. The same remarks hold if
−1 < I < 0.

Let us now consider I > 1. From (9.12) there is a range of θ where dφ/dθ < 0.
Refer now to Figure 9.4(b) and let P move round the circle. We see that S never moves
into the upper half-plane. That is, as θ varies over the complete period of 2π , at the
very least φ never takes on any phase in the range (0, π); in fact, the exact range can
easily be calculated from (9.11) or (9.12). The phase resetting curve in this case is
qualitatively as shown in Figure 9.5(b). This curve is not topologically equivalent to
those in Figure 9.5(a). All phase resetting curves with I > 1 are topologically different
from Type 1 resetting curves. Phase resetting curves like those in Figure 9.5(b), namely,
curves in which as the old phase θ takes on all phase values in (0, 2π) the new phase φ

only takes on a subset of the full cycle range, are called Type 0 resetting curves. Note
that on such curves the gradient dφ/dθ < 0 for some range of θ : the average gradient
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Figure 9.6. Change in the phase
resetting curves of the new phase φ as a
function of the old phase θ from (9.11)
for values of 0 < I < 1, I = 1 and
I > 1; note the bifurcation at I = 1.

on this curve is 0, which accounts for the name for this type of resetting curve. Note
also that Type 0 resetting curves cannot be obtained from only a phase stimulus. The
same type of resetting curves, namely, Type 0, is obtained for stimuli I < −1.

Another way of clearly demonstrating the bifurcation from a Type 0 resetting curve
to a Type 1 as I passes through I = 1 is obtained by plotting the new phase φ against
the old phase θ from (9.11). An example of this is shown in Figure 9.6 for representative
values of 0 < I < 1, I = 1 and I > 1.

Resetting one’s biological clock as quickly as possible is what everyone wants to
do when suffering from jet lag. What Winfree has unequivocably shown is that circa-
dian rhythms are highly sensitive to light. He has introduced a whole new approach to
the area of internal clocks. With respect to resetting the biological clock, humans are
essentially no different from fruitflies and a human’s clock can be reset with the right
light stimulus given at the right time. From Winfree’s (1975) article it is possible to de-
termine when to administer a strong dose of sunlight to yourself to reset your biological
clock after a flight across several time zones.1 Winfree (1982, 2000) discusses human
body clocks and the timing of sleep and suggests that their understanding could have
practical medical and psychiatric implications.

9.3 Black Holes

From the analysis in the last section we see that as the stimulus I is increased from 0
there is a distinct bifurcation in phase resetting type as I passes through I = 1. That

1For example, going from Seattle to London, there is an eight-hour difference. A good 15-minute dose of
strong sunlight into your eyes around 1 PM should reset your clock. The only problem is getting a dose of
sunlight in England. Going the other way you need to have the strong sunlight around 5 PM in Seattle, where,
of course, there’s the same problem as in England.
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is, there is a singularity in phase resetting for I = 1. To see clearly what is going on
physically we must consider the projection of the φ = φ(θ, I ) surface, given by (9.11),
onto the (I, θ) plane for various φ. That is, we construct curves

I = sin θ − cos θ tan φ (9.13)

for various φ in the range 0 ≤ φ ≤ 2π . Although this is an exercise in elementary
curve drawing, using simple calculus, it has to be done with considerable care. The
results are schematically shown in Figure 9.7. Let us first consider the old phase range
0 ≤ θ ≤ π and suppose, for the moment, φ 
= π/2, 3π/2. Irrespective of the value
of φ, all curves pass through the point I = 1, θ = π/2, since there, cos θ tan φ = 0
and I = sin π/2 = 1 for all φ. All the curves with π/2 > φ > 0, 2π > φ > 3π/2
intersect the θ = 0 axis at I = − tan φ. For π/2 < φ < 3π/2 a little calculus on
(9.13) gives the curves shown. The special values φ = π/2, 3π/2 give the vertical
singularity line through θ = π/2, as can be seen by taking the singular limit φ → π/2,
or by simply observing the behaviour of the constant φ phase curves as φ approaches
π/2. Having dealt with the θ -range (0, π) the (π, 2π) range is treated similarly and the
overall picture obtained is shown in Figure 9.7. The important thing to note is that there

Figure 9.7. Projections of the new phase (φ)-old phase (θ )-stimulus (I ) surface, given by (9.13), onto the
(I, θ ) plane for various φ in the period cycle range 0 ≤ φ ≤ 2π . Note that S1 and S2 are singularities
into each of which goes a complete selection of phases φ, 0 ≤ φ ≤ 2π ; in one case they are traversed
counterclockwise, that is, for S1, and in the other, namely, S2, clockwise.
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are two singular points S1 and S2 into each of which goes a constant phase curve of
every phase in (0, 2π); in the one case curves of increasing φ are arranged clockwise
and in the other counterclockwise.

Let us now consider the implications of this important Figure 9.7. Suppose we have
such an oscillator and we give it a stimulus I at a given phase θ . As long as | I | < 1
we can simply read off the new phase given I and the old phase θ , and what is more,
the result is unique. For all | I | > 1, given the old phase θ , once again the new phase is
determined uniquely. In this situation, however, we can get the same new phase φ for a
given I for two different old phases θ . In the former we have, referring to Figure 9.5, a
Type 1 phase resetting while in the latter it is a Type 0 phase resetting.

Now suppose we take the particular stimulus I = 1 and impose it on the oscillator
at phase θ = π/2; the resulting point in Figure 9.7 is the singular point S1, which has no
one specific phase φ associated with it, but rather the whole range 0 ≤ φ ≤ 2π . In other
words the effect of this particular stimulus at this specific phase gives an indeterminate
result. These singular points S1 and S2 are black holes in the stimulus-phase space, and
are points where the outcome of a stimulus is unknown. If I is not exactly equal to 1,
but close to it, the result is clearly a delicate matter, since all phases φ pass through the
singularity. From a practical point of view the result of such a stimulus on a biological
oscillator is unpredictable. Mathematically, however, if the exact stimulus I = 1 is im-
posed at exactly θ = π/2 there is no resultant new phase φ. This is what happens in
the simple pendulum situation when exactly the right impulse is given when the pen-
dulum is just passing through the vertical position. In practice to stop a real pendulum
dead is clearly quite difficult, and even if we could get quite close to the mathematically
calculated conditions, the resulting phase outcome would be far from obvious.

It is clear that the above concepts, due to Winfree (1970; see also 2000), are appli-
cable to any endogenous oscillator, and so the results and implications are quite general.
A key feature then of biological oscillators which can exhibit Type 1 and Type 0 phase
resetting is that there are impulses and phases in their old phase-stimulus space which
correspond to black holes. Perhaps the most important application of this is that there is
thus, for such oscillators, a stimulus, which, if applied at a specific phase, will annihi-
late the oscillation completely. The continuity argument for the existence of black holes
is that if, as the stimulus is continuously increased, a transition from Type 1 to Type 0
resetting occurs at a specific value, then a black hole exists at the transition values of
phase and stimulus.

Let us now consider some of the experimental evidence of black holes and annihi-
lation in real oscillators.

9.4 Black Holes in Real Biological Oscillators

There are now several well-documented experimental cases of Type 0 phase resetting
and of annihilation of the basic oscillation by appropriate stimuli at the right phase—all
as predicted above. Other than the cases we discuss in this section, there is, for example,
the Type 0 phase response curve measured in Hydra attenuata by Taddei-Ferretti and
Cordella (1976); the work of Pinsker (1977) on the bursting neurons of Aplysia per-
turbed by synaptic input—again a Type 0 case; and the work of Guttman et al. (1980)
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which displays annihilation in the squid axon membrane neuron oscillator. Before de-
scribing in detail an experimental case, we give Best’s (1979) direct verification of the
existence of black holes in the Hodgkin–Huxley model discussed in Chapter 7, Sec-
tion 7.5, which models the oscillations in the space-clamped membrane of the squid
giant axon.

The Hodgkin and Huxley (1952) model for the space-clamped neuronal firing of
the squid axon given by the equation system (7.37) and (7.38) exhibits limit cycle oscil-
lations. We showed in Section 7.5 that the FitzHugh–Nagumo model of this model had
limit cycle periodic behaviour. Best (1979) numerically investigated the full Hodgkin–
Huxley model (7.37) and (7.38) with an applied current in the range where limit cy-
cle oscillations occurred. He then perturbed the oscillator by subjecting it to voltage
changes (these are the stimuli), with a view to experimental implementation of his re-
sults. He found, as anticipated, Type 1 and Type 0 phase resetting curves; Figure 9.8
shows one example of each.

The existence of a black hole, or null space was indicated in Best’s (1979) simula-
tions by a transition from a Type 1 to Type 0 resetting curve as he increased the voltage
stimulus. This is as we might expect from Figure 9.8, where Figures 9.8(a) and (b) are
topologically different and hence are separated by some bifurcation state. Because of
the approximations inherent in any numerical simulation it is not possible to determine
a single singular point as in Figure 9.7. Instead there is a region around the singularity,
the black holes or null space, where, after a suitable perturbation in an appropriate range
of old phase, the new phase is indeterminate. Figure 9.9 illustrates the results found by
Best (1979). Except for the shaded regions there is a unique reset phase φ, for a given
old phase θ , and stimulus I ; note, however, that there is an (I, θ) subspace where it is
possible to have the same φ for two θs and a single I . Note also that the new phase

Figure 9.8. (a) Type 1 phase resetting curve obtained for the Hodgkin and Huxley (1952) model when the
endogenous oscillator was subjected to voltage perturbations of 2 mV. The period of the cycle has been
normalised to 1. The average slope across the graph is 1. (b) Type 0 phase resetting curve with voltage
perturbations of 60 mV; here the average gradient is zero. (Redrawn from Best 1979)
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Figure 9.9. Black holes or null space (after Winfree 1982) found by Best (1979) for the Hodgkin–Huxley
(1952) model (equations (7.37) and (7.38)) for repetitive firing of the space-clamped giant axon of the squid.
A voltage stimulus and phase which gives a point in the shaded black hole regions produces unpredictable
phase resetting values. A complete path around either of the dashed curves gives a full range of phases.

Figure 9.10. Voltage oscillations in the Hodgkin–Huxley model system (7.37) and (7.38) and the response
when subjected to a critical stimulus (here 5 mV) at 0.45 through the phase, normalised to 1. (After Best
1979). The same applied current was used as in Figures 9.8 and 9.9.
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values vary through a complete cycle in a clockwise way around Hole 1 and in a coun-
terclockwise way around Hole 2 as indicated in the figure. A key feature to remember
about stimulus–old phase contour maps like Figure 9.9 is the convergence of contour
lines to a black hole, one for positive stimuli and one for negative stimuli.

Another crucial property of black holes is that if the endogenous oscillator is sub-
jected to a critical stimulus at the appropriate phase the oscillation simply disappears.
Best (1979) demonstrated this with the Hodgkin–Huxley model system; the result is
shown in Figure 9.10. Note the annihilation of the endogenous oscillation. Guttman
et al. (1980) showed experimentally that repetitive firing in space-clamped axons im-
mersed in a weak calcium solution was stopped by a stimulus of the right size applied
at a specific time in the cycle.

Jalife and Antzelevitch (1979) carried out similar work on the regular periodic beat-
ing of cardiac pacemaker cells, which is, of course, directly related to the cardiac pace-
maker. They used tissue from the hearts of dogs, cats and calves and subjected the basic
oscillation to electrical stimuli. They obtained from their experiments phase resetting
curves which exhibited Type 1 and Type 0 resetting curves; Figure 9.11 shows some of
their results.

From the resetting curves in Figure 9.11 we would expect there to be a transition
value or values for stimulus duration, which destroys the oscillation, namely, in the null
space or black hole of the endogenous cardiac oscillator. This is indeed what was found,
as shown in Figure 9.12(a). Figure 9.12(b) shows the resetting curve with the stimulus
close to the transition value, intermediate between the values in Figures 9.11(a) and (b).
Figure 9.12(c) shows stimulus destruction of the regular oscillation in heart fibres from
a dog.

A.T. Winfree for some years has been investigating the possible causes of sudden
cardiac death and their connections with pacemaker oscillator topology, both temporal

Figure 9.11. Phase resetting curves, normalised and in the notation used above, obtained by Jalife and
Antzelevitch (1979) by applying brief current stimuli to pacemaker cells which spontaneously fire period-
ically. (a) Type 1 resetting, obtained when the stimulus duration was sufficiently short, here 10 msec. (b)
Type 0 resetting with a stimulus time of 50 msec. (Photographs courtesy of J. Jalife and reproduced with
permission)
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Figure 9.12. Experimental results obtained by Jalife and Antzelevitch (1979): (a) The microelectrode traces
of the transmembrane potentials of oscillating cardiac tissue (taken from a kitten) when subjected to a de-
polarising current stimulus of 50 msec duration at successively later times in the cycle. When the time of
stimulus was applied at 130 msec through the cycle, as in trace 3, the oscillation was completely suppressed.
(b) Resetting curve for an intermediate stimulus duration of 30 msec, that is, between those in Figures 9.11(a)
and (b): here the periodic activity of the pacemaker can be destroyed as shown in the third trace in (a). (c)
Oscillation annihilation by a stimulus in heart tissue of the dog. The small extra current stimulus lasts for
200 msec and is applied at progressively later stages in the cycle in 1, 2, 3, 4. In 1 the next firing is slightly
delayed, while in 4 it is advanced. (Photographs courtesy of J. Jalife and reproduced with permission)
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and spatial. Although the contraction of the heart involves a pacemaker, departures from
the norm frequently involve the appearance of circulating contraction waves rather than
the interruption of the firing mechanism. In the case of fibrillation, when the arrhyth-
mias make the heart look a bit like a handful of squirming worms, it may be that a
thorough understanding of the appearance of singular points or black holes could help
to shed some light on this problem. The Scientific American article by Winfree (1983b)
is specifically concerned with the topology of sudden cardiac failure. In Chapter 1,
Volume II we discuss spiral rotating waves which have a direct bearing on such heart
problems. The mathematical problems associated with coupled and spatially distributed
oscillators which are subjected to spatially heterogeneous applied stimuli are clearly
challenging and fascinating, and of considerable biological importance.

9.5 Coupled Oscillators: Motivation and Model System

The appearance of biological oscillators and periodic processes in ecology, epidemiol-
ogy, developmental biology and so on is an accepted fact. It is inevitable that in a large
number of situations oscillators are coupled in some way to obtain the required output.
We have just seen how important it is to have some understanding of the effects of per-
turbations on oscillators. So, here we consider some of the effects of oscillator coupling
and describe one of the key analytical techniques used to study such problems. Coupled
limit cycle oscillators have been widely studied mathematically for many years and the
analytical problems are far from trivial. Not surprisingly the range of phenomena which
they can corporately exhibit is very much larger than any single oscillator is capable of
(see, for example, Winfree 2000). The subject is currently one of increasing research
effort, not only in biology but also under the general heading of nonlinear dynamics.
Many of the processes which have been observed are still only partially understood. In
the rest of this chapter we shall mainly be concerned with synchronisation processes
and when they break down. These synchronisation phenomena may be phase locking,
frequency coordination and so on, and they all arise from the interactive coupling of
limit cycle oscillators. Here we restrict our study to the coupling of two oscillators and
consider only weak coupling; we essentially follow the analysis of Neu (1979). Later in
Chapter 12 we consider an important phenomenon associated with a chain of coupled
oscillators when we model the neural arrangement in certain swimming vertebrates.

Before considering the mathematical problem it is relevant to describe briefly one
of the experimental motivations for the specific model system we study. Marek and
Stuchl (1975) investigated the effect of coupling two Belousov–Zhabotinskii reaction
systems with different parameters, and hence different periodic oscillations. They did
this by having each reaction in a separate stirred tank reactor and coupled them via
an exchange of material between them through a common perforated wall. They ob-
served that if the autonomous oscillators had almost the same frequency then the phase
difference tended to a constant value as time went on: this is known as phase locking.
However, if the difference in the autonomous frequencies was too large then phase lock-
ing did not persist but instead the coupled system had long intervals of slow variation
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in the phase difference separated by rapid fluctuations over very short intervals. The
analysis we now give will explain these phenomena.

In our analytical study of coupled limit cycle oscillators, it is not necessary to know
in detail the specific system they model. However, in view of the above experiments, we
have the Belousov reaction system in mind. Suppose that the limit cycle oscillators are
identical and that each, on its own, is governed by the equations

dxi

dt
= F(xi , yi ),

dyi

dt
= G(xi , yi), i = 1, 2, (9.14)

where the nonlinear functions F and G represent the dynamics of the oscillator. (They
could be, for example, the functions on the right-hand side of (8.27), one of the two-
reactant models for the Belousov reaction discussed in Sections 8.4 and 8.5, or the
interactive dynamics in a predator–prey model such as the one given by (3.18) in Chap-
ter 3, Section 3.3.) We assume that the solutions of (9.14) exhibit a stable limit cycle
behaviour with period T given by

xi = X (t + ψi ), yi = Y (t + ψi ), i = 1, 2, (9.15)

where here the ψi are arbitrary constants. So

X (t + ψi + T ) = X (t + ψi ), Y (t + ψi + T ) = Y (t + ψi ), i = 1, 2.

So as to formulate the weak coupling in a convenient (as we shall see) yet still
general way we consider the nondimensional model system

dx1

dt
= F(x1, y1) + ε{k(x2 − x1) + λ f (x1, y1)},

dy1

dt
= G(x1, y1) + ε{k(y2 − y1) + λg(x1, y1)},

dx2

dt
= F(x2, y2) + εk(x1 − x2),

dy2

dt
= G(x2, y2) + εk(y1 − y2),

(9.16)

where 0 < ε � 1 and k > 0 is a coupling constant. When ε = 0 the oscillators are
uncoupled and these equations reduce to (9.14). The generality in the form (9.16) comes
from the λ-terms. If ε 
= 0 and λ = 0 the two oscillators are identical with uncoupled
solutions like (9.15). If ε 
= 0 and λ 
= 0, two different oscillators are coupled, with the
ελ-terms in the first two equations of (9.16) simply part of the isolated limit cycle oscil-
lator given by these two equations. The specific coupling we have chosen, represented
by the k-terms, is proportional to the differences x1 − x2 and y1 − y2. In the case of
Marek and Stuchl’s (1975) experiments, this reflects the fact that there is a mass transfer.
In the case of interacting populations it can be thought of as a mass transfer of species,
a kind of diffusion flux approximation. In fact, when considering interhabitat influence
on the population dynamics, it is often incorporated in this way: it takes gross spatial
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effects into account without diffusion terms as such, which of course would make the
models partial differential equation systems; these we consider later.

9.6 Phase Locking of Oscillations: Synchronisation in Fireflies

When biological oscillators are coupled they can give rise to an astonishingly rich ar-
ray of phenomena such as rhythm splitting, phase locking and entrainment and so on.
The mathematics of coupled oscillators is challenging and can be highly complex and
involved. There is a vast literature on the subject ranging from the very abstract to the
very practical, such as synchrony in running and human sleep–wake cycles (Strogatz
1986). The beautiful (both scientifically and visually) book on biological clocks by
Winfree (1987) discusses biological clocks in a wide variety of fields with an emphasis
on circadian rhythms and phase resetting; see also the book When Time Breaks Down
(Winfree 1987) which deals primarily with cardiac rhythms. The introductory book by
Glass and Mackey (1988) has many examples of rhythmic phenomena associated with
biological clocks; the applications are mainly in physiology. The nontechnical Scientific
American article by Strogatz and Stewart (1993) describes a variety of interesting syn-
chronisation phenomena which includes a remarkable photograph of fireflies flashing in
synchrony; this is a topic we discuss below.

An interesting, practical example, where the mathematics and the biology are inti-
mately related, was studied by Glass and his colleagues (Guevara et al. 1981, Guevara
and Glass 1982, Keener and Glass 1984). The model is closely related to the one we
discuss below but theirs gives rise to a nonlinear difference equation of the type we dis-
cussed in Chapter 2. They denote by φi the phase just before a delta function stimulus
is given to the system; that is, φi is the old phase. Then the new phase, here denoted by
φi+1 in a discrete model, is given by

φi+1 = g(φi) + 2πτ(mod2π),

where g is a function of φi , a function that was subsequently determined by experiment
on a specific system, and τ is the normalised stimulus period relative to the cycle length.
Stable steady states of this equation correspond to phase locking; the preliminary anal-
ysis is like that in Chapter 2. Guevera and Glass (1982) used this equation to study
the entrainment of the basic equation (9.4) above subjected to a periodic delta func-
tion stimulus. For a range of parameters they also found chaotic behaviour. Even such
simple looking equations can give rise, as we have seen, to a plethora of complex and
unexpected solutions. What is particularly interesting about this work is that subsequent
to the analysis Guevara et al. (1981) actually measured resetting curves experimentally
in a preparation of spontaneously beating embryonic heart cells. Over a wide range of
amplitudes and frequencies they were able to predict the rhythms observed, including
phase locked and chaotic rhythms. This is an excellent example of how the mathemat-
ical modelling and analysis helped to further our understanding of an important and
complex biological phenomenon.

There seems no end to the modelling challenges associated with coupled oscillators
in the biomedical sciences. Here we only touch on the subject. Below we discuss in
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a little more detail a particularly well-known biological example. In Sections 9.7 to
9.9 we discuss the weak coupling of two oscillators which we analyse using singular
perturbation techniques. Another example, involving many oscillators, is discussed later
in Chapter 12.

A striking and well-known visual example of coupled biological oscillators is the
phase-locking synchrony of the periodic flashing of light by large groups of stationary
fireflies (Pteroptyx malaccae). It is the males that flash to attract the females who fly
around looking for males with a particularly attractive flash. Many experimental studies
have quantified the ability of the individual firefly (and other insects) to vary the peri-
odicity of the light flashes. The Scientific American article by Buck and Buck (1976)
is a very nice introduction to the subject of firefly synchrony. Buck (1988) reviews
the biological literature on the synchronous rhythmic flashing of these fireflies. Early
work by Hanson (1978) showed that an individual firefly could change the phase of its
light-emitting oscillator, which is controlled by an endogenous neural pacemaker, and
synchronise, or entrain, to a flashing light as long as its period was in the neighbour-
hood of the firefly’s natural period of about 0.9 second. If the period of the artificial
light stimulus was too far away from the natural period no entrainment was possible.
Some fireflies are better at entrainment than others; Pteroptyx malaccae seem to be the
masters, being able to change their frequency by almost 15%. There have been several
mathematical models of synchronous fireflies notably by Rinzel and Ermentrout (1983),
Ermentrout (1991) and Mirollo and Strogatz (1990). Here we discuss only the simple,
but effective, model of Rinzel and Ermentrout (1983).

As in Section 9.1 let us denote the phase of the firefly’s oscillator at time t by θ(t)
and let its natural frequency be ω. That is, in the absence of any external stimulus, the
phase satisfies

dθ

dt
= ω. (9.17)

To be specific, we assume the oscillator fires, and the light flashes, at θ = 0. Let us
denote the external phase by θe(t), which has a frequency ωe and so satisfies

dθe

dt
= ωe. (9.18)

The firefly tries to synchronise its frequency to that of the external stimulus, speeding
up if it is too slow and slowing down if it is too fast. A simple model which does this is

dθ

dt
= ω + I sin (θe − θ), (9.19)

where the parameter I > 0. The size of the stimulus, I , is a measure of how effective
the firefly is at changing its frequency. If θe is ahead of θ (0 < ωe −ω < π) then θ̇ > ω

and the firefly tries to speed up its phase. If θ̇ < ω the firefly tries to slow down. This
form (9.19) is a special case of the equation for phase resetting, equation (9.5). A similar
type of assumption, based on a function of θ − θe(t) but in a more complex situation, is
used below in Chapter 12, Section 12.3.
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When our interest is in determining when synchrony will occur it is informative, as
we show below and particularly in Chapter 12, Section 12.3, to consider the equation
for the difference, φ, in phases; that is, φ = θ − θe. From (9.18) and (9.19) we have

dφ

dt
= dθe

dt
− dθ

dt
= ωe − ω − I sin φ, φ(t) = θe(t) − θ(t). (9.20)

If we introduce new variables

τ = I t, δ = (ωe − ω)

I
(9.21)

the equation for φ becomes

φ′ = dφ

dτ
= δ − sin φ. (9.22)

The dimensionless parameter δ has a definite physical interpretation: it is a measure of
the difference between the external frequency and the natural one to the strength of the
stimulus, I . As we saw in Sections 9.2 and 9.3, the size of I is critical.

We are interested in the steady state solutions of (9.22) and their stability. If we
have a stable steady state solution, φs > 0 say, this means, from (9.20), that the external
stimulus phase, θe, is always ahead of the firefly phase, θ , by a constant amount. The
firefly’s oscillator is therefore phase locked to the stimulus but it flashes just after it. If
δ = 0, φ = 0 is a solution of (9.22) and in this case, if φ = 0 is stable, the oscillators
flash with zero phase difference and so are in unison. The question of entrainment hinges
on the steady states of (9.22) and their stability.

In Chapter 1 we saw that all we had to do was, in effect, graph the right-hand side of
(9.22), read off the steady states and note whether the gradient was positive or negative.
Figure 9.13 illustrates the main solution possibilities for δ ≥ 0.

The stability of the steady states is determined by the gradient at the steady state—
stable if the gradient is negative and unstable if the gradient is positive. With this model
there is only one stable steady state, when the firefly and stimulus are phase locked, if
−1 < δ < 1. The situation −1 < δ < 0 is similar to that in Figure 9.13 but with
δ < 0.

In Figure 9.13(b), the stable steady state is 0 < φ1 < π and so the firefly must
increase its frequency to phase lock. If δ > δc = 1, as in Figure 9.13(c), it simply
cannot keep up and the phase difference φ simply increases until the cycle starts over
again when φ reaches 2π . This latter case is phase drift. Since φ′ > 0 in Figure 9.13(c)
and is not constant, this implies that the phase drift increases but at a nonuniform rate.
This is in keeping with the experimental results of Hanson (1978).

We can make several predictions with this model, the nonuniform phase drift if
δ > 1 is just one. The key prediction is that phase locking by the stimulus is possible if
the external frequency, ωe satisfies

ω − I ≤ ωe ≤ ω + I (9.23)
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(c)

(a)

(b)

0

0

0

1

−π

−π

−π

π

π

π

φ′

φ′

φ′

δ = 0

δ > 0

δ > δc

δ = δc = 1

φ

φ1 φ2

Figure 9.13. Steady state solutions of the phase difference equation (9.22) for various δ. If δ < δc(= 1) two
solutions exist, while if δ > δc no steady state solutions exist.

which gives the range of the stimulus frequency for entrainment. Just as above, the
stimulus intensity I is important. If we know, from experiment, the range of stimulus
frequency, we can calculate I and then predict the phase locked phase difference from
(9.20) and (9.22) as

φs = θe − θs = sin−1
[

ωe − ω

I

]
, −π

2
≤ φs ≤ π

2
. (9.24)

When −1 ≤ δ ≤ 1, the dimensional period, T , of the phase locked firefly oscillator is
obtained from (9.22) as the time for φ to change by 2π ; namely,

T = 1

I

∫
dτ = 1

I

∫ 2π

0

dφ

dφ/dτ
= 1

I

∫ 2π

0

dφ

δ − sin φ

which gives the entrained period as
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T = 2π

I (δ2 − 1)1/2
= 2π

[
(ωe − ω)2 − I 2

]1/2
. (9.25)

As δ → ±1, the period becomes infinitely large; in other words there is no entrain-
ment as, of course, is indicated in Figure 9.13(c). We can now see how fireflies can
synchronise their periodic pulsing of light: as one firefly, for example, with a stronger
I , entrains another, the group stimulus with a single frequency grows until all are en-
trained. A stronger I implies a smaller δ and hence a small difference in frequency
between the ‘pacemaker’ and those with frequencies near it. If the whole group now
flashes with the same frequency it must be somewhat difficult for a circling female to
light on the leader!

The firefly Pteroptyx malaccae is not the only species of firefly, but it seems to be
the most flexible in being able to phase lock onto an external stimulus. Now that we
have seen how a simple model can capture some of the experimental results, we should
examine models which reflect more of the biology. The assumption that adaptation is
governed by a sine function as in (9.19) is too simple. In Chapter 12 we again use such
an assumption when dealing with N oscillators. A more appropriate influence equation
would be, in place of (9.19),

dφ

dt
= ω + h(φ), (9.26)

where h(φ) is a periodic function of its argument but not necessarily symmetric. A
more sophisticated model which incorporates more of the adaptive features of the firefly
Pteroptyx malaccae and which uses a more general influence function, as in the last
equation, is given by Ermentrout (1991). He also numerically simulates how a group
of fireflies approach synchrony in a firefly tree. The above model shows synchrony but,
except for δ = 0, with a permanent phase lag. This is a drawback as a model for a firefly
tree where there is synchrony with almost no phase lag. This aspect is also discussed,
and a possible mechanism for effecting this, by Ermentrout (1991).

9.7 Singular Perturbation Analysis: Preliminary Transformation

Equations (9.16) in general are hard to analyse. Even numerically it is not easy to see
how the solution behaviour depends on the various parameters, particularly in the non-
identical autonomous oscillator case. Since in many situations of interest the coupling
is weak, and as we anticipate this to be the case in many biological applications, we
exploit the fact that 0 < ε � 1 and use singular perturbation theory (see, for example,
Murray 1984 for a short pedagogical discussion of the basic techniques).

Each oscillator has its own limit cycle solution which can be represented by a closed
trajectory γ in the x − y phase plane. We can introduce a new coordinate system using
this curve as the basis of the local coordinate system. We can characterise the periodic
limit cycle by a phase θ which goes from 0 to T as we make a complete circuit round
γ and any perturbation from it by the perpendicular distance A measured from γ ; on γ ,
A = 0. It turns out to be particularly convenient algebraically to use this characterisation
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in our coupled oscillator analysis. So in place of (9.15) as our autonomous limit cycle
solutions we have

xi = X (θi ), yi = Y (θi ), i = 1, 2, (9.27)

where X (θi ) and Y (θi) are T -periodic functions of θi . Note that θi and t are related by
dθi/dt = 1.

The idea of representing the solution of a phase plane system, which admits a pe-
riodic limit cycle solution, in terms of the phase and a perturbation perpendicular to
the limit cycle can be illustrated by the following example, which, although admittedly
contrived, is still instructive.

Consider the differential equation system

dx1

dt
= x1(1 − r) − ωy1,

dy1

dt
= y1(1 − r) + ωx1, r = (x2

1 + y2
1)1/2, (9.28)

where ω is a positive constant. A phase plane analysis (see Appendix A) shows that
(0, 0) is the only singular point and it is an unstable spiral, spiralling anticlockwise. A
confined set can be found (just take r large and note that on this large circle the vec-
tor of the trajectories (dx1/dt, dy1/dt) points inwards), so by the Poincaré–Bendixson
theorem a limit cycle periodic solution exists and is represented by a closed orbit γ , in
the (x1, y1) plane. If we now change to polar coordinates (r, θ) with

x1 = r cos θ, y1 = r sin θ (9.29)

the system (9.28) becomes

dr

dt
= r(1 − r),

dθ

dt
= ω. (9.30)

The limit cycle, the trajectory γ , is then seen to be r = 1. The solution is illus-
trated in Figure 9.14(a). The limit cycle is asymptotically stable since from (9.30) any

Figure 9.14. (a) The phase plane solution of the differential equation system (9.30) the asymptotically stable
limit cycle is r = 1 with the phase θ = ωt , on taking θ = 0 at t = 0. (b) Schematic example illustrating the
local limit cycle coordinates. The point P has phase θ = 0 and the phase increases by 2π on returning to P
after moving round γ once.
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perturbation from r = 1 will die out with r simply winding back onto r = 1, in an
anticlockwise way because dθ/dt > 0. In this example if the perturbation from the
limit cycle is to a point r < 1 then, from (9.30), r increases while if the perturbation
is to a point r > 1, r decreases as it tends to the orbit r = 1. In this case r = 1 is the
equivalent of the orbit γ and A, the perpendicular distance from it is simply r − 1. The
differential equation system in terms of A(= r − 1) and θ is, from (9.30),

d A

dt
= −A(1 + A),

dθ

dt
= ω. (9.31)

We can, of course, integrate (9.30) exactly to get

r(t) = r0et

(1 − r0) + r0et
, θ(t) = ωt + θ0, (9.32)

where r(0) = r0, θ(0) = θ0 and from (9.29),

x1(t) = r(t) cos θ(t), y1(t) = r(t) sin θ(t). (9.33)

As t → ∞, r(t) → 1 (so A(t) → 0) and x1 → cos θ , y1 → sin θ , which are the
equivalent of the X (θ) and Y (θ) in (9.27): they are 2π−periodic functions of θ . Here
the rate of traversing γ (that is, r = 1) is dθ/dt = ω from (9.31). Figure 9.14(b)
schematically illustrates the general situation. There θ = 0 is taken to be at some point
P and the phase increases by 2π as the orbit γ is traversed once in an anticlockwise
sense.

If we now consider our two oscillators, each with its autonomous closed limit cycle
orbit γi , i = 1, 2, the effect of coupling will be to alter the orbits and phase of each. We
can characterise the effect in local coordinate terms by a phase θi which parametrizes
points on γi and a perturbation Ai perpendicular to the original limit cycle orbit. Recall
that for the coupled oscillator system (9.16) we are interested in weak coupling and so
0 < ε � 1. With ε = 0 each oscillator has its limit cycle solution which in terms of the
phase we can write as in (9.27); namely,

xi = X (θi ), yi = Y (θi ), i = 1, 2. (9.34)

θi = t + ψi ⇒ dθi

dt
= 1. (9.35)

We expect that the effect of the O(ε) coupling is to cause the orbits γi , given by (9.27),
to be displaced by O(ε). We can thus see that an appropriate change of variables is from
(xi , yi ) for i = 1, 2 to the local variables Ai and the new phase θi for i = 1, 2, where
Ai is the distance perpendicular to the orbit γi .

To motivate the specific variable transformation we shall use, refer now to Fig-
ure 9.15. In the absence of coupling, the trajectory γ is traversed with velocity (dx/dt ,
dy/dt) parallel to γ . In terms of the phase θ , which increases monotonically as the
orbit is traversed, the velocity from (9.34) and (9.35) is equal to (X ′(θ), Y ′(θ)) where
primes denote differentiation with respect to θ . This velocity vector is perturbed, due to
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Figure 9.15. Schematic visualization of the effect of coupling on the limit cycle orbit γ . The perpendicular
displacement A of the velocity vector is given by the appropriate vector product; namely, A(X ′, Y ′, 0) ×
(0, 0, 1), that is, A(Y ′, −X ′, 0).

the coupling, and the orbit γ will be displaced. This displacement can be described at
each point by the perpendicular distance it is displaced, denoted by the vector A in the
figure. Since A is the vector product of the velocity (X ′(θ), Y ′(θ), 0) and the unit vector
perpendicular to the (x, y) plane, that is, (0, 0, 1), this gives

A = A(X ′(θ), Y ′(θ), 0) × (0, 0, 1) = (AY ′(θ),−AX ′(θ), 0). (9.36)

Now consider the system (9.16) with 0 < ε � 1 with our assumption that the
autonomous orbits are perturbed O(ε). An appropriate change of variable from (xi , yi )

to (Ai , θi ) is then, using (9.34) and (9.36),

xi = X (θi ) + εAi Y
′(θi ), yi = Y (θi ) − εAi X ′(θi ), i = 1, 2. (9.37)

Here we have used εA in place of A to emphasise the fact that since ε is small in our
analysis, so is the orbit perturbation.

9.8 Singular Perturbation Analysis: Transformed System

Let us now use the change of variable (9.37) in the coupled system (9.16) with 0 <

ε � 1. That is, we use (9.37) in the right-hand sides and expand in a Taylor series in
ε: the algebra is complicated and tedious, but the concise, interesting and important end
result is worth it, not just for the results we exhibit in this chapter but also for two other
dramatic phenomena we shall discuss in Chapters 12 and 13. We carry out enough of
the algebra to show how to get the equations (9.16) in terms of the variables θi and Ai ;
however, use of separate pen and paper is recommended for those who want to follow
the details of the algebra. (Those readers who wish to skip this algebra can proceed
to equations (9.45) although later reference will be made to some of the definitions
included here.)

In the following, the argument of the various functions, mainly X and Y , is θ1 unless
otherwise stated or included for emphasis. The first of (9.16), using (9.37), becomes
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dx1

dt
= X ′ dθ1

dt
+ εY ′ d A1

dt
+ εA1Y ′′ dθ1

dt
= F(X, Y ) + εA1[Y ′FX (X, Y ) − X ′FY (X, Y )] + εk[X (θ2) − X (θ1)]

+ ελ f (X, Y ) + ε2k[A2Y ′(θ2) − A1Y ′(θ1)]
+ ε2λA1[Y ′ fX (X, Y ) − X ′ fY (X, Y )] + O(ε3),

(9.38)

while the second becomes

dy1

dt
= Y ′ dθ1

dt
− εX ′ d A1

dt
− εA1 X ′′ dθ1

dt
= G(X, Y ) + εA1[Y ′G X (X, Y ) − X ′GY (X, Y )] + εk[Y (θ2) − Y (θ1)]

+ ελg(X, Y ) + ε2k[A1 X ′(θ1) − A2 X ′(θ2)]
+ ε2λA1[Y ′gX (X, Y ) − X ′gY (X, Y )] + O(ε3).

(9.39)

When ε = 0 we have from (9.14) and (9.34),

X ′(θ1) = F(X, Y ), Y ′(θ1) = G(X, Y ). (9.40)

Now multiply (9.38) by X ′(θ1) and add to it Y ′(θ1) times (9.39) to get

(X ′2 + Y ′2)
dθ1

dt
+ εA1(X ′Y ′′ − Y ′X ′′)

dθ1

dt
= [X ′F(X, Y ) + Y ′G(X, Y )] + εA1{X ′Y ′[FX (X, Y ) − GY (X, Y )]

− X ′2 FY (X, Y ) + Y ′2G X (X, Y )} + εk{X ′[X (θ2) − X (θ1)]
+ Y ′[Y (θ2) − Y (θ1)]} + ε2k A2[Y ′(θ2)X ′(θ1)

− X ′(θ2)Y
′(θ1)] + ελ[X ′ f (X, Y ) + Y ′g(X, Y )]

+ ε2λA1{X ′Y ′[ fX (X, Y ) − gY (X, Y )] − X ′2 fY (X, Y )

+ Y ′2gX (X, Y )} + O(ε3).

From (9.40), X ′F(X, Y ) = X ′2 and Y ′G(X, Y ) = Y ′2 so the last equation becomes

R2(1 + εΓ A1)
dθ1

dt
= R2 + ε[R2Ω A1 + R2kr + R2kV + R2γ λ] + O(ε2),

where R2 = X ′2 + Y ′2 �= 0 and

R2Γ = X ′Y ′′ − Y ′ X ′′,
R2γ = X ′ f (X, Y ) + Y ′g(X, Y ), R2r = −X X ′ − Y Y ′,
R2Ω = X ′Y ′[FX (X, Y ) − GY (X, Y )] − X ′2 FY (X, Y ) + Y ′2G X (X, Y ),

R2V = X ′(θ1)X (θ2) + Y ′(θ1)Y (θ2).

(9.41)
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If we now divide both sides by R2(1+εΓ A1) and expand the right-hand side as a series
for 0 < ε � 1, we get

dθ1

dt
= 1 + ε[{Ω(θ1) − Γ (θ1)}A1 + λγ (θ1) + kr(θ1) + kV (θ1, θ2)] + O(ε2).

(9.42)

In a similar way we get the equation for A1 by multiplying (9.38) by Y ′(θ1) and
subtracting from it, X ′(θ1) times (9.39). Using (9.40) and (9.42) for dθ1/dt , remember-
ing that ε � 1, we get

d A1

dt
= Φ(θ1)A1 + kU(θ1, θ2) + λφ(θ1) + εΨ (A, θθθ) + O(ε2), (9.43)

where

R2U(θ1, θ2) = X (θ2)Y
′(θ1) − Y (θ2)X ′(θ1) (9.44)

and Φ, φ and Ψ are all determined: A and θθθ are the vectors (A1, A2) and (θ1, θ2). The
only functions whose exact form we require are U(θ1, θ2) and V (θ1, θ2), given by (9.44)
and (9.41) respectively.

If we now do the same with the 3rd and 4th equations of (9.16) we find that the
effect of the transformation to the (Ai , θi ) dependent variables is to replace the model
coupled oscillator system (9.16) by

d A1

dt
= Φ(θ1)A1 + kU(θ1, θ2) + λφ(θ1) + εΨ1(A, θθθ) + O(ε2),

dθ1

dt
= 1 + ε[{Ω(θ1) − Γ (θ1)}A1 + λγ (θ1) + kr(θ1) + kV (θ1, θ2)] + O(ε2)

(9.45)

d A2

dt
= Φ(θ2)A2 + kU(θ2, θ1) + εΨ2(A, θθθ) + O(ε2)

dθ2

dt
= 1 + ε[{Ω(θ2) − Γ (θ2)}A2 + kr(θ2) + kV (θ2, θ1)] + O(ε2).

(9.46)

The functions V and U , given by (9.41) and (9.44), will be referred to later. The exact
forms of the functions Φ, φ, Γ , γ , Ω , Ψ1, Ψ2 and r are not essential for the following
analysis, but what is important is that all of them are T -periodic in θ1 and θ2 and that Φ

satisfies the relation

∫ T

0
Φ(σ) dσ < 0. (9.47)

This last relation comes from the fact that the original limit cycle solutions of the un-
coupled oscillators are stable; we digress briefly to prove this.
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Limit Cycle Stability Condition for the Uncoupled Oscillators

The oscillators are uncoupled when k and λ are zero. We want to keep ε �= 0 since we
are going to study the perturbed limit cycle oscillator using the transformation (9.37).
In terms of the variables A and θ the governing system from (9.45) and (9.46), with
k = λ = 0 is then

d A

dt
= Φ(θ)A + O(ε),

dθ

dt
= 1 + O(ε), (9.48)

where Φ is a T -periodic function of θ . For times O(1) the second equation gives θ ≈ t
and the first becomes

d A

dt
= Φ(t)A + O(ε),

which on integrating from t to t + T gives

A(t + T )

A(t)
= [1 + O(ε)] exp

[∫ t+T

t
Φ(σ) dσ

]

= [1 + O(ε)] exp

[∫ T

0
Φ(σ) dσ

]
,

(9.49)

where the limits of integration have been changed because Φ is a T -periodic function.
The unperturbed limit cycle is A ≡ 0, θ = t + ψ . So, the limit cycle is stable if all the
solutions of (9.48) have A(t) → 0 as t → ∞. From (9.49) we see that if

∫ T

0
Φ(σ) dσ < 0

then A(t + T ) < A(t) for all t and so A(t) → 0 as t → ∞.

9.9 Singular Perturbation Analysis: Two-Time Expansion

The O(ε) terms in the equations (9.45) and (9.46) will have an effect after a long time,
O(1/ε) in fact. This suggests looking for an asymptotic solution as ε → 0 for the Ai

and θi in (9.45) and (9.46) in the following form,

Ai ∼ 0 Ai + ε1 Ai , θi ∼ 0θi + ε1θi , (9.50)

where the As and θs are functions of the time t , the fast time, and τ = εt , the long
or slow time. In other words only after times τ = O(1), that is, t = O(1/ε), do the
ε-effects show. (See, for example, Murray 1984 for an elementary exposition to this
two-time expansion procedure.) Now all time derivatives

d

dt
= ∂

∂t
+

(
dτ

dt

)
∂

∂τ
= ∂

∂t
+ ε

∂

∂t
, (9.51)
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and the system of equations, (9.45) and (9.46), becomes a partial differential equation
system.

The algebra in the rest of this section is also rather involved. The end result, namely,
equation (9.69) is required in the following Section 9.10, where an important result for
coupled oscillators is derived.

If we now substitute (9.50) with (9.51) into (9.45) and (9.46) and equate powers of
ε we get the following hierarchy of equations.

O(1) : ∂ 0 A1

∂t
− Φ( 0θ1)

0 A1 = kU( 0θ1,
0θ2) + λΦ( 0θ1),

∂ 0θ1

∂t
= 1,

∂ 0 A2

∂t
− Φ( 0θ2)

0 A2 = kU( 0θ2,
0θ1),

∂ 0θ2

∂t
= 1.

(9.52)

O(ε) : ∂1 A1

∂t
− Φ( 0θ1)

1 A1 = {Φ ′( 0θ1)
0 A1

+ k
∂U

∂θ1
( 0θ1,

0θ2) + λφ′( 0θ1)}1θ1

+ k
∂U

∂θ2
( 0θ1,

0θ2)
1θ2 + Ψ1(

0A, 0θθθ) − ∂ 0 A1

∂τ
,

∂1θ1

∂t
= [Ω( 0θ1) − Γ ( 0θ1)] 0 A1 + λγ ( 0θ1) + kr( 0θ1)

+ kV ( 0θ1,
0θ2) − ∂ 0θ1

∂τ
,

∂1 A2

∂t
− Φ( 0θ2)

1 A2 = {Φ ′( 0θ2)
0 A2 + k

∂U

∂θ2
( 0θ2,

0θ1)}1θ2

+ k
∂U

∂θ1
( 0θ2,

0θ1)
1θ1 + Ψ2(

0A, 0θθθ) − ∂ 0 A2

∂τ
,

∂1θ2

∂t
= [Ω( 0θ2) − Γ ( 0θ2)] 0 A2 + kr( 0θ2) + kV ( 0θ2,

0θ1) − ∂ 0θ2

∂τ
.

(9.53)

If we integrate the 2nd and 4th of (9.52) we get

0θi = t + ψi (τ ), i = 1, 2, (9.54)

where, at this stage the ψi (t) are arbitrary functions of τ . If we now substitute these into
the 1st and 3rd equations of (9.52) we get
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∂ 0 A1

∂t
− Φ(t + ψ1)

0 A1 = kU(t + ψ1, t + ψ2) + λφ(t + ψ1),

∂ 0 A2

∂t
− Φ(t + ψ2)

0 A2 = kU(t + ψ2, t + ψ1).

(9.55)

To get the required solutions let us digress again, and consider the less cluttered
equations:

dx

ds
− Φ(s)x = f (s),

dy

ds
− Φ(s)y = U(s, s + χ),

(9.56)

where χ ≡ ψ2 − ψ1. Remember that the functions Φ, φ and U are all T -periodic. The
complementary or homogeneous solution of each is

exp [v(s)], v(s) =
∫ s

0
Φ(σ) dσ.

From (9.47) we have v(s) < 0, which is necessary for the stability of the uncoupled
limit cycle oscillators. So, the complementary solutions will decay, eventually, to zero.
We can now show that each of (9.56) has a unique T -periodic solution. To do this
consider, say, the first of (9.56). The exact solution is

x(s) = x(0) exp

[∫ s

0
Φ(σ) dσ

]
+

∫ s

0
exp

[∫ s

α

Φ(σ) dσ

]
φ(α) dα. (9.57)

The equation for x is unchanged if we replace s by s + T . Since the above solution for
x(s) is periodic

x(0) = x(T ) = x(0) exp

[∫ T

0
Φ(σ) dσ

]
+

∫ T

0
exp

[∫ T

α

Φ(σ) dσ

]
φ(α) dα,

which is an equation for the inital value x(0), substitution of which into (9.57) gives
the unique T -periodic solution of the first of (9.56). Similarly the second of (9.56) has
a unique T -periodic solution. Denote these periodic solutions by

x = p(s), y = ρ(s, χ). (9.58)

In terms of these solutions (9.58) the general solutions of (9.55) are

0 A1 = kρ(t + ψ1, χ) + λp(t + ψ1) + h1(τ ) exp [v(t + ψ1)],
0 A2 = kρ(t + ψ2,−χ) + h2(τ ) exp [v(t + ψ2)],

(9.59)

where the h1 and h2 are arbitrary functions of τ . If we now substitute these into the
θ -equations in (9.53) we get
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∂1θ1

∂t
= {kρ(t + ψ1, χ) + λp(t + ψ1)}{Ω(t + ψ1) − Γ (t + ψ1)} + λγ (t + ψ1)

+ kr(t + ψ1) + kV (t + ψ1, t + ψ2) − dψ1

dτ

+ h1(τ ) exp [v(t + ψ1)]{Ω(t + ψ1) − Γ (t + ψ1)},
∂1θ2

∂t
= kρ(t + ψ2,−χ){Ω(t + ψ2) − Γ (t + ψ2)}

+ kr(t + ψ2) + kV (t + ψ2, t + ψ1)

− dψ2

dτ
+ h2(τ ) exp [v(t + ψ2)]{Ω(t + ψ2) − Γ (t + ψ2)}.

(9.60)

If f (t) is a T -periodic function we can write

f (t) = µ + ω(t), µ = 1

T

∫ T

0
f (s) ds, (9.61)

where ω(t) is T -periodic and has zero mean. If we now use this fact in (9.60) we
get

∂1θ1

∂t
= µ1(χ) + ω1(t, τ ),

∂1θ2

∂t
= µ2(χ) + ω2(t, τ ),

(9.62)

where

µ1 = H (χ) + λβ − dψ1

dτ
,

µ2 = H (−χ) − dψ2

dτ
,

(9.63)

with

β = 1

T

∫ T

0
{p(s)[Ω(s) − Γ (s)] + γ (s)} ds,

H (χ) = 1

T

∫ T

0
{kρ(s, χ)[Ω(s) − Γ (s)] + kr(s) + kV (s, s + χ)} ds.

(9.64)

The functions ω1(t, τ ) and ω2(t, τ ) are made up of exponentially decaying terms and
periodic terms of zero mean, so on integrating (9.62) we get

1θ1 = µ1(χ)t + W1(t, τ ),

1θ2 = µ2(χ)t + W2(t, τ ),
(9.65)
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where W1 and W2 are bounded functions. If we now substitute these solutions into the
third of (9.53) and use (9.54) and (9.57), the equation for 1 A2 becomes

∂1 A2

∂t
− Φ(t + ψ2)

1 A2 = {S1(t, τ )µ1 + S2(t, τ )µ2}t + B(t, τ ),

S1 = k
∂U

∂θ1
(t + ψ2, t + ψ1),

S2 = k
∂U

∂θ2
(t + ψ2, t + ψ1) + kρ(t + ψ2,−χ)Φ ′(t + ψ2),

(9.66)

where B(t, τ ) is another function which consists of an exponentially decaying term and
a T -periodic part.

In the usual asymptotic singular perturbation way we now require the O(ε) part
of the amplitude, that is, 1 A2, and its time derivative ∂1 A2/∂t , to be bounded for all
time—this ensures that the series solution (9.50) is uniformly valid for all time. From
(9.66) this requires that

{S1(t, τ )µ1 + S2(t, τ )µ2}t

must be bounded for all time. However, since S1 and S2 are T -periodic functions (and
so cannot tend to zero as t → ∞) the only way we can get boundedness is if

S1(t, τ )µ1 + S2(t, τ )µ2 ≡ 0. (9.67)

In general S1 and S2 are two different periodic functions, so the only way to ensure
(9.67) is if µ1 and µ2 are both zero. That is, from (9.63), we require

µ1 = H (χ) + λβ − dψ1

dτ
= 0, µ2 = H (−χ) − dψ2

dτ
= 0

and so

dψ1

dτ
= H (χ) + λβ,

dψ2

dτ
= H (−χ). (9.68)

Recalling that χ = ψ2 − ψ1, if we subtract the last two equations we get the following
single equation for χ ,

dχ

dτ
= P(χ) − λβ,

where P(χ) = H (−χ) − H (χ), χ = ψ2 − ψ1.

(9.69)

The dependent variable χ is the phase shift due to the coupling: the ordinary differential
equation (9.69) governs the time evolution of this phase shift. The derivation of this
equation is the main purpose of the singular perturbation analysis in Sections 9.8 and
9.9. It is also the equation which we shall use to advantage not only here but also in
Chapter 12.
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9.10 Analysis of the Phase Shift Equation and Application to
Coupled Belousov–Zhabotinskii Reactions

The functions H (χ) and H (−χ) are T -periodic functions from their definition (9.64).
So, P(χ) in the phase shift equation (9.69) is also a T -periodic function. If χ = 0,
P(0) = H (0) − H (0) = 0. From the form of H (χ) in (9.64) its derivative at χ = 0 is

H ′(0) = 1

T

∫ T

0
k

{
∂ρ

∂χ
(s, 0)[Ω(s) − Γ (s)] + ∂V

∂θ2
(s, s)

}
ds. (9.70)

The function ρ(s, χ) is the T -periodic solution of the second of (9.56); namely,

∂ρ

∂s
− Φ(s)ρ = U(s, s + χ),

which on differentiating with respect to χ and setting χ = 0 gives

∂

∂s

{[
∂ρ

∂χ

]

(s,0)

}

− Φ(s)

[
∂ρ

∂χ

]

(s,0)

=
[

∂U

∂θ2

]

(s,s)
.

From the definition of U in (9.44) we see that [∂U/∂θ2](s,s) = 0 and so the only periodic
solution of the last equation is [∂ρ/∂χ ](s,0) = 0. Using (9.41) which gives the definition
of V , we get [∂V/∂θ2](s,s) = 1. With these values (9.70) gives

H ′(0) = 1

T

∫ T

0
k ds = k.

So P ′(0) = −H ′(0) − H ′(0) = −2k. Figure 9.16(a) illustrates a typical P(χ).
Let us now consider the time evolution equation (9.69) for the phase shift χ =

ψ2−ψ1. Phase locking is when the phase difference is constant for all time, that is, when
χ = χ0 is constant. Phase locked solutions are given by (9.69) on setting dχ/dτ = 0,
namely, solutions χ0 of

Figure 9.16. (a) Schematic form of the T -periodic function P(χ) in the phase shift equation (9.69). (b)
Determination of steady state solutions χ0 from the intersection of P(χ) = λβ.
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P(χ) − λβ = 0. (9.71)

The linear stability of χ0 is given by linearising (9.69) about it, which gives

d(χ − χ0)

dτ
≈ P ′(χ0)(χ − χ0),

and so

χ0 is

{
stable

unstable
if P ′(χ0)

{
< 0

> 0
. (9.72)

For example, if the coupled oscillators are identical, λ = 0 from (9.16), and from Fig-
ure 9.16(a) χ = 0 is a solution of P(χ) = 0 and its derivative P ′(0) < 0. So χ = 0 is
stable. This means that coupling synchronizes identical oscillators.

Suppose now that the coupled oscillators are not identical; that is, λ �= 0 and ε �= 0
in (9.16). In this case steady states χ0 of (9.71) will depend on whether the horizontal
line λβ intersects the curve of P(χ) in Figure 9.16(a). So there are at least two steady
state solutions in 0 ≤ χ0 ≤ T if

min P(χ) = P(χm) < λβ < P(χM ) = max P(χ). (9.73)

Referring to Figure 9.16(b), we see that two typical solutions, χ1 and χ2, are respec-
tively unstable and stable from (9.72), since by inspection P ′(χ1) > 0 and P ′(χ2) < 0.
In this situation the coupled oscillator system will evolve to stable limit cycle oscilla-
tions with a constant phase shift χ2 between the two oscillators after a long time, by
which we mean τ large, which in turn means εt large. Whether or not there are more
than two steady state solutions for the phase shift χ depends on the form of P(χ); the
example in Figure 9.16 is illustrative of the simplest situation.

As long as λβ lies between the maximum and minimum of P(χ), that is, (9.73)
is satisfied, the steady state solutions χ0, of (9.71) depend continuously on λβ. This is
clear from Figure 9.16(b) if the line P = λβ is moved continuously between the upper
and lower bounds P(χm) and P(χM ). For example, as λβ increases the stable steady
state phase shift between the oscillators decreases.

Suppose now that λβ is such that the two solutions coalesce, either at P(χm) or
P(χM ), and we ask what happens when λβ is such that these solutions no longer exist.
To examine this situation let us be specific and consider the case where λβ is slightly
less than the critical value, (λβ)c = P(χm). With λβ just less than P(χm) there is no
intersection of P(χ) and the line λβ. Let

λβ = (λβ)c − δ2 = P(χm) − δ2, 0 < δ2 � 1. (9.74)

Now write the phase difference equation (9.69) in the form

dχ

dτ
= {P(χ) − P(χm)} + {P(χm) − λβ}
= {P(χ) − P(χm)} + δ2.

(9.75)
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Figure 9.17. (a) Situation for the χ -equation (9.75) where there is no steady state solution; here 0 < δ2 � 1.
(b) Schematic solution, during which there are long periods of very little change in χ interspersed with rapid
variations.

Figure 9.17(a) illustrates dχ/dτ as a function of χ for δ2 > 0. This is the same curve
as in Figure 9.16(a) simply moved up a distance −P(χm) + δ2, which in our situation
is sufficient to make (9.75) have no steady state solutions for χ ; that is, the curve of
dχ/dτ as a function of χ does not cross the dχ/dτ = 0 axis.

The solution problem posed by (9.75) is another singular perturbation one when
0 < δ � 1 and can be dealt with by standard singular perturbation techniques (see
Murray 1984). However it is not necessary to carry out the asymptotic analysis to see
what is going on with the solutions. First note that when δ = 0 (that is, λβ = P(χm))
there are solutions χ = χm + nT for n = 0, 1, 2, . . . since P(χ) is a T -periodic
function. To be specific, let us start with χ ≈ χm in Figure 9.17(a). From (9.75) and
from the graph in Figure 9.17, dχ/dτ = O(δ2) > 0 which implies that χ ≈ χm + δ2τ

and so for times τ = O(1), χ does not vary much from χm . However, for all τ > 0,
dχ/dτ > 0 and so χ slowly increases. For τ sufficiently large so that χ starts to diverge
significantly from χm , P(χ) − P(χm) is no longer approximately zero, in which case
dχ/dτ is O(1) and χ changes measurably in times τ = O(1) and χ → χm + T . When
χ is close to χm + T , once again P(χ) − P(χm) ≈ 0 and dχ/dτ = O(δ2) again.
The qualitative picture is now clear. The solution stays in the vicinity of the solutions
χ = χm +nT for a long time τ = O(1/δ2), then changes in times τ = O(1) to the next
solution (with δ = 0), where again it stays for a long time. This process repeats itself in a
quasi-periodic but quite different way from the T -periodic limit cycle behaviour we got
before. The solution is illustrated in Figure 9.17(b). The rapidly changing regions are
the singular regions while the roughly constant regions are the nonsingular parts of the
solutions. This behaviour is known as rhythm splitting. So, as λβ → (λβ)c = P(χm)

the solution for χ bifurcates from phase synchronization to rhythm splitting.
Now that we know the qualitative behaviour of χ = ψ2 − ψ1 we can determine ψ1

and ψ2 from (9.68); namely,

dψ1

dτ
= H (χ) + λβ,

dψ2

dτ
= H (−χ). (9.76)

The solutions xi and yi are then given by

xi = X (t + ψi (τ )), yi = Y (t + ψi (τ )), i = 1, 2. (9.77)
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Figure 9.18. (a) The frequency dθ/dt of one of the oscillators when λβ is slightly less than the minimum
P(χm) and rhythm splitting occurs. (b) The time variation in xi when phase locking just bifurcates to rhythm
splitting.

The frequency of the oscillations is given to O(ε) by

dθi

dt
= 1 + ε

dψi

dτ
=

{
1 + ε[H (χ) + λβ], i = 1

1 + εH (−χ), i = 2
. (9.78)

Figure 9.18(a) illustrates the rhythm splitting solution. The small bumps are the rapid
variations in χ in times O(1) while the long flat regions correspond to the slowly vary-
ing solutions where the phase difference ψ2 − ψ1(= χ) is approximately constant.
Figure 9.18(b) illustrates a typical solution xi as a function of t corresponding to this
rhythm splitting. Note the sudden change in frequency which occurs when the phase
difference χ goes through its region of rapid change from one solution χm to the next
χm + T .

This bifurcation phenomenon exhibited by coupled oscillators, where there is an
abrupt change from phase locking to rhythm splitting, is exactly what was demonstrated
experimentally by Marek and Stuchl (1975), as described in Section 9.5. That is, they
first observed phase locking. Then when the parameters were changed so that the au-
tonomous limit cycle frequencies were sufficiently different they observed that the phase
difference was slowly varying for long periods of time but punctuated by short periods
of rapid fluctuations. This is the rhythm splitting phenomenon we have discussed above.

Exercises

1 Consider the limit cycle oscillator

dr

dt
= r(1 − r),

dθ

dt
= 1
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to be perturbed by an impulse I parallel to the x-axis (refer to Figure 9.4). Determine
the resulting phase resetting curves and discuss the possible existence of black holes.

2 Discuss the bifurcation situation for coupled oscillators, using equation (9.73) for
the phase difference χ , when the interaction parameters λβ are just greater than
P(χM ), the maximum P(χ) in Figure 9.16(a). Sketch the equivalent functions to
those illustrated in Figures 9.17 and 9.18 and discuss the practical implications.



10. Dynamics of Infectious Diseases:
Epidemic Models and AIDS

10.1 Historical Aside on Epidemics

The history of epidemics is an ever fascinating area; the 14th century Black Death is just
the most famous epidemic historically (see Chapter 13, Volume II, which deals with the
spatial spread of epidemics, for a brief history of it). In Europe, which had a population
of around 85 million at the time, about a third of the population died.

One epidemic which has exercised classical scholars for a very long time is the
Plague of Athens (430–428 BC) described in great detail by Thucydides including the
symptoms and disease progression. He also gave some exact figures such as that 1050 of
4000 soldiers on an expedition died of the disease. The disease described so minutely
by Thucydides, even to the fact that dogs who ate the dead bodies also suffered, has
been the source of numerous articles over some hundreds of years with cases being
made (with great conviction and defended vehemently) for an incredible range of dis-
eases such as bubonic plague, measles, Malta fever, smallpox, scarlet fever, typhus, ty-
phoid fever and many others. The symptoms described by Thucydides are (i) heat in the
head, (ii) inflammation of the eyes, (iii) suffusion with blood of the tongue and throat,
(iv) foetid breath, (v) hoarseness with violent coughing, (vi) vomiting of bile, (vii) retch-
ing and convulsions, (viii) pustular and ulcerating eruptions of the skin, (ix) total body
hyperaesthesia and restlessness, (x) irresistible desire for water to assuage thirst and im-
mersion therein to alleviate body heat, (xi) terminal exhaustion apparently produced by
diarrhoea, (xii) loss of toes, fingers and genitalia, (xiii) destruction of eyes and, (xiv) if
recovery occurs, amnesia, the latter no doubt a blessing. Based on the symptoms none of
the above suggestions seems to fit the Athens disease. Whatever it was it was certainly
very nasty. An interesting review article on the Athens plague is given by Poole and
Holladay (1979). They conclude that it has either become extinct or has been modified
over the millennia. Since then other articles have appeared with yet other possiblities.

One of the interesting aspects of Thucydides’ account is that there is no mention of
person-to-person contagion which we now accept so freely with diseases. It was only in
the 19th century that it was beginning to be discussed. Evil exhalations from the earth,
aerial miasmata and so on were generally accepted. The latter explanation for some dis-
eases, or rather illnesses, is not as ridiculous as it might at first appear when you think of
the number of people, with the same epidemiclike medical problems, who live on con-
taminated ground or in regions where the water is iodine-deficient resulting in goitres
to mention just two examples. Many South-East Asians can be forgiven for believing
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that the smog and smoke belching from the forest fires in Indonesia are responsible for
the large upsurge of dengue fever, carried by the mosquito, Aedes aegypti. This is a
man-made mosquito in effect since it breeds in urban areas in water gathering in plastic,
rubber and metallic containers that litter many poor urban areas.

The study of epidemics with its long history has come up with an astonishing
number and variety of models and explanations for the spread and cause of epidemic
outbreaks. Even today they are often attributed to evil spirits or displeased gods. For
example, AIDS (autoimmune deficiency syndrome), the dominant epidemic of the past
20 years and the major one since the 19181 influenza pandemic have been ascribed by
many as a punishment sent by God. Hippocrates (459–377 BC), in his essay on ‘Airs,
Waters and Localities’ wrote that one’s temperament, personal habits and environment
were important factors—not unreasonable even today, particularly so in view of the
comments in the last paragraph. Somewhat less relevant, but not without its moments of
humour, is Alexander Howe’s (1865) book in which he sets out his ‘Laws of Pestilence’
in 31 propositions of which the following, proposition 2, is typical: ‘The length of the
interval between successive periodic visitations corresponds with the period of a single
revolution of the lunar node, and a double revolution of the lunar apse time.’

The first major epidemic in the U.S.A. was the Yellow Fever epidemic in Philadel-
phia in 1793 in which about 5000 people died out of a population of around 50,000,
although estimates suggest that about 20,000 fled the city; see the interesting Scientific
American article by Foster et al. (1998) and the book by Powell (1993). The epidemic
story here is a saga of wild, as well as sensible, theories as to cause and treatment,
petty jealousies with disastrous consequencies, genuine humanity and fomented contro-
versies. A leading physician was the strongest advocate of bleeding as the appropriate
treatment while others recommended cleanliness, rest, Peruvian bark and wine. This
epidemic had a major impact on the subsequent life and politics of the country.

The landmark book by McNeill (1989) is a fascinating story of the relation be-
tween disease and people. More recently there have been several books which try to ex-
plain various aspects of diseases from the triumphs of medicine (Oldstone 1998) to the
socioeconomic (Watts 1998). The latter is written from a very anti-European, western-
imperial-colonialists-are-responsible-for-it-all, viewpoint. Europeans are blamed for
most of the world’s problems with infectious diseases. Leaving aside some of his wilder
assertions,2 the polemics and the emotional outbursts, he has diligently researched his-
torical data and unearthed some dreadful examples of how diseases have been spread by
the stupidity of certain colonial western nations with horrifying consequences. Watts’

1The influenza epidemic in 1918–1919 is the most deadly pandemic (that is, a world epidemic) per unit
time in recorded history and somewhat surprisingly has been to a large extent ignored in historical studies until
relatively recently. The Black Death palls in comparison with its severity. The original estimate of the number
that died is continually being upgraded. A meeting on the epidemic in 1998 concluded that as many as 100
million people died. Coming towards the end of World War I some people at the time thought it was perhaps
germ warfare. If a similar virulent influenza struck in the U.S.A. now, on the order of 1.5 million would die,
although current medical treatments could possibly reduce that figure if vaccine could be produced quickly
enough. It is about 20 years since the last flu epidemic and many epidemioloigists feel the next is overdue in
the cycle of such outbreaks.

2For example, Watts asserts that syphilis in the 17th to 19th centuries was a consequence of the Christians’
opposition to masturbation.
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book is an important contribution to the history and current global relevance of infec-
tious diseases.

Since the end of World War II, public health strategy has focused on the elimination
and control of organisms which cause disease. The advent of new antibiotics changed
the whole ethos of disease control. Just over 20 years ago, in 1978, the United Nations
signed the ‘Health for All, 2000’ accord which set the ambitious goal of the eradication
of disease by the year 2000. AIDS at the time had not yet been discovered, or perhaps
recognised is a better word, and in the year before, the last known case of smallpox
had been treated. There was certainly cause for optimism albeit short lived. Scientists
thought that microbes were biologically stationary targets and hence would not mutate
in resistance to drugs and other biological influences.

This comforting image of unchanging microbes started to change shortly after this
time with the emergence of microbes that could swim in a pool of bleach, grow on a
bar of soap, and ignore doses of penicillin logarithmically larger than those effective
in the 1950’s (Garrett 1996). The practical reality of bacterial mutation is dramatically
seen in New York City with tuberculosis. Control of the W-strain of the disease, which
first appeared in the city in 1992, is resistant to every available drug and kills over half
its victims, has already cost more than $1 billion. It was only 20 years ago that it was
predicted that tuberculosis would be eradicated in the world by 2000.

Another aspect in the current spread of disease is with the modern era of trans-
portation allowing more than a million people a day to cross international borders, the
threat of a major outbreak of exotic diseases is very real. The population explosion, es-
pecially in underdeveloped countries, is another factor in the microbes’ favour. These
played key roles in the proliferation of HIV (human immunodeficiency virus) in the
1980’s. Recently the World Health Organization (WHO) estimated that over 30 million
people worldwide are currently infected with HIV. Information on global and country-
specific disease statistics can be found on the Web pages of places such as the WHO
(www.who.org) and the Centers for Disease Control (CDC: www.cdc.gov) in Atlanta.

Diseases (including such as heart disease and cancer) cause orders of magnitude
more deaths in the world than anything else, even wars and famines. The appearance of
new diseases, and resurgence of old ones, makes the case for interdisciplinary involve-
ment ever more pressing. Modelling can play an increasingly significant role. Histori-
ans can also play a role. Like the plague of Athens much has been written about the
‘sweating sickness’ of the late 15th and first half of the 16th centuries in England.3 The
symptoms of the progression of the disease are, among others, high temperatures, body
filling with fluid, particularly the lungs, the apparently well-being of a person in the
morning and death the same day or within a day or two. The symptoms are so similar
to those of the hanta virus in the 1993 outbreak in the Southwest U.S.A. that there is a
plausible case they are the same disease but which has been dormant for several hundred
years. There is some justification in believing that some of the new diseases are in fact
reappearances of old ones.

3Henry VIII of England succeeded to the throne because his older brother died of the sweating sickness,
and changed the course of history. Henry, for example, dissolved the monasteries, helped usher in the Refor-
mation and developed the British Navy as a professional service which was the basis for the later development
of the British Empire.
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There are four main disease-causing microrganisms: viruses, bacteria, parasites and
fungi. In this chapter, we describe some models for the population dynamics of disease
agents and later (in Chapter 13, Volume II) the spatiotemporal spread of infections.
Such models have been commonly used to model the spread of viral, bacterial and para-
sitic infections but considerably less so with fungal infections. We shall discuss several
models and then try to exploit the models in the control, or ideally the eradication, of
the disease or infection we are considering. The practical use of such models must rely
heavily on the realism put into the models. As usual, this does not mean the inclusion of
all possible effects, but rather the incorporation in the model mechanisms, in as simple
a way as possible, of what appear to be the major components. Like most models they
generally go through several versions before qualitative phenomena can be explained or
predicted with any degree of confidence. Great care must be exercised before practical
use is made of any epidemic models. However, even simple models should, and fre-
quently do, pose important questions with regard to the underlying process and possible
means of control of the disease or epidemic. One such case study, which went through
various hypothetical scenarios, is the model proposed by Capasso and Paveri-Fontana
(1979) for the 1973 cholera epidemic in the port city of Bari in southern Italy.4

An interesting early mathematical model, involving a nonlinear ordinary differen-
tial equation, by Bernoulli (1760), considered the effect of cow-pox inoculation on the
spread of smallpox. The article has some interesting data on child mortality at the time.
It is probably the first time that a mathematical model was used to assess the practi-
cal advantages of a vaccination control programme. Thucydides mentions immunity in
connection with the Athens plague and there is evidence of an even more ancient Chi-
nese custom where children were made to inhale powders made from the crusts of skin
lesions of people recovering from smallpox.

Models can also be extremely useful in giving reasoned estimates for the level
of vaccination for the control of directly transmitted infectious diseases. We discuss
one case study later in the chapter when modelling bovine tuberculosis; see, for ex-
ample, Anderson and May (1982, 1985, 1991), and Herbert et al. (1994). The recent
paper by Schuette and Hethcote (1999) discusses vaccination protocols in connection
with chickenpox and shingles and highlights certain dangers of extensive vaccination.
Among other things, they evaluate with their models the effects of different vaccina-
tion programmes. The classical theoretical papers on epidemic models by Kermack and
McKendrick (1927, 1932, 1933) have had a major influence in the development of math-
ematical models and are still relevant in a suprising number of epidemic situations; we

4In the epidemic, cases of cholera were most common in the poorer areas near the port. At the time raw
sewage from the hospital that treated the cholera patients went directly into the sea. One suggestion was that
the bacteria infected local people bathing in the area. On investigation this did not seem to be borne out.
Another thought was that the water in the stand pipes, commonly in use in these districts, was contaminated.
Again this was found not to be the case. Yet another thought was that the cholera entered the mussel population
which was caught in the shore areas near the port and which was sold and eaten at the local stalls and shops
by the local inhabitants as a delicacy, thus passing it on to humans. However, after a few hours away from
direct bacterial contact mussels actually kill the cholera bacteria so this was also discarded since several hours
elapsed between catching and selling. The solution was finally found to be indeed in the infected sea water.
The stall holders kept a bucket of (contaminated) sea water with which they regularly doused the displayed
mussels to make them look fresh and succulent. It was the bacteria in the ‘fresh’ sea water sprayed on the
shells which caused the cholera infection.
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describe some of these in this chapter. The modelling literature is now extensive and
growing very quickly. Although now quite old, a good introduction to the variety of
problems and models for the spread and control of infectious diseases is the book by
Bailey (1975). The article by Hethcote (1994) reviews three basic epidemiological mod-
els. The book by Diekmann and Heesterbeek (2000) is a good introduction to the field.
For example, they discuss how to use biological assumptions in constructing models
and present applications; they cover both deterministic and stochastic modelling. Other
sources are to be found in the above references and in the papers referred to in the rest of
this chapter. Particularly useful sources for the latest information on specific diseases,
either globally or for a specific country, are the WHO (http://www.who.org/) and the
CDC (http://www.cdc.gov/); their search and information features are very efficient.

In this chapter we discuss several quite different models for very different dis-
eases which incorporate some general aspects of epidemiological modelling of disease
transmission, time evolution of epidemics, acquired resistance to infection, vaccination
strategies and so on. The use of mathematical modelling in immunology and virology is
also growing very quickly. We discuss in some detail models for the dynamics of HIV
infections and relate them to patient data. We also discuss a bacterial infection and one
involving parasites. In Chapter 13, Volume II we consider the geographic spread of in-
fectious diseases and describe in detail a practical model for the spatial spread of rabies,
a possible means of its control and the effect of including immunity. The modelling
of infectious diseases involves the concepts of population dynamics which we have di-
cussed in earlier chapters. Although the detailed forms of the equations are different the
essential elements and analysis are very similar.

At the basic level we consider two types of models. In one the total population
is taken to be approximately constant with, for example, the population divided into
susceptible, infected and immune groups: other groupings are also possible, depending
on the disease. We first discuss models in this category. In the other, the population
size is affected by the disease via the birth rate, mortality and so on. Host–parasite
interacting populations often come into this category. We only discuss deterministic
models which are deficient in certain situations—eradication of a disease is one, since
here the probability that the last few infected individuals will infect another susceptible
is not deterministic. Nevertheless it is perhaps surprising how useful, and quantitatively
predictive, deterministic models can often be; the examples below are only a very few
examples where this has proven to be the case.

10.2 Simple Epidemic Models and Practical Applications

In the classical (but still highly relevant) models we consider here the total population
is taken to be constant. If a small group of infected individuals is introduced into a
large population, a basic problem is to describe the spread of the infection within the
population as a function of time. Of course this depends on a variety of circumstances,
including the actual disease involved, but as a first attempt at modelling directly trans-
mitted diseases we make some not unreasonable general assumptions.

Consider a disease which, after recovery, confers immunity which, if lethal, in-
cludes deaths: dead individuals are still counted. Suppose the disease is such that the
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population can be divided into three distinct classes: the susceptibles, S, who can catch
the disease; the infectives, I , who have the disease and can transmit it; and the removed
class, R, namely, those who have either had the disease, or are recovered, immune or
isolated until recovered. The progress of individuals is schematically represented by

S −→ I −→ R.

Such models are often called SIR models. The number of classes depends on the disease.
SI models, for example, have only susceptible and infected classes while SEIR models
have a suceptible class, S, a class in which the disease is latent, E , an infectious class,
I , and a recovered or dead class, R.

The assumptions made about the transmission of the infection and incubation pe-
riod are crucial in any model; these are reflected in the terms in the equations and the
parameters. With S(t), I (t) and R(t) as the number of individuals in each class we as-
sume here that: (i) The gain in the infective class is at a rate proportional to the number
of infectives and susceptibles, that is, rSI, where r > 0 is a constant parameter. The sus-
ceptibles are lost at the same rate. (ii) The rate of removal of infectives to the removed
class is proportional to the number of infectives, that is, aI where a > 0 is a constant;
1/a is a measure of the time spent in the infectious state. (iii) The incubation period is
short enough to be negligible; that is, a susceptible who contracts the disease is infective
right away.

We now consider the various classes as uniformly mixed; that is, every pair of
individuals has equal probability of coming into contact with one another. This is a
major assumption and in many situations does not hold as in most sexually transmitted
diseases (STD’s). The model mechanism based on the above assumptions is then

d S

dt
= −r SI, (10.1)

d I

dt
= r SI − aI, (10.2)

d R

dt
= aI, (10.3)

where r > 0 is the infection rate and a > 0 the removal rate of infectives. This is the
classic Kermack–McKendrick (1927) model. We are, of course, only interested in non-
negative solutions for S, I and R. This is a basic model but, even so, we can make some
highly relevant general comments about epidemics and, in fact, adequately describe
some specific epidemics with such a model.

The constant population size is built into the system (10.1)–(10.3) since, on adding
the equations,

d S

dt
+ d I

dt
+ d R

dt
= 0 ⇒ S(t) + I (t) + R(t) = N , (10.4)

where N is the total size of the population. Thus, S, I and R are all bounded above by
N . The mathematical formulation of the epidemic problem is completed given initial
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conditions such as

S(0) = S0 > 0, I (0) = I0 > 0, R(0) = 0. (10.5)

A key question in any epidemic situation is, given r , a, S0 and the initial number
of infectives I0, whether the infection will spread or not, and if it does how it develops
with time, and crucially when it will start to decline. From (10.2),

[
d I

dt

]

t=0
= I0(r S0 − a)

{
> 0
< 0

if S0

{
> ρ

< ρ
, ρ = a

r
. (10.6)

Since, from (10.1), d S/dt ≤ 0, S ≤ S0 we have, if S0 < a/r ,

d I

dt
= I (r S − a) ≤ 0 for all t ≥ 0, (10.7)

in which case I0 > I (t) → 0 as t → ∞ and so the infection dies out; that is, no
epidemic can occur. On the other hand if S0 > a/r then I (t) initially increases and
we have an epidemic. The term ‘epidemic’ means that I (t) > I0 for some t > 0; see
Figure 10.1. We thus have a threshold phenomenon. If S0 > Sc = a/r there is an
epidemic while if S0 < Sc there is not. The critical parameter ρ = a/r is sometimes
called the relative removal rate and its reciprocal σ(= r/a) the infection’s contact rate.

We write

Figure 10.1. Phase trajectories in the susceptibles (S)-infectives (I ) phase plane for the SIR model epidemic
system (10.1)–(10.3). The curves are determined by the initial conditions I (0) = I0 and S(0) = S0. With
R(0) = 0, all trajectories start on the line S + I = N and remain within the triangle since 0 < S + I < N
for all time. An epidemic situation formally exists if I (t) > I0 for any time t > 0; this always occurs if
S0 > ρ(= a/r) and I0 > 0.
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R0 = r S0

a
,

where R0 is the basic reproduction rate of the infection, that is, the number of sec-
ondary infections produced by one primary infection in a wholly susceptible popula-
tion. Here 1/a is the average infectious period. If more than one secondary infection
is produced from one primary infection, that is, R0 > 1, clearly an epidemic ensues.
The whole question of thresholds in epidemics is obviously important. The definition
and derivation or computation of the basic reproduction rate is crucial and can be quite
complicated. One such example is if the population is heterogeneous (Diekman et al.
1990).

The basic reproduction rate is a crucial parameter grouping for dealing with an
epidemic or simply a disease which is currently under control with vaccination, for
example. Although the following arguments are based on R0 they are quite general.
Clearly one way to reduce the reproduction rate is to reduce the number of sucepti-
bles, S0. Vaccination is the common method of doing this and it has been successful in
eradicating smallpox. In the U.S.A. it reduced the incidence of measles from 894,134
reported cases in 1941 to 135 in 1997 and for polio from 21,269 in 1952 to the last in-
digenously acquired case of wild-virus polio reported in 1979 (the Western hempisphere
was officially certified polio-free in 1994) with similar reductions in other childhood
diseases. Mass vaccination is the cheapest and most effective means of disease control.
However, although vaccines are generally extremely safe, no medicine is totally risk-
free, however small the risk may be. (There have, however, been a few cases of instant
death from diptheria and tetanus vaccines and there is currently much controversy about
the vaccine for Anthrax for the military.) As people in the West forget the ravages of
polio, measles, diptheria, rubella and so on, many will become less keen to have their
children vaccinated because of the risk even if very small. Vaccination not only pro-
vides protection for the individual it also provides it for the community at large since
it keeps the effective reproduction rate below the level which would allow an epidemic
to start. This is the so-called ‘herd immunity.’ The point is that once the threshold herd
immunity level of R0 has been reached and memory of former diseases fades there is
the possibility that people will not have their children vaccinated but have a free ride
instead; the unvaccinated have effectively the same immunity. In this situation the best,
but unethical, strategy for parents is to urge all other parents to have their children vac-
cinated but free ride with their own. The important point to keep in mind, however, is
that an epidemic can start and rise very quickly if the reproduction rate increases beyond
the critical value for an epidemic so in the end free-riding is not without its own risks.
(This happened with the Conquistadors in Mexico.)

We can derive some other useful analytical results from this simple model. From
(10.1) and (10.2)

d I

d S
= − (r S − a)I

r SI
= −1 + ρ

S
, ρ = a

r
, (I �= 0).

The singularities all lie on the I = 0 axis. Integrating the last equation gives the (I, S)

phase plane trajectories as

I + S − ρ ln S = constant = I0 + S0 − ρ ln S0, (10.8)
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where we have used the initial conditions (10.5). The phase trajectories are sketched in
Figure 10.1. Note that with (10.5), all initial values S0 and I0 satisfy I0 + S0 = N since
R(0) = 0 and so for t > 0, 0 ≤ S + I < N .

If an epidemic exists we would like to know how severe it will be. From (10.7) the
maximum I , Imax , occurs at S = ρ where d I/dt = 0. From (10.8), with S = ρ,

Imax = ρ ln ρ − ρ + I0 + S0 − ρ ln S0

= I0 + (S0 − ρ) + ρ ln

(
ρ

S0

)

= N − ρ + ρ ln

(
ρ

S0

)
.

(10.9)

For any initial values I0 and S0 > ρ, the phase trajectory starts with S > ρ and we
see that I increases from I0 and hence an epidemic ensues. It may not necessarily be a
severe epidemic as is the case if I0 is close to Imax. It is also clear from Figure 10.1 that
if S0 < ρ then I decreases from I0 and no epidemic occurs.

Since the axis I = 0 is a line of singularities, on all trajectories I → 0 as t → ∞.
From (10.1), S decreases since d S/dt < 0 for S �= 0, I �= 0. From (10.1) and (10.3),

d S

d R
= − S

ρ

⇒ S = S0e−R/ρ ≥ S0e−N/ρ > 0

⇒ 0 < S(∞) ≤ N .

(10.10)

In fact from Figure 10.1, 0 < S(∞) < ρ. Since I (∞) = 0, (10.4) implies that R(∞) =
N − S(∞). Thus, from (10.10),

S(∞) = S0 exp

[
− R(∞)

ρ

]
= S0 exp

[
− N − S(∞)

ρ

]

and so S(∞) is the positive root 0 < z < ρ of the transcendental equation

S0 exp

[
− N − z

ρ

]
= z. (10.11)

We then get the total number of susceptibles who catch the disease in the course of the
epidemic as

Itotal = I0 + S0 − S(∞), (10.12)

where S(∞) is the positive solution z of (10.11). An important implication of this anal-
ysis, namely, that I (t) → 0 and S(t) → S(∞) > 0, is that the disease dies out from a
lack of infectives and not from a lack of susceptibles.

The threshold result for an epidemic is directly related to the relative removal rate,
ρ: if S0 > ρ an epidemic ensues whereas it does not if S0 < ρ. For a given disease,
the relative removal rate varies with the community and hence determines whether an
epidemic may occur in one community and not in another. The number of susceptibles
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S0 also plays a major role, of course. For example, if the density of susceptibles is high
and the removal rate, a, of infectives is low (through ignorance, lack of medical care,
inadequate isolation and so on) then an epidemic is likely to occur. Expression (10.9)
gives the maximum number of infectives while (10.12) gives the total number who get
the infection in terms of ρ(= a/r), I0, S0 and N .

In most epidemics it is difficult to determine how many new infectives there are
each day since only those that are removed, for medical aid or whatever, can be counted.
Public Health records generally give the number of infectives per day, week or month.
So, to apply the model to actual epidemic situations, in general we need to know the
number removed per unit time, namely, d R/dt , as a function of time.

From (10.10), (10.4) and (10.3) we get an equation for R alone; namely,

d R

dt
= aI = a(N − R − S) = a

(
N − R − S0e−R/ρ

])
, R(0) = 0, (10.13)

which can only be solved analytically in a parametric way: the solution in this form
however is not particularly convenient. Of course, if we know a, r , S0 and N it is a
simple matter to compute the solution numerically. Usually we do not know all the
parameters and so we have to carry out a best fit procedure assuming, of course, the
epidemic is reasonably described by such a model. In practice, however, it is often
the case that if the epidemic is not large, R/ρ is small—at least R/ρ < 1. Following
Kermack and McKendrick (1927) we can then approximate (10.13) by

d R

dt
= a

[

N − S0 +
(

S0

ρ
− 1

)
R − S0 R2

2ρ2

]

.

Factoring the right-hand side quadratic in R, we can integrate this equation to get, after
some elementary but tedious algebra, the solution

R(t) = r2

S0

[(
S0

ρ
− 1

)
+ α tanh

(
αat

2
− φ

)]

α =
[(

S0

ρ
− 1

)2

+ 2S0(N − S0)

ρ2

]1/2

, φ =
tanh−1

(
S0
ρ

− 1
)

α
.

(10.14)

The removal rate is then given by

d R

dt
= aα2ρ2

2S0
sech2

(
αat

2
− φ

)
, (10.15)

which involves only 3 parameters, namely, aα2ρ2/(2S0), αa and φ. With epidemics
which are not large, it is this function of time which we should fit to the public health
records. On the other hand, if the disease is such that we know the actual number of the
removed class then it is R(t) in (10.14) we should use. If R/ρ is not small, however, we
must use the differential equation (10.13) to determine R(t).

We now apply the model to two very different epidemic situations.
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Figure 10.2. Bombay plague epidemic of
1905–1906. Comparison between the data (•)
and theory (◦) from the (small) epidemic
model and where the number of deaths is
approximately d R/dt given by (10.16). (After
Kermack and McKendrick 1927)

Bombay Plague Epidemic 1905–1906

This plague epidemic lasted for almost a year. Since most of the victims who got the
disease died, the number removed per week, that is, d R/dt , was approximately equal to
the number of deaths per week. On the basis that the epidemic was not severe (relative
to the population size), Kermack and McKendrick (1927) compared the actual data with
(10.15) and determined the best fit for the three parameters which resulted in

d R

dt
= 890 sech2 (0.2t − 3.4). (10.16)

This is illustrated in Figure 10.2 together with the actual epidemic data.

Influenza Epidemic in an English Boarding School 1978

In 1978 in the British medical journal, The Lancet, there was a report with detailed
statistics of a flu epidemic in a boys’ boarding school with a total of 763 boys. Of these
512 were confined to bed during the epidemic, which lasted from 22nd January to 4th
February 1978. It seems that one infected boy initiated the epidemic. This situation
has many of the requirements assumed in the above model derivation. Here, however,
the epidemic was severe and the full system has to be used. Also, when a boy was
infected he was put to bed and so we have I (t) directly from the data. Since in this
case we have no analytical solution for comparison with the data, a best fit numerical
technique was used directly on the equations (10.1)–(10.3) for comparison of the data.
Figure 10.3 illustrates the resulting time evolution for the infectives, I (t), together with
the epidemic statistics. The R-equation (10.3) is uncoupled; the solution for R(t) is
simply proportional to the area under the I (t) curve.
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Figure 10.3. Influenza epidemic data (•) for a boys’ boarding school as reported in the British medical
journal, The Lancet, 4th March 1978. The continuous curves for the infectives (I ) and susceptibles (S) were
obtained from a best fit numerical solution of the SIR system (10.1)–(10.3): parameter values N = 763,
S0 = 762, I = 1, ρ = 202, r = 2.18 × 10−3/day. The conditions for an epidemic to occur, namely, S0 > ρ,
are clearly satisfied and the epidemic is severe since R/ρ is not small.

Plague in Eyam, England 1665–1666

There was an outbreak of plague in the village of Eyam in England from 1665 to 1666.
In this remarkable altruistic incident, the village sealed itself off when plague was dis-
covered, so as to prevent it spreading to the neighbouring villages, and it was successful.
By the end of the epidemic only 83 of the original population of 350 survived. Raggett
(1982) applied the SIR model (10.1)–(10.3) to this outbreak. Here, S(∞) = 83 out
of an initial S0 = 350. This is another example, like the school flu epidemic, where
the epidemic was severe. Raggett (1982) shows how to determine the parameters from
the available data and knowledge of the etiology of the disease. He reiterates the view
that although the initial form was probably bubonic plague, the pneumonic form most
likely became prevalent; the latter form can be transmitted from the cough of a victim
(see Chapter 13, Volume II for a brief description of the plague and its history). The
comparison between the solutions from the deterministic model and the Eyam data is
very good. The comparison is much better than that obtained from the corresponding
stochastic model, which Raggett (1982) also considered. We discuss a model for the
spatial spread of plague in Chapter 13, Volume II.

If a disease is not of short duration then (10.1), the equation for the susceptibles,
should include birth and death terms. Mortality due to natural causes should also be
included in equation (10.2) for the infectives and in (10.3) for the removed class. The
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resulting models can be analysed in a similar way to that used here and in Chapter 3 on
interacting populations: they are still systems of ordinary differential equations. It is not
surprising, therefore, that oscillatory behaviour in disease epidemics is common; these
are often referred to as epidemic waves. Here they are temporal waves. Spatial epidemic
waves appear as an epidemic spreads geographically. The latter are also common and
we consider them in detail in Chapter 13, Volume II.

Many diseases have a latent or incubation period when a susceptible has become
infected but is not yet infectious. Measles, for example, has an 8- to 13-day latent
period. The incubation time for AIDS, on the other hand, is anything from a few months
to years after the patient has been shown to have antibodies to the human immun-
odeficiency virus (HIV). We can, for example, incorporate this as a delay effect, or
by introducing a new class, E(t) say, in which the susceptible remains for a given
length of time before moving into the infective class. Such models give rise to in-
tegral equation formulations and they can exhibit oscillatory behaviour as might be
expected from the inclusion of delays. Some of these are described by Hoppensteadt
(1975, see also 1982). Nonlinear oscillations in such models have been studied by
Hethcote et al. (1981); see also Hethcote (1994). Alternative approaches recently used
in modelling AIDS are discussed below. Finally age, a, is often a crucial factor in
disease susceptibility and infectiousness. The models then become partial differential
equations with independent variables (t, a); we consider one such model later in this
chapter.

There are many modifications and extensions which can and often must be incor-
porated in epidemic models; these depend critically on the disease and location. In the
following sections we discuss a few more general models to illustrate different but im-
portant points. The books and references already cited describe numerous models and
go into them in considerable detail.

10.3 Modelling Venereal Diseases

The incidence of sexually transmitted diseases (STDs), such as gonorrhea (Neisseria
gonorrhoeae), chlamydia, syphilis and, of course, AIDS, is a major health problem
in both developed and developing countries. In the U.S.A., for example, as reported
by the Centers for Disease Control (www.cdc.gov), in 1996 there were over 300,000
cases of gonorrhea reported and over 11,000 cases of syphilis and nearly 500,000 cases
of chlamydia. Whereas the rate has been decreasing for gonorrhea and syphilis it is
growing for chlamydia. We give some of the numbers for HIV incidence in the AIDS
sections below.

STDs have certain characteristics which are different from other infections, such as
measles or rubella (German measles). One difference is that they are mainly restricted to
the sexually active community so the assumption of uniform mixing in the whole popu-
lation is not really justified. Another is that often the carrier is asymptomatic (that is, the
carrier shows no overt symptoms) until quite late on in the development of the infection.
A third crucial difference is that STDs induce little or no acquired immunity following
an infection. Equally important in virus infections is the lack of present knowledge of
some of the parameters which characterise the transmission dynamics.
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Although gonorrhea, syphilis and AIDS are well known, with the latter growing
alarmingly, one of the STDs which has far outstripped gonorrhea is the less well-known
Chlamydia trachomatis, which in 1996 struck more than gonorrhea and syphilis put to-
gether and is on the increase. It can produce sterility in women without their ever show-
ing any overt symptoms. Diagnostic techniques are now sufficiently refined to make
diagnosis more accurate and less expensive and could account in part for the increase in
reported cases.5 The asymptomatic character of this disease among women is serious.
Untreated, it causes pelvic inflammatory disorders (PID) which are often accompanied
by chronic pain, fever and sterility. With pregnancy, PID, among other complications,
can often cause premature delivery and ectopic pregnancies (that is, the fertilised egg
is implanted outside the womb) which are life threatening. Untreated gonorrhea, for
example, can also cause blindness, PID, heart failure and ultimately death. STDs are a
major cause of sterility in women. The consequences of untreated STDs in general are
very unpleasant. The vertical transmission of STDs from mother to newborn children is
another of the threats and tragedies of many STDs. Another problem is the appearance
of new strains: in connection with AIDS, HIV-1 is the common virus but a relatively
new one, HIV-2 has now been found. With gonorrhea the relatively new strain, Neisse-
ria gonorrhoeae, which was discovered in the 1970’s proved resistant to penicillin.

In this section we present a simple classical epidemic model which incorporates
some of the basic elements in the heterosexual spread of venereal diseases. We have
in mind such diseases as gonorrhea; AIDS we discuss separately later in the chapter.
The monograph by Hethcote and Yorke (1984) is still a good survey of models used
for the spread and control of gonorrhea. They show how models and data can be used
to advantage; the conclusions they arrived at are specifically aimed at public health
workers.

For the model here we assume there is uniformly promiscuous behaviour in the
population we are considering. As a simplification we consider only heterosexual en-
counters. The population consists of two interacting classes, males and females, and
infection is passed from a member of one class to the other. It is a criss-cross type of
disease in which each class is the disease host for the other. In all of the models we
have assumed homogeneous mixing between certain population subgroups. Dietz and
Hadeler (1988), for example, considered epidemic models for STDs in which there is
heterogeneous mixing. More complex models can include the pairing of two suscep-
tibles, which confers temporary immunity, several subgroups and so on. We discuss a
multi-group example later in this section.

Criss-cross infection is similar in many ways to what goes on in malaria6 and bil-
harzia, for example, where two criss-cross infections occur. In bilharzia it is between

5One U.S. Public Health official when asked some years ago about the high incidence of chlamydia and
what doctors were doing about it, is said to have remarked ‘Doing about it? Most of them can’t even spell it.’

6A very interesting, exciting and potentially important new and cheap treatment for malaria, which kills
around 2.7 million people a year, has been discovered by Dr. Henry Lai, and his colleagues in Bioengineering
in the University of Washington. They found that the malarial parasite Plasmodium falciparum (the deadliest
of the four malarial parasites) can lose vigour and die when subjected to small oscillating magnetic fields
(of the order of the earth’s field). They suggest it may be due to the movement caused in the very small iron
particles inside the parasite which damages the parasites by disrupting their feeding process which involves
the haemoglobin in the red blood cells of the host. They found that exposed samples of the parasite ended up
with 33–70% fewer parasites as compared to unexposed samples.
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humans and a particular type of snail. Bilharzia, or schistosomiasis, has been endemic
in Africa for a very long time. (See footnote 1 in Chapter 3.) We discuss in detail later
in this chapter a more complex practical example of a criss-cross infection between
badgers and cattle, namely, bovine tuberculosis.

Since the incubation period for venereal diseases is usually quite short—in gonor-
rhea, for example, it is three to seven days—when compared to the infectious period, we
use an extension of the simple epidemic model in Section 10.2. We divide the promis-
cuous male population into susceptibles, S, infectives, I , and a removed class, R; the
similar female groups we denote by S∗, I ∗ and R∗. If we do not include any transition
from the removed class to the susceptible group, the infection dynamics is schematically

S −→ I −→ R

S∗ −→ I ∗ −→ R∗.
(10.17)

Here I ∗ infects S and I infects S∗.
As we noted above, the contraction of gonorrhea does not confer immunity and so

an individual removed for treatment becomes susceptible again after recovery. In this
case a better dynamics flow diagram for gonorrhea is

S −→ I −→ R

S∗ −→ I ∗ −→ R∗.
(10.18)

An even simpler version involving only susceptibles and infectives is

S −→ I

S∗ −→ I ∗.
(10.19)

which, by way of illustration, we now analyse. It is a criss-cross SI model.
We take the total number of males and females to be constant and equal to N and

N∗ respectively. Then, for (10.19),

S(t) + I (t) = N , S∗(t) + I ∗(t) = N∗. (10.20)

As before we now take the rate of decrease of male susceptibles to be proportional to
the male susceptibles times the infectious female population with a similar form for the
female rate. We assume that once infectives have recovered they rejoin the susceptible
class. A model for (10.19) is then (10.20) together with

d S

dt
= −r SI ∗ + aI,

d S∗

dt
= −r∗S∗ I + a∗ I ∗

d I

dt
= r SI ∗ − aI,

d I ∗

dt
= r∗S∗ I − a∗ I ∗,

(10.21)

where r , a, r∗ and a∗ are positive parameters. We are interested in the progress of the
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disease given initial conditions

S(0) = S0, I (0) = I0, S∗(0) = S∗
0 , I ∗(0) = I ∗

0 . (10.22)

Although (10.21) is a 4th-order system, with (10.20) it reduces to a 2nd-order sys-
tem in either S and S∗ or I and I ∗. In the latter case we get

d I

dt
= r I ∗(N − I ) − aI,

d I ∗

dt
= r∗ I (N ∗ − I ∗) − a∗ I ∗, (10.23)

which can be analysed in the (I, I ∗) phase plane in the standard way (cf. Chapter 3).
The equilibrium points, that is, the steady states of (10.23), are I = 0 = I ∗ and

Is = N N ∗ − ρρ∗

ρ + N ∗ , I ∗
s = N N ∗ − ρρ∗

ρ∗ + N
, ρ = a

r
, ρ∗ = a∗

r∗ . (10.24)

Thus nonzero positive steady state levels of the infective populations exist only if
N N∗/ρρ∗ > 1: this is the threshold condition somewhat analogous to that found in
Section 10.2.

With the experience gained from Chapter 3, we now expect that, if the positive
steady state exists then the zero steady state is unstable. This is indeed the case. The
eigenvalues λ for the linearisation of (10.23) about I = 0 = I ∗ are given by

∣
∣∣
∣
−a − λ r N
r∗N ∗ −a∗ − λ

∣
∣∣
∣ = 0

⇒ 2λ = −(a + a∗) ±
[
(a + a∗)2 + 4aa∗

(
N N ∗

ρρ∗ − 1

)]1/2

.

So, if the threshold condition N N ∗/ρρ∗ > 1 holds, λ1 < 0 < λ2 and the origin is a
saddle point in the (I, I ∗) phase plane. If the threshold condition is not satisfied, that is,
(0 <)N N ∗/ρρ∗ < 1, then the origin is stable since both λ < 0. In this case positive Is
and I ∗

s do not exist.
If Is and I ∗

s exist, meaning in the context here that they are positive, then linearising
(10.23) about it, the eigenvalues λ satisfy

∣∣
∣∣
−a − r I ∗

s − λ r N − r I
r∗N∗ − r∗ I ∗ −a∗ − r∗ Is − λ

∣∣
∣∣ = 0;

that is,

λ2 + λ[a + a∗ + r I ∗
s + r∗ Is] + [a∗r I ∗

s + ar∗ Is + rr∗(I ∗N + I N ∗)
+ aa∗ − rr∗N N ∗] = 0,

the solutions of which have Re λ < 0 and so the positive steady state (Is, I ∗
s ) in (10.24)

is stable.
The threshold condition for a nonzero steady state infected population is N N ∗/ρρ∗

= (r N/a)(r∗N ∗/a∗) > 1. We can interpret each term as follows. If every male is sus-
ceptible then r N/a is the average number of males contacted by a female infective
during her infectious period; a reciprocal interpretation holds for r∗ N∗/a∗. These quan-
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tities, r N/a and r∗N∗/a∗, are the maximal male and female contact rates respec-
tively.

Although parameter values for contacts during an infectious stage are notoriously
unreliable from individual questionnaires, what is abundantly clear from the statistics
since 1950 is that an epidemic has occurred in a large number of countries and so
N N∗/ρρ∗ > 1. From data given by a male and a female infective, in the U.S.A. in
1973, regarding the number of contacts during a period of their infectious state, figures
of maximal contact rates of N/ρ ≈ 0.98 and N ∗/ρ∗ ≈ 1.15 were calculated for the
male and female respectively which give N N ∗/ρρ∗ ≈ 1.127.

10.4 Multi-Group Model for Gonorrhea and Its Control

Although the SI model in the last section is a particularly simple one, it is not too unre-
alistic. In the case of gonorrheal infections, however, it neglects many relevant factors.
For example, as already mentioned a large proportion of females, although infected and
infectious, show no obvious symptoms; that is, they form an asymptomatic group. There
are, in fact, various population subgroups. For example, we could reasonably have sus-
ceptible, symptomatic, treated infective and untreated infective groups. Lajmanovich
and Yorke (1976) proposed and analysed an 8-group model for gonococcal infections
consisting of sexually (i) very active and (ii) active females (males) who are asymp-
tomatic when infectious and (iii) very active and (iv) active females (males) who are
symptomatic when infectious.

If the total populations of active male and female are N and N ∗, assumed constant,
we can normalise the various group populations as fractions of N and N∗. Denote the
groups of women with indices 1, 3, 5, 7 and the men with indices 2, 4, 6, 8. Then if Ni ,
i = 1, 2, . . . , 8 denote the normalised populations

N1 + N3 + N5 + N7 = 1, N2 + N4 + N6 + N8 = 1. (10.25)

Since neither immunity nor resistance is acquired in gonococcal infections we con-
sider only two classes, susceptibles and infectives. If Ii (t), i = 1, 2, . . . , 8 denote the
fractions infectious at any time t , the fractional numbers of susceptibles at that time are
then 1 − Ii (t), i = 1, 2, . . . , 8.

We again assume homogeneous mixing. For each group let Di be the mean length
of time (in months) of the infection in group i . Then, there is a 1/Di chance of an
infective recovering each month. This implies that the removal rate per month is Ii/Di .

Let Li j be the number of effective contacts per month of an infective in group j
with an individual in group i . Since the model here considers only heterosexual (as
opposed to homosexual) contacts we have

Li j = 0 if i + j even.

The matrix [Li j ] is called the contact matrix. Although there are seasonable variations
in the Li j we take them to be constant here. Then the average number of susceptibles
infected per unit time (month) in group i by group j is Li j (1 − Ii ). Thus the model



332 10. Dynamics of Infectious Diseases

differential equation system is

d(Ni Ii )

dt︸ ︷︷ ︸
rate of new
infectives

=
8∑

j=1

Li j (1 − Ii )N j I j

︸ ︷︷ ︸
rate of new

infectives (incidence)

− Ni Ii

Di︸ ︷︷︸
recovery rate
of infectives

(10.26)

with given initial conditions Ii (0) = Ii0.
By considering the linearisation about the nonzero steady state the effect of varying

the parameters can be assessed and hence the effects of various control strategies. This
model is analysed in detail by Lajmanovich and Yorke (1976).

Major aims in control include of course the reduction in incidence and an increase
in detection, each of which affects the long term progress of the spread of the disease.
So, screening, detection and treatment of infectives is the major first step in control. The
paper by Hethcote et al. (1982) compares various control methods for gonorrhea; it also
has references to other models which have been proposed.

As an example, suppose C is a parameter proportional to the number of women
screened and C Ri is the rate at which infected women are detected in group i . Let E Pi

be the general supplementary detection rate where E is a measure of the effort put in
and Pi is the population of a group i : E depends on the control strategy. Then, in place
of (10.26) we have the control model

d(Ni Ii )

dt
=

8∑

j=1

Li j (1 − Ii )N j I j − Ni Ii

Di
− C Ri − E Pi . (10.27)

Different control methods imply different Ri and Pi .
Suppose there is general screening of women (the major control procedure in the

U.S.A.). On the basis that the number of infected women detected is directly propor-
tional to the number infected and the supplementary programme is general screening of
the women population, we have

Pi = Ri = Ii Ni , i = 1, 3, 5, 7; Pi = Ri = 0, i = 2, 4, 6, 8.

If the programme is for men, the odd and even number range is interchanged.
These and other control procedures are discussed in the paper by Hethcote et al.

(1982); see also Hethcote and Yorke (1984). They also discuss the important problem
of parameter estimation and finally carry out a comparison of various control strategies.
The cost and social range of screening are not negligible factors in the practical imple-
mentation of such programmes. The political and sociological considerations can also
be rather sensitive.

It should be emphasised again, that venereal disease models, which are to be used
in control programmes, must have a realistic validation, which can only come from a
comparison of their solutions and predictions with actual data. This should, of course,
apply to all disease control models.
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10.5 AIDS: Modelling the Transmission Dynamics of the Human
Immunodeficiency Virus (HIV)

Some Background, Myths, Statistics and Polemics

One aspect of the AIDS (autoimmune deficiency syndrome) epidemic is the myth of
denial, a not uncommon phenomenon with certain diseases where, for example, there
is a perceived social stigma or a strong economic element; the brief highly pertinent
article by Weiss (1996) discusses some recent examples of this regarding AIDS and
suggests some of the modern reasons for it. He also quotes some astonishing statements
such as one by a British Government Home Office minister who said that HIV could not
possibly be transmitted in prisons because drugs and sex were not permitted. Another is
by a medical journalist writing in the respected British newspaper The Independent who
said ‘The government has wasted £150 million of our taxpayers’ money anathematizing
the innocent pleasures of casual heterosexual intercourse.’ The belief that HIV does
not cause AIDS is subscribed to in the book by the scientist Duesberg (1996) of the
University of California at Berkeley. Among other things, he says that AIDS is not only
not contagious but that it is caused by drugs taken for the express purpose of blocking
HIV. Lauritsen (1993) attributes AIDS to the medical-industrial complex whose aim is
profiteering and genocide: he claims that the medicine AZT, used in the treatment of
HIV, actually causes AIDS! The problem of how so much AZT could have got into sub-
Saharan Africa, the major problem area, is not discussed. A recent book on the origin
of the disease by Hooper (1999) makes the controversial case for AIDS being caused
by an experimental oral vaccine for polio which was given to around a million people
in Rwanda, Burundi and the Congo from 1957 to 1960. This area is the epicentre of the
African epidemic. He argues that the vaccine might have been made with chimpanzee
tissue which was contaminated with an ancestor of the virus. This has subsequently been
denied by doctors involved in the programme. His argument is carefully researched but
the evidence is still circumstantial.

The major horror of the AIDS epidemic is in Africa where around 70% of the total
AIDS deaths in the world have occurred and, as recently stated (July, 1999) by Dr. Peter
Piot, head of the United Nations AIDS (UNAIDS) programmes, half of all newborn
babies in Africa are HIV positive. The regular early ludicrous denials in the 1980’s of
its existence by some African leaders (‘There is no AIDS in my country.’) and others in
positions of responsibility, however, began to change in the mid-1990’s. In sub-Saharan
Africa up to 1998 HIV has infected 34 million people and killed 11.5 million since
1981 and approximately 1.8 million in 1998 alone. In 1999 an estimated 5.6 million
adults and children became infected with the virus with a worldwide total estimated at
50 million infected since 1981 of which 16 million have died; around 2.6 million died
in 1999 alone, the highest number of any year. In Zimbabwe, Malawi and Botswana
perhaps the countries worst afflicted with HIV infection, it is a human and economic
catastrophe: in Zimbabwe at least 20% are HIV positive while in Botswana it is more
than 35%. Its extremely rapid growth in South Africa (where as many as 20% of the
population is HIV positive) is alarming.7 Life expectancy which increased dramatically

7In the case of South Africa it was certainly not helped by the Health Minister saying (in the National
Assembly in the week of 16th November 1999) that AZT may be too dangerous to use. (Perhaps it has to be
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in South Africa in the 1990’s is now plummeting. Malthus (see Chapter 1) may well be
right about his disease prognosis and population control. A broad picture of the world
scene and several important aspects of the disease is given in the special report on AIDS
in Scientific American (1998) by various authors dealing with such issues as prevention,
ethical dilemmas, children with HIV, drug resistance, vaccines and others.

AIDS, unlike its early image as a homosexual disease, is now very much a hetero-
sexual disease. In a UNAIDS report for World AIDS Day, 1st December 1999, it says
that of the 22.3 million adults in sub-Saharan Africa with HIV, 55% of them are women.
In South and Southeast Asia it is estimated that 30% are women and in North America
20%. In Africa it is mainly transmitted by heterosex whereas in the U.S. it is mainly
homosexual transmission.

The most important aspect of defense against infectious diseases is unquestionably
surveillance which characterises the pattern of each disease. Although there are social
problems associated with gathering data on the number of people who have the HIV,
it is unlikely that the epidemic will be contained if this information is not made avail-
able.8 Widespread surveillance of human tuberculosis (Mycobacterium tuberculosis) in
the 1950’s essentially eradicated the disease in many developed countries. However,
new human strains are now appearing including in the developed world: it is already a
significant problem in New York. Tuberculosis is still a major killer in the world; be-
tween 1990 and 1999 approximately 30 million people have died (Cosivi et al. 1998)
from the disease.

The lack of knowledge about HIV creates enormous difficulties in designing effec-
tive control programmes, not to mention those for health care facilities. Education pro-
grammes as to how it can spread are the minimum requirement. Those that have been
pursued have had some success but even their continuing use and new ones have often
been blocked by the religious establishments (and not just the loony right). Without a
knowledge of the reservoir of the disease, it is extremely difficult to evaluate effective
prevention and control strategies. According to a depressing UNAIDS Report (Global
HIV/AIDS Epidemic December 1997) there are an estimated 16,000 new cases a day
and that around 27 million people are HIV positive but do not know it. AIDS is just one
disease where surveillance has been disastrously inadequate. Another in which the lack
of surveillance is going to cause serious problems in the very near future is the misuse
of antibiotics which is giving rise to resistant strains of bacteria.

accepted that a drug to treat a fatal disease is more toxic than drinking herbal tea.) If that was not enough,
in April 2000 President Thabo Mbeki astonishingly and depressingly said that he wished to discuss HIV
and AIDS specifically with those scientists who say there is no connection; he simply refused to accept the
connection between HIV and AIDS.

8In a class on modelling epidemics I once had the students construct a model for the spread of an hypo-
thetical disease which was based, in fact, on the spread of HIV but which I took pains to hide. After they
produced a reasonable first model I then asked the class to discuss strategies for its control. Without exception
everybody in the class agreed that the only way was to have universal surveillance with everyone being tested
for the virus. I then took their model and at each step I related it directly to the present AIDS epidemic. The
reaction in the class was what I had expected (but not the intensity of feeling): the class immediately launched
into a very heated discussion among the civil libertarians, the politicians, the humanists, the religious group
taking the moral high ground and the pragmatists. (I kept out of the discussion and was only the moderator.) In
the end the students were unified only in believing that I had deliberately conned them into saying that clearly
everybody should be tested for HIV positivity—they were absolutely right, of course; it was my intention.
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Other than the new strains of HIV there is an increasing number of new or newly
identified diseases or old agents in new locations, such as Vibrio cholera 0139 (new
agent 1992) which is a variant of cholera, Hepatitis E virus (new 1990), Hemorrhagic
fever (1991) in Venezuela, Hantavirus (1993) in Southwest U.S.A., Anthrax (1993) in
the Carribean, Lasa fever (1992) in West Africa and numerous others. The book by
Garrett (1994) specifically deals with newly emerging diseases which he refers to as
‘the coming plague.’ In spite of the appearance of other new diseases, recurrence of
old ones and the other major killing diseases, AIDS is arguably the major epidemic of
the 20th century and perhaps of all time. Its progression has exceeded the gloomy view
expressed in the first edition of this book in 1989 and now in the year 2000 can only
give pessimists cause for optimism.

Human Immunodeficiency Virus (HIV)—Background

The human immunodeficiency virus, HIV, leads to acquired immune deficiency syn-
drome, AIDS. HIV is a retrovirus and like most of the viruses in this family of viruses,
the Retroviridae, only replicates in dividing cells. HIV has some unfortunate unique
properties even within this retrovirus family such as using the mRNA processing of the
cell it invades to synthesise its own viral RNA. Although studies (Ho et al. 1995) have
shown the dynamics of viral replication is very high in vivo the immune system can
counteract this replication from 5 to 10 years or more depending on the initial infection.
Cases of haemophiliacs who have been given contaminated blood have succumbed in a
matter of months.

Infection by the virus HIV-1, the most common variety, has many highly complex
characteristics, most of which are still not understood. The fact that the disease pro-
gression can last more than 10 years from the first day of infection is just one of them.
Another is that while most viral infections can be eliminated by an immune response,
HIV is only briefly controlled by it. HIV primarily infects a class of white blood cells or
lymphocytes, called CD4 T-cells, but also infects other cells such as dendritic cells. The
virus has a high affinity for a receptor present on the cell surface of each of these cells
which guides the virus to their location in vivo. When the CD4 T-cell count, normally
around 1000/µL, decreases to 200/µL or below, a patient is characterized as having
AIDS. There are very specific clearly defined clinical categories (Morb Mort Week Re-
port 42 (No. RR-17), Table 308-1 and Table 308-2, December 18, 1992) which are used
to diagnose the AIDS; the CD4 T-cell count is not the only factor. The categories are
regularly updated. These are used by the Centers for Disease Control for surveillance
purposes. For example, if a patient with the virus has a CD4 T-cell count greater than
500/µL but has, or has had one of a variety of diseases then a formal diagnosis is made
and registered. The reason for the fall in the T-cell count is unknown. T-cells are nor-
mally replenished very quickly in the body, so the infection may affect the source of
new T-cells or the life span of preexisting ones. Although HIV can kill cells that it in-
fects, only a small fraction of CD4 T-cells are infected at any given time. Because of
the central role of CD4 T-cells in immune regulation, their depletion has widespread
deleterious effects on the functioning of the immune system as a whole and this is what
leads to AIDS.

Since the mid-1980’s, numerous models, deterministic and stochastic, have been
developed to describe the immune system and its interaction with HIV. It is a highly
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controversial area. Stochastic models aim to account for the early events in the disease
when there are few infected cells and a small number of viruses. Nowak et al. (1996;
see earlier references there) look at the effects of variability among viral strains but this
and earlier work has been commented on critically by Stilianakis et al. (1994) and Wein
et al. (1998).

Most models have been deterministic such as those by McLean and Nowak (1992),
Perelson et al. (1993), Essunger and Perelson (1994), Frost and McLean (1994), Stil-
ianakis et al. (1994), Kirschner and Webb (1997) and Wein et al. (1998). Deterministic
models, which attempt to reflect the dynamic changes in mean cell numbers, are more
applicable to later stages of the process when the population is large. These models
typically consider the dynamics of the CD4 cells, latently infected cells and virus pop-
ulations as well as the effects of drug therapy.

Because of the ethics, among other things, of doing experiments on humans, funda-
mental information has been lacking about the dynamics of HIV infection. For example,
since the disease takes an average of 10 years to develop it was widely thought that the
components of the disease process would also be slow. A combination of mathemati-
cal modelling and experiment has shown this is not the case by showing that there are
a number of different timescales in HIV infection, from minutes to hours and days to
months. The current understanding of the rapidity of HIV infection has totally changed
the manner in which HIV is treated in patients and has had a major impact in extending
peoples’ lives; see the review paper by Perelson and Nelson (1999).

Figure 10.4 shows a typical course of HIV infection. Immediately after infection
the amount of virus detected in the blood, V , increases rapidly. After a few weeks to
months the symptoms disappear and the virus concentration falls to a lower level. An
immune response to the virus occurs and antibodies against the virus can be detected in
the blood. A test, now highly refined, to detect these antibodies determines if a person
has been exposed to HIV. If the antibodies are detected, a person is said to be HIV-
positive.

Figure 10.4. Schematic time course of a typical HIV infection in an infected adult. The viral concentration,
the level of antibodies and the CD4 T-cells are sketched as a function of time. The early peak corresponds
to the primary infection which leads to a period of latency. Note the typical gradual decline in the level of
CD4 T-cells over the years. Eventually the symptoms of full-blown AIDS start to appear. (From Perelson and
Nelson 1999 and reproduced with permission)
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The level the virus falls to after the initial infection has been called the set-point.
The viral concentration then seems to remain at a quasi-steady state level during which
the concentration of CD4 T-cells measured in blood slowly declines. This period in
which the virus concentration stays relatively constant but in which the T-cell count
slowly falls is typically a period in which the infected person has no disease symptoms.

A key question then is what is going on during this asymptomatic period. Many
believed that the virus was simply quiescent or latent during this period, as seen in other
viral diseases, such as herpes. One method of determining whether or not the virus is
active is to perturb the host–virus system during the asymptomatic period. In the mid-
1990’s work started on new antiretroviral drugs, the protease inhibitors. With their in-
troduction it became possible to perturb the host–virus system during the asymptomatic
period. In 1994, David Ho (Aaron Diamond AIDS Research Center) ran an experiment
which examined the response of 20 patients infected with HIV to the protease inhibitor,
ritonavir. The results were dramatic. Figure 10.5 shows the amount of virus measured in
blood plasma fell rapidly once the drug was given. Alan Perelson (Los Alamos National
Laboratory) and his colleagues then developed a model system which was applied to the
patient data and estimations of crucial parameters were obtained. The work is reported
in Ho et al. (1995).

Before discussing a model which includes protease inhibitor treatment, we first
describe an early model by Anderson et al. (1986) for pedagogical reasons since it is
a common way of constructing an epidemic model using a flow chart. It is much less
specific and less directly related to current HIV thinking than the one we discuss below
in relation to the data and qualitative behaviour of the virus as shown in Figures 10.4
and 10.5. A nice review of the state of AIDS modelling at the time is given by Isham
(1988).
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Figure 10.5. After treatment started at t = 0 with a protease inhibitor the plasma viral load declined rapidly.
The data are from 2 of the 20 patients studied in Ho et al. (1995): all 20 patients exhibited similar rapid
declines. (Reproduced with permission)
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Basic Epidemic Model for HIV Infection in a Homosexual Population

Here we are interested in the development of an AIDS epidemic in a homosexual pop-
ulation. Let us assume there is a constant immigration rate B of susceptible males into
a population of size N (t). Let X (t), Y (t), A(t) and Z(t) denote respectively the num-
ber of susceptibles, infectious males, AIDS patients and the number of HIV-positive or
seropositive men who are noninfectious. We assume susceptibles die naturally at a rate
µ; if there were no AIDS, the steady state population would then be N ∗ = B/µ. We
assume AIDS patients die at a rate d: 1/d is of the order of months to years, more often
the latter. Figure 10.6 is a flow diagram of the disease on which we base our model.

As in previous models we consider uniform mixing. A reasonable first model sys-
tem, based on the flow diagram in Figure 10.6, is then

d X

dt
= B − µX − λcX, λ = βY

N
, (10.28)

dY

dt
= λcX − (v + µ)Y, (10.29)

d A

dt
= pvY − (d + µ)A, (10.30)

d Z

dt
= (1 − p)vY − µZ , (10.31)

N (t) = X (t) + Y (t) + Z(t) + A(t). (10.32)

Here B is the recruitment rate of susceptibles, µ is the natural (non-AIDS-related) death
rate, λ is the probability of acquiring infection from a randomly chosen partner (λ =

Figure 10.6. The flow diagram of the disease as modelled by the system (10.28)–(10.32). B represents the
recruitment of susceptibles into the homosexual community. The rate of transferral from the susceptible to the
infectious class is λc, where λ is the probability of acquiring infection from a randomly chosen partner and
c is the number of sexual partners. A proportion of the infectious class is assumed to become noninfectious
with the rest developing AIDS. Natural (non-AIDS induced) death is also included in the model. Parameters
are defined in the text.
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βY/N , where β is the transmission probability), c is the number of sexual partners, d
is the AIDS-related death rate, p is the proportion of HIV-positives who are infectious
and v is the rate of conversion from infection to AIDS here taken to be constant. 1/v,
equal to D say, is then the average incubation time of the disease. (Actually λ here is
more appropriately βY/(X + Y + Z) but A is considered small in comparison with N .)
Note that in this model the total population N (t) is not constant, as was the case in the
epidemic models in Section 10.2. If we add equations (10.28)–(10.32) we get

d N

dt
= B − µN − d A. (10.33)

An epidemic ensues if the basic reproductive rate R0 > 1: that is, the number of
secondary infections which arise from a primary infection is greater than 1. In (10.32) if,
at t = 0, an infected individual is introduced into an otherwise infection-free population
of susceptibles, we have initially X ≈ N and so near t = 0,

dY

dt
≈ (βc − v − µ)Y ≈ v(R0 − 1)Y (10.34)

since the average incubation time, 1/v, from infection to development of the disease,
is very much shorter than the average life expectancy, 1/µ, of a susceptible; that is,
v � µ. Thus the approximate threshold condition for an epidemic to start is, from the
last equation,

R0 ≈ βc

v
> 1. (10.35)

Here the basic reproductive rate R0 is given in terms of the number of sexual partners
c, the transmission probability β and the average incubation time of the disease 1/v.

When an epidemic starts, the system (10.28)–(10.32) evolves to a steady state given
by

X∗ = (v + µ)N ∗

cβ
, Y ∗ = (d + µ)(B − µN ∗)

pvd

Z∗ = (1 − p)(d + µ)(B − µN∗)
pdµ

, A∗ = B − µN∗

d
,

N ∗ = Bβ[µ(v + d + µ) + vd(1 − p)]
[v + µ][b(d + µ) − pv] .

(10.36)

If we linearise about this steady state it can be shown that (X, Y, Z , A) tends to (X∗, Y ∗,
Z∗, A∗) in a damped oscillatory manner with a period of oscillation given in terms of
the model parameters; the method to obtain this is exactly the same as described in
Chapter 3 but the algebra is messy. With typical values for the parameters at the time
(Anderson et al. 1986) the period of epidemic outbreaks was of the order of 30 to 40
years. It is unrealistic to think that the parameters characterising social behaviour associ-
ated with the disease would remain unchanged over that time span. The life expectancy
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of people with HIV has dramatically increased since then, due mainly of course, to new
medicines such as AZT and protease inhibitors.

We can get some interesting information from an analysis of the system during
the early stages of an epidemic. Here the population consists of almost all susceptibles
and so X ≈ N and the equation for the growth of the infectious, that is, HIV-positive,
Y -class is approximated by (10.34), the solution of which is

Y (t) = Y (0) ev(R0−1)t = Y (0) ert , (10.37)

where R0 is the basic reproductive rate, 1/v is the average infectious period and Y (0) is
the initial number of infectious people introduced into the susceptible population. The
intrinsic growth rate, r = v(R0 − 1), is positive only if an epidemic exists (R0 > 1).
From (10.37) we can obtain the doubling time for the epidemic, that is, the time td when
Y (td) = 2Y (0), as

td = r−1 ln 2 = ln 2

v(R0 − 1)
. (10.38)

We thus see that the larger the basic reproductive rate R0 the shorter the doubling time.
If we substitute (10.37) into equation (10.30) for the AIDS patients, we get

d A

dt
= pvY (0) ert − (d + µ)A.

Early on in the epidemic there are no AIDS patients, that is, A(0) = 0, and so the
solution is given by

A(t) = pvY (0)
ert − e−(d+µ)t

r + d + µ
.

Estimates for the parameter r were calculated by Anderson and May (1986) from
data from 6875 homosexual and bisexual men who attended a clinic in San Francisco
over the period 1978 to 1985: the average value is 0.88 yr−1. Crude estimates (Anderson
and May 1986, Anderson et al. 1986) for the other parameter values are R0 = 3 to 4,
d + µ ≈ d = 1 − 1.33 yr−1, p = 10 to 30% (this is certainly very much higher),
v ≈ 0.22 yr−1, c = 2 to 6 partners per month. With these estimates we then get an
approximate doubling time for the HIV-positive class as roughly 9 months.

Numerical simulations of the model system of equations (10.28)–(10.31) give a
clear picture of the epidemic development after the introduction of HIV into a suscepti-
ble homosexual population. Figure 10.7 shows one such simulation: the model predicts
that HIV incidence reaches a maximum around 12 to 15 years after the introduction
of the virus into the population. It should be kept in mind that this is an early (and
now more a pedagogical) model. It is interesting to compare these predictions of the
mid-1980’s with the situation in 2000.

In spite of the simplicity of the models, the results were in line with observation in
homosexual communities. More realistic, and not always more complex models, have
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Figure 10.7. Numerical solution of the model system (10.28)–(10.31) with initial conditions A(0) = Z (0) =
0, S(0) + Y (0) = N (0) = 100,000. Parameter values: B = 13333.3 yr−1, v = 0.2 yr−1, µ = (1/32) yr−1,
d = 1 yr−1, p = 0.3, the basic reproductive rate of the epidemic R0 ≈ βc/v = 5.15. The graphs give the
proportion of those HIV-positive (seropositive) and the proportion who develop AIDS. (After Anderson et al.
1986)

been proposed such as those discussed below. A review of some of the current mathe-
matical models for the transmission dynamics of HIV infection and AIDS is given by
Perelson and Nelson (1999). With the accumulation of more data and information of
the epidemic, even more sophisticated models will no doubt be required in the normal
progression of realistic modelling. A practical use of good models at any stage is that,
among other things, it poses questions which can guide data collection and focus on
what useful information can be obtained from sparse or less than complete data. Esti-
mates of epidemic severity doubling time, and so on, are in themselves of considerable
interest and use. The model here is for a homosexual population. Now that the epidemic
is very much heterosexual other models are required. The approach described here is a
reasonable starting point. The models we now discuss take a very different approach to
HIV infection in that we deal with the actual viral population and not human popula-
tions. As such they can be more closely tied to in vivo data.

10.6 HIV: Modelling Combination Drug Therapy
This section is in part based on the work of Nelson (1998). We start with the simple,
but experimentally based model, proposed by Perelson et al. (1996). We then develop
a more complex nonlinear model which includes treatment for HIV infection with a
protease inhibitor and a reverse transcription inhibitor such as AZT.

The Ho et al. (1995) model was a simple linear first-order equation which accounted
for viral production and viral decline; namely,
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dV

dt
= P − cV, (10.39)

where P represented a source of viral peptides and c was the viral clearance rate. While
many factors play a role in the clearance of viral peptides such as immune cells, fluid
flow and absorption into other cells, c did not distinguish between them. After intro-
duction of the protease inhibitor (the specific type of drug used on the patients) it was
assumed that the drug would be completely effective, or in other words, the drug would
block all viral production after being introduced. Hence P = 0, and we are left with the
simple equation

dV

dt
= −cV ⇒ V (t) = V0e−ct , (10.40)

where V0 is measured as the mean viral concentration in the plasma before treatment.
Plotting ln V against t and using linear regression to determine the slope (see Fig-
ure 10.5) gave an estimate for c and hence for the half-life of the virus in the plasma;
namely, t1/2 = ln 2/c. The mean for the half-life was t1/2 = 2.1 ± 0.4 days; see Ho
et al. (1995) for the complete data. The experimentalists then assumed that the patients
were in a quasi-steady state before treatment: that is, the levels of viral load measured
in the plasma remained fairly constant. With this assumption, and knowing the value for
c and the initial viral concentration, V0, they were able to compute the viral production
before therapy by solving P = cV . While these results were minimal estimates, based
on the assumption of a perfect drug (with no delays), they still provided an estimate of
over 1 billion viral particles being produced daily. This important result was contrary to
the belief that the viral dynamics during this latent period was close to dormant.9 It is
an excellent example where even simple, mathematically trivial, models can be of im-
mense help in extracting crucial information from patient data. Another example which
changed the way patients with liver disease were assessed for (toxic) medication levels
is given in Connor et al. (1982a,b).10

Due to these results of Ho et al. (1995) many more models have been developed to
study the HIV; see Perelson and Nelson (1999) for a comprehensive review. In the rest
of this section we examine several models, in particular one which looks at combination
drug therapy and briefly discuss another which includes a delay.

Protease inhibitors are drugs which target the protease enzymes in the cell and
cause newly produced viruses to be noninfectious. To date there is no single drug (nor
even a combination of them) which completely kills the HIV infection because of the
ability of the virus to mutate into a drug resistant form. It takes time, however, for a

9This result, based on an incredibly simple mathematical model, did much to boost the usefulness of
mathematical models in the medical community, a consequence of which is that many more laboratories are
now looking for theoreticians to help in the modelling process.

10The model consisted of a two-compartment model which results in a pair of coupled linear ordinary
differential equations which can be solved simply analytically with patient-based initial conditions. I set it as
a modelling exercise for first-year mathematics students in Oxford but the question was not well described so
it was not clear exactly what was required. One of the college tutors, dealing with the difficulties his students
were having in understanding what was both going on and required, said I must have done it deliberately to
simulate what it was like talking to doctors.
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new form to evolve. The idea behind combination drug treatment is when the virus is
presented with two quite different antiviral drugs the time it takes for a mutiple-drug
resistant strain to emerge is much longer than if the virus had to contend with only one
toxic drug. This is also discussed in the paper by Perelson and Nelson (1999). The use
of multiple drug treatments, such as protease inhibitors together with AZT, has already
had a major effect (in the devloped world) in significantly slowing down the progression
from HIV infection to full-blown AIDS. It has not, however, effected a cure for the
disease. Already there is reemergence of drug-resistant strains of HIV in homosexuals
in San Francisco who have been taking the combination drug cocktail.

We consider each drug to be less then perfect, which thus allows for viral mutation
to a resistant form if administered independently. Let n p be a measure of the effective-
ness of a protease inhibitor or combination of protease inhibitors in blocking production
of infectious virions so this will affect the viral dynamics directly and the T-cells indi-
rectly. Other commonly used drugs are reverse transcriptase inhibitors, of which AZT
is perhaps the best known. After the development of the protease inhibitors, a combina-
tion, or cocktail, therapy which included multiple drugs was prescribed. For instance,
patients would take a combination of three drugs made of up of a protease inhibitor and
two reverse transcriptase inhibitors. This combination was dramatic initially in reducing
the number of viral peptides detectable in the patient and it was thought that this might
be the cure for the AIDS virus. Unfortunately, with a virus as complex as the HIV it was
only a matter of time before the emergence of resistant viruses. While the combination
treatment is still showing promise for prolonging the lives of infected patients, it is too
early (2001) to say whether or not the virus is even permanently controlled, far less
cured.

We develop a four-species model which includes an equation for uninfected T-cells,
T , productively infected T-cells, T ∗ (not all infected T-cells produce the virus), infec-
tious viruses, VI and noninfectious viruses, VN I . The model consists of the following
equations which we motivate in turn below.

dT

dt
= s + pT (1 − T

Tmax
) − dT T − kVI T,

dT �

dt
= (1 − nrt)kVI T − δT �,

dVI

dt
= (1 − n p)N δT � − cVI ,

dVN I

dt
= n p N δT � − cVN I .

(10.41)

In the T-cell equation we consider the cells to be destroyed proportional to the number of
infected viruses and cells with clearance parameter k. In the absence of infection there
is a nonzero steady state, Ts1, so we have a quadratic polynomial in T for the uninfected
T-cell dynamics: s, p, Tmax, dT and k are positive constants. The specific form of the
T-cell kinetics, namely, with a logistic form plus another source (s) and a clearance
term (−dT T ), is because of the form of T-cell recovery after therapy as indicated by
patient data. With the reverse transcriptase (RT) drug like AZT, the RT-inhibitor acts
on the source term for productively infected T-cells with 0 ≤ nrt ≤ 1 the measure of
its efficacy; if nrt = 1 it is completely effective and prevents all production of infected
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T-cells while if nrt = 0 it implies no RT-inhibitor is given. In the T ∗ equation the effect
of the RT-inhibitor is to reduce the production of the infected cells. These cells also
have a natural death with a rate parameter, δ. The protease inhibitor acts on the source
of the virus and so appears in the VI equation with n p a measure of its efficacy. The
specific appearance in the equations for the effects of the drugs is due to the cellular
mechanisms of each drug and the stage at which they aim to target during infection.
When a drug is completely effective we set n p = 1 or nrt = 1. In the infected virus
VI equation there is a factor N which is the bursting parameter for the viral production
after lysis (essentially the breaking up, or death, of the cell due to its penetration by the
infected virus and subsequent generation of a large number of viruses); it is of the order
of 480 virions/cell (a virion is a complete virus with all its coating, proteins and so on).
The infected viruses are considered to die naturally at a rate c. Finally the noninfectious
viruses are produced with a rate dependent on the protease drug and we assume they
die off at the same rate as the infected ones. This model lets us explore the effect of the
drugs on the HIV by varying, in particular, the parameters nrt and n p. For example, if
n p = 0 we are using only the reverse transcriptase, or RT-inhibitors. We now analyse
this system in several ways and compare the results with patient data.

Some idea of the values of the dependent variables are (from Ho et al. 1995):
T ∼ 180 cells/mm3, T

∗ ∼ 2% T-cells, VI ∼ 134×103 virions/ml, VN I = 0 virions/ml.
Available parameter estimates are: the viral activity rate k ∼ 3.43×10−5 virions/ml (Ho
et al. 1995), death rate of infected cells δ ∼ 0.5/day (Perelson et al. 1996), viral pro-
duction by the bursting cell N ∼ 480 virions/cell (Perelson et al. 1996), clearance rate
of the virus c ∼ 3/day (Perelson et al. 1996), T-cell source s = 0 − 10 cells/mm3/day
(Kirschner and Webb 1996) and death rate of targeted cells dT ∼ 0.03/day (McLean
and Mitchie 1995).

T-Cell Recovery

Some models have assumed that the T-cells do not change dynamically during the first
weeks of treatment and hence set T = constant = T0. However, after antiretroviral ther-
apy is initiated some recovery of T-cells is observed and patient data presented by Ho et
al. (1995) suggest that over a period of weeks the recovery of T-cells can be described
by either a linear or exponential function of time, with no statistically significant differ-
ence between the two functions over that time period. After therapy is initiated VI (t)
falls rapidly. For a perfect protease inhibitor, namely, n p = 1, the solution of the fourth
equation of (10.41) is VI (t) = V0e−ct and so after a few days (depending on c of
course) the term −kVI T could be negligibly small in the equation for T-cells. T-cell
replacement can be due to the source s, which incorporates the generation of new cells
in the thymus, their export into the blood and the transport of already created T-cells in
tissues to the blood, or to proliferation of cells. It was previously thought that the adult
thymus no longer produced T-cells but with the significant advances in the study of HIV
dynamics some believe this to be incorrect. If the source s is the major mechanism of
T-cell replacement, we can then approximate the T-cell dynamics by

dT

dt
= s − dT T or T (t) = T0 + at,

where a is a rate constant.
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If we now consider the effect of only protease inhibitor drugs, that is, nrt = 0,
which relates directly to the patient data of Ho et al. (1995), and further assume the
above linear T-cell growth in line with the patient data, (10.41) become

dT �

dt
= kVI (T0 + at) − δT �,

dVI

dt
= (1 − n p)N δT � − cVI ,

dVN I

dt
= n p N δT � − cVN I ,

(10.42)

which is a nonautonomous system but which can be trivially made into one. To do
it we simply replace the T0 + at in the first equation by T and add to the sytem the
differential equation dT/dt = a with initial condition T (0) = T0. Typical solutions of
this system are shown in Figure 10.8 with the estimated parameter values given in the
legend. In Figure 10.9 we show how the solutions compare with specific patient data.
The comparison is quantitatively very good.

We now consider the full nonlinear model given by (10.41), which, as is easily
shown, has two steady states one of which is the noninfected steady state (Ts1, 0, 0, 0)
with preinfected T-cells; we are only interested in Ts1 ≥ 0 of course. A little algebra
shows that this uninfected state is

Ts1 = Tmax

2p

[

(p − dT ) +
√

(p − dT )2 + 4sp

Tmax

]

. (10.43)
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Figure 10.8. Solutions for the total virus population, VI + VN I , of the system (10.42) which assumes linear
T-cell growth T (t) = T0 + at and monotherapy with a protease inhibitor; that is, there is no AZT-like
drug so nrt = 0. Note the change in viral output as a function of the level of drug effectiveness. (a) The
viral decay assuming a pretreatment steady state value with c = NkT0 and varying n p . (b) Viral decay
after treatment without a pretreatment value for c: the critical efficacy here is nc = 0.33. Parameter values:
N = 480, k = 3.43 × 10−5/day, δ = 0.43/day, T0 = 180, a = 1 cells/day, c = 2/day. (From Nelson 1998)
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Figure 10.9. Solutions for the total virus population, V = VI + VN I , plotted in terms of the RNA, of the
system (10.42), which assumes constant T-cell growth and monotherapy with a protease inhibitor and their
comparison with three patient data of Ho et al. (1995). These are typical of the other patients. The parameters
for each patient were obtained from a best fit using figures equivalent to those in Figure 10.5. Parameter
values: δ = 0.5/day then, patient 104: T0 = 2 mm−3, α = 1.5, V (0) = 52 × 103, c = 3.7/day, total
viral production rate: P = 2.9 × 109/day; patient 105: T0 = 11 mm−3, α = 10.18, V (0) = 643 × 103,
c = 2.1/day, total viral production rate: P = 32.1 × 109/day; patient 107: T0 = 412 mm−3, α = 2.64,
V (0) = 77 × 103, c = 3.1/day, total viral production rate = 3.0 × 109/day. (From Perelson and Nelson
1999 and reproduced with permission)

We are interested in the stability of this steady state if perturbed with the introduction
of HIV. We examine the stability in the usual way, exactly as we did, for example, in
Chapter 3 by looking at the eigenvalues of the perturbed linear system. After somewhat
more algebra we find the eigenvalues are

λ1 = p

(
1 − 2Ts1

Tmax

)
− dT , λ4 = −c,

λ2,3 = −c + δ

2
± 1

2

√
(c + δ)2 − 4cδ + 4δNkTs1(1 − nc) (10.44)

nc = 1 − (1 − nrt )(1 − n p),

where nc represents the effectiveness of the combination treatment. For stability we
require the eigenvalues to be negative; they are all real here. The only non obvious
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negative eigenvalues are λ1, which requires Ts1 > (1/2p)(p − dT )Tmax, a condition
that is obviously satisfied from (10.43), and λ2. The eigenvalue λ2 < 0 is satisfied if

λ2 = −c + δ

2
+ 1

2

√
(c + δ)2 − 4cδ + 4δNkTs1(1 − nc) < 0;

that is,

c + δ >
√

(c + δ)2 − 4cδ + 4δNkTs1(1 − nc).

So, the uninfected steady state is stable if

nc = 1 − (1 − n p)(1 − nrt ) <
c

NkTs1
⇒ nc > 1 − c

NkTs1
. (10.45)

This means that if the drug treatment is strong enough the virus will be eliminated.
(Actually, the virus is never eliminated but it does fall below detectable levels.) We can
estimate the required effectiveness of treatment from this condition. Under the assump-
tion of a pretreatment steady state, with T = T0, the second and third of (10.41) imply
c = NkT0. By way of example, if we set nrt = 0, the stability condition (10.45) then
becomes

n p > 1 − T0

Ts1
.

Healthy individuals have T-cell counts of about 1000/mm3 so we can assume Ts1 =
1000. Hence for a patient with a pretreatment T-cell count of say, T0 = 200, we find
n p needs to be greater than 0.8. For a less advanced patient with a T-cell count of
T0 = 500, n p need only be greater than 0.5. Thus, this analysis supports the notion that
patients should be started on antiretroviral drug therapy as early as possible (Perelson
and Nelson 1999). On the other hand if we have both drugs administered the condition
is then

(1 − n p)(1 − nrt) < 1 − T0

Ts1

and with T0 = 200 we need only have, for example, an efficacy of 0.55 for each of n p

and nrt .
The second steady state, the infected steady state, is obtained, after some algebra,

from (10.41) as

Ts2 = c

Nknc
, V̄I = s

kTs2
+ 1

k

[
p

(
1 − Ts2

Tmax

)
− dT

]
,

T̄ � = cV̄I

δN (1 − n p)
, V̄N I = n pV̄I

1 − n p
,

where overbars denote steady state quantities and as before nc = (1 − nrt )(1 − n p). In
the absence of treatment, nc = 1 but here we are concerned with studying the effects of
less than perfect drugs so 0 < nc < 1.
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This steady state is relevant only if V̄I > 0; that is,

s

Ts2
+ p − dT − p

Ts2

Tmax
> 0. (10.46)

If the inequality (10.46) is replaced by an equality and the equation V̄I = 0 solved for
Ts2, we obtain an expression identical to the expression for Ts1. Thus, at V̄I = 0 the
uninfected and infected steady states merge. Further, as Ts2 decreases the left-hand side
of (10.46) increases. So, for V̄I > 0, an infected steady state exists, 0 < Ts2 < Ts1,
which of course makes biological sense since in the infected steady state the system
should have fewer T-cells than in the uninfected state.

Substituting the expression for Ts2 into the steady state equation for VI gives a
necessary condition for the infected steady state to exist; namely,

V̄I = s N (1 − nc)

c
+ 1

k

[
p

(
1 − c

NkTmax(1 − nc)

)
− dT

]
> 0. (10.47)

If we look at a limiting case where s = 0, from (10.47), certainly if

Nk <
c

Tmax(1 − nc)
⇒ VI < 0.

Let us now consider the stability of this infected steady state by calculating the
eigenvalues. The Jacobian matrix, evaluated at the infected steady state, is







p(1 − 2T̄
Tmax

) − dT − kV̄I 0 −kT̄ 0
(1 − nrt )kV̄I −δ (1 − nrt)kT̄ 0

0 δN (1 − n p) −c 0
0 δNn p 0 −c





 ,

where T̄ = Ts2.
The characteristic equation immediately gives one eigenvalue as λ4 = −c < 0.

The other three eigenvalues, λ, are determined by solving the cubic

[
p

(
1 − 2

T̄

Tmax

)
− dT − kV̄I − λ

]
[(c + λ)(δ + λ) − kT̄ δN (1 − nc)]

− kV̄I kT̄ δN (1 − nc) = 0

which, using the steady state value for T̄ , simplifies to

[
p

(
1 − 2T̄

Tmax

)
− dT − kV̄I − λ

]
[λ2 + (δ + c)λ] − kcδV̄I = 0;

that is,

λ3 + Aλ2 + Bλ + C = 0,
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where

A = δ + c + 2pT̄

Tmax
− (p − dT ) + kV̄I ,

B = (δ + c)

[
2pT̄

Tmax
− (p − dT ) + kV̄I

]
, C = cδkV̄I .

We do not need the actual expressions for the eigenvalues, only the sign of their
real part. The Routh–Hurwitz conditions (see Appendix B) state that, if A > 0, C > 0
and AB − C > 0 then the eigenvalues have negative real parts. By inspection, C > 0.
At steady state,

s + (p − dT )T̄ − pT̄ 2

Tmax
= kV̄I T̄ .

Since s > 0,

(p − dT )T̄ − pT̄ 2

Tmax
< kV̄I T̄

or

p − dT <
pT̄

Tmax
+ kV̄I ,

from which it follows that A > 0. The remaining condition necessary for stability of the
infected steady state is AB − C > 0. Let us write A = (δ + c + B1) with B1 defined by
the expression for A and note that B can then be written as B = (δ + c)B1. Exploiting
this form and noting that B1 contains the term kV̄I , it can then be simply shown that
AB = B1(δ + c)2 + B2

1 (δ + c) > δckV̄I = C . Hence the infected steady state, if it
exists, is stable.

As noted above if the infected steady state exists, Ts2 < Ts1, which we can rewrite
as

c < NkTs1(1 − nc).

To summarise, if c > NkTs1(1 − nc) then the only nonnegative steady state is the
uninfected steady state and it is stable. Conversely, if c < NkTs1(1 − nc) then the
uninfected state is unstable and the infected state exists and is stable. This is equivalent
to saying that there is a transcritical bifurcation when c = NkTs1(1 − nc). We can
express these conditions in a different way in terms of the model parameters. The critical
treatment efficacies, for example, are related to the model parameters by

[
(1 − n p)(1 − nrt )

]
critical = c

2sk N

[√

(p − dT )2 + 4sp

Tmax
− (p − dT )

]

. (10.48)
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10.7 Delay Model for HIV Infection with Drug Therapy

We now touch on some recent work in which a discrete delay is added to the model to
account for the time lag between the time a cell becomes infected and the time at which
the infected cell starts producing virus. Work in this area has shown that including a
delay of this form affects the estimated values derived from kinetic experiments for
the half-life of productively infected cells and viruses. Here we only give a very brief
description of the current work with delay models.

Time Lags in the HIV Infection Process

The virus life cycle plays a major role in disease progression during HIV infection. The
binding of a viral particle to a receptor on the CD4 T-cell, or other targeted cell, be-
gins a chain of events that can eventually lead to the CD4 T-cell becoming productively
infected, that is, producing new viruses. Most previous models consider this process
to occur instantaneously. In other words, it is assumed that as soon as virus contacts a
targeted cell the cell begins producing viruses. However, biologically there is a measur-
able time delay between initial viral entry into a cell and subsequent viral production.
Recently there have been models which examine this effect and they have shown that
this delay needs to be taken into account to determine accurately the half-life of a free
virus from drug perturbation experiments. If the drug is assumed to be completely effi-
cacious, the delay does not affect the estimated rate of decay of viral producing T-cells
(Herz et al. 1996, Mittler et al. 1998, 1999). If the assumption of the drug being com-
pletely effective is not assumed (to date no drug is 100% effective) the introduction of
the delay then affects the estimated value for the infected T-cell loss rate (Nelson 1998,
Nelson et al. 2000).

Such a delay model, based on the one in the last section, is given and discussed in
detail by Nelson et al. (2000). In it we incorporate the intracellular delay by considering
the generation of virus-producing cells at time t to be due to the infection of targeted
cells at time t − τ , where the delay, τ , is taken to be a constant. Of course in reality the
delay is a distributed function (refer to Chapter 1). We also assume uninfected T-cells
remain constant; that is, T = T0. Model equations describing this scenario are (compare
with (10.41))

dT �

dt
= kT0VI (t − τ) − δT �,

dVI

dt
= (1 − n p)NδT � − cVI ,

dVN I

dt
= n p NδT � − cVN I ,

(10.49)

where the term VI (t −τ) allows for the time delay between contact and viral production.
The average life span of a virus is 1/δ. With delay we are saying that the average life
span of a cell from time of infection to death is τ +(1/δ). We do not have a precise value
for τ but estimates of 1 to 1.5 days (Perelson et al. 1996, Mittler et al. 1998, 1999). So,
to a first approximation, T-cells infected with HIV-1 might live on average 2 to 3 days
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rather an average of 1 to 2 days. The rate constant for infection, k, is assumed constant
because the drug we are modelling, namely, a protease inhibitor, does not affect k. If a
reverse transcriptase inhibitor were being used then the appropriate model would have
k in the dT �/dt equation replaced by [1−nrt(t − τ)]k(t − τ). Here the VN I equation is
uncoupled from the T ∗ and VI equations and so can be solved independently once the
solution for the first two equations is known. Analysis of a more general form of this
delay model, which included uninfected T-cells and nonlinearities are given in Nelson
(1998). The method of analysis is similar to that discussed in detail in Chapter 7.

This model has been used, among other things, to analyze the change in parameters
associated with the decay rate seen in data from patients undergoing antiviral treat-
ment. It has also helped in getting better estimates for crucial parameters from patient
data. The main conclusions from the analysis of the model, with experimentally esti-
mated parameters, is that when the drug efficacy is less than 100%—the case in vivo at
present—the rate of decline of the virus concentration in the plasma primarily depends
on the efficacy of the therapy, the death rate of the virus producing cells and the length
of the delay. These are all to be expected. The main point of the model and its analysis
is that the results quantify these effects in terms of the measurable (and experimentally
changeable) parameters.

10.8 Modelling the Population Dynamics of Acquired Immunity to
Parasite Infection

Gastrointestinal nematode parasite infections in man are of immense medical impor-
tance throughout the developing world. An estimated 800 to 1000 million people are in-
fected with Ascaris lumbricoides, 700 to 900 million with the hookworms Ancyclostoma
duodenale and Nector americanus and 500 million with the whipworm Trichuris tri-
chiura (Walsh and Warren 1979). To design optimal control policies, we must have an
understanding of the factors which regulate parasite abundance and influence the size
and stability of helminth populations. So, in this section we present a model for the im-
munological response by the host against gastrointestinal parasites which was proposed
and studied by Berding et al. (1986). We show that such relatively simple modelling can
have highly significant implications for real world control programmes.

Parasites invoke extremely complex immunological responses from their mam-
malian hosts. We still do not know exactly how these come about but current experi-
mental research provides some important pointers which form the basis for the mathe-
matical model. Also the modelling in this section demonstrates how to determine some
of the parameter estimates from a combination of theory and experiment which would
be difficult to obtain from experiment alone.

Let us first summarise the relevant biological facts starting with a brief review
of key experiments. Laboratory experiments in which mice are repeatedly exposed to
parasite infection at constant rates can provide a suitable test for mathematical mod-
els of helminth population dynamics. Experiments relevant for our model (Slater and
Keymer 1986) involve two groups of 120 mice, which are fed on artificial diets con-
taining either 2% (‘low protein’) or 8% (‘high protein’) weight for weight protein. Both
groups were subdivided into 4 groups of 30 mice, which we denote by (a), (b), (c)
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and (d), which were subjected to repeated infection with larvae of the nematode Helig-
mosoides polygyrus. The subgroups were infected at different rates: group (a) with 5
larvae/mouse/two weeks, group (b) with 10 larvae/mouse/two weeks, group (c) with 20
larvae/mouse/two weeks and group (d) with 40 larvae/mouse/two weeks. So, we have a
total of 8 subgroups of 30 mice differing either in their infection rates or in the protein
diets they were fed on. It is known that protein deprivation impairs the function of the
immune system so this scheme lets us compare parasite population dynamics, under
various infectious conditions, in the presence and the absence of an acquired immune
response.

The most important experimental observations were the temporal changes in the
mean worm burden, M , namely, the total number of adult worms divided by the total
number of hosts. Every two weeks throughout the experiment a sample of 5 mice from
each group was examined for the presence of adult parasites. The number of parasites
present in each mouse was determined by postmortem examination of the small intes-
tine. The main experimental results are shown in Figure 10.10 which displays the mean

Figure 10.10. Change in mean adult worm burden, M , in mice hosts fed on a protein diet for a repeated
infection over a 12-week period: (a) low protein diet; (b) high protein diet. The infection rates are (a) 5, (b)
10, (c) 20, (d) 40 larvae/mouse/2 weeks. The periods are the experimental points from Slater and Keymer
(1986). The continuous lines are solutions of the mathematical model; how these were obtained is described
in the text in the subsection on the population dynamics model and analysis. (From Berding et al. 1986)
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Figure 10.11. These experimental results show the worm survival after a single infection of larvae. There
is a linear relationship between larval dose and adult worm burden; these results are after 14 days from the
infection. The circles represent mice fed on a low protein diet and the triangles are for mice fed on a high
protein diet. The solid line is a best fit linear description of the data; the gradient is 0.64, from which we
deduce that 64% of the larvae survive. (From Berding et al. 1986)

worm burden as a function of time for the low and the high protein groups, respectively.
The letters (a), (b), (c) and (d) refer to infection rates of 5, 10, 20 and 40 larvae per two
weeks.

Other experiments were carried out to quantify parasite establishment and survival
in primary infection. Here only a single dose of larvae was given unlike the repeated
infection in Figure 10.10. The results shown in Figure 10.11 give the mean worm burden
as a function of the infection dose. From this figure we estimate that approximately 64%
of the infective larvae survive to become adult worms.

The survival of adult worms in a single infection is summarised in Figure 10.12:
it again shows the mean worm burden as a function of time. In this situation the worm
population remains free from effects of the host’s immune system: we use this figure to
estimate the natural death rate of the adult worms.

So as to be able to construct a realistic model, let us summarise these and related
experimental observations.

(A1) Infective parasite larvae, after ingestion by the host, develop into tissue dwelling
larvae which become adult worms found within the lumen of the alimentary canal.
This invokes a distinct immunological response from the host. Typically, the tis-
sue dwelling larvae are in the most immunogenic stage in the parasite life cycle.
We thus assume that the immune system is triggered according to the larval bur-
den experienced by the host.

(A2) Many experiments point to the presence of delay, that is, memory, effects in im-
mune response. Some of these effects can be accounted for by including delay in
the models.
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Figure 10.12. Survival of adult worms
which follows a single infection of 50
larvae/mouse on day zero. The results are
for mice fed on a low protein diet. The
continuous line is a best fit for an
exponential survival model with a constant
death rate δ = 5.6 × 10−3 day−1: that is,
we assume the worms die proportional to
their mean population (see equation (10.53)
below). (From Berding et al. 1986)

(B1) The experimental results shown in Figure 10.10 suggest, importantly, that the
strength of the immune response is very much dependent on the nutritional status
of the host. We interpret the differences in the dynamics of infection in mice feed-
ing on low and high protein diets, that is, Figures 10.10(a) and (b) respectively, as
a consequence of a relationship between the nutritional status and immunological
competence.

(B2) The similarity between Figures 10.10(a) (a),(b) and Figures 10.10(b) (a),(b) and
the differences between Figures 10.10(a) (c),(d) on the one hand and Figures 10.10
(b),(c),(d) on the other, clearly indicate a threshold behaviour of the immune sys-
tem. Biologically this means that the full activation of the immune system re-
quires a certain threshold of exposure to parasite infection.

(B3) Available evidence on the effectiveness of the immune response, which we define
here as the per capita rate of limitation in parasite establishment and survival,
in relation to its stimulus, that is, increased exposure to infection, suggests the
following scenario. After an initial increase, the activity of the immune response
to the parasites saturates at a maximum level. Further stimulation does not seem
to increase the subsequent effectiveness of acquired immunity. So, we assume
here that the activity of immune response saturates at a defined maximum level.

(C) The immunological response may act against several stages in the parasite life cy-
cle. In some strains of mice it directly kills tissue-dwelling larvae. However, in
others the immune response is not capable of preventing larval development. In
these, larvae subjected to immunological attack emerge as stunted adults, with
a correspondingly high mortality rate. So, to reflect these experimental findings
we model immunological competence by an increased mortality rate of the adult
parasite.
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Let us now construct the model on the basis of these assumptions, all firmly based
on experimental observations, in the following three main steps.

(i) We introduce a variable, E , for the immune system, which takes into account
assumptions (A1) and (A2), by

E =
∫ t

t−T
L(t ′) dt ′, (10.50)

where L(t) denotes the mean number of tissue-dwelling larvae in a host at time
t with T the time-span over which the immune system retains memory of past
infections. So, E is a measure of the number of larvae in the host during the time
interval (t − T, t). Note that with the form (10.50) different situations (for ex-
ample, a small infection persistent for a long time and a large infection persistent
for a short time) can lead to the same values of E .

(ii) To account in a simple way for the biological facts in (B1) through (B3) we in-
troduce an expression to describe the immune system’s activity; namely,

I ≡ Iαβ(E) = αE2

β + E2 , (10.51)

where E is the input variable (10.50), α is the maximum functional activity of
the host’s immune response and β provides a measure of the sensitivity of the
immune system. (Recall the predation response in the budworm model dynamics
in Chapter 1.) According to (B1), α also reflects the nutritional status of the host
being considered; we can think of α as a monotonic increasing function of the
nutritional status. β also may be host specific since it seems likely that β also has
a direct biological interpretation in genetic terms since different strains of mice
differ in their immune response against parasitic infections.

(iii) Finally we have to incorporate (10.50) with (10.51) into a dynamical model for
the complete host–parasite community. According to assumption (C), and inde-
pendent of the specific dynamical situation under consideration, the activity of
the host’s immune system simply leads to an increase in the mortality of the adult
parasites. This requires an additional loss term in the dynamical equations for the
mean worm burden, M(t), of the form −I M(t) < 0, where I , the strength of
immunological response, plays the role of a death rate for parasites; it depends on
the level of infection.

Population Dynamics Model and Analysis

From the above, mice fed on low protein diets appear to have little or no immune re-
sponse; we refer to these as the low protein diet group (LPG) and investigate the dy-
namics of their mean worm burden by a simple immigration–death model. On the
other hand, hosts feeding on a high protein diet are expected to show an immune re-
sponse.
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Low Protein Model

Let us start by considering the parasite dynamics of the LPG. The parasites, harboured
by a host population of constant size, are subdivided into two categories: larvae in the
wall of the small intestine, and adult worms in the gut lumen. We model the dynamics
of the mean number of larvae, L , per host by

d L

dt
= λi − µDL , i = 1, 2, 3, 4, (10.52)

where λi , i = 1, 2, 3, 4, refer to the experimentally controlled infection rates, for ex-
ample, 5, 10, 20 and 40 larvae per mouse per 2 weeks as in the experiments recorded
in Figure 10.10. Here 1/D = CL denotes the proportion of larvae developing into
adult worms after a developmental time delay tL , here denoted by 1/µ. For the par-
asite Heligmosoides polygyrus, tL = 1/µ ≈ 8 days and from Figure 10.11 we esti-
mate CL = 0.64. We can now evaluate the net loss rate of the larval population per
host as µD ≈ 0.195 day−1 which implies (i) an effective life span of a larval worm
of 1/(µD) ≈ 5.12 days, and (ii) the natural larval mortality rate µ0 = µ(D − 1) ≈
0.07 day−1.

We model the dynamics of the mean adult worm burden, M , by

d M

dt
= µL − δM, (10.53)

Figure 10.13. Mean worm burden M(t) for mice on the low
protein diet (LPD) obtained from the analytical solution
(10.54) of the model (10.52) and (10.53). The curves
correspond to the different larvae infection rates λi ,
i = 1, 2, 3, 4: (a) 5, (b) 10, (c) 20, (d) 40 larvae per mouse per
2 weeks. Parameter values: µ = 0.125 day−1, D = 1.56,
δ = 5.6 × 10−3 day−1. These curves correspond to those
superimposed on Figure 10.10(a).
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where δ denotes the natural death rate of the adult worms in the absence of competitive
or immunological constraints. We estimate δ = 5.6×10−3 day−1 from the experimental
results of a single infection shown in Figure 10.12, which implies an adult worm life
span of approximately 25 weeks.

Solutions of the linear equations (10.52) and (10.53), with the initial conditions
L(0) = M(0) = 0, are simply

L(t) = λi

µD
(1 − e−µDt )

M(t) = λi

D

{
δ−1(1 − e−δt )

+ (µD − δ)−1(e−µDt − e−δt )
}

, i = 1, 2, 3, 4.

(10.54)

Figure 10.13 plots M(t) for i = 1, 2, 3, 4 for the first 12 weeks using the above esti-
mates for the parameter values. These are the curves which are superimposed on the
experimental results in Figure 10.10(a); there is very good quantitative agreement.

High Protein Model

With this diet the host’s immune system comes into play and so we have to incorporate
its action into the dynamical equation (10.53) for the worm burden. In line with the
observation (iii) above, this equation now takes the form

d M

dt
= µL − (δ + I )M, (10.55)

I = αE2

β + E2 , E =
∫ t

t−T
L(t ′) dt ′, (10.56)

where I is the cumulative effect of increased mortality of the worms by the immune
response.

The larvae equation is still taken to be (10.52) since we assume the immune re-
sponse does not principally alter the larvae dynamics. The infection pattern in the labo-
ratory situation is then given by (10.54) as

L(t) =





0, t < 0
λi

µD
(1 − e−µ Dt ), t > 0

, (10.57)

where λi , i = 1, 2, 3, 4 are the different larval infection rates. This generates the im-
mune system input function E given by (10.56); integration gives

E(t) =






λi

µD

{
t − 1

µD
(1 − e−µ Dt )

}
, 0 < t < T

λi

µD

{
T − 1

µD
e−µ Dt (1 − eµ Dt )

}
, t > T

(10.58)

which, as t → ∞, asymptotes to the constant λi T/µD.
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The high protein model consists of (10.52) and (10.55) and to solve it we must first
obtain estimates for the immune system parameters T , α and β, respectively the memory
time from past infections, the maximum mortality contribution from the immune system
and the worm burden at which the immune response is switched on. Accurate estimates
of immunological memory time T are not available. Some data (Rubin et al. 1971)
indicate that some mice retain active immunity against Heligmosoides polygyrus for at
least 30 weeks after infection. On the basis of this we assume T is at least larger than
the experimental duration time of 12 weeks of experiments; see Figure 10.10.

Consider now the parameter α, which characterises maximum functional activity
of the host immune response and also reflects the nutritional status of the host. We can
estimate it from the asymptotic steady state value M(∞) = M∞ of the worm burden.
Let us consider the highest infection rate λ4, then from (10.58) in the limit t → ∞, we
have

E = λ4T

µD
,

which on substituting into (10.56) gives

I ≈ α for T � µD
√

β

λ4
. (10.59)

The experimentally observed saturation, as described in (B3), ensures the validity of
this assumption on T . We can use (10.59) with (10.55) at the steady state to determine
α, to get

αM∞ = µL(∞) − δM∞ ⇒ α = λ4

DM∞
− δ. (10.60)

Since, within the experimental observation time, the system does not reach its final
steady state, we use (10.60) to predict M∞ as a function of α, namely,

M∞ = λ4

D(α + δ)
. (10.61)

Finally we use the experimental data given in Figures 10.10(b)(d), which corre-
spond to the highest rate of infection, to determine the sensitivity of the immune system
as measured by β. Note there that the mean adult worm burden rises to a maximum
value M∗ at a time t∗ and then declines under the influence of host immunity, despite
continual reinfection, to settle at the asymptotic steady state value M∞. For the maxi-
mum point (M∗, t∗), M∗ = M(t∗), equations (10.55) and (10.56) give

0 = µL − δM∗ − αE2 M∗

β + E2 . (10.62)

Since, in the laboratory situation, t∗ satisfies

1

µD

 t∗ < T, (10.63)
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we use the first of (10.58) to get E and then solve (10.62) for β to get

β = E2(αM∗ − µL + δM∗)
µL − δM∗ , (10.64)

where L(t) and E(t) are their values at t = t∗; as before M∗ = M(t∗). We estimate
the values for M∗(≈ 50 worms) and t∗(≈ 7 weeks) from the experimental data in Fig-
ures 10.10(b)(d) and in turn use (10.64) in subsequent calculations to determine the
sensitivity β, which is measured in worm2day2, as a function of α. So, we have used
the experimental data and the fact that the laboratory situation is in the regime t < T to
determine the respective parameters α and β by using (10.60) and (10.64).

We can now analyze the complete nonlinear immigration–death model

d L

dt
= λi − µDL , i = 1, 2, 3, 4,

d M

dt
= µL − (δ + I )M,

(10.65)

where the acquired immune response function I is given in terms of E and L by (10.56).
Numerical integration of (10.65) gives the solution for the mean adult worm burden as
a function of time; the results are plotted in Figure 10.14 for the first 12 weeks. The
different curves again represent the different infection rates.

Here we have chosen α equal to 0.5 day−1, which implies β ≈ 6.1 × 106 worms2-
day2 (the units are dictated by the form of the immune function I in (10.56)). With
these, the solutions give a very satisfactory fit to the experimental data in Figure 10.10.
Since α is related to M∞ by (10.61), we thus predict that a continuation of the present
experimental setting eventually leads to an asymptotic steady state of M∞ = 4 worms.
If we restrict ourselves to the same genetic type of hosts and the same dietary conditions,
the model can also be used to investigate more realistic situations such as when the hosts
are subjected to natural infection. We briefly discuss this below.

Figure 10.14. The time evolution in the mean worm burden,
M(t), in mice hosts fed on a high protein diet for a 12-week
period of repeated infection, obtained from a numerical
integration of equations (10.65), which govern the population
dynamics in the presence of host immune response. These curves
are the ones used to compare with the experimental data in
Figure 10.10(b). Parameter values: µ = 0.125 day−1, D = 1.56,
and δ = 5.6 × 10−3 day−1 as in Figure 10.13, and α = 0.5
(which imply β = 0.1 × 106) for the maximum functional
activity of the immune system.
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For even more general applications of (10.65), such as to arbitrary nutritional con-
ditions or different strains of mice, further experiments are necessary to clarify: (i) the
detailed functional dependence of the maximum functional activity, α, on the nutritional
status of the hosts, (ii) the specific relationship of the sensitivity, β, to various strains
of mice and (iii) the size of the memory time, T . With these the system (10.75) can
be used to predict the time-evolution and the final steady state of the mean worm bur-
den dependence on the nutritional status and the genetic properties of the hosts being
considered.

Among the goals of any mathematical modelling in epidemiology are: (i) to pro-
vide a proper mechanistic description of the field situation and (ii) to provide a sound
basis for making practical predictions. Usually, however, a major difficulty is the prac-
tical estimation of the many parameters which are involved in the models. Controlled
laboratory experiments, which study particular aspects of the complete dynamics, while
keeping all other parts of the system under experimental control, have proved very use-
ful in this respect. The experiments described here have specifically highlighted the role
of the immune response. As a result we have been able to develop and exploit a sim-
ple but realistic mathematical model, which admits a full quantitative description of the
population dynamics in the presence of host immune response.

At this point a few cautionary remarks should be made. First, the model as it stands
does not, nor was it intended to, give a full picture of the underlying delicate biochem-
ical and biocellular processes. It does, however, provide a quantitative picture of the
macroscopic features of immune response: the per capita rate of limitation in parasite
survival can be related quantitatively to the antigenic stimulus (that is, the exposure to
infection). Second, the choice of the input function E for the immune system in (10.50)
and in particular (10.51) is, of course, not unique; it seems, however, a very plausible
one in view of the biological observations listed. In fact the qualitative features of the
experimental data are reproduced even with a linear function I (E) in place of the im-
mune activity function in (10.56). However, numerical simulations show that this latter
model assumption gives a more satisfactory, simultaneous fit of the four graphs corre-
sponding to the four different infection rates, (Figures 10.10(b) (a) to (d)), than a linear
version of (10.51). In summary then, the model is supported by the following facts:
(i) it is in keeping with the biological observations, (ii) it provides a quantitative fit for
the experimental data used to test it and (iii) the parameters introduced are biologically
meaningful and can be estimated.

The importance of an acquired immune response in human infection with several
species of helminth parasites has also been shown, for example, in the immunological
and epidemiological studies of Butterworth et al. (1985). They describe the immune
response of ‘resistant’ and ‘susceptible’ Kenyan school-children to infection with the
blood fluke Schistosoma mansoni. The role of human immunity in controlling other
worm infections is similarly well established. There is an urgent need for fieldwork
studies: basic mathematical models of the type described and used here can be of enor-
mous help in their design and interpretation. In addition, extension of the modelling
technique to the ‘real world’ can provide a cheap and effective way of testing the effi-
ciency of various parasite control programmes, without resort to lengthy and expensive
field trials. Further modelling on the lines described in this section have been carried
out by Berding et al. (1987) for further laboratory studies in which there is a genetically
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heterogeneous host population and in which there is natural transmission of the para-
site. As before the mice populations had different protein diets. They also discuss the
significance of the results from a real world medical viewpoint.

A direct practical (and commercial) application of the concepts and modelling tech-
niques in this section was given by Parry et al. (1992). They applied it to coccidial infec-
tion in chickens with emphasis on vaccinating the chickens by delivering oocysts (early
stage coccidia) in their feed: this induced an immune response at a much lower level of
parasite burden.

What is already abundantly clear is that in real world practical terms, the nutritional
status of the host is an important factor in the population dynamics of parasite infections,
and must not be ignored in the design of optimal health control policies.

10.9 Age-Dependent Epidemic Model and Threshold Criterion

In many diseases the chronological age of the individual is an important factor in as-
sessing their vulnerability and infectiousness. For example, the interesting data quoted
by Bernoulli (1760) on the incidence and severity of smallpox with age is a vivid il-
lustration: vulnerability and mortality go down markedly with age. A variety of age-
dependent models was discussed, for example, in the book by Hoppensteadt (1975).
Dietz (1982), for instance, proposed such a model for river blindness (onchocersiasis)
and used it to compare various possible control strategies.

Age may also be interpreted as the time from entry into a particular population
class such as the susceptibles, infectives or the removed group in a basic SIR model.
The two interpretations of age are often the same. With the specific case we analyse in
the following section, on a drug use epidemic model, age within a class, the users, is the
relevant interpretation. Another more relevant and practical example involving bovine
tuberculosis is discussed in detail in Section 10.11.

Consider the population we are interested in can reasonably be divided into suscep-
tibles, S(t), and infectives, I (a, t), where a is the age from exposure to the disease so
we are considering an SI age-dependent model. The number of susceptibles decreases
through exposure to the disease. The removal rate of susceptibles is taken to be

d S

dt
= −

[∫ τ

0
r(a′)I (a′, t)da′

]
S, S(0) = S0. (10.66)

That is, the removal due to infectives is weighted with an age-dependent function r(a)

which is a measure of the infectiousness of the infectives. Since the infective is only
infectious for a limited time, τ , this is the upper limit in the integral.

To get the equation for the infective population I (a, t) we use a conservation ap-
proach. In a time � there is an advance in chronological age and in infective class age
from (t, a) to (t + �, a + �). Conservation then says that the change in the number
of infectives in a time � must be balanced by the number removed. We thus have, in
time �,

I (a + �, t + �) − I (a, t) = −λ(a)I (a, t) �,



362 10. Dynamics of Infectious Diseases

where λ(a) is the age-dependent removal factor. In the limit as � → 0 we then get, on
expanding in a Taylor series, the partial differential equation

∂ I

∂t
+ ∂ I

∂a
= −λ(a)I. (10.67)

At time t = 0 there is some given age-distributed class of infectives I0(a). At
a = 0 there is recruitment from the susceptible class into the infectives. Since all new
infectives come from the susceptibles, the ‘birth rate’ I (0, t) is equal to −d S/dt . Thus
the boundary conditions for (10.67) are

I (a, 0) = I0(a), I (0, t) = −d S

dt
, t > 0. (10.68)

The integrodifferential equation model now consists of (10.66)–(10.68), where I0(a)

and S0 are given. We assume the functions r(a) and λ(a) are known, at least quali-
tatively, for the disease and in control procedures can be manipulated as is often the
case.

An infection will not spread if the number of susceptibles expected to be infected
by each infective drops below one. If the number exceeds one then the infection will
spread and we have an epidemic. The number γ of initial susceptibles expected to be
infected by each infective is

γ = S0

∫ τ

0
r(a) exp

[
−

∫ a

0
λ(a′) da′

]
da. (10.69)

As in (10.66), r(a) here is the infective capability of an infective. It is weighted with an
exponential function which is the probability of an initial infective surviving to age a:
λ(a) is the same as in (10.67). The threshold value for an epidemic is γ = 1 above which
the infection spreads. We now show how the severity of the epidemic, as measured by
the ratio S(∞)/S0, depends on γ . Clearly from (10.66) since d S/dt ≤ 0, S(t) →
S(∞), where 0 ≤ S(∞) ≤ S0.

We solve the mathematical problem (10.66)–(10.68) using the method of charac-
teristics. (A similar procedure was used in Chapter 1, in the single population growth
model with age distribution.) The characteristics of (10.67) are the straight lines.

dt

da
= 1 ⇒ a = t + a0, a > t

= t − t0, a < t,
(10.70)

where a0 and t0 are respectively the age of an individual at time t = 0 in the given
original population and the time of birth of an infective; see Figure 10.15.

The characteristic form of (10.67) is

d I

da
= −λ(a)I on

dt

da
= 1,

and so, with Figure 10.15 in mind, integrating these equations we get
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Figure 10.15. Characteristics for the
infectives equation (10.67). On t = 0,
I (a, 0) = I0(a), which is given, and on
a = 0, I (0, t) = −d S/dt , t > 0.

I (a, t) = I0(a0) exp

[
−

∫ a

a0

λ(a′) da′
]

, a > t

= I (0, a0) exp

[
−

∫ a

0
λ(a′) da′

]
, a < t.

Thus, from (10.70),

I (a, t) = I0(a − t) exp

[
−

∫ a

a−t
λ(a′) da′

]
, a > t

= I (0, a − t) exp

[
−

∫ a

0
λ(a′) da′

]
, a < t.

(10.71)

From (10.66) the solution S(t) is

S(t) = S0 exp

[
−

∫ t

0

{∫ τ

0
r(a)I (a, t ′)da

}
dt ′

]
. (10.72)

Using (10.71) for I (a, t), in the ranges a < t and a > t ,

∫ τ

0
r(a)I (a, t ′)da =

∫ t

0
r(a)I (0, t ′ − a) exp

[
−

∫ a

0
λ(a′) da′

]
da

+
∫ τ

t
r(a)I0(a − t ′) exp

[
−

∫ a

a−t ′
λ(a′) da′

]
da.

(10.73)

Since the time of infectiousness is τ , the last integral vanishes if t > τ ; we can think of
it in terms of r(a) = 0 if a > τ . For S(t) in (10.72) we have, using (10.68) and (10.73),

∫ t

0

∫ τ

0
r(a)I (a, t ′) da dt ′

= −
∫ t

0

∫ t ′

0
r(a) exp

[
−

∫ a

0
λ(a′) da′

]
d S(t ′ − a)

dt ′
da dt ′

+
∫ t

0

∫ τ

t ′
r(a)I0(a − t ′) exp

[
−

∫ a

a−t ′
λ(a′)da′

]
da dt ′.

Interchanging the order of integration in the first integral on the right-hand side we get
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∫ t

0

∫ τ

0
r(a)I (a, t ′)da dt ′

= −
∫ t

0
r(a) exp

[
−

∫ a

0
λ(a′)da′

]
(S(t − a) − S0) dt + m(t),

(10.74)

where

m(t) =
∫ t

0

∫ τ

t ′
r(a)I0(a − t ′) exp

[
−

∫ a

a−t ′
λ(a′)da′

]
da dt ′. (10.75)

Substituting (10.74) into (10.72) we then get

S(t) = S0 exp

{
−m(t) +

∫ t

0
r(a) exp

[
−

∫ a

0
λ(a′)da′

]
(S(t − a) − S0)da

}
.

(10.76)

If we now let t → ∞, remembering that r(a) = 0 for a > τ , we get, using γ defined
in (10.69),

F = e−m(∞)+γ (F−1), F = S(∞)

S0
. (10.77)

We are interested in the severity of the epidemic as measured by F , that is, the
fraction of the susceptible population that survives the epidemic, and how it varies with
γ . For given r(a), I0(a) and λ(a), (10.75) gives m(t) and hence m(∞). If 0 < m(∞) =
ε 
 1, Figure 10.16 shows how F varies with γ . For each value of γ there are two
roots for F but, since S(∞) ≤ S0, only the root F = S(∞)/S0 ≤ 1 is relevant. Note
how the severity of the epidemic is small for ε small as long as γ < 1 but it increases
dramatically; that is, S(∞)/S0 decreases (from S(∞)/S0 ≈ 1) quickly for γ > 1. For
example, if 0 < ε 
 1 and γ ≈ 1.85, S(∞)/S0 ≈ 0.25.

Suppose a single infective is introduced into a susceptible population of size S0.
We can approximate this by writing I0(a) = δ(a), the Dirac delta function, then

Figure 10.16. Dependence of the epidemic severity F = S(∞)/S0, that is, the fraction of the susceptible
population who survive the epidemic, on the threshold parameter γ from (10.77), namely, F = exp [−ε +
γ (F − 1)]. The only realistic values, of course, are F = S(∞)/S0 ≤ 1.
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∫ τ

0
I0(a) da = 1.

In this case, from (10.75),

m(t) =
∫ t

0

∫ τ

t ′
r(a)I0(a − t ′) exp

[
−

∫ a

a−t ′
λ(a′)da′

]
da dt ′

=
∫ t

0

∫ τ

t ′
r(a)δ(a − t ′) exp

[
−

∫ a

a−t ′
λ(a′)da′

]
da dt ′

=
∫ ∞

0
r(t ′) exp

[

−
∫ t ′

0
λ(a′)da′

]

dt ′

= γ

S0

from (10.69). Thus (10.77) becomes

F = exp

[
γ

(
F − 1 − 1

S0

)]
, F = S(∞)

S0
. (10.78)

Since 1/S0 
 1 in general the solutions for F in terms of γ are typically as given in
Figure 10.16. Thus γ > 1 need not be large for a severe epidemic to occur. Therefore,
it is the estimation of the parameter γ in (10.69) that is critical in the epidemiology
of age-dependent models. This we do in the following section for a very simple and
primitive model of drug use.

10.10 Simple Drug Use Epidemic Model and Threshold Analysis

The spread of the use of self-administered drugs, therapeutic and illicit, is in some cases
a result of the enthusiastic proselytising by a user in the initial stages of use. We describe
here a simple illustrative model discussed by Hoppensteadt and Murray (1981) for the
etiology of such a drug and show how to determine the threshold parameter γ . This
entails the evaluation of the infectiousness which we relate to the response of the user
to the drug. The novel feature of the epidemic model studied here is the inclusion of the
user’s personal response to the drug. The model is a pedagogical one: we do not have a
specific drug in mind.

Suppose the drug is introduced into the blood stream in dosages d(t) and let it be
removed at a rate proportional to c(t), the drug concentration in the blood; that is, a
first-order kinetics removal. The governing equation for the blood concentration c(t) is
then

dc

dt
= d(t) − kc, c(0) = 0, (10.79)

where k > 0 is constant and t = 0 is the time the individual is first recruited as a user.
In drug abuse, the dosage d(t) tends to be oscillatory or approximately periodic with a
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progressively decreasing period. The solution of (10.79) is

c(t) = e−kt
∫ t

0
ekt ′d(t ′) dt ′. (10.80)

For many drugs the body has specific sites and it is the binding of these sites which
evokes a response in the user. Denote the number of free sites, that is, active or unbound,
by A(t), the number of bound, that is, inactive, sites by B(t) and the total number by N .
We assume that no new sites are being created so A(t) + B(t) = N . We take as a site
binding model the very simple system

ε
d A

dt
= αB − βcA, A(0) = N ,

ε
d B

dt
= βcA − αB, B(0) = 0,

(10.81)

where α, β and ε are positive constants: the inclusion of ε here is for later algebraic
convenience when we take it to be small. We are thus assuming that the rate of binding
of active sites is proportional to the amount of the drug c(t) in the body and the number
of active sites available: that is, βcA/ε. There is also a replenishment of the active sites
proportional to the number of bound sites: that is, αB/ε. With A + B = N the equation
for B is then given by the second of (10.81).

Suppose now that the reaction, r(t), to the drug is proportional to the blood con-
centration and the number of free sites. We thus take it to be

r(t) = Rc(t)A(t), (10.82)

where R > 0 is a measure of the individual’s response to the drug.
If the rate of binding is very fast, that is, α and β are O(1) and 0 < ε 
 1

in (10.81), the number of free and bound receptors reaches equilibrium very quickly.
Then, using A + B = N ,

B = βcA

α
⇒ A = αN

α + βc
, B = βNc

α + βc
, (10.83)

and the individual’s response is

r = RαNc

α + βc
, (10.84)

which is a Michaelis–Menten (cf. Chapter 6, Section 6.2) type of response which satu-
rates to rmax = RαN/β for large blood concentration levels c. Note that with B as in
(10.83) the response r = RαB/β; that is, the response is proportional to the number of
bound sites.

If ε in (10.81) is O(1) we can incorporate it into the α and β; this is equivalent to
setting ε = 1. Now with B = N − A the equation for A(t) from (10.81), with ε = 1, is
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d A

dt
= αN − A(α + βc), A(0) = N

which has solution

A(t) = N exp

[
−

∫ t

0
{α + βc(t ′)} dt ′

]

+ αN
∫ t

0
exp

[
−

∫ t

t ′
{α + βc(τ )}dτ

]
dt ′,

(10.85)

with c(t) from (10.80).
If d(t) is known we can carry out the integrations explicitly to get c(t) and A(t): it

is algebraically rather complicated for even a simple periodic d(t). Since the algebraic
details in such a case initially tend to obscure the key elements we consider here the
special case d(t) = d, a constant, and assume that the recovery rate of active sites from
their bound state is very small: that is, α ≈ 0. Then, from (10.80) giving c(t) and the
last equation giving A(t), we have

c(t) = d

k
(1 − e−kt ),

A(t) = N exp

[
−βd

k

{
t + 1

k
(e−kt − 1)

}] (10.86)

and the response r(t) from (10.82) is

r(t) = RcA = RNd

k
(1 − e−kt ) exp

[
−βd

k

{
t + 1

k
(e−kt − 1)

}]
. (10.87)

Figure 10.17 illustrates the form of c(t) and r(t) from (10.86) and (10.87).
It is interesting to note that even with this very simple illustrative model, the re-

sponse of an individual does not just increase with dosage: after an initial stage of in-
creasing response it actually decreases with time.

Figure 10.17. (a) The blood concentration c(t) of the drug: from (10.86) it saturates to d/k after a long time.
(b) The body’s response to the drug from (10.87). Note the initial increase before it tails off with continuous
drug use.
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Now consider the possibility of an epidemic of drug use appearing in a population
S0 of nonusers after the introduction of a single user. We assume 1/S0 
 1, as is
reasonable, and so F = S(∞)/S0 is given by the solution F < 1 in Figure 10.16 for
the appropriate γ , which we now evaluate.

Here age is measured from the first time of using the drug. There is no time limit for
infectiousness so in the definition (10.69) for γ we set τ = ∞. From Figure 10.17(b)
the response r(t) → 0 as t → ∞; that is, the infectiousness, or proselytising fervour,
becomes less effective with time. For simplicity we assume the probability factor in
(10.69) has λ constant and so

γ = S0

∫ ∞

0
r(t)e−λt dt. (10.88)

We can now evaluate γ for various limiting situations in terms of the parameters α, β,
γ and k in the user model (10.79)–(10.82).

In the case d(t) = d, a constant, we get Table 10.1 after some elementary algebra. It
gives the user’s response r(t) and the corresponding epidemiological threshold param-
eter γ . For example, in the case 0 < ε 
 1, (10.84) holds if α 
 β, r(t) ≈ RNα/β,
a constant, and (10.88) gives γ ≈ S0 RNα/(λβ). On the other hand if 0 < ε 
 1 and
β � α then, from (10.83), r(t) = RNc(t) and, with c(t) from (10.86), γ is given, from
(10.88), by

γ = S0

∫ ∞

0

RN d(1 − e−kt )

k
e−λt dt = S0 RN d

λ(λ + k)
.

A similar type of asymptotic approach results in the other forms in Table 10.1.
In the case of most self-administered drugs 0 < ε 
 1; that is, the response is very

fast. The possibility of an epidemic depends on the relative magnitude of the various
parameters in a simple way. This case is covered by (i)–(iv) in Table 10.1. For example if
the rate of freeing of bound sites is much slower than the binding rate, β � α (case (ii))
then, since most sites will be bound, the user’s reaction is small. This reduces the user’s
‘infectiousness’ and hence the epidemic risk.

If we increase the cure rate, that is, increase λ, there is a reduction in γ . Decreasing
the individual’s response, such as by education or chemotherapy, also reduces γ and

Table 10.1. The case d(t) = d , a constant. Here r(t) is a measure of the drug user’s response and γ is the
epidemic infectious (or recruitment) rate. (Table from Hoppensteadt and Murray 1981)

Case r(t) γ /S0

(i) ε 
 1, α 
 β R Nα/β R Nα/λβ

(ii) ε 
 1, β � α R Nc(t) R N d/[λ(λ + k)]
(iii) ε 
 1, k � 1 R N d/k R N d/kλ

(iv) ε 
 1, k 
 1, α/β d 
 1 R N dt/[1+(β dt/α)]∼ R Nα/β R Nα/βλ

(v) ε = 1, k 
 1 N d Rt exp[−2 dβt] R N d/(2 dβ + λ)2

(vi) ε = 1, k � 1 R d exp[−dβt/k]/k R N d/kλ
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hence reduces the possibility of a severe epidemic. The results are in line with a heuristic
common sense approach.

If we define the critical population Sc by

Sc =
{∫ ∞

0
r(a) exp

[
−

∫ a

0
λ(a′) da′

]
da

}−1

, (10.89)

then if S0 > Sc, which implies γ > 1, an epidemic occurs, whereas if S0 < Sc it does
not. The sensitivity of Sc to the parameters can only really be determined if r and γ are
known with some confidence.

The type of drug use models we have described and analysed here, but without age
dependence, have been very useful in their application to certain aspects of chronic alco-
hol misuse and even in trying to come up with a better breathalyser. Ethanol metabolism,
associated with alcohol eradication in the body, is very different in normal subjects as
compared to alcoholics. Smith et al. (1993) used such a model for the study of ethanol
metabolism to try to understand the difference between normal users and abusers of
alcohol and compared the results and predictions with subject data. An even simpler
model, essentially dc/dt = d(t) − k where c(t) is the blood alcohol level, d(t) is the
alcohol intake and k is the metabolic decay rate, was used by Lubkin et al. (1996) in a
study to try and determine whether it was possible to have a more sophisticated model
for alcohol breath exhalation which would make roadside breathalysers more accurate:
basically the answer was ‘no.’11

10.11 Bovine Tuberculosis Infection in Badgers and Cattle

Bovine tuberculosis infection is an insidious disease, which often does not become ap-
parent until it has reached an advanced stage in cattle, badgers and also swine. Inves-
tigations carried out suggest that in the southwest of England, for example, badgers
constitute a significant reservoir of the bovine Tb, Mycobacterium bovis (M. bovis) and
that badgers, because of their population density, could be a major factor in its spread.
Conditions in these affected areas, and as mentioned, the social organisation of bad-
gers, not only favour the transmission of the disease from one infected badger group to
another but also from badgers to cattle and vice versa.

Within specific regions in England and Wales, badger habitats are usually inti-
mately intermeshed with intensively used cattle pastures (Neal 1986, MAFF Report
1987; see also 1994). Field studies conducted over a period of about 10 years in such
regions confirm that the foraging activities of badgers on cattle pasture with their pre-

11When Washington State Trooper Sgt. Rod Gullberg, a co-author on the paper, first phoned me to see if he
could come and talk about the problem, he volunteered to come to the campus. I naively said, ‘Yes, of course,
but the parking problem on the campus is absolutely horrendous’ to which he calmly replied ‘I don’t think I’ll
have a problem.’ He arrived in his enormous police car and parked it right in front of the main entrance to the
building beside what I had always taken to be the equivalent of about 10 solid yellow lines with your car and
you being whisked off in a matter of seconds. He then came into the building, in uniform, bristling with all
the police accoutrements of baton, gun and so on, and asked, ‘Where can I find Professor Murray?’ He was
followed upstairs with intense curiosity. People felt I must have another very different secret life.
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ferred food items (earthworms, insects and fruits), which are exploited alternatively be-
cause they show marked seasonal fluctuations, cause a high frequency of urination and
defecation as a direct consequence of their eating habits (MAFF Report 1987). There-
fore, diseased badgers tend to contaminate the environment heavily with bacilli, through
their feeding habits and suppurating bite wounds, for prolonged periods. Even though a
majority of bacilli may be killed early by exposure to direct sunlight, some do survive
in the microhabitat for periods of several weeks depending on the prevailing climatic
conditions. Studies by MacDonald (1984) indicate that in the wild, the risk of infection
depends partly on the viability of the bacilli. In bronchial pus, these survive in apprecia-
ble numbers for up to four weeks in winter and one week in summer, in urine for seven
days and three days respectively, and in cattle dung for five months and two months re-
spectively. In general, warm, dark, moist locations appear optimal for bacterial survival
on the soil surface (MacDonald 1984).

Cattle are most likely to become infected in several ways: they might inhale bacilli
during an encounter with badgers with severe pulmonary and kidney lesions or they
might graze or sniff at grass contaminated with infectious badger products (sputum,
pus from lungs and bite wounds, faeces and urine). Thus a criss-cross infection may
arise when cattle come into contact with the bacilli either directly from the environ-
ment or indirectly from infectious badgers. Certain farm practices, namely, allowing
badgers access to cattle sheds, salt licks and water troughs could also contribute to dis-
ease transmission. There is therefore a significant probability for badger-to-cattle and
cattle-to-badger disease transmission.

In this section we describe a criss-cross epidemic model for bovine tuberculosis
infection between badgers and cattle that Dr. D.E. Bentil and I developed in the mid-
1990’s and deduce some analytical results. The main objective is to use these results in
the following section to study the dynamics of immunization programmes and suggest
how certain practical control measures could be adopted with the ultimate aim of mini-
mizing the spread of infection from badgers to cattle and vice versa, should an epidemic
occur.

Criss-Cross Model System for Bovine Tb

When dealing with two populations—here badgers and cattle—we require an epidemic
system for each population and then couple the systems through infection of suscep-
tible cattle by infected badgers and susceptible badgers via infected cattle. With an
SEIR model such as discussed in detail by Bentil and Murray (1993) this would result
in a model with 8 coupled partial differential equations if we include age structure as
we should. In principle models should be developed from the simple to the complex.
Here we have to choose between considering only time-dependent populations, with-
out age structure, or consider fewer subpopulations and include age structure. Here we
adopt the latter strategy and consider two subpopulations in each of the badgers and
the cattle, that is, an SI-type age-structured criss-cross epidemic model to study the
disease transmission dynamics between them. So, we consider a model involving two
distinct populations (badgers and cattle) and an infection which is communicated be-
tween them. We investigate a simple, age-structured, criss-cross model which describes
the rate at which cub and adult badgers and cattle go through two different—susceptible
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and infectious—states. Here, one of the basic assumptions is that badgers endure a pro-
longed illness once infected: for example, 12 naturally infected badgers held in captivity
survived for between 165 and 1305 days (MacDonald 1984). It is during this prolonged
illness that it is assumed they contaminate cattle pasture with bacilli. The mortality due
to M. bovis infection in both badgers and cattle is low (Cheeseman et al. 1988) so it is
not unreasonable to assume that disease-induced death is negligible as compared with
normal death. We also assume constant death rates for both badgers and cattle. Other
forms of death rates could be used but at this stage add unnecessarily to the complexity
of the analysis. It is useful and important to get in the first instance some general guide-
lines. The contraction of M. bovis infection does not confer immunity so we assume
that infected badgers either die or recover temporarily and become susceptible again.
We assume a similar disease transmission dynamics for cattle. The flow diagram of
the disease transmission dynamics in terms of the two distinct interacting populations,
namely, badgers and cattle, is schematically shown in Figure 10.18.

We take the total number of cub and adult badgers and cattle at risk of infection
to be constant and equal to N and Ñ respectively. We have also assumed that infected
cattle recover at a rate r̃ which is proportional to W̃ , the infected cattle, and infected
badgers recover at a rate r proportional to W , the infected badger population. Cattle
appear to develop symptoms much more readily so we assume r̃ � r . Cattle are newly
infected at rates β̃1, β̃2 which are proportional to the product of the number of suscep-
tible cattle, Ũ , and the sum of infectious cattle, W̃ , and badgers, W . Similarly, newly
infected badgers occur at rates β1, β2 which are proportional to the product of the num-
ber of susceptible badgers, U , and the sum of infected cattle and badgers, namely, W̃
and W . The parameters β1, β2 and β̃1, β̃2 are the disease transmission coefficients for
badgers and cattle respectively.

Figure 10.18 is certainly basic and contains many simplifying assumptions. With
these caveats we write the model system as

Figure 10.18. Diagrammatic flow chart of a
criss-cross model for an infection between
badgers and cattle. Each class is a disease
host for the other. Here we have divided the
badger population into susceptibles, U , and
infectious, W . The cattle population is treated
similarly with the susceptible and infectious
cattle population denoted by Ũ and W̃ . The
contraction of M. bovis infection does not
confer immunity and so an infected animal
becomes susceptible again after recovery.
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∂U

∂t
+ ∂U

∂a
= −λ1U + rW − µU,

∂W

∂t
+ ∂W

∂a
= λ1U − rW − µW,

∂Ũ

∂t
+ ∂Ũ

∂a
= −λ̃1Ũ + r̃ W̃ − µ̃Ũ ,

∂W̃

∂t
+ ∂W̃

∂a
= λ̃1Ũ − r̃ W̃ − µ̃W̃ ,

(10.90)

where the force of infection for the respective populations is given by

(B) λ1(t) = β1

∫ ∞

0
W (t, a) da + β2

∫ ∞

0
W̃ (t, a) da, (10.91)

(C) λ̃1(t) = β̃1

∫ ∞

0
W̃ (t, a) da + β̃2

∫ ∞

0
W (t, a) da (10.92)

which are partial contributions from both badgers (B) and cattle (C). The initial age
distribution of the respective classes at t = 0 is given by

U(0, a) = U0(a), Ũ (0, a) = Ũ0(a),

W (0, a) = W0(a), W̃ (0, a) = W̃0(a),
(10.93)

and the renewal (boundary) conditions

N (t, 0) = γ

∫ ∞

0
N (t, a) da = γ N (t), t > 0,

Ñ (t, 0) = γ

∫ ∞

0
Ñ (t, a) da = γ̃ N (t), t > 0.

(10.94)

The absence of a birth term in the model equations is because the only input into the
host population is into the class of age zero and so appears as a boundary condition. If
we hold to the assumption that all newborn badgers and cattle are susceptible in constant
populations where the birth rates, γ , γ̃ are set equal to the death rates, µ, µ̃, for badgers
and cattle respectively, then the boundary conditions in (10.94) for the various groups
are

U(t, 0) = N (t, 0) = γ N (t), W (t, 0) = 0,

Ũ (t, 0) = Ñ (t, 0) = γ̃ Ñ (t), W̃ (t, 0) = 0.
(10.95)

Here, for example, γ N (t) is the number of births of badgers at age 0 for all t , and N (t)
is the total badger population. At any time t , the age distribution of both badgers and
cattle can be expressed as

N (t, a) = γ N (t) exp

(
−

∫ a

0
µ(s) ds

)
= γ N (t)m(a),

Ñ (t, a) = γ̃ Ñ (t) exp

(
−

∫ a

0
µ̃(s) ds

)
= γ̃ Ñ (t)m̃(a),

(10.96)
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which define the survival probability m(a) and m̃(a) functions. For example, m(a) is
the probability that a badger will live to age a.

We now rescale the problem to make the system nondimensional. This introduces
dimensionless groupings which highlight certain ecological facts. We first factor out the
death rate in the model system (10.90) by making the substitutions

u(t, a) = U(t, a)

N (t, a)
, w(t, a) = W (t, a)

N (t, a)
,

ũ(t, a) = Ũ (t, a)

Ñ (t, a)
, w̃(t, a) = W̃ (t, a)

Ñ (t, a)
.

(10.97)

If we choose reference scales for u(t, a), w(t, a), ũ(t, a), w̃(t, a), a and t and scale
these variables by the maximum values they can realistically obtain (the maximum value
for u(a) occurs at u(0)) and we scale the time and chronological age by setting r = r t ,
α = ra we obtain the nondimensional system

∂u

∂τ
+ ∂u

∂α
= −1

r
λ1u + w,

∂w

∂τ
+ ∂w

∂α
= 1

r
λ1u − w,

∂ ũ

∂τ
+ ∂ ũ

∂α
= −1

r̃
λ̃1ũ + w̃,

∂w̃

∂τ
+ ∂w̃

∂α
= 1

r̃
λ̃1ũ − w̃.

(10.98)

The boundary conditions become

u(τ, 0) = 1, w(τ, 0) = 0, ũ(τ, 0) = 1, w̃(τ, 0) = 0, (10.99)

and initial conditions are given by

u(0, α) = u0(α), w(0, α) = w0(α),

ũ(0, α) = ũ0(α), w̃(0, α) = w̃0(α).
(10.100)

The force of infection for the respective populations is given by

(B) λ1(τ ) = β1

r

∫ ∞

0
w(τ, α)N (τ, α) dα + β2

r̃

∫ ∞

0
w̃(r, α)Ñ (τ, α) dα,

(C) λ̃1(τ ) = β̃1

r̃

∫ ∞

0
w̃(τ, α)Ñ (τ, α) dα + β̃2

r

∫ ∞

0
w(τ, α)N (τ, α) dα.

(10.101)

The force of infection determines whether or not an epidemic will occur. We saw in
the simple models we discussed in earlier sections that there are threshold conditions
which must be obtained if the number of infected animals is going to increase. So, the
evaluation of the λ’s is an essential part of the study of the spread of a disease. In its



374 10. Dynamics of Infectious Diseases

simplest form if the force of infection is greater than 1 it means that more than one
susceptible will be infected by one infective. In the case of the SEIR age-dependent
model discussed by Bentil and Murray (1993) the conditions for an epidemic were
reduced to determining whether or not a function of λ, obtained from the expression for
the force of infection analogous to (10.101) had a solution λ > 1. With this, threshold
values of parameters and populations for an epidemic to ensue were obtained.

The mathematical problem posed by (10.98)–(10.101) is not easy to solve in gen-
eral. At an equilibrium state, however, we can obtain solutions relatively easily. Af-
ter a long time we assume an equilibrium is reached, that is, where all ∂/∂τ terms
are set equal to zero and the various classes are only functions of age a. The λ’s in
(10.101) are constants since the integrals do not involve τ (τ → ∞ at equilibrium).
The equations in (10.98) are then a set of 4 linear ordinary differential equations un-
coupled into two pairs, one for u(α) and w(α) and the other set for ũ(α) and w̃(α).
The respective fractions of infective and susceptible badgers and cattle at equilibrium
are easily derived. For example, with the first two equations in (10.98), on adding and
using the boundary conditions u(0) = 1, w(0) = 0, we get a linear first-order equa-
tion in u(α) which is trivially solved. With these solutions we then have, after some
elementary algebra, the equilibrium forces of infection, denoted by λ2 and λ̃2 (we
use the subscript 2 to distinguish them from the time-dependent forces of infection)
as

(B) λ2 = β1λ2γ N

r(λ2 + r)

∫ ∞

0
m(α)

[
1 − exp

(
−λ2

r
− 1

)
α

]
dα

+ β2λ̃2γ̃ Ñ

r̃(λ̃2 + r̃)

∫ ∞

0
m̃(α)

[

1 − exp

(

− λ̃2

r̃
− 1

)

α

]

dα,

(C) λ̃2 = β̃1λ̃2γ̃ Ñ

r̃(λ̃2 + r̃)

∫ ∞

0
m̃(α)

[

1 − exp

(

− λ̃2

r̃
− 1

)

α

]

dα

+ β̃2λ2γ N

r(λ2 + r)

∫ ∞

0
m(α)

[
1 − exp

(
−λ2

r
− 1

)
α

]
dα,

(10.102)

where m(α) and m̃(α), the survival probabilities, are defined by (10.96). We can go no
further with the analysis until we specifiy these functions. If we assume the death rate
µ(a) is a constant, then m(α) = e−µa and m̃(α) = e−µ̃a and we can then easily evalu-
ate the integrals in (10.102). We then get coupled transcendental equations to determine
the forces of infection in the badgers and the cattle. In general these have to be solved
numerically for given parameter values.

By way of illustration let us assume that the contributions from within the respec-
tive animal populations are negligible and only a cross-type of infection prevails; that
is, β1 = 0 = β̃1 and the death rates are constant. In this situation, after some algebra,
we get
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(B) λ2 = β2λ̃2γ̃ Ñ

λ̃2 + r̃

[
1

µ̃
(1 − e−µ̃L ) − 1

λ̃2 + r̃ + µ̃
(1 − e−(λ̃+r̃+µ̃)L)

]
,

(C) λ̃2 = β̃2λ2γ N

λ2 + r

[
1

µ
(1 − e−µL) − 1

λ2 + r + µ
(1 − e−(λ2+r+µ)L)

]
,

(10.103)

where L is the life expectancy and (B) and (C) refer to badgers and cattle respectively.
In both cases as L → 0, λ2 → 0 and λ̃2 → 0 as they should.

For large L , from (10.103) we have for the badgers and cattle respectively

λ2

λ̃2
= β2γ̃ Ñ

µ̃(λ̃2 + r̃ + µ̃)
,

λ̃2

λ2
= β̃2γ N

µ(λ + r + µ)
, (10.104)

and the following inverse proportionality relation is obtained

1 = β2β̃2γ γ̃ N Ñ

µµ̃(λ2 + r + µ)(λ̃2 + r̃ + µ̃)
(10.105)

or

β2γ N

µ(λ2 + r + µ)
=

[
β̃2γ̃ Ñ

µ̃(λ̃2 + r̃ + µ̃)

]−1

. (10.106)

These are closely related to the conditions we found for epidemics to exist in the discus-
sion on venereal disease models in Section 10.3. To interpret the results we must now
determine parameter estimates.

Parameter Estimation

We know some of the key parameters that influence the demography of badgers and
cattle in the absence of M. bovis infection; see, for example, Anderson and Trewhella
(1985) and Brown et al. (1994). However, it is extremely difficult to get convincing field
data for criss-cross disease spread between badgers and cattle: those available are some-
what inconsistent and address specific epidemiological parameters while other relevant
parameters are chosen arbitrarily. This lack of adequate information and inconsistent
data estimates make it difficult to obtain reliable disease transmission rates from the ex-
pressions in (10.102). From a modelling point of view, the choice of parameter values is
a crucial factor in determining the level of prevalence of the disease. We therefore used
numerical techniques, and particularly the Logical Parameter Search (LPS) Method de-
veloped by Bentil and Murray (1993) to generate appropriate parameter values to mimic
the observed trend when no field data were available. The LPS method is an online
search procedure that scans given parameter ranges and generates parameter sets that
satisfy some given logical conditions. To apply it to this criss-cross model, for example,
we partly used field data obtained from the literature (see Table 10.2) to set up realis-
tic parameter ranges. The procedure then scanned consecutively the various parameter
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Table 10.2. Parameter values used for the basic criss-cross model of bovine tuberculosis between badgers
and cattle. LPS estimates were found as described in the text. (From Anderson and Trewhella 1985, BTEC
1987)

Parameter Symbol Value LPS Estimates

Total population (Cattle) Ñ — 10 cattle km−2

Total population (Badgers) N 2–5 badgers km−2 3 badgers km−2

Death rate (Cattle) µ̃ — 0.25 year−1

Death rate (Badgers) µ 0.25 year−1 0.125 year−1

Birth rate (Cattle) γ̃ — 0.05 year−1

Birth rate (Badgers) γ 0.125 year−1 0.02 year−1

Average removal rate (Cattle) r̃1 — 2 year−1

Avererage removal rate (Badgers) r1 2 year−1 1 year−1

Disease transm. coef. (Cattle–cattle) β̃1 — 2.0 km2 year−1

Disease transm. coef. (Cattle–badgers) β̃2 — 1.0 km2 year−1

Disease transm. coef. (Badgers–badgers) β1 1.54 km2 year−1 1.54 km2 year−1

Disease transm. coef. (Badgers–cattle) β2 — 3.5 km2 year−1

Average life expectancy (Cattle) L̃ — 10 years
Average life expectancy (Badgers) L 3.5–5.5 years 10 years

ranges for suitable parameter sets, which satisfied some given logical conditions (for
example, criteria for disease prevalence that was obtained from the model analysis). We
cross-checked the generated parameter sets with the threshold conditions (that is, the

Figure 10.19. Graphical representation of the force of infection corresponding to the disease transmission
dynamics for badgers and cattle. Here, a primary assumption is that most of the badger groups sleep in
communal huddles in the setts with the environmental conditions that greatly enhance the spread of Tb among
them, which in part accounts for an increasingly higher force of infection for badgers; it stabilises after some
time.
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disease incidence increases after the introduction of an infected group) to make sure
that all other requirements, namely, conditions for disease incidence and prevalence had
been satisfied. The model equations (10.90) were solved by finite difference schemes
with parameter values as in Table 10.2. The initial conditions were set by solving the or-
dinary differential equations obtained by dropping the time derivatives from which we
obtained stable age distributions determined by the age-specific birth and death rates
and perturbing the whole system by shifting 10% of susceptible badgers and 5% of
susceptible cattle into the infective classes.

Numerical Results and Predicitions

The time-dependent forces of infection in the badger and cattle populations are given
by (10.101) which can be evaluated only by solving the full system. This was done with
the parameter values given in Table 10.2 and the results are shown in Figure 10.19. As
we saw earlier, we could evaluate the integrals and obtain algebraic relations, namely,
(10.104)–(10.106), between the two forces of infection for the equilibrium state where
life expectancy, L , is long, the death rate a constant (giving an exponential survival
probability) and a criss-cross type of infection is the main route by which infection may
occur. These imply that the ratio of the force of infection of badgers to cattle is inversely
proportional to the ratio of the force of infection of cattle to badgers. The implication
here is that if the spread of bovine tuberculosis remains unchecked it may be possible
to predict the dynamics of disease spread within badgers for different age groups by
studying that for cattle alone (and vice versa).

The model predictions, as illustrated in Figure 10.20 indicate that the number of
susceptible badgers and cattle declines while there is a gradual increase in the number of
infected badgers and cattle, and much more so within badger populations. This suggests
that should a criss-cross type of infection occur the impact of the disease could be
felt much more within badger populations. This confirms our assumption that badgers
endure a prolonged illness once infected and that it is during this prolonged period of
illness that they contaminate cattle pasture with bacilli.

The basic age-structured criss-cross model we have discussed here is based on the
assumption of horizontal transmission by bite wounding, aerosol infection, infection
contracted through grazing on pastures and so on. Vertical transmission (mother to cub)
may be important but we did not take this into account. Broadly speaking, cattle cannot
be regarded as a reliable sentinel for the prevalence of infection in badgers everywhere
because of the variation in the degree of contact. The proposed models therefore re-
flect the epidemiology of the disease in areas with good habitats where both species
coexist.

As we have mentioned, it is difficult to establish the actual force of infection espe-
cially within various badger groups where, for instance, age is determined by weight,
size and dental structure as opposed to precise observed trends in cattle. In any event,
with the implementation of the LPS method, we were able to make various predic-
tions using the model equations. We speculate that cattle are more or less kept under
more hygienic conditions in farms and thus the tendency of high levels of infection is
markedly reduced. There is no oscillatory trend in disease incidence between the two
distinct groups but, among badgers, some observations indicate a possible cyclic trend
in disease incidence (see Cheeseman et al. 1989 and Bentil and Murray 1993). This
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Figure 10.20. Numerical solution of the criss-cross model showing patterns for susceptible and infectious
badgers and susceptible and infectious cattle with respect to age and time (horizontal axis) after an initial
infection. The vertical axis denotes the corresponding fractions of the various subpopulations. For the chosen
parameter values (using LPS estimates in Table 10.2) the number of infectious badgers (b) increases to about
60% while the number of infectious cattle (d) increases to about 30% before stabilizing.

may seem to be the case from our model predictions and makes the study of a possible
(hypothetical) criss-cross type of infection all the more relevant.

Results of this study indicate that it is possible to estimate the age-specific equi-
librium values of the force of infection knowing which survival functions to use. A
constant death rate for badgers and cattle gives, for example, an inverse proportion-
ality relationship which makes it easier to predict the disease transmission dynamics
within different age groups. It may be possible to analyse the model behaviour for a
step function death rate but the results will be much more difficult to obtain, other than
numerically.

A major motivation for the comparative study of an age-structured model for this
recurrent disease is the evaluation of control measures for the eradication of the disease
as pointed out, for example, by Dietz and Schenzle (1985), Anderson and May (1985)
and Murray et al. (1986). The main objective of the above modelling is to use the results
to study the dynamics of immunization programmes and suggest how certain control
measures could be adopted with the ultimate objective of minimizing the spread of
infection from badgers to cattle and vice versa, should an epidemic occur. We discuss
this in the following section.
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10.12 Modelling Control Strategies for Bovine Tuberculosis in
Badgers and Cattle

Bentil and Murray (1993) developed and analysed models for the dynamics of bovine
tuberculosis (Mycobacterium bovis) infection in the wild badger population. Because
of the possibility (I believe, high probability) of badgers being the reservoir for the dis-
ease in cattle in the southwest of England in the last section we proposed and analysed
a simple criss-cross model. As pointed out, the eradication of the disease when there
is a feral infected animal population, such as in the southwest of England and in New
Zealand, has not yet been successful in spite of the implementation of an intensive na-
tional tuberculosis eradication campaign. The eradication, or rather acceptable control,
of bovine tuberculosis by testing and slaughtering programmes has been successful in
many countries, as we have said, but total elimination has not been achieved. In the
U.S.A., all cattle are systematically tested and those reactors are slaughtered. As a re-
sult, reactor rate was reduced from about 5% to 0.03% (USDA Report 1982a,b).

Badgers occupy a variety of habitats, especially woodland areas interspersed with
arable and pasture land (Clements et al. 1978, Kruuk 1988). Such habitats are usually
intimately intermeshed with intensively used cattle pastures which makes the likelihood
for badger-to-cattle and cattle-to badger disease transmission all the more possible. The
analysis of the model in the last section for the dynamics of a hypothetical criss-cross
infection provides some guidelines concerning the likely impact of the disease between
the two distinct populations. Results from that criss-cross model suggest that it may be
possible to predict the disease transmission dynamics for one group, namely, cattle, if
we know that for badgers and vice versa.

In Britain, for example, programmes for the control of bovine tuberculosis in ar-
eas of frequent herd infection have been centred on the reduction of badger density by
removal of entire groups of badgers (usually by gassing, which particularly incenses
the English) where one or more individuals were thought to be infected. The MAFF
control policy (MAFF report 1987) assumed, wrongly as it turned out, that a single in-
tensive intervention to remove all infected groups of animals would suffice to eliminate
infection from contaminated areas for long periods of time. As mentioned above the
MAFF (1994) control was more selective and probably no more effective. In this sec-
tion we discuss a new approach that Dr. D.E. Bentil and I developed in the mid-1990’s.
We model the dynamics of specific immunization programmes and suggest how certain
control measures could be adopted with the ultimate objective of minimizing the spread
of infection from badgers to cattle and vice versa should an infection occur. We compare
several vaccination strategies and deduce a cost benefit criteria for them. The model is
in effect a spatial one in that we present a discrete approach to the study of the problem.
The discrete approach uses a cellular automaton model which could easily be under-
stood by nonspecialists. We shall also show how a characteristic empirical response to
the vaccination policies could be achieved.

Criss-Cross Model with Immunization

Based on the age-dependent criss-cross model in the last section we examine two as-
pects of the impact of immunization which we expect will reduce the net rate of disease
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transmission between the two populations by decreasing the per capita force of infec-
tion. In particular we consider the following aspects of immunization:

(i) its effect on the steady state or equilibrium conditions, that is, the state towards
which a population may converge in the long term under the influence of an im-
munization programme;

(ii) its effect in the short term on the temporal dynamics of the infection within the
various groupings as they move to a new steady state following the initiation of an
immunization programme.

Suppose the age-specific rates of immunization are c(a) and c̃(a) for badger and
cattle populations respectively. This introduces a further removal term in the criss-
cross model for the susceptible population dynamics. We modify the model (10.90)
for badger–cattle disease transmission dynamics to read

∂U

∂t
+ ∂U

∂a
= −[λ1 + c(a)]U + rW − µU,

∂W

∂t
+ ∂W

∂a
= λ1U − rW − µW,

∂ Z

∂t
+ ∂ Z

∂a
= c(a)U − µZ ,

∂Ũ

∂t
+ ∂Ũ

∂a
= −[λ̃1 + c̃(a)]Ũ + r̃ W̃ − µ̃Ũ ,

∂W̃

∂t
+ ∂W̃

∂a
= λ̃1Ũ − r̃ W̃ − µ̃W̃ ,

∂ Z̃

∂t
+ ∂ Z̃

∂a
= c̃(a)Ũ − µ̃Z̃ ,

(10.107)

where we have introduced another subpopulation in both the badgers and cattle, namely,
the immune classes Z and Z̃ respectively. As before U and W are respectively the
susceptible and infectious badgers with similar definitions for Ũ and W̃ . The force of
infection for the respective populations are again given by (10.91) and (10.92). The
initial age distribution of the respective classes is given by (10.93) but with the addition
of initial conditions for the immune classes, so

U(0, a) = U0(a), Ũ (0, a) = Ũ0(a),

W (0, a) = W0(a), W̃ (0, a) = W̃0(a),

Z(0, a) = Z0(a), Z̃(0, a) = Z̃0(a),

(10.108)

and represent the preimmunization equilibrium distributions. The renewal (boundary)
conditions for the various groups are given by (10.95) with the addition of those for the
immune classes, namely,

U(t, 0) = N (t, 0) = γ N (t), W (t, 0) = Z(t, 0) = 0,

Ũ (t, 0) = Ñ (t, 0) = γ̃ Ñ (t), W̃ (t, 0) = Z̃(t, 0) = 0,
(10.109)
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where again γ N (t) is the number of births of badgers at age 0 for all t , with the birth
rate γ assumed constant and N (t) the total badger population. So, at any time t , the age
distribution of both badgers and cattle is again given by (10.96).

We again rescale the problem in the same way as we did in the last section by
writing

u(t, a) = U(t, a)

N (t, a)
, w(t, a) = W (t, a)

N (t, a)
, z(t, a) = Z(t, a)

N (t, a)
,

ũ(t, a) = Ũ (t, a)

Ñ (t, a)
, w̃(t, a) = W̃ (t, a)

Ñ (t, a)
, z̃(t, a) = Z̃(t, a)

Ñ (t, a)
,

(10.110)

and again rescaling the time and chronological age by setting τ = r t , α = ra (badgers)
α = r̃a (cattle) we get the nondimensional system

∂u

∂τ
+ ∂u

∂α
= −1

r
(λ1 + c)u + w,

∂w

∂τ
+ ∂w

∂α
= 1

r
λ1u − w,

∂z

∂τ
+ ∂z

∂α
= 1

r
cu,

∂ ũ

∂τ
+ ∂ ũ

∂α
= −1

r̃
λ̃1ũ + w̃,

∂w̃

∂τ
+ ∂w̃

∂α
= 1

r̃
(λ̃1 + c̃)ũ − w̃,

∂ z̃

∂τ
+ ∂ z̃

∂α
= 1

r̃
c̃.

(10.111)

Now let vaccination be given so that fractions f , f̃ , g, g̃ of susceptible badgers and
cattle become immune at ages T1 and T2 > T1, say. Then the conditions at ages T1 and
T2 depicting the relationship at the points of discontinuity of u and ũ take the form

u(T1 + 0) = (1 − f )u(T1 − 0); u(T2 + 0) = (1 − g)u(T2 − 0),

ũ(T1 + 0) = (1 − f̃ )ũ(T1 − 0); ũ(T2 + 0) = (1 − g̃)ũ(T2 − 0).
(10.112)

In such circumstances we can deduce the susceptible populations consecutively for the
specified ‘immunization age intervals’ (see, for example, Hethcote 1983) to get the
susceptible fractions (in nondimensional terms) for the badger and cattle populations
at equilibrium in the age intervals [0, T1), [T1, T2), [T2,∞). To do this we need the
equilibrium solutions.

The initial values u(0, α) = u(α), ũ(0, α) = ũ(α) represent the preimmunization
fractional equilibrium distributions given by the time-independent solutions of the set
of ordinary differential equations given by (10.112) excluding the immunization terms
and with all (∂/∂t)-terms set equal to zero. These are routinely found to be
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u(α) = 1

λ2 + r

[
r + λ2 exp

(
−λ2

r
− 1

)
α

]
,

ũ(α) = 1

λ̃2 + r̃

[

r̃ + λ̃2 exp

(

− λ̃2

r̃
− 1

)

α

]

,

(10.113)

where the forces of infection λ2 and λ̃2 are those for the equilibrium state and given,
respectively, by

(B) λ2 = β1

r

∫ ∞

0
w(α)N (α) dα + β1

r̃

∫ ∞

0
w̃(α)Ñ (α) dα,

(C) λ̃2 = β̃1

r̃

∫ ∞

0
w̃(α)Ñ (α) dα + β̃2

r

∫ ∞

0
w(α)N (α) dα.

(10.114)

Using these solutions (10.113) we get, from (10.112),

u(α) =






1
λ2+r [r + λ2 exp(− λ2

r − 1)α], 0 ≤ α < rT1;

(1− f )
λ2+r [r + λ2 exp(−λ2

r − 1)α], rT1 ≤ α < rT2;

(1− f )(1−g)
λ2+r [r + λ2 exp(−λ2

r − 1)α], rT2 ≤ α,

(10.115)

with a similar relation for susceptible cattle when f , g, r , λ are replaced by f̃ , g̃, r̃ and
λ̃ in (10.115).

At equilibrium the basic reproductive rate ρ0 is related to the total susceptible frac-
tion, ue, by

ρ0ue = 1. (10.116)

In this context, the equilibrium disease incidence can then be determined from the rela-
tion

ρ0

∫ ∞

0
u(a)N (a) da = 1, (10.117)

with a similar relation holding for the cattle population. For example, if we assume a
constant death rate, µ, as we did in the previous section, we have

ρ0γ

r2

∫ ∞

0
u(α)e−(µ/r)α dα = 1 (10.118)

which on integrating, using (10.115), gives

ρ0γ

λ2 + r

{
r

µ
[1 − f e−µT1 − (1 − f )ge−µT2]

+ λ2

λ2 + r + µ
[1 − f e−(λ2+r+µ)T1 − (1 − f )ge−(λ2+r+µ)T2 ]

}
= 1.

(10.119)



10.12 Bovine Tuberculosis Modelling Control Strategies 383

Suppose that vaccination takes place only at one age, T1 say; then g = 0 and we
get, from the last equation

ρ0γ

λ2 + r

{
r

µ
[1 − f e−µT1] + λ2

λ2 + r + µ
[1 − f e−(λ2+r+µ)T1 ]

}
= 1. (10.120)

The disease incidence in cattle satisfies the relation

ρ̃0γ̃

λ̃2 + r̃

{
r̃

µ̃
[1 − f̃ e−µ̃T1] + λ̃2

λ̃2 + r̃ + µ̃
[1 − f̃ e−(λ̃2+r̃+µ̃)T1 ]

}

= 1. (10.121)

From the last two equations, λ2 and λ̃2 corresponding to the equilibrium forces of in-
fection within badgers and cattle after the initiation of an immunization programme can
be determined by estimating ρ0, and ρ̃0 from prevaccination epidemiological data and
using (10.120) and (10.121) to calculate λ2 and λ̃2 in terms of f and T1, which char-
acterise the immunization programme. The effective reproductive rate, ρ, (that is, the
generation of secondary cases where a proportion is immune) under the mass action
assumption of disease spread and transmission, ρ is related to ρ0 by

ρ = ρ0ue = ρ0(1 − f ), (10.122)

where ue is the fraction of susceptibles and f is the proportion that is temporarily im-
mune.

To be able to eradicate the disease by adopting an appropriate vaccination or treat-
ment coverage, it is necessary to create a level of herd immunity such that the effective
reproductive rate, ρ, is reduced to a value less than unity. Herd immunity means that
the fraction of the population that is susceptible is sufficiently small that an outbreak
would not result if one animal suddenly became infective or if an imported infective
were introduced into the environment. It can also be considered as an indirect protec-
tion of unvaccinated susceptibles by high levels of vaccination amongst the remaining
segments of the population. This protection is a consequence of the reduction in disease
transmission brought about by the removal of vaccinated animals from the susceptible
class. It is through the effects of herd immunity that it is possible to eradicate a disease
without vaccinating every single susceptible (Fox et al. 1971). Formally, the critical
level of vaccination coverage corresponds to the limit λ2 → 0, λ̃2 → 0 in (10.120) and
(10.121). In this way, each primary case will generate less than one secondary case as
is evident from the ensuing relation

ρ0[1 − f exp(−µT1)] ≤ 1. (10.123)

This means, therefore, that we require the immune proportion of badgers and cattle to
exceed a critical value

fc =
(

1 − 1

ρ0

)
exp

(
T1

L

)
; f̃c =

(
1 − 1

ρ̃0

)
exp

(
T1

L

)
. (10.124)
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Table 10.3.

Technical
Demographic Epidemiological Operational (Efficacy)

Population Growth Prevalence level in Population coverage Clinical
(birth/death rates) initial situation

Implementation intensity Effective contact rate Waning

Eligibility criteria

So, a proportion greater than fc of each new cohort of cub (calves) at or near birth, or at
age T1 should be immunized. If vaccination is given to very young cubs (calves) only,
then T1 ≈ 0 and ρ0(1 − f ) ≤ 1. Eradication is easier if animals are vaccinated at the
earliest feasible age, T1, and essentially impossible if at a later stage.

Case notification records show that generally, there has been a very low level of M.
bovis infection over several decades (MAFF report 1987, 1994, Cheeseman et al. 1988,
1989). An important question concerns the level of coverage that should be aimed at
to eradicate an infection should it occur. In the attempt to choose or adopt an effective
strategy for the eradication of the disease, we should note that control measures differ in
their effectiveness according to different situations. In Table 10.3 we list some aspects
which exert different influences on the relative effectiveness of adopted measures.

Control Programme and Its Implementation

We make the following clinical assumptions.

(i) The development of M. bovis in infected badgers and cattle is purely an endoge-
nous process.

(ii) The protective efficacy of vaccines is assumed to wane at a constant rate of 5%
per annum and gives 66% protection (Waaler et al. 1969). This means that a vac-
cination coverage of about 95% amounts to transferring 66% of the noninfected
group into a vaccine-protected group.

Studies by Stuart et al. (1988) on the development of diagnostic tests for, and vac-
cination against, tuberculosis in badgers suggest that badgers mount a weak antibody
response to conventional antigens when compared with laboratory rabbits. However, it
was found that cell-mediated immunity seems to be enhanced by vaccination and leads
to prolonged survival of badgers and delayed excretion of tubercle bacilli.

As a means of reducing the force of infection and hence the number of infectives,
in our approach we adopt chemotherapy in the form of oral vaccination to control M.
bovis infection within badgers and suggest vaccination as a method to fight the disease
in cattle. A combination of both strategies where vaccines are administered in mixed
food items as well as actual vaccination of groups of animals may be helpful, although
this will only really be effective for cattle since badgers, unlike cattle, are not confined to
specific areas and sometimes move about randomly within, and sometimes away from,
their neighbourhoods (see, for example, Rogers et al. 1998).
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We divide the population into two, that is, cubs (calves) and adults. Considering
badgers, for example, the fraction of cubs becoming immune at age T1 (1 year) is f
and the fraction of adults becoming immune at age T2 (5 years) is g. If ρ0ue ≤ 1,
then the disease will eventually die out and herd immunity achieved. From a practical
point of view, we may conclude that a policy of 66% vaccination at age one will reduce
the yearly incidence of M. bovis infection for approximately five years. Thereafter the
yearly incidence will be higher if we adopt a no-vaccination policy at all. It is reasonable
to suggest a two-66% vaccination policy: one at the beginning, or more precisely, a year
after birth and the other after 5 years. This double campaign could reduce M. bovis
infection for about nine years before any possible epidemic ensues.

An alternate, and we believe better, method is a modification of a vaccination pol-
icy which was proposed by Frerichs and Prawda (1975) and adopted for the control of
rabies in Colombia. We call it the Preferred Vaccination Policy (PVP). Here, assum-
ing there is a potential outbreak within neighbouring regions, each targeted subregion
should be ranked according to the potential contribution it would make to the incidence
of M. bovis infection. From case notification records, the risk, Ri,t , of badger/cattle con-
tributing to new infection cases is calculated for each subregion within the specified area
as

Ri,t = CiUi,t + 1

5

5∑

j=1

Ci( j)Ui( j),t , (10.125)

where

Ri,t is the index for M. bovis risk for subregion i at time t . It is calculated from case
notification records;

Ci is the proportion of badger/cattle in subregion i relative to that of neighbouring
subregions;

Ui,t is the number of susceptible badger/cattle in subregion i at time t ;
i( j) is a subscript denoting neighbouring subregions j , j = 1, 5 surrounding i .

Since there is the possibility for infection from neighbouring subregions, an as-
sumption is made that the sum of the values Ci( j)Ui( j),t in each of the five neighbouring
subregions or social groups is equally as important to the subsequent generation of M.
bovis infection as the value of CiUi,t in subregion i itself. All values of Ri,t are ranked
from highest to lowest. This control policy continuously employs vaccinating teams
who are sent to the highest ranked subregion and they remain there until the required
proportion of susceptibles is vaccinated. Thereafter, they are sent to the next highest
ranked subregion at different time periods and information updated as they visit various
subregions.

Cellular Automaton Model for Practical Implementation

We present a discrete approach to the implementation of the PVP using cellular au-
tomaton models. Such models have the advantage of providing a visual representation
of the main qualitative features of the processes and the results of simulations for vari-
ous parameter sets. The cellular automaton models are as follows. First, we model the
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disease incidence and spread within badger and cattle populations (Rule A) and second,
we consider a situation where a proportion becomes immune due to the introduction of
a vaccination policy, namely, the Preferred Vaccination Policy (PVP) (Rule B).

The first model consists of a rectilinear grid of cells which represent the conta-
gion of the disease between badgers and cattle (Rule A below). The model includes
parameters Dc and Db for the duration of disease in cattle and badgers respectively. We
consider v as a status variable which increases by one unit for each time-step until a
maximum of D steps is reached after which v reverts to 0, that is, the animal becomes
susceptible again. Here, we have assumed that there is no immune class. The status of
the animal changes with time depending on the status of the animal itself and the status
of its four contiguous neighbouring cells in accordance with a set of rules for simulating
the contagion of the disease within badger populations. The rules are:

Rule A

An animal can become infected if it is in a susceptible state and if it comes into contact
with an infected animal; that is, at least one of its four neighbours is infected. When con-
tact occurs, the probability of a susceptible individual becoming infected depends on the
parameters Pcc, Pcb, Pbb and Pbc. These are the probabilities of disease transmission per
unit time from infected cow to susceptible cow, from infected cow to susceptible badger,
from infected badger to susceptible badger, and from infected badger to susceptible cow
respectively. At each time-step, each cell in the array is evaluated. If the cell contains
an infected animal, we determine whether each of its four neighbours is in a susceptible
state. If a neighbour is susceptible or exposed and has little or no resistance to infection,
it becomes infected with probability p. Once infected the animal remains infective for
a specified number of time-steps after which time it dies or becomes susceptible again.

The second model simulates the disease incidence and prevalence in which an im-
mune class has been introduced (Rule B below). An immune class is introduced by
sending vaccination teams to highest ranked subregions. This is the Preferred Vaccina-
tion Programme (PVP).

Rule B

Using a sparsely populated rectilinear grid, we consider an extension of Rule A to in-
clude an immune state for the status variable v. After remaining infected for D time
units, an animal may become immune in a subregion with a certain probability. An
animal in the immune state remains immune for a specified number of time-steps and
dies.

Results and Control Implementation

A direct vaccination coverage to specific age groups is difficult in the case of badgers so
oral vaccination could be administered by way of sprinkling food mixed with vaccine.
(This method is remarkably efficient in dispensing vaccine to foxes in the case of rabies.)
Vaccination is assumed to be given randomly to all badgers while with cattle those in
the same age group or those found by a serological test to be susceptible could be
vaccinated. The proposed strategy for vaccination should be one year after birth and
four years afterwards.
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To obtain some measure for the cost, C , of such a programme we exploit (10.120)
and (10.121) to propose a cost–benefit criterion. One measure of the effort for a partic-
ular strategy to be implemented is

C = f e−µT1 [1 + e−(λ2+r)T1 ] + ge−µT2[1 + e−(λ2+r)T2], (10.126)

and similarly for the cattle population

Figure 10.21. Cellular automaton simulation for disease spread between badgers and cattle. We consider a
sparsely populated region (white regions imply uninhabited regions). Parameter values: normalised badger
density = 0.60, cattle density = 0.40, duration of disease = 3 months. Transmission probabilities: infected
cow to susceptible cow = 0.25, infected cow to susceptible badger = 0.1, infected badger to susceptible cow
= 0.75. No development of immunity. (a) One infected badger introduced in the sett at t = 0. (b), (c) and (d)
depict patterns of infection at t = 20 months, t = 40 months, t = 60 months. Initial condition: one infected
badger was introduced at the centre of the array.
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Figure 10.22. Empirical response to a vaccination policy. In comparison with the spread of infection between
badgers and cattle (Figure 10.21), with the conferment of immunity due to the introduction of the PVP,
the simulations suggest a possible reduction in disease incidence and prevalence. Parameter values: badger
density = 0.60, cattle density = 0.40, duration of disease = 3 months. Transmission probabilities: infected
cow to susceptible cow = 0.25, infected cow to susceptible badger = 0.1, infected badger to susceptible cow
= 0.75. Immunity is 6 months. (a) One infected badger introduced in the sett at t = 0. (b), (c) and (d) depict
patterns of infection at t = 20 months, t = 40 months, t = 60 months. Initial condition: one infected badger
was introduced at the centre of the array.

C̃ = f̃ e−µ̃T1 [1 + e−(λ̃2+r̃)T1] + g̃e−µ̃T2 [1 + e−(λ̃2+r̃)T2], (10.127)

where in each case we consider the force of infection in cattle, say, has an influence on
the disease transmission dynamics of badgers and vice versa. Even though the Preferred
Vaccination Policy could cost more than the other vaccination policies, the cumulative
number of mean infected cattle over a 10-year planning period would be reduced to a
significantly lower level. The indicator for the programme’s success should therefore not
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be cost-per-badger or cattle vaccinated but cost-per-infected badger or cattle prevented
from becoming infected.

The cellular automaton models provide a visual representation of the main qual-
itative features of disease prevalence in badgers and cattle and the impact of a Pre-
ferred Vaccination Policy. Figure 10.21 shows a cellular automaton model for a typical
criss-cross infection involving two distinct populations, that is, cattle and badgers. Fig-
ure 10.22 shows the characteristic empirical response to the described PVP for sparsely
populated unit cells of badgers and cattle and an infection between them.

We are interested in the long term effect on the disease prevalence as a consequence
of implementing a vaccination policy. So, by way of example, we used similar cellular
automaton models to study the disease prevalence in badgers for the following control
policies: (i) no vaccination, (ii) approximately 66% initial vaccination, and (iii) 66%
initial + 66% revaccination (after five years). The vaccination was assumed to be ad-
ministered by sprinkling food mixed with vaccines. Figure 10.23 compares results of
the possible control experiments with that for the Preferred Vaccination Policy over a
10-year period.

As mentioned at the beginning of this section the MAFF control policy in Britain
assumed that such a single and intensive intervention to remove all infected groups of
animals would suffice to eliminate infection from contaminated areas for long periods
of time (MAFF Report 1987). The MAFF (1994) report resulted in a more selective
culling: badgers in Britain are now legally protected. The USDA eradication policy at-
tempted to liquidate all infected animals in the herd with indemnities paid, as available,
to help compensate owners for their losses, or hold herds under quarantine and tested

Figure 10.23. Computer simulation of possible scenarios for fractions of infected badgers over a 10-year
period under various control strategies. The graphs show an empirical response to the control strategies de-
scribed above namely: (i) no vaccination, (ii) 66% vaccination, (iii) two 66% vaccination campaigns, one at
the beginning and the other after 5 years, (iv) PVP. It is evident that the fraction of infected badgers will be
much lower for the PVP, giving an indication that the disease prevalence will be minimal in cattle too.
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until all evidence of infection was eliminated (USDA Report 1982a,b) may not be the
only approaches to take, from our model predictions. We note that chemotherapy in the
form of oral vaccination (sprinkling of food mixed with vaccine) could be an effective
way of controlling the spread of the disease in badgers as opposed to gassing, trapping
and killing, since badgers, unlike cattle, are not confined to specific regions and move
about randomly within and sometimes away from their setts. Again as already men-
tioned such a procedure has been very successful in the control of fox rabies in parts of
Europe. We have also shown that eradication of the disease is easier if animals are vac-
cinated at the earliest feasible year (one year) rather than wait until there is an infection,
in which case it would be almost impossible to eradicate the disease.

Early mass vaccination programmes predict a reduction of the effective reproduc-
tion rate of infection within communities, and hence raise the average age at infection
amongst those animals which experience the disease. If, however, the force of infection
changes with age, the tendency of mass immunization to increase the average age at
infection may mean that the rate of exposure of susceptibles to infection in older classes
may well differ from the rates acting in the age classes in which the susceptibles would
have typically acquired infection prior to immunization. The potential consequence of
such a change is to reduce the predicted level of vaccination coverage required to erad-
icate the infection below a certain level.

It seems that of the three vaccination strategies considered, leaving aside the cost–
benefit criteria, the Preferred Vaccination Policy which targets highest ranked ‘infec-
tious’ regions and vaccinates susceptibles is the best of the control programmes for
bovine tuberculosis infection between badgers and cattle if an epidemic occurs. It should
be noted, however, that the models we have discussed in this section and the previous
one are still fairly basic. Not only that, we have not taken into account the spatial move-
ment of the badgers. Relevant data on badger movement is given by Rogers et al. (1998)
for 36 social groups in Gloucestershire in England over a period of 18 years. They show
that the movement of badgers within groups varies and with this variation there is a
variation in the incidence of bovine tuberculosis. The spatial aspects of disease spread
are extremely important. We discuss an example of this later in Chapter 13, Volume II
when we discuss the spatial spread of a rabies epidemic.

An interesting and very different new approach to the control of bovine tuberculosis
is given by Kao et al. (1997). They develop a herd-based model which involves ‘test
and slaughter’ combined with herd isolation and vaccination and they apply it to the
situation in New Zealand. The model system consists of ordinary differential equations,
relating movement from one state to another (such as from latent to infected) and an
integral equation which gives the number of infected herds.

The question as to what is the best strategy for control is highly complex and clearly
species-(and geographically) dependent. In the HIV modelling above we could incor-
porate two drugs into the models and thereby compare the efficacies of the different
treatments. In the case of badgers and Tb, vaccination is now the preferred method of
control in England. Rabies, the vector for which is the red fox (Vulpes vulpes) in the
present epidemic in western Europe and, as mentioned, is controlled by vaccination,
does not (yet) exist in Britain where domestic animals are not vaccinated for the dis-
ease. (Fox hunting in England is an amazingly inefficient way of keeping down the fox
population.) It would be interesting to construct a model which included various meth-
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ods of control and to compare the consequences of vaccination, culling, contraception
and so on. From the point of culling a new selective culling was introduced in 1994
(MAFF Report 1994): without more knowledge which could come from further stud-
ies and realistic modelling it simply fuels the controversy. Hancox (1995) presents the
various arguments in the debate. He concludes that there may be cattle reservoirs of
bovine TB and so it is the cattle who are continually infecting the badger, a much more
appealing scenario for the British with their sentimental view of badgers and who view
the slaughtering of badgers with much indignation. The vaccination scenario we discuss
in this section does not distinguish which of the badgers or cattle is the reservoir.

BSE (Bovine Spongiform Encephalopathy) and Creutzfeldt–Jacob (CJ) Disease

Although we do not do any modelling it is important to briefly mention bovine spongi-
form encephalopathy (BSE), or ‘mad cow’ disease. It was first diagnosed in England
in 1986 and by the summer of 1997 there were around 167,000 cases confirmed with
undoubtedly many more undetected.12 The epidemic was severe in both size and in
particular the human consequences since it is has given rise to the emergence of a new
human disease, namely, a variant of Creutzfeldt–Jacob (CJ) disease.

CJ disease is a particularly horrifying neurodegenerative disease that affects the
brain and is always fatal. It is caused by prions, which are very small particles—badly
folded proteins—that are particularly tenacious; they cannot be broken down nor killed
easily. Unlike viruses they contain no genetic material and so provoke no immune re-
sponse. These prions accumulate in the brain and make spongelike holes. Prior to death
the victims suffer from insomnia, depression, anxiety, memory loss, loss of bodily func-
tion control, coordination and blindness. Since prions are only in infected tissue they can
easily be missed in an autopsy, which is why CJ is difficult to detect. It is becoming clear
that BSE in the cattle was a result of contaminated feed associated with the equivalent
disease in sheep and is directly the cause of variant CJ in humans. BSE comes under the
category of a transmissable spongiform encephalopathy or TSE.

By the end of 2000 only 87 cases in Britain have been found since 1994. Compared
with malaria or HIV it is negligible. There are several rather frightening reasons for the
panic, particularly in France, because of the chilling list of facts about BSE and how
easily it is passed from one infected animal to another. The pathogen is very tenacious
and is resistant to heat, boiling, alcohol, ionizing radiation and so on. Surgical instru-
ments which were in contact with the infected tissue can remain contaminated even
after normal sterilisation. The pathogen can survive being buried for years, could end
up in landfills and possibly passed on to grazing animals. BSE can be passed on by a
cow ingesting as little as a few grammes of infected tissue. An animal can harbour the
disease wihout showing any symptoms but it can pass it on to another animal. With the
variant CJ disease it may be possible for one human, who has it but shows no symp-

12The story of how the U.K. government dealt with the problem is an example of astonishing incompetence
if not irresponsibility. As of 2000 the question of the export of British beef—now reputed to be free of BSE—
was a matter of litigation between France on one side and Britain and the European Union on the other. The
French felt that the evidence that the British beef was now safe was not unequivocal. As of the end of 2000
an epidemic in France, and other European countries, is causing serious concern and not just in view of the
connection to Creutzfeldt–Jacob disease.
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toms, to pass it on to another.13 The disease, in many ways is like being bitten by a dog
that was possibly rabid but without the benefit of any subsequent vaccine, with a gesta-
tion period that could last for years with the knowledge that the disease can be passed
(possibly trivially) on to others without any knowledge of having done so.

Another concern about infected animals is that most of a slaughtered animal is used
for purposes other than beef for human consumption. It is frequently used in cosmetics,
pet chow, beauty preparations and so on; the choreographer, George Balanchine, who
died of CJ disease is believed to have contracted it from using a bovine glandular prod-
uct to preserve youthful looks. The first French case was of a bodybuilder who used a
muscle-boosting preparation. One of these currently (2000) available, according to Dr.
Michael Hansen of the U.S. Consumers’ Union, contains dried bovine brain, spleen, pi-
tuitary glands and eye tissue. Another possibility of contracting the disease comes from
vaccines which are cultivated in bovine serum as was the case in Britain until 1993; the
vaccines were only withdrawn from use in November 2000.

Since it is unknown how easy or difficult it is to contract CJ in humans, how long
the gestation period is and so on, it is very difficult at this stage to come up with a model
that has any credence as regards prediction. Nevertheless it is important to try and get
some idea of the progress of both BSE in cattle and CJ disease in humans. Estimates
range from several hundred thousand to (according to Dominique Gillot, the French
Minister of Health) several dozen: the latter is clearly ridiculous. The increase in CJ
disease in Britain is becoming alarming. Although the numbers are still small, it is the
rate of increase that is crucial as we know from the material in this chapter. For example,
14 people died in 1999 and 14 contracted it in the first six and a half months of 2000
by when a total of 74 had died. By the end of 2000, a further 13 had died. The long
incubation period of the human form of the disease and the fact that it is probable that
several million people were exposed to contaminated beef in the 1980’s imply that over
the next 25 to 35 years several hundred thousand people could die of CJ disease.

Some modelling has been carried out by Donnelly et al. (1997), who set the demo-
graphic scene and discussed control strategies while Ferguson et al. (1997) presented
and analysed an age-structured model for the transmission dynamics: unfortunately
these have had to be based on the very limited available data about the etiology of the
disease. The model includes infection obtained from feed, the primary source of BSE
in cattle, as well as from direct horizontal and maternal transmission. They estimate pa-
rameters from the data and use back-calculation to reconstruct the past temporal pattern
infection. Such back-calculation was used by Murray et al. (1986) in their study of the
spatial spread of rabies. A review of this back-calculation methodology associated with
parameter estimation in HIV-infection rates has been given by Bacchetti et al. (1993).
Ferguson et al. (1997) carried out a sensitivity analysis of the parameters, gave estimates
and predictions and discussed some of the implications. As mentioned, with the large
number of unknowns any model predictions must be treated with considerable reserve.

In the case of any disease, the ultimate aim of epidemiologists is to eradicate it,
or in other words make the virus, bacterium or whatever, become extinct. On the other

13Long before the BSE epidemic and the variant CJ disease, corneal transplantation was implicated in one
case of human-to-human transmission of Creutzfeldt–Jacob disease (Duffy et al. 1974).
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hand ecologists view extinction of a species, decline of their habitat, in fact generally
a decline in biodiversity as a disaster. Although epidemiologists and ecologists have
opposite goals the mathematical model equations share similar forms and analytical
analyses. The paper by Earn et al. (1998) reviews some of the differences and similari-
ties between these two important fields and discusses some of the recent work on their
spatial aspects, chaotic behaviour and synchrony.

Exercises

1 Consider the dynamics of a directly transmitted viral microparasite to be modelled
by the system

d X

dt
= bN − β XY − bX,

dY

dt
= β XY − (b + r)Y,

d Z

dt
= rY − bZ ,

where b, β and r are positive constants and X , Y and Z are the number of suscep-
tibles, infectives and immune populations respectively. Here the population is kept
constant by births and deaths (with a contribution from each class) balancing. Show
that there is a threshold population size, Nc, such that if N < Nc = (b + r)/β

the parasite cannot maintain itself in the population and both the infectives and the
immune class eventually die out. The quantity βN/(b + r) is the basic reproductive
rate of the infection.

2 Consider an epidemic outbreak of a lethal disease in which the infectious period and
the incubation period of the disease are different. Denote the number of susceptibles
by S(t), those incubating the disease by E(t), the population who are infectious by
I (t) and those that have died by R(t). During the epidemic assume the population is
constant, equal to N . If a susceptible can be infected by someone who is incubating
the disease but less easily than by an infected person, justify the following SEIR
model,

d S

dt
= −βS

N
(I + r E),

d E

dt
= βS

N
(I + r E) − bE,

d I

dt
= bE − cI,

d R

dt
= cI,

where β, r, b and c are positive constants. What does each of these parameters mea-
sure?

Suppose that in the early stages of the epidemic only a few (relative to the
total population) individuals, E0, become infected all at the same time and so are
incubating the disease: they do not become infectious for a time of the order of 1/b.
Is this a reasonable presumption? During this time S(t) ≈ N . Use this to solve for
E(t) as a function of t .

With the full system examine the stability of the disease-free steady state
and hence determine the conditions for it to be unstable. Hence deduce that the basic
reproductive rate R0 = (β/bc)(b + cr).
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3 In a criss-cross venereal infection model, with the removed class permanently im-
mune, the infection dynamics is represented by

S −→ I −→ R

S′ −→ I ′ −→ R′.

with the usual notation for the susceptibles, infectives and the removed class. Briefly
describe the assumptions made for its model system to be

d S

dt
= −r SI ′, d S′

dt
= −r ′S′ I,

d I

dt
= r SI ′ − aI,

d I ′

dt
= r ′S′ I − a′ I ′,

d R

dt
= aI,

d R′

dt
= a′ I ′,

where the parameters are all positive. The initial values for S, I , R, S′, I ′ and R′ are
S0, I0, 0 and S′

0, I ′
0, 0 respectively.

Show that the female and male populations are constant. Hence show that
S(t) = S0 exp [−r R′/a′]; deduce that S(∞) > 0 and I (∞) = 0 with similar results
for S′ and I ′. Obtain the transcendental equations which determine S(∞) and S′(∞).

Show that the threshold condition for an epidemic to occur is at least one of

S0 I ′
0

I0
>

a

r
,

S′
0 I0

I ′
0

>
a′

r ′ .

What single condition would ensure an epidemic?

4 Consider a population of haemophiliacs who were given infected blood and so were
all infected with HIV at the same time t = 0. Denote by y(t) the fraction of the
population who have AIDS at time t , and by x(t) the fraction who are HIV-positive
but do not yet have AIDS. Let v(t) be the rate of conversion from infection to AIDS.
Show that a simple model for the dynamics with relevant initial conditions is then

dx

dt
= −v(t)x,

dy

dt
= v(t)x,

x(0) = 1, y(0) = 0.

Assume that the patient’s immune system is progressively impaired from the time
of infection and so v(t) is an increasing function of time. Examine the system when
v(t) varies: (i) linearly with time and sketch the rate of change in the population who
develop AIDS and (ii) faster than linearly.

[Peterman et al. (1985) present data on 194 cases of blood transfusion-
associated AIDS. With v(t) = at the solution of the model system with a =
0.237yr−1 applied to these data gives the rate of increase, dy/dt , in AIDS patients
which compares very well (depressingly so) with the data.]

5 For the drug use epidemic model in Section 10.9 show that the values given for the
threshold parameter γ /S0 in cases (iii) and (iv) in Table 10.1 are as given.



11. Reaction Diffusion, Chemotaxis, and
Nonlocal Mechanisms

11.1 Simple Random Walk and Derivation of the
Diffusion Equation

In an assemblage of particles, for example, cells, bacteria, chemicals, animals and so
on, each particle usually moves around in a random way. The particles spread out as
a result of this irregular individual particle’s motion. When this microscopic irregular
movement results in some macroscopic or gross regular motion of the group we can
think of it as a diffusion process. Of course there may be interaction between particles,
for example, or the environment may give some bias in which case the gross movement
is not simple diffusion. To get the macroscopic behaviour from a knowledge of the
individual microscopic behaviour is much too hard so we derive a continuum model
equation for the global behaviour in terms of a particle density or concentration. It
is instructive to start with a random process which we look at probabilistically in an
elementary way, and then derive a deterministic model.

For simplicity we consider initially only one-dimensional motion and the simplest
random walk process. The generalisation to higher dimensions is then intuitively clear
from the one-dimensional equation.

Suppose a particle moves randomly backward and forward along a line in fixed
steps �x that are taken in a fixed time �t . If the motion is unbiased then it is equally
probable that the particle takes a step to the right or left. After time N �t the particle
can be anywhere from −N �x to N �x if we take the starting point of the particle as
the origin. The spatial distribution is clearly not going to be uniform if we release a
group of particles about x = 0 since the probability of a particle reaching x = N �x
after N steps is very small compared with that for x nearer x = 0.

We want the probability p(m, n) that a particle reaches a point m space steps to the
right (that is, to x = m �x) after n time-steps (that is, after a time n �t). Let us suppose
that to reach m �x it has moved a steps to the right and b to the left. Then

m = a − b, a + b = n ⇒ a = n + m

2
, b = n − a.

The number of possible paths that a particle can reach this point x = m �x is
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n!
a!b! = n!

a!(n − a)!C
n
a ,

where Cn
a is the binomial coefficient defined, for example, by

(x + y)n =
n∑

a=0

Cn
a xn−a ya.

The total number of possible n-step paths is 2n and so the probability p(m, n) (the
favorable possibilities/total possibilities) is

p(m, n) = 1

2n

n!
a!(n − a)! , a = n + m

2
, (11.1)

n + m is even.
Note that

n∑

m=−n

p(m, n) = 1,

as it must since the sum of all probabilities must equal 1. It is clear mathematically since

n∑

m=−n

p(m, n) =
n∑

a=0

Cn
a

(
1

2

)n−a (
1

2

)a

=
(

1

2
+ 1

2

)n

= 1,

p(m, n) is the binomial distribution.
If we now let n be large so that n ± m are also large we have, asymptotically,

n! ∼ (2πn)1/2nne−n, n � 1, (11.2)

which is Stirling’s formula. This is derived by noting that

n! = (n + 1) =
∫ ∞

0
e−t tn dt,

where  is the gamma function, and using Laplace’s method for the asymptotic approx-
imation for such integrals for n large (see, for example, Murray’s 1984 elementary book
Asymptotic Analysis). Using (11.2) in (11.1) we get, after a little algebra, the normal or
Gaussian probability distribution

p(m, n) ∼
(

2

πn

)1/2

e−m2/(2n), m � 1, n � 1. (11.3)

m and n need not be very large for (11.3) to be an accurate approximation to (11.1). For
example, with n = 8 and m = 6, (11.3) is within 5% of the exact value from (11.1);



11.1 Simple Random Walk, Derivation of Diffusion Equation 397

with n = 10 and m = 4 it is accurate to within 1%. In fact for all practical purposes we
can use (11.3) for n > 6. Asymptotic approximations can often be remarkably accurate
over a wider range than might be imagined.

Now set

m �x = x, n �t = t,

where x and t are the continuous space and time variables. If we anticipate letting
m → ∞, n → ∞, �x → 0, �t → 0 so that x and t are finite, then it is not appropriate
to have p(m, n) as the quantity of interest since this probability must tend to zero: the
number of points on the line tends to ∞ as �x → 0. The relevant dependent variable is
more appropriately u = p/(2 �x): 2u �x is the probability of finding a particle in the
interval (x, x + �x) at time t . From (11.3) with m = x/�x , n = t/�t ,

p
( x

�x , t
�t

)

2 �x
∼

{
�t

2π t (�x)2

}1/2

exp

{

− x2

2t

�t

(�x)2

}

.

If we assume

lim
�x → 0
�t → 0

(�x)2

2 �t
= D = 0

the last equation gives

u(x, t) = lim
�x → 0
�t → 0

p
( x

�x , t
�t

)

2 �x
=

(
1

4π Dt

)1/2

e−x2/(4Dt). (11.4)

D is the diffusion coefficient or diffusivity of the particles; note that it has dimensions
(length)2/(time). It is a measure of how efficiently the particles disperse from a high to
a low density. For example, in blood, haemoglobin molecules have a diffusion coeffi-
cient of the order of 10−7 cm2 sec−1 while that for oxygen in blood is of the order of
10−5 cm2 sec−1.

Let us now relate this result to the classical approach to diffusion, namely, Fickian
diffusion. This says that the flux, J , of material, which can be cells, amount of chemical,
number of animals and so on, is proportional to the gradient of the concentration of the
material. That is, in one dimension

J ∝ − ∂c

∂x
⇒ J = −D

∂c

∂x
, (11.5)

where c(x, t) is the concentration of the species and D is its diffusivity. The minus sign
simply indicates that diffusion transports matter from a high to a low concentration.
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We now write a general conservation equation which says that the rate of change of
the amount of material in a region is equal to the rate of flow across the boundary plus
any that is created within the boundary. If the region is x0 < x < x1 and no material is
created,

∂

∂t

∫ x1

x0

c(x, t) dx = J (x0, t) − J (x1, t). (11.6)

If we take x1 = x0 + �x , take the limit as �x → 0 and use (11.5) we get the classical
diffusion equation in one dimension, namely,

∂c

∂t
= −∂ J

∂x
= ∂(D ∂c

∂x )

∂x
, (11.7)

which, if D is constant, becomes

∂c

∂t
= D

∂2c

∂x2
. (11.8)

If we release an amount Q of particles per unit area at x = 0 at t = 0, that is,

c(x, 0) = Qδ(x), (11.9)

where δ(x) is the Dirac delta function, then the solution of (11.8) is (see, for example,
Crank’s 1975 book)

c(x, t) = Q

2(π DT )1/2
e−x2/(4Dt), t > 0 (11.10)

which, with Q = 1, is the same result as (11.4), obtained from a random walk approach
when the step and time sizes are small compared with x and t . Figure 11.1 qualitatively
illustrates the concentration c(x, t) from (11.10) as a function of x for various times.

This way of relating the diffusion equation to the random walk approach essentially
uses circumstantial evidence. We now derive it by extending the random walk approach
and start with p(x, t), from (11.4), as the probability that a particle released at x = 0 at

Figure 11.1. Schematic particle concentration distribution arising from Q particles released at x = 0 at t = 0
and diffusing according to the diffusion equation (11.8).
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t = 0 reaches x in time t . At time t − �t the particle was at x − �x or x + �x . Thus,
if α and β are the probabilities that a particle will move to the right or left

p(x, t) = αp(x − �x, t − �t) + βp(x + �x, t − �t), α + β = 1. (11.11)

If there is no bias in the random walk, that is, it is isotropic, α = 1/2 = β. Expanding
the right-hand side of (11.11) in a Taylor series we get

∂p

∂t
=

[
(�x)2

2 �t

]
∂2 p

∂x2
+

(
�t

2

)
∂2 p

∂t2
+ · · · .

If we now let �x → 0 and �t → 0 such that, as before

lim
�x → 0
�t → 0

(�x)2

2 �t
= D

we get

∂p

∂t
= D

∂2 p

∂x2
.

If the total number of released particles is Q, then the concentration of particles c(x, t) =
Qp(x, t) and the last equation becomes (11.8).

The random walk derivation is still not completely satisfactory since it relies on
�x and �t tending to zero in a rather specific way so that D exists. A better and more
sophisticated way is to derive it from the Fokker–Planck equations using a probability
density function with a Markov process; that is, a process at time t depending only on
the state at time t − �t ; in other words a one-generation time-dependency. See, for
example, Skellam (1973) or the excellent book by Okubo (1980). The latter gives some
justification to the limiting process used above. The review article by Okubo (1986) also
discusses the derivation of various diffusion equations.

11.2 Reaction Diffusion Equations

Consider now diffusion in three space dimensions. Let S be an arbitrary surface enclos-
ing a volume V . The general conservation equation says that the rate of change of the
amount of material in V is equal to the rate of flow of material across S into V plus the
material created in V . Thus

∂

∂t

∫

V
c(x, t) dv = −

∫

S
J · ds +

∫

V
f dv, (11.12)

where J is the flux of material and f , which represents the source of material, may be
a function of c, x and t . Applying the divergence theorem to the surface integral and
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assuming c(x, t) is continuous, the last equation becomes

∫

V

[
∂c

∂t
+ ∇ · J − f (c, x, t)

]
dv = 0. (11.13)

Since the volume V is arbitrary the integrand must be zero and so the conservation
equation for c is

∂c

∂t
+ ∇ · J = f (c, x, t). (11.14)

This equation holds for a general flux transport J, whether by diffusion or some other
process.

If classical diffusion is the process then the generalisation of (11.5), for example, is

J = −D∇c (11.15)

and (11.14) becomes

∂c

∂t
= f + ∇ · (D∇c), (11.16)

where D may be a function of x and c and f a function of c, x and t . Situations where
D is space-dependent are arising in more and more modelling situations of biomed-
ical importance from diffusion of genetically engineered organisms in heterogeneous
environments to the effect of white and grey matter in the growth and spread of brain
tumours.

The source term f in an ecological context, for example, could represent the birth–
death process and c the population density, n. With logistic population growth f =
rn(1 − n/K ), where r is the linear reproduction rate and K the carrying capacity of the
environment. The resulting equation with D constant is

∂n

∂t
= rn

(
1 − n

K

)
+ D∇2n, (11.17)

now known as the Fisher–Kolmogoroff equation after Fisher (1937) who proposed the
one-dimensional version as a model for the spread of an advantageous gene in a popula-
tion and Kolmogoroff et al. (1937) who studied the equation in depth and obtained some
of the basic analytical results. This is an equation we study in detail later in Chapter 13.

If we further generalise (11.16) to the situation in which there are, for example,
several interacting species or chemicals we then have a vector ui (x, t), i = 1, . . . , m
of densities or concentrations each diffusing with its own diffusion coefficient Di and
interacting according to the vector source term f. Then (11.16) becomes

∂u
∂t

= f + ∇ · (D∇u), (11.18)

where now D is a matrix of the diffusivities which, if there is no cross diffusion among
the species, is simply a diagonal matrix. In (11.18) ∇u is a tensor so ∇ · D∇u is a vector.
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Cross-diffusion does not arise often in genuinely practical models: one example where
it will be described is in Chapter 1, Volume II, Section 1.2. Cross-diffusion systems
can pose interesting mathematical problems particularly regarding their well-posedness.
Equation (11.18) is referred to as a reaction diffusion system. Such a mechanism was
proposed as a model for the chemical basis of morphogenesis by Turing (1952) in one
of the most important papers in theoretical biology this century. Such systems have been
widely studied since about 1970. We shall mainly be concerned with reaction diffusion
systems when D is diagonal and constant and f is a function only of u. Further gener-
alisation can include, in the case of population models, for example, integral terms in f
which reflect the population history. In some cancer models involving mutating cancer
cells—the situation which obtains with brain (glioblastoma) tumours and others—there
are cross-diffusion terms and unequal diagonal terms in the diffusion matrix. The mathe-
matical generalisations seem endless. For most practical models of real world situations
it is premature, to say the least, to spend too much time on sophisticated generalisa-
tions1 before the simpler versions have been shown to be inadequate when compared
with experiment or observation.

It is appropriate to mention briefly, at this stage, an important area in physiology as-
sociated with reaction diffusion equations which we do not discuss further in this book,
namely, facilitated diffusion. The accepted models closely mimic the experimental sit-
uations and involve biochemical reaction kinetics, such as oxygen combined reversibly
with haemoglobin and myoglobin; the latter is crucially important in muscle. Myo-
globin is less efficient than haemoglobin as a facilitator. The subject has been studied
in depth experimentally by Wittenberg (see 1970 for a review) and Wittenberg et al.
(1975) and their colleagues and in the case of proton facilitation by proteins by Gros
et al. (1976, 1984). Without facilitated diffusion muscle tissue, for example, could not
survive as heuristically shown theoretically by Wyman (1966). This is an area which is
essentially understood as a consequence of the intimate union of mathematical models
with experiment. The theory of oxygen facilitation was given by Wyman (1966), Mur-
ray (1971, 1974) and, in the case of carbon monoxide by Murray and Wyman (1971).
For facilitation to be effective there must be a zone of reaction equilibrium within the
tissue which implies that nonequilibrium boundary layers exist near the surface (Mur-
ray 1971, Mitchell and Murray 1973, Rubinow and Dembo 1977). The conditions for
existence of the equilibrium zone provide an explanation of why haemoglobin is a bet-
ter facilitator of oxygen than myoglobin and why carbon monoxide is not facilitated by
myoglobin. The whole phenomenon of facilitated diffusion also plays a crucial role in
carbon monoxide poisoning and the difficulties of getting rid of the carbon monoxide
(Britton and Murray 1977).

The theory of proton facilitation is a much more complex phenomena since Gros
et al. (1976, 1984; see these papers for earlier references) showed experimentally that
it involves rotational diffusion by a form of haemoglobin and other proteins: the pro-
ton causes the haemoglobin molecule to rotate thereby increasing the overall diffusion
across tissue containing haemoglobin molecules. A mathematical theory of rotational
diffusion, which is very much more complicated, has been given by Murray and Smith
(1986).

1As de Tocqueville remarked, there is no point in generalising since God knows all the special cases.
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11.3 Models for Animal Dispersal
Diffusion models form a reasonable basis for studying insect and animal dispersal and
invasion; this and other aspects of animal population models are discussed in detail,
for example, by Okubo (1980, 1986), Shigesada (1980) and Lewis (1997). Dispersal
of interacting species is discussed by Shigesada et al. (1979) and of competing species
by Shigesada and Roughgarden (1982). Kareiva (1983) has shown that many species
appear to disperse according to a reaction diffusion model with a constant diffusion co-
efficient. He gives actual values for the diffusion coefficients which he obtained from
experiments on a variety of insect species. Kot et al. (1996) studied dispersal of organ-
isms in general and importantly incorporated real data (see also Kot 2001). A common
feature of insect populations is their discrete time population growth. As would be ex-
pected intuitively this can have a major effect on their spatial dispersal. The model
equations involve the coupling of discrete time with continuous space, a topic investi-
gated by Kot (1992) and Neubert et al. (1995). The book of articles edited by Tilman
and Kareiva (1998) is a useful sourcebook for the role of space in this general area. The
articles address, for example, the question of persistence of endangered species, biodi-
versity, disease dynamics, multi-species competition and so on. The books by Renshaw
(1991) and Williamson (1996) are other very good texts for the study of species invasion
phenomena: these books have numerous examples. The excellent, more mathematical
and modelling oriented, book by Shigesada and Kawasaki (1997) discusses biological
invasions of mammals, birds, insects and plants in various forms, of which diffusion
is just one mechanism. For anyone seriously interested in modelling these phenomena
these books are required reading.

One extension of the classical diffusion model which is of particular relevance to
insect dispersal is when there is an increase in diffusion due to population pressure.
One such model has the diffusion coefficient, or rather the flux J, depending on the
population density n such that D increases with n; that is,

J = −D(n)∇n,
d D

dn
> 0. (11.19)

A typical form for D(n) is D0(n/n0)
m , where m > 0 and D0 and n0 are positive

constants. The dispersal equation for n without any growth term is then

∂n

∂t
= D0∇ ·

[(
n

n0

)m

∇n

]
.

In one dimension

∂n

∂t
= D0

∂

∂x

[(
n

n0

)m
∂n

∂x

]
, (11.20)

which has an exact analytical solution of the form
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n(x, t) = n0

λ(t)

[

1 −
{

x

r0λ(t)

}2
]1/m

, | x | ≤ r0λ(t)

= 0, | x | > r0λ(t),

(11.21)

where

λ(t) =
(

t

t0

)1/(2+m)

, r0 = Q�( 1
m + 3

2)

{π1/2n0�( 1
m + 1)} ,

t0 = r2
0 m

2D0(m + 2)
,

(11.22)

where � is the gamma function and Q is the initial number of insects released at the
origin. It is straightforward to check that (11.21) is a solution of (11.20) for all r0. The
evaluation of r0 comes from requiring the integral of n over all x to be equal to Q.
(In another context (11.20) is known as the porous media equation.) The population
is identically zero for x > r0λ(t). This solution is fundamentally different from that
when m = 0, namely, (11.10). The difference is due to the fact that D(0) = 0. The
solution represents a kind of wave with the front at x = x f = r0λ(t). The derivative
of n is discontinuous here. The wave ‘front,’ which we define here as the point where
n = 0, propagates with a speed dx f /dt = r0dλ/dt , which, from (11.22), decreases
with time for all m. The solution for n is illustrated schematically in Figure 11.2. The
dispersal patterns for grasshoppers exhibit a similar behaviour to this model (Aikman
and Hewitt 1972). Without any source term the population n, from (11.21), tends to
zero as t → ∞. Shigesada (1980) proposed such a model for animal dispersal in which
she took the linear diffusion dependence D(n) ∝ n; see also Shigesada and Kawasaki
(1997).

The equivalent plane radially symmetric problem with Q insects released at r = 0
at t = 0 satisfies the equation

∂n

∂t
=

(
D0

r

)
∂

∂r

[
r

(
n

n0

)m
∂n

∂r

]
(11.23)

with solution

Figure 11.2. Schematic solution, from (11.21), of equation (11.20) as a function of x at different times t .
Note the discontinuous derivative at the wavefront x f (t) = r0λ(t).
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n(r, t) = n0

λ2(t)

[

1 −
{

r

r0λ(t)

}2
]1/m

, r ≤ r0λ(t)

= 0, r > r0λ(t)

λ(t) =
(

t

t0

)1/2(m+1)

, t0 = r2
0 m

4D0(m + 1)
,

r2
0 = Q

πn0

(
1 + 1

m

)
.

(11.24)

As m → 0, that is, D(n) → D0, the solutions (11.21) and (11.24) tend to the usual
constant diffusion solutions: (11.10), for example, in the case of (11.21). To show this
involves some algebra and use of the exponential definition exp[s] = limm→0(1 +
ms)1/m .

Insects at low population densities frequently tend to aggregate. One model (in one
dimension) which reflects this has the flux

J = Un − D(n)
∂n

∂x
,

where U is a transport velocity. For example, if the centre of attraction is the origin and
the velocity of attraction is constant, Shigesada et al. (1979) take U = −U0sgn(x) and
the resulting dispersal equation becomes

∂n

∂t
= U0

∂

∂x
[nsgn(x)] + D0

∂

∂x

[(
n

n0

)m
∂n

∂x

]
, (11.25)

which is not trivial to solve. We can, however, get some idea of the solution behaviour
for parts of the domain.

Suppose Q is again the initial flux of insects released at x = 0. We expect that
gradients in n near x = 0 for t ≈ 0 are large and so, in this region, the convection term
is small compared with the diffusion term, in which case the solution is approximately
given by (11.21). On the other hand after a long time we expect the population to reach
some steady, spatially inhomogeneous state where convection and diffusion effects bal-
ance. Then the solution is approximated by (11.25) with ∂n/∂t = 0. Integrating this
steady state equation twice using the conditions n → 0, ∂n/∂x → 0 as | x | → ∞ we
get the steady state spatial distribution

lim
t→∞ n(x, t) → n(x) = n0

(
1 − mU0| x |

D0

)1/m

, | x | ≤ D0

mU0

= 0, | x | >
D0

mU0
.

(11.26)

The derivation of this is left as an exercise. The solution (11.26) shows that the dispersal
is finite in x . The form obtained when m = 1/2 is similar to the population distribu-
tion observed by Okubo and Chiang (1974) for a special type of mosquito swarm (see
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Figure 11.3. Schematic form of the steady state insect population distribution from (11.26), for insects which
tend to aggregate at low densities according to (11.25).

Okubo 1980, Fig. 9.6). Figure 11.3 schematically illustrates the steady state insect pop-
ulation.

Insect dispersal is a very important subject which is still not well understood. The
above model is a simple one but even so it gives some pointers as to possible insect
dispersal behaviour. If there is a population growth/death term we simply include it on
the right-hand side of (11.25) (Exercises 3 and 4). In these the insect population dies out
as expected, since there is no birth, only death, but what is interesting is that the insects
move only a finite distance from the origin.

The use of diffusion models for animal and insect dispersal is increasing and has
been applied to a variety of practical situations; the books by Okubo (1980) and Shige-
sada and Kawasaki (1997) give numerous examples. The review by Okubo (1986) dis-
cusses various models and specifically addresses animal grouping, insect swarms and
flocking. Mogilner and Edelstein-Keshet (1999) discuss models for swarming based
on nonlocal interactions. Their models incorporate long range attraction and repulsion.
They show that the swarm has a constant interior density and sharp edges (in other
words it looks like a swarm) if the density-dependence in the repulsion term is of a
higher order than in the attraction term. Chapter 14, Volume II is specifically concerned
with wolf dispersal and territory formation as well as wolf–deer (the wolves’ principal
prey) survival. There, among other things, we consider a more realistic form of the term
for the centre’s attraction (which for the wolves is the summer den) which does not give
rise to a gradient discontinuity as in Figure 11.3.

11.4 Chemotaxis

A large number of insects and animals (including humans) rely on an acute sense of
smell for conveying information between members of the species. Chemicals which
are involved in this process are called pheromones. For example, the female silk moth
Bombyx mori exudes a pheromone, called bombykol, as a sex attractant for the male,
which has a remarkably efficient antenna filter to measure the bombykol concentration,
and it moves in the direction of increasing concentration. The modelling problem here
is a fascinating and formidable one involving fluid mechanics and filtration theory on
quite different scales at the same time (Murray 1977). The acute sense of smell of many
deep sea fish is particularly important for communication and predation. Other than for
territorial demarcation one of the simplest and important exploitations of pheromone
release is the directed movement it can generate in a population. Here we model this
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chemically directed movement, which is called chemotaxis, which, unlike diffusion,
directs the motion up a concentration gradient.

It is not only in animal and insect ecology that chemotaxis is important. It can
be equally crucial in biological processes where there are numerous examples. For ex-
ample, when a bacterial infection invades the body it may be attacked by movement
of cells towards the source as a result of chemotaxis. Convincing evidence suggests
that leukocyte cells in the blood move towards a region of bacterial inflammation, to
counter it, by moving up a chemical gradient caused by the infection (see, for example,
Lauffenburger and Keller 1979, Tranquillo and Lauffenburger 1986, 1988 and Alt and
Lauffenburger 1987). We discuss bacterial chemotaxis and some of its remarkable con-
sequences in some detail in Chapter 5, Volume II.

A widely studied chemotactic phenomenon is that exhibited by the slime mould
Dictyostelium discoideum where single-cell amoebae move towards regions of rela-
tively high concentrations of a chemical called cyclic-AMP which is produced by the
amoebae themselves. Interesting wavelike movement and spatial patterning are ob-
served experimentally; see Chapter 1, Volume II. A discussion of the phenomenon and
some of the early mathematical models which have been proposed together with some
analysis are given, for example, in the book by Segel (1984). The kinetics involved have
been modelled by several authors. As more was found out about the biological system
the models necessarily changed. More complex and more biologically realistic models
have been proposed by Martiel and Goldbeter (1987), Goldbeter (1996) and Monk and
Othmer (1989). These new models all exhibit oscillatory behaviour. Spiro et al. (1997)
presented a model of excitation and adaptation in bacterial chemotaxis in wider biolog-
ical contexts. They incorporated detailed biochemical data into their model which they
then used to shed light on the actual experimental process.

Most mathematical models for spatial patterning in Dictyostelium discoideum are
based on continuum models for the chemoattractants and the cells. Dallon and Othmer
(1997) developed an interesting new model in which the cells are considered as discrete
entities with the chemoattractant concentrations continuous. The results agree well with
many of the extant experimental results. With their model they were able to investigate
the effects of different cell movement rules on aggregation patterns and wave motion,
including the origin of the ubiquitous spiral waves. We discuss wave propagation, in-
cluding spiral waves, in some detail in Chapter 13, and Chapter 1, Volume II. Chemo-
taxis is being found to be important in an increasing range of situations. The model
equations are extremely rich in unexpected phenomena several of which we describe
later in this volume and in Volume II.

Let us suppose that the presence of a gradient in an attractant, a(x, t), gives rise to
a movement, of the cells say, up the gradient. The flux of cells will increase with the
number of cells, n(x, t), present. Thus we may reasonably take as the chemotactic flux

J = nχ(a)∇a, (11.27)

where χ(a) is a function of the attractant concentration. In the general conservation
equation for n(x, t), namely,

∂n

∂t
+ ∇ · J = f (n),
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where f (n) represents the growth term for the cells, the flux

J = Jdiffusion + Jchemotaxis,

where the diffusion contribution is from (11.15) with the chemotaxis flux from (11.27).
Thus a basic reaction-diffusion-chemotaxis equation is

∂n

∂t
= f (n) − ∇ · nχ(a)∇a + ∇ · D∇n, (11.28)

where D is the diffusion coefficient of the cells.
Since the attractant a(x, t) is a chemical it also diffuses and is produced, by the

amoebae, for example, so we need a further equation for a(x, t). Typically

∂a

∂t
= g(a, n) + ∇ · Da∇a, (11.29)

where Da is the diffusion coefficient of a and g(a, n) is the kinetics/source term, which
may depend on n and a. Normally we would expect Da > D. If several species or
cell types all respond to the attractant the governing equation for the species vector is
an obvious generalisation of (11.28) to a vector form with χ(a) probably different for
each species. In Chapter 5, Volume II we shall show how crucial are the forms of f (n),
g(a, n) and χ(a) in determining the specific patterns that are formed.

In the seminal model of Keller and Segel (1971) for slime mould, g(a, n) = hn −
ka, where h, k are positive constants. Here hn represents the spontaneous production
of the attractant and is proportional to the number of amoebae n, while −ka represents
decay of attractant activity; that is, there is an exponential decay if the attractant is not
produced by the cells.

One simple version of the model has f (n) = 0; that is, the amoebae production
rate is negligible. This is the case during the pattern formation phase in the mould’s life
cycle. The chemotactic term χ(a) is taken to be a positive constant χ0. The form of this
term has to be determined from experiment; see Chapter 5, Volume II. With constant
diffusion coefficients, together with the above linear form for g(a, n), the model in one
space dimension becomes the nonlinear system

∂n

∂t
= D

∂2n

∂x2
− χ0

∂

∂x

(
n

∂a

∂x

)
,

∂a

∂t
= hn − ka + Da

∂2a

∂x2
,

(11.30)

which we study in Chapter 1, Volume II. There we consider n to be a bacterial popula-
tion and a the food which it consumes.

Other forms have been proposed for the chemotactic factor χ(a). For example,

χ(a) = χ0

a
, χ(a) = χ0 K

(K + a)2
, χ0 > 0, K > 0 (11.31)
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which are known respectively as the log law and receptor law. In these, as a decreases
the chemotactic effect increases. In Chapter 5, Volume II we discuss the specific bacteria
Salmonella and E. coli and give the forms for experimentally derived f (n), g(a, n) and
χ(a) and so on in (11.28) and (11.29).

There are various ways to define a practical measurable chemotaxis index, I, which
reflects the strength of the chemoattractant. Let us look at one example, and to be spe-
cific consider the planar movement of a cell, say, towards a source of chemoattractant
at position xs . Suppose the cell starts at xA and the source is distance D1 away. In the
absence of chemotaxis the cell’s movement is purely random and the mean distance, D2
say, that the cell moves in a given time T in the direction of xs is zero. In the presence
of chemotaxis the random movement is modified so that there is a general tendency for
the cell to move towards the chemoattractant source and over the same time T , D2 > 0.
We can define the index I = D2/D1: the larger I the stronger the chemotaxis. Tran-
quillo and Lauffenburger (1988) have analysed the detailed chemosensory movement of
leukocyte cells with a view to determining its chemotaxis parameters. Woodward et al.
(1995), Tyson (1996), Murray et al. (1998) and Tyson et al. (1998, 1999) give values,
obtained from experiment, for the chemotaxis parameters for Salmonella and E. coli.

The movement of certain cells can be influenced by the presence of applied electric
fields and the cells tend to move in a direction parallel to the applied field. This is
called galvanotaxis. The strength of galvanotaxis can be defined in a similar way to
chemotaxis. If V is an electric potential the galvanotaxis flux J of cells can reasonably be
taken as proportional to nG(V )∇V where G may be a function of the applied voltage V .

Before leaving this topic, note the difference in sign in (11.28) and (11.30) in the
diffusion and chemotaxis terms. Each has a Laplacian contribution. Whereas diffusion
is generally a stabilising force, chemotaxis is generally destabilising, like a kind of
negative diffusion. At this stage, therefore, it is reasonable to suppose that the balance
between stabilising and destabilising forces in the model system (11.30) could result in
some steady state spatial patterns in n and a, or in some unsteady wavelike spatially
heterogeneous structure. That is, nonuniform spatial patterns in the cell density appear;
see Chapters 1 and Chapter 5 in Volume II. On the other hand if the chemotactic effect
is sufficiently strong there could be a possibility of solution blow-up. This in fact can
happen: see, for example, the paper by Jäger and Luckhaus (1992), and other references
given there, on explosion of solutions of model equations with chemotaxis.

11.5 Nonlocal Effects and Long Range Diffusion

The classical approach to diffusion, which we have used above, is strictly only applica-
ble to dilute systems, that is, where the concentrations c, or densities n, are small. Its
applicability in practice is much wider than this of course, and use of the Fickian form
(11.15) for the diffusional flux, namely, J = −D∇c, or J = −D(n)∇c from (11.19)
in which the diffusion is dependent on n, is sufficient for many, if not most, practical
modelling purposes. What these forms in effect imply, is that diffusion is a local or short
range effect. We can see this if we consider the Laplacian operator ∇2n in the simple
diffusion equation ∂n/∂t = D∇2n. The Laplacian averages the neighbouring densities
and formally (see, for example, Hopf 1948, Morse and Feshbach 1953)
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∇2n ∝ 〈n(x, t)〉 − n(x, t)

R2
, as R → 0, (11.32)

where 〈n〉 is the average density in a sphere of radius R about x; that is,

nav = 〈n(x, t)〉 ≡
[

3

4π R3

] ∫

V
n(x + r, t) dr, (11.33)

where V is the sphere of radius R. This interpretation of the Laplacian was first sug-
gested by James Clerk Maxwell in 1871 (see Maxwell 1952, which is a compilation of
some of his papers).

Because the radius R → 0 we can expand n(x + r, t) in a Taylor series about x for
small r, namely,

n(x + r, t) = n(x, t) + (r · ∇)n + 1

2
(r · ∇)2n + · · ·

and substitute it into the integral in (11.33) for nav to get

nav =
[

3

4π R3

] ∫

V

[
n(x, t) + (r · ∇)n + 1

2
(r · ∇)2n + · · ·

]
dr.

Because of the symmetry the second integral is zero. If we neglect all terms O(r3) and
higher in the integrand, integration gives

nav =
(

3

4π R3

) [

n(x, t)
∫

V
dr + ∇2n(x, t)

∫

V

r2

2
dr

]

= n(x, t) + 3

10
R2∇2n(x, t).

(11.34)

If we now substitute this into the expression (11.32) we see that the proportionality
factor is 10/3.

In many biological areas, such as embryological development, the densities of cells
involved are not small and a local or short range diffusive flux proportional to the gra-
dient is not sufficiently accurate. When we discuss the mechanical theory of biological
pattern formation in Chapter 6, Volume II we shall show how, in certain circumstances,
it is intuitively reasonable, perhaps necessary, to include long range effects.

Instead of simply taking J ∝ ∇n we now consider

J = G
r∈N (x)

[∇n(x + r, t)], (11.35)

where N (x) is some neighbourhood of the point x over which effects are noticed at x,
and G is some functional of the gradient. From symmetry arguments and assumptions
of isotropy in the medium we are modelling, be it concentration or density, it can be
shown that the first correction to the simple linear ∇n for the flux J is a ∇(∇2n) term.
The resulting form for the flux in (11.35) is then
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J = −D1∇n + ∇D2(∇2n), (11.36)

where D1 > 0 and D2 are constants. D2 is a measure of the long range effects and in
general is smaller in magnitude than D1. This approach is due to Othmer (1969), who
goes into the formulation, derivation and form of the general functional G in detail. We
give different motivations for the long range D2-term below and in Section 11.6.

If we now take the flux J as given by (11.36) and use it in the conservation equation
((11.14) with f ≡ 0) we get

∂n

∂t
= −∇ · J = ∇ · D1∇n − ∇ · ∇(D2∇2n). (11.37)

In this form, using (11.32), we can see that whereas the first term represents an average
of nearest neighbours, the second—the biharmonic term—is a contribution from the
average of nearest averages.

The biharmonic term is stabilising if D2 > 0, or destabilising if D2 < 0. We can
see this if we look for solutions of (11.37) in the form

n(x, t) ∝ exp[σ t + ik · x], k = | k | (11.38)

which represents a wavelike solution with wave vector k (and so has a wavelength
2π/k) and σ is to be determined. Since (11.37) is a linear equation we can use this last
solution to obtain the solution to the general initial value problem using an appropriate
Fourier series or integral technique. Substitution of (11.38) into equation (11.37) gives
what is called the dispersion relation for σ in terms of the wavenumber k as

σ = −D1k2 − D2k4. (11.39)

The growth or decay of the solution is determined by exp[σ t] in (11.38). Dispersion
relations are very important in many different contexts. We discuss some of these in
detail in Chapter 2, Volume II in particular. With σ as a function of k, the solution
(11.38) shows the time behaviour of each wave, that is, for each k. In fact on substituting
(11.39) into the solution (11.38) we see that

n(x, t) ∝ exp[−(D1k2 + D2k4)t + ik · x]

so, for large enough wavenumbers k, k2 > D1/| D2 | in fact, we always have

n(x, t) →
{

0
∞ as t → ∞ if D2

{
> 0
< 0

. (11.40)

In classical Fickian diffusion D2 ≡ 0 and n → 0 as t → ∞ for all k. From (11.40) we
see that if D2 > 0 the biharmonic contribution (that is, the long range diffusion effect)
to the diffusion process is stabilising, while it is destabilising if D2 < 0.

Another important concept and approach to modelling long range effects uses an
integral equation formulation. (This approach provides a useful unifying concept we
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shall come back to later in Volume II when we consider a specific class of models for
the generation of steady state spatial patterns; see Chapter 12, Volume II.) Here the rate
of change of n at position x at time t depends on the influence of neighbouring n at all
other positions x ′. Such a model, in one space dimension, for example, is represented
mathematically by

∂n

∂t
= f (n) +

∫ ∞

−∞
w(x − x ′)n(x ′, t) dx ′, (11.41)

where w(x − x ′) is the kernel function which quantifies the effect the neighbouring
n(x ′, t) has on n(x, t). The form here assumes that the influence depends only on the
distance from x to x ′. The function f (n) is the usual source or kinetics term—the same
as we included in the reaction diffusion mechanisms (11.17) and (11.18); in the case of
the application to neuronal cells, it is referred to as the firing rate as we discuss below
and later in this volume. We assume, reasonably, that the influence of neighbours tends
to zero for | x − x ′ | large and that this influence is spatially symmetric; that is,

w → 0 as | x − x ′ | → ∞, w(x − x ′) = w(x ′ − x). (11.42)

Such a model (11.41) directly incorporates long range effects through the kernel: if w

tends to zero quickly, for example, like exp[−(x − x ′)2/s] where 0 < s � 1, then the
long range effects are weak, whereas if s � 1 they are strong.

To determine the spatiotemporal properties of the solutions of (11.41) the kernel
w has to be specified. This involves modelling the specific biological phenomenon un-
der consideration. Suppose we have neural cells which are cells which can fire sponta-
neously; here n represents the cells’ firing rate. Then f (n) represents the autonomous
spatially independent firing rate, and, in the absence of any neighbouring cells’ influ-
ence, the firing rate simply evolves to a stable steady state, determined by the zeros of
f (n). The mathematics is exactly the same as we discussed in Chapter 1. For example,
if f (n) is as in Figure 11.4(a) the rate evolves to the single steady state firing rate n1. If
f (n) is as in Figure 11.4(b) then there is a threshold firing rate above which n goes to a
nonzero steady state and below which it goes to extinction.

If we now incorporate spatial effects we must include the influence of neighbouring
cells; that is, we must prescribe the kernel function w. Suppose we assume that the cells
are subjected to both excitatory and inhibitory inputs from neighbouring cells, with the
strongest excitatory signals coming from the cells themselves. That is, if a cell is in a

Figure 11.4. (a) Typical firing rate function f (n) with a single nonzero steady state: n → n1 in the absence
of spatial effects. (b) A typical multi-steady state firing function. If n < nc, a critical firing rate, then n → 0,
that is, extinction. If n > nc then n → n1.
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Figure 11.5. Typical excitatory–inhibitory kernel w for spatial influence of neighbours in the model (11.41).

high firing state n tends to increase; it is like autocatalysis. A kernel which incorporates
such behaviour is illustrated in Figure 11.5.

We can relate this integral equation approach to the long range diffusion approxi-
mation which gave (11.37). Let

y = x − x ′ ⇒
∫ ∞

−∞
w(x − x ′)n(x ′, t) dx ′ =

∫ ∞

−∞
w(y)n(x − y, t) dy.

If we now expand n(x − y) about x as a Taylor series, as we did for the integral in
(11.33),

∫ ∞

−∞
w(x − x ′)n(x ′, t) dx ′ =

∫ ∞

−∞
w(y)

[

n(x, t) − y
∂n(x, t)

∂x
+ y2

2

∂2n(x, t)

∂x2

− y3

3!
∂3n(x, t)

∂x3
+ y4

4!
∂4n(x, t)

∂x4
− · · ·

]

dy.

(11.43)

Because of the assumed symmetry of the kernel w(y),

∫ ∞

−∞
y2m+1w(y) dy = 0, m = 0, 1, 2, . . . . (11.44)

If we now define the moments wm of the kernel w(y) by

w2m = 1

(2m)!
∫ ∞

−∞
y2mw(y) dy, m = 0, 1, 2, . . . (11.45)

equation (11.41) becomes

∂n

∂t
= f (n) + w0n + w2

∂2n

∂x2 + w4
∂4n

∂x4 + · · · . (11.46)

Higher moments of typical kernels get progressively smaller; this is intuitively clear
from (11.45). If we truncate the series in (11.46) at the 4th moment we get an approx-
imate model equation with a biharmonic ∂4n/∂x4 contribution comparable to that in
(11.37).
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The solution behaviour of (11.41) depends crucially on the signs of the kernel mo-
ments and hence on the detailed form of the kernel, one typical form of which is shown
qualitatively in Figure 11.5. For example, if w2 < 0 the ‘short range diffusion’ term is
destabilising, and if w4 < 0 the ‘long range diffusion’ is stabilising (cf.(11.39)).

This integral equation approach is in many ways a much more satisfactory way
to incorporate long range effects since it reflects, in a more descriptive way, what is
going on biologically. As we have said above we shall discuss such models in depth in
Chapter 12, Volume II which is about neural models which generate spatial patterns.

11.6 Cell Potential and Energy Approach to Diffusion
and Long Range Effects

We now discuss an alternative approach to motivate the higher-order, long range diffu-
sion terms. To be specific, in the following we have cell population densities in mind
and for pedagogical reasons give the derivation of the classical (Fickian) diffusion be-
fore considering the more general case. The treatment here follows that given by Cohen
and Murray (1981).

In general phenomenological terms if there is a gradient in a potential µ it can
drive a flux J which, classically, is proportional to ∇µ. We can, still in classical terms,
think of the potential as the work done in changing the state by a small amount or, in
other words, the variational derivative of an energy. Let n(x, t) be the cell density. We
associate with a spatial distribution of cells, an energy density e(n), that is, an internal
energy per unit volume of an evolving spatial pattern so that the total energy E[n] in a
volume V is given by

E[n] =
∫

V
e(n) dx. (11.47)

The change in energy δE , that is, the work done in changing states by an amount δn, is
the variational derivative δE/δn, which defines a potential µ(n). So

µ(n) = δE

δn
= e′(n). (11.48)

The gradient of the potential µ produces a flux J; that is, the flux J is proportional
to ∇µ and so

J = −D∇µ(n), (11.49)

where D is the proportionality parameter, which in this derivation may depend on x, t
and n. The continuity equation for n becomes

∂n

∂t
= −∇ · J = ∇ · [D∇µ(n)] = ∇ · [De′′(n)∇n] (11.50)
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on using (11.48) for µ(n), and so

∂n

∂t
= ∇ · [D∗(n)∇n], (11.51)

where

D∗(n) = De′′(n). (11.52)

In the simple classical diffusion situation with constant diffusion, the internal en-
ergy density is the usual quadratic with e(n) = n2/2. With this, µ(n) = n and (11.51)
becomes the usual diffusion equation ∂n/∂t = D∇2n, with D∗ = D, the constant dif-
fusion coefficient. If D is a function of x, t and n, the derivation is the same and the
resulting conservation equation for n is then

∂n

∂t
= ∇ · [D∗(x, t, n)∇n]. (11.53)

Here n can be a vector of cell species.
This derivation assumes that the energy density e(n) depends only on the density

n. If the cells are sensitive to the environment other than in their immediate neigh-
bourhood, it is reasonable to suppose that the energy required to maintain a spatial
heterogeneity depends on neighbouring gradients in the cell density. It is the spatial
heterogeneity which is ultimately of importance in biological pattern formation.

We take a more realistic energy functional, which is chosen so as to be invariant
under reflections (xi → −xi ) and rotations (xi → x j ), as

E[n] =
∫

V
[e(n) + k1∇2n + k2(∇n)2 + · · · ] dx, (11.54)

where the ks may be functions of n. Using Green’s theorem

∫

V
k1∇2n dx +

∫

V
∇k1 · ∇n dx =

∫

S
k1

∂n

∂N
ds,

where N is the outward pointing normal to the surface S which encloses V and where
we let k1 depend on n so that ∇k1 = k ′

1(n)∇n. From the last equation

∫

V
k1∇2n dx = −

∫

V
k′

1(n)(∇n)2 dx +
∫

S
k1

∂n

∂N
ds. (11.55)

We are not concerned with effects at the external boundary, so we can choose the bound-
ing surface S such that ∂n/∂N = 0 on S, that is, zero flux at the boundary. So (11.54)
for the energy functional in a spatially heterogeneous situation becomes

E[n] =
∫

V

[
e(n) + k

2
(∇n)2 + · · ·

]
dx,
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k

2
= −k′

1(n) + k2. (11.56)

Here e(n) is the energy density in a spatially homogeneous situation with the other terms
representing the energy density (or ‘gradient’ density) which depends on the neighbour-
ing spatial density variations.

We now carry out exactly the same steps that we took in going from (11.48) to
(11.53). The potential µ is obtained from the energy functional (11.56) as

µ = µ(n,∇n) = δE[n]
δn

= −k∇2n + e′(n), (11.57)

using the calculus of variations to evaluate δE[n]/δn and where we have taken k to be
a constant. The flux J is now given by

J = −D∗∇µ(n,∇n).

The generalised diffusion equation is then

∂n

∂t
= −∇ · J = ∇ · (D∗∇µ),

= D∗∇2[−∇2n + e′(n)],
= −k D∗∇4n + D∗∇ · [e′′(n)∇n].

(11.58)

Here we have taken D∗, as well as k, to be constant.
A basic assumption about e(n) is that it can involve only even powers of n since the

energy density cannot depend on the sign of n. The Landau–Ginzburg free energy form
(see, for example, Cahn and Hilliard 1958, 1959, Cahn 1959 and Huberman 1976) has

e(n) = an2

2
+ bn4

4
,

which on substituting into (11.58) gives

∂n

∂t
= −D∗k∇4n + D∗a∇2n + D∗b∇2n3.

If we now write

D1 = D∗a, D2 = D∗k, D3 = D∗b,

the generalised diffusion equation (11.58) becomes

∂n

∂t
= D1∇2n − D2∇4n + D3∇2n3. (11.59)

Note the appearance of the extra nonlinear term involving D3. If the energy e(n) only
involves the usual quadratic in n2, b = 0 and (11.59) is exactly the same as (11.37) in
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Section 11.4. If we now include a reaction or dynamics term f (n) in (11.59) we get the
generalised reaction diffusion equation equivalent to (11.14). With the one space dimen-
sional scalar version of (11.59) and a logistic growth form for f (n), Cohen and Murray
(1981) have shown that the equation can exhibit steady state spatially inhomogeneous
solutions. Lara-Ochoa (1984) analysed their model in a two-dimensional setting and
showed that it reflects certain morphogenetic aspects of multicellular systems formed
by motile cells.

Exercises

1 Let p(x, t) be the probability that an organism initially at x = 0 is at x after a
time t . In a random walk there is a slight bias to the right; that is, the probabilities of
moving to the right and left, α and β, are such that α−β = ε > 0, where 0 < ε � 1.
Show that the diffusion equation for the concentration c(x, t) = Qp(x, t), where Q
particles are released at the origin at t = 0, is

∂c

∂t
+ V

∂c

∂x
= D

∂2c

∂x2
,

where V and D are constants which you should define.

2 In a one-dimensional domain suppose insects are attracted to the origin x = 0 and are
convected there by a constant velocity V . If the population pressure is approximated
by a density-dependent diffusion coefficient D(n) = D0(n/n0)

m , where n is the
population density and D0, n0 and m are positive constants, show that the model
equation for dispersal, in the absence of any population growth, is

∂n

∂t
= −∂ J

∂x
= ∂

∂x
[V sgn(x)n] + D0

∂

∂x

[(
n

n0

)m
∂n

∂x

]
.

Show that if n → 0, ∂n/∂x → 0 as | x | → ∞ a spatially inhomogeneous steady
state population density exists and can be represented by

n(x) = n0

(
1 − mV | x |

D0

)1/m

, if | x | ≤ D0

mV

= 0, if | x | >
D0

mV
.

3 The larvae of the parasitic worm (Trichostrongylus retortaeformis) hatch from eggs
in sheep and rabbit excreta. The larvae disperse randomly on the grass and are conse-
quently eaten by sheep and rabbits. In the intestines the cycle starts again. Consider
the one-dimensional problem in which the larvae disperse with constant diffusion
and have a mortality proportional to the population. Show that n satisfies

∂n

∂t
= D

∂2n

∂x2
− µn, D > 0, µ > 0,
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where n is the larvae population. Find the population distribution at any x and t
arising from N0 larvae being released at x = 0 at t = 0. Show that as t → ∞ the
population dies out.

If the larvae lay eggs at a rate proportional to the population of the larvae,
that is,

∂E

∂t
= λn, λ > 0,

where E(x, t) is the egg population density, show that in the limit as t → ∞ a
nonzero spatial distribution of eggs persists. [The result for E(x, t) is an integral
from which the asymptotic approximation can be found using Laplace’s method
(see, for example, Murray’s 1984 Asymptotic Analysis): the result gives E(x, t) ∼
O(exp[−(µ/D)1/2| x |]) as t → ∞.]

4 Consider the density-dependent diffusion model for insect dispersal which includes
a linear death process which results in the following equation for the population
n(x, t),

∂n

∂t
= D0

∂

∂x

[(
n

n0

)m
∂n

∂x

]
− µn, D0 > 0, µ > 0.

If Q insects are released at x = 0 at t = 0, that is, n(x, 0) = Qδ(x), show, using
appropriate transformations in n and t , that the equation can be reduced to an equiva-
lent equation with µ = 0. Hence show that the population wavefront reaches a finite
distance xmax from x = 0 as t → ∞, where

xmax = r0

(µmτ0)1/(m+2)
,

where

r0 = Q�( 1
m + 3

2 )

π1/2n0�( 1
m + 1)

, τ0 = r2
0 m

2D0(m + 2)
,

where � is the Gamma function.



12. Oscillator-Generated Wave Phenomena and
Central Pattern Generators

In Chapter 11 we saw how diffusion, chemotaxis and convection mechanisms could
generate spatial patterns; in Volume II we discuss mechanisms of biological pattern for-
mation extensively. In Chapter 13, and Chapter 1 and Chapter 13, Volume II we show
how diffusion effects, for example, can also generate travelling waves, which have been
used to model the spread of pest outbreaks, travelling waves of chemical concentration,
colonization of space by a population, spatial spread of epidemics and so on. The exis-
tence of such travelling waves is usually a consequence of the coupling of various effects
such as diffusion or chemotaxis or convection. There are, however, other wave phenom-
ena of a quite different kind, called kinematic waves, which exhibit wavelike spatial
patterns, which depend on the coupling of biological oscillators whose properties relat-
ing to phase or period vary spatially. The two phenomena described in this chapter are
striking, and the models we discuss are based on the experiments or biological phenom-
ena which so dramatically exhibit them. The first involves the Belousov–Zhabotinskii
reaction and the second, which is specifically associated with the swimming of, for ex-
ample, lamprey and dogfish, illustrates the very important concept of a central pattern
generator. The results we derive here apply to spatially distributed oscillators in general.

12.1 Kinematic Waves in the Belousov–Zhabotinskii Reaction

When the reactants in the oscillating Belousov reaction involve an iron catalyst (with
Fe2+ going to Fe3+ and vice versa) the oscillations are dramatically illustrated with an
appropriate dye which reflects the state of the catalyst: the colour change is from red
(or rather a reddish orange) to blue. When the reactants are left unstirred in a vertical
cylindrical tube horizontal bands of blue and red form. These bands usually start to
appear at the bottom of the cylinder and move slowly upwards with successive bands
moving progressively more slowly. Eventually the cylinder is filled by these bands but
with a nonuniform density, the closer to the bottom the denser the wave packing. Dif-
fusion plays a negligible role in the formation and propagation of these bands, unlike
the waves we discuss later. Beck and Váradi (1972) provided a kinematical explanation
for these spatial patterns of bands. The analysis explaining them, which we give here,
is that of Kopell and Howard (1973). Although the analysis was originally given for the
bands observed in the Belousov reaction, and the experimental results shown in Fig-
ure 12.1(b) are also for this reaction, the phenomenon and analysis apply equally to any
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biological oscillator under similar circumstances. The important point to note is that
spatial patterns can be obtained without diffusion, convection or chemotaxis playing
any role.

Consider each position in the vertical cylinder to be an independent oscillator with
period T , which may be a function of position. If these independent oscillators are
out of phase or have different frequencies then spatial patterns will appear simply as a
consequence of the spatial variation in the phase or frequency. (A simple but illustrative
physical demonstration of the phenomenon is given by a row of simple pendula all
hanging from the same horizontal rod but with a very slight gradient in their lengths.
The slight gradient in their lengths gives a slight gradient in their periods. If they are all
set swinging at the same time, then after a very short time it looks as if there is a wave
propagating along the line of pendula, the wavelength of which gets smaller and smaller
with time.)

Returning to the Belousov oscillator, the cause of a gradient in phase or frequency
can be due to a concentration gradient in one of the chemicals, or a temperature vari-
ation. The experiments (see Figure 12.1(b)) carried out by Kopell and Howard (1973)
used the former while Thoenes (1973) used the latter. The vertical chemical concentra-
tion gradient was in sulphuric acid. This resulted in a monotonic gradient in the period
of oscillation and horizontal bands appeared quite quickly, moved slowly upwards and
after a few minutes filled the cylinder. It is clear that if a barrier, impermeable to any
of the chemicals, were put in the cylinder it would neither affect the pseudowave prop-
agation nor the density of bands: spatial transport processes are simply not involved in
the generation of this spatial pattern. These ‘waves’ are indeed only pseudowaves since
nothing is actually being transported.

Let z be the spatial coordinate measured vertically from the bottom of the cylinder,
taken to be z = 0, and the cylinder height to be normalised so that the top is z = 1.
Because of the initial concentration gradient there is a gradient in the oscillator period.
At position z let the period of oscillation be T (z) defined for all 0 ≤ z ≤ 1. We char-
acterise the state of the oscillator by a 2π -periodic function of its phase denoted by
φ(z, t). In the Belousov reaction, for example, the front of the wave, defined as the
point where φ has a specific value, can be distinguished by the sharp blue front. Let the
initial distribution of the phases be φ0(z). We can then represent the phase φ(z, t) by

φ(z, t) = ψ(z, t) + φ0(z), ψ(z, 0) = 0, (12.1)

where ψ(z, t) is a function which increases by 2π if the time t increases by the periodic
time T (z); that is,

φ(z, t + T (z)) = 2π + ψ(z, t) + φ0(z).

Let us now take some reference phase point say, φ = 0. Define t∗(z) as the time at
position z at which the phase is zero; that is, it satisfies

0 = φ(z, t∗(z)) = ψ(z, t∗(z)) + φ0(z). (12.2)

Then, for any integer n and time t = t∗(z) + nT (z) we have
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φ(z, t∗ + nT ) = ψ(z, t∗ + nT ) + φ0(z)

= 2nπ + ψ(z, t∗) + φ0(z)

= 2nπ,

(12.3)

using (12.1) and (12.2). So, in the (z, t) plane the point (z, t) which corresponds to the
phase 2nπ moves on the curve given by

t = t∗(z) + nT (z). (12.4)

We can continue the analysis with complete generality but it is just as instructive
and easier to see what is going on if we are more specific and choose T (z) to be, say, a
smooth monotonic increasing function of z in 0 ≤ z ≤ 1. Also for simplicity, let us take
the initial distribution of phases to be a constant, which we can take to be zero; that is,
φ0(z) = 0. This means that at t = 0 all the oscillators are in phase. From the definition
of t∗(z) in (12.2) this means that t∗(z) = 0.

If we now define

tn(z) = nT (z) (12.5)

then (12.3) gives

φ(z, tn(z)) = 2nπ. (12.6)

This means that tn(z) is the time at which the nth wavefront passes the point z in the
cylinder. The velocity vn(z) of this nth wavefront is given by the rate of change of the
position of the front. That is, using the last two equations,

vn(z) =
[

dz

dt

]

φ=2nπ

=
[

dtn(z)

dz

]−1

= 1

nT ′(z)
. (12.7)

With T (z) a monotonic increasing function of z, T ′(z) > 0 and so the nth wave-
front, the leading edge say, starts at z = 0 at time t = nT (0) and, from (12.7), propa-
gates up the cylinder at 1/n times the velocity of the first wave. This nth wave reaches
z = 1, the top of the cylinder, at time t = nT (1). Since the T (z) we have taken here is
a monotonic increasing function of z there will be more and more waves in 0 ≤ z ≤ 1
as time goes on, since, with the velocity decreasing proportionally to 1/n from (12.7),
more waves enter at z = 0 than leave z = 1 in the same time interval.

Let us consider a specific example and take φ0(z) = 0 and T (z) = 1 + z. So the
phase 2nπ moves, in the (z, t) plane, on the lines t = n(1 + z), and the phase φ(z, t) =
2π t/T (z) = 2π t/(1 + z). From (12.7) the velocity of the nth wave is vn = 1/n. The
space-time picture of the wavefronts, given by φ = 2nπ , is illustrated in Figure 12.1(a).
From the figure we see that at time t = 1 the wave φ = 2π enters the cylinder at z = 0
and moves up with a velocity v1 = 1. At t = 2 the wave with phase 4π enters the
cylinder at z = 0: it moves with velocity v2 = 1/2. At t = 3 the wave with φ = 6π

moves with velocity v3 = 1/3 and so on. The first wave takes a time t = 1 to traverse
the cylinder, the second takes a time t = 2 and so on. It is clear that as time goes on
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Figure 12.1. (a) Wavefronts for the period distribution T (z) = 1+ z and initial phase distribution φ0(z) = 0.
Note how many waves there are for different t’s: for t = 1.5 there is 1 wave in the cylinder, while for t = 7.5
there are 4 waves. (b) The experimental space–time situation equivalent to the theoretical results in (a). The
experiments were carried out for a Belousov reaction with an initial sulphuric acid gradient in the cylinder.
The total time in the figure is approximately 7 minutes and the vertical height about 20 cm; the figure is a
sketch from a negative. (After Kopell and Howard 1973)

more and more waves are in 0 ≤ z ≤ 1. This is clear from Figure 12.1(a) and the
experimental counterpart given in Figure 12.1(b): for example, at t = 3.5 there are two
waves while at t = 7.5 there are 4. From the figure, it is also clear that as time increases
the waves are progressively more tightly packed nearer the bottom, z = 0.

Suppose the initial phases φ0(z) �= 0; then, t∗(z) �= 0 and from (12.4), T (z) =
[t − t∗(z)]/n. So, asymptotically for large time t , T (z) ∼ t/n, and the above analysis
for the illustrative example in which φ0(z) = 0 still applies asymptotically in time. Since
it is unlikely that the experimental arrangement which gave rise to Figure 12.1(b) had
a strictly linear T (z), such as used in the analysis for Figure 12.1(a), the experimental
results illustrate this asymptotic result quite dramatically.

The biological implications of the above analysis are of considerable importance.
Since biological oscillators and biological clocks are common, a time-varying spatial
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pattern may be a consequence of a spatial variation in the oscillator parameters and not,
as might be supposed, a consequence of some reaction diffusion situation or other such
pattern formation mechanism such as we shall consider in detail in later chapters.

In this section the wave pattern is a continuously changing one. In the following
sections we investigate the possibility of a more coherent wave pattern generator of
considerable importance.

12.2 Central Pattern Generator: Experimental Facts in the
Swimming of Fish

A fish propels itself through water by a sequence of travelling waves which progress
down the fish’s body from head to tail and its speed is a function of the wave frequency.
It is the network of neurons arrayed down the back that controls the muscle movements
which generate the actual waves and coordinate them to produce the right effect. It is
a widely held lay belief that in mammals the generator, or rather the controlling nerve
centre for the rhythmic control of these waves, is the brain. However, in many animals
swimming occurs after the spinal cord has been severed from the brain—the technical
term is spinal transection. In the case of the dogfish, for example, the phenomenon has
been known since the end of the 19th century. The swimming movement observed in
such situations shows the proper intersegmental muscle coordination.

The basis for the required rhythmic behaviour and its intersegmental coordination is
a central network of neurons in the spinal cord. It is known that there are neural networks
which can generate temporal sequences of signals, which here produce the required
cyclic patterns of muscle activity. Such networks are called central pattern generators
and by definition require no external input control for them to produce the required
rhythmic output. It is obvious how important it is to understand such neural control
of locomotion. However to do so requires modelling realism and, at the very least,
detailed information from experiments. The recent book on neural control of rhythmic
movements, edited by Cohen et al. (1988), is specifically about the subject matter of this
section and the theory and modelling chapters by Kopell (1988) and Rand et al. (1988)
are particularly relevant.

In the case of higher vertebrates there are possibly millions of neurons involved. So
it is clear that experimentation and its associated modelling should at least start with as
small a spinal cord as possible but one which still exhibits this posttransection activity.
Such neural activity, which produces essentially normal swimming, is called ‘fictive
swimming’ or ‘fictive locomotion.’ This description also includes the situation where,
even when the muscles which produce the actual locomotion are removed, the neural
output from the spinal cord is the same as that of an intact swimming fish.

Grillner (1974), Grillner and Kashin (1976) and Grillner and Wallén (1982) present
good experimental data on the dogfish. Kopell (1988) uses this work as a case study for
the theory described in detail in her paper. The lamprey, which is rather a primitive
vertebrate, was the animal used in a series of interesting and illuminating experiments
by Cohen and Wallén (1980) (see also Cohen and Harris-Warrick 1984 and references
given there). They studied a specific species of the lamprey which varies from about
13–30 cm in length and has a spinal cord about 0.3 mm thick and 1.5 mm wide. Its
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Figure 12.2. (a) Schematic diagram of the exposed lamprey spinal cord and the experimental arrangement.
The preparation was pinned through membrane tissue as shown in the schematic cross-section in (b). There
are ventral roots (V R) at each segment and the electrical activity of these was measured by the electrodes.
(From Cohen and Wallén 1980)

advantages (or disadvantages from the lamprey’s point of view) are that it has relatively
few cells, but still has the necessary basic vertebrate organisation, and it exhibits fictive
swimming behaviour. In the experiments of Cohen and Wallén (1980) and Cohen and
Harris-Warrick (1984), dissected lengths of spinal cord from about 25–50 segments
were used: the lamprey has about 100. The animal was decapitated and the spinal cord
exposed but with most of the musculature intact. Motoneuron activity was monitored
with electrodes placed on two opposing ventral roots of a single segment; Figure 12.2
shows schematically the experimental setup of the spinal cord.

In these experiments the cord was placed in a saline solution and the fictive swim-
ming, that is, the periodic rhythmic activity, was induced chemically (by L-DOPA or by
the amino acid D-glutamate); the fictive swimming can go on for hours. The ventral root
(V R) recordings from the electrodes showed alternating bursts of impulses between the
left and right VR of a single segment. That is, the periodic bursts on either side of a
segment are 180◦ out of phase. Figure 12.3 illustrates the VR activity obtained from the
left and right sides of the ventral roots from two different segment levels in the cord. An

Figure 12.3. Bursting activity recorded from the left (L) and right (R) sides of the ventral roots (V R) at
segments 7 and 19 as measured from the head-end of the specimen, which consisted of 27 segments. (From
Cohen and Wallén 1980) The time between bursts is approximately 1 sec. Note the approximately constant
phase lag as you go from segment 7 to 19.
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Figure 12.4. Typical swimming pattern illustrating
a propagating wave generated by a ventral root
output such as illustrated in Figure 12.3.

important point to note, and which we use in the model, is that the left and right VR of
a segment are like individual oscillators which are phase locked 180◦ out of phase. This
intrasegmental coupling is very stable.

The results in Figure 12.3 are from an isolated piece of spinal cord consisting of
27 segments and with the numbering starting from the head side; the recordings were
taken at segments 7 and 19. The period of the bursts of activity was about 1 per second.
Another point to note is the nearly constant phase lag between the two segments: the lag
between the right VR of segment 7 and segment 19 is to a first approximation the same
as between the left VR of segments 7 and 19. In Section 12.4 we incorporate this type of
behaviour in one of the specific cases in the model developed below. A piece of spinal
cord of only about 10 segments can produce a stable neural fictive swimming output.

This periodic activity of the isolated lamprey spinal cord, which is directly related
to the undulatory wavelike movements of the swimming fish, schematically shown in
Figure 12.4, is the phenomenon controlled by the central pattern generator, which we
now wish to model. Various models can be suggested for the generation of these pat-
terns; see, for example, Kopell (1988). In the following Sections 12.3 and 12.4 we de-
scribe in detail a model proposed by Cohen et al. (1982); it has been used with consid-
erable success to explain certain experimental results associated with selective surgical
lesions in the spinal cord (Cohen and Harris-Warrick 1984).

12.3 Mathematical Model for the Central Pattern Generator

The basic characteristics of the phenomenon, as exemplified by the experiments and
indicated in particular by Figure 12.3, are that the left and right VR of a segment are
phase locked oscillators and that there is approximately a constant phase lag from the
head to tail of the spinal cord. The key assumptions in the model are: (i) Each segment
in the back has associated with it a pair of neuronal oscillators each of which exhibits,
in isolation, a stable limit cycle periodic oscillation. The amplitude of the oscillation
depends only on internal parameters, and is not usually affected by external factors
such as drugs or electrical stimulations. (ii) Each of the oscillators is coupled to its
nearest neighbour but with the possibility of long range coupling; there is experimental
evidence for the latter in Buchanan and Cohen (1982).
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We saw in Chapter 7 on biological oscillators that many biochemical reaction sys-
tems can exhibit stable limit cycle periodic oscillations. It is such a biological oscillator,
or one coupled to some neuronal electrical property, which we envisage to be the driving
force in each of the oscillators associated with the spinal segments. It is not necessary
to know the actual details of the biological oscillator for our model here—we do not
know what it is in fact. As a preliminary to studying the intersegmental linking of the
oscillators we first consider a single oscillator to set up the mathematical treatment and
notation and introduce the analytical procedure we use.

Single Oscillator and Oscillator Pair

Denote the vector of limit cycle variables of relevance by the vector

x(t) = (x1(t), x2(t), . . . , xn(t)). (12.8)

Again we do not know what quantity it is that oscillates, only that something does
which gives rise to the periodic VR neuronal activity which is observed experimentally.
For example, x(t) could include the level of the neurotransmitter substance and the peri-
odically varying electric potential. We denote the vector differential equation governing
the limit cycles by

dx
dt

= f(x), (12.9)

where t denotes time. Just as we do not need to know the specific biological oscillator
involved, we do not require the detailed functional form of the function f(x). Let us
consider the limit cycle to be the closed orbit γ in the phase space. Using this curve
as the local coordinate system we can think of the periodic limit cycle as having a
phase θ which goes from 0 to 2π as we make a complete circuit round the closed
orbit γ . Assume that at some point P on the closed curve the bursting, which is observed
experimentally by the electrodes, occurs at the phase θ = 0. Starting at P , the phase
increases from 0 and reaches 2π when we get back to P , where bursting again occurs.
Let us further assume that the coordinate system for the limit cycle is chosen so that the
speed of the solution round γ , as measured now by dθ/dt , is constant.

The above idea of representing a limit cycle in terms of the phase can be illus-
trated by the following, admittedly contrived, simple pedagogical example. Consider
the differential equation system given by

dx1

dt
= x1(1 − ρ) − ωx2,

dx2

dt
= x2(1 − ρ) + ωx1,

ρ = (x2
1 + x2

2 )1/2,

(12.10)

where ω is a positive constant. Although the solution of this system can be obtained triv-
ially, as we see below, a formal phase plane analysis (see Appendix A) of (12.10) shows
that (0, 0) is the only singular point and it is an unstable spiral, spiralling anticlockwise.
A confined set can be found (just take ρ large), so by the Poincaré–Bendixson theorem
a limit cycle periodic solution exists and is represented by a closed orbit in the (x1, x2)
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Figure 12.5. The phase plane solution of the differential
equation system (12.12). The asymptotically stable limit
cycle is ρ = 1 and the phase θ = ωt .

plane. If we now change to polar coordinates ρ and θ in the phase plane with

x1 = ρ cos θ, x2 = ρ sin θ (12.11)

the system (12.10) becomes

dρ

dt
= ρ(1 − ρ),

dθ

dt
= ω, (12.12)

and the limit cycle is then seen to be ρ = 1. The solution is illustrated in Figure 12.5.
The limit cycle is asymptotically stable since any perturbation from ρ = 1 will die out
by ρ simply winding back onto ρ = 1 and in an anti-clockwise way because dθ/dt > 0.
If the perturbation from the circle is to a point ρ < 1 then, from (12.12), ρ increases,
while if the perturbation is to a point ρ > 1, ρ decreases as it tends to the orbit ρ = 1.
In this case ρ = 1 is the equivalent of the orbit γ and θ is the phase, which runs from
θ = 0 to 2π as a circuit is completed.

Returning to the model system (12.9), we take θ to be one of the n variables: its
value is always modulo 2π ; that is, any value θ = θ+2mπ for all integers m. Let us now
consider the remaining n − 1 variables, denoted by r, to be perturbations perpendicular
to the limit cycle orbit γ , where we have taken local coordinates such that the actual
orbit γ in an undisturbed state is r = 0. (With the above example in Figure 12.5, this
would be equivalent to changing the variables from (ρ, θ) to (r, θ) where r = 1 − ρ:
the limit cycle orbit γ , ρ = 1, becomes r = 0. Now r �= 0 represents a perturbation
from γ .) Figure 12.6 is an example of this system in the case n = 3.

With the coordinate transformation and parametrisation above, the system (12.9)
can be written as

dr
dt

= f1(r, θ), (12.13)

dθ

dt
= ω + f2(r, θ), (12.14)

where f1(0, θ) = 0 = f2(0, θ) and the period of the oscillator is T = 2π/ω. The
functions f1 and f2 are periodic in θ with period 2π by virtue of the coordinate system
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Figure 12.6. An example of a phase space for the
system (12.9) for n = 3. Here r has two components r1
and r2 with the phase θ being the third component.

we have set up for the limit cycle behaviour of (12.9). If there is no external excitation
the limit cycle is simply

r = 0,
dθ

dt
= ω ⇒ θ(t) = θ(0) + ωt. (12.15)

At each segment there are two coupled oscillators such as we have just described.
They are linked in such a way that if there are no intersegmental influences the out-
puts from the right and left oscillator, denoted by xR(t) and xL (t) respectively, simply
oscillate 180◦ out of phase. Each oscillator is of the form (12.9); that is,

dxR

dt
= fR(xR, xL),

dxL

dt
= fL (xL , xR). (12.16)

Associated with each of the oscillators is a phase θR and θL and a vector rR and rL

which is the deviation from each oscillator in isolation caused by the intrasegmental
coupling. That is, if there were no coupling the equations in (12.16) would be uncou-
pled, dθR/dt and dθL/dt would each be equal to ω and rR, rL both equal to zero.

From the experimental observations described in Section 12.2 the pair of segmental
oscillators is 180◦ out of phase so we assume in the model that

θL(t) = θR(t) + π. (12.17)

Later we include some weak intersegmental coupling so this relationship will only be
a first-order approximation. With such a phase relationship the outputs xR and xL are
also 180◦ out of phase which implies

xL(t) = xR(t + T/2), (12.18)

where T is the common period, which gives a relationship between xR and xL . This
means that the pair of equations (12.16) can be reduced to a single equation for either
the left or right oscillator. The point is that with this assumed intrasegmental coupling
we end up again with the reduced system (12.13) and (12.14).

With the single oscillator, as the phase θ increases, the output levels of the variables
x(t) vary periodically, typically as illustrated schematically in Figure 12.7. Let us sup-
pose that bursting starts when some output x(t) reaches a threshold value and remains
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Figure 12.7. Schematic periodic output x(t) from a single oscillator. When the output level is above a thresh-
old it triggers the VR bursting.

on as long as x(t) is above this threshold value. We can take the value of the phase where
this threshold for x(t) occurs to be θ = 0: we can set the origin of the phase where we
like. Because of the periodic rise and fall of the variable x(t) its value will eventually
pass through the critical threshold value again and the bursting will be shut off. (We
shall see in Chapter 13 and Chapter 1, Volume II that such threshold phenomena occur
in other wave situations.)

Experimentally bursting is observed for only about 0.4 of the period, which in our
scaling is 2π × 0.4. If we let θ0 be the phase at which bursting ceases, the bursting
based on this then occurs as illustrated in Figure 12.7 for θ + 2mπ , 0 < θ < θ0 for all
m = 0, 1, 2, . . . .

Sequence of Coupled Oscillators

We now need to look at the effect on each of the segmental oscillators if they are cou-
pled. So, we now consider the series of segmental oscillators (at each stage there is a
pair but as we showed above the analysis requires a study of only one) which consists
of N equations of the form (12.9), a typical one of which we write as

dx j

dt
= f j (x j ) + g j (x1, . . . , xN , c), j = 1, . . . , N , (12.19)

where g represents the coupling effect of the other N − 1 oscillators and c is a vector of
coupling parameters. If c = 0 the oscillators are uncoupled; that is, g j (x1, . . . , xN , 0) =
0 and the N oscillators then simply have their own periodic limit cycle γ j .

The general mathematical problem (12.19) is essentially intractable without some
simplifying assumptions or specialisations. The problem of determining the interaction
properties of coupled oscillators has been widely studied for many years. Hard quantita-
tive results are not trivial to get and most studies have been on a limited number of oscil-
lators, like two, or when the coupling between the oscillators is weak. The mathematics
used covers a wide spectrum, with singular perturbation techniques being among the
most powerful and helpful. We discussed some properties of coupled oscillator systems
in Chapter 9, Sections 9.5 and 9.10. With the above system, some useful and experimen-
tally pertinent results can be obtained if we consider the coupling effects to be weak,
that is, if we assume | c | � 1 and | g | � | f |, and then use perturbation methods. The
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implications, or rather assumptions, of this are that the limit cycles γ j , j = 1, 2, . . . , N
of the isolated oscillators will only be slightly perturbed by the coupling effects (recall
Section 9.5). So, it is still appropriate to use the oscillator equation form (12.13) and
(12.14) involving the phase θ and deviations r j from the limit cycle γ j , but now we
have to include an extra small coupling term in the equation. (In fact we shall make
even further simplifying assumptions based on what has been observed experimentally,
but it is instructive to proceed a little further with the current line since it is the basis for
a rigourous justification of the assumptions we make later.) The set of N equations we
have to study is then

dr j

dt
= f j1(r j , θ j ) + g j1(r1, . . . , rN , θ1, . . . , θN , c),

dθ j

dt
= ω j + f j2(r j , θ j ) + g j2(r1, . . . , rN , θ1, . . . , θN , c), j = 1, 2, . . . , N .

(12.20)

Experimentally it has been observed that the individual oscillators when uncoupled,
by severing and thus isolating them from their neighbours, have different frequencies
ω j and hence different periods Tj = 2π/ω j . A crucially important point to keep in
mind is that when the segmental oscillators are coupled they still perform limit cycle
oscillations. So, even when coupled we can still characterise them in terms of their phase
θ j . Since fictive swimming is a reflection of phase coupling we need only consider a
phase coupling model for the system (12.19). So, instead of studying the system (12.19)
perturbed about r j = 0 we can consider a system of phase coupled equations of the form

dθ j

dt
= ω j + h j (θ1, . . . , θN , c), j = 1, . . . , N , (12.21)

where h j includes the (weak) coupling effect of all the other oscillators. Equations
(12.21) do not involve the amplitudes of the oscillators. The problem of weak cou-
pling in a population of oscillators has been studied in some depth, for example, by
Neu (1979, 1980), Rand and Holmes (1980), Ermentrout (1981) and in the book by
Guckenheimer and Holmes (1983). Carrying out a perturbation of (12.19) about r j = 0
eventually results in a phase coupled system of equations (12.21) (see Chapter 9). So,
there is a mathematical, as well as biological, justification for considering the simpler
model (12.21).

Since we assume small perturbations from the individual limit cycle oscillators to
come from the coupling, it is reasonable to consider a linear coupling model where the
effect of the j th oscillator on the i th one is simply proportional to x j . In this situation
the coupled oscillator system is of the form (12.9) perturbed by linear terms; namely,

dxi

dt
= fi (xi ) +

N∑

j=1
j �=i

Ai j x j , (12.22)

where Ai j are matrices of the coupling coefficients.
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Equations (12.22) include both the phases and amplitudes. We argued above that
we need only consider a phase coupled model so even (12.22) is more complicated than
we need consider. It was shown in Chapter 9, Section 9.9 (see also Neu 1979, 1980 and
Rand and Holmes 1980) that, in the case of weak coupling, (12.22) leads to a phase
coupled system of differential equations of the form

dθi

dt
= ωi +

N∑

j=1

ai j h(θ j − θi ), i = 1, . . . , N , (12.23)

where h is a periodic function of its argument. We can argue heuristically, however,
to justify the model system (12.23). Since we suggested that we need only consider a
phase model, a linear coupling would reasonably involve a coupling term which was a
function of the phase differences of the oscillator and all the others in the system. The
periodic nature of the function h is suggested by the fact that we would also reasonably
expect the phase difference between any two oscillators to be periodic. There is, as well,
experimental evidence to support such a conjecture from Buchanan and Cohen (1982),
who found that the slowly varying intrasegmental potentials of the motoneurons are
quasi-sinusoidal. As the specific model to study therefore we take the simple periodic
function h(φ) = sin φ in (12.23). For a discussion of a more general h in the case of
coupled oscillators, see Kopell (1988).

The phase coupled model we analyse in detail is the set of N phase equations

dθi

dt
= ωi +

N∑

j=1
j �=i

ai j sin(θ j − θi ), i = 1, . . . , N . (12.24)

The ai j s are a measure of the effect of the j th oscillator on the i th one with the effect
being excitatory, meaning θ j tends to pull θi towards its value if ai j is positive, while it
is inhibitory if ai j is negative. In the inhibitory case θ j tends to increase the difference

Figure 12.8. (a) Measure of the effect on the i th oscillator of the j th oscillator for a sinusoidal form for the
interaction function h(φ) of the phase difference. (b) Schematic representation of the coupling of the i th and
j th oscillators according to (12.24).
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between it and θi . With the specific interaction function sin φ we choose for h in (12.23)
the maximum excitatory effect of the j th oscillator on the i th one is when they are π/2
out of phase; the maximum inhibitory effect is when they are −π/2 out of phase with
no effect when they are in phase. Figure 12.8 schematically illustrates the model and
the sinusoidal coupling effect.

We wish to retain in our model the periodic character of the oscillators when they
are coupled. More particularly we want dθi/dt always to be a positive and monotonic
increasing function of t , so that movement on the limit cycle γi is always in one di-
rection, or in other words so that the output has a regular up and down character as in
Figure 12.8(a). We assume therefore that the magnitudes of ωi and ai j are such that
the phase θi (t) behaves in this way. We now wish to analyse the model system (12.24)
and see whether or not it is a reasonable model when the solutions are compared with
experimental results.

12.4 Analysis of the Phase Coupled Model System

We have to decide what kind of coupling we wish to include in the model system
(12.24). Here we analyse the simplest, namely, when each oscillator is only coupled
to its nearest neighbours. In this case (12.24) becomes the coupled system of N equa-
tions

dθ1

dt
= ω1 + a12 sin(θ2 − θ1)

dθ2

dt
= ω2 + a21 sin(θ1 − θ2) + a23 sin(θ3 − θ2)

...
dθ j

dt
= ω j + a j, j−1 sin(θ j−1 − θ j ) + a j, j+1 sin(θ j+1 − θ j )

...
dθN

dt
= ωN + aN ,N−1 sin(θN−1 − θN ).

(12.25)

The form of the right-hand sides suggests that we introduce

φ j = θ j − θ j+1, � j = ω j − ω j+1 (12.26)

and rewrite the system (12.25) in terms of the φ’s, the phase differences, and the �’s,
the frequency differences, by subtracting the θ -equations pairwise to get the N − 1
equations
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dφ1

dt
= �1 − (a12 + a21) sin φ1 + a23 sin φ2

dφ2

dt
= �2 + a21 sin φ1 − (a23 + a32) sin φ2 + a34 sin φ3

...
dφ j

dt
= � j + a j, j−1 sin φ j−1

−(a j, j+1 + a j+1, j ) sin φ j + a j+1, j+2 sin φ j+1
...

dφN−1

dt
= �N−1 + aN−1,N−2 sin φN−2

− (aN−1,N + aN ,N−1) sin φN−1.

(12.27)

Since we are looking for some regular periodic pattern which we associate with fictive
swimming, we can make some assumptions about the coupling coefficients ai j . (We
are also trying to get the simplest reasonable model to mimic the experimental phe-
nomenon.) Let us assume that all the upward (in number, that is—in our model this is
in the head-to-tail direction) coupling coefficients a j, j+1 = au and all the downwards
coefficients a j, j−1 = ad . The system (12.27) in vector form is then

dφ

dt
= � + BS, (12.28)

where the vectors

φ =





φ1
...

φN−1




 , S =






sin φ1
...

sin φN−1




 , � =






�1
...

�N−1




 (12.29)

and B is the (N − 1) × (N − 1) matrix

B =








−(ad + au) au · ·
ad −(ad + au) au ·
· · · ·
· · · ·
· · ad −(ad + au)








. (12.30)

For the application of the model to the fictive swimming of the lamprey, we are
interested in phase locked solutions of (12.28). That is, the coupling must be such that all
the oscillators have the same period. This is the same as saying that the phase differences
φ j between the oscillators is always constant for all j = 1, 2, . . . , N − 1. This in turn
means that dφ j/dt = 0 and so we are looking for equilibrium solutions of (12.28), that
is, the solutions of

0 = � + BS ⇒ S = −B−1�. (12.31)

Since S involves only sin φ j , j = 1, 2, . . . , N−1, solutions exist only if all the elements
of B−1� lie between ±1.
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Figure 12.9. (a) Ventral root output from a phase locked 2-oscillator model. (b) Ventral root output from a
phase locked solution of a 3-oscillator system: note that the phase difference between the 1st and 2nd root is
not necessarily the same as between the 2nd and 3rd.

Two-Oscillator System

Here we have only a single equation for the phase difference φ = θ1 − θ2; namely,

dφ

dt
= � − (ad + au) sin φ. (12.32)

This has phase locked solutions, where dφ/dt = 0, if and only if

|� | ≤ | ad + au |. (12.33)

If we denote the solutions by φS then if

|� | = | ad + au | then φS = π/2 or 3π/2,

|� | < | ad + au | then |φS | < π/2 or π/2 < |φS | ≤ π.
(12.34)

We can determine the stability of these steady state solutions by linearising about them
in the usual way (as in Chapter 1, Section 1.1). If we denote perturbations about φS by
ψ , the linear stability equation from (12.32) is

dψ

dt
≈ −[(ad + au) cos φS]ψ.

The first two possible solutions in (12.34) are neutrally stable, because cos φS = 0,
while one of the second set is stable and the other unstable. So, as the coupling strength
| ad + au | decreases relative to the frequency difference |� |, |� |/| ad + au | increases
and the stable steady state, as well as the unstable one, tends to the neutrally stable
one as | ad + au | → |� | after which no solution exists. Thus as the coupling strength
| ad + au | becomes weaker relative to the detuning |� | = ω1 − ω2 a bifurcation takes
place where the stable phase locked solution ceases to exist. The stable steady state
when it exists, is the phase locked solution we are interested in. From the discussion
above in Section 12.2, a model with two oscillators has two pairs of ventral roots and,
with the threshold bursting implied by Figure 12.7 and phase difference at each VR pair,
the bursting output is as illustrated in Figure 12.9(a).



434 12. Oscillator-Generated Wave Phenomena

Three-Oscillator System

The steady states for this system are, from (12.31),

(
sin φ1
sin φ2

)
= 1

a2
d + adau + a2

u

(
ad + au au

ad ad + au

) (
�1
�2

)
. (12.35)

For algebraic simplicity let us take the coupling coefficients ad = au = a, in which
case the last equation gives

sin φ1 = (2�1 + �2)/3a, sin φ2 = (�1 + 2�2)/3a. (12.36)

Thus a phase locked solution (φ1, φ2) exists if and only if

max{| 2�1 + �2 |/3a, |�1 + 2�2 |/3a} < 1. (12.37)

In this 3-oscillator case the phase differences φ1 and φ2 are unequal in general, and a
typical VR output from it is schematically illustrated in Figure 12.9(b).

As the number of oscillators increases the algebraic complexity quickly gets out of
hand but it is clear how to set up the algebraic problem to be solved, that is, how to get
the set of conditions that must hold between the coupling coefficients and the detuning
parameters � for a phase locked solution to exist.

Constant Phase Lag System of N-Oscillators

To keep the generality in a multi-oscillator model such as we did with the last two sys-
tems is perhaps unnecessarily cumbersome. What we wish to show is that such coupled
oscillators can give a stable phase locked system, such as required by a central pattern
generator to produce the required VR output necessary for fictive swimming. So, here
we consider a system where there is a constant phase lag between neighbouring seg-
ments; that is, we assume that the phase difference φ j = θ j − θ j+1 = δ, a positive
constant. This situation is of particular relevance to the experimental facts related to
Figure 12.3. Such a line of oscillators is characteristic of a uniform travelling wave.
Although the analysis here can be done with any periodic h in (12.23) (see Exercise 2),
we continue to use the example h(φ) = sin φ for consistency. If we set � = sin δ > 0
the system of equations for the steady states becomes, from (12.31) with (12.29) and
(12.30),

�1 + [−(ad + au) + au ] � = 0 ⇒ �1 = ad �
...

� j + [ad − (ad + au) + au ] � = 0 ⇒ � j = 0, j = 2, . . . , N − 2
...

�N−1 + [ad − (ad + au)] � = 0 ⇒ �N−1 = au �.

(12.38)
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In terms of the original frequencies, since � j = ω j − ω j+1, this gives

ω j = ω for all j = 2, . . . , N − 1

ω1 = ω + ad sin δ > ω

ωN = ω − au sin δ < ω.

(12.39)

What this solution means is that all the oscillators except the first, the rostral or head
oscillator, and the last, the caudal or tail oscillator, have the natural frequency of each
segmental oscillator in isolation. The head oscillator is tuned up, that is, to a higher
frequency, while the tail one is tuned down. This assumes that the coupling coefficients
ad and au in (12.39) are positive; that is, the coupling is excitatory. The resulting wave
which results from this is one which travels from head to tail. Another solution to this
constant phase lag problem is when the head oscillator is tuned down and the tail one
tuned up. This results in the wave propagating from tail to head; that is, the lamprey
swims backwards, which in fact it can do.

We finally have to consider the stability of this constant phase lag solution. We do
this in the usual way by linearising about φ j = δ by writing

φ j = δ + ψ j , j = 1, . . . , N , (12.40)

where ||ψ || � 1. Substituting this into the time-dependent equation (12.28) and lin-
earising gives

dψ

dt
= Bψ cos δ, (12.41)

where the matrix B is given by (12.30), depends only on the coupling coefficients ad

and au and is a tridiagonal (N − 1) × (N − 1) matrix. If we now look for solutions of
(12.41) in the form

ψ(t) = eλtψ0 (12.42)

the eigenvalues λ are solutions of

| B cos δ − λI | = 0, (12.43)

where I is the unit (N − 1) × (N − 1) matrix. From experimental observation phase
lags between segments are quite small and 0 < cos δ < 1. Under these circumstances it
can be shown, for example, by using the Routh–Hurwitz conditions on the polynomial
in λ, that Re λ < 0. So from (12.42) ψ(t) → 0 as t → ∞ which means that the phase
locked constant phase difference solution above is stable to linear perturbations.

There are of course two solutions for the phase difference equation sin φ j = sin δ,
which gives 2N−1 − 2 other phase locked solutions. However, it can be shown, from a
study of the eigenvalue matrix, that all of them are linearly unstable; that is, there exists
at least one eigenvalue λ in (12.42) with Re λ > 0. We conclude therefore, that the
solution (12.39) is the relevant one when there is a constant phase difference between
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neighbouring segmental oscillators, and hence is the one which gives rise to a stable
wave which propagates down (or up) the spinal chord.

Perhaps it should be pointed out here that, as far as the lamprey is concerned, iso-
lated parts of the cord can ‘swim’ forward and backward, so we have to postulate that
something automatically tunes the two end segments. Another problem with this simple
model is that it does not seem able to account for the experimental fact that the phase lag
appears to be constant even with changes in the swimming speed. This is a serious point
since the phase lag determines the wavelength and hence the shape of the swimming
fish. There are, however, other possible ways of coupling which can be considered (see,
for example, Cohen et al. 1982).

One purpose of these Sections 12.2 to 12.4 has been to show how such a relatively
simple model can be the pattern generator for the wave propagation in experimentally
observed fictive swimming. A major point to note is that various simple intersegmental
coupling of oscillators can generate stable travelling waves. Particularly striking is the
fact that even the simple model we analysed is sufficient to generate the required coordi-
nation of phase coupling for both forward and backward swimming—only the head and
tail oscillators had to be retuned. Cohen et al. (1982) discuss in more detail the compar-
ison with the experimental observations on lamprey. Although there are still problems,
the results are encouraging. All of this does not imply that such a model mechanism is
the central pattern generator, only that it is a possible candidate.

Exercises

1 Consider a 4-oscillator system in which the coupling coefficients ad = au = a
and each oscillator frequency differs from its predecessor by a small amount ε; that
is, ω j = ω j−1 − ε. First look for steady state phase locked solutions for φ j =
θ j − θ j−1, j = 1, 2, 3 from (12.29). Show that solutions exist for φ j , j = 1, 2, 3
only if ε ≤ a/2. Generalise the result to N oscillators to show that solutions exist
only if ε ≤ 8a/N 2.

2 Consider an N -oscillator system in which there is only nearest neighbour coupling
between which there is a constant phase lag δ. Start with equation (12.23) with a gen-
eral interaction function h(δ) and derive the equivalent of (12.38) for the steady state
frequency differences. Hence determine the frequency of the first and last oscillator
in terms of h(δ).



13. Biological Waves: Single-Species Models

13.1 Background and the Travelling Waveform

There is a vast number of phenomena in biology in which a key element or precursor
to a developmental process seems to be the appearance of a travelling wave of chemical
concentration, mechanical deformation, electrical signal and so on. Looking at almost
any film of a developing embryo it is hard not to be struck by the number of wavelike
events that appear after fertilisation. Mechanical waves are perhaps the most obvious.
There are, for example, both chemical and mechanical waves which propagate on the
surface of many vertebrate eggs. In the case of the egg of the fish Medaka a calcium
(Ca++) wave sweeps over the surface; it emanates from the point of sperm entry: we
briefly discuss this problem in Section 13.6 below. Chemical concentration waves such
as those found with the Belousov–Zhabotinskii reaction are visually dramatic examples
(see Chapter 1, Volume II). From the analysis on insect dispersal in Section 11.3 in
Chapter 11 we can also expect wave phenomena in that area, and in interacting popula-
tion models where spatial effects are important. Another example, related to interacting
populations, is the progressing wave of an epidemic, of which the rabies epizootic cur-
rently spreading across Europe is a dramatic and disturbing example; we study a model
for this in some detail in Chapter 13. The movement of microorganisms moving into a
food source, chemotactically directed, is another. The slime mould Dictyostelium dis-
coideum is a particularly widely studied example of chemotaxis; we discuss this phe-
nomenon later (see the photograph in Figure 1.1, Volume II which shows associated
waves).

The book by Winfree (2000) is replete with wave phenomena in biology. The intro-
ductory text on mathematical models in molecular and cellular biology edited by Segel
(1980) also deals with some aspects of wave motion. Although not so application ori-
ented, there are several books on reaction diffusion equations such as by Fife (1979),
Britton (1986) and Grindrod (1996) which are all relevant. Zeeman (1977) considers
wave phenomena in development and other biological areas from a catastrophe theory
standpoint.

The point to be emphasised is the widespread existence of wave phenomena in the
biomedical sciences which necessitates a study of travelling waves in depth and of the
modelling and analysis involved. This chapter and Chapter 1, Volume II (with many
other examples throughout Volume II) deal with various aspects of wave behaviour
where diffusion plays a crucial role. The waves studied here are quite different from
those discussed in Chapter 12. The mathematical literature on them is now vast, so the
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number of topics and the depth of the discussions have to be severely limited. Among
other things, we shall cover what is now accepted as part of the basic theory in the field
and describe two practical problems, one associated with insect dispersal and control
and the other related to calcium waves on amphibian eggs.

In developing living systems there is almost continual interchange of information
at both the inter- and intra-cellular level. Such communication is necessary for the se-
quential development and generation of the required pattern and form in, for example,
embryogenesis. Propagating waveforms of varying biochemical concentrations are one
means of transmitting such biochemical information. In the developing embryo, diffu-
sion coefficients of biological chemicals can be very small: values of the order of 10−9

to 10−11 cm2 sec−1 are fairly common. Such small diffusion coefficients imply that to
cover macroscopic distances of the order of several millimetres requires a very long
time if diffusion is the principal process involved. Estimation of diffusion coefficients
for insect dispersal in interacting populations is now studied with care and sophistica-
tion (see, for example, Kareiva 1983 and Tilman and Kareiva 1998): not surprisingly
the values are larger and species-dependent.

With a standard diffusion equation in one space dimension, which from Section 11.1
is typically of the form

∂u

∂t
= D

∂2u

∂x2
, (13.1)

for a chemical of concentration u, the time to convey information in the form of a
changed concentration over a distance L is O(L2/D). You get this order estimate from
the equation using dimensional arguments, similarity solutions or more obviously from
the classical solution given by equation (11.10) in Chapter 11. So, if L is of the order of
1 mm, typical times with the above diffusion coefficients are O(107 to 109 sec), which is
excessively long for most processes in the early stages of embryonic development. Sim-
ple diffusion therefore is unlikely to be the main vehicle for transmitting information
over significant distances. A possible exception is the generation of butterfly wing pat-
terns, which takes place during the pupal stage and involves several days (for example,
Murray 1981 and Nijhout 1991).

In contrast to simple diffusion we shall show that when reaction kinetics and dif-
fusion are coupled, travelling waves of chemical concentration exist and can effect a
biochemical change very much faster than straight diffusional processes governed by
equations like (13.1). This coupling gives rise to reaction diffusion equations which (cf.
Section 11.1, equation (11.16)) in a simple one-dimensional scalar case can look like

∂u

∂t
= f (u) + D

∂2u

∂x2
, (13.2)

where u is the concentration, f (u) represents the kinetics and D is the diffusion coeffi-
cient, here taken to be constant.

We must first decide what we mean by a travelling wave. We saw in Chapter 11 that
the solutions (11.21) and (11.24) described a kind of wave, where the shape and speed
of propagation of the front continually changed. Customarily a travelling wave is taken
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to be a wave which travels without change of shape, and this will be our understanding
here. So, if a solution u(x, t) represents a travelling wave, the shape of the solution will
be the same for all time and the speed of propagation of this shape is a constant, which
we denote by c. If we look at this wave in a travelling frame moving at speed c it will
appear stationary. A mathematical way of saying this is that if the solution

u(x, t) = u(x − ct) = u(z), z = x − ct (13.3)

then u(x, t) is a travelling wave, and it moves at constant speed c in the positive x-
direction. Clearly if x−ct is constant, so is u. It also means the coordinate system moves
with speed c. A wave which moves in the negative x-direction is of the form u(x + ct).
The wavespeed c generally has to be determined. The dependent variable z is sometimes
called the wave variable. When we look for travelling wave solutions of an equation
or system of equations in x and t in the form (13.3), we have ∂u/∂t = −cdu/dz
and ∂u/∂x = du/dz. So partial differential equations in x and t become ordinary
differential equations in z. To be physically realistic u(z) has to be bounded for all z
and nonnegative with the quantities with which we are concerned, such as chemicals,
populations, bacteria and cells.

It is part of the classical theory of linear parabolic equations, such as (13.1), that
there are no physically realistic travelling wave solutions. Suppose we look for solutions
in the form (13.3); then (13.1) becomes

D
d2u

dz2 + c
du

dz
= 0 ⇒ u(z) = A + Be−cz/D,

where A and B are integration constants. Since u has to be bounded for all z, B must be
zero since the exponential becomes unbounded as z → −∞. u(z) = A, a constant, is
not a wave solution. In marked contrast the parabolic reaction diffusion equation (13.2)
can exhibit travelling wave solutions, depending on the form of the reaction/interaction
term f (u). This solution behaviour was a major factor in starting the whole mathemat-
ical field of reaction diffusion theory.

Although most realistic models of biological interest involve more than one dimen-
sion and more than one dependent variable, whether concentration or population, there
are several multi-species systems which reasonably reduce to a one-dimensional single-
species mechanism which captures key features. This chapter therefore is not simply
a pedagogical mathematical exposition of some common techniques and basic theory.
We discuss two very practical problems, one in ecology and the other in developmental
biology: both belong to important areas where modelling has played a significant role.

13.2 Fisher–Kolmogoroff Equation and Propagating
Wave Solutions

The classic simplest case of a nonlinear reaction diffusion equation (13.2) is

∂u

∂t
= ku(1 − u) + D

∂2u

∂x2
, (13.4)
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where k and D are positive parameters. It was suggested by Fisher (1937) as a deter-
ministic version of a stochastic model for the spatial spread of a favoured gene in a
population. It is also the natural extension of the logistic growth population model dis-
cussed in Chapter 11 when the population disperses via linear diffusion. This equation
and its travelling wave solutions have been widely studied, as has been the more general
form with an appropriate class of functions f (u) replacing ku(1 − u). The seminal and
now classical paper is that by Kolmogoroff et al. (1937). The books by Fife (1979), Brit-
ton (1986) and Grindrod (1996) mentioned above give a full discussion of this equation
and an extensive bibliography. We discuss this model equation in the following section
in some detail, not because in itself it has such wide applicability but because it is the
prototype equation which admits travelling wavefront solutions. It is also a convenient
equation from which to develop many of the standard techniques for analysing single-
species models with diffusive dispersal.

Although (13.4) is now referred to as the Fisher–Kolmogoroff equation, the dis-
covery, investigation and analysis of travelling waves in chemical reactions was first
reported by Luther (1906). This rediscovered paper has been translated by Arnold et al.
(1987). Luther’s paper was first presented at a conference; the discussion at the end of
his presentation (and it is included in the Arnold et al. 1988 translation) is very interest-
ing. There, Luther states that the wavespeed is a simple consequence of the differential
equations. Showalter and Tyson (1987) put Luther’s (1906) remarkable discovery and
analysis of chemical waves in a modern context. Luther obtained the wavespeed in terms
of parameters associated with the reactions he was studying. The analytical form is the
same as that found by Kolmogoroff et al. (1937) and Fisher (1937) for (13.4).

Let us now consider (13.4). It is convenient at the outset to rescale (13.4) by writing

t∗ = kt, x∗ = x

(
k

D

)1/2

(13.5)

and, omitting the asterisks for notational simplicity, (13.4) becomes

∂u

∂t
= u(1 − u) + ∂2u

∂x2
. (13.6)

In the spatially homogeneous situation the steady states are u = 0 and u = 1, which
are respectively unstable and stable. This suggests that we should look for travelling
wavefront solutions to (13.6) for which 0 ≤ u ≤ 1; negative u has no physical meaning
with what we have in mind for such models.

If a travelling wave solution exists it can be written in the form (13.3), say

u(x, t) = U(z), z = x − ct, (13.7)

where c is the wavespeed. We use U(z) rather than u(z) to avoid any nomenclature
confusion. Since (13.6) is invariant if x → −x , c may be negative or positive. To
be specific we assume c ≥ 0. Substituting this travelling waveform into (13.6), U(z)
satisfies
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U ′′ + cU ′ + U(1 − U) = 0, (13.8)

where primes denote differentiation with respect to z. A typical wavefront solution is
where U at one end, say, as z → −∞, is at one steady state and as z → ∞ it is at the
other. So here we have an eigenvalue problem to determine the value, or values, of c
such that a nonnegative solution U of (13.8) exists which satisfies

lim
z→∞ U(z) = 0, lim

z→−∞ U(z) = 1. (13.9)

At this stage we do not address the problem of how such a travelling wave solution
might evolve from the partial differential equation (13.6) with given initial conditions
u(x, 0); we come back to this point later.

We study (13.8) for U in the (U, V ) phase plane where

U ′ = V, V ′ = −cV − U(1 − U), (13.10)

which gives the phase plane trajectories as solutions of

dV

dU
= −cV − U(1 − U)

V
. (13.11)

This has two singular points for (U, V ), namely, (0, 0) and (1, 0): these are the steady
states of course. A linear stability analysis (see Appendix A) shows that the eigenvalues
λ for the singular points are

(0, 0) : λ± = 1

2

[
−c ± (c2 − 4)1/2

]
⇒

{
stable node if c2 > 4
stable spiral if c2 < 4

(1, 0) : λ± = 1

2

[
−c ± (c2 + 4)1/2

]
⇒ saddle point.

(13.12)

Figure 13.1(a) illustrates the phase plane trajectories.
If c ≥ cmin = 2 we see from (13.12) that the origin is a stable node, the case when

c = cmin giving a degenerate node. If c2 < 4 it is a stable spiral; that is, in the vicinity

Figure 13.1. (a) Phase plane trajectories for equation (13.8) for the travelling wavefront solution: here c2 >

4. (b) Travelling wavefront solution for the Fisher–Kolmogoroff equation (13.6): the wave velocity c ≥ 2.
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of the origin U oscillates. By continuity arguments, or simply by heuristic reasoning
from the phase plane sketch of the trajectories in Figure 13.1(a), there is a trajectory
from (1, 0) to (0, 0) lying entirely in the quadrant U ≥ 0, U ′ ≤ 0 with 0 ≤ U ≤ 1 for
all wavespeeds c ≥ cmin = 2. In terms of the original dimensional equation (13.4), the
range of wavespeeds satisfies

c ≥ cmin = 2(k D)1/2. (13.13)

Figure 13.1(b) is a sketch of a typical travelling wave solution. There are travelling
wave solutions for c < 2 but they are physically unrealistic since U < 0, for some z,
because in this case U spirals around the origin. In these, U → 0 at the leading edge
with decreasing oscillations about U = 0.

A key question at this stage is what kind of initial conditions u(x, 0) for the original
Fisher–Kolmogoroff equation (13.6) will evolve to a travelling wave solution and, if
such a solution exists, what is its wavespeed c. This problem and its generalisations
have been widely studied analytically; see the references in the books cited above in
Section 13.1. Kolmogoroff et al. (1937) proved that if u(x, 0) has compact support, that
is,

u(x, 0) = u0(x) ≥ 0, u0(x) =
{

1 if x ≤ x1
0 if x ≥ x2

, (13.14)

where x1 < x2 and u0(x) is continuous in x1 < x < x2, then the solution u(x, t) of
(13.6) evolves to a travelling wavefront solution U(z) with z = x −2t . That is, it evolves
to the wave solution with minimum speed cmin = 2. For initial data other than (13.14)
the solution depends critically on the behaviour of u(x, 0) as x → ±∞.

The dependence of the wavespeed c on the initial conditions at infinity can be seen
easily from the following simple analysis suggested by Mollison (1977). Consider first
the leading edge of the evolving wave where, since u is small, we can neglect u2 in
comparison with u. Equation (13.6) is linearised to

∂u

∂t
= u + ∂2u

∂x2
. (13.15)

Consider now

u(x, 0) ∼ Ae−ax as x → ∞, (13.16)

where a > 0 and A > 0 is arbitrary, and look for travelling wave solutions of (13.15) in
the form

u(x, t) = Ae−a(x−ct). (13.17)

We think of (13.17) as the leading edge form of the wavefront solution of the nonlinear
equation. Substitution of the last expression into the linear equation (13.15) gives the
dispersion relation, that is, a relationship between c and a,
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ca = 1 + a2 ⇒ c = a + 1

a
. (13.18)

If we now plot this dispersion relation for c as a function of a, we see that cmin = 2 the
value at a = 1. For all other values of a(> 0) the wavespeed c > 2.

Now consider min[e−ax , e−x ] for x large and positive (since we are only dealing
with the range where u2 � u). If

a < 1 ⇒ e−ax > e−x ,

and so the velocity of propagation with asymptotic initial condition behaviour like
(13.16) will depend on the leading edge of the wave, and the wavespeed c is given
by (13.18). On the other hand, if a > 1 then e−ax is bounded above by e−x and the
front with wavespeed c = 2. We are thus saying that if the initial conditions satisfy
(13.16), then the asymptotic wavespeed of the travelling wave solution of (13.6) is

c = a + 1

a
, 0 < a ≤ 1, c = 2, a ≥ 1. (13.19)

The first of these has been proved by McKean (1975), the second by Larson (1978) and
both verified numerically by Manoranjan and Mitchell (1983).

The Fisher–Kolmogoroff equation is invariant under a change of sign of x , as men-
tioned before, so there is a wave solution of the form u(x, t) = U(x +ct), c > 0, where
now U(−∞) = 0, U(∞) = 1. So if we start with (13.6) for −∞ < x < ∞ and an
initial condition u(x, 0) which is zero outside a finite domain, such as illustrated in Fig-
ure 13.2, the solution u(x, t) will evolve into two travelling wavefronts, one moving left
and the other to the right, both with speed c = 2. Note that if u(x, 0) < 1 the u(1 − u)

term causes the solution to grow until u = 1. Clearly u(x, t) → 1 as t → ∞ for all x .
The axisymmetric form of the Fisher–Kolmogoroff equation, namely,

∂u

∂t
= ∂2u

∂r2 + 1

r

∂u

∂r
+ u(1 − u) (13.20)

does not possess travelling wavefront solutions in which a wave spreads out with con-
stant speed, because of the 1/r term; the equation does not become an ordinary differ-
ential equation in the variable z = r − ct . Intuitively we can see what happens given

Figure 13.2. Schematic time development of a wavefront solution of the Fisher–Kolmogoroff equation on
the infinite line.
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u(r, 0) qualitatively like the u in the first figure of Figure 13.2. The u will grow because
of the u(1 − u) term since u < 1. At the same time diffusion will cause a wavelike
dispersal outwards. On the ‘wave’ ∂u/∂r < 0 so it effectively reduces the value of the
right-hand side in (13.20). This is equivalent to reducing the diffusion by an apparent
convection or alternatively to reducing the source term u(1 − u). The effect is to reduce
the velocity of the outgoing wave. For large r the (1/r)∂u/∂r term becomes negligible
so the solution will tend asymptotically to a travelling wavefront solution with speed
c = 2 as in the one-dimensional case. So, we can think of the axisymmetric wavelike
solutions as having a ‘wavespeed’ c(r), a function of r , where, for r bounded away from
r = 0, it increases monotonically with c(r) ∼ 2 for r large.

Equation (13.4) has been the basis for a variety of models for spatial spread. Aoki
(1987), for example, discussed gene-culture waves of advance. Ammerman and Cavali-
Sforza (1971, 1983), in an interesting direct application of the model, applied it to the
spread of early farming in Europe.

13.3 Asymptotic Solution and Stability of Wavefront Solutions of
the Fisher–Kolmogoroff Equation

Travelling wavefront solutions U(z) for equation (13.6) satisfy (13.8); namely,

U ′′ + cU ′ + U(1 − U) = 0, (13.21)

and monotonic solutions exist, with U(−∞) = 1 and U(∞) = 0, for all wavespeeds
c > 2. The phase plane trajectories are solutions of (13.11); that is,

dV

dU
= −cV − U(1 − U)

V
. (13.22)

No analytical solutions of these equations for general c have been found although there
is an exact solution for a particular c(> 2), as we show below in Section 13.4. There is,
however, a small parameter in the equations, namely, ε = 1/c2 ≤ 0.25, which suggests
we look for asymptotic solutions for 0 < ε � 1 (see, for example, the book by Murray
1984 for a simple description of these asymptotic techniques and that by Kevorkian and
Cole 1996 for a more comprehensive study of such techniques). Canosa (1973) obtained
such asymptotic solutions to (13.21).

Since the wave solutions are invariant to any shift in the origin of the coordinate
system (the equation is unchanged if z → z + constant) let us take z = 0 to be the point
where U = 1/2. We now use a standard singular perturbation technique. The procedure
is to introduce a change of variable in the vicinity of the front, which here is at z = 0,
in such a way that we can find the solution as a Taylor expansion in the small parameter
ε. We can do this with the transformation

U(z) = g(ξ), ξ = z

c
= ε1/2z. (13.23)

The actual transformation in many cases is found by trial and error until the resulting
transformed equation gives a consistent perturbation solution satisfying the boundary
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conditions. With (13.23), (13.21), together with the boundary conditions on U , becomes

ε
d2g

dξ2
+ dg

dξ
+ g(1 − g) = 0

g(−∞) = 1, g(∞) = 0, 0 < ε ≤ 1

c2
min

= 0.25,

(13.24)

and we further require g(0) = 1/2.
The equation for g as it stands looks like the standard singular perturbation prob-

lem since ε multiplies the highest derivative; that is, setting ε = 0 reduces the order
of the equation and usually causes difficulties with the boundary conditions. With this
equation, and in fact frequently with such singular perturbation analysis of shockwaves
and wavefronts, the reduced equation alone gives a uniformly valid first-order approx-
imation: the reason for this is the form of the nonlinear term g(1 − g) which is zero at
both boundaries.

Now look for solutions of (13.24) as a regular perturbation series in ε; that is, let

g(ξ ; ε) = g0(ξ) + εg1(ξ) + · · · . (13.25)

The boundary conditions at ±∞ and the choice of U(0) = 1/2, which requires
g(0; ε) = 1/2 for all ε, gives from (13.25) the conditions on the gi(ξ) for i = 0, 1, 2, . . .

as

g0(−∞) = 1, g0(∞) = 0, g0(0) = 1

2
,

gi(±∞) = 0, gi (0) = 0 for i = 1, 2, . . . .

(13.26)

On substituting (13.25) into (13.24) and equating powers of ε we get

O(1) : dg0

dξ
= −g0(1 − g0) ⇒ g0(ξ) = 1

1 + εξ
,

O(ε) : dg1

dξ
+ (1 − 2g0)g1 = −d2g0

dξ2
,

(13.27)

and so on, for higher orders in ε. The constant of integration in the g0-equation was
chosen so that g0(0) = 1/2 as required by (13.26). Using the first of (13.27), the g1-
equation becomes

dg1

dξ
−

(
g′′

0

g′
0

)
g1 = −g′′

0 ,

which on integration and using the conditions (13.26) gives

g1 = −g′
0 ln[4| g′

0 |] = εξ 1

(1 + εξ )2
ln

[
4εξ

(1 + εξ )2

]
. (13.28)
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In terms of the original variables U and z from (13.23) the uniformly valid asymptotic
solution for all z is given by (13.25)–(13.28) as

U(z; ε) = (1 + ez/c)−1 + 1

c2
ez/c(1 + ez/c)−2 ln

[
4ez/c

(1 + ez/c)2

]

+ O

(
1

c4

)
, c ≥ cmin = 2.

(13.29)

This asymptotic solution is least accurate for c = 2. However, when this solution is
compared with the computed wavefront solution of equation (13.6), the one with speed
c = 2, the first term alone, that is, the O(1) term (1+ez/c)−1, is everywhere within a few
percent of it. It is an encouraging fact that asymptotic solutions with ‘small’ parameters,
even of the order of that used here, frequently give remarkably accurate solutions.

Let us now use the asymptotic solution (13.29) to investigate the relationship be-
tween the steepness or slope of the wavefront solution and its speed of propagation.
Since the gradient of the wavefront is everywhere negative a measure of the steepness,
s say, of the wave is the magnitude of the maximum of the gradient U ′(z), that is, the
point where U ′′ = 0, namely, the point of inflexion of the wavefront solution. From
(13.23) and (13.25), that is, where

g′′
0 (ξ) + εg′′

1 (ξ) + O(ε2) = 0,

which, from (13.27) and (13.28), gives ξ = 0; that is, z = 0. The gradient at z = 0,
using (13.29), gives

−U ′(0) = s = 1

4c
+ O

(
1

c5

)
, (13.30)

which, we must remember, only holds for c ≥ 2. This result implies that the faster the
wave moves, that is, the larger the c, the less steep is the wavefront. Although the width
of the wave is strictly from −∞ to ∞, a practical measure of the width, L say, is the
inverse of the steepness; that is, L = 1/s = 4c from (13.30). Figure 13.3 illustrates this
effect.

Figure 13.3. Steepness s(= | U ′(0) |) and a practical measure of the width L(= 1/s) for wavefront solutions
of the Fisher–Kolmogoroff equation (13.6) for two wavespeeds, c2 and c1 > c2 ≥ 2. The flatter the wave the
faster it moves.
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The results in this section can be generalised to single-species population models
where logistic growth is replaced by an appropriate f (u), so that (13.6) becomes

∂u

∂t
= f (u) + ∂2u

∂x2
, (13.31)

where f (u) has only two zeros, say u1 and u2 > u1. If f ′(u1) > 0 and f ′(u2) < 0 then
by a similar analysis to the above, wavefront solutions evolve with u going monotoni-
cally from u1 to u2 with wavespeeds

c ≥ cmin = 2[ f ′(u1)]1/2. (13.32)

These results are as expected, with (13.32) obtained by linearising f (u) about the lead-
ing edge where u ≈ u1 and comparing the resulting equation with (13.15).

Stability of Travelling Wave Solutions

The stability of solutions of biological models is important and is often another re-
liability test of model mechanisms. The travelling wavefront solutions of the Fisher–
Kolmogoroff equation present a pedagogical case study of stability.

We saw above that the speed of propagation of the wavefront solutions (see (13.19)
with (13.16)) depends sensitively on the explicit behaviour of the initial conditions
u(x, 0) as | x | → ∞. This implies that the wavefront solutions are unstable to per-
turbations in the far field. On the other hand if u(x, 0) has compact support, that is, the
kind of initial conditions (13.14) used by Kolmogoroff et al. (1937), then the ultimate
wave does not depend on the detailed form of u(x, 0). Unless the numerical analysis is
carefully performed, with a priori knowledge of the wavespeed expected, the evolving
wave has speed c = 2. Random effects introduced by the numerical scheme are re-
stricted to the finite domain. Any practical model deals, of course, with a finite domain.
So it is of importance to consider the stability of the wave solutions to perturbations
which are zero outside a finite domain, which includes the wavefront. We show, follow-
ing Canosa (1973), that the solutions are stable to such finite perturbations, if they are
perturbations in the moving frame of the wave.

Let u(x, t) = u(z, t), where z = x − ct ; that is, we take z and t as the independent
variables in place of x and t . Equation (13.6) becomes for u(z, t)

ut = u(1 − u) + cuz + uzz, (13.33)

where subscripts now denote partial derivatives. We are concerned with c ≥ cmin = 2
and we denote the wavefront solution U(z), namely, the solution of (13.21), by uc(z);
it satisfies the right-hand side of (13.33) set equal to zero. Now consider a small pertur-
bation on uc(z) of the form

u(z, t) = uc(z) + ωv(z, t), 0 < ω � 1. (13.34)

Substituting this into (13.33) and keeping only the first-order terms in ω we get the
equation governing v(z, t) as
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vt = [1 − 2uc(z)]v + cvz + vzz . (13.35)

The solution uc(z) is stable to perturbations v(z, t) if

lim
t→∞ v(z, t) = 0 or lim

t→∞ v(z, t) = duc(z)

dz
.

The fact that uc(z) is stable if the second of these holds is because v(z, t) then represents
a small translation of the wave along the x-axis since

uc(z + δz) ≈ uc(z) + δz
duc(z)

dz
.

Now look for solutions to the linear equation (13.35) by setting

v(z, t) = g(z)e−λt , (13.36)

which on substituting into (13.35) gives, on cancelling the exponentials,

g′′ + cg′ + [λ + 1 − 2uc(z)]g = 0. (13.37)

Note that if λ = 0, g(z) = duc(z)/dz is a solution of this equation, which as we showed,
implies that the travelling wave solution is invariant under translation along the z-axis.

Now use the fact that v(z, t) is nonzero only in a finite domain, which from (13.36)
means that boundary conditions g(±L) = 0 for some L are appropriate for g in (13.37).
If we introduce h(z) by

g(z) = h(z)e−cz/2,

the eigenvalue problem, to determine the possible λ, becomes

h′′ +
[

λ −
{

2uc(z) + c2

4
− 1

}]

h = 0, h(±L) = 0 (13.38)

in which

2uc(z) + c2

4
− 1 ≥ 2uc(z) > 0

since c ≥ 2 and uc(z) > 0 in the finite domain −L ≤ z ≤ L . Standard theory (for
example, Titchmarsh 1946, Chapter 11) now gives the result that all eigenvalues λ of
(13.38) are real and positive. So, from (13.36), v(z, t) tends to zero as t → ∞. Thus
the travelling wave solutions uc(z) are stable to all small finite domain perturbations of
the type v(z, t) in (13.34). In fact such perturbations are not completely general since
they are perturbations in the moving frame. The general problem has been studied, for
example, by Larson (1978) and others; the analysis is somewhat more complex. The
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fact that the waves are stable to finite domain perturbations makes it clear why typical
numerical simulations of the Fisher–Kolmogoroff equation result in stable wavefront
solutions with speed c = 2.

13.4 Density-Dependent Diffusion-Reaction Diffusion Models and
Some Exact Solutions

We saw in Section 11.3 in Chapter 11 that in certain insect dispersal models the diffu-
sion coefficient D depended on the population u. There we did not include any growth
dynamics. If we wish to consider longer timescales then we should include such growth
terms in the model. A natural extension to incorporate density-dependent diffusion is
thus, in the one-dimensional situation, to consider equations of the form

∂u

∂t
= f (u) + ∂

∂x

[
D(u)

∂u

∂x

]
, (13.39)

where typically D(u) = D0um , with D0 and m positive constants. Here we consider
functions f (u) which have two zeros, one at u = 0 and the other at u = 1. Equations
in which f ≡ 0 have been studied much more widely than those with nonzero f ; see,
for example, Chapter 11. To be even more specific we consider f (u) = ku p(1 − uq ),
where p and q are positive constants. By a suitable rescaling of t and x we can absorb
the parameters k and D0 and the equations we thus consider in this section are then of
the general form

∂u

∂t
= u p(1 − uq) + ∂

∂x

[
um ∂u

∂x

]
, (13.40)

where p, q and m are positive parameters. If we write out the diffusion term in full we
get

∂u

∂t
= u p(1 − uq) + mum−1

(
∂u

∂x

)2

+ um ∂2u

∂x2

which shows that the nonlinear diffusion can be thought of as contributing an equivalent
convection with ‘velocity’ −mum−1∂u/∂x .

It might be argued that the forms in (13.40) are rather special. However with the
considerable latitude to choose p, q and m such forms can qualitatively mimic more
complicated forms for which only numerical solutions are possible. The usefulness of
analytical solutions, of course, is the ease with which we can see how solutions depend
analytically on the parameters. In this way we can then infer the qualitative behaviour
of the solutions of more complicated but more realistic model equations. There are,
however, often hidden serious pitfalls, one of which is important and which we point
out below.
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To relate the exact solutions, which we derive, to the above results for the Fisher–
Kolmogoroff equation we consider first m = 0 and p = 1 and (13.40) becomes

∂u

∂t
= u(1 − uq) + ∂2u

∂x2
, q > 0. (13.41)

Since u = 0 and u = 1 are the uniform steady states, we look for travelling wave
solutions in the form

u(x, t) = U(z), z = x − ct, U(−∞) = 1, U(∞) = 0, (13.42)

where c > 0 is the wavespeed we must determine. The ordinary differential equation
for u(z) is

L(U) = U ′′ + cU ′ + U(1 − U q) = 0, (13.43)

which defines the operator L . This equation can of course be studied in the (U ′, U)

phase plane. With the form of the first term in the asymptotic wavefront solution to the
Fisher–Kolmogoroff equation given by (13.29) let us optimistically look for solutions
of (13.43) in the form

U(z) = 1

(1 + aebz)s , (13.44)

where a, b and s are positive constants which have to be found. This form automatically
satisfies the boundary conditions at z = ±∞ in (13.42). Because of the translational
invariance of the equation we can say at this stage that a is arbitrary: it can be incorpo-
rated into the exponential as a translation b−1 ln a in z. It is, however, useful to leave it
in as a way of keeping track of the algebraic manipulation. Another reason for keeping
it in is that if b and s can be found so that (13.44) is an exact solution of (13.43) then
they cannot depend on a.

Substitution of (13.44) into (13.43) gives, after some trivial but tedious algebra,

L(U) = 1

(1 + aebz)s+2

{[
s(s + 1)b2 − sb(b + c) + 1

]
a2e2bz

+ [2 − sb(b + c)] aebz + 1 −
[
1 + aebz

]2−sq
}

,

(13.45)

so that L(U) = 0 for all z; the coefficients of e0, ebz and e2bz within the curly brackets
must all be identically zero. This implies that

2 − sq = 0, 1 or 2 ⇒ s = 2

q
,

1

q
or sq = 0.

Clearly sq = 0 is not possible since s and q are positive constants. Consider the other
two possibilities.
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With s = 1/q the coefficients of the exponentials from (13.45) give

ebz : 2 − sb(b + c)−1 = 0 ⇒ sb(b + c) = 1

e2bz : s(s + 1)b2 − sb(b + c) + 1 = 0

}

⇒ s(s + 1)b2 = 0

⇒ b = 0

since s > 0. This case is therefore also not a possibility since necessarily b > 0.
Finally if s = 2/q the coefficients of ebz and e2bz are

ebz : sb(b + c) = 2; e2bz: s(s + 1)b2 − sb(b + c) + 1 ⇒ s(s + 1)b2 = 1

which together give b and c as

s = 2

q
, b = 1

[s(s + 1)]1/2 , c = 2

sb
− b

which then determine s, b and a unique wavespeed c in terms of q as

s = 2

q
, b = q

[2(q + 2)]1/2 , c = q + 4

[2(q + 2)]1/2 . (13.46)

From these we see that the wavespeed c increases with q(> 0). A measure of the steep-
ness, S, given by the magnitude of the gradient at the point of inflexion, is easily found
from (13.44). The point of inflexion, zi , is given by zi = −b−1 ln(as) and hence the
gradient at zi gives the steepness, S, as

S = b

(1 + 1
s )s+1

=
1
2 q

(1 + q
2 )3/2+2/q

.

So, with increasing q the wavespeed c increases and the steepness decreases, as was the
case with the Fisher–Kolmogoroff wavefront solutions.

When q = 1, equation (13.41) becomes the Fisher–Kolmogoroff equation (13.6)
and from (13.46)

s = 2, b = 1√
6
, c = 5√

6
.

We then get an exact analytical travelling wave solution from (13.44). The arbitrary
constant a can be chosen so that z = 0 corresponds to U = 1/2, in which case a =√

2 − 1 and the solution is

U(z) = 1
[
1 + (

√
2 − 1)ez/

√
6
]2 . (13.47)

This solution has a wavespeed c = 5/
√

6 and on comparison with the asymptotic solu-
tion (13.29) to O(1) it is much steeper.
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This example highlights one of the serious problems with such exact solutions
which we alluded to above: namely, they often do not determine all possible solutions
and indeed, may not even give the most relevant one, as is the case here. This is not be-
cause the wavespeed is not 2, in fact c = 5/

√
6 ≈ 2.04, but rather that the quantitative

waveform is so different. To analyse this general form (13.43) properly, a careful phase
plane analysis has to be carried out.

Another class of exact solutions can be found for (13.40) with m = 0, p = q + 1
with q > 0, which gives the equation as

∂u

∂t
= uq+1(1 − uq) + ∂2u

∂x2
. (13.48)

Substituting U(z) from (13.44) into the travelling waveform of the last equation and pro-
ceeding exactly as before we find a travelling wavefront solution exists, with a unique
wavespeed, given by

U(z) = 1

(1 + aebz)s
, s = 1

q
, b = q

(q + 1)1/2
, c = 1

(q + 1)1/2
. (13.49)

A more interesting and useful exact solution has been found for the case p = q = 1,
m = 1 with which (13.40) becomes

∂u

∂t
= u(1 − u) + ∂

∂x

[
u

∂u

∂x

]
, (13.50)

a nontrivial example of density-dependent diffusion with logistic population growth.
Physically this model implies that the population disperses to regions of lower density
more rapidly as the population gets more crowded. The solution, derived below, was
found independently by Aronson (1980) and Newman (1980). Newman (1983) studied
more general forms and carried the work further.

Let us look for the usual travelling wave solutions of (13.50) with u(x, t) = U(z),
z = x − ct , and so we consider

(UU ′)′ + cU ′ + U(1 − U) = 0,

for which the phase plane system is

U ′ = V, U V ′ = −cV − V 2 − U(1 − U). (13.51)

We are interested in wavefront solutions for which U(−∞) = 1 and U(∞) = 0: we
anticipate U ′ < 0. There is a singularity at U = 0 in the second equation. We remove
this singularity by defining a new variable ζ as

U
d

dz
= d

dζ
⇒ dU

dζ
= U V,

dV

dζ
= −cV − V 2 − U(1 − U), (13.52)

which is not singular. The critical points in the (U, V ) phase plane are
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Figure 13.4. Qualitative phase plane trajectories for the travelling wave equations (13.52) for various c.
(After Aronson 1980) In (a) no trajectory is possible from (1, 0) to U = 0 at a finite V . In (b) and (c) travelling
wave solutions from U = 1 to U = 0 are possible but with different characteristics: the travelling wave
solutions in (d) illustrate these differences. Importantly the solution corresponding to (b) has a discontinuous
derivative at the leading edge.

(U, V ) = (0, 0), (1, 0), (0,−c).

A linear analysis about (1, 0) and (0,−c) shows them to be saddle points while (0, 0)

is like a stable nonlinear node—nonlinear because of the U V in the U -equation in
(13.52). Figure 13.4 illustrates the phase trajectories for (13.52) for various c. From
Section 11.2 we can expect the possibility of a wave with a discontinuous tangent at a
specific point zc, the one where U ≡ 0 for z ≥ zc. This corresponds to a phase trajectory
which goes from (1, 0) to a point on the U = 0 axis at some finite nonzero negative
V . Referring now to Figure 13.4(a), if 0 < c < cmin there is no trajectory possible
from (1, 0) to U = 0 except unrealistically for infinite V . As c increases there is a
bifurcation value cmin for which there is a unique trajectory from (1, 0) to (0,−cmin)

as shown in Figure 13.4(b). This means that at the wavefront zc, where U = 0, there is
a discontinuity in the derivative from V = U ′ = −cmin to U ′ = 0 and U = 0 for all
z > zc; see Figure 13.4(d). As c increases beyond cmin a trajectory always exists from
(1, 0) to (0, 0) but now the wave solution has U → 0 and U ′ → 0 as z → ∞; this type
of wave is also illustrated in Figure 13.4(d).

As regards the exact solution, the trajectory connecting (1, 0) to (0,−c) in Fig-
ure 13.4(b) is in fact a straight line V = −cmin(1 − U) if cmin is appropriately chosen.
In other words this is a solution of the phase plane equation which, from (13.51), is

dV

dU
= −cV − V 2 − U(1 − U)

U V
.

Substitution of V = −cmin(1 − U) in this equation, with c = cmin, shows that cmin =
1/

√
2. If we now return to the first of the phase equations in (13.51), namely, U ′ = V

and use the phase trajectory solution V = −(1 − U)/
√

2 we get

U ′ = −1 − U√
2

,
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which, on using U(−∞) = 1, gives

U(z) = 1 − exp

[
z − zc√

2

]
z < zc

= 0 z > zc,

(13.53)

where zc is the front of the wave: it can be arbitrarily chosen in the same way as the a
in the solutions (13.44). This is the solution sketched in Figure 13.4(d).

This analysis, showing the existence of the travelling waves, can be extended to
more general cases in which the diffusion coefficient is um, for m 	= 1, or even more
general D(u) in (13.40) if it satisfies certain criteria.

It is perhaps appropriate to state briefly here the travelling wave results we have
derived for the Fisher–Kolmogoroff equation and its generalisations to a general f (u)

normalised such that f (0) = 0 = f (1), f ′(0) > 0 and f ′(1) < 0. In dimensionless
terms we have shown that there is a travelling wavefront solution with 0 < u < 1
which can evolve, with appropriate initial conditions, from (13.31). Importantly these
solutions have speeds c ≥ cmin = 2[ f ′(0)]1/2 with the usual computed form having
speed cmin. For the Fisher–Kolmogoroff equation (13.4) this dimensional wavespeed, c∗
say, using the nondimensionalisation (13.5), is c∗ = 2[k D]1/2; here k is a measure of the
linear growth rate or of the linear kinetics. If we consider not untypical biological values
for D of 10−9–10−11 cm2 sec−1 and k is O(1 sec−1) say, the speed of propagation is
then O(2 × 10−4.5–10−5.5 cm sec−1). With this, the time it takes to cover a distance
of the order of 1 mm is O(5 × 102.5–103.5 sec) which is very much shorter than the
pure diffusional time of O(107–109 sec). It is the combination of reaction and diffusion
which greatly enhances the efficiency of information transferral via travelling waves of
concentration changes. This reaction diffusion interaction, as we shall see in Volume II,
totally changes our concept of the role of diffusion in a large number of important
biological situations.

Before leaving this section let us go back to something we mentioned earlier in
the section when we noted that nonlinear diffusion could be thought of as equivalent to
a nonlinear convection effect: the equation following (13.40) demonstrates this. If the
convection arises as a natural extension of a conservation law we get, instead, equations
such as

∂u

∂t
+ ∂h(u)

∂x
= f (u) + ∂2u

∂x2
, (13.54)

where h(u) is a given function of u. Here the left-hand side is in standard ‘conservation’
form: that is, it is in the form of a divergence, namely, (∂/∂t, ∂/∂x). (u, h(u)), the con-
vective ‘velocity’ is h′(u). Such equations arise in a variety of contexts, for example,
in ion-exchange columns and chromatography; see Goldstein and Murray (1959). They
have also been studied by Murray (1968, 1970a,b, 1973), where other practical applica-
tions of such equations are given, together with analytical techniques for solving them.
The book by Kevorkian (2000) is an excellent very practical book on partial differential
equations.

The effect of nonlinear convection in reaction diffusion equations can have dramatic
consequences for the solutions. This is to be expected since we have another major



13.4 Density-Dependent Diffusion-Reaction Diffusion Models 455

transport process, namely, convection, which depends nonlinearly on u. This process
may or may not enhance the diffusional transport. If the diffusion process is negligible
compared with the convection effects the solutions can exhibit shock-like solutions (see
Murray 1968, 1970a,b, 1973).

Although the analysis is harder than for the Fisher–Kolmogoroff equation, we can
determine conditions for the existence of wavefront solutions. For example, consider
the simple, but nontrivial, case where h′(u) = ku with k a positive or negative constant
and f (u) logistic. Equation (13.54) is then

∂u

∂t
+ ku

∂u

∂x
= u(1 − u) + ∂2u

∂x2
. (13.55)

With k = 0 this reduces to equation (13.6) the wavefront solutions of which we just
discussed in detail.

Suppose k 	= 0 and we look for travelling wave solutions to (13.55) in the form
(13.7); namely,

u(x, t) = U(z), z = x − ct, (13.56)

where, as usual, the wavespeed c has to be found. Substituting into (13.55) gives

U ′′ + (c − kU)U ′ + U(1 − U) = 0 (13.57)

for which appropriate boundary conditions are given by (13.9); namely,

lim
z→∞ U(z) = 0, lim

z→−∞ U(z) = 1. (13.58)

Equations (13.57) and (13.58) define the eigenvalue problem for the wavespeed c(k).
From (13.57), with V = U ′, the phase plane trajectories are solutions of

dV

dU
= −(c − kU)V − U(1 − U)

V
. (13.59)

Singular points of the last equation are (0, 0) and (1, 0). We require conditions on c =
c(k) such that a monotonic solution exists in which 0 ≤ U ≤ 1 and U ′(z) ≤ 0; that
is, we require a phase trajectory lying in the quadrant U ≥ 0, V ≤ 0 which joins the
singular points. A standard linear phase plane analysis about the singular points shows
that c ≥ 2, which guarantees that (0, 0) is a stable node and (1, 0) a saddle point. The
specific equation (13.55) and the travelling waveform (13.59) were studied analytically
and numerically by the author and R.J. Gibbs (see Murray 1977). It can be shown (see
below) that a travelling wave solution exists for all c ≥ c(k) where

c(k) =
{

2
k

2
+ 2

k

if

{
2 > k > −∞
2 ≤ k < ∞ . (13.60)
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We thus see that here c = 2 is a lower bound for only a limited range of k, a more
accurate bound being given by the last equation. We present the main elements of the
analysis below.

The expression c = c(k) in the last equation gives the wavespeed in terms of a key
parameter, k, in the model. It is another example of a dispersion relation, here associated
with wave phenomena. The general concept of dispersion relations are of considerable
importance and real practical use and is a subject we shall be very much involved with
later in Volume II, particularly in Chapters 2 to 6, 8 and 12.

Brief Derivation of the Wavespeed Dispersion Relation

Linearising (13.59) about (0, 0) gives

dV

dU
= −cV − U

V

with eigenvalues

e± = −c ± (c2 − 4)1/2

2
. (13.61)

Since we require U ≥ 0 these must be real and so we must have c ≥ 2. Thus 0 > e+ >

e− and so (0, 0) is a stable node and, for large z,
(

V
U

)
→ a

(
e+
1

)
exp[e+z] + b

(
e−
1

)
exp[e−z],

where a and b are constants. This implies that

dV

dU
→

{
e+
e−

as z → ∞ if

{
a 	= 0
a = 0

. (13.62)

An exact solution of (13.59) is

V = −k

2
U(1 − U) if c = k

2
+ 2

k
. (13.63)

With this expression for c,

(c2 − 4)1/2 =






k

2
− 2

k
2

k
− k

2

if

{
k ≥ 2
k < 2

and so from (13.61)

e+ =






−2

k

−k

2

if

{
k ≥ 2
k < 2

, e− =






−k

2

−2

k

if

{
k ≥ 2
k < 2

.
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But, from (13.63)

dV

dU

]

U=0
= −k

2
=
{

e−
e+

for

{
k ≥ 2
k < 2

.

So, from (13.62), for k ≥ 2 we see that V (U) satisfies dV/dU → e− as z → ∞. This
gives the second result in (13.60), namely, that the wavespeed

c = k

2
+ 2

k
for k ≥ 2. (13.64)

Now consider k < 2 and z → −∞. Linearising about (1, 0) gives the eigenvalues
E± as

E± = −(c − k) ± {
(c − k)2 + 4

}1/2

2
(13.65)

so E+ > 0 > E− and (1, 0) is a saddle point. As z → −∞, U → 1 − O(exp[E+z])
from which we see that

dV

dU
→ E+(c, k) as z → −∞.

With c ≥ 2 we see from (13.65) that

d E+(k)

dk
=
[
(c − k)2 + 4

]−1/2
E+ > 0 (13.66)

and so, for U sufficiently close to U = 1, dV/dU increases with increasing k. Thus,
for U close enough to U = 1, the phase plane trajectory V (U, c, k) satisfies

V (U, c = 2, k) < V (U, c = 2, k = 2) for k < 2. (13.67)

Now let us suppose that a number d exists, where 0 < d < 1, such that

V (d, c = 2, k = 2) = V (d, c = 2, k),

V (U, c = 2, k = 2) < V (U, c = 2, k) for d < U < 1.

This implies that

dV (d, c = 2, k = 2)

dU
≤ dV (d, c = 2, k)

dU
. (13.68)

But, from (13.59),

dV (d, c = 2, k)

dU
= −2 + kd − d(1 − d)

V (d, c = 2, k)
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which, with (13.68), implies

−2 + 2d − d(1 − d)

V (d, c = 2, k = 2)
≤ −2 + kd − d(1 − d)

V (d, c = 2, k)

which, together with the first of (13.67), in turn implies

2d ≤ kd ⇒ 2 ≤ k.

But this contradicts k < 2, so supposition (13.67) is not possible and so implies that the
wavespeed c ≥ 2 for all k < 2. This together with (13.64) is the result in (13.60).

We have only given the essentials here; to prove the result more rigourously we have
to examine the possible trajectories more carefully to show that everything is consistent,
such as the trajectories not cutting the U -axis for U ∈ (0, 1); this can all be done.
The result (13.60) is related to the analysis in Section 13.2, where we showed how the
wavespeed could depend on either the wavefront or the wave tail.

When k 	= 0 we can cast (13.55) in a different form which highlights the nonlinear
convective contribution as opposed to the diffusion contribution to the wave solutions.
Suppose k > 0 and set

ε = 1

k2
, y = x

k
= ε1/2x (k > 0)

⇒ ut + uuy = u(1 − u) + εuyy.

(13.69)

If k < 0 we take

ε = 1

k2 , y = x

k
= ε1/2x (k < 0)

⇒ ut + uuy = u(1 − u) + εuyy.

(13.70)

We now consider travelling wave solutions as ε → 0.
With u(x, t) a solution of (13.55), u(ky, t) is a solution of (13.69). So with U(x −

ct) a solution of (13.59) satisfying U(−∞) = 1, U(∞) = 0, U(ky −ct) is a solution of
(13.69) and the wavespeed λ = c/k = cε1/2. So, using the wavespeed estimates from
(13.60), equation (13.69) has travelling wave solutions for all

λ ≥ λ(ε) = c(k)

k
= c(ε−1/2)ε1/2

and so

λ(ε) =





2ε1/2

1

2
+ 2ε

if






ε >
1

4
1

4
≥ ε > 0

.

Now let ε → 0 in (13.69) to get

ut + uuy = u(1 − u).
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Figure 13.5. Travelling wave solutions computed
from (13.69). Each has wavespeed λ = 0.74 but with
different ε; (a) ε = 0, (b) ε = 0.12. The origin is
where u = 0.5.

Solutions of this equation can be discontinuous (these are the weak, that is, shock, so-
lutions discussed in detail by Murray 1970a). For ε small the wave steepens into a
shocklike solution. On the other hand, for (13.70) with the same boundary conditions
discontinuous solutions do not occur (see Murray 1970a). Figure 13.5 gives numerically
computed travelling wave solutions for (13.69) for a given wavespeed and two different
values for ε; note the discontinuous solution in Figure 13.5(b). Figure 13.6 shows com-
puted wave solutions for (13.70) for small ε. Note that here the wave steepens but does
not display discontinuities like that in Figure 13.5(b).

To conclude this section we should note the results of Satsuma (1987) on exact
solutions of scalar density-dependent reaction diffusion equations. The method he de-
velops is novel and is potentially of wider applicability. The work on the existence and
stability of monotone wave solutions of such equations by Hosono (1986) is also of
particular relevance to the material in this section.

A point about the material in this discussion of nonlinear convection reaction dif-
fusion equations is that it shows how much more varied the solutions of such equations
can be.

Figure 13.6. Travelling wave solutions,
computed from (13.70), with minimum
speed c = k/2 + 2/k, ε = 1/k2, for two
different values of ε: (a) ε = 10−4,
wavespeed c ≈ 2.2; (b) ε = 10−1,
wavespeed c ≈ 50. The origin is where
u = 1 − 10−6.
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13.5 Waves in Models with Multi-Steady State Kinetics: Spread and
Control of an Insect Population
Kinetics such as the uptake function in an enzyme reaction system (Chapter 6), or the
population growth–interaction function f (u) such as we introduced in Chapter 1, can
often have more than two steady states. That is, f (u) in (13.31) can have three or more
positive zeros. The wave phenomena associated with such f (u) is quite different from
that in the previous sections. A practical example is the growth function for the be-
haviour of the spruce budworm, the spatially uniform situation of which was discussed
in detail in Chapter 1, Section 1.2. The specific dimensionless f (u) in that model is

f (u) = ru

(
1 − u

q

)
− u2

1 + u2
, (13.71)

where r and q are dimensionless parameters involving real field parameters (see equa-
tion (1.17)). For a range of the positive parameters r and q, f (u) is as in Figure 1.5,
which is reproduced in Figure 13.7(a) for convenience. Recall the dependence of the
number and size of the steady states on r and q; a typical curve is shown again in Fig-
ure 13.7(b) for convenience. In the absence of diffusion, that is, the spatially uniform
situation, there can be three positive steady states: two linearly stable ones, u1 and u3,
and one unstable one, u2. The steady state u = 0 is also unstable.

We saw in Section 1.2 that the lower steady state u1 corresponds to a refuge for
the budworm while u3 corresponds to an outbreak. The questions we consider here are
(i) how does an infestation or outbreak propagate when we include spatial dispersal of
the budworm, and (ii) can we use the results of the analysis to say anything about a con-
trol strategy to prevent an outbreak from spreading. To address both of these questions,
we consider the budworm to disperse by linear diffusion and investigate the travelling
wave possibilities. Although the practical problem is clearly two-dimensional we dis-
cuss here the one-dimensional case since, even with that, we can still offer reasonable
answers to the questions, and at the very least pose those that the two-dimensional
model must address. In fact there are intrinsically no new conceptual difficulties with
the two-space dimensional model. The model we consider then is, from (13.31),

Figure 13.7. (a) Growth–interaction kinetics for the spruce budworm population u: u1 corresponds to a
refuge and u3 corresponds to an infestation outbreak. (b) Schematic dependence of the steady states in (a) on
the parameters r and q in (13.71).
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∂u

∂t
= f (u) + ∂2u

∂x2
, (13.72)

with f (u) typically as in Figure 13.7(a).
Let us look for travelling wave solutions in the usual way. Set

u(x, t) = U(z), z = x − ct ⇒ U ′′ + cU ′ + f (U) = 0, (13.73)

the phase plane system for which is

U ′ = V, V ′ = −cV − f (U) ⇒ dV

dU
= −cV + f (U)

V
, (13.74)

which has four singular points

(0, 0), (u1, 0), (u2, 0), (u3, 0). (13.75)

We want to solve the eigenvalue problem for c, such that travelling waves, of the kind
we seek, exist. As a first step we determine the type of singularities given by (13.75).

Linearising (13.74) about the singular points U = 0 and U = ui , i = 1, 2, 3 we
get

dV

d(U − ui )
= −cV + f ′(ui )(U − ui )

V
, i = 1, 2, 3 and ui = 0 (13.76)

which, using standard linear phase plane analysis, gives the following singular point
classification,

(0, 0): f ′(0) > 0 ⇒ stable

{
spiral
node

if c2
{
<

>
4 f ′(0), c > 0

(u2, 0): f ′(u2) > 0 ⇒ stable

{
spiral
node

if c2
{
<

>
4 f ′(u2), c > 0

(ui , 0): f ′(ui ) < 0 ⇒ saddle point for all c, i = 1, 3.

(13.77)

If c < 0 then (0, 0) and (u2, 0) become unstable—the type of singularity is the same.
There are clearly several possible phase plane trajectories depending on the size of
f ′(ui ) where ui has i = 1, 2, 3 plus ui = 0. Rather than give a complete catalogue of
all the possibilities we analyse just two to show how the others can be studied.

The existence of the various travelling wave possibilities for various ranges of c
can become quite an involved book-keeping process. This particular type of equation
has been rigourously studied by Fife and McLeod (1977). The approach we use here is
intuitive and does not actually prove the existence of the waves we are interested in, but
it certainly gives a very strong indication that they exist. The procedure then is in line
with the philosophy adopted throughout this book.
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Figure 13.8. (a) Possible phase plane portrait when c > 0 is in an appropriate range relative to f ′(u) evalu-
ated at the singular points. (b) Possible wavefront solutions if we restrict the domains in the phase portrait as
indicated by d1, d2 and d3.

Let us suppose that c2 > 4max[ f ′(0), f ′(u2)] in which case (0, 0) and (u2, 0) are
stable nodes. A possible phase portrait is illustrated in Figure 13.8(a), which gives pos-
sible singular point connections. If we divide the phase plane into the domains shown,
for example, d1 includes the node at the origin and the saddle point at (u1, 0), and if
we compare this with Figure 13.1(b) they are similar. So, it is reasonable to suppose
that a similar wave solution can exist, namely, one from U(−∞) = u1 to U(∞) = 0
and that it exists for all wavespeeds c ≥ 2[ f ′(0)]1/2. This situation is sketched in Fig-
ure 13.8(b). In a similar way other domains admit the other travelling wave solutions
shown in Figure 13.8(b).

As c varies other possible singular point connections appear. In particular let us
focus on the points (u1, 0) and (u3, 0), both of which are saddle points. The eigenvalues
λ1, λ2 are found from (13.76) as

λ1, λ2 = −c ± {c2 − 4 f ′(ui )}1/2

2
, i = 1, 3, (13.78)

where f ′(ui ) < 0. The corresponding eigenvectors ei1 and ei2 are

ei1 =
(

1
λi1

)
, ei2 =

(
1

λi2

)
, i = 1, 3 (13.79)

which vary as c varies. A little algebra shows that as c increases the eigenvectors tend
to move towards the U -axis. As c varies the phase trajectory picture varies; in particular
the trajectories marked T1 and T3 in Figure 13.8(a) change. By continuity arguments it
is clearly possible, if f ′(u1) and f ′(u3) are in an appropriate range, that as c varies there
is a unique value for c, c∗ say, such that the T1 trajectory joins up with the T3 trajectory.
In this way we then have a phase path connecting the two singular points (u1, 0) and
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Figure 13.9. (a) Schematic phase plane portrait for a wave connecting the steady states u3 and u1. (b)
Typical wavefront solution from u3 to u1. The unique speed of the wave and its direction of propagation
are determined by f ′(u) in (13.72).

(u3, 0) as illustrated in Figure 13.9(a), with the corresponding wave solution sketched in
Figure 13.9(b): this wave moves with a unique speed c∗ which depends on the nonlinear
interaction term f (u). The solution U(z) in this case has

U(−∞) = u3, U(∞) = u1.

It is this situation we now consider with the budworm problem in mind.
Suppose we start with u = u1 for all x ; that is, the budworm population is in a

stable refuge state. Now suppose there is a local increase of population to u3 in some
finite domain; that is, there is a local outbreak of the pest. To investigate the possibility
of the outbreak spreading it is easier to ask the algebraically simpler problem, does the
travelling wavefront solution in Figure 13.9(b) exist which joins a region where u = u1
to one where u = u3, and if so, what is its speed and direction of propagation. From
the above discussion we expect such a wave exists. If c > 0 the wave moves into the
u1-region and the outbreak spreads; if c < 0 it not only does not spread, it is reduced.

The sign of c, and hence the direction of the wave, can easily be found by multi-
plying the U -equation in (13.73) by U ′ and integrating from −∞ to ∞. This gives

∫ ∞

−∞

[
U ′U ′′ + cU ′2 + U ′ f (U)

]
dz = 0.

Since U ′(±∞) = 0, U(−∞) = u3 and U(∞) = u1, this integrates to give

c
∫ ∞

−∞
[
U ′]2

dz = −
∫ ∞

−∞
f (U)U ′ dz = −

∫ u1

u3

f (U) dU

and so, since the multiple of c is always positive,

c � 0 if
∫ u3

u1

f (u) du � 0. (13.80)

So, the sign of c is determined solely by the integral of the interaction function f (u).
From Figure 13.10, the sign of the integral is thus given simply by comparing the areas
A1 and A3. If A3 > A1 the wave has c > 0 and the outbreak spreads into the refuge
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Figure 13.10. If A1 > A3 the wave
velocity c is negative and the outbreak,
where u = u3, is reduced. If A1 < A3 the
outbreak spreads into the refuge region
where u = u1.

area. In this case we say that u3 is dominant; that is, as t → ∞, u → u3 everywhere.
On the other hand if A3 < A1, c < 0 and u1 is dominant and u → u1 as t → ∞; that
is, the outbreak is eliminated.

From the point of view of infestation control, if an insect outbreak occurs and is
spreading, we want to know how to alter the local conditions so that the infestation or
outbreak wave is either contained or reversed. From the above, we must thus locally
change the budworm growth dynamics so that effectively the new areas A1 and A3
in Figure 13.10 satisfy A1 > A3. We can achieve this is if the zeros u2 and u3 of
f (u), that is, the two largest steady states, are closer together. From Figure 13.7(b)
we see that this can be effected by reducing the dimensionless parameter q in (13.71).
The nondimensionalisation used in the budworm model (see Section 1.2 in Chapter 1)
relates q to the basic budworm carrying capacity K B of the environment. So a practical
reduction in q could be made by, for example, spraying a strip to reduce the carrying
capacity of the tree foliage. In this way an infestation ‘break’ would be created, that is,
one in which u1 is dominant, and hence the wavespeed c in the above analysis is no
longer positive. A practical question, of course, is how wide such a ‘break’ must be to
stop the outbreak getting through. This problem needs careful modelling consideration
since there is a long leading edge, because of the parabolic (diffusion-like) character
of the equations, albeit with 0 < u  1. A closely related concept will be discussed
in detail in Chapter 13, Volume II when the problem of containing the spread of rabies
is considered. The methodology described there is directly applicable to the ‘break’
problem here for containing the spread of the budworm infestation.

Exact Solution for the Wavespeed for an Excitable Kinetics Model:
Calcium-Stimulated-Calcium-Release Mechanism

In Chapter 6 we briefly described possible kinetics, namely, equation (6.120), which
models a biochemical switch. With such a mechanism, a sufficiently large perturba-
tion from one steady state can move the system to another steady state. An impor-
tant example which arises experimentally is known as the calcium-stimulated-calcium-
release mechanism. This is a process whereby calcium, Ca++, if perturbed above a
given threshold concentration, causes the further release, or dumping, of the sequestered
calcium; that is, the system moves to another steady state. This happens, for example,
from calcium sites on the membrane enclosing certain fertilised amphibian eggs (the
next section deals with one such real example). As well as releasing calcium, such a
membrane also resequesters it. If we denote the concentration of Ca++ by u, we can
model the kinetics by the rate law
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du

dt
= A(u) − r(u) + L , (13.81)

where L represents a small leakage, A(u) is the autocatalytic release of calcium and
r(u) its resequestration. We assume that calcium resequestration is governed by first-
order kinetics, and the autocatalytic calcium production saturates for high Ca++. With
these assumptions, we arrive at the reaction kinetics model equation with typical forms
which have been used for A(u) and r(u) (for example, Odell et al. 1981, Murray and
Oster 1984, Cheer et al. 1987, Lane et al. 1987). The specific form of the last equation,
effectively the same as (6.120), becomes

du

dt
= L + k1u2

k2 + u2
− k3u = f (u), (13.82)

where the k’s and L are positive parameters. If the k’s are in a certain relation to each
other (see Exercise 3 at the end of Chapter 6) this f (u) can have three positive steady
states for L sufficiently small. The form of f (u) in this excitable kinetics situation
is illustrated in Figure 13.11(a). Although there are two kinds of excitable processes
exhibited by this mechanism, they are closely related. We briefly consider each in turn.

If L = 0 there are three steady states, two stable and one unstable. If L is increased
from zero there are first three positive steady states ui (L), i = 1, 2, 3 with u1 and u3
linearly stable and u2 unstable. As L increases above a certain threshold value Lc, u1
and u2 first coalesce and then disappear. So if initially u = u1, a pulse of L sufficiently
large can result in the steady state shifting to u3, the larger of the two stable steady states,
where it will remain. Although qualitatively it is clear that this happens, the quantitative
analysis of such a switch is not simple and has been treated by Kath and Murray (1986)
in connection with a model mechanism for generating butterfly wing patterns, a topic
we consider in Chapter 3, Volume II.

Figure 13.11. (a) Excitable kinetics example. For 0 < L < Lc there are three positive steady states ui ,
i = 1, 2, 3, of (13.82) with two of these coalescing when L = Lc . Suppose initially u = u1, with L < Lc. If
we now increase L beyond the threshold, only the largest steady state exists. So, as L is again reduced to its
original values, u → u3, where it remains. A switch from u1 to u3 has been effected. (b) The schematic form
of each of the terms in the kinetics in (13.81) and (13.82). When added together they give the growth kinetics
form in (a).



466 13. Biological Waves: Single-Species Models

The second type of excitability has L fixed and the kinetics f (u) as in the curve
marked du/dt (= f (u)) in Figure 13.11(b). The directions of the arrows there indicate
how u will change if a perturbation with a given concentration is introduced. For all
0 < u < u2, u → u1, while for all u > u2, u → u3. The concentration u2 is thus a
threshold concentration. Whereas in the above threshold situation L was the bifurcation
parameter, here it is in the imposed perturbation as it relates to u2.

The complexity of this calcium-stimulated calcium-release process in reality is such
that the model kinetics in (13.81) and its quantitative form in (13.82) can only be a plau-
sible caricature. It is reasonable, therefore, to make a further simplifying caricature of it,
as long as it preserves the qualitative dynamic behaviour for u and the requisite number
of zeros: that is, f (u) is like the curve in Figure 13.11(b). We do this by replacing f (u)

with a cubic with three positive zeros, namely,

f (u) = A(u − u1)(u2 − u)(u − u3),

where A is a positive constant and u1 < u2 < u3. This is qualitatively like the curve in
Figure 13.11(a) where 0 < L < Lc.

Let us now consider the reaction diffusion equation with such reaction kinetics,
namely,

∂u

∂t
= A(u − u1)(u2 − u)(u − u3) + D

∂2u

∂x2
, (13.83)

where we have not renormalised the equation so as to highlight the role of A and the
diffusion D. This equation is very similar to (13.72), the one we have just studied in
detail for wavefront solutions. We can assume then that (13.83) has wavefront solutions
of the form

u(x, t) = U(z), z = x − ct, U(−∞) = u3, U(∞) = u1, (13.84)

which on substituting into (13.83) gives

L(U) = DU ′′ + cU ′ + A(U − u1)(u2 − U)(U − u3) = 0. (13.85)

With the experience gained from the exact solutions above and the form of the asymp-
totic solution obtained for the Fisher–Kolmogoroff equation waves, we might optimisti-
cally expect the wavefront solution of (13.85) to have an exponential behaviour. Rather
than start with some explicit form of the solution, let us rather start with a differential
equation which might reasonably determine it, but which is simpler than (13.85). The
procedure, then, is to suppose U satisfies a simpler equation (with exponential solutions
of the kind we now expect) but which can be made to satisfy (13.85) for various val-
ues of the parameters. It is in effect seeking solutions of a differential equation with a
simpler differential equation that we can solve.

Let us try making U satisfy

U ′ = a(U − u1)(U − u3), (13.86)
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the solutions (see (13.88) below) of which tend exponentially to u1 and u3 as z → ∞,
which is the appropriate kind of behaviour we want. Substituting this equation into
(13.85) we get

L(U) = (U − u1)(U − u3)Da2(2U − u1 − u3) + ca − A(U − u2)

= (U − u1)(U − u3)
{
(2Da2 − A)U −

[
Da2(u1 + u3) − ca − Au2

]}
,

and so for L(U) to be zero we must have

2Da2 − A = 0, Da2(u1 + u3) − ca − Au2 = 0,

which determine a and the unique wavespeed c as

a =
(

A

2D

)1/2

, c =
(

AD

2

)1/2

(u1 − 2u2 + u3). (13.87)

So, by using the differential equation (13.86) we have shown that its solutions can satisfy
the full equation if a and c are as given by (13.87). The actual solution U is then obtained
by solving (13.86); it is

U(z) = u3 + K u1 exp [a(u3 − u1)z]

1 + K exp [a(u3 − u1)z]
, (13.88)

where K is an arbitrary constant which simply lets us set the origin in the z-plane in the
now usual way. This solution has

U(−∞) = u3 and U(∞) = u1.

The sign of c, from (13.87), is determined by the relative sizes of the ui , i = 1, 2, 3;
if u2 is greater than the average of u1 and u3, c < 0 and positive otherwise. This, of
course, is the same result we would get if we used the integral result from (13.80) with
the cubic for f (U) from (13.83).

Equation (13.83) and certain extensions of it have been studied by McKean (1970).
It arose there in the context of a simple model for the propagation of a nerve action
potential, a topic we touch on in Chapter 1, Volume II. Equation (13.83) is sometimes
referred to as the reduced Nagumo equation, which is related to the FitzHugh–Nagumo
model for nerve action potentials discussed in Section 7.5.

13.6 Calcium Waves on Amphibian Eggs: Activation Waves on
Medaka Eggs

The cortex of an amphibian egg is a kind of membrane shell enclosing the egg. Just after
fertilisation, and before the first cleavage of the egg, several chemical waves of calcium,
Ca++, sweep over the cortex. The top of the egg, near where the waves start, is the ani-
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mal pole, and is effectively determined by the sperm entry point, while the bottom is the
vegetal pole. The wave emanates from the sperm entry point. Each wave is a precursor
of some major event in development and each is followed by a mechanical event. Such
waves of Ca++ are called activation waves. Figure 13.12(a) illustrates the progression
of such a calcium wave over the egg of the teleost fish Medaka. The figure was obtained
from the experimental data of Gilkey et al. (1978). The model we describe in this sec-
tion is a simplified mechanism for the chemical wave, and comes from the papers on
cortical waves in vertebrate eggs by Cheer et al. (1987) and Lane et al. (1987). They
model both the mechanical and mechanochemical waves observed in amphibian eggs
but with different model assumptions. Lane et al. (1987) also present some analytical
results based on a piecewise linear approach and these compare well with the numerical
simulations of the full nonlinear system. The mechanochemical process is described in
detail in the papers and the model constructed on the basis of the biological facts. The
results of their analysis are compared with experimental observations on the egg of the
fish Medaka and other vertebrate eggs. Cheer et al. (1987) conclude with relevant state-
ments about what must be occurring in the biological process and on the nature of the
actual cortex. The paper by Lane et al. (1987) highlights the key elements in the process
and displays the analytical dependence of the various phenomena on the model param-
eters. The mechanical surface waves which accompany the calcium waves are shown
in Figure 13.12(d). We consider this problem again in Chapter 6, Volume II where we
consider mechanochemical models.

Here we construct a simple model for the Ca++ based on the fact that the cal-
cium kinetics is excitable; we use the calcium-stimulated-calcium-release mechanism
described in the last section. We assume that the Ca++ diffuses on the cortex (surface)
of the egg. We thus have a reaction diffusion model where both the reaction and dif-
fusion take place on a spherical surface. Since the Ca++ wavefront is actually a ring
propagating over the surface, its mathematical description will involve only one inde-
pendent variable θ , the polar angle measured from the top of the sphere, so 0 ≤ θ ≤ π .
The kinetics involve the release of calcium from sites on the surface via the calcium-
stimulated-calcium-release mechanism. The small leakage here is due to a small amount
of Ca++ diffusing into the interior of the egg. So, there is a threshold value for the cal-
cium which triggers a dumping of the calcium from the surface sites. The phenomeno-
logical model which captures the excitable kinetics and some of the known facts about
the process is given by (13.82). We again take the simpler cubic kinetics caricature used
in (13.83) and thus arrive at the model reaction diffusion system

∂u

∂t
= f (u) + D

(
1

R

)2
[

∂2u

∂θ2
+ cot θ

∂u

∂θ

]

,

f (u) = A(u − u1)(u2 − u)(u − u3),

(13.89)

where A is a positive parameter and R is the radius of the egg: R is simply a parameter
in this model.

Refer now to the middle curve in Figure 13.11(a), that is, like the f (u)-curve in
Figure 13.11(b). Suppose the calcium concentration on the surface of the egg is uni-
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Figure 13.12. (a) Wavefront propagation of the Ca++ wave which passes over the surface of the egg, from
the sperm entry point near the top (animal pole) to the bottom (vegetal pole), of the fish Medaka prior to
cleavage. The wavefronts are 10 sec apart. Note how the wave slows down in the lower hemisphere—the fronts
are closer together. (After Cheer et al. 1987, from the experimental data of Gilkey et al. 1978) (b) Computed
Ca++ wavefront solutions from the reaction diffusion model with uniform surface properties compared with
the computed solutions with nonuniform properties. (After Cheer et al. 1987) (c) Computed Ca++ wavefront
solutions. (From Lane et al. 1987) Here the wave accelerates in the upper hemisphere and slows down in
the lower hemisphere because of the variation in a parameter in the calcium kinetics. The lines represent
wavefronts at equal time intervals. (d) The Ca++ wave and mechanical deformation wave which accompanies
it. (From Lane et al. 1987) Here u(θ), where θ is the polar angle measured from the sperm entry point (SEP),
is the dimensionless mechanical deformation of the egg surface from its rest state u = 0. The spike-like waves
are surface contraction waves.
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formly at the lower steady state u1. If it is subjected to a perturbation larger than the
threshold value u2, u will tend towards the higher steady state u3. If the perturbation is
to a value less than u2, u will return to u1. There is thus a firing threshold, above which
u → u3.

Consider now the possible wave solutions of (13.89). If the cot θ term were not in
this equation we know that it would have wavefront solutions of the type equivalent to
(13.84), that is, of the form

u(θ, t) = U(z), z = Rθ − ct, U(−∞) = u3, U(∞) = u1. (13.90)

Of course with our spherical egg problem, if time t starts at t = 0, z here cannot tend to
−∞. Not only that, the cot θ -term is in the equation. However, to get some feel for what
happens to waves, like those found in the last section, when the mechanism operates on
the surface of a sphere, we can intuitively argue in the following way.

At each fixed θ let us suppose there is a wavefront solution of the form

u(θ, t) = U(z), z = Rθ − ct. (13.91)

Substituting this into (13.89) we get

DU ′′ +
[

c + D

R
cot θ

]
U ′ + A(U − u1)(u2 − U)(U − u3) = 0. (13.92)

Since we are considering θ fixed here, this equation is exactly the same as (13.85)
with [c + (D/R) cot θ ] in place of the c there. We can therefore plausibly argue that a
quantitative expression for the wavespeed c on the egg surface is given by (13.87) with
[c + (D/R) cot θ ] in place of c. So, we expect wavefrontlike solutions of (13.89) to
propagate over the surface of the egg with speeds

c =
(

AD

2

)1/2

(u1 − 2u2 + u3) − D

R
cot θ. (13.93)

What (13.93) implies is that as the wave moves over the surface of the egg from
the animal pole, where θ = 0, to the vegetal pole, where θ = π , the wavespeed varies.
Since cot θ > 0 for 0 < θ < π/2, the wave moves more slowly in the upper hemisphere,
while for π/2 < θ < π , cot θ < 0, which means that the wave speeds are higher in
the lower hemisphere. We can get this qualitative result from the reaction diffusion
equation (13.89) by similar arguments to those used in Section 13.2 for axisymmetric
wavelike solutions of the Fisher–Kolmogoroff equation. Compare the diffusion terms in
(13.89) with that in the one-dimensional version of the model in (13.83), for which the
wavespeed is given by (13.87), or (13.93) without the cot θ term. If we think of a wave
moving into a u = u1 domain from the higher u3 domain then ∂u/∂θ < 0. In the animal
hemisphere cot θ > 0, so the term cot θ∂u/∂θ < 0 implies an effective reduction in the
diffusional process, which is a critical factor in propagating the wave. So, the wave is
slowed down in the upper hemisphere of the egg. By the same token, cot θ∂u/∂θ > 0
in the lower hemisphere, and so the wave speeds up there. This is intuitively clear if
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we think of the upper hemisphere as where the wavefront has to continually expand its
perimeter with the converse in the lower hemisphere.

The wavespeed given by (13.93) implies that, for surface waves on spheres, it is
probably not possible to have travelling wave solutions (13.89), with c > 0, for all
θ : it clearly depends on the parameters which would have to be delicately spatially
dependent.

In line with good mathematical biology practice let us now go back to the real
biology. What we have shown is that a simplified model for the calcium-stimulated-
calcium-release mechanism gives travelling calcium wavefrontlike solutions over the
surface of the egg. Comparing the various times involved with the experiments, es-
timates for the relevant parameters can be determined. There is, however, a serious
qualitative difference between the front behaviour in the real egg and the model egg.
In the former the wave slows down in the vegetal hemisphere whereas in the model it
speeds up. One important prediction or conclusion we can draw from this (Cheer et al.
1987) is that the nonuniformity in the cortex properties are such that they overcome
the natural speeding up tendencies for propagating waves on the surface. If we look at
the wavespeed given by (13.93) it means that AD and the ui , i = 1, 2, 3 must vary
with θ . This formula for the speed will also hold if the parameters are slowly varying
over the surface of the sphere. So, it is analytically possible to determine qualitative be-
haviour in the model properties to effect the correct wave propagation properties on the
egg, and hence deduce possible parameter variations in the egg cortex properties. Fig-
ure 13.12(b) illustrates some numerical results given by Cheer et al. (1987) using the
above model with nonuniform parameter properties. The reader is referred to that paper
for a detailed discussion of the biology, the full model and the biological conclusions
drawn from the analysis. In Chapter 6, Volume II we introduce and discuss in detail the
new mechanochemical approach to biological pattern formation of which this section
and the papers by Cheer et al. (1987) and Lane et al. (1987) are examples.

13.7 Invasion Wavespeeds with Dispersive Variability

Colonisation of new territory by insects, seeds, animals, disease and so on is of major
ecological and epidemiological importance. At least some understanding of the pro-
cesses involved are necessary in designing, for example, biocontrol programmes. The
paper by Kot et al. (1996) is particularly relevant to this question; see other references
there. Although we restrict our discussion to continuous models, discrete growth and
dispersal models are also important. Models such as we have discussed in this chap-
ter have been widely used to obtain estimates of invasion speeds; see, for example,
the excellent book by Shigesada and Kawasaki (1997) which is particularly relevant
since it is primarily concerned with invasion questions. Among other things they also
consider heterogeneous environments, where, for example, the diffusion coefficient is
space-dependent.

Simple scalar equation continuous models have certain limitations in the real world,
one of which is that every member of the population does not necessarily disperse the
same way: there is always some variability. In this section we discuss a seminal con-
tribution to this subject by Cook (Julian Cook, personal communication 1994) who



472 13. Biological Waves: Single-Species Models

revisited the classic Fisher–Kolmogoroff model and investigated the basic question as
to what effect individual variability in diffusion might have on the invasion wavespeed.
The importance of looking at such variability with the Fisher–Kolmogoroff model is
now obvious, but was completely missed by all those who had worked on this scalar
equation over the past several decades until Cook considered it. It is part of his work
that we discuss in this section. The effect of variability on invasion speeds is quite un-
expected, as we shall see, and intuitively not at all obvious.

We start with the basic one-dimensional Fisher–Kolmogoroff equation in which a
population grows in a logistic way and disperses in a homogeneous environment with
constant diffusion coefficient D, intrinsic linear growth rate r and carrying capacity K .
From the analysis in Section 13.2 the wavespeed, that is, speed of invasion, is given
by 2

√
r D, the minimum speed in (13.13). We consider the population to be divided

into dispersers and nondispersers with the subpopulations interbreeding fully and with
all newborns having the same, fixed, probability of being a disperser. The model is
not strictly a single-species model but it belongs in this chapter because of its intimate
connection with the classical Fisher–Kolmogoroff model.

Let us first divide the population into dispersers, denoted by A and the nondis-
persers by B. With the one Fisher–Kolmogoroff equation in space dimension in mind
we take the model system to be

∂ A

∂t
= D

∂2 A

∂x2
+ r1(A + B)[1 − (A + B)/K ],

∂ B

∂t
= r2(A + B)[1 − (A + B)/K ],

(13.94)

where A refers to the dispersing subpopulation and B to the nondispersing population.
Here D is the diffusion coefficient of the dispersing subpopulation which is strictly dif-
ferent to the average dispersal rate for the entire population. As before K is the carrying
capacity of the environment and the rs are the intrinsic rate of growth (per head of the
total population). The probability of a newborn being a disperser is p = r 1/(r1 + r2).
With this form if r2 = 0, the whole population disperses and the system becomes the
standard Fisher–Kolmogoroff equation.

As Cook (Julian Cook, personal communication 1994) points out, this model is
for dispersive variability with individuals being either dispersers or nondisperers with
the former having a constant diffusion coefficient and the latter having a zero diffusion
coefficient. Although the model system is based on logistic growth, as with the modified
Fisher–Kolmogoroff equation the analysis can be carried through with more general
growth functions; this affects the invasion speed in a similar way but does not affect the
general principles.

As a first step in the analysis we nondimensionalise the system by setting

u = A
K , v = B

K , T = Rt, X = ( R
D )1/2x, where R = r1 + r2. (13.95)

Here R is the overall population intrinsic rate of growth. With the probability, p, that an
individual is a disperser defined by
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p = r1

r1 + r2
(13.96)

the system becomes

∂u

∂T
= ∂2u

∂ X2
+ p(u + v)[1 − (u + v)],

∂v

∂T
= (1 − p)(u + v)[1 − (u + v)].

(13.97)

Now look for travelling wave solutions in the usual way by setting

u = U(X − CT ), v = V (X − CT ), Z = X − CT, (13.98)

where C is the speed of the wave; with C positive the wave moves in the direction of
increasing X . Substituting (13.98) into (13.97) we get the following system of ordinary
differential equations in Z ,

−CUZ = UZ Z + p(U + V )[1 − (U + V )], (13.99)

−CVZ = (1 − p)(U + V )[1 − (U + V )]. (13.100)

We now look for travelling wave solutions that have U + V = 1 as Z → −∞
and U = V = 0 as Z → ∞. Setting W = UZ (13.99) and (13.100) become a system
of first-order equations in U , V and W . In the usual way we require the derivatives
of U and V to be zero as Z → ±∞. So in the (U, V, W ) phase space a travelling
wave solution must correspond to a trajectory that connects two steady states, that is,
a heteroclinic orbit, specifically one that connects (0, 0, 0) and a nonzero equilibrium
point (U0, 1−U0, 0): with our nondimensionalisation, the nonzero V0 = 1−U0. We now
have to determine U0. We should reiterate that we are only interested in nonnegative
solutions for U and V so the solutions must lie in the positive quadrant of any two-
dimensional projection Z = constant.

Near the zero steady state (0, 0, 0) we can obtain the solution behaviour by con-
sidering the linearised system just as we did for the two-variable Fisher–Kolmogoroff
travelling wave. To ensure that the solutions do not go negative as they approach the
origin we require the eigenvalues of the linearised system about (0, 0, 0) to be real. We
also require that the U - and V -components of the corresponding eigenvectors must have
the same sign since the heteroclinic orbit we are interested in has the same direction as
an eigenvector as it tends to (0, 0, 0). So, we now have to analyse the linearised system
about (0, 0, 0) and obtain the conditions that ensure these two restrictions are satisfied.

With W = UZ , (13.99) and (13.100) linearised about (0, 0, 0), which corresponds
to the front of the wave and where crowding effects on reproduction are negligible,
become

d

d Z




U
V
W



 =



0 0 1

−(1 − p)/C −(1 − p)/C 0
−p −p −C








U
V
W



 . (13.101)
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Denoting the matrix by M the eigenvalues, λi , are the solutions of | M − λI | = 0, that
is, the solutions of the cubic

λ[Cλ2 + (C2 + 1 − p)λ + C] = 0

which reduces to

λ = λ0 = 0, Cλ2 + (C2 + 1 − p)λ + C = 0. (13.102)

The solution of the quadratic equation gives the eigenvalues λ(c). The variation of
λ as a function of C is the all-important dispersion relation. These λ are, of course, what
we get if we simply look for solutions to (13.101) in the usual form for linear systems,
namely,




U
V
W



 ∝ eλZ . (13.103)

For our purposes it is more convenient to write (13.102) as a quadratic in C and use
C(λ) to plot the dispersion relation. Doing this

λC2 + (1 + λ2)C + (1 − p)λ = 0 (13.104)

which gives

C = 1

2λ

[
−(1 + λ2) ±

√
(1 + λ2)2 − 4(1 − p)λ2

]
. (13.105)

Figure 13.13 shows schematically the dispersion relation, C(λ), as a function of λ; it
has several branches.

Figure 13.13. The dispersion relation giving the wavespeed C as a function of the eigenvalues λ for the lin-
earised variable dispersal model (13.99) and (13.100). Note the two regions where, for each λ, it is potentially
possible to have two positive wavespeeds.
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To determine the maxima and minima of the two roots of (13.105) as functions of
λ it is easier to use (13.104), differentiate with respect to λ and set dC/dλ = 0 which
gives

C2 + 2λC + 1 − p = 0. (13.106)

If we now combine (13.104) and (13.106), maxima and minima occur at λ = ±1.
Referring to the figure and considering the (relevant) negative eigenvalues which give
positive wavespeeds we see that two ranges of possible values for C exist, specifically,

0 ≤ C ≤ 1 − √
p = C1 and C2 = 1 + √

p ≤ C ≤ ∞ (13.107)

which define C1 and C2. Comparing this with the equivalent analysis of the Fisher–
Kolmogoroff equation the first range does not appear. We now have to determine which
range is the relevant one for our purposes.

To go further we have to look at the actual solutions, or rather how they behave near
the zero steady state to make sure U and V behave as they should, in other words remain
positive away from the (zero) steady state. We do this by examining the eigenvectors for
the solutions in each of the two possible ranges for the wavespeed C given in (13.107).

Consider first the lower range for C , that is, the first of (13.107), and look first at
the asymptotic form of λ for C  1. From (13.102) the eigenvalues λi are given by

λi = 1

2C

[
−(C2 + 1 − p) ±

√
(C2 + 1 − p)2 − 4C2

]
,

which, on expanding for small C , gives

λ1 = − C

1 − p
+ O(C3), λ2 = −1 − p

C
+ pC

1 − p
+ O(C3). (13.108)

We now have to solve for the leading terms of the components of the corresponding
eigenvectors using (refer to (13.101))




λi 0 −1

(1 − p)/C [(1 − p)/C] + λi 0
p p c + λi








e1
e2
e3



 =



0
0
0



 . (13.109)

We substitute in turn for the three eigenvalues, λ = 0 (which is not an admissible
solution, of course) and the other two from (13.108). A little algebra shows that with all
three eigenvalues e1 and e2 have opposite signs. For example, suppose we solve for the
eigenvector associated with λ2; we find that

(1 − p)e1 +
[

pC2

1 − p
+ O(C4)

]

e2 = 0

so e1 and e2 must have opposite signs (since p ≤ 1).
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What this implies is that small C , in this lower range, (0, 1 −√
p), results in U and

V approaching the steady state along eigenvectors that have opposite signs and so this
does not consitute a realistic (nonnegative) solution for both U and V . Hence we can
conclude that for very small C there are no eigenvectors that correspond to meaningful
travelling wave solutions. But, as C increases through the range (0, C1) in (13.107), the
eigenvalues and the eigenvectors change continuously. For a realistic solution, one of
the first two components of an eigenvector would have to pass through zero. But we can
see that there are no nontrivial solutions to (13.109) with either e1 = 0 or e2 = 0. So,
from continuity arguments we can say that there is no ecologically realistic travelling
wave solution for wavespeeds, C , in the lower range (0, C1).

It is pedagogically useful to carry out a similar analysis for C in the higher range
(1 + √

p,∞) in (13.107). Here we expand the eigenvalues for large C , and get

λ1 = − 1

C
+ O

(
1

C3

)
, λ2 = −C + p

C
+ O

(
1

C3

)
. (13.110)

In this case, going through a similar argument, both corresponding eigenvectors have U -
and V -components with matching signs. (Remember that the eigenvector corresponding
to λ0 = 0 is not admissible.) We can therefore conclude that it is only for wavespeeds,
C , in the higher range of C-values that admissible solution trajectories exist. The major
consequence of this is that the wavespeed C2 = 1 + √

p is the lower bound on the
wavespeed for realistic solutions; this corresponds to the minimum wavespeed, namely,
2
√

RD in dimensional terms, for the Fisher–Kolmogoroff equation (13.13) in the stan-
dard analysis. We come back to this below and discuss its importance and relevance to
species invasion.

Relative Sizes of Subpopulations

Travelling waves are in effect population growth waves so, even though it is the dis-
persers that are responsible for the wave propagation, at any position on it there is
growth of the nondispersers as well as the dispersers according to (13.94). We can de-
termine the relative size of the dispersing and nondispersing subpopulations along the
travelling wave solution by exploiting the form of the equations. The 3-variable system
(13.99) and (13.100) with W = UZ can be decoupled as a consequence of the particular
form of the nonlinear terms. If we write

Q = U + V, UZ = P, (13.111)

that is, Q is the total population, the system becomes

UZ = P, PZ = −C P − pQ(1 − Q),

Q Z = P − (1 − p)Q(1 − Q)/C,
(13.112)

so we can analyse the P − Q plane as we have just done above except that, here, the
eigenvector arguments are based on Q being positive while P is negative at (0, 0).
Using this formulation we can decide the issue by determining which of the equilibria
(U, P, Q) = (U0, 0, 1) is the source for the heteroclinic orbit that terminates at (0, 0, 0).



13.7 Invasion Wavespeeds with Dispersive Variability 477

The actual shape of the projection of the trajectory we want onto the P − Q plane
is given by the solution of

d P

d Q
= −C P − pQ(1 − Q)

P − (1 − p)Q(1 − Q)/C
. (13.113)

The change in U over this trajectory, that is, moving ‘back’ up the trajectory, must be

U0 =
∫ 1

0

dU

d Q
d Q =

∫ 1

0

Pd Q

P − (1 − p)Q(1 − Q)/C
. (13.114)

The upper limit on the integral, Q = 1, is because Q is the total (normalised) popula-
tion. To evaluate the integral we note that

d P

d Q
= −C P − pQ(1 − Q)

P − (1 − p)Q(1 − Q)/C
= pC

1 − p
−
(

C

1 − p

)
P

P − (1 − p)Q(1 − Q)/C

(13.115)

which can be rewritten as

P

P − (1 − p)Q(1 − Q)/C
= p − (1 − p)

C

d P

d Q
. (13.116)

Using this we can now evaluate the integral for U0 as

U0 =
∫ 1

0

(
p − (1 − p)

C

d P

d Q

)
d Q = p. (13.117)

So, what this says is that for any wavespeed, C , the value of U at Z = −∞ must be p
with U(∞) = 0. In other words, far behind the wavefront the proportion of dispersers
is p; this is as we would have expected intuitively.

We can go further since, using the last equation with Q as the upper limit on the
integral,

U(Q) =
∫ Q

0

dU

d Q
d Q = pQ − (1 − p)

P

C
(13.118)

which says that for any value of the total population, Q, the fraction of dispersers is

U

Q
= p −

(
1 − p

C

)
P

Q
, (13.119)

where P , recall, is the gradient of dispersers UZ . Since P is negative the fraction of
dispersers is therefore higher than p at all points except at the limits where P = 0. The
proportion of dispersers is higher as we approach the front of the wave (as P becomes
more negative), again as we would expect.
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We can exploit the decoupled system further to look at the gradient of trajectories as
they approach (0, 0, 0). Based on (13.113), and using l’Hôpital’s rule, we can generate
a quadratic for d P/d Q at Q = 0 (where P = 0 also), namely,

(
d P

d Q

)2

+ [C − (1 − p)/C] d P

d Q
+ p = 0. (13.120)

Since we must have (d P/d Q) < 0 this requires

C >
√

1 − p. (13.121)

But this is true for all C in the upper range, namely, (C2,∞), and none in the lower
range (0, C1). So, the above result for admissibility of the wavespeeds C is confirmed.

Cook (Julian Cook, personal communication 1994) solved (13.97) numerically
and found that the solutions converged rapidly to a travelling wave solution with a
wavespeed very close to the predicted minimum speed. For example, if fraction of dis-
persing population p = 1.0, 0.5, 0.1, 0.05, 0.01 the theoretical minimum wavespeeds
are respectively 1+√

p = 2.00, 1.70, 1.33, 1.22, 1.10 and the corresponding numerical
wavespeeds are 2.01, 1.77, 1.34, 1.22, 1.10.

13.8 Species Invasion and Range Expansion

The spatial spread of species is extremely important ecologically. The classic book by
Elton (1958) lists numerous examples and there are many others documented since then.
The killer bee invasion from Brazil up into the southwest of the U.S.A. is a relatively
recent dramatic one with the spread of the American bull frog in the south of Vancou-
ver Island an even more recent one. The seminal paper by Skellam (1951) essentially
initiated the theoretical approach. He used what is in effect the linearised form of the
Fisher–Kolmogoroff equation (13.4) which involves diffusion and Malthusian growth,
that is, exponential, growth. Among other things he was particularly interested in mod-
elling the range expansion of the muskrat and found that the wavespeed of the invasion
was approximately 2

√
r D, where r and D are the usual growth rate and diffusion pa-

rameters. He further showed that the range expanded linearly with time; see the analysis
below where we derive this result. Shigesada and Kawasaki (1997), in their book, dis-
cuss a variety of specific invasions such as mammals, plants, insects, epidemics and so
on. They present some of the major models that have been proposed for such invasions
with the model mechanisms determined by a variety of factors related to the species’ ac-
tual movement and interaction. They study invasions, many of the travelling wave type,
in both homogeneous and heterogeneous spatial environments and for several different
species interactions such as predator–prey and competition.

Basically when the scale of the individual’s movement is small compared with the
scale of the observations a continuum model is a reasonable one with which to start. A
very good example where the model and data have been well combined is with the rein-
vasion along the Californian coast by the California sea otter (Enhydra lutris). Lubina
and Levin (1988) used the Fisher–Komogoroff equation (13.4) with the extant data.
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The otter population was in serious decline through overhunting and was thought to
be almost extinct in the early 1900’s. It was protected by international treaty in 1911
but was thought to be already extinct. A small number (about 50) was found in 1914
near Big Sur and since that time the population has increased along with their territory
both north and south of Big Sur. One of the interesting aspects of this reinvasion, fully
documented by Lubina and Levin (1988), is that it is essentially a one-dimensional phe-
nomenon. They were able to estimate the parameters in (13.4) and show that the basic
velocity of the travelling wave, given by 2(r D)1/2, where r and D are again the linear
growth rate and diffusion coefficient, gave excellent results. With a constant velocity
the growth of the range is linear with time as they demonstrate is indeed essentially the
case from the reinvasion data gathered over a period roughly from 1938 until 1984. This
is in line with the results obtained by Skellam (1951) for the muskrat spread. For the
northern invasion they obtained a value D = 13.5 km2/yr and for the southern invasion
D = 54.7 km2/yr with estimated population growth r = 0.056/yr which resulted in
wavespeeds of 1.74 km/yr and 3.4 km/yr for the north and south respectively. These
values compare with the observed values of 1.4 km/yr and 3.1 km/yr between 1938
and 1972 and for the southern rate of 3.8 km/yr for the period 1973 to 1980. They ar-
gue persuasively that the difference between the north and south invasion speeds is not
convection in the equation but rather habitat-changes in the parameters.

Let us now return to the results derived in the last section for the variable dispersion
model and consider them in the light of species territorial invasion. We have shown that
for the system (13.97) to have ecologically realistic, that is, nonnegative, travelling wave
solutions of the form given in (13.98) the wavespeed, C , must satisfy

C ≥ C2 = 1 + √
p, (13.122)

where p, given by (13.96), is the probability of a newborn individual being a disperser.
In dimensional terms we then have

c ≥ c2 = √
RD(1 + √

p), (13.123)

where c is the dimensional speed of the travelling wave, D is the diffusion rate of the
dispersing subpopulation and R is the intrinsic rate of growth. Figure 13.14 gives the
minimum wavespeeds as a function of the probability of an individual being a disperser
and compares them with the classical Fisher–Kolmogoroff result.

Figure 13.14. Minimum dimensional speed c of a
travelling wave solution of (13.97) as a function of the
probability, p, that an individual is a disperser in a
population of dispersers and nondispersers. (a) Minimum
wavespeed for a fixed dispersal coefficient and fixed total
rate of growth from (13.123); note the finite speed as
p → 0. (b) The minimum wavespeed which is predicted
if the mean dispersal rate is used with the
Fisher–Kolmogoroff result. (c) The standard
Fisher–Kolmogoroff wavespeed if the total population
disperses with the same dispersal coefficient.
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Of course we have not proved that this travelling wave solution results from some
initial conditions such as was done by Kolmogoroff et al. (1937) for the Fisher–Kolmo-
goroff equation. But, I would be astonished if a solution with a minimum wavespeed
(13.123) did not result from convergence from reasonable initial conditions as it does
for the Fisher–Kolmogoroff equation.

Let us now consider two special cases, namely, p = 1 and p  1.

(i) p = 1. Here all individuals disperse with the same diffusion coefficient and the
system reduces to the Fisher–Kolmogoroff equation with the usual lower bound
of c2 = 2

√
DR for the wavespeed; this is the same as obtained from (13.123) as

p → 1.
(ii) p  1. In this situation very few individuals disperse. If we let p decrease but

keep D fixed the lower bound for the wavespeed from (13.123) is then c2 ∼√
RD[1 + 0(p1/2)]. This is exactly half the lower bound for the case in which all

individuals disperse at this fixed rate, D. This is an initially counterintuitive result
(see also Figure 13.14), namely, that wavespeeds for populations with only a very
few dispersive individuals are not greatly different—a factor of two at most—from
those in which all individuals disperse at the same rate. Natural environmental fac-
tors could easily have this effect.

The initial intuitive result is that if there are very few dispersers in a population
the invasion would be very small and in the limit zero. Of course when the number of
dispersers becomes very low the continuous diffusion assumptions are no longer valid
and stochastic effects would become dominant. Nevertheless even before we get to this
situation the wavespeed is still not close to zero.

Perhaps the main point of the Cook model and its analysis is that only a few dis-
persers can drive the invasion with a speed not very different to that if the whole pop-
ulation were dispersers. This clearly has important ecological implications. As pointed
out in the last section, waves of invasion are in effect waves of reproduction since as
soon as the population is greater than zero the reproductive terms in the model come
into play and these produce dispersers as well as nondispersers. We can think of fast
disperers as seeding the reproduction of the immobile nondisperers; in other words they
are the driving force in the reproduction wave.

Cook (Julian Cook, personal communication 1994) investigated several other as-
pects and modifications of his model, such as examining the consequences on the inva-
sion wave as a result of dispersal rate variance, an Allee effect in the population growth
(which means there is a minimum viable population; recall the discussion in Chapter 1)
and the effect of having both populations disperse but at different rates. He also carried
out extensive numerical simulations to confirm the analytical results and applied the
basic conept to other equations which model movement using some correlated random
walks and showed that his main result for the wavespeed is not confined to classical
diffusion models.

The work of Lewis and Schmitz (1996) is directly related to that by Cook (Ju-
lian Cook, personal communication 1994). They also consider biological invasion of
an organism with separate mobile and stationary states (they include the possibility of
switching between states) for both dispersal and reproduction. They show that rapid
invasion can occur even when transfer rates are infinitesimally small.
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The paper by Shigesada et al. (1995) is particularly relevant to the question of vari-
able dispersion and invasion of species (see also the book by Shigesada and Kawasaki
1997). They considered the range expansion of several species such as the English spar-
row, the European starling in the U.S. and the rice water weevil in Japan. To study
range expansion one of the models they used is the scalar linearised form of the Fisher–
Kolmogoroff equation in two space dimensions, which is the one proposed by Skellam
(1951) in his classic work on dispersal. So, they considered the growth to be Malthu-
sian, that is, exponential. They started with the dimensional equation in the following
form,

∂u

∂t
= �2u + εu, (13.124)

where u is the local population density and the space is radially symmetric. The solution
with a δ-function initial condition u(r, 0) = N0δ(r), representing a local introduction
of the species at the origin, is given by

u(r, t) = N0

4π Dt
exp

(

εt − r2

4Dt

)

. (13.125)

From the point of view of the spatial spread of the species in practice, the range of
expansion is effected by the invasion of a few individuals. So, as suggested by Shigesada
et al. (1995), there could be a minimum density below which the population cannot be
detected in practice. This suggests there is a de facto waiting period before a newly
introduced species starts to expand its habitat range. If this detectable population density
is denoted by u∗ then the area where u(r, t) > n∗ is defined as the range. From the
solution, (13.125), the population density u near the origin for small t very quickly drops
below the threshold u∗. However, because of the exponential growth term in (13.124),
which gives the εt in the solution, u starts to increase and eventually passes through
the threshold u∗. The lag period or establishment phase is the time between when the
population is introduced and its size passes through the threshold level. We can now use
the solution (13.125) to determine how the range increases with time by setting u = u∗
and r = r∗ to obtain

r∗ = 2t

[
εD + D

t
ln

(
4π Dtu∗

N0

)]1/2

. (13.126)

If we introduce dimensionless quantities by setting

R∗ =
( ε

D

)1/2
r∗, T = εt, γ = εN0

Dn∗ , (13.127)

we get the dimensionless R∗ − T range–time relation

R∗ = 2T

[
1 + 1

T
ln

γ

4πT

]1/2

, (13.128)
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which depends only on the dimensionless parameter γ . When (1/T ) ln(γ /4πT )  1
the range expands linearly with time according to R∗ ≈ 2T .

Shigesada et al. (1995) go on to develop a model of species invasion and range
expansion with scattered colonies which are initiated by long range dispersers. Such
models are in effect invasion models with variable diffusion. Importantly they relate
their analytical results to real data and obtain a good correlation.

The idea of using a threshold and radially symmetric linear diffusion reaction to
give rise to an invading front was used by Murray (1981) in a completely different bi-
ological application, namely, the development of eyespots on butterfly wings. He also
applied the model to other, nonradially symmetric situations. This application is de-
scribed in detail in Chapter 3, Volume II.

Exercises

1 Consider the dimensionless reaction diffusion equation

ut = u2(1 − u) + uxx .

Obtain the ordinary differential equation for the travelling wave solution with u(x, t) =
U(z), z = x − ct , where c is the wavespeed. Assume a nonnegative monotone so-
lution for U(z) exists with U(−∞) = 1, U(∞) = 0 for a wavespeed such that
0 < 1/c = ε1/2 where ε is sufficiently small to justify seeking asymptotic solutions
for 0 < ε  1. With ξ = ε1/2z, U(z) = g(ξ) show that the O(1) asymptotic
solution such that g(0) = 1/2 is given explicitly by

ξ = −2 + 1

g(ξ)
+ ln

[
1 − g(ξ)

g(ξ)

]
, ξ = x − ct

c
.

Derive the (V, U) phase plane equation for travelling wave solutions where V =
U ′ and where the prime denotes differentiation with respect to z. By setting φ =
V/ε1/2 in the equation obtain the asymptotic solution, up to O(ε), for φ as a function
of U as a Taylor series in ε. Hence show that the slope of the wave where U = 1/2
is given to O(ε) by −((1/8c) + (1/25c3)).

2 Show that an exact travelling wave solution exists for the scalar reaction diffusion
equation

∂u

∂t
= uq+1(1 − uq) + ∂2u

∂x2 ,

where q > 0, by looking for solutions in the form

u(x, t) = U(z) = 1

(1 + debz)s
, z = x − ct,

where c is the wavespeed and b and s are positive constants. Determine the unique
values for c, b and s in terms of q. Choose a value for d such that the magnitude of
the wave’s gradient is at its maximum at z = 0.
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3 An invasion model with variable subpopulation dispersal is given in dimensionless
form by

∂u

∂T
= ∂2u

∂ X2
+ p(u + v)[1 − (u + v)],

∂v

∂T
= (1 − p)(u + v)[1 − (u + v)],

where u and v represent the dispersers and nondispersers respectively and p is the
probability that a newborn individual is a disperser. Look for travelling wave solu-
tions with Z = X −CT and derive the travelling wave system of ordinary differential
equations. Introduce

ε = 1/C2, s = Z/C, u(Z) = g(s), v(Z) = h(s)

and then show that the travelling wave system becomes

εgss + gs + p(g + h)[1 − (g + h)] = 0,

hs + (1 − p)(g + h)[1 − (g + h)] = 0.

Although Cmin = 1 + √
p, with p ≤ 1 the parameter ε is not small if p is near 1,

consider ε small and look for a regular perturbation solution to this system in the
form

g = g0 + εg1 + · · · , h = h0 + εh1 + · · · .

Justify using the boundary conditions

(g0 + h0) |−∞ = 1, (g0 + h0) |∞ = 0, (g0 + h0) |0 = 1/2,

gi |±∞ = hi |±∞ = 0, i > 0.

Derive the system of equations for g0 and h0. By setting y0 = g0 + h0, which
corresponds to the total population to O(1), obtain an equation for y0 and give the
conditions it must satisfy at ±∞ and s = 0 and hence determine the solution y0(s).
Show that

d

ds
[(1 − p)g0 − ph0] = 0

and use it together with the definition of y0 to solve for g0. Hence determine the
travelling wave solution for u(Z; C) and v(Z; C) to O(1) for large C2.

Construct a model with a more general nonlinear reproduction kinetics and
investigate whether or not you can carry out a similar analysis.



14. Use and Abuse of Fractals

14.1 Fractals: Basic Concepts and Biological Relevance

The problem with a good name for a new (or resurrected) field, particularly one such as
fractal theory which can be visually dramatic and practised without much background
and sophistication, is that uninformed proselytising and inappropriate use can raise un-
realistic expectations as to its relevance and applicability. Catastrophe theory is another
example: its overzealous mathematical practitioners did considerable harm to the cause
of interdisciplinary science. Although chaos and fractal theory have been proposed by
some as biological panaceas fortunately there are enough realists to counter this view
and generally keep them in perspective.

A particular and widespread misconception about fractal theory arises because it
can create objects which look remarkably like many natural structures such as trees,
weeds, flowers, butterfly wing patterns and so on, and this is often taken to be a biolog-
ical explanation of how these structures and patterns are formed. Although fractal-like
patterns may be reasonable graphical representations of such natural shapes they say
essentially nothing about the biological processes and mechanisms which are involved
in their development. Considerably more is required of a model. Notwithstanding this
criticism, fractal ideas can, and have been, very helpful.

One of the applications of fractal theory is directly related to the measurement of
biological structures at different magnifications; it is one that we discuss in this brief in-
troduction to fractal theory. We can think of fractals in a simplistic, but still useful, way
as geometric figures which repeat themselves at progressively smaller scales or exhibit
progressively more complex structure when observed at larger and larger magnifica-
tions. With a fractal there is often self-symmetry, or approximate self-symmetry. That
is, if we magnify a small part of the overall pattern it more or less displays some aspects
of the whole pattern. There are now many books on the subject; these often include dis-
cussions of chaos, a closely related subject. The comprehensive book by Peitgen et al.
(1992) is full of relevant matter and historical detail (but with no practical biological ex-
amples); the mathematical level is reasonably elementary but still nontrivial. The book
by Liebovitch (1998) gives a very simplified, elementary and clear exposition specif-
ically oriented towards the life sciences; there are many examples discussed in detail.
The book by Strogatz (1994) is more mathematical but it has some more applications
to biology; it primarily deals with chaos. The book by Bassingthwaighte et al. (1994) is
specifically devoted to physiological problems; it also gives basic background material
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on fractals (and chaos). The book by Falconer (1990) is a clear introduction to the theory
and applications of fractals generally. The visually beautiful book by Kaandorp (1994)
exploits new computer techniques to simulate fractal modelling (in both two and three
dimensions) in a wide variety of biological growth situations, such as coral colonies.
His approach is different from that in which the possible mechanism is the starting
point. He introduces elements in his models to simulate slow changes in environmental
conditions and so on. This approach coupled to a mechanistic one could produce some
interesting new biological insights: in Kaandorp et al. (1996), for example, he suggests
how to include the effect of nutrient diffusion and flow on coral morphology.

The labelling as fractal of a spectrum of growth phenomena which can be phe-
nomenologically described by some kind of power law over a long time is highly
controversial—witness the article in Science by Avnir et al. (1998) and the subsequent
fairly aggressive letters in the following issues. The hypotheses which have been pro-
posed as a result of applying (rightly or wrongly) fractal theory to natural phenomena in
many ways emphasises the necessity of studying and, hopefully, determining the actual
mechanisms involved in a growth process and reflects a major view espoused through-
out this book, namely, that phenomenological descriptions are not explanations even
though they can be helpful in limiting what is and what is not possible in the develop-
mental process.

To motivate the study of fractals let us consider a real biological problem (in fact
a class of them) and show why we need fractal theory to deal with it. In the following
sections we discuss some simple examples of fractals and how to generate them to
highlight some of their essential properties to get the basic ideas of what a fractal and
a fractal dimension are. In Section 14.3 we return to the biological problem we started
with and show how to use these concepts practically. We shall also briefly raise some
caveats about fractals and biology in general. This very brief introduction should be
sufficient to follow or appreciate most of the applications of fractal ideas and concepts
to real biological problems—and hopefully be able to distinguish between the relevant
and the irrelevant of which there are many.

Biological Examples

Analysis of Retinal Cell Branching and Coverage. The morphoglogy and branching
characteristics of neuronal cells have been widely studied with a view to understanding
shape morphogenesis, territorial coverage, classification and so on. Such studies fre-
quently involve a detailed analysis of different cell types and various methods have
been developed to address specific metric questions. For example, are specific types of
ganglion cells scale invariant? In other words are they fractal? Famiglietti (1992) inves-
tigated the similarities and differences in directionally selective retinal ganglion cells
of the rabbit and proposed a fractal approach and carried out such an analysis. Freed
and Sterling (1988) studied alpha ganglion cells of the cat retina; Figure 14.1(a) is a
typical example of the type of cellular structure which has to be examined. Tauchi and
Masland (1984) and Tauchi et al. (1992) studied the shape and arrangement of specific
neuronal cells in the rabbit retina; Figure 14.1(b) is a typical example of the structure
of such cells. Montague and Friedlander (1991) studied the morphogenesis and spatial
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Figure 14.1. (a) Typical alpha retinal ganglion cell of the cat: scale bar is 50 µm. (After Freed and Sterling
1988) (b) A typical amacrine cell from the central region of the rabbit retina: scale bar is 100 µm. (After
Tauchi and Masland 1984) Note the different branching structure between (a) and (b).

coverage of isolated retinal ganglion cells using cat retinal cells. They were faced with
qualitatively similar structures to those in Figure 14.1.

Surface and Volume Measurements of Subcellular Membrane Systems at Different
Magnifications. Surface and volume measurements of specific membranes have fre-
quently resulted in widely different values. Such discrepancies in the case of the rat
hepatocyte, for example, were discussed by Paumgartner et al. (1981) who reviewed the
widely different published values for the surface density of reticulum per unit volume
of cytoplasm and the surface density of inner and outer mitochondrial membranes per
unit volume of mitochondrion. The values could differ by more than a factor of three.
Although there are various possible explanations, Paumgartner et al. (1981) concen-
trated on the effect of different magnifications, or scales, at which the measurements
were carried out. To see how such discrepancies can arise we have to appreciate the
basic concepts of fractal topology and look at some simple examples of fractal-type
structures and how to generate them.

Pulmonary Blood Flow. Pulmonary blood flow is an important field and has been
the focus of a major long term study by Robertson, Glenny and their colleagues. Glenny
and Robertson (1990; see also their general review article, 1991a, on applying fractal
analysis to physiology) studied the heterogeneity of pulmonary blood flow using an
analytic fractal procedure which they compared with the traditional gravity model. Im-
portantly they compared their data with their fractal model and obtained a very good fit.
Glenny and Robertson (1991b) compared two branching fractal models, one in which
the branching ratio (that is, the fraction γ and 1 − γ of blood going from the par-
ent to two daughters was fixed and in the other where it could vary about a mean of
0.5) and found that both compared very well with the data. They clearly demonstrated
that, not only does gravitation play a secondary role in producing heterogeneity, but
that fractal models provide a quantitative mechanism for describing structure and func-
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tion of the pulmonary vascular tree. Glenny and Robertson (1995) simulated a three-
dimensional branching model for pulmonary perfusion. Spatial and temporal heteroge-
neous pulmonary perfusion is physiologically also important and has been investigated
by Glenny et al. (1995, 1997). With the plethora of articles on the fractal character of
a wide spectrum of phenomena in Nature, many with scant connection to reality far
less experiments, the importance, both pedagogically and scientifically, of the Glenny–
Robertson work on blood perfusion is that their modelling is firmly rooted in reality
and this, plus the fact that it is so closely tied to their experimental work, makes their
physiological conclusions seminal.

Fractal analysis has been applied successfully to a wide variety of natural phe-
nomena and, not withstanding the above criticism, it has proved to be a useful tool.
Cross (1994), after a brief pedagogical exposition of fractals, reviews the use of fractal
geometry in quantitative microscopy. He discusses how it is used in microcomputer-
based image analysis systems and he describes a variety of applications such as certain
bacterial patterns, lung alveoli, tumour edges and others. He also makes a case for its
development in other areas such as screening for carcinoma of the uterine cervix. Part
of the problem with the latter is the difficulty in quantifying the difference between
normal and abnormal cells. There is no doubt that fractal analysis can be an important
tool in this general area although in many instances, it has been overdone and inappro-
priately applied. Panico and Sterling (1995) make a convincing case against the use of
fractal geometry for retinal neurons (see also Murray 1995); we briefly discuss this in
Section 14.4.

14.2 Examples of Fractals and Their Generation

We start by considering a specific fractal called the von Koch curve first described in
1906. As is often the case, this fractal is recursively generated. We start with a line
L0 and replace the inner third of it with two equal line segments to form L1 as in
Figure 14.2. Then, with each straight line segment in L1 do the same again to get L2,
then L3 and so on. The limiting curve Ln as n → ∞ is the fractal known as the von
Koch curve. Such recursive procedures can generate curves and structures with some
interesting properties. Denoting the lengths of L1, L2, . . . by s0, s1, . . . we see that
s1 = (4/3)s0, s2 = (4/3)2s0, . . . , sn = (4/3)ns0, . . . . That is, the length of each L
increases at each iteration of the rule and the length sn → ∞ as n → ∞; in other
words, the limiting curve is of infinite length. Not only that, there is an infinite distance
between any two points on the von Koch curve. From a practical point of view, and in
anticipation of biological applications, such a limit is unobtainable. However, what is
relevant is that the length of the curves depends on the scale we are able to measure
them. We discuss this in more detail below.

There is an obvious self-symmetry between subunits at one generating stage and
the whole structure at a previous one, or even just a part of it. This is clear if we isolate
some specimen sections and compare them with earlier Ln as shown in Figure 14.2.
So, the von Koch curve, K , is self-similar and it has structure at however small a scale
we look at it. The self-similarity of subunits of the pattern at ever smaller scales is a
particularly common property of certain fractals. In fact, a figure which exhibits this
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Figure 14.2. Construction of the von Koch curve. Here we divide the initial line L0 into three equal segments
and replace the middle one with two equal lines as in L1. We then take each of the segments in L1 and replace
the middle third with two equal lines to get L2. Doing this an infinite number of times results in the von Koch
curve. The length, s, of each line, L , is 4/3 longer than the previous one from which it was derived.

self-similarity at ever smaller scales is a fractal although all fractals do not necessarily
have this property; see Figure 14.3.

Let the unit of scale at any generation stage n be µn . Then, if we take the length of
the line L0 to be unity then µ0 = 1, µ1 = 1/3, µ2 = (1/3)2, . . . , µn = (1/3)n and so
on. We can relate the unit of scale, µ, and the magnification, M say, in a simple way. If
we consider the structural subunit enclosed in the box in L4 and magnify it by 3 we get
L3, while if we magnify the structural unit in the box in L3 by 32 we get L1: scale µ

and the magnification M are related by µ ∝ λ/M where λ is related to the resolvable
scale unit at magnification unity. By this we mean that if we are looking at a magnified
micrograph it is the unit in the image plane reflecting the test system under investigation
at the smallest magnification. The von Koch fractal curve involves the magnification, M ,
which, from a biological application point of view, is not possible; we come back to this
point below since it relates to how we calculate the ‘dimension’ of a fractal.

Another classical self-similar fractal is the Sierpinski triangle first described in
1916. Here you start with an isosceles triangle and repeatedly remove similar trian-
gles a quarter of the area. The initial stages are shown in Figure 14.3. As before we can
calculate the unit of scale (an area here) at any stage. This fractal, as with the von Koch

Figure 14.3. Sierpinski triangle fractal. The construction algorithm is to start with a triangle, remove the
small inner triangle as in the second figure of four equal triangles and continue in this way with each remaining
black triangle but, on a successively reduced scale.
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Figure 14.4. Example of a Julia set which exhibits fractal properties. The fractal generator is nonlinear. Note
the similarity of the two successively enlarged parts. It is also possible to see in the third figure how the whole
process continues, although without exact self-symmetry.

curve, can also be used to generate a variety of other fractal curves by using variations in
the rules (see, for example, Peitgen et al. 1992). The existence of self-similar structure
at any scale, however small, is clear.

We can now see how to construct self-similar fractals of whatever complexity you
want. Self-similar fractals, however, are only one small class of fractal shapes. They in-
volve linear scaling laws, which we discuss in more detail below. We can now see how
one could, with a little ingenuity, devise specific fractal generators to produce a vast
variety of shapes which can be tuned to look like all kinds of growing things such as
trees, weeds, starfish, flowers, ferns, snowflakes, cauliflowers and ganglion cells. If we
have nonlinearity in the fractal generators as well, the complex figures we can generate
are unlimited. One example of such nonlinear fractals is Julia sets, after Gaston Julia,
who published his highly original and seminal study in 1918 when he was 25 years old.
They are just one class of nonlinear fractals but possibly the best known since the re-
sulting patterns can be very subtle and beautiful and the dramatic evolution of them can
be easily displayed on a very basic personal computer with simple programmes. These
sets involve transformations in the complex plane; see, for example, the discussion and
numerous examples in the book by Peitgen et al. (1992).

The Julia sets, which are nonlinear and hence not self-similar, are based on itera-
tions of polynomials like z2 +k, z2 + z +k, z3 +k and so on, where z and k are complex
numbers: you can think of a complex number, z, as a pair of real numbers which deter-
mine a point in the plane. The generation algorithm involves repeated applications of
the polynomial transformation. That is, you start with a given z and then evaluate the
effect of the polynomial transformation. For example, start with the point z0 and evalu-
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ate the point, z1 = z2
0 + k, then z2 = z2

1 + k and so on. The sequence of points is a Julia
set; Figure 14.4 is one computer-generated example. The study of these is interesting
but it should be kept in mind that their connection with real biological applications is
still moot. Later we briefly discuss the relevance of fractals to biological situations in
general.

At this stage we should reiterate the comment about realism concerning many of
these complex figures and algorithmic generation processes which are able to produce
structures so visually reminiscent of those found in Nature. For example, different gen-
erating rules, whether or not they are closely related, can produce the general visual
shape of two different species of trees. Although this is interesting it says very little
about the actual biological pattern formation mechanisms which generate the structure
and, without considerably more biological input, as explanations of how the tree grows
and is formed is possibly of little more value than an artist’s impression. I do not mean
to imply that fractals are of little use in biology, only that invoking fractal theory in the
study of genuine biological situations has to be done with considerable care and, above
all, biological realism.

14.3 Fractal Dimension: Concepts and Methods of Calculation

The dimension of traditional geometric shapes is very clear. A line is one-dimensional,
a figure in the plane is two-dimensional and what constitutes a three-dimensional shape
is obvious. The dimension is the minimum number of coordinates needed to specify
a point on the figure. For example, on a given curve we can specify any point by a
single coordinate, namely, the arc length from a given point on the curve and so it
is a one-dimensional figure. A point on a plane needs two coordinates so it is two-
dimensional and so on. Do the von Koch fractal, the Sierpinski triangle and the ganglion
cells in Figure 14.1 have a dimension? Certainly the first two do not conform with our
normal concept of dimension and so we have to extend our ideas as to what we mean
by ‘dimension’ and specifically by the ‘fractal dimension.’

The von Koch curve is a fractal which has the unusual property that there is an
infinite distance between any two points on the curve. The curves which generate the
von Koch curve are also clearly fractal since any small subunit is just a reduced ver-
sion of part or the whole of one of the curves above it. What is the dimension of the
curve? Since it is a curve it might be thought that it is one-dimensional. However, since
the distance between any two points on the curve is infinite we cannot get from one
point on the curve to another by specifying the distance since all points are infinitely
far away from each other. It is clearly not two-dimensional since it does not have any
‘area’ so perhaps it has a dimension between 1 and 2, but how do we define it and
calculate it?

Although this might seem like academic sophistry it has a genuine practical rele-
vance to the problem studied by Paumgartner et al. (1981) mentioned in Section 14.1.
Let us consider a curve such as in Figure 14.5(a) and suppose it represents part of
the boundary of some biological membrane of which we want to know the length. If
we measure the curve with a ruler that has a scale, r1 say, as in Figure 14.5(b) we
cannot detect the various indentations between the end points of the ruler. We get the
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Figure 14.5. The effect on the measured
‘length’ of the curve in (a) as we vary the
scale on which we measure it. The ‘length’
of the curve measured with a large unit of
scale, r (that is, small magnification) as in
(b), is smaller than the ‘length’ measured
with the scales in (c), which in turn is
smaller than that with the scale in (d).

length as the number of units needed to cover the curve. If we use a smaller scale, as
in Figure 14.5(c), we get a different answer since we can now account for some of the
finer indentations. So, as we reduce the scale, or in other words, as we increase the
magnification, we get an increasing value for the ‘length’. We would really like to be
able to use a scale that is smaller than any of the small indentations in the curve so
that we could get an accurate value for the length. But suppose the magnification re-
quired for such a scale cannot be achieved; how do we determine the true length? To
get some idea of how to do this we consider in more detail fractal-generating scaling
laws.

Dimension of a Self-Similar Fractal and Scaling Laws

Consider a square of side S. If we scale down each side by a scale factor r = 1/2 then
we need 4(= 22) of the smaller boxes to fill the original square. If we scaled-down
by a factor r = 1/3 we need 32 of the scaled-down squares to fill the original square.
Generally if we scale down by a factor, r , we need (1/r)2 reduced squares to fill the
original square. If we do the same with a cube then, with a scale factor r , the number of
cubes needed to fill the original box is (1/r)3. The power of 1/r is directly related to
the geometric dimension of the original figure, 2 for the square and 3 for the cube. If r is
the scale factor and m(r), which is a function of r , denotes the number of scaled-down
pieces (similar to the original figure) which are needed to fill the original figure then for
the square and the cube m = (1/r)D, where D is the dimension, 2 for the square and 3
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for the cube. This suggests a reasonable definition of the dimension, D, of a self-similar
fractal, such as we derived above is given by

m =
(

1

r

)D

⇒ D = ln m(r)

ln(1/r)
(14.1)

on taking the logarithm of both sides. Strictly the fractal dimension, Dfractal, is given by
the limit of this expression as the scale factor r → ∞; that is, the actual unit of length
scale tends to zero, and so

Dfractal = lim
r→∞

ln m(r)

ln(1/r)
. (14.2)

In the case of the von Koch curve the successive generations of the curves Lk , for
any k, with length sk , are made up of four equal pieces each of which is similar to
the previous curve Lk − 1, with length sk − 1, but scaled down by a factor of three.
So, here the number of copies m = 4 and the scale factor r = 1/3. With the fractal
definition of D in (14.2) we get the fractal dimension of the von Koch curve to be
D = ln 4/ ln 3 = 1.262, which is indeed between 1 and 2.

Let us now consider a general scaling law and some quantity, Q say, which depends
on the scale, r , at which we measure it. As an example, and to be specific, if we refer to
Figure 14.5 we can see that the finer the scale the more detail can be accounted for and,
as a consequence, the measured length increases the finer the scale, r , that is, the larger
the magnification, we use. So, Q(r) is a function of r and if we think of the length of
the curve in Figure 14.5, Q = N (r)r , where N (r) is the number of scale units needed
to cover the curve at scale r .

If a figure is self-similar we can say something about the behaviour of N (r) as a
function of r . Recall the discussion above with the square and cube and their subdivision
into smaller squares and cubes. With the square when the scale factor was r = 1/2 we
needed N (r) = (1/r)2 of the smaller units to fill the original square. With the cube it
was N (r) = (1/r)3 of the smaller subunits. The powers of 1/r directly relate to the
dimension of the quantity considered. So, in general for a self-similar scale law we have

N (r) = C

r D
, (14.3)

where C is some constant and D is the dimension which characterises the quantity, Q.
In the square and cube examples if we start with a known area and volume, C is that area
and volume respectively. When dealing with a quantity we do not know, C is unknown
a priori. With the expression for N (r) in (14.3) we have

Q(r) = N (r)r = C

r D−1
. (14.4)

Taking the logarithm of both sides gives
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ln Q(r) = −(D − 1) ln r + ln C. (14.5)

From a practical point of view, we plot ln Q(r) against ln r for various r and the gradient
then determines the fractal dimension D.

The definition of the dimension in (14.4) is consistent with that given in (14.1). To
see this, replace Q(r) in (14.5) with the expression from (14.4) to get

ln N (r)r = −D ln r + ln r + ln C

⇒ D = ln N (r)

ln(1/r)
+ ln C

ln(1/r)
≈ ln N (r)

ln(1/r)
for r small. (14.6)

This is the same as the definition of the dimension D defined in (14.1) since N (r) =
m(r). We should remember that it is magnification, M , which is used in experimental
measurements rather than the unit of scale, r . There is a direct proportionality between
M and r , namely, M = µ/r where µ is some proportionality factor which can be
calculated. In terms of the magnification, M , the dimension D is then given by (14.5)
which becomes

ln Q(M) = −(D − 1) ln(1/M) + ln[µ−(D−1)C]. (14.7)

The last term in (14.7) is simply a constant and not important at this stage; we
briefly talk about it later. If the quantity Q is fractal then the expression in (14.6) is a
straight line in the log–log graph. Use of experimental measurements at different scales
can suggest whether or not a biological quantity is fractal—or approximately so. A spe-
cific experimental example is the electron micrograph measurements by Paumgartner
et al. (1981) of the inner and outer mitochondrial membranes and endoplasmic retic-
ulum briefly mentioned above. Here Q represents length and surface measurements.
They plotted the logarithm of the various measurements, Q, against the logarithm of
1/M , where M is the magnification; the results shown in Figure 14.6 are based on those
presented in their paper.

Referring to the data points on Figure 14.6, for magnifications greater than 130,000
we see that in that region the fractal density D = 1. In other words there is no finer
structure beyond this magnification and so we are seeing the whole structure with no
‘hidden’ complexities. We know that in a strictly, or theoretical, fractal situation such
as with the von Koch curve, the limiting length is infinitely large. In any biological
situation it is not possible to continually increase the magnification indefinitely. In fact
there is a definite limit to the scale, r , at which stage the dimension becomes the usual
topological dimension. In Figure 14.6 the dimension is D = 1 for magnifications larger
than 130,000 which determines (approximately) the physical limit.

It is appropriate at this stage to ask what the use is in showing that something is
fractal. In many situations the answer is that it is of little use. In others, however, it
can be informative. Let us suppose that we can only measure Q, which in Figure 14.6
are lengths and surfaces, for only a small range of different scales and not as far as
the limiting one, rlimit , which corresponds to a 130,000 magnification beyond which
the structure has an integer dimension. Let us further suppose that the measurements
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Figure 14.6. Boundary and surface measurements of specific liver cell membranes of the rat as a function
of the magnification M: (a) inner mitochondrial membrane, (b) outer mitochondrial membrane and (c) en-
doplasmic reticulum. Note the straight line nature of the curve for magnifications in the range ×18,000 <

M < ×130,000. (Redrawn from Paumgartner et al. 1981) The straight line portion implies an approximate
fractal behaviour with the fractal dimension, D, determined from fitting (14.7) to the data points. Note that
for magnifications greater than 130,000 the graphs imply D = 1.

are sufficient to demonstrate fractal behaviour and an approximate fractal dimension D.
Then from (14.4) the ratio of the measures of Q at scale r and at scale rlimit is given by

Q(rlimit )

Q(r)
=
(

r

rlimit

)D−1

⇒ Q(rlimit ) =
(

r

rlimit

)D−1

Q(r) = Kc Q(r), (14.8)

where Kc is the correction factor to the measurement at scale r . This presumes a knowl-
edge of the physical limiting scale r limit. One of the practical uses of finding fractal
behaviour, such as in this biological example, is that it clearly shows how important the
scale can be in measuring the specific quantities and that conclusions based on observa-
tions at larger scales can be inaccurate.

Another important potential use for more accurate spatial measurement, specifi-
cally surface area, is associated with quantifying diffusion fluxes of chemicals through
such a membrane surface. The amount of a chemical which diffuses through a surface
is directly proportional to the surface area. So, if a surface is fractal, or quasi-fractal,
we can obtain a more accurate approximation to that flux if we know the fractal di-
mension. Of course, the fractal ‘indentations’ must not be so fine that the random walk
approximation to diffusion is no longer valid but in practice this is generally not the
case.
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Non Self-Similar Fractals and the Box-Counting Dimension

If a fractal is not self-similar we have to generalise our concept of a fractal dimension.
We also have to have some method for calculating it in any experimental situation. An
example of a fractal which is not self-similar is shown in Figure 14.3. One method
which is widely used is called box counting and which we now describe. There are
others some of which are discussed in the books cited above. Basically all the methods
rely on measurements of some quantity at different scales, r , or magnifications, M , in
the above notation. Effectively the measurement at a given scale ignores irregularities
at a smaller scale.

The box method involves covering the object of measurement with regular square
boxes (circles or spheres are also used) of size r ; refer to Figure 14.7. If the measure-
ments are in the plane then squares are used while cubes are used if the body measure-
ments are three-dimensional. In Figure 14.7(a) let us suppose the original smooth curve
has length L . Then the number of boxes N (r) is related to the size of the box used
which depends on the unit of scale r ; here N (r) ∝ L/r . If it is a region, with area A, as
in Figure 14.7(c), then the number of boxes N (r) ∝ A/r 2. In the case of a power law
(14.3), N (r) ∝ L/r D and the fractal box dimension is, from (14.6), then given as

D = lim
r→0

ln N (r)

ln(1/r)
(14.9)

as long as the limit exists.
If we now return to the cellular structures in Figure 14.1 we can calculate the box

dimension by covering the cell with a network of square boxes of given size (scale)
which specifies r , and simply counting them to get N (r). Then, progressively decrease

Figure 14.7. Box-covering methods for a line as in (a) and (b) or an area as in (c). A part of the curve or area
must lie in each box. In the case of the line in (a) it is possible to have a different box covering as shown in
(b). In the limit of very small scale boxes the number needed to cover the line is approximately the same.
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Figure 14.8. Example of a nonself-similar fractal; see the text for a description of the generator.

the box size and plot ln N (r) against ln(1/r) for a range of r which gives a straight line
from which we can determine the gradient and hence D.

One problem with the box dimension is that it is not always easy to find the mini-
mal cover; the situations reproduced in Figures 14.7(a) and 14.7(b) highlight this. The
method in Figure 14.7(a) is actually better than that in Figure 14.7(b). There are other
more complex and more accurate methods for calculating the fractal dimension, one of
the best of which is the Hausdorff dimension which uses sets of shapes with different
sizes. Although mathematically it gives a more accurate value for the dimension it is
very much harder to calculate. A simple illustrative example of a nonself-similar fractal
is shown in Figure 14.8. The generating rule consists of starting with a square divided
into nine equal small squares. Then choose one at random and remove it from the figure
to get the set S1. The remaining eight squares are then divided into nine equal smaller
squares and again one of the smaller squares in each box is selected at random and
discarded to obtain S2. The procedure is then repeated. This is a fractal structure with
qualitatively similar structures at each scale reduction and there is a kind of power scale
law in operation in that the individual surviving boxes certainly obey one. How do we
calculate the box dimension of this fractal structure? If we take the length of the side
of the original square to be unity then S1 consists of N = 8 equal squares of side 1/3;
that is, the scale r = 1/3. The set S2 consists of N = 82 squares with scale r = (1/3)2.
At the nth generation we have a structure Sn with N = 8n squares with side of length
r = (1/3)n. From (14.9) we thus have the box dimension given by

D = lim
n→∞

ln 8n

ln 3n
= ln 8

ln 3
= 3 ln 2

ln 3
= 1.893.

It is left as an exercise to calculate the box dimension of the nonself-similar fractal
obtained if a similar procedure to that used in Figure 14.8 is used with the Sierpinski
triangle in Figure 14.4.

14.4 Fractals or Space-Filling?

Let us now consider a biological situation involving cells such as that shown in Fig-
ure 14.1, or the volume occupied by the alveolar sacs in the lung organism or the typical
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(a) Summer (b) Winter

Figure 14.9. Ivy-covered wall in winter and summer. Is the branch structure in (a) fractal or is it space-filling
to optimise the leaf coverage (b) in the summer?

ivy covering of a wall as in Figure 14.9. Ideally, in the case of the lung, a major purpose
is to maximise the exchange of oxygen in the blood in the minimum amount of space.
In the case of the ivy the branches grow, it seems, so that they cover the available wall
space in the most efficient space-filling way for the leaves to maximise the absorption of
sunlight and relevant gases to maximise the growth in the growth season. Such branch-
ing structures are widespread in Nature; see, for example, the many fractal-like forms
in Nature, reproduced in almost all books on fractals. In the case of the neuronal cells
in Figure 14.1 are they space-filling or are they fractal?

In the latter part of the 19th century and the beginning of the 20th there was con-
siderable interest in space-filling curves. What we mean by that is for any patch in a
given area there is a curve which touches each point of that patch. We come back to
the biological relevance shortly. To see how to construct such a curve we consider the
classical space-filling curve first described by Hilbert in 1891. Figure 14.10 shows the
initial construction stages. Let us suppose the size of the line segments of the three-sided
figure in S0 to be length 1. Then in the intermediate stage we have four such three-sided
figures with segment lengths of 1/2. We then join the four copies of S0 with three lines
to get S1. The procedure is repeated to get S2 using similar rotations and again joining
up the various quadrant curves with three other lines. So, S2 has 16 copies of S0 made
up of line segments of length 1/4. At stage Sn we have 4n copies of S0 made up of line
segments of length 1/2n.
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Figure 14.10. The stepwise generation of the space-filling Hilbert curve. We start with the space and curve
S0, for the intermediate step in the second square and then join the four sets of lines to get S1, then S2, S3 and
so on. In the limit the curve passes through each point in the square.

The theory of space-filling curves gets quite technical mathematically but from a
biological viewpoint we do not need it. Suppose we have an organism which wants to
maximise its coverage of a given area or volume. One way to do this would be to have
a branching structure which obeyed local developmental branching rules to try and fill
all the available space. The evolution of the curve in Figure 14.10 is one possible rule.
In fact is the regularity of such a branching pattern any better than a random oppor-
tunistic branching which has a normal topological dimension and is not fractal, not self-
similar nor has any other of the elegant geometric properties associated with fractals?
The branching pattern, fractal or otherwise, stops when the interbranch distance is at a
specific scale associated with the specific organism. This would result in a fairly even
mesh within which there is no further structure. In fact it would be counterproductive
to try to create a finer structure than was necessary. By a careful analysis of retinal neu-
rons and vessels Panico and Sterling (1995) showed that neuronal and vascular patterns
showed no more self-similarity than the non-fractal controls they used. They concluded
that these biological patterns were not fractal but rather space-filling.

Although experiments might give rise to something that appears to be fractal, or
have a noninteger dimension, boundaries generally play a role in such measurements
and affect the subsequent log–log graphs. Whether or not something is fractal from
experimental measurements it must be clearly demonstrated that such boundary effects
can be ignored.

Caveat

It has frequently been suggested that if some pattern is fractal then we can infer some-
thing about the mechanism which generates it. The case most frequently cited is when
the pattern generated looks qualitatively similar to that in Figure 14.11 which is a typ-
ical pattern generated by diffusion limited aggregation. Diffusion limited aggregation
(DLA) is a diffusion process whereby particles exhibit a random walk behaviour and



14.4 Fractals or Space-Filling? 499

Figure 14.11. (a) Typical pattern generated by diffusion limited aggregation. (From Bassingthwaighte et
al. 1994 and reproduced with permission) (b) A typical amacrine cell from the central region of the rabbit
retina: scale bar is 100 µm (from Figure 14.1). (After Tauchi and Masland 1984) It is premature to draw any
conclusions as to the mechanism which forms (b) solely by visual comparison between it and the pattern in
(a).

when a particle comes into contact with another particle it sticks to it and can no longer
move. The process is usually started with a seed of stationary particles onto which re-
leased particles eventually diffuse. In this way a spatial pattern is dynamically formed
which is fractal in character. In this DLA example we can compute the fractal dimen-
sion theoretically; it is 1.7. We can, of course, also use the box dimension method, for
example, to compute it from the figure. Now compare the pattern in Figure 14.11 and
the cell patterns in Figure 14.1. It has often been suggested, for example, by Caserta et
al. (1990) and Schierwagen (1990), that the shape of neuronal cells may be determined
by a diffusion limited aggregative process. This is an unjustified conclusion to draw
from mere visual similarity.

Any model mechanism, such as diffusion limited aggregation, must be judged
against other biological spatial patterning generators by the experiments each of them
suggests. It is only by these that they can be differentiated. In the light of the easy
generation of hypothetical ferns, cauliflowers, trees and so on, it is easy to forget the
main purpose of studying pattern formation in biology, namely, to try and discover the
underlying biological processes which produce the spatial patterns.
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Appendix A. Phase Plane Analysis

We discuss here, only very briefly, general autonomous second-order ordinary differen-
tial equations of the form

dx

dt
= f (x, y),

dy

dt
= g(x, y). (A.1)

We present the basic results which are required in the main text. There are many books
which discuss phase plane analysis in varying depth, such as Jordan and Smith (1999)
and Guckenheimer and Holmes (1983). A good, short and practical exposition of the
qualitative theory of ordinary differential equation systems, including phase plane tech-
niques, is given by Odell (1980). Phase curves or phase trajectories of (A.1) are solu-
tions of

dx

dy
= f (x, y)

g(x, y)
. (A.2)

Through any point (x0, y0) there is a unique curve except at singular points (xs, ys)

where

f (xs, ys) = g(xs, ys) = 0.

Let x → x −xs, y → y− ys ; then, (0, 0) is a singular point of the transformed equation.
Thus, without loss of generality we now consider (A.2) to have a singular point at the
origin; that is,

f (x, y) = g(x, y) = 0 ⇒ x = 0, y = 0. (A.3)

If f and g are analytic near (0, 0) we can expand f and g in a Taylor series and,
retaining only the linear terms, we get

dx

dy
= ax + by

cx + dy
, A =

(
a b
c d

)
=

(
fx fy

gx gy

)

(0,0)

(A.4)

which defines the matrix A and the constants a, b, c and d. The linear form is equivalent
to the system
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dx

dt
= ax + by,

dy

dt
= cx + dy. (A.5)

Solutions of (A.5) give the parametric forms of the phase curves; t is the parametric
parameter.

Let λ1 and λ2 be the eigenvalues of A defined in (A.4); that is,

∣∣∣
∣
a − λ b

c d − λ

∣∣∣
∣ = 0 ⇒ λ1, λ2 = 1

2
(a + d ± [(a + d)2 − 4 det A]1/2). (A.6)

Solutions of (A.5) are then

(
x
y

)
= c1v1 exp[λ1t] + c2v2 exp[λ2t], (A.7)

where c1 and c2 are arbitrary constants and v1, v2 are the eigenvectors of A correspond-
ing to λ1 and λ2 respectively; they are given by

vi = (1 + p2
i )−1/2

(
1
pi

)
, pi = λi − a

b
, b �= 0, i = 1, 2. (A.8)

Elimination of t in (A.7) gives the phase curves in the (x, y) plane.
The form (A.7) is for distinct eigenvalues. If the eigenvalues are equal the solutions

are proportional to (c1 + c2t) exp[λt].

Catalogue of (Linear) Singularities in the Phase Plane

(i) λ1, λ2 real and distinct:
(a) λ1 and λ2 have the same sign. Typical eigenvectors v1 and v2 are illustrated

in Figure A.1(a). Suppose λ2 < λ1 < 0. Then, from (A.7), for example, for
c2 = 0, c1 �= 0,

(
x
y

)
= c1v1 exp[λ1t],

so the solution in the phase plane simply moves along v1 towards the origin
as t → ∞ in the direction shown in Figure A.1(a) — along P O if c1 > 0
and along QO if c1 < 0.

From (A.7) every solution tends to (0, 0) as t → ∞ since, with λ2 <

λ1 < 0, exp[λ2t] = o(exp[λ1t]) as t → ∞ and so

(
x
y

)
∼ c1v1 exp[λ1t] as t → ∞.

Thus, close enough to the origin all solutions tend to zero along v1 as shown
in Figure A.1(a). This is called a node (Type I) singularity. With λ1 ≤ λ2 <

0 it is a stable node since all trajectories tend to (0, 0) as t → ∞. If λ1 >

λ2 > 0 it is an unstable node; here (x, y) → (0, 0) as t → −∞.
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Figure A.1. Typical examples of the basic linear singularities of the phase plane solutions of (A.4). (a) Node
(Type I): these can be stable (as shown) or unstable. (b) Saddle point: these are always unstable. (c) Spiral:
these can be stable or unstable. (d) Centre: this is neutrally stable. (e) Node (Type II): these can be stable or
unstable. (f) Star: these can be stable or unstable.

(b) λ1 and λ2 have different signs. Suppose, for example, λ1 < 0 < λ2 then
v1 exp[λ1t]v1 → 0 along v1 as t → ∞ while v2 exp[λ2t] → 0 along v2 as
t → −∞.

There are thus different directions on v1 and v2: the solutions near (0, 0)

are as shown in Figure A.1(b). This is a saddle point singularity. It is always
unstable: except strictly along v1 any small perturbation from (0, 0) grows
exponentially.
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(ii) λ1, λ2 complex: λ1, λ2 = α ± iβ, β �= 0. Solutions (A.7) here involve exp[αt]
exp[±iβt] which implies an oscillatory approach to (0, 0).

(a) α �= 0. Here we have a spiral, which is stable if α < 0 and unstable if
α > 0; Figure A.1(c) illustrates a spiral singularity.

(b) α = 0. In this case the phase curves are ellipses. This singularity is called
a centre and is illustrated in Figure A.1(d). Centres are not stable in the
usual sense; a small perturbation from one phase curve does not die out
in the sense of returning to the original unperturbed curve. The perturbation
simply gives another solution. In the case of centre singularities, determined
by the linear approximation to f (x, y) and g(x, y), we must look at the
higher-order (than linear) terms to determine whether or not it is really a
spiral and hence whether it is stable or unstable.

Figure A.2. Summary diagram showing how tr A and det A, where A is the linearisation matrix given by
(A.4), determine the type of phase plane singularity for (A.1). Here det A = fx gy − fy gx , tr A = fx + gy ,
where the partial derivatives are evaluated at the singularities, the solutions of f (x, y) = g(x, y) = 0.
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(iii) λ1 = λ2 = λ. Here the eigenvalues are not distinct.

(a) In general, solutions now involve terms like t exp[λt] and there is only one
eigenvector v along which the solutions tend to (0, 0). The t in t exp[λt]
modifies the solution away from (0, 0). It is called a node (Type II) singu-
larity, an illustration of which is given in Figure A.1(e).

(b) If the solutions do not contain the t exp[λt] term we have a star singularity,
which may be stable or unstable, depending on the sign of λ. Trajectories in
the vicinity of a star singularity are shown in Figure A.1(f).

The singularity depends on a, b, c and d in the matrix A in (A.4). Figure A.2
summarises the results in terms of the trace and determinant of A.

If the system (A.1) possesses a confined set (that is, a domain on the boundary ∂ B
of which the vector (dx/dt, dy/dt) points into the domain) enclosing a single singular
point which is an unstable spiral or node then any phase trajectory cannot tend to the
singularity with time, nor can it leave the confined set. The Poincaré–Bendixson theorem
says that as t → ∞ the trajectory will tend to a limit cycle solution. This is the simplest
application of the theorem. If the sole singularity is a saddle point a limit cycle cannot
exist; see, for example, Jordan and Smith (1999) for a proof of the theorem, its general
application and some practical illustrations.
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Appendix B. Routh–Hurwitz Conditions,
Jury Conditions, Descartes’ Rule of Signs
and Exact Solutions of a Cubic

Appendix B.1 Characteristic Polynomials, Routh–Hurwitz
Conditions and Jury Conditions

Linear stability of the systems of ordinary differential equations such as arise in inter-
acting population models and reaction kinetics systems (cf. Chapters 3 and 6) is de-
termined by the roots of a polynomial. The stability analysis we are concerned with
involves linear systems of the vector form

dx
dt

= Ax, (B.1)

where A is the matrix of the linearised nonlinear interaction/reaction terms: it is the
Jacobian matrix about the steady state—the community matrix in ecological terms. So-
lutions are obtained by setting

x = x0eλt , (B.2)

in (B.1) where x0 is a constant vector and the eigenvalues λ are the roots of the charac-
teristic polynomial

| A − λI | = 0, (B.3)

where I is the identity matrix. The solution x = 0 is stable if all the roots λ of the
characteristic polynomial lie in the left-hand complex plane; that is, Re λ < 0 for all
roots λ. If this holds then x → 0 exponentially as t → ∞ and hence x = 0 is stable to
small (linear) perturbations.

If the system is of nth order, the characteristic polynomial can be taken in the
general form

P(λ) = λn + a1λ
n−1 + · · · + an = 0, (B.4)

where the coefficients ai , i = 0, 1, . . . , n are all real. We tacitly assume an �= 0 since
otherwise λ = 0 is a solution, and the polynomial is then of order n − 1 with the
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equivalent an �= 0. We require conditions on the ai , i = 0, 1, . . . , n such that the zeros
of P(λ) have Re λ < 0. The necessary and sufficient conditions for this to hold are the
Routh–Hurwitz conditions. There are various equivalent forms of these, one of which
is, together with an > 0,

D1 = a1 > 0, D2 =
∣∣
∣∣
a1 a3
1 a2

∣∣
∣∣ > 0, D3 =

∣
∣∣
∣∣∣

a1 a3 a5
1 a2 a4
0 a1 a3

∣
∣∣
∣∣∣
> 0,

Dk =

∣
∣∣∣
∣∣
∣∣
∣∣
∣∣

a1 a3 · · · ·
1 a2 a4 · · ·
0 a1 a3 · · ·
0 1 a2 · · ·
· · · · · ·
0 0 · · · ak

∣
∣∣∣
∣∣
∣∣
∣∣
∣∣

> 0, k = 1, 2, . . . , n.

(B.5)

These conditions are derived, using complex variable methods, in standard texts on the
theory of dynamical systems (see, for example, Willems 1970). As an example, for the
cubic equation

λ3 + a1λ
2 + a2λ + a3 = 0

the conditions for Re λ < 0 are

a1 > 0, a3 > 0; a1a2 − a3 > 0.

Frankly it is hard to imagine anyone actually using the conditions for polynomials of
order five or more.

Although (B.5) are the necessary and sufficient conditions we need, the usual al-
gebraic relations between the roots and the polynomial coefficients can often be very
useful. If λ1, . . . , λn are the distinct nonzero roots of (B.4) these are

n∑

i=1

λi = −a1,

n∑

i, j
i �= j

λiλ j = a2, . . . λ1λ2 . . . λn = (−1)nan . (B.6)

Lewis (1977) gives several useful ways of deriving qualitative results using the
Routh–Hurwitz conditions together with network concepts directly on the matrices.

In the case of systems of discrete models for interacting populations (cf. Chapter 3),
and with single population models with delay (cf. Chapter 2), stability is again deter-
mined by the roots of a characteristic polynomial (cf. Section 3.10 in Chapter 3). The
linearised systems again give rise to matrix forms like (B.3) and hence polynomials like
(B.4). With delay equations, with a delay of n time-steps say, we have to solve linear
difference equations typically of the form

ut+1 = b1ut + · · · + bnut−n
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((2.37) in Chapter 2 is an example). We solve this by setting ut ∝ λt which again results
in a polynomial in λ. Linear stability here however is determined by the magnitude of
λ: stability requires |λ | < 1 since in this case ut → 0 as t → ∞. So, for the linear
stability analysis of discrete systems we require conditions on the coefficients of the
characteristic polynomial so that the solutions λ have magnitude less than 1. The Jury
conditions are the conditions for this to be the case.

The Jury conditions are given, for example, in the book by Lewis (1977), who
describes and illustrates several useful, analytical and numerical techniques concerning
the size and signs of the roots of polynomials. For the polynomial P(l) in (B.4), let

bn = 1 − a2
n, bn−1 = a1 − anan−1, . . . , bn− j = a j − anan− j , . . . ,

b1 = an−1 − ana1;
cn = b2

n − b2
1, cn−1 = bnbn−1 − b1b2, . . . ,

cn− j = bnbn− j − b1b j+1, . . . , c2 = bnb2 − b1bn−1;
dn = c2

n − c2
2, . . . , dn− j = cncn− j − c2c j+2, . . . , d3 = cnc3 − c2cn−1;

and so on until we are left with only three elements of the type

sn = r2
n − r2

n−3, sn−1 = rnrn−1 − rn−3rn−2, sn−2 = rnrn−2 − rn−3rn−1.

The Jury conditions (necessary and sufficient) which ensure that the roots of the poly-
nomial P(λ) in (B.4) all have magnitudes less than 1 are:

P(1) > 0, (−1)n P(−1) > 0,

| an | > 1, | bn | > | b1 |,
| cn | > | c2 |, | dn | > | d3 |, . . . , | sn || sn−2 |.

(B.7)

Appendix B.2 Descartes’ Rule of Signs

Consider the polynomial (B.4), and, as before, we take without loss of generality an > 0.
Let N be the number of sign changes in the sequence of coefficients {an, an−1, . . . , a0},
ignoring any which are zero. Descartes’ Rule of Signs says that there are at most N roots
of (B.4), which are real and positive, and further, that there are N , N − 2 or N − 4, . . .

real positive roots. By setting ω = −λ and again applying the rule, information is
obtained about the possible real negative roots. Together these often give invaluable in-
formation on the sign of all the roots, which from a stability point of view is usually all
we require.

As an example consider

λ3 + a2λ
2 − a1λ + a0 = 0, ai > 0 for all i = 0, 1, 2. (B.8)

There are two sign changes in the sequence of coefficients, and so there are either two
or zero real positive roots. If we now set λ = −ω, the equation becomes

ω3 − a2ω
2 − a1ω − a0 = 0,
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which has one change of sign in the sequence, and so there is at most one real positive
root ω. This means there is exactly one negative root λ of (B.8).

Appendix B.3 Roots of a General Cubic Polynomial

Sometimes it is helpful to have the actual roots of the characteristic polynomial, however
complicated they may be. Although it is possible to find these for polynomials higher
than order three, the complexity is usually not worth the effort. The roots of a cubic are
probably the most complicated that we would ever wish to have; simple derivations of
these have been given by Miura (1980) and Namias (1985). Table B.1 gives the explicit
forms of the roots of a cubic.



Table B.1. Explicit roots of the cubic polynomial p(λ) = λ3 + Aλ2 + Bλ + C , with A, B and C real.

λ3 + Aλ2 + Bλ + C = 0, A ≡ 3a, B ≡ 3b, α ≡ a2 − b, β ≡ 2a3 − 3ab + C

α > 0 β = 0 λ1 = −a
λ2 = (3α)1/2 − a
λ3 = −(3α)1/2 − a

|β | ≤ 2α3/2 λ1 = 2α1/2 sin φ − a φ = (1/3) sin−1{β/[2α3/2]}
λ2 = −2α1/2 sin(π/3 + φ) − a −π/6 ≤ φ ≤ π/6
λ3 = 2α1/2 sin(π/3 − φ) − a

β > 2α3/2 λ1 = −2α1/2 cosh ψ − a ψ = (1/3) cosh−1{|β |/[2α3/2]}
λ2 = −α1/2 cosh ψ − a + i(3α)1/2 sinh ψ

β < −2α3/2 λ1 = −2α1/2 cosh ψ − a
λ2 = −α1/2 cosh ψ − a + i(3α)1/2 sinh ψ

λ3 = −α1/2 cosh ψ − a − i(3α)1/2 sinh ψ

α = 0 −∞ < β < ∞ λ1 = −β1/3 − a
λ2 = β1/3/2 − a + 3iβ2/3/4
λ3 = β1/3/2 − a − 3iβ2/3/4

α < 0 −∞ < β < ∞ λ1 = −2(−α)1/2 sinh θ − a θ = (1/3) sinh−1{β/[2(−α)3/2]}
λ2 = (−α)1/2 sinh θ − a + i(−3α)1/2 cosh θ

λ3 = (−α)1/2 sinh θ − a − i(−3α)1/2 cosh θ
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