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The predictability of the physical arrangement of plants, at whatever scale it is
viewed, is referred to as their spatial pattern. Spatial pattern is a crucial aspect of veg-
etation which has important implications not only for the plants themselves, but also
for other organisms which interact with plants, such as herbivores and pollinators, or
those animals for which plants provide a habitat. This book describes and evaluates
methods for detecting and quantifying a variety of characteristics of spatial pattern.
As well as discussing the concepts on which these techniques are based, examples
from real field studies and worked examples are included, which, together with
numerous line figures, help guide the reader through the text. The result is a book
that will be of value to graduate students and research workers in the fields of vegeta-
tion science, conservation biology and applied ecology.
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Preface

This book is designed to help the reader understand the concepts and
methods of spatial pattern analysis. The book is divided into three sec-
tions of three Chapters each.The first three Chapters lay the foundations
of the material by discussing the basic concepts, considerations for the
acquisition of data, and the basic methods for a single species in one
dimension, concentrating on data from strings of contiguous quadrats.
The middle third of the book describes extensions of the basic methods
to the analysis of two species, of multiple species and of data used to
investigate two-dimensional patterns. The last three Chapters describe
different aspects of spatial pattern analysis: point pattern data, pattern on
environmental gradients and future extensions of pattern analysis.

The book is written in the first person plural throughout, not as an
affectation,but because the material presented here is not the work of just
one person, but of a whole group of people who have contributed to the
overall research program. That group includes students and associates
whose names will be obvious from the citations: Dan MacIsaac, Dave
Blundon,Elizabeth John,Maria Zbigniewicz,Rob Powell,Colin Young,
and so on. Other students and researchers have allowed us to use their
data for illustrative purposes and these include John Stadt and Michael
Hunt Jones.

The book does not present the material with a thoroughly consistent
notation. This was a deliberate decision, based on the reasoning that a
book-wide notation would be forced to be elaborate and thus eventually
clumsy. Therefore, it is possible that the variable ‘x’ can take on different
meanings in different parts of the book. The meanings should be clear
within their contexts.

There is a certain amount of redundancy in the material; some
equations, for instance, appear more than once. Again, the choice was



deliberate and based on convenience, to reduce the amount of flipping
between pages and Chapters to find the required information.

This volume represents work that is very much ‘in progress’. It
describes material in a rapidly developing field of research.There is much
contained here that really only came to light in the writing of the book
itself, and there is obviously much more to be discovered. The emphasis
in the description is methodological, in part because that aspect of the
subject has the greatest need for exposition in order to encourage
researchers to tackle the subject and, in part, because too few studies have
been done of many spatial pattern phenomena to allow satisfactory
generalizations to be made.Because spatial pattern analysis has close links
with other areas of plant ecology, the book could easily have been
expanded to include more plant community ecology,more on theories in
vegetation science, more on multivariate analysis techniques, etc. The
effort was made, however, to concentrate very much on the main topic,
but without ignoring the important connections to other areas.

We gratefully acknowledge the technical assistance of Megan Lappi,
Nadia Sas, Elaine Gordon, Jiangfen Zhang, Sara Suddaby, Dianne Wong
and Marko Mah. P. A. Keddy,N.C. Kenkel, C. J. Krebs, R. Turkington, J.
Birks, J.A.Wiens, and an anonymous reviewer provided helpful criticism
and suggestions on earlier versions of the Chapters.
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1 · Concepts of spatial pattern

Introduction
The natural world is a patchy place. The patchiness manifests itself in
many ways and over a wide range of scales, from the arrangement of con-
tinents and oceans to the alternation of the solid grains of beach sand and
the spaces between them. Plants in the natural world also are patchy at a
great range of scales from the global distributions of biomes to the
arrangements of trichomes and stomata on the surface of a leaf.When the
patchiness has a certain amount of predictability so that it can be
described quantitatively, we call it spatial pattern. Although the concept
of pattern is often associated with nonrandomness, in some cases we will
want to allow the possibility of random pattern, because true randomness
does permit a certain amount of prediction. As an illustration of spatial
pattern, Figure 1.1 presents an example from the literature, a map of the
patches of Calluna vulgaris (heather) in a 10m �20m plot in central
Sweden (redrawn from Diggle 1981). A transect through the vegetation,
such as the one illustrated in the lower part of the figure, reveals a fairly
regular alternation of patches of high density and gaps between them.

Pattern and process
The impetus to study spatial pattern in plant communities comes from
the view that in order to understand plant communities, we should
describe and quantify their characteristics, both spatial and temporal, and
then relate these observed characteristics to underlying processes such as
establishment, growth, competition, reproduction, senescence, and
mortality. A large proportion of the studies described in this book have
been profoundly influenced by A. S. Watt and his famous paper ‘Pattern
and process in the plant community’ (1947). The influence of Watt is the
view of the community as a mosaic of phases at different stages in a



similar cycle of events, driven by the same processes. The spatial pattern
of this mosaic can be used to generate hypotheses about the underlying
processes or to suggest the mechanisms that have given rise to it.
Whittaker and Levin (1977) expanded the mosaic concept by relating
intracommunity patterns to microsite differences and successional
mosaics to the responses following disturbance. In a world in which most
vegetation systems have not been studied in any detail, the description
and analysis of spatial relationships within them is a first step to under-
standing them.

A central point of discussion in plant ecology has, then, been the rela-
tionship between the processes that occur in vegetation such as growth,
competition, or senescence, and the spatial pattern that is observed (Watt
1947;Lepš 1990a).A similar discussion has taken place in the broader dis-
cipline of ecology in which ‘pattern’ is interpreted not only spatially but
in reference to all the observable characteristics of a system; however, the
question is the same, i.e., to what extent can process be inferred from
pattern? (Cale et al. 1989).

Although early studies of spatial pattern in plant communities were
based on the belief that past process could be deduced from pattern, it is
now generally agreed that it cannot, strictly speaking, be done (Shipley &
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Figure 1.1 An example of spatial pattern: the upper part is a map of patches
(shaded) of Calluna vulgaris (heather) in a 10m�20m plot.The patches of high
density are stippled.The lower part is the transect through the map as indicated; it
reveals a more or less regular alternation of patches of high density and gaps between
them (redrawn from Diggle 1981).



Keddy 1987; Lepš 1990a). Because spatial pattern is the result of past
process, however, it can be used to test some hypotheses about process,
even if it does not provide complete knowledge.For example, a change in
the arrangement of individual plants over time that includes an increase
in the distance between surviving individuals is not compatible with pos-
itive interactions among them (Lepš 1990a). In addition, the clear and
objective description of spatial pattern is an important part of generating
hypotheses about how controlling biological or environmental processes
work (Ford & Renshaw 1984).

Spatial pattern is a crucial aspect of natural vegetation because it affects
future processes, both of the plants themselves and of a range of other
organisms with which they interact. The spatial scale at which pattern is
seen to affect process goes from the neighborhood of an individual
Arabidopsis thaliana plant, a few centimeters or less (Silander & Pacala
1985), to the scale of landscapes, where it may affect biodiversity and
ecosystem functions (Turner 1989). Natural vegetation is sometimes
viewed as a mosaic of patches of different kinds (cf. Burton & Bazzaz
1995) and the size and spacing of those patches are important character-
istics of the vegetation.

In general, vegetation provides animals with their food, directly or
indirectly, and also, to a large extent, the physical environment in which
their activities take place.There is increasing awareness of the importance
of evaluating and quantifying habitat complexity or structure in studies of
how mobile organisms interact with their environment (McCoy & Bell
1991). Doak et al. (1992) summarize the findings of many researchers
looking at the interaction of plant patches with animals, showing that
patchiness, patch size, density, and isolation can affect herbivores, their
predators, parasitoids, pollination, population density and so on in a
variety of ways. For example, Wiens & Milne (1989) found that Eleodes
beetles in a semi-arid grassland respond to the patch structure of their
habitat in a nonrandom fashion, avoiding areas with a spatial structure of
intermediate complexity. Usher et al. (1982) found that the distribution
of plants in an Antarctic moss-turf community had important effects on
spatial distribution in communities of soil arthropods. It is clear that, in
many systems, the spatial pattern of vegetation is an important part of
habitat structure.

Given an average vegetation density, animals of different sizes and
mobilities will be affected differently depending on whether that density
arises from small gaps alternating with small patches, or large gaps alter-
nating with large patches.This kind of knowledge in one particular range
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of spatial scales is central to management decisions in forestry. Different
organisms are helped or harmed by the differences between single tree
cutting, the cutting of small patches, or large-scale clearcutting (cf.
Kimmins 1992).

Spatial pattern also has an effect on plant–herbivore interactions. A
study of the biennial herb Pastinaca sativa and its specialized herbivore
Depressaria pastinacella found that plants in patches were more susceptible
to attack than isolated plants of the same size (Thompson 1978). In the
forests of northern Ontario, there are periodic outbreaks of tent caterpil-
lar (Malacosoma disstria) which feed principally on trembling aspen
(Populus tremuloides); fragmentation of the forested areas increases the
duration of the caterpillar population highs (Roland 1993). Kareiva
(1987) found that increased host plant patchiness (Solidago canadensis)
caused less stable dynamics in populations of its herbivore (the aphid
Uroleucon nigrotuberculatum) because of the search and aggregation behav-
ior of the predator at the next trophic level (the ladybird Coccinella septem-
punctata).Kareiva (1985) studied the effects of host plant patch size on flea
beetle populations and found that patch size affected processes such as
emigration rate to the extent that there may be a critical patch-size below
which herbivore populations cannot be maintained. He also found that
the herbivore’s discrimination between patch quality (‘lush’ vs. ‘stunted’)
depended on the distance between patches (Kareiva 1982). Colonization
of neighboring patches will often be influenced by the distance between
the patches. Bach (1984, 1988a,b) also found that patch size affected her-
bivore population densities which responded nonlinearly with interme-
diate-sized patches having the highest density. It is not only patch size,but
also patch density that has an effect (directly or indirectly) on herbivores
(Reeve 1987; Cappuccino 1988). Other studies (e.g., Sih & Baltus 1987;
Sowig 1989) have shown that patch size affects flower visits and pollina-
tion by different species of bee. The influence was sufficiently strong in
catnip (Nepeta cataria L.) that it affected seed set, which was lower in
smaller patches.

The general conclusion from these studies is that patch size, patch
spacing, and patch density, all of which are elements of the plants’ spatial
pattern, have important influences on their herbivores (and the herbi-
vores’ predators) and pollinators. It is probably equally true that these
characteristics of patchiness affect the plants and their interactions also,
although fewer studies have been done with that focus. In her study of
squash plants and their herbivores, Bach (1988a,b) found that patch size
did affect both the growth and the longevity of the plants themselves.
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Because the plants of one species can have a positive or negative effect
on the occurrence and spatial arrangement of another species, one
important effect of spatial pattern is its affect on other plants. It is well
known that gaps in a forest canopy are very important for the establish-
ment of new individuals or the release of suppressed saplings (Platt &
Strong 1989; Leemans 1990; among many). The spatial pattern in one
group of plants may affect the pattern of another group; for instance,
Shmida & Whittaker (1981) found that the spatial arrangement of shrubs
in California shrub communities had a strong effect on the herb species,
with some species being found primarily under the shrubs’ canopies and
others found mainly in the openings between. Maubon et al. (1995)
describe a dynamic interacting mosaic of bilberry (Vaccinium myrtillus)
and spruce (Picea abies) in the Alps, in which the established bilberry
makes soil conditions unfavorable for spruce recruitment and the spruce
trees make conditions less favorable for the bilberry by shading.

In summary, the spatial pattern of plants has important effects on the
interactions between plants, between plants and other organisms such as
herbivores, and between other organisms such as herbivores and their
predators. The impact of the spatial pattern of the plants may be felt
directly, as in the provision of biomass, or indirectly through its
modification of microclimates. We should probably expand our list of
organisms affected to include mycorrhizae and other fungi, decomposers
and detritivores, and a variety of microorganisms, but little research has
been done on how these groups are affected by the spatial pattern of
plants.

In some kinds of vegetation, the spatial pattern is very obvious. In
arctic and alpine regions, ‘patterned ground’ of geometric shapes of
sorted stones is a common phenomenon resulting from frost action and it
has clear effects on the spatial pattern of the vegetation (Washburn 1980).
Areas that are no longer under climatic conditions that form these pat-
terns may have ‘fossil’ patterned ground which continues to affect
vegetation (Embleton & King 1975). The action of freezing and thawing
may also contribute to the development of hummocks,of step features on
sloping ground, solifluction lobes and so on (Washburn 1980), all of
which may affect spatial pattern of plants. In boreal regions, a common
feature at a somewhat larger scale is the patterned fen or string bog in
which strings of slightly higher elevation alternate with pools or flarks
(Glaser et al. 1981).

In other cases, the spatial pattern may be more subtle and detectable
only by analysis; for example, in areas of Agrostis/Festuca sward chosen for
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their visual homogeneity, it was found that several of the important
species had marked spatial pattern at the same scale (Kershaw 1958,
1959a,b). In a study of the banner-tailed kangaroo rat (Dipodomys
spectabilis),Amarasekare (1994) found that its habitat could not be consid-
ered as consisting of discrete patches, some occupied and some not, but
that the differences between occupied areas and the surrounding unoc-
cupied habitat were quantitative and could be detected statistically. Even
tended lawns, which may look uniform, have spatial pattern in the form
of fine-scale community structure (Watkins & Wilson 1992).

Causes of spatial pattern and its development
It will become clear from the examples described in this book that the
arrangement of plants in natural vegetation is usually not random and in
fact there are usually several scales of spatial pattern present. This fact
alone suggests that there is a range of factors that cause spatial pattern, and
these can be classified into three broad categories: (1) morphological
factors, based on the size and growth pattern of the plants; (2) environ-
mental factors that are themselves spatially heterogeneous; and (3)
phytosociological factors that permit the spatial arrangement of one
species to affect the occurrence of plants of another species through their
interaction (cf.Kershaw 1964,Chapter 7).

Some of the classic examples of spatial pattern determined by
morphological factors, as described in Kershaw (1964), are from clonally
growing plants, such as Eriophorum angustifolium and Trifolium repens, in
which the first three scales of pattern are related to first- and second-
order branching and to the entire stolon or rhizome system. In a study of
pattern development on proglacial deposits in the Canadian Rockies, we
found that the smallest scale of pattern was related to the sizes of the clon-
ally growing patches of Dryas drummondii (Dale & MacIsaac 1989).Mahdi
& Law (1987) concluded that the spatial organization of a limestone
grassland community was probably the result of the pattern of clonal
growth of the individual species. Kershaw (1964) provides other exam-
ples, but it must be remembered that while morphology may determine
the size of a patch for one particular scale of pattern, the scale is also
affected by the sizes of the gaps between them,which may be determined
by other factors.

A large number of studies have found a relationship between the
spatial pattern of plants and spatial heterogeneity in an (abiotic) environ-
mental factor. Such factors include soil depth (Kershaw 1959a,b), topo-
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graphy (Greig-Smith 1961a), soil nutrients (Galiano 1985), positions of
subsurface rocks (Usher 1983), and so on.Maslov (1989) concluded from
a study of forest plants in Russia that environmental heterogeneity was
the major factor determining pattern for vascular plants; interestingly,
however, that did not appear to be the case for bryophytes.

We have already mentioned that a common feature of arctic and alpine
landscapes is what is called ‘patterned ground’.Washburn (1980) provides
an interesting and thorough discussion of this phenomenon, as well as
some excellent pictures. Patterned ground actually takes a variety of
forms, including circles, polygons and stripes and these can be classified
further as sorted or nonsorted depending on whether there is a trend in
particle size across the feature or whether particle size is more or less
uniform. Because they result from frost action, the pattern elements can
affect where plants grow. For instance, in a study of the development of
sorted polygons in Norway, Ballantyne & Matthews (1983) found that
plants colonized only the margins of the polygons first, where the sub-
strate was more stable. Heilbronn & Walton (1984) studied striped
ground on the island of South Georgia and found that colonization by
grass plants was more successful on the unsorted parts of the pattern.
They also suggest that the presence of the plants can contribute to the
persistence of step features on sloping patterned ground.

Polygonal features can develop also on soils and mud as a result of
desiccation (Termier & Termier 1963). For instance, Harris (1990)
describes polygons on the saline soil of the Slims River delta at Kluane in
the Yukon and illustrates the fact that the vegetation tends to grow along
the margins of the polygon cracks. Termier & Termier (1963) suggest
that the polygonal markings on some sandstones are the result of similar
processes.

It is clear from many studies that the variability of environmental
factors will have a direct effect on the growth and spatial pattern of plants.
Sources of underlying spatial topographical heterogeneity that may be
reflected in spatial pattern in vegetation include features such as pillow
lava, the developing cracks and grikes in a limestone pavement; eskers,
moraines, and striations resulting from past glaciation; drainage channels,
gullies, meanders and braided streams; ancient dunes, beach fronts and
reef ridges. The list is too long to permit a complete listing of examples
and so we will mention just one from the literature: Whittaker & Levin
(1977) describe the climax pattern on coastal ridges in California which
have redwood (Sequoia sempervirens) forests on the terrace slopes, pigmy
cyprus (Cupressus pygmaea) in the centers of the terraces and bishop pine
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(Pinus muricata) and rhododendron (Rhododendron macrophyllum) on the
old beach deposits on the terrace crests (their Figure 5). The spatial
pattern observed in the vegetation is the result of the interaction of the
topography, the processes of soil formation and the vegetation itself.

Another category of environmental factor that will cause spatial
pattern in vegetation is disturbance. Crawley (1986) comments that a
great many of the spatial patterns observed in plant communities reflect
recovery from disturbances that occurred at different times in the past.At
the landscape level, potentially widespread disturbances such as fire can
have an obvious effect on spatial organization (Turner & Bratton 1987).
Fire can also have a much more local effect in maintaining the spacing of
savanna trees or in segregating tree cohorts of different ages (Cooper
1961).At a smaller scale, the gaps left by the falling of individual trees can
have a profound effect on the growth and regeneration of the vegetation,
causing spatial pattern (Kanzaki 1984; Veblen 1992 and references
therein).

The importance of disturbance and regeneration in vegetation has
been generalized into the ‘mosaic-cycle’ concept of ecosystems
(Remmert 1991). In this view, vegetation is a mosaic of patches, with
different patches being at different stages of a temporal cycle of aging,
decay or destruction and rejuvenation. There is an obvious parallel with
Watt’s (1947) description of building, mature and degenerate phases of
cyclic succession, but the difference is that Remmert (1991) suggests that
the mosaic cycle model is valid for most ecosystems, if not all.

As a particular example of a kind of cyclic process, Sprugel (1976)
describes the phenomenon of wave regeneration in high-altitude fir
forests in the Northeastern U.S.A. Each wave consists of a strip of old
dying trees under which there is vigorous regeneration with a progres-
sion of trees of increasing age and size until the next region of mature and
dying trees is reached. The waves are on the order of a hundred meters
across and move in the same direction as the prevailing wind. As mature
upwind trees die, the trees immediately leeward are exposed more
directly to the effects of the wind which increases mortality. As the
canopy thins and opens, recruitment can then take place.

Animals also are agents of disturbance in a variety of ways, including
trampling and browsing. Even more obvious effects on patchiness can be
produced by digging animals such as moles, or from the burrows of her-
bivores such as rabbits, gophers, or ground squirrels (Peart 1989). Similar
patchiness may arise from the effects of termite mounds (Mordelet et al.
1996),or localized dung or urine deposition.Umbanhowar (1992) exam-
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ined four patch types in northern mixed prairie (ant nests,mammal earth
mounds, bison wallows and dry prairie potholes), and found that the
different patch types supported different groups of plant species. In a
similar system, Steinauer & Collins (1995) found that the small-scale
patch structure was significantly affected by urine deposition, which
increased or decreased species diversity within the patch.

The interactions of plants may also give rise to spatial pattern in
natural communities. For example, Kenkel (1988a) attributes the local
highly regular dispersion of trees in an even-aged pure stand of jack pine
(Pinus banksiana) to competition for soil resources and light. In popula-
tions of knapweed, Centaurea diffusa, which is monocarpic, Powell (1990)
found that spatial pattern is created by three processes: recruitment,
rosette mortality (which increases dispersion), and post-reproductive
mortality (which decreases dispersion). Intraspecific competition may
have a secondary effect on other species: in studying the spatial pattern in
a mire, Kenkel (1988b) found that the hummock-hollow complex arises
from the accumulation of Sphagnum species about the branches of the
shrub Chamaedaphne calyculata which creates the hummocks, and there-
fore the spacing of the hummocks reflects past intraspecific competition
in Chamaedaphne.

Interspecific competition may also be a force in determining spatial
pattern; for instance, the exclusion of Sphagnum fuscum to dryer
hummock sites by other Sphagnum species (Rydin 1986; Gignac & Vitt
1990). In addition to negative effects, plants can drive spatial pattern by
positive interaction, such as the provision of more favorable sites for
recruitment, a phenomenon referred to as nucleation when it occurs
during primary succession (Yarranton & Morrison 1974; Day & Wright
1989; Blundon et al. 1993). For instance, in primary succession in the
Canadian Rockies, we found that at one site, Hedysarum mackenzii acts as
a center for further colonization whereas at a second site, 200km away, it
is Dryas drummondii that is a center for nucleation (Blundon et al. 1993). It
is no coincidence that both species have the ability to fix nitrogen, a lim-
iting resource under those conditions, and the input of nitrogen may be
an important factor in the nucleation we observed.

The way in which pattern develops depends very much on the factors
that are creating the pattern. It is easy to imagine spatial pattern becom-
ing more pronounced with time as small differences in substrate structure
or chemistry are expressed by increasing differences in the plants that
grow on it, or as the levels of soil nutrients themselves change in response
to successional development (cf. Symonides & Wierzchowska 1990). A
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more extreme case is the development of strong spatial pattern on a sub-
strate that was originally relatively homogeneous, such as the develop-
ment of strings and flarks (pools) in a patterned wetland, driven by the
interaction between the biological properties of the plants and the phys-
ical properties of the peat they create and the flow of water (Glaser et al.
1981; Swanson & Grigal 1988). In that particular instance, the pattern
that is produced is strongly anisotropic with the lengths of the strings
running across the direction of water flow.

Interestingly, arid regions can have somewhat similar landscape fea-
tures with bands of vegetation alternating with stripes of bare ground.
This phenomenon is known from Australia, Mexico, and several regions
of Africa, in some parts of which it has the picturesque name of brousse
tigrée (Figure 1.2). It occurs on gently sloping sites where the sheet run-
off of water is slowed by the upslope edge of the vegetation stripe where
the resulting better moisture regime facilitates plant establishment. The
advantage of the upslope edge is mirrored by the disadvantage of water
shortage and drought at the downslope edge and the stripes migrate up
the slope (White 1971; Montaña 1992; Thiéry et al. 1995). It seems
logical to assume that the spacing between the stripes is determined by
the balance between the amount of precipitation received and the
amount of moisture needed for successful regeneration. The parallel
between this system of vegetation stripes and the stripes of wave regener-
ating fir forests (mentioned above) is striking, with abiotic stress being an
important factor at the trailing edge of the stripe in both systems.

In many cases, such as those just described, the development or
intensification of spatial pattern in plant communities is the result of what
Wilson & Agnew (1992) describe as ‘positive-feedback switches’ in
vegetation. These are mechanisms by which small differences between
patches are magnified by the interaction of the plants with particular
environmental factors. The list of environmental factors that can be
involved is long and includes water, nutrients, light, fire, allelopathy, and
herbivores.The switches can act temporally to accelerate or delay change
and they can act spatially to produce sharp vegetation boundaries or
stable mosaics of distinct patches in a previously more uniform environ-
ment (Wilson & Agnew 1992). Since these mosaics can be at a range of
scales, from the individual plant to the landscape, these switches can play
an important role in the development of spatial pattern.

It is also easy to imagine a situation in which initial differences due to
substrate heterogeneity are blurred and eventually erased as the biotic
factors of the vegetation itself come to dominate the system.Sterling et al.

10 · Concepts of spatial pattern



Causes of spatial pattern and its development · 11

Figure 1.2 Aerial view of brousse tigrée in an arid landscape in Niger (drawn from
part of Figure 1 in Thiéry et al. 1995).The vegetation is dark and bare areas between
are light.The area shown is about 1km�1.3km.



(1984) studied pastures of different ages since plowing.After 7 years, there
was a strong relationship between the vegetation and the micro-
topography, with some species tending to be found in small drainage
channels and others on the higher and drier parts. On older sites (25–30
years), however, that relationship had vanished and the plants did not
seem to respond to small differences in microtopography.

Some ecologists have suggested that spatial pattern follows a predict-
able development sequence during succession. Kershaw (1959a,b) and
Greig-Smith (1961a) proposed that, in the initial stages of succession,
pattern should merely become more intense at the same scales, as the
density in patches increases. With the plants continuing to grow and col-
onization proceeding, some scales of pattern should be lost as the patches
coalesce (Figure 1.3).New larger scales of pattern may develop as patches
coalesce,eliminating small gaps,or as patches die,making larger gaps.This
view of spatial pattern seems to suggest that in climax vegetation, any
pattern that persists is irregular and low in intensity. In our studies of
spatial pattern development during primary succession, however, we did
not find that the pattern became more irregular (Dale & MacIsaac 1989;
Dale & Blundon 1990 ).

Concepts of spatial pattern
In the first parts of this chapter, we have discussed the importance of
spatial pattern and its relationship to population and community pro-
cesses. Because the techniques and research described in this book are
based on a set of related concepts,we will now describe and discuss those
concepts in greater detail.

Spatial pattern

Spatial pattern is the arrangement of points, of plants or other organisms,
or of patches of organisms in space which exhibits a certain amount of
predictability. In many instances, this predictability will take the form of
periodicity of some kind, such as groves of trees alternating with open
grasslands across a landscape.We might want to insist that spatial pattern is
nonrandomness in spatial arrangement, which then permits prediction,
but some authors allow the possibility of random pattern (Ludwig &
Reynolds 1988).Of course, true randomness does allow a certain amount
of predictability, even if it is probabilistic. For example, if points are inde-
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pendently and randomly placed in the plane, we can predict that the
number of points in a set of samples of fixed area will follow, approxi-
mately, a Poisson frequency distribution.

For most of the following discussion of spatial pattern, it will be
assumed that pattern exists mainly or essentially in two dimensions so that
the region under study can be treated as a plane surface.In many instances,
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Figure 1.3 On the left, small patches occur in clusters and the transect shown
would detect two scales of pattern.On the right, the patches have grown so that the
only gaps are those between the original clusters.The transect will only detect the
larger scale of pattern.As patches coalesce, the smaller scale of pattern is lost.As in
Figure 1.1, the shaded area shows where the transects intersect the patches.



however,the two-dimensional pattern may be studied in only one dimen-
sion at a time. In other instances, it may be necessary to consider spatial
pattern in three dimensions; for example, in studies of the patchiness of
phytoplankton in a body of water or of the arrangement of branches in a
forest canopy. It is even possible to consider pattern in higher dimensions,
such as the four-dimensional pattern of leaf phenology (three spatial
dimensions and time as the fourth). Most of the discussion and examples
here will be from phenomena studied in one or two dimensions, but it is
possible that the objects themselves have noninteger dimensionality
which may be better described by the concepts of fractal geometry
described below (Palmer 1988; Sugihara & May 1990; Kenkel & Walker
1993).

The spatial arrangement of plants can be treated in two different
ways. The first treatment considers the mapped positions of plants and
deals with only two elements, the continuous background of the plane
itself and dimensionless points representing the plants. The second
approach is to treat the plane as a mosaic of discrete nonoverlapping
continuous domains, each of which is classified as belonging to a partic-
ular type or phase (Matérn 1979). The two treatments may be very
closely related. One simple relationship is to begin with the mapped
positions of points and then to associate with each point that region of
the plane that is closer to it than to any other mapped point (Figure 1.4).
The result of this procedure is referred to variously as a Dirichlet
tessellation of the plane, the set of Voronoi polygons, or Thiessen poly-
gons. (A tessellation is a mosaic made up of polygons; one in which all
the polygons are triangles is called a triangulation.) Okabe et al. (1992)
provide an extensive and useful treatment of the theory and application
of Voronoi tessellations.

The simplest form of spatial pattern would be the alternation of
regions in which the density of a particular species was high (patches)
with regions of low density (gaps). In point patterns, it may not be easy to
delimit the regions of high or low density. In the mosaic treatment of
pattern, a simple patch–gap pattern can be thought of as a two-phase
mosaic, in which patches alternate with gaps. It is not necessary for a
region that is recognized as a patch to be internally homogeneous; in
fact, in real situations, we do not expect it to be, but recognize the
possibility of a hierarchical mosaic of patches within patches over a range
of scales (cf. Kotliar & Wiens 1990). For instance, many textbooks (e.g.
Ricklefs 1990; Silvertown & Lovett Doust 1993) include the familiar
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figure of the spatial distribution of Clematis fremontii in Missouri, which
shows its geographical range, its distribution within a region, a cluster of
glades within a region, patches within a glade, and individual plants
within a patch.

If more than one species or kind of plant is being considered, it is
obviously possible to have a mosaic for three or more phases. For
example, if the joint pattern of two species was being investigated,
regions might be classified into four categories: both species at high
density, species 1 high and species 2 low, species 1 low and species 2 high,
and both species at low density.When many species are being considered
simultaneously, this simplistic approach may not be appropriate, as the
number of phases would rise rapidly with the number of species, and a
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Figure 1.4 One relationship between a point pattern and a tessellation of the plane:
Dirichlet domains associated with points. A point’s domain is all parts of the plane
closer to it than to any other point.



different approach to summarizing multispecies density will be necessary
(Chapter 5).

Scale

The scale of spatial pattern in a two-phase mosaic can be defined as the
average distance between the centers of adjacent dissimilar phases. An
equivalent definition is to refer to half the average distance between the
centers of similar phases that are separated by a single domain of the alter-
nate phase. It is possible for spatial pattern to exhibit more than one scale
even in a two-phase mosaic, for example, when the distribution of dis-
tances between the centers of domains of the same phase is obviously
bimodal, as part of Figure 1.3 illustrates.

For a mosaic of more than two phases, the second definition of scale
needs to be modified slightly to refer to half the average distance between
the centers of domains of the same phase between which no other
domains of the same phase occur. Based on this definition, it is clearly
possible for different phases in the same mosaic to have different scales
(Figure 1.5).

Intensity

Another property of spatial pattern that needs to be considered is the
pattern’s intensity, which in simple two-phase pattern is the degree of
contrast between the dense and sparse areas. Dale & MacIsaac (1989)
define intensity as the difference in density between the gap phase and the
patch phase of such a pattern; if the gap phase has zero density and the
patches and gaps are the same size, the intensity will be the average density
in the patches.When the patch size is not equal to the gap size, the inten-
sity is the patch density that would give the observed variance in pattern
of the observed scale in which patch and gap size were equal.This concept
is illustrated in Figure 1.6.Other authors have a different concept of inten-
sity, defining it as a property that would remain constant under random
thinning (cf. Hill 1973; Pielou 1977a, p.182); that is, if half the plants in
each patch were removed at random, the resulting patch-gap pattern
would have the same intensity (Figure 1.7). Another way of saying the
same thing is to say that in those authors’ view, rare species can have pat-
terns as intense as those of common species.For the approach to the study
and analysis of spatial pattern that is presented here, however, it is most
straightforward to define intensity by reference to density differences.
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The concept of pattern intensity, as we have just defined it, will have
to be modified for multiphase or multispecies pattern, but we will
use the definition based on density difference as a basis (see Chapters 4
and 5).

Types of single-species pattern

In discussing single-species pattern, it is convenient to use a variety of
terms to describe its characteristics, particularly for artificial examples. If
the patches are of a constant size and the gaps are of a constant size, then
the pattern is referred to as regular; if the patches and/or gaps vary in size,
then the pattern is irregular. If the average patch size is equal to the
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Figure 1.5 Different phases in the mosaic have different scales of pattern.The two
darker phases are less common and have larger scales of pattern (imagine this part of
the mosaic repeated in all directions).



average gap size, then the pattern is balanced; otherwise, it is unbalanced.
If the scale of the pattern is more or less constant along the length of the
transect, the pattern can be said to be stationary, with the alternative
being pattern with a trend in scale. In real data, pattern may be more or
less stationary over short distances, but display trends when greater dis-
tances are considered (Matérn 1986). It is also possible for sections of
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Figure 1.6 Intensity.Here are four graphs of density, x, as a function of distance
along a transect, t.The top pattern has the greatest intensity of the four which all
have the same scale. In the second graph, intensity is less because the density in the
occupied quadrats is less. In the third, intensity is less because the patches are smaller
than the gaps and similarly in the fourth, because the gaps are smaller.



pattern to alternate with larger scale gaps or patches, resulting in an inter-
rupted pattern which essentially has two scales. These descriptions are
illustrated in Figure 1.8.

Dispersion

Dispersion is a concept closely related to that of spatial pattern, and refers
specifically to the arrangement of points in a plane. Pielou (1977a) notes
an important distinction: ‘dispersal’ is the process such as the movement
of individual organisms, whereas ‘dispersion’ is the spatial arrangement
that results.

The null model of dispersion assumes that the points occur inde-
pendently of each other, so that all regions of the same size have the same
probability of containing a given number of points (Figure 1.9a). This
kind of dispersion is usually referred to as a random pattern, or because
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Figure 1.7 Two maps representing stems of plants that grow in stripes.The lower
part of the Figure is derived from the upper part by thinning. In our definition of
intensity, thinning reduces the intensity of the pattern.



the number of points in a given area follows the Poisson distribution, as a
‘Poisson forest’ (Keuls et al. 1963; cf. Upton & Fingleton 1985). This dis-
persion is also referred to as complete spatial randomness (CSR, Diggle
1983).

There are two main alternatives to the null model. The first includes
the cases in which the points are clumped or underdispersed, such that
the presence of one point increases the probability of finding another in
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Figure 1.8 Descriptors of pattern.These graphs show density as a function of
distance along a transect.The top one shows regular balanced pattern in which the
patch and gap sizes are constant.The second is an irregular pattern in which patch
and gap sizes are variable but may have the same average.The third is an unbalanced
pattern in which the patch and gap sizes are consistently unequal.The fourth is an
interrupted pattern in which several patch-gap alternations are separated by long
gaps; such an arrangement gives rise to two scales of pattern.



its vicinity (Figure 1.9b).This dispersion pattern is also referred to as con-
tagious and sometimes as ‘aggregated’ but it is better if terms such as
aggregated and segregated are reserved for the description of the relation-
ship between plants of two different kinds (see below). The second alter-
native includes those cases in which the points are overdispersed, such
that a point’s presence reduces the probability of finding another nearby
(Figure 1.9c). Some texts refer to the overdispersed pattern as ‘regular’,
but that term has connotations of the points being arranged in a geo-
metric lattice of some kind, and should be reserved for that situation.

All three patterns of dispersion can be observed in real examples, and a
range of causal mechanisms can be invoked. Because of the variety of
interactions between organisms, we do not expect their positions to be
truly independent of each other,but it is possible that their dispersion can
appear to be indistinguishable from the random dispersion (Skellam
1952; Grieg-Smith 1979). Clumped patterns can result from environ-
mental heterogeneity so that organisms of the same species are found
close together in areas of favorable conditions. Many biological processes
such as the vegetative production of ramets will lead to clumped patterns
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Figure 1.9 Dispersion. a Random, in which the points occur in the plane
independently of each other. b Clumped, the presence of one point increases the
probability of finding another nearby. c Overdispersed, the presence of one point
decreases the probability of finding another nearby.
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and some inhibition processes such as competition may lead to the over-
dispersion of positions.

It is important to realize that the perception of the dispersion of plants
depends on scale; if only a single grove of trees is considered, they may
appear overdispersed (Figure 1.10, inner square), but when several are
considered, the plants are seen as being clumped (Figure 1.10, outer
square).

Spatial autocorrelation

When a plant population or community is sampled, the samples have a
spatial relationship with each other. To a certain extent, samples that
are close to each other are more likely to be similar. For example, if
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Figure 1.10 The interaction of dispersion pattern and scale.The circles in the small
square seem overdispersed, but in the large square they appear clumped.



vegetation is sampled using a transect of small contiguous quadrats, adja-
cent quadrats are likely to be more similar than those at greater spacing.
This lack of independence is referred to as spatial autocorrelation because
the correlation occurs within the data set itself and arises because of
spatial relationships. One result of spatial autocorrelation is that statistical
tests performed give more apparently significant results than the data
actually justify because the number of truly independent observations is
smaller than the number used in the test (Legendre 1993; Thomson et al.
1996). It must be kept in mind, however, that it is the same lack of inde-
pendence that provides the spatial predictability that is the essential
characteristic of pattern. In spatial pattern, while the similarity of samples
at first decreases with distance, with greater distance similarity rises again
because the elements of the pattern are repeated. Under these circum-
stances, we can think of the scale of spatial pattern as the distance at
which similarity ceases to decrease with distance.

An interesting example of spatial autocorrelation in plant populations
comes from a competition experiment using the annual Kochia scoparia.
Franco & Harper (1988) planted the seedling along density gradients and
found that the plants on the outside of the arrays were the largest. These
largest individuals suppressed their immediate neighbors, allowing their
second-order neighbors to be larger than otherwise. Thus, the data’s
autocorrelation was positive for plants at even separations and negative at
odd separations.

Markov models

One approach to the spatial dependence in vegetation data is to consider
transects or strings of contiguous quadrats in which the presence or
absence of a species is noted.Such data can be treated as a sequences of 1’s
(presence) and 0’s (absence), and may be represented by a two-state (0 and
1) stochastic model. If there is no spatial dependence, each element of the
sequence is independent of those next to it, but spatial dependence may
make each element depend on the state of the m elements preceding it. If
the state of the element depends only on the m elements preceding it and
not on the entire history of the process, it is a Markov process of order m.
For example, in a Markov process of order 1, each element depends only
on the one immediately preceding, but is independent of all others. In
Chapter 5, we shall look at the order of Markov models appropriate for
the description of multispecies pattern.

Markov models of a different sort have been used in the study of the
spatial pattern of plants treated as points in the plane.The underlying idea
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is that if the plants are observed to be overdispersed, a simple explanation
is that each plant inhibits the establishment or success of other plants in its
immediate vicinity. The most direct way of modelling the situation
would be to have ‘hard’ inhibition such that no plant can occur within
some specified distance,�, of another plant (see Diggle 1983, section 4.8).
A more flexible approach is to have the probability of a plant existing at a
given point in the plane decline with the number of plants within radius
� of the point (Ripley & Kelly 1977).This approach can be treated with a
two-dimensional Markov model. Kenkel (1993) found that the spatial
pattern of the clonal herb Aralia nudicaulis fit such a Markov point-
process model very well. Point pattern models will be examined in
greater detail in Chapter 7.

This kind of two-dimensional Markov modelling is, in concept,
similar to the use of cellular automata to examine spatial processes. An
example of cellular automata would be a grid of cells, each of which can
exist at one of a number of discrete states. The state of a cell is defined by
rules that depend on the states of neighboring cells and, from starting
configuration, the rules are applied iteratively. What is of interest, in the
context of spatial pattern, is that starting from random configurations, the
governing rules can cause pattern to emerge from the randomness (see
Green 1990). The difference between cellular automata and Markov
models of grids is that the cellular automata rules are deterministic rather
than stochastic.Ratz (1995) used a probabilistic approach that was never-
theless based on the cellular automata approach to model the long-term
spatial patterns created by fire in a fire-dominated system such as the
boreal forest.

Association

The term ‘association’will not be used here to refer to a vegetation unit or
commonly occurring grouping of species, but rather to describe the ten-
dency of the plants of different species to be found in close proximity
more often than expected (positive association) or less often than
expected (negative association).Associations,positive or negative,can also
be classified according to their cause: ecological coincidence refers to
cases in which the plants of different species grow close together or far
apart because of similar or divergent ecological requirements or capabili-
ties. For instance, the lichens Rhizocarpon eupetraeoides and Umbilicaria
vellea are found together on alpine rock surfaces because they are both
tolerant of desiccation and temperature fluctuations but tend to inhabit
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steeply sloping surfaces perhaps because they are intolerant of snow cover;
they exhibit positive association at the scale of a boulder face (John 1989).
On the other hand, in the same community,Rhizocarpon superficiale and R.
bolanderi are negatively associated at the scale of a rock face because of
different microhabitat correlations (John & Dale 1989),with R.superficiale
tending to be found on the top edges of boulders because of its intoler-
ance of high temperatures (Coxson & Kershaw 1983.) At the scale of the
landscape, however, the two species are positively associated because they
both tend to be found on rockslides and other exposed rock surfaces, not
in forests or alpine meadows.Typha latifolia and Typha domingensis are pos-
itively associated at the scale of a lakeshore, but T. latifolia is excluded to
deeper water by its congener’s competition, so that the species are nega-
tively associated at the scale of neighboring plants (Grace 1987).

At the plant neighborhood scale, plants of early successional sites will
be positively associated with each other because they are good dispersers
and shade intolerant, but they will be negatively associated with late
successional species, which are usually shade tolerant in the regeneration
phase and perhaps better competitors. At the landscape scale, the associa-
tion between these two groups of species would depend on the size of the
disturbed areas in which the early successional species are found.
Ecological coincidence, whether positive or negative, is expected to
bring about a symmetric association between two species: if species A is
found to be associated with B, B is expected to be associated in the same
way with species A.

The other cause of association can be referred to as influence, where
the plants of one species modify the environment to the extent that they
have a direct effect on the occurrence of the other species. In the case of
epiphytes, it is clear that the presence of the host makes the presence of
the epiphyte possible; for example, the red alga Polysiphonia lanosa grows
almost exclusively on the brown rockweed Ascophyllum nodosum (Lewis
1964). In such a case, the association might be considered to be asymmet-
ric with Polysiphonia being positively associated with Ascophyllum, but not
the other way around. Clearly demonstrated examples of positive
influence are not easy to find, but the influence of ‘nurse plants’ that
make the regeneration of cacti possible (small cacti may overheat if fully
exposed to sun) is a good example (Valiente-Banuet & Ezcurra 1991;
Arriaga et al. 1993; among many). In a review of the subject, Bertness &
Callaway (1994) conclude that ‘positive interactions during succession
and recruitment … are unusually common characteristic forces in harsh
environments’.
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In looking for examples of negative influence, it is clear that plants
affected by allelopathy are negatively associated with the plants producing
the allelopathic chemicals, but not the other way around. Allelopathy is
difficult to demonstrate conclusively, but one case seems to be the effect
of the shrub Adenostoma fasciculatum on annual herbs in California dry-
lands (cf. Crawley 1986). Another source of negative influence that may
be symmetric is competition for resources such as soil moisture or nutri-
ents. Competition for light, on the other hand, is expected to be asym-
metric,with shorter plants being more adversely affected.

The association of species is generally treated as a pairwise phenome-
non, and the network of these pairwise associations is often referred to as
the phytosociological structure of a plant community (Dale 1985). In
some instances, the presence or absence of a third species can affect the
relationship between a pair of species, and this possibility leads to the
consideration of multispecies association, where the frequencies of
various combinations of species presences and absences are examined
(Dale et al. 1991).This topic will be discussed at greater length in Chapter
5.

The importance of species association to spatial pattern is that the
spatial pattern of one species can affect the spatial pattern of the species
associated with it (whether positively or negatively) and thus affect the
whole vegetation. If one or a few species are particularly important in the
structure and function of a plant community, the spatial pattern of those
species may be amplified by their effects on other species.

Another way of thinking about species association is to recognize that
it is spatial pattern defined relative to the positions of plants of particular
species rather than relative to a system of strict spatial coordinates.
Knowing that species B is associated with species A may be as useful in
predicting the presence of that species as knowing that it exhibits patchi-
ness at a scale of 5m.

In textbooks, the interactions between species are often codified
according to the effects on the interacting species: competition is a �/�
interaction because it has a negative effect on both species; mutualism is
�/�; predation (including herbivory) is�/�; amensalism (i.e., an
interaction that has a negative effect on one population and no discern-
ible effect on the other) is �/0; and commensalism is�/0. From the
above discussion of the factors involved in the association of species, it is
clear that the interactions between species in natural vegetation cannot
be classified in this simple way.Not only are the interactions not pairwise,
but they may also depend on the spatial scale considered.

Concepts of spatial pattern · 27



Fractals

Most of us have grown up in a strictly Euclidean culture; we were taught
that there are dimensionless points, lines of one dimension, planes of two
dimensions, and so on. In fact, if you review the comments in the first
sections of this chapter, you will see that the material is phrased in exactly
that kind of language.Mandelbrot (1982) is credited with introducing the
concept of a fractal, a phenomenon that has fractional dimension rather
than that of a whole number like 0, 1, or 2. Since their introduction, frac-
tals have been taken up by a wide range of artists and researchers, and they
have found application in a variety of scientific fields. It is not appropriate
to give a technical treatment of fractals here; there are many expositions
available, for example Schroeder (1991). Instead, we will give a short
introduction to the topic of the relevance of fractals to ecology, referring
the reader to the recent review of the subject by Kenkel & Walker (1993).
Their thesis is that ‘concepts derived from fractal theory are fundamental
to the understanding of scale-related phenomena in ecology …’ (Kenkel
& Walker 1993).

A simple example of the concept of a fractal is to consider curves on a
plane. A straight line on the plane has a dimension of 1.0, as does a
parabola. One explanation for the dimension of the parabola being 1.0 is
that very small subsections of the curve can be treated as if they were
straight lines. If, however, we have a curve so complex that it has spatial
structure at all scales, so that no subsection is sufficiently small that we can
treat it as a straight line, the curve has a dimension that is greater than 1.0
and less than 2.0. For example, the Koch curve (Figure 1.11), which has
each line divided into three with an equilateral triangle erected on the
middle third, iteratively ad infinitum, is a fractal object of fractional dimen-
sion ��1.26 (see Sugihara & May 1990). It illustrates a common prop-
erty of fractals, that of self-similarity at an infinite number of scales.Many
natural objects are sufficiently complex in their geometry that they have
fractional dimension.For instance,Morse et al. (1985) found that a spruce
branch has a fractal dimension of between 2.4 and 2.8. One of the plates
in Schroeder (1991) used to illustrate real-world fractals is a picture of red
algae growing on a rock surface, with patches of a range of sizes, some of
them coalescing. The relationship between fractals and spatial pattern is
evident; Palmer (1988), for example, used a fractal approach to examine
spatial pattern of vegetation along a transect.We will discuss that applica-
tion in detail in Chapter 5.

Some authors have suggested that the fractal nature of biological struc-
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tures is ‘self-evident’ (e.g. Zeide & Gresham 1991). We need to dis-
tinguish between two related but different characteristics of fractals: frac-
tional dimension and self-similarity over a wide range of scales. We may
need to separate these two features in our thinking and realize that many
of the biological phenomena that we study, like the spatial pattern in
vegetation,may exhibit fractional dimension without extended self-simi-
larity. The laws of biological scaling (once we know them better) may
explain why most biological fractals will show trends in � with changing
scale (cf. Palmer 1988; Sugihara & May 1990). In their concluding
remarks, Kenkel & Walker (1993) suggest that while ecologists are still at
an early stage of realizing the potential application of fractal geometry to
testable hypotheses, the concept has important implications for many
ecological processes.

Concluding remarks
Plants are patchy in their spatial distribution and the patchiness is usually
evident at several different scales. At each scale, the spatial pattern has
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Figure 1.11 Koch curves made by the iterative construction of an equilateral
triangle on the center third of each line: the third and fourth iterations.The
iterations continue indefinitely so that each section of the curve is the same as the
whole diagram, and so on to smaller scales too fine to illustrate.



several important characteristics, including the size,density and spacing of
the patches. Some hypotheses about past processes can be tested based on
observed spatial pattern, but pattern is probably most important for its
influence on future processes, both the interactions between plants such
as competition and their interactions with other organisms such as herbi-
vores and their predators, pollinators, pathogens and so on.

The spatial pattern we observe can be the result of the interaction
between a number of factors including climate, topography, past dis-
turbance, predation, competition and other interactions with neighbor-
ing plants.The important interactions between plants cannot be classified
into simple categories like competition and mutualism; the processes in
natural vegetation seem to be much more complicated.

One topic that needs to be explored in greater detail is the relationship
between all kinds of temporal cycles and the spatial patterns they may
produce. We have discussed several ways in which the freeze-thaw cycle
in arctic areas can give rise to patterned substrate which affects the posi-
tions of plants.There are many other temporal cycles yet to be considered
in this context.The advance and retreat of glaciers can give rise to pattern
in features like recessional moraines. Alternating sedimentation regimes
can give rise to spatial pattern in the soil’s parent material (e.g., particle
size or chemical composition), and thus in the vegetation that grows on
it. The seasonal cycle of weather may affect the spatial structure of
eroding rock or drainage channels and the seasonal cycle of snow
accumulation can produce obvious spatial pattern with vegetation
differences between areas where the snow melts early and snow beds
where it lies for a long time.Cyclic changes in herbivore densities, such as
the famous snowshoe hare or lemming cycles, can affect the spatial
pattern of their food plants, depending on the herbivore’s behavior and
density-dependent feeding response. Forest insects and pathogens that
display less regular outbreaks may also affect plant spatial patterns either
very locally or at the landscape scale.For example, if small patches of trees
have prolonged defoliation compared to large patches, as in the tent
caterpillar example (see ‘Pattern and process’), small patches will be
selected against and the scale of pattern will increase. The daily cycles of
tides have a very strong influence on spatial pattern of algae and other
seashore plants, especially in the intertidal zone where obvious zonation
often develops in response to the desiccation gradient. The relationship
between temporal and spatial pattern is a fascinating area that deserves
much more research effort in the future.
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2 · Sampling

Introduction
The most important criteria that determine how sampling will proceed
in the study of spatial pattern are the question being asked and the scale at
which we wish to answer it. Secondly, the kind of analysis that is required
to answer the question must be considered because particular methods of
analysis require certain kinds of data. Then, the sampling method will be
determined by the interaction of a number of factors including the mor-
phology, size and density of the plants of interest; the topography, access-
ibility, and area of the study site; the availability of time, money,
technological and field assistance. It will be influenced fundamentally by
whether the spatial pattern is to be treated as the arrangement of points in
continuous space or as a mosaic of domains. We must also consider how
much disturbance the sampling technique will cause, because we will
want to minimize disturbance in long-term studies or in ecologically
sensitive areas.

The methods used will also depend very much on whether the focus is
on the spatial pattern of plants relative to a fixed frame of reference, on
the elucidation of a community’s response to an environmental gradient,
or on the spatial arrangement of plants relative to other plants (species
association). Kenkel et al. (1989) make the important point that the
considerations for sampling design that are traditionally emphasized in
statistics textbooks may not apply in studies of spatial pattern, because
they are designed to provide efficient and unbiassed estimates of parame-
ters such as mean cover or diversity. This distinction is obvious when
we consider questions of quadrat size, for instance: a precise estimate of
mean cover is best obtained when the quadrat size is chosen to minimize
variability among samples, but to investigate pattern, we want to see all
that variability and will choose a quadrat size that will maximize the vari-
ance among samples (Kenkel & Podani 1991). Similarly, for parameter



estimation, it is usually recommended that the samples are randomly
placed; for spatial pattern analysis, a simple spatial relationship among the
samples is desirable and so nonrandom regularly spaced or contiguous
samples are appropriate. While some methods of analysis can use data
from randomly placed samples, others require a specific sampling design
such as contiguous samples.

In this chapter,we will look first at sampling relative to a fixed frame of
reference using points, various arrangements of quadrats, lines, mapped
mosaics, and the special techniques for sampling on environmental gradi-
ents. Next, we will describe methods for studying pattern relative to
other plants.This will be followed by discussion of general considerations
related to sampling.

Sampling for pattern in a fixed frame of reference
Points

In some circumstances, plants can be treated as dimensionless points in a
plane. The practicality of this approach will depend on the morphology
and spacing of the plants, because reducing the spatial relations of, for
example, twining vines to single points would entail the loss of much of
the spatial information.The technique has been used often for forest trees
which have a similar erect structure and a single central columnar stem;
the center of the stem can be treated as the tree’s location, and may well
represent the place at which its seed germinated (Williamson 1975;
Kenkel 1988a; Szwagrzyk & Czerwczak 1993; among many). Herba-
ceous plants that grow as more-or-less compact rosettes with a discern-
ible center are also suitable subjects for this approach (Silander & Pacala
1985; Powell 1990), as are the erect stems of clonally growing plants such
as bramble (Rubus fruticosus) or goldenrod (Solidago canadensis) (Hutchings
1979; Dale & Powell 1994; among many). In these cases, the spatial
information about the plants is simplified to the positions of dimension-
less points in a plane.

Spatial point patterns are usually studied by mapping the points’ posi-
tions, which can be accomplished in a variety of ways. Powell (1990)
mapped knapweed (Centaurea diffusa) seedlings onto acetate sheets sup-
ported on a sliding thick glass table that was mounted on rails. The accu-
racy of the mapping was ensured by a Plexiglass sighting tube with three
sets of cross hairs. We mapped Solidago plants using an (x,y) coordinate
system with a fixed rail at ground level, set square and meter sticks (Dale
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& Powell 1994). That particular system worked under the circumstances
because we were able to clip the senescing stalks off at ground level as
they were mapped, allowing clear access to the remaining stems. Maps of
plant positions can also be obtained, sometimes more easily, by digitizing
the information from photographs (Galiano 1982b). In open vegetation,
mapping by triangulation based on angles is possible, but of low accuracy
(Mosby 1959). A more accurate technique is to use the measured dis-
tances from two or more reference points from which (x,y) coordinates
can then be recovered.

Given the distances from two fixed reference points with known loca-
tions, the position of any plant can be recovered from its distances from
the reference points in several ways. Given a measured baseline OX of
length c and the distances a and b from its endpoints to the plant P (Figure
2.1), the cosine method solves for the Cartesian coordinates (x,y) of the
plant by calculating angle POX:

��cos�1[(b2�c2�a2)/2bc].

Then

x �b cos � and y�b sin �.

The Heron’s formula method calculates the half perimeter of the
whole triangle: s�(a�b�c)/2. The area of the triangle is cy/2 and
also by Heron’s formula. Therefore: y�

2 /c and x� by Pythagoras’ formula.�b2�y2�s(s�a)(s�b)(s� c)
�s(s�a)(s�b)(s� c)
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Figure 2.1 Line OX is the baseline between the two reference points, length c.
Lines a and b give the measured distances from the two reference points to point P.
Angle POX is �.The text describes three methods for recovering the (x,y)
coordinates of P.



Beals (1960) provides a third alternative based on the areas of the two
smaller triangles which is algebraicly related to the cosine method:

x�(c2�b2�a2)/2c and y� .

For example, if the baseline is 125cm long and a�91 and b�71 (cf.
Figure 2.1), all three methods give x�49.54cm and y�50.86cm. The
cosine law method is often used,but our experience suggests that the two
alternatives are less sensitive to error.

Rohlf & Archie (1978) provide a method by which the positions are
recovered more accurately by a least-squares technique. Mapping may be
facilitated by subdividing the study area into smaller plots which are
mapped individually and then the data can be combined for analysis. For
instance, Gill (1975) mapped the trees in a 40m�40m area by sub-
dividing it into 5m�5m plots; at high tree densities, these were further
divided into 2.5m�2.5m quadrats.

Having obtained the mapped positions of the plants, a variety of
methods can be used to assess the spatial pattern; these are described in
Chapter 7. In some cases, such as for the investigation of anisotropy, it may
be most appropriate to map the plants in circular plots rather than in
square or rectangular quadrats, so that all directions are treated equally.
For instance, when Szwagrzyk & Czerwczak (1993) mapped the posi-
tions of trees in natural European forests to study possible effects of
competition on spatial pattern, they used circular plots with radius 50m.

Quadrats

Other sampling methods frequently used for the study of spatial pattern
involve the use of samples of a fixed area, usually in the form of quadrats.
Some methods require the use of contiguous quadrats that are laid out in
one-dimensional transects or two-dimensional grids. It is traditional to
use square quadrats in grids, which has the apparent disadvantage of
forcing an x-direction and a y-direction on the sampling. The forced
orientation of sampling is not always a problem because there are cases in
which it is known before sampling starts that the vegetation has a partic-
ular directional characteristic; for instance, in patterned wetlands the
lengths of the strings and flarks are at right angles to the direction of the
flow of water. Some authors have used several parallel and, in some cases,
contiguous strings of quadrats. For example, Anderson (1967) used small
square quadrats in narrow grids, ranging in size from 6�48 to 2�1024,
and Bouxin & Gautier (1982) present data from a 4�120 grid of

�b2�x2
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contiguous 0.25m�0.25m quadrats.One problem with this sort of sam-
pling scheme is that is has a strong directional bias,which might affect the
interpretation of the results.

As alternatives to square quadrats,we can imagine using a lattice of tri-
angular or hexagonal samples but the advantage gained seems small, com-
pared to the extra labor and difficulty in laying out such lattices in the
field. An even more extreme suggestion is to use ‘quadrats’ that form an
aperiodic tiling. The disadvantages of such a scheme may be greater but
its benefit is that there is no directionality in the sampling scheme itself to
interact with any directionality of pattern in the vegetation.Whatever the
shape and arrangement of the sampling units, in each quadrat of the grid,
stems are counted, or density measured or cover estimated, in order to
quantify the density of the plant(s) of interest in the quadrat.

Quadrats set out in strings or transects are also traditionally square, but
there seems to be no reason for them not to be rectangular provided that
they are small enough that the variation among quadrats is maximized
and variation within is mimimized (cf. Dale et al. 1993). The use of rec-
tangular quadrats with the longer side oriented along or across the direc-
tion of the transect permits adjustment of the ratio of quadrat area to
quadrat spacing (cf. Figure 2.2). Kenkel et al. (1989) warn against the use
of ‘elongated’plots that might include more than one clump of plants and
the same concern may apply to quadrats; therefore, extreme departures
from equal sides probably should be avoided. Greig-Smith (1983) also
cautions against the use of sample units that are very elongated because of
problems associated with a high edge-to-area ratio.

The use of contiguous quadrats represents a high intensity of sam-
pling, relative to distance, and it is tempting to reduce the effort required
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Figure 2.2 Changing the ratio of quadrat area to quadrat spacing where the longer
side of a rectangular quadrat is oriented along or across the direction of a transect. In
the two parts of the Figure, the spacing of the quadrats is the same, but the areas
sampled by the two shapes of quadrat are different.



by leaving spaces between the samples. This is a case where the intended
method of analysis will affect the choice of sampling,because many of the
techniques of spatial pattern analysis require that the quadrats are
contiguous. Other arrangements, such as regular spacing, are not gener-
ally appropriate and may give misleading results due to an interaction
between the scale of pattern of the vegetation and the spacing of the
quadrats. In Figure 2.3, the central two quadrats, which are empty, seem
to indicate a large gap but they are actually separated by a patch.Similarly,
two or three high-density samples will appear in the data as a single patch
even when they are separated by an unperceived gap.

In spite of these problems, in some studies there may be no alternative
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Figure 2.3 Regularly spaced quadrats may give misleading results when their
spacing interacts with the spacing of patches. The contiguous quadrats on the left
detect all the patches and gaps; the spaced quadrats on the right do not. In this case,
an apparent two-quadrat gap is divided by an unperceived patch.



to using regularly spaced samples. For instance, in studying the spatial
characteristics of mycological flora or chemical properties of soil, it is not
practical or desirable to excavate long trenches and regularly spaced cores
are used instead. For instance, Jackson & Caldwell (1993) used spaced
samples to examine the patterns heterogeneity of soil properties around
perennial plants in a sagebrush steppe.Regularly spaced quadrats may also
be the best compromise when the area under study is too large to be
sampled fully; for example, Legendre & Fortin (1989) studied spatial
pattern in forest trees using a regular array of 10m�20m quadrats separ-
ated by 50m. Finally, on the topic of contiguous and spaced samples, we
should note that, while some methods of analysis require contiguous
samples, there is a set of methods derived from geostatistics conceived
specifically to deal with spaced samples such as rock cores.

Many of the sampling techniques used to study density or to test for
randomness, such as scattered quadrats or sampled point locations, are not
usually suitable for spatial pattern analysis because, while they can signal
departure from random dispersion, they do not permit an investigation of
the scale(s) of pattern or other characteristics of that departure. It is
important to remember, however, that even randomly placed samples do
have a spatial relationship among them which could be investigated using
some of the spatial autocorrelation methods; for example, irregularly
spaced samples of amphipod abundance are analyzed in that way by
Jumars et al. (1977).Again, techniques from geostatistics were designed to
deal with the spatial relations among irregularly positioned samples.

Having mentioned the possibilities of grids or transects of quadrats, the
question is then whether it is better to sample in one or two dimensions.
The answer to this question depends on both theoretical and practical
considerations that are best discussed in reference to examples.Consider a
study site that has a known physical gradient, such as a consistent slope; in
that case it is sensible to question whether spatial pattern is similar across
the slope and up and down it. There, a grid of quadrats with sides ori-
ented along and across the slope would make it possible to study not only
the overall two-dimensional spatial pattern, but also pattern in the two
principal directions separately. In fact, as we will discuss in Chapter 5, it is
possible to use that kind of data to look at the nature of anisotropy in the
pattern. If the number of quadrats that can be studied is restricted by prac-
tical considerations, a system of transects oriented across and along the
gradient, like a trellis, would be a sensible compromise (Figure 2.4). For
instance, Yarranton & Green (1966) used a combination of vertical and
horizontal transects to study the spatial pattern of a lichen community
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growing on a cliff face.Similarly, in a study of spatial pattern in an African
savanna grassland, Carter & O’Connor (1991) used two sets of transects,
one running up- and down-slope and one along the contour. The same
considerations apply when the gradient is biological rather than physical;
for example, where a clonally growing plant such as Solidago or Aster is
invading an abandoned field, there is a natural orientation for grids or
transects parallel with and at right angles to the direction of advance (cf.
Dale & Powell 1994).

An apparently similar situation with a different solution is found in
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Figure 2.4 A trellis system of quadrats is oriented across and along the gradient.
There are fewer quadrats than a full rectangular grid of the same dimension, but the
data will be more informative than if the transects ran in only one direction.



studies of the development of spatial pattern following glacial retreat.
Here, we would be interested in the pattern of vegetation on surfaces of
the same age. A sampling grid would, therefore, be inappropriate and
instead transects at right angles to the glacier’s retreat should be used
(Dale & MacIsaac 1989;Dale & Blundon 1991).

The most difficult situation to give advice on is where there is no
apparent natural orientation for quadrats. If it is possible and practical, the
best method to use under these circumstances is to map the plants
because such data can be analyzed using the mapped point methods
which do not have an imposed directionality, or converted secondarily to
quadrat data with several different orientations to investigate the effect of
direction on the spatial pattern detected. In many instances, as mentioned
above,mapping will be facilitated by dividing the sample area into smaller
subdivisions,which are mapped separately (cf.Gill 1975;Podani 1984).

If mapping is not a possibility, there are several alternatives. The first is
to use a grid of quadrats at some particular orientation and then to use
some of the methods described in Chapter 4 to determine whether the
pattern has a directional component or to use methods of analysis that
limit the effects of the grid’s orientation (such as the random pairing
method described in Chapter 5). If the anisotropy of pattern is the focus
of the study, sets of transects with a range of orientations might be the
most sensible approach. Interpreting the results from a set of transects at
different angles is made easier by examining an example. Figure 2.5 illus-
trates the effect of transect angle on the scale of pattern detected when
the pattern is anisotropic. When the transect is oriented along the length
of the pattern’s features, the scale of pattern detected is large, but when
transects are oriented across the features, the detected scale is small.
Comparisons of angles and scales in transects should make it possible to
interpret the pattern as perceived by the set of transects.

Another question to be decided when using quadrats is their size. For
most kinds of vegetation and most kinds of study, extreme quadrat sizes
(20m�20m or 1mm�1mm) are not practical. Large quadrats make it
impossible to get accurate estimates of density for the whole sampling
unit. Another problem with large quadrats is that they may have too
much internal variability and the information on that variability is lost by
reducing it to one observation. Very small quadrats may create problems
because of the inaccuracies of position and there may be practical
difficulties of needing very large numbers of them to cover sufficient
distance to detect pattern at larger scales. Small quadrats may also sample
the same plants repeatedly, increasing the redundancy in the data. Some
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authors have deliberately chosen the size of their sample unit so as to have
most of them contain only one rooted plant or ramet (cf. Stowe & Wade
1979). For the purpose of spatial pattern analysis, Greig-Smith (1983)
advises that the safest procedure is to use the smallest size of quadrat that
is practical. That choice minimizes the probability that small scales of
pattern will be missed. Clearly, the best quadrat size is related both to the
scales of pattern that are of interest and to the overall scale and purpose of
the study.
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Figure 2.5 Where the pattern is anisotropic, transects at different angles detect
different scales of pattern.Transect A intersects four patches and four gaps; transect
C intersects two patches and one gap, thus giving a larger scale of pattern.



Another decision to be made about sampling with quadrats is the kind
of data that will be recorded from them. The most common approach is
to use ocular estimates of percentage cover for each identified taxon (cf.
Kent & Coker 1992). This method has the advantage of being quantita-
tive, nondestructive and relatively efficient. The disadvantage is that it is
subjective and the values may vary depending on the observer.One alter-
native is to record merely species presence or absence, which has the
advantage of being fast and more repeatable. The disadvantages, that it is
not fully quantitative and does not distinguish between small rare plants
and large common ones, may be less of a problem when the quadrats are
small. In our Mt. Robson study (Dale & Blundon 1990), we found that
the patterns detected with density data and with presence/absence data
were similar; but that will probably not be true in all vegetation types.

Clipping quadrats and separating the biomass by species for weighing
provides high-quality data, but it is both destructive and laborious. In
some circumstances, where there are identifiable units such as stems that
can be counted, the density of the units of each species in a quadrat may
be a useful measure. For instance, in his classic 1973 paper, Hill illustrates
his discussion of methods with data from Greig-Smith & Chadwick
(1965),which consists of the counts of three size classes of plants of Acacia
ehrenbergiana. Whichever kind of data is chosen to be recorded, it is prob-
ably true to say that obtaining high-quality data requires care and effort.

Lines

Line intercept sampling may be viewed as a modification of the transect
sampling using strings of small contiguous quadrats in which the quadrats
are shrunk to width zero. This method is distinct from the ‘line transect’
method, used to estimate density of animal populations (Eberhardt 1978;
Burnham et al. 1980). Their method involves counting the animals seen
while the observer is travelling along a transect but our approach includes
only the plants that actually intersect the sampling line. The appropriate-
ness of the method will depend on the structure of the vegetation, but it
is most easily used when the plants are more-or-less two dimensional, as
in a moss lawn or a mosaic of saxicolous lichens, so that any particular
point can be occupied by only one or very few different species. It is also
recommended for use in very sparse vegetation or in shrublands (Kent &
Coker 1992). The procedure is to establish a line (usually the edge of a
tape measure) and then to record the segments of the line that intersect
each species; for example 0 to 3.1cm species A,3.1 to 4.2cm B, and so on
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(see Figure 2.6). Data collected by this method have been used to study
various characteristics of the arrangement of seaweed species on environ-
mental gradients (Dale 1984, 1986, 1988a).Westman (1983) used the line
intercept method to determine floristic composition in xeric shrublands
in southwestern North America. He measured canopy cover along four
25-m line transects in each of a number of 25m�25m plots and then
used the data to examine species associations.
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Figure 2.6 A line is established; the segments of the line that intersect each species
are recorded.Along the upper edge, 0 to 3.1cm is species A, 3.1cm to 4.2cm is B,
4.2cm to 5.4cm is C, 5.4cm to 6.6cm is A, 6.6cm to 7.8cm is D, and so on.



Mapped mosaic

If the vegetation forms a mosaic of distinct domains with clear bound-
aries, such as may be found in saxicolous lichen communities, it may be
possible to extend the line intercept sampling into two dimensions, and
to record what is essentially a map of the vegetation with the boundaries
and identities of the domains. The simplest such exercise would be to
map the presence of a single species, including everything else in the
‘absent’ category; Diggle (1981) discusses a map of the incidence of
Calluna vulgaris (heather) in a 10m�20m plot as an example of a binary
mosaic. In some situations, it may be possible to carry out this sampling
using photographs which can be converted to a variety of digital forms
later. The most useful digital form is probably the conversion of the
photograph into a numerical map, usually by treating the vegetation
mosaic as a grid of numbers or symbols. This can be done by creating a
grid in which the grid units are coded for the dominant species or type in
it. While the conversion to a single grid imposes a certain amount of
directionality on the data, it is always possible to convert the data to
several different grids with different orientations, in order to test whether
that directionality is a problem.

The grid of small units is referred to as ‘raster’ format and there is an
obvious tradeoff between many small units which preserve more of the
map’s detail and fewer larger units which require less room for data
storage (Bailey & Gatrell 1995).Maps can also be coverted to digital form
in ‘vector’ format, in which each feature, such as a boundary between
mosaic patches, is recorded as a sequence of (x,y) coordinates.Again there
is a tradeoff in that more points preserve more detail of a particular
feature,but result in greater storage requirements (Bailey & Gatrell 1995).

Similar kinds of data can be acquired from satellite images which are
essentially grids of the intensities of several parts of the electromagnetic
spectrum.The grid units are referred to as ‘pixels’ and the image is usually
analyzed by classifying the pixels either based on the spectral character-
istics of known features in the landscape (supervised classification) or by a
multivariate analysis (unsupervised classification) (cf. Lillesand & Kiefer
1987). In LANDSAT TM (Thematic Mapper) images, the pixels are
about 30m�30m, which is not exactly high resolution, but may be a
scale suitable for spatial pattern analysis at the landscape level. Musik &
Grover (1991), for instance, used LANDSAT images to investigate tex-
tural measures of landscape pattern.The images available from the SPOT
satellite system have a finer scale but are more expensive to acquire.
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O’Neill et al. (1991) successfully used digitized maps of lower resolution
in a study of spatial hierarchies by using a wagon-wheel of 32 transects
radiating out from the center of the map.

The development and analysis of digital maps derived from remote
sensing has been greatly enhanced in recent years by the improvement in
the availablity and sophistication of hardware and software for Geograph-
ical Information Systems (GIS). While these systems were developed for
application to spatial data at the geographical scale, there is no reason why
they cannot be applied to smaller scale data sets. GIS software is develop-
ing rapidly and there are many different kinds available; many have the
capability for some of the spatial analysis techniques described in sub-
sequent chapters of this book, but GIS software and spatial analysis have
yet to become fully integrated (Bailey & Gatrell 1995).

The combination of remote sensing and GIS manipulation has not
been used extensively for spatial pattern analysis, but it is a promising
approach. Goodchild (1994) describes some of the methodological issues
for their application to the general areas of vegetation analysis and model-
ling. Turner et al. (1994) present TM-derived data on how fire affected
the landscape in Yellowstone National Park but do not explicitly and
completely investigate the scale of that heterogeneity. Mertes et al. (1995)
used spatial statistics as part of their analysis satellite images of the
Amazon basin, but found that the pixel size (30m) was the most obvious
feature of that analysis. These examples show that remote sensing and
GIS techniques have the potential to be very useful for spatial pattern
analysis and we expect that they will be used extensively in the future.

At a different scale, a study of spatial pattern of leaves in a forest canopy
could be based on (black and white) photographs taken directly upward
from the forest floor. These images can then be scanned directly into
computer form for analysis (Lee 1993). Dietz & Steinlein (1996) used
color photographs and digital image analysis to determine plant species
cover and while the usefulness of that approach depends on the type of
vegetation, it holds great promise for the rapid acquisition of detailed data
for pattern analysis.

Sampling for pattern on gradients

One obvious feature of the environment that affects the arrangement of
plants in space is the existence of environmental gradients.In this book,we
will be considering an environmental gradient to be a directional change
in the intensity of an environmental factor that is monotonic with dis-
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tance. This kind is the class referred to as ‘spatially continuous’ by Keddy
(1991) and includes cases that may give rise to obvious zonation of plants
in the community.Examples include rocky tidal shores,salt marshes,ponds
and the sides of mountains. A gradient affects the spatial arrangement of
plants, but the kind of pattern we expect is different from the repeating
features we would expect in a patterned fen or temperate forest.

Many of the sampling methods described in the previous section can
be used to examine the patterns of species arrangement on environ-
mental gradients. Not all the methods of analysis described in Chapter 8
can be applied to all kinds of data that might be collected. As always,
therefore, we must consider the questions we want the data to answer
before deciding on a sampling technique.

Several different methods of sampling have been used for the study of
pattern on a gradient, including continuous line intercept sampling (Dale
1984), contiguous quadrats (Wulff & Webb 1969; Pielou & Routledge
1976), evenly spaced quadrats (Mandossian & MacIntosh 1960) and a
combination of floristic studies on an altitudinal gradient and data from
herbarium sheets (Auerbach & Shmida 1993). Where contiguous
quadrats are used, rectangular rather than square quadrats may be prefer-
able in order to adjust the ratio of the spacing between the centers of
adjacent quadrats and and the area sampled by each one; for instance,
Pielou & Routledge (1976) used transects of quadrats 0.5m wide but 1m
long in a study of saltmarsh zonation. On the other hand, Johnson et al.
(1987) sampled the zones around prairie marshes using contiguous
quadrats 1m wide and 0.5m long. A general comment on the choice of
quadrat size and shape is that if there are several species boundaries in a
single quadrat, the quadrats are probably too long.

The problems with noncontiguous quadrats, as described above for
ordinary pattern analysis,may not be so pronounced in the study of some
aspects of pattern on gradients. The loss of detail and refinement,
however, may be a critical problem for some studies. Just as in sampling
for pattern analysis in the absence of a clear gradient, unbroken data sets
such as those from line intercept sampling or from contiguous quadrats
that are small relative to the rate of change along the transect are the safest
choices.

Sampling for pattern relative to other plants
In looking at spatial pattern relative to the positions of other plants, we
are usually investigating the association of different species or of different
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growth stages of the same species. Association, like many other phenom-
ena discussed in this book, is scale dependent! Here, somewhat different
considerations apply than when sampling for spatial pattern relative to a
fixed frame of reference. For instance, in placing quadrats, we recom-
mended the use of contiguous quadrats for spatial pattern analysis, but in
investigating association contiguous quadrats may introduce an undesir-
ably large amount of spatial autocorrelation into the data. Spatial auto-
correlation makes statistical tests too liberal, producing more apparently
significant results than the data actually justify. Clearly, the choice of the
size of the sample unit is also affected; for instance, it is clear that samples
that would usually contain only one rooted plant might not be useful.
While contiguous quadrats introduce autocorrelation problems, they do
permit the examination of association at a range of scales; using one size
of quadrat not in a contiguous array permits the evaluation of association
at only one scale. It is possible, under some circumstances, to quantify the
spatial autocorrelation and remove its effects from statistical testing (Dale
et al. 1991;Borcard et al. 1992).

Points

Having just said that we would not want to use sampling units that were
so small that they usually contained only one plant, it may seem odd to
discuss the use of points as a sampling technique, since clearly a point is
even smaller than the smallest quadrat. Points can be used in two ways,
however, either as representations of plants’ positions in a map or as a
sampling method, usually as an objective way of choosing plants for
investigation. We shall discuss the use of mapped plant positions at length
in Chapter 7, but briefly, to look at species associations, we tally the
number of plants of each species at a range of distances from a plant of the
target species and then compare those numbers to the expected distribu-
tion based on a null hypothesis of independent arrangement of the
species.

Point sampling involves the use of regularly or randomly placed points
to designate certain plants in the vegetation, which can be thought of as
the primary or initial plants of the sample.The procedure is then to iden-
tify the plants that are neighbors of the initial plant,usually choosing only
the one that is closest to the original point on the initial plant, or the one
that is touching the initial plant closest to the original point.That kind of
sampling is often referred to as ‘point-contact’ sampling and is widely
used in studies of vegetation that can be treated as essentially two dimen-
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sional. It was pioneered by Yarranton (1966) in a study of bryophyte
communities on Dartmoor and has been used extensively in studies of
cryptogamic communities (eg., John 1989; John & Dale 1995). It has also
been used in studies of more structurally complex communities such as
pastures (Turkington & Harper 1979a,b; de Jong et al. 1980) and the
successional vegetation on subalpine moraines (Dale et al. 1993). The
analysis and interpretation of this kind of data require some care; we will
not discuss the details of analysis here, but see Dale et al. (1993) for a
summary.

Point-contact sampling is promoted as being superior to quadrat sam-
pling because it looks at the vegetation ‘from the plant’s-eye view’
(Turkington & Harper 1979a,b), whereas quadrats by the choice of size
look at the vegetation from a more human view-point. It may not be
true, however, that a plant’s contact is indicative of the most important of
its neighbors. For example, in some arid tropical communities, cacti may
be strongly associated with the shade of tall perennials such as trees and
shrubs, sometimes referred to as nurse plants (Franco & Nobel 1989;
Arriaga et al. 1993). The relationship does not require physical contact
and point-contact sampling might not detect it.

A variant of the point-contact method was used by Stowe & Wade
(1979) and Whittaker (1991). The technique examines circles of radius r,
centered on n points arranged in a line with a distance of 2r between suc-
cessive points. The data are records of the species of plant rooted closest
to the sample point within distance r; these are the primary data.
Whittaker (1991) also recorded all other species rooted within radius r as
the secondary data. Because the circular samples are touching, this
method is related also to the contiguous quadrat technique.

A similar concept is to use the stems of the plants themselves as the
centers of sampling circles and record the closest plant or all the other
plants within a given distance. For example, Mahdi & Law (1987) used
circles of radius 3cm centered on ramets of seven target species in a lime-
stone grassland. Their choice of 3cm was based on the concept of a
ramet’s neighborhood, citing Silander & Pacala (1985). This kind of
plant-centered sampling is very useful for looking at very specific kinds
of spatial pattern such as evidence of asymmetric association, whether
positive or negative. This approach would not be practical for general
community analysis, because it requires a set of samples for each species.
On the other hand, only such intensive sampling provides the means to
examine asymmetric association.

One form of asymmetric positive association is ‘nucleation’, the
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phenomenon of plants of one species increasing, in their immediate
vicinity, the successful establishment by plants of another species
(Yarranton & Morrison 1974). For instance, we tested for nucleation
during primary succession on moraines by using circular quadrats cen-
tered on plants of the genus Hedysarum; it is a nitrogen-fixing plant and
therefore a potential enhancer of colonization by other species (Blundon
et al. 1993). The size of the quadrat was the average size of 100 randomly
chosen Hedysarum plants on each moraine. Using this technique, we
found that recruitment of later successional species was significantly
greater in the Hedysarum patches than elsewhere on the moraine.

Location of sampling
One of the most difficult issues for plant ecologists studying spatial
pattern or studying vegetation in general is the location of the sampling
area; especially if we wish to be as objective as possible in our approach.
The reason it is a difficult issue is that it is not always possible to explain
the logic behind decisions to sample at one location rather than another.
One of the most frequently cited criteria is that vegetation that looks
homogeneous is chosen for study to avoid any obvious discontinuities.
Often, we will not want to study vegetation where the spatial pattern is
too obvious. We are tempted to choose areas where the pattern may be
sufficiently subtle that there is some challenge in elucidating it, but where
we suspect that there is some underlying pattern with an important rela-
tionship to community processes.Perhaps we should pursue more studies
of the obvious for comparing spatial pattern. The subtle underlying
pattern we search for may actually be the result of stochastic factors acting
locally to give the appearance of order, but which produce disorder at
larger scales.

The search for subtlety is not always true of studies of communities on
spatially continuous gradients, in which sampling location will be
chosen, often, where there are obvious responses to the environmental
factors. If we are looking to study the response of vegetation to a gradi-
ent, we will choose a location where there is clear pattern of zonation,
because we then know that there is a response to be studied.

In some cases the search for homogeneity has a sound basis, particu-
larly if we want to look at population processes. To study self-thinning in
tree populations, it is obvious that pure stands of the species of interest
will greatly reduce the variability compared to a stand with many species
of many different morphologies and phenologies.
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Concluding remarks
At the beginning of this chapter, we said that the sampling method used
to investigate spatial pattern will depend on a number of factors, based on
both theoretical and practical considerations. The subsequent discussion
and breadth of examples will not have changed the truth of that state-
ment, but will have amplified and supported it. We can offer the usual
advice that we have probably all ignored at some time,and then regretted,
which is that the hypotheses to be tested and the methods of analysis
should be decided upon before sampling begins.

Recommendations

1. Because the choice of sampling method depends, in part, on the
method of analysis that will be used to answer the question of interest,
read the appropriate material on analysis in later chapters of this book
before making that decision.

2. In using the point pattern approach, complete mapping is the best
sampling method.

3. In general, continuously sampled data from line intercept sampling or
from strings or grids of contiguous quadrats are preferable. For some
kinds of data, this kind of sampling may be impractical or impossible.

4. The quadrats should be as small as is practical to avoid missing small
scales of pattern.More is better than too few.

5. The shape of quadrats will depend on the desired relationship
between the distance between the centers of quadrats and the area
included in each one.

6. If practical, record the most quantitative form of data; it can always be
converted to categories later.

7. For mapping vegetation, ‘high-tech’ methods such as remote sensing
and GIS manipulation should be considered.

8. Most of the recommendations for sampling apply to studies of pat-
terns on spatially continuous gradients.
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3 · Basic methods for one
dimension and one species

Introduction
Several methods have been proposed to detect the scale of pattern in
vegetation; most of them analyze density data in strings or rectangular
arrays of contiguous quadrats by examining how variance depends on the
size of blocks of quadrats which are lumped together in the analysis
(e.g., Greig-Smith 1952; Hill 1973; Usher 1975). In this chapter, we will
review and illustrate the basic methods for studying the spatial pattern of
a single species in one dimension along which there is no environmental
gradient. The kind of data under consideration are therefore density or
presence/absence data collected in a string of contiguous quadrats (see
Chapter 2).

Data
We will begin by considering a standard pattern consisting of a regular
square wave and let the scale of the pattern be B quadrat units.
Throughout the transect, gaps of B quadrats, each of density 0, alternate
regularly with patches of B quadrats,each with density d.There are several
ways in which this basic pattern can be modified to be made less regular:

1. The pattern is ‘unbalanced’with the patch:gap ratio different from 1:1
but the patch size (p quadrats) and the gap size (g quadrats) are both con-
stant for the entire length of the transect. For a given value of d, unbal-
anced patterns have a lower intensity than balanced patterns. In forest
communities, the spatial pattern of the canopy will often be unbalanced in
this way with the patches of canopy being considerably larger than the
gaps between them. For example, in the mature phase of Fagus japonica-
Fagus crenata forest in Japan, the trees in the tallest stratum have 90–95%
canopy cover so that gaps in the canopy are small (Peters & Ohkubo 1990,



Figure 2). On the other hand, in arid systems, competition for moisture
may result in the patches of vegetation being so well spaced that along a
transect, gaps are considerably larger than patches (Montaña 1992).

2. The patch: gap ratio is variable along the transect, but the scale is con-
stant with the lengths of adjacent patch-gap pairs adding consistently to
around 2B. This kind of variability could arise from differences in the
ages and sizes of individual plants or clones that form the patches or from
differences in the number of individuals in the patches. The overall scale
of pattern might then be controlled by an underlying environmental
factor such as moisture in a hummock-hollow system.

3. The scale of pattern varies along the transect; for example,exhibiting a
trend from a scale of 6 quadrats at one end of the transect to 18 at the
other.This characteristic is sometimes termed lack of stationarity,because
the rate of turnover from patch to gap and from gap to patch is not sta-
tionary along the length of the transect. If the spatial structure of the
vegetation is modelled by a Markov process, the trend in scale can be
interpreted as a trend in the transition probabilities from one phase to the
other. It is possible to have nonstationarity that is more complex than a
simple trend, but usually the more complex the behavior becomes, the
more difficult it is to detect (Figure 3.1). A simple trend in density may
follow a systematic change in an environmental factor such as elevation
or soil moisture.

4. The pattern is ‘interrupted’ in that sections of the transect, some
multiple of B quadrats long (say � in length), have a regular pattern of
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Figure 3.1 The upper part shows a nonstationary spatial pattern which exhibits a
simple trend in scale.The lower part shows more complex nonstationarity which
may be difficult to evaluate.
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Figure 3.2 Intrapatch variability with a concave, b convex, and c irregularly varying
densities within the patches.



scale B but are separated by large gaps of � empty quadrats, thus intro-
ducing a second scale of pattern, here �. For example, in an open forest,
the smaller scale of pattern may arise from the canopies of individual trees
and the small spaces between them, but a larger scale of pattern may arise
from local disturbances of tree-fall or from permanent features that lack
trees, such as wetlands or rock outcrops (Qinghong & Hytteborn 1991).

5. There may be intrapatch variability with consistently higher density
in the middle of the patch (convex), consistently lower density in the
center (concave), or irregular variation of density within the patch
(Figure 3.2). (If the patches are consistently convex and close together, it
might be possible to model the density with a sine or cosine function,
rather than the square wave used in other cases.) Patches with a convex
density profile may be the result of active growth and outward expansion;
whereas concave density profiles may result from senescence and
degeneration of the patch centers.

6. Interpatch variability may exist in which some whole patches have
lower than average density and others have higher than average density
(Figure 3.3). This variability may arise from differences in the age and
density of the plants that form the patch or from underlying controls such
as patchiness of nutrients.

7. There may be ‘error’ quadrats such as isolated quadrats within gaps
that have nonzero density or isolated quadrats of zero density within
patches (Figure 3.4). Isolated nonzero observations in gaps may represent
post-disturbance residuals or advanced colonizers, whereas zeros in
patches may represent very local disturbance such as broken branches or
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Figure 3.3 Interpatch variability resulting from the occurrence of patches with
densities higher or lower than average.



the effects of pathogens or herbivores. They may also just represent
incomplete development in the patch due to the plant’s architecture or
other feature.

The introduction of irregularity into the basic model of spatial
pattern, as just described, relied in several cases on differences in density.
There are, however, two main ways of looking at the plants that occur in
the sampling units: density on the one hand and presence/absence on the
other. In our analysis of the Mt.Robson moraine data which will be used
to illustrate some of the methods described in this chapter, we found that
the analysis of density data as presence/absence data gave essentially the
same results (Dale & Blundon 1991). That will not always be the case as
will be illustrated below.

It is possible for a single data set to combine more than one scale of
pattern and there is more than one way in which scales can be combined.
The combination can be additive, so that the density found in a quadrat is
the sum of the densities attributable to each scale of pattern (Figure 3.5).
Additive combination would be expected if density is controlled by
several nutrients in the soil, each of which exhibits spatial variation in
concentration at different scales. Of course, in presence/absence data,
truly additive combination is not possible. The combination of scales can
be multiplicative so that a quadrat has nonzero density only if it occurs in
a patch of each of the component scales of pattern (Figure 3.5).
Multiplicative combination might occur when several factors, which
vary at different scales, completely prevent plant growth beyond certain
threshold intensities. Presence/absence data lend themselves well to the
multiplicative combination of component patterns. Interrupted patterns,
described above, can result from the multiplicative combination of pat-
terns.

The quadrat variance methods that will be described below detect the
scale and intensity of patterns in vegetation, but most do not give directly
the sizes of the patches and gaps that make up the pattern. In some
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Figure 3.4 Error quadrats: isolated quadrats either of zero density within patches or
of nonzero density within gaps.



applications of spatial pattern analysis, the relationship between gap size
and patch size may be as important as the pattern’s scale. For example,
during primary succession, the vegetation may consist of aggregations of
patches. At first, as the patches grow, the scale of pattern related to the
initial spacing of the individuals remains constant with patch size increas-
ing and gap size decreasing. Finally the patches begin to coalesce and the
smaller scale of pattern is lost, so that only the pattern due to the aggrega-
tions of patches remains. This was illustrated in Chapter 1. In a study of
primary succession then, knowing the contribution of patch and gap size
to pattern will be important.

There are several methods available for spatial pattern analysis that are
based on the calculation of variances over a range of spatial scales and
these come in two basic types. The first type includes blocked quadrat
techniques in which the quadrats are combined into groups of particular
sizes (blocks) and in which scale is related to the size of the blocks and to
the spacing between the centers of adjacent blocks. The second category
of quadrat variance methods can be referred to as spaced quadrat
methods, because the quadrats remain as individual units rather than
being combined into blocks, and the scale is determined only by the
spacing or distance between quadrats.
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Figure 3.5 The first two lines show the two scales of pattern to be combined. The
third line shows the two scales of pattern combined additively, so that the density in
any quadrat equals the sum of its densities attributable to each scale of pattern.The
fourth line shows the scales of pattern combined multiplicatively,where a quadrat
has a nonzero density only when it corresponds to a patch in each of the
component scales of pattern.



Blocked quadrat variance
The original method for analyzing contiguous quadrat data is due to
Greig-Smith (1952) as modified by Kershaw (1957), and is generally
referred to as blocked quadrat variance (BQV). Ver Hoef et al. (1993)
refer to this method as the nested analysis of variance (ANOVA)
approach and Carpenter and Chaney (1983) call it hierarchical ANOVA.
The method combines the quadrats into nonoverlapping blocks by
powers of two and calculates a variance for each block size 1, 2, 4, 8 . . .

For block size one the variance is:

VB(1)�2/n x2i�1�x2i
2/2, (3.1)

where xi is the density in the ith quadrat and n is the number of
quadrats in the transect;n is itself a power of 2.

For block size two the variance is:

VB(2)�4/n x4i�3�x4i�2�x4i�1�x4i
2/4. (3.2)

In general for block size b, b�2k

VB(2k)� xj� xj
2/n��

i2b

j�i2b�b�1
�
i2b�b

j�2b(i�1)�1
�
n/2b

i�1
�

��
n/4

i�1
�

��
n/2

i�1
�
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Figure 3.6 Blocked quadrat variance (BQV): the variance of each block size is
calculated as the sum of the squares of the differences between adjacent blocks
divided by the number of quadrats.Those differences are shown below the lines
representing the pairs of blocks. For b�1 the variance is 0; for b�2 the variance is
3�22/32�0.375; for b�4 the variance is (3�22�42)/32�0.875; for b�8 the
variance is (22�42)/32�0.625; and for b�16, the variance is 22/32�0.125.



�2b [xj�xj�b]
2/n. (3.3)

The variance is then plotted as a function of block size and peaks in
the plot are interpreted as indicative of scales of pattern.

This method can only examine block sizes that are powers of two and
clearly relies on the transect length being chosen appropriately as a
number that is itself a power of 2. This property becomes a greater liabil-
ity as the length of the transect or the largest block size examined grows.
For example, suppose we have a transect that is 210�1024 quadrats long
and variance is equally great at block sizes 256 and 512; all that we could
conclude would be that there was pattern with a scale somewhere
between 250 and 500 quadrats. The method has a number of other
limitations that have been pointed out by several authors. For instance,
the results depend to some extent on the starting position of the blocking
and the variance peak can occur at a block size smaller than the actual
scale of pattern (Errington 1973). For example, if B�8, with p�6 and g
�10,when the pattern begins with the 6 dense quadrats, the peak occurs
at 8, but if it begins with 4 empty quadrats, the peak is at 4 (see Figure
3.7). Another drawback is that the size of the blocks is confounded with
the distance between their centers (Goodall 1963). These concerns gave

��
i2b�b

j�2b(i�1)�1
�
n/2b

i�1
�
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Figure 3.7 The results of BQV depend in part on starting position.The true scale
is 8 and if the pattern is in phase with the quadrats (that is, it starts
1111111100000000 . . .) there is a peak at block size 8. If the pattern is not in phase
with the positions of the quadrats (that is, it starts 1111000000001111 . . .), there is a
peak at block size 4 (cf. Errington 1973, Figure 1).



rise to a number of new methods that avoided some of the problems of
BQV.

Local quadrat variances
Two new methods were published by Hill in 1973, both of which use a
complete range of block sizes and which, in essence, average over all pos-
sible starting positions for the blocking.These two methods are two-term
local quadrat variance (TTLQV) and its three-term variant (3TLQV).
The variance in TTLQV is calculated as:

V2(b)� /2b(n�1�2b). (3.4)

Essentially, what it is doing is calculating the average of the square of
the difference between the block totals of adjacent pairs of blocks size b
(see Figure 3.8). All possible contiguous adjacent pairs of blocks are
examined.

�
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xj� �
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Figure 3.8 In two-term local quadrat variance (TTLQV), variance is calculated as
the average of the square of the difference between the block totals of all possible
adjacent pairs of block size b.The values in the quadrats of the ‘�’ block are added
together and the values in the ‘�’ block are then subtracted.The differences are
squared and then averaged over all positions.



The three-term variance 3TLQV is similar:

V3(b)� /8b(n�1�3b). (3.5)

It examines the average of squared differences among trios of adjacent
blocks of size b, by subtracting twice the total of the middle block from
the sum of the two that surround it (Figure 3.9).The principal difference
between TTLQV and 3TLQV is that the latter is less sensitive to trends
in the data (see Figure 3.10).

In Hill’s (1973) original formulation, the divisor of 3TLQV contained
‘6’where we have ‘8’; the modification makes the variances calculated by
the two methods directly comparable, as is demonstrated below. In both
TTLQV and 3TLQV, the variance is plotted as a function of block size
and peaks in that plot are interpreted as being indicative of pattern at that
scale.These methods are illustrated in Figure 3.11.

It is generally agreed that TTLQV and 3TLQV are the recommended
techniques for pattern analysis (Ludwig 1979;Lepš 1990b) and so we will
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Figure 3.9 Three-term local quadrat variance (3TLQV) examines the squared
differences among trios of adjacent blocks size b, by subtracting twice the total of
the middle block from the sum of the two surrounding blocks.The differences are
squared and averaged over all positions.



investigate the properties of those methods in some detail. In doing so,we
will investigate the relationship between scale and variance peak position,
the combination of several scales of pattern in a data set and suggested
measures of the consistency and regularity of pattern based on those
calculations.

Let us first consider data with only one scale of pattern, consisting of
strings of g empty quadrats alternating with strings of p quadrats, all with
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Figure 3.11 TTLQV and 3TLQV analysis of data with scales of 4 and 10. The
positions of the variance peaks reflect those scales closely.

Figure 3.10 3TLQV is less sensitive to trends in data than is TTLQV.The data
were derived from a simple square wave of scale 10 with a linear trend in the density
of the patches and the gaps. A trend in patch density only does not produce this
effect.



density d. Let q be the smaller of p and g. By examining Figure 3.12, it is
clear that in a perfect pattern, there are B�1�q pairs of blocks in each
cycle of B pairs that contribute q2d2 to the sum that is the numerator of
the TTLQV variance. The remaining pairs of blocks contribute
[(q�2)d]2, [(q�4)d)2 . . ., 0d2 or 1d2, . . . [(q�4)d]2, [(q�2)d]2, with the
middle term depending on whether q is even or odd.

Putting these kinds of terms into the equation for V(B),we get:

V2(B)� (qd)2(B�1�q)�2 ((q�2j)d)2 /2B2

�d2 q2(B�1�q)�2 (q2�4jq�4j2) /2B2

�d2q{q2(B�1�q)/2�q3/2�q2(q�2)/2�q(q�1)(q�2)/6}/B2

�d2q{3q(B�1�q)�(q�1)(q�2)}/6B2. (3.6)

where the square brackets indicate the integer part of the division. For
example, if g�7 and p�5 and d�20, then:

V2(6)� �389. (3.7)

In many applications we may not know q, and so to derive an estimate
of d from V2(B) we will either have to rely on some complementary
method to find p and g and thus q, or assume that g and p are approxi-
mately equal. If we follow the second option and assume that p�g so that
q�B, the equation for V2(B) simplifies to:

V2(B)�d2(B2�2)/6B. (3.8)

Thus, when a TTLQV or 3TLQV analysis gives a single peak at block
size B, the estimated intensity of the pattern that gives rise to the peak is:

I� (3.9)

When there are two or more scales of pattern, their intensities cannot
be estimated directly in this way, because the variance calculated at block
size b consists of two components: variance due to pattern at scale B1,
v(b,1), and variance due to pattern at scale B2, v(b,2) where the lower-case
v is used to indicate an additive component of variance. If there are two
scales of pattern that are combined additively, i.e., xi�xi(1)�xi(2) then
the corrected sums of squares (and here the variances as well) due to the

�6BV(B)/(B2�2).

202�5(15�2�4�3)
6�36

��
[q/2]
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�

��
[q/2]

j�1
�
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two patterns are also additive (cf. Sokal & Rohlf, 1981 p. 198).Where b is
any block size and B1 is the scale of the first pattern intensity d1, we can
calculate v(b,1) by considering a perfect pattern of B1 0’s alternating with
B1d1’s such as is illustrated in Figure 3.13. Let h be the smallest difference
between b and an even multiple of B1: h�min (b mod 2B1, 2b�b mod
2B1),where min means minimum and mod means modulo.

If h�B1/2, then:

v(b,1)�d 1
2 h2�2 /2bB1�d 1

2 h2� /2bB1

� (3h�2h2�3h�1)� (2h2�1). (3.10)

If h�B1/2, then:

d1
2h

6bB1

d1
2h

6bB1

(h�1)h(2h�1)
3 ���

h�1

j�0

j2��
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Figure 3.12 Terms contributing to TTLQV and 3TLQV in artificial data.The
TTLQV values are based on the left pair of blocks indicated.When the pattern is
perfectly regular and the block size, b, is the same as the scale of the pattern,B, each
term for 3TLQV is exactly 4 times the TTLQV term. a Size of smaller phase, q, is
the same as scale,B�6. b q�5. c q�4.
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v(b,1)� h2�2 j2�2 (2j)2

� h2

� [h(2h2 �1)�(2h�B1)(2h�B1�1)(2h�B1�1)]. (3.11)

(Note that apart from the single occurrence of b in the divisor, the
variance depends only on d,B1 and h.)

Knowing the variances, we can solve for the values of d1 and d2, and
thus for v(b,1) and v(b,2). The procedure is best described using an
example:

d1
2

6bB1

(h�1)h(2h�1)
3

�
(2h�2�B1)(2h�B1)(2h�1�B1)

3 �d1
2

2bB1
�

��
h�1�B1/2

j�1
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h�1
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�d1
2
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Figure 3.13 Terms contributing to TTLQV and 3TLQV in artificial data.When
block size b and scale B are not equal, the 3TLQV terms are not 4 times the
TTLQV terms.



B1�6; B2�14. Let h(i,j) be the smallest difference between i and an
even multiple of j so that h(B1, B2)�6 and h(B2, B1)�2 because 14�2
�6�2.V2(6)�770;V2(14)�960.

v(B2,1)�d 1
2�2 (2�22�1)/(6�6�14)�0.035 d 1

2.
v(B1,2)�d 2

2�6(2�62�1)/(6�6�14)�0.87 d 2
2.

v(B2,2)�d 2
2(142�2)/(6�14)�2.36 d 2

2.
v(B1,1)�d 1

2 (62�2)/(6�6)�1.05 d 1
2.

Therefore:

0.035 d 1
2�2.36 d 2

2�960,
1.05 d 1

2�0.87 d 2
2�770.

Multiply the upper of these two equations by 30:

1.05 d 1
2�70.8 d 2

2�28800.

Subtract to get:

69.9 d 2
2�28030.

Divide by 69.9:

d 2
2�401.0.

Substituting back:

d 1
2�401.5.

Therefore the total variance of 770 at block size 6 is made up of 424
due to the pattern at scale 6 and 346 from scale 14. The total of 960 at
block size 14 is mainly due to the pattern at that scale which contributes
946 (cf. Figure 3.14.)

Thus, given two peak variances associated with two scales of pattern, it
is possible to partition each of them into two additive components. This
is true also for three or more peaks, but of course the procedure would
involving solving more equations for more unknown intensities. It is not
clear under what circumstances such multiple-peak decomposition
would be useful. If there are two patterns that are combined multi-
plicatively, it is obvious that additive decomposition will produce less sat-
isfactory results. One approach to decomposing that kind of pattern is to
use a log transform of the data and then treat them as an additive
combination.We have not tested this suggestion.

There is another important consequence of the equations given above,
because from them we can derive that for a perfect square wave pattern of
B d’s alternating with B 0’s, for B�4, then if b�h�B:
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V2(B)�d2[B(2B2�1)�(2B�B�1)(2B�B)(2B�B�1)]/6B2

�d2[2B3�B�(B�1)(B)(B�1)]/6B2

�d2 (3.12)

and if b�h�B�1, then:

V2(b)�d2 

�d2

�d2 (3.13)

Therefore:

V2(B)�d2(B2�2)/6B, (3.14)

and

V2(B�1)�d2(B2�B�3)/6B. (3.15)

Comparing these, V2 (B�1)�V2(B) whenever B2�B�3�B2�2;
that is, when B�5. For example, if B�20, V2(20)�3.35d2 but V2(19)�
3.475d2.

Following the same procedure, we can show that V2(B�2)�V2(B

B2�B�3
6B

.

(2B2�4B�3)� (B2�5B�6)
6B

(B�1)(2B2�4B�1)� (B�3)(B�2)(B�1)
6B(B�1)

B3�2B
6B2

�d2 
B2�2

6B
.
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Figure 3.14 The variance plot of spatial pattern with two scales of pattern, 6 and
14, combined additively is the sum of the variance plots derived from separate
patterns of the same scales.



�1) when 14�B�25, V2(B�3)�V2(B�2) when 24�B�34, and so
on.With increasing scale, the peak variance deviates more and more from
the true scale. The relationship between the peak variance and the true
scale of the pattern is approximately (Dale & Blundon 1990):

B�b�[30b/255]�1 for b�5 (3.16)

where the square brackets indicate the integer part of the division.
That equation was formulated based on the positions of variance peaks
for B�2 to B�300.

The phenomenon of the variance peak drifting from the actual scale
of pattern seems like a serious drawback to the TTLQV approach,
although we now know how to correct for it. The problem can be com-
pletely eliminated by changing the divisor in the formula for variance by
leaving out the b in the divisor:

V2(b)� /2b(n�1�2b) (3.17)

becomes

Vc(b)� /2(n�1�2b). (3.18)

Based on the equations presented above, if b�h�B then:

Vc(B)�(B2�2)/6; (3.19)

if b�B�1 then h�B�1 and

Vc(B�1)�(B2�B�3)(B�1)/6B. (3.20)

which is less than Vc(B) provided B�0. Vc(B�1)�Vc(B�1) and so the
peak in the variance will always occur at block size B (Figure 3.15). The
problem with removing the term b from the divisor is that the resonance
peaks do not diminish as in TTLQV (Figure 3.16). There is a clear
tradeoff between the disadvantages of peak drift and nondiminishing res-
onance peaks, which we will encounter in other related techniques. In
analyzing real ecological data, the precise position of the variance peak
and the precise scale of pattern may not be as important as the ease of
interpreting the analysis. Because resonance peaks can be very confusing,
the drift of the variance peak may be the lesser of the two problems, and
the original formulation of TTLQV is to be preferred.

For a pattern that is a perfect square wave of B empty quadrats alter-
nating with B quadrats of density d, the intensity of the pattern, I, is equal
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to the patch density, d. I and d can be derived directly from the known
variance,V2(B), as described above:

I� . (3.21)

For a pattern that is of unknown regularity and unknown patch:gap
ratio but which is known to have a single scale of pattern, that function of
the variance can be used as a measure of the pattern’s intensity. The value
of I calculated from the variance can be compared with davg, the average
density of quadrats in patches. Where the two values are similar, any
irregularity in the pattern can be attributed to density differences.On the
other hand, if the intensity is low compared to the average patch density,
the pattern’s irregularity can be attributed to differences in patch and gap
sizes.

Where there are several scales of pattern, only that portion of the vari-
ance at block size B that is attributable to the pattern of scale B should be
used to calculate I.

On examining Figure 3.12, it is obvious that, in this instance, the
contributions of each element to the 3TLQV variance is exactly four
times the contribution of an equivalent element to TTLQV.Dividing the
3TLQV variance by 8 (compared to the 2 for TTLQV), the two tech-

�6B V2(B)/(B2�2)
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Figure 3.15 A comparison of the original TTLQV with its modified form, Vc,
which omits b from the divisor:Vc does not have the peak drift problem of TTLQV.
The variance peak is exactly at the scale of the pattern.Here the scale of pattern is
15;V2 has a peak at 13, Vc at 15.The curves are scaled to be the same height.



niques will give the same values. 3TLQV will always give the same vari-
ance as TTLQV for b�B, but that is not the case when b ≠ B.

By examining figures like Figures 3.13 and 3.17, we can show that if
b�B�1, 3TLQV will be made up of terms such as:

S3�(2B�3)2d2� (4i)2d2, (3.22)

when B is odd, and:

S3�(2B�3)2d2� (4i�2)2d2, (3.23)

when B is even.
Both these terms reduce to:

S3�(2B3�14B�15)d2/3, (3.24)

giving, for a half cycle of B/2 terms

V3(B�1)�d2

This means that V3(B�1)�V3(B) when B�7. For example, for B�20,
V3(20)�3.35d2 as for V2 and V3(19)�3.451d2 which is greater than
V3(20) but less than V2(19).

By a similar process,we find that if b�B�2:

2B3�14B�15
12B(B�1)

.

�
(B�2)/2

i�1

�
(B�3)/2

i�1
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Figure 3.16 The modified local quadrat variances, in both two-term and three-
term form (lower curve), produce resonance peaks at block sizes 3B, 5B, and so on,
that do not diminish.



2S3 �3(2B�6)2d 2�2(2B�9)2d 2�2 (4i)2d 2

S3 �(2B3�68B�165)d 2. (3.25)

V3(B�2)�d 2 (3.26)

This means that V3(B�2)�V3(B�1) when B�22. The relationship
between b and B for 3TLQV is (Dale & Blundon 1991):

B�b�[(b�9)/13.5] when b�7. (3.27)

The result indicates that, as B increases, the difference between B and the
block size that gives the peak variance increases more slowly with
3TLQV than with TTLQV (Figure 3.18).Another advantage of 3TLQV
compared with TTLQV is that it is less sensitive to trends in the data
(Lepš 1990b), as is shown in Figure 3.10. The only apparent disadvantage
of 3TLQV may be that the maximum block size that can be examined
may be smaller than that which can be examined using TTLQV. Ludwig
and Reynolds (1988) suggest that variances such as TTLQV (or PQV

2B3�68B�165
12B(B�2)

.

�
(B�6)/2

i�1
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Figure 3.17 The calculation of V3(B�1) when B is even. If the patch density is d
rather than 1, all terms are multiplied by d 2.



which follows) should not be calculated for block sizes or distances
greater than 10% of the transect length. The reason they cite for this
advice is that at sizes greater than 10%, the estimates will lack precision.
The restriction to 10% of the total length requires further investigation.

Paired quadrat variance
To avoid the confounding of block size with distance, pairs of single
quadrats at specified distances can be examined. If the pairs are chosen at
random, the method is referred to as random paired quadrat variance,
RPQV, or if all possible pairs are used then it is just paired quadrat vari-
ance,PQV (Ludwig & Goodall 1978).The variance in PQV at distance b
is calculated as:

VP(b)� (xi�xi�b)
2/2(n�b). (3.28)

Again, peaks in the plot of variance as a function of distance are inter-
preted as scales of pattern. Ver Hoef et al. (1993) have demonstrated the
close relationship between PQV and TTLQV, showing that PQV can be
used to approximate TTLQV.

There is a close relationship between PQV and one of the basic
methods from the field of geostatistics called the variogram. Several
methods that were originally developed in the field of geostatistics, for
analyzing the spatial dependence of geological phenomena (David 1977),
are now being transferred to applications in ecology. The variogram is
one of them (Rossi et al. 1992). Suppose that position in a multidimen-
sional space is measured by vector z and that there is a variable, Y, repre-

�
n�b

i�1
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Figure 3.18 The drift of the peak variance is less in 3TLQV (lower curve) than in
TTLQV (upper curve).The real scale of pattern is B�30.



senting a spatial process, the value of which depends on position and thus
is a function of z. Where h is a vector of the separation of two points in
the multidimensional space, the variogram, 2	(h), is a function of separa-
tion h:

2	(h)�Var	Y(z�h)�Y(z)
. (3.29)

Rossi et al. (1992) point out the interesting fact that while mining
geologists are credited with showing the usefulness of variograms, the
approach was used earlier by biomathematicians such as Matérn (1947)
who applied it to a study of Swedish forests.

To investigate the relationship between PQV and the variogram, con-
sider the variation in density in one dimension. Where Y is a spatial
density process and 
 measures position in one dimension, then the vario-
gram is:

2	(h)�Var	Y(
�h)�Y(
)
. (3.30)

Where h is the distance of separation. The estimate of the variogram,
2g or 2	̂, is calculated as:

2g(h)� 	Y(i�h)�Y(i)
2/(n�h). (3.31)

Substituting xi, the density in the ith quadrat, for Y(
) and b for h will
give an equation similar to the one for PQV (3.28). The term ‘semivari-
ogram’ also appears in geostatistical methodology; it is just half the vari-
ogram, that is 	(h). In fact PQV (or RPQV) in a one-dimensional
transect estimates the semivariogram (see also Ver Hoef et al. 1993).

The PQV method is closely related also to the calculation of the auto-
correlation in the data. Let C(h) be the covariance for quadrats at spacing
h:

C(h)�Cov	Y(
),Y(
�h)
. (3.32)

Then 	(h)�C(0)�C(h) (Ver Hoef et al. 1993); Figure 3.19 illustrates
this dependence. Rossi et al. (1992) point out that the correlogram �(h),
which is the correlation coefficient as a function of distance h, is also
related by simple equations:

�(h)�C(h)/C(0)

or

�(h)�1�	(h)/C(0). (3.33)

�
n�h

i�1
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The above discussion has described PQV which examines all pairs of
quadrats separated by a given distance. There is a statistical advantage to
randomly selecting pairs of quadrats at a given distance without replace-
ment, because the estimates of variance at different block sizes are then
independent (Goodall 1974). This method is called the random paired
quadrat variance (RPQV) for obvious reasons. The main disadvantage of
the method is that, because the pairs must be chosen without replace-
ment to ensure independence, the proportion of possible pairs at any
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Figure 3.19 The close relationship between PQV (upper curve) which estimates
the variogram, and the covariance (lower curve).The input scale of pattern is 8.

Figure 3.20 The inaccuracy of random paired quadrat variance (RPQV)
compared to paired quadrat variance (PQV) (big triangle) caused by lower sampling
intensity because sampling must be without replacement.Artificial data from a
square wave with scale 10.



given distance that are used is small (and decreases with the range of dis-
tances examined) resulting in estimates of low precision (Figure 3.20).

In analyzing artificial data, a weakness of the PQV method became
obvious in a way that would not appear clearly in an analysis of field data.
Given the usual square wave underlying model, when patch size equals
gap size, PQV gives variance peaks, but when they are unequal the result
is flat-topped trapezoids, as in Figure 3.21. They do not give a clear
indication of scale. A suggestion for improving the sensitivity of PQV for
unequal patch and gap size is to use a three-term spaced-quadrat method.
It does not seem entirely logical to refer to a variance that uses three
terms as ‘three-term paired-quadrat variance’; a name like ‘triplet quadrat
variance’, tQV, seems more accurate, designated Vt:

Vt(b)� (xi�2xi�b�xi�2b)2/4(n�2b). (3.34)

The divisor of 4 is to give the same variance as PQV at the true scale of
the pattern.As Figure 3.22a–c shows, the result of the modification is that
when the block size is not the same as the scale of pattern, the calculated
variance is less than that in the two-term case. The plot of variance as a
function of block size now has peaks at the input scale (Figure 3.23). It is
not yet clear how important this modification will be when the method
is applied to the analysis of field data.

In comparing PQV methods with TTLQV and 3TLQV, the paired
quadrat methods have the disadvantage that the resonance peaks do not

�
n�2b
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Figure 3.21 For simple artificial data, PQV does not give sharp peaks when the
size of the larger phase is greater than the scale of pattern (Q�B).Here the scale is
5,with Q�7, 8, and 9 as indicated.This will occur for any unbalanced pattern.
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Figure 3.22 The calculation of spaced quadrat variance in its two-term form,PQV,
and in the three-term form, tQV.The three-term method is divided by 4 giving a
variance sum of 7 when b�B�1 (a), or when b�B�1 (c), but it gives 8 when b�
B.The two-term version gives 8 in all three cases.
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Figure 3.23 The two- and three-term versions of spaced quadrat variance using
artificial data with a scale of 5 and gap size 7. The three-term version, tQV, gives a
peak at the scale, not just a plateau.

Figure 3.22 (cont.)



diminish in height. Thus, if there are several scales of pattern in the data
the variance plot can be very confusing. For instance, in Figure 3.24 the
PQV plot has only a shoulder in the variance plot corresponding to the
scale of pattern at 12, because of the resonance peak at 15 due to the
pattern at scale 5.Carter and O’Connor (1991) tried to solve the problem
of choosing between PQV and TTLQV by using PQV for small block
sizes and TTLQV for larger block sizes. It is certainly a good idea to use
more than one method, but their solution does not avoid the TTLQV’s
drawback of increasing peak drift at larger block sizes.

In that study, they examined the spatial pattern of a two-phase mosaic
grassland in southern Africa, the phases being dominated by Setaria incras-
sata and Themeda triandra (Carter & O’Connor 1991). They used one-
dimensional transects but placed some across the 2° slope of the site and
some up and down the slope. PQV detected similar scales of pattern in
both dominant species, but the pattern was anisotropic, with a scale of
about 9m upslope and 4m along the contour. Interestingly, while the
TTLQV analysis seems to show evidence of spatial pattern at larger scales
(Carter & O’Connor 1991, Figure 3), the authors conclude that no
significant contagion was found for either species at larger scales. The
significance of peaks was assessed using Mead’s ‘2-within-4’ randomiza-
tion test (Mead 1974) and it is not clear whether that approach is
appropriate for TTLQV. There may, therefore, be real spatial pattern at
larger scales.The authors conclude that the patchy spatial structure of the
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Figure 3.24 PQV and RPQV on artificial data with scales of 5 and 12. In PQV, the
scale of 12 appears indistinctly as a shoulder; in RPQV it is lost.



mosaic may be related to tree canopy,clonal growth,grazing and compet-
itive exclusion (Carter & O’Connor 1991).

Schaefer (1993) used PQV to compare the spatial pattern of several
species in burned and in old-growth boreal plant communities. The
hypothesis being tested was whether, with succession, small scales of
spatial pattern are lost so that the scale of pattern is greater in older stands.
The communities sampled were mature bog, Jack Pine (Pinus banksiana)
sand plain, mixed coniferous forest and mixed deciduous forest. The
species used for single-species analysis included Vaccinium vitis-idea,
Arctostaphylos uva-ursi, and Cornus canadensis. There was no general ten-
dency for the older stands to have larger scales of pattern; in fact, for some
species, the scale of pattern detected was smaller (Schaefer 1993,Table 3).

New local variance
The last of the related variance methods was suggested by Galiano
(1982a), and is called new local variance, NLV; it was also proposed in
both a two-term and three-term version. In the two-term form, the vari-
ance is calculated as:

VN(b)� � /2b(n�2b).

/2b(n�2b). (3.35)

The NLV was proposed as a method for detecting the size of patches
rather than as a method for detecting the scale of pattern.What it actually
does is to detect the average size of the smaller phase of the pattern,
whether it is the gaps or the patches. For example, a regular pattern with
p�7 and g�3 produces a maximum value of VN at b�3, and a pattern
with p�3 and g�7 produces a VN graph that is identical, also with a peak
at b�3 (Figure 3.25a,b).

Galiano’s NLV consists of the differences between adjacent TTLQV
terms. Let T(b,i) be the TTLQV term for block size b beginning at
quadrat i:

T(b,i)� (3.36)

VN(b)� | T(b,i)�T(b,i�1)|/ 2b(n�2b). (3.37)�
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For the purposes of this discussion, it is easiest to deal with the model
of a regular square wave made up of strings of g quadrats of density 0
alternating with p quadrats of density 1.Our findings can be modified for
other average densities, if necessary. The scale of the pattern is B, and q, h,
and b are as defined above for Equations 3.6 and 3.10.For example if B�
b�p�q�7,NLV is calculated from terms such as:

|72�52|�|52�32|�|32�12|�|12�12|�|12�32|�|32�52|�
|52�72|�. . .
�49�25�25�9�9�1�1�1�9�1�25�9�49�25�. . .
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Figure 3.25 New local variance (NLV) detects the average size of the smaller phase
of the pattern,whether it is the patches or the gaps. Part b is NLV as a function of
block size for either pattern shown in a.
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Figure 3.26 The calculation of NLV when the scale of the pattern is 6 but the
patch size is 5.NLV has its maximum value at b�5.B is the scale of pattern, b is the
block size, and q is the smaller of patch size and gap size.h is the smallest difference
between b and an even multiple of B.Si(b) is a sum of b terms starting at position i.
T 0.5 is the difference between sums and VN is the new local variance.



Notice that the only terms that actually add to NLV are the ‘pivotal’
terms where the T ’s stop increasing or stop decreasing. Therefore, only
the maximum and minimum values of T in the cycle of B values are of
importance, as reference to Figure 3.26 will confirm. Based on this fact,
we can show that if q is even:

VN(b)�min(h2,q2)/bB, (3.38)

and if q is odd, then:

VN(b)�min (h2,q2)/bB for 1�h�(q�1)/2
�min (h2�0.5, q2�0.5)/bB for (q�1)/2�h�B�(q�1)/2
�min (h2�1, q2�1)/bB for B�(q�1)/2�h�B. (3.39)

Clearly, if neither q nor h is small, the approximate equation VN�
min(h2,q2)/bB will be adequate. For B�20, q�17 and b�h�19, the
exact formula gives VN�0.7579, and the approximate formula gives VN
�0.7605.

The equations have several results.First, they explain why VN peaks at b
�q, the smaller of the patch and gap sizes. For simplicity, let us examine a
case where q is even and less than the overall scale,B.For b�q�1,h�q and
VN(q�1)�(q�1)/B which is less than VN(q)�q/B,but when b�q�1,h
�q�1 and q�h, so VN(q�1)�q2/(q�1)B which is also less than VN(q).

The second feature that follows from the equations is that the peak
variance does not diverge from q as B increases.The third fact that we can
derive is that resonance peaks of the peak at q occur at 2B�q, 4B�q, 6B
�q, . . . rather than 3q, 5q and so on (Figure 3.27). The equation also
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Figure 3.27 Where B is the scale of pattern and q is the size of the smaller phase,
resonance peaks in a plot of NLV occur at block sizes 2B�q, 4B�q, and so on.Here
B�14 and q�10, and so the resonance peaks are at 38 (2�14�10) and 66 (4�14
�10).



explains why,when q�B, the resulting unimodal graph is clearly in three
segments (Figure 3.28).Using the approximate equation,when b�q then
VN(b)�h2/bB�b/B; when q�b�2B�q, VN(b)�q2/bB; and when 2B
�q�b�2B,VN(b)�h2/bB�(2B�b)2/bB.

As stated above,we have presented equations based on a density of 1 in
the patches. A modification to the equations for another density, d, is just
to multiply VN by d 2.

Our discussion of the NLV has, so far, centered on the two-term
version, but Galiano (1982a) also proposed a second version based on
3TLQV,call it VG.Let T3(b,i) be the 3TLQV term for block size b, begin-
ning at quadrat i:

T3(b,i)� (3.40)

VG(b)� |T3(b,i)�T3(b,i�1)|/ 8b(n�3b). (3.41)

As can be seen in Figure 3.29, the response of the three-term version
to simple pattern is much more complex and, until its properties are
understood better, we should use the two-term version when this
approach is thought desirable.

We have stated that the two-term version detects the average size of
the smaller phase, whether it is the patch or the gap. This statement refers
to the phase that is locally smaller. A transect that has gaps of 20 and
patches of 60 in the first half and gaps of 60 and patches of 20 in the
second half will give a NQV peak at 20, not at 40 which is the average
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Figure 3.28 Where B is the scale of pattern and the size of the smaller phase, q, is
less than B, the unimodal peak of NLV clearly consists of three parts.Here B�40
and q�30; the three parts are 0�b�30; 30�b�50 and 50�b�80.



size of either phase. This is an important feature for the interpretation of
the results if there is nonstationarity in the pattern.

Combined analysis
Given that there are many methods that can be used to analyze spatial
pattern (and there are more to follow), it is already clear that no single
analysis will recover all the characteristics of spatial pattern. Before dis-
cussing more methods,we should consider the quadrat variance methods
as a set and see whether there are combinations of methods that will give
better information than when the methods are used separately.

Of the methods designed to detect the scale of pattern, 3TLQV has
many advantages, including insensitivity to trends, less peak drift than
TTLQV and decreasing resonance peaks. One current disadvantage is
that a general equation for V3(b|B) is not known,but it is certainly possi-
ble to derive it based on the TTLQV model. A disadvantage of both
TTLQV and 3TLQV, when used in isolation, is that pattern intensity
measurement is based on the assumption that p�g. Our suggestion for a
combined analysis is to use 3TLQV in combination with the two-term
version of NQV which detects q, the average length of the locally smaller
phase. Knowing q, and V(B), we can solve for d [because TTLQV and
3TLQV give the same V(B)], the average density in patches. This process
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Figure 3.29 The three-term version of Galiano’s NLV produces a multipartite
curve for simple artificial data.As in Figure 3.28,B�40 and q�30.



will enable us to distinguish between decreases in intensity caused by the
pattern being unbalanced and decreases due to changes in density.

As an illustration, we will use data from moraines near Mt. Robson,
British Columbia (53°N, 110°W), in the Canadian Rockies (Dale &
Blundon 1990).The moraines are at an elevation of about 1650m and lie
between 1.49 and 0.66km from the Robson Glacier. They were formed
in approximately 1801, 1891, 1912, 1933, and 1939 and are referred to as
moraines 1, 3, 5, 7 and 8 (Heusser 1956).

The moraines are sampled using transects of 600 contiguous 10cm�
10cm quadrats.The transects were placed along previously surveyed lines
running along the ridge of each moraine.The estimated percentage cover
of all species was estimated, but the examples cited in this and following
chapters concentrate on Hedysarum boreale, Dryas drummondii, Picea engel-
mannii, and the three species of Salix.

84 · Basic methods for one dimension and one species

Figure 3.30 Picea engelmannii at Robson moraine 3. a Density data, b TTLQV,
c 3TLQV, d NLV.

a

b



In this example, we will look at three major species on one of the
moraines:Picea,Hedysarum, and Dryas drummondii on moraine 3.The Picea
density plot (Figure 3.30a) shows a clear alternation of 13 patches and 14
gaps and so we will be very surprised if our analyses do not show a clear
pattern of scale about 20 quadrats. The TTLQV and 3TLQV peaks
around block size 18 correspond to that scale of pattern (Figure 3.30b, &
c). The second peak in the 3TLQV plot, around 40, reflects the uneven
distribution of the major patches along the transect. The sharp peak in
the NLV graph at 11 quadrats (Figure 3.30d) suggests the average patch
size which is confirmed by an examination of the density plot (Figure
3.30a)

On the other hand, the Hedysarum density plot is more complex and we
might suspect that there were two scales of pattern in the data, six or seven
major clumps with smaller scale pattern within them (Figure 3.31a).
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The TTLQV and 3TLQV graphs reflect this perception, with major
peaks around block size 45 and evidence of smaller scales of pattern
around 18 and 30 (Figure 3.31b,c). The NLV plot is very interesting,
giving a sharp peak at block size 3, indicating that the densest patches
were small, but decreasing very slowly with many small peaks indicating
a range of patch sizes (Figure 3.31d). Figure 3.32 shows the PQV
and tQV (paired and triplet quadrat variances) analysis of the Hedysarum
data.

Dryas drummondii occurred as patches of patches, as can be seen from
the density plot (Figure 3.33a). The 3TLQV graph depicts this struc-
ture more clearly than TTLQV, with a plateau around block size 5 and
a peak around 45 (Figure 3.33b,c). The NLV plot picks out the clusters
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Figure 3.31 Hedysarum mackenzii at Robson moraine 3. a Density data, b TTLQV,
c 3TLQV, d NLV.



of patches structure with a peak around 6 and a second around 22,
which matches the situation seen in the density plot very well (Figure
3.33d).

Most of the species on most of the moraines had evidence of more
than one scale of pattern and there was no apparent trend towards a
reduction in the number of scales of pattern on the older moraines nor
in their regularity. What is interesting about the three species discussed
in greater detail above is that while they have very different growth
forms (tree, herb, dwarf shrub) and those differences are reflected in
some features of their spatial pattern, they all seem to be responding to
larger scale factors that produce scale in the range of 40 to 45 quadrats
(about 13m).
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Figure 3.32 a PQV and b tQV applied to the same Hedysarum data as in Figure
3.31.
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Figure 3.33 Dryas drummondii at Robson moraine 3. a density data, b TTLQV,
c 3TLQV, d NLV.



Semivariogram and fractal dimension
The concept of fractals was introduced in Chapter 1: they are objects
with fractional spatial dimension. That fractional dimension is a measure
of the spatial complexity of the object and therefore holds promise as an
approach to the study of spatial pattern. In our discussion of PQV, we
introduced the concept of the semivariogram, 	,which is estimated by

g(b)� (xi�xi�b)2/2(n�b). (3.42)

The fractal dimension approach to spatial pattern analysis is based on
the slope of the semivariogram estimate. The slope is often calculated as
(Palmer 1988):

m(b)�[log g(2b)� log g(b)]/log 2. (3.43)

Then the fractal dimension at scale b is (Phillips 1985):

�(b)�[4 �m(b)]/2. (3.44)

If there is no real pattern in the data, the slope of the semivariogram
will be close to 0 and the fractal dimension will be about 2.0.Large values
of �(b) indicate a scale of pattern of b because densities that are dissimilar
at distance b (high variance and g) but similar at distance 2b (low variance
and g) give a large negative slope and thus high values of � (Palmer
1988). Dissimilarity at separation b and similarity at separation 2b fits
well with our definition of the scale of pattern, as half the distance

�
n�b

i�1
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Figure 3.33 (cont.)



between similar phases of a mosaic. Note that similarity at distance B and
dissimilarity at 2B, for a regular pattern, result in similarity at 3B and dis-
similarity at 6B. Because the divisor in the formula for m(b) does not
change, there will be nondiminishing resonance peaks in � at 3B, 5B, and
so on, resulting from pattern at scale B.

Palmer (1988) demonstrates the response of this method to the
characteristics of artificial data and found that it could detect more than
one scale of patchiness. He applied the method to field data in a multi-
species form, to which we will return in Chapter 5, but the main finding
was that � seldom had peaks much greater than 2.0 indicating that the
spatial pattern was weak.

As an illustration, we turn to data from sedge meadows on Ellesmere
Island, consisting of three transects from Sverdrup Pass, (79°N, 80°W),
designated BMS, BRS, and CRT, and one from Alexandra Fiord (79°N,
76°W), OWT (Young 1994). Each transect was 100m long and was
sampled with 1000 10cm�5cm quadrats; presence/absence data were
recorded. The most frequent species were Eriophorum triste, Carex
aquatilis,Salix arctica,Arctagrostis latifolia, and Eriophorum scheurchzeri.

Figure 3.34 illustrates the fractal dimension analysis of Dryas integrifolia
at the OWT transect in the Ellesmere Island data, together with the
3TLQV analysis for comparison. The species was present in 442 of the
1000 quadrats and therefore has the potential to display strong pattern.
Both analyses show spatial pattern at scales 5 and 23; the fact that the
values of � are close to 2.0 at their peaks indicates that the pattern is
weak. This conclusion is confirmed by the intensities associated with the
two variance peaks: 0.23 and 0.14.

Spectral analysis
The last major method that we will describe in this chapter is spectral
analysis, which also has some relationship with the variogram approach.
The basic concept is to fit sine waves to the density data with a range of
frequencies and starting positions and then see which fit the data best
(Figure 3.35). The sine wave may not be an appropriate underlying
model in many applications because it has equal lengths of high and low
density, whereas in real vegetation patches and gaps are often very
unequal (Figures 3.30a and 3.33a). A second difference between the sine
model and real data is that the model has smooth transitions between the
phases but the transitions in real data are often abrupt (Figure 3.30a).

Spectral analysis is made easier by the fact that the weighted sum of a

Spectral analysis · 91



sine function and a cosine function of the same frequency or period
gives a sine wave the position of which depends on the weights assigned
to the two functions. Therefore, we express the density in the ith
quadrat, xi, as the mean density plus a weighted sum of sine and cosine
functions:

xi� x̄� cp cos(2ip/n)�sp sin(2ip/n). (3.45)�
n/2�1

p�1
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Figure 3.34 Analysis of Dryas integrifolia data from the OWT transect in the
Ellesmere Island data. a Fractal dimension, b 3TLQV and NLV. Both approaches
show pattern at scales around 5 and 23.



The weights for the cosine and sine functions are cp and sp:

cp�(2/n) xi cos(2ip/n) (3.46)

and

sp�(2/n) xi sin(2ip/n). (3.47)

We evaluate the reduction in the sum of squares due to fitting this
sine/cosine wave of period p/n using what is referred to as the peri-
odogram, Ip:

Ip�n(c 2
p�s 2

p ). (3.48)

Ip is proportional to that reduction in the sum of squares (Ripley
1978).

The periodogram values are also estimates of what is called spectral
density,which is related to pattern in the data.Plots of Ip as a function of p
often exhibit a great deal of fluctuation and are usually smoothed for
interpretation. This can be accomplished by using a moving average,
either with or without weighting. For example:

Ip��(Ip�1�Ip�Ip�1)/3 (3.49)

or

Ip��(Ip�2�2Ip�1�4Ip�2Ip�1�Ip�2)/10. (3.50)

�
n

i�1

�
n

i�1
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Figure 3.35 A sine wave fit to density data.



The periodogram plots amplitude as a function of wavelength, but in
many applications it is more common to plot amplitude as a function of
frequency. In such a diagram, a peak at frequency f gives resonance peaks
at 2f, 3f, 4f, and so on. From the point of view of spatial pattern analysis,
the periodogram may be easier to read, since it is more directly compar-
able to the results of other analysis techniques that have a distance
measure on the x-axis. Because wavelength is the distance between two
density peaks or two density troughs in the spatial pattern, wavelength is
twice the scale of the pattern. Given the same data, spectral analysis
should produce large amplitudes at wavelengths corresponding to twice
the scale of the pattern as detected by quadrat variance methods.

A major disadvantage of the spectral analysis method is that the posi-
tion and size of peaks in the periodogram depend on the smoothing used
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Figure 3.36 Spectral analysis of field data at Robson Moraine 3. a Picea engelmannii,
b Hedysarum mackenzii.



(Ripley 1978). Usher (1975) concluded that it is difficult to interpret
amplitude-frequency graphs, because of the difficulty in distinguishing
which peaks reflect real pattern in the data from spurious and resonance
peaks. A further disadvantage is that, although the significance of the
whole periodogram can be tested, the significance of individual peaks
cannot (Ripley 1978). Our own experience would lead us to echo some
of Usher’s misgivings, since we encountered apparently spurious peaks in
analyzing artificial data. Figure 3.36a shows the spectral analysis of the
Picea data from Figure 3.30a; the major peaks at 20 and 50 match those in
the 3TLQV analysis. Figure 3.36b shows the spectral analysis of the
Hedysarum data from Figure 3.31a; there is no clear match between its
results and the 3TLQV analysis.

Other methods
A variety of other methods have been proposed but have not risen to
prominence in application. For instance, in their book Statistical Ecology,
Ludwig and Reynolds (1988) comment that measures of dispersion such
as Morisita’s index, I

�
, can be used to examine spatial pattern. Where xi is

the number of individuals of a particular kind in the ith quadrat, with
mean x, sample variance s2, and total n, the index I

�
is defined as:

I
�
�n /(n�1). (3.51)

This index obviously has a close relationship with the variance:mean
ratio, to which we will return in Chapter 7.

For pattern analysis, the idea is that if I
�

is calculated from individual
blocks for a range of block sizes, its value will remain more or less con-
stant until the mean clump size is reached and then it increases.As Figure
3.37 shows, for artificial square wave data, the method produces a peak at
a block size that is twice the scale. When there is more than one scale of
pattern in the data, the method does not produce clear results.

A number of studies have used this approach to look at the scale of the
clumping of trees, including Veblen (1979), Lamont and Fox (1981) and
Taylor and Halpern (1991). In the last study, the authors were examining
the structure and dynamics of forests dominated by Abies magnifica in the
Cascade Range, California. They recorded the number of trees in each
5m�5m quadrat of a 100m�100m plot. The quadrats were combined
into 10m�10m, 15m�15m, . . . squares and Morisita’s index calculated
at each size. In the two plots examined, the strongest clumping was in the

�1�
s2�x

x2 �
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20m�20m squares, a scale that corresponded to the sizes of canopy gaps
(Taylor & Halpern 1991).

Dale and MacIsaac (1989) introduced a method based on combina-
torics to detect the sizes of patches and gaps. (Combinatorics is the
branch of discrete mathematics that deals with finite problems of count-
ing, selection, and arrangement of mathematical objects.) The method is
based on converting the density data to ranks, which produces what is
essentially a permutation of the integers 1,2,3, . . .n.For each block size b,
the number of runs of b quadrats that are all with ranks smaller than the
two quadrats which immediately precede and immediately follow the
run (b-dips) are counted by the variable mb. Figure 3.38 illustrates the
concept of b-dips. The expected value and the variance of mb can be cal-
culated using the formulae of Dale and Moon (1988):

E(mb)� . (3.52)

Var(mb)� (3.53)

The standardized value of b-ups is then plotted as a function of b:

wb� �mb�E(mb )�/ . (3.54)

Peaks in that plot show common patch sizes. Similarly, runs of b ranks
that are greater than those that flank them (b-ups, cf. Figure 3.38) are
counted,ub, and standardized:

�Var(mb)

2nb(4b2�5b�3)
(b�1)(b�2)2(2b�1)(2b�3)

.

2n
(b�1)(b�2)

96 · Basic methods for one dimension and one species

Figure 3.37 Morisita’s I
�
, a measure of dispersion, as a function of block size for

artificial data with a single scale of pattern at 25.



yb� �ub�E(ub)�/ . (3.55)

Peaks in the plot of this standardized plot show common gap sizes.
This approach has not been used very frequently, perhaps because it is

unfamiliar compared to a TTLQV-based method such as NLV. Another
drawback is that there is no guarantee that patch and gap sizes detected in
this way will have an average equal to the scale of the pattern as detected
by other methods. It may also be confusing that the appearance of any
long dip or up will appear statistically significant, with a standardized
value greater than 2.0, merely because they are so improbable. Because
the method is based on ranks, the magnitude of differences is not taken
into account. The last problem for this method is that it is very sensitive
to ‘error’ quadrats, that is single quadrats of nonzero density in the midst
of an obvious gap or of zero density in the midst of an obvious gap.
Galiano’s NLV is less sensitive to error quadrats; for instance, for well-
defined artificial pattern it can reliably find the smaller phase with error
rates as high as 20%.For these reasons, the combined analysis is preferable.

To end this review of methods used for single-species spatial pattern
analysis, we will describe two statistics that are more general in their
range of application than just pattern analysis because they can be used
for that specific purpose. They are the closely related statistics known as
Moran’s I and Geary’s C.

IM�n wij (xi� )(xj� )/ (xi� )2 wij (3.56)

CG�(n�1) wij(xi�xj)
2/2 (xi� )2 wij. (3.57)

The xi are the data and the wij are weights taking the value 1 when the
pair xi and xj are to be included in the calculation and 0 when they are
not. In many applications, the w’s are referred to as proximity indices
because they are 1 when the two observations are neighbors and 0 other-
wise (Bailey & Gatrell 1995). For spatial pattern analysis, we can calculate
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Figure 3.38 b-dips and b-ups in a ranking of quadrat densities. Two 5-dips are
underlined and two 5-ups are overlined.All the ranks in a 5-dip are smaller than the
ranks immediately preceding and following.All the ranks in a 5-up are larger.
Numbers 9 to 8 and 10 to 7 are 5-dips; 15 to 12 and 23 to 25 are 5-ups.



IM or CG as a function of separation h, so that wij is 1 when observations i
and j are separated by distance h and 0 otherwise. The close relationship
of both statistics,when used in this way, to the autocorrelogram, �(h), and
to the variogram and PQV as discussed earlier is obvious.

One advantage of this approach is that the values associated with each
distance can be tested individually for statistical significance. The overall
result can be evaluated by determining whether at least one value exceeds
the Bonferroni criterion, which is the significance level ����/m, where
m is the number of distances tested (Legendre & Fortin 1989). In a study
of the spatial pattern of tree species at a site in Québec, Legendre and
Fortin (1989) found that the correlogram for the distribution of Tsuga
canadensis was significant overall. Significantly high values of IM for dis-
tance classes 1 and 2 (57m and 114m) were interpreted as patch size and
the next peak at distance class 9 (485m) indicated the distance between
patches. The significantly low values at classes 4, 11, and 12 confirmed
this interpretation.

Concluding remarks
Based on our studies of the methods presented in this Chapter, applied
both to artificial data of known structure and to field data, we can con-
clude that no single method of analysis can tell us everything we want to
know. In spite of the problem of peak drift, 3TLQV seems to be the best
single method, but it should be complemented by looking at measures of
pattern intensity and tQV. Where the pattern is weak, measures of inten-
sity can be compared with average densities in occupied quadrats to see
whether density fluctuations or patch and gap length irregularity
contribute more to the pattern’s weakness.NLV can be used to detect the
size of the smaller phase,which in most instances will be patch size.Until
we understand more clearly how the three-term version works, the two-
term version of NLV is to be preferred. Because of the problems with
interpretation and the often inappropriate underlying sine/cosine model,
with its smooth transitions and equal phase sizes, spectral analysis is not
recommended. It is yet to be proven that the fractal approach offers
advantages over the other methods.

In field studies of pattern in one dimension, a general feature is that
even single species display several scales of pattern.That is, there may be a
hierarchy of patchiness in the plants’ arrangement in space. It is also
common that different species in the same community display different
intensities and scales of pattern, which cannot always be explained easily
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by reference to plant size or growth habit.The prediction that small scales
of pattern tend to be lost as succession proceeds does not seem to be sup-
ported by the studies that have tested it.

Recommendations

1. Use 3TLQV combined with tQV to detect scale.
2. Use the two-term NLV to detect the size of the smaller phase.
3. The pattern intensity calculated from the variance (TTLQV or

3TLQV) should be compared to the average density in patches to
determine the relative importance of density irregularities and patch
and gap size irregularities.
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4 · Spatial pattern of two species

Introduction
Vegetation is patchy at a range of spatial and temporal scales, and so even
within what might be recognized as a single plant community, the plants
of different species are not really expected to be arranged homogene-
ously and independently. Natural groupings of species may arise from
biological interactions or from shared and divergent responses to abiotic
factors. In some cases, the community is viewed as a mosaic of patches,
with each phase of the mosaic being characterized by a set of species’
abundances. This phenomenon in plant communities has given rise to
the patch dynamics approach to studies of vegetation (van der Maarel
1996).

The existence of nonrandomness in species arrangement is the
context in which the multivariate analysis method of classification takes
place. Classification can be used to organize samples, like quadrats, into
hierarchical categories based on the similarity of species composition.
The composition and strength of the associations within and between
groupings is an important aspect of the plant community’s structure. It is
reasonable to begin to investigate this structure by examining the rela-
tionships of pairs of species because these pairwise interactions can then
be amalgamated loosely or exclusively into larger groupings. We will
therefore examine methods designed to evaluate the joint spatial pattern
of pairs of species and thus the scales at which they are positively or nega-
tively associated.

When we look at the spatial pattern of a single species,we are examin-
ing the arrangement in space of two mosaic phases, places where the
species is present (perhaps at variable density) and places where the
species is absent. In looking at the joint pattern of two species, A and B,
there are four mosaic phases to be considered: both absent, both present,
A absent and B present, A present and B absent, remembering that, for



some kinds of data, presence may include a range of densities. The analy-
sis of the joint pattern then quantifies the spatial arrangement among
these four phases.

There is a clear relationship between joint pattern analysis and exam-
ining the association of pairs of species. The spatial association of two
species is positive when the plants of the two species tend to be found
together, and it is negative when they tend not to be. Depending on the
method used, the investigation of two-species pattern can be interpreted
as a multiscale study of pairwise association, determining at what scales
two species are positively associated and at what scales they are negatively
associated. In this chapter, we will concentrate on one-dimensional
approaches, but the extensions to two-dimensional studies will be
obvious.

As always, the method of analysis used will depend on the nature of the
vegetation, the kind of data recorded and the questions we want
answered. The studies can be classified according to whether a single
point in space can be occupied by only one or by more than one species
and by whether the two species of interest are the only ones present or
there are others.

At most one species per point
If the vegetation is such that each point can be occupied by only one
species (as some mosaics of saxicolous lichens), we could sample it in one
dimension using the line intercept method described in Chapter 2 or
using strings of very small quadrats, labelling each with the species that
occupies the majority of its area. If there are only two species and no joint
absences (or the joint absences are collapsed), we are dealing with a
mosaic of two phases and, in a one-dimensional sample, they must alter-
nate along the transect and the (first) scale of pattern is easily calculated as
the average of the lengths of line occupied by a single species (Figure
4.1). The consistency of the pattern can be evaluated by looking at the
variance of the lengths of the runs of each species. A similar straightfor-
ward approach can be used when there are two obvious mosaic phases,
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Figure 4.1 A transect in which there are only two species present and which
account for all of the length, a two-phase mosaic.The scale of pattern is just the
average length of segments occupied by a single species. Here the lengths are 5, 3, 4,
3, 4, 5, 5, and 3, giving a scale of 4.1.



even if one has more than one species, such as in the striped vegetation of
arid regions where vegetation stripes alternate with bare ground (cf.
Montaña 1992;White 1971).

Line intercept data can be converted to quadrat form for analysis and,
because the original data are continuous, there is a choice of the size of
‘quadrat’ used. The value for each quadrat is just the proportion of the
chosen subsection of the line transect that is occupied by a particular
species. When the data are collected as quadrat data initially, with only
two species, the first scale of pattern is the average length of single-species
runs of quadrats. Pielou (1977a, Chapter 15) provides a discussion of the
lengths of single-species runs based on several different underlying
models. For example, if the sequence is the realization of a first-order
Markov model with two states, A and B, corresponding to the two
species, there is a simple relationship between the lengths of single-
species runs and the transition probabilities. Let pAB be the probability
that the occurrence of A is immediately followed by that of B, and let LA
be the length of a run of A’s; then the expected run length is E(LA)�
1/pAB. Using parallel notation, the expected length of runs of species B is
E(LB)�1/pBA. Although this relationship is simple, its usefulness may be
limited because Pielou (1977a) suggests that a Markov model will seldom
be a tenable hypothesis for real data. We will discuss Markov models
further in Chapter 5 in the context of multispecies pattern.

In addition to being used to look at the lengths of single-species runs,
contiguous transect data can also be analyzed using a variety of methods
based on single-species quadrat variance methods, which will be
described below.

When more than just the two species are present, the methods need to
be modified somewhat.Call the two species of interest A and B,and lump
all other species or bare substrate into category O. The data consist of
lengths or runs of A, B, and O. Under these circumstances, three different
definitions of scale might be of interest:

1. The average distance between the centers of patches of A and B when
they abut (Figure 4.2).

2. The average distance between the centers of patches of A and B when
they are separated by a patch of O (Figure 4.2).

3. The average distance between their centers in either case.

In a sense, the first is related to a scale of positive association, since they
are in contact, and the second is related to a scale of negative association
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since they are not. The third is an average. It may, however, be difficult to
interpret positive association when the species are mutually exclusive,
except as an example of ecological coincidence, with the species having
similar ecological requirements and capabilities.

Several species per point
In most kinds of vegetation, more than one species can occupy a single
one- or two-dimensional point because of vertical structure. In this situa-
tion, there is a continuum of positive to negative association responses as a
function of scale. For example, the phenomenon referred to as ‘nucle-
ation’ (Yarranton & Morrison 1974) occurs where the plants of species A
make their immediate neighborhood more suitable for the establishment
of plants of species B. In examining presence/absence data, the two
species are positively associated over the short distances of the nucleation
effect, but either neutral or negatively associated at larger distances
(Figure 4.3). If the amelioration of the environment does not control
whether a species occurs at a particular location but affects only its
growth and density, the trend in association will be similar to that pro-
duced by nucleation, but it will appear in the analysis of density data
rather than in the analysis of presence/absence data.

In considering processes such as nucleation, it should be remembered
that the relationship between the two species may be asymmetric; that is,
species A may have a positive effect on species B, but not B on A. Many
kinds of sampling used to study association, such as presence/absence or
density in quadrats, will not distinguish between the two cases. If asym-
metric association is the main focus of the study, the sampling regime
should be designed specifically for it. For example, if nucleation by
species A is the process under study, it would be best to compare the fre-
quency of plants of other species in the neighborhood of plants of species

Several species per point · 103

Figure 4.2 There are three ways of defining the joint scale of species A and B:
(1) the average distance between the centers of patches when the two species abut
(small arrowheads); (2) the average distance between the patch centers when the
species are separated by the other phase (large arrowheads); (3) the average of both.
Here the scale is 3.0 based on the first definition, 6.75 on the second, and 4.25 on
the third.



A with their frequency in randomly placed ‘neighborhoods’ of the same
size.

Competition between ecologically similar species will produce a trend
opposite to that of nucleation; the two species will be negatively associ-
ated at small distances but positively associated at greater distances (Figure
4.4). If the competition is strong enough to cause exclusion, this trend
will be seen in the analysis of presence/absence data. If it just reduces the
biomass of the competing species, the trend will show up only in density
data. A comparison of the analysis of density data and of pres-
ence/absence data should distinguish between the possibilities.

As in the preceding chapter, which reviewed the range of methods
available for the analysis of single-species pattern,we will now proceed to
examine the range of methods available for two-species pattern analysis
based on data collected in strings of contiguous quadrats.

Blocked quadrat covariance (BQC)
Many of the quadrat variance methods used to study the spatial pattern of
a single species can be modified in a straightforward way to examine the
spatial pattern of a pair of species. Kershaw (1960) was the first to do so,
using BQV as the basic method, calculating variance as a function of
block size for each of the two species, VA and VB, and for their combined
densities VA�B.Their covariance is then calculated as:

CAB�(VA�B�VA�VB)/2. (4.1)

This formula is an alternative to the usual direct calculation of covari-
ance,which for two variables x and y is of the form
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Figure 4.3 Association as a function of distance when one species has a local
positive effect on the other, as in nucleation.



Cov(x,y)� (xiyi)� xi yi/n /n. (4.2)

For example, if in 27 quadrats the two species have densities x and y as:

x�1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
y�1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1.

Then:

x�y�2 2 2 1 1 1 2 2 2 0 0 0 1 1 1 0 0 0 2 2 2 1 1 1 2 2 2,

and:

xy�1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1.

At block size 1, individual quadrats:

Var(x)�(18�182/27)/27�6/27�0.2222;
Var(y)�(15�152/27)/27�6.67/27�0.2469;
Cov(x,y)�(12�15�18/27)/27�2/27�0.0741;
Var(x�y)�(57�332/27)/27�16.67/27�0.6172.

From Kershaw’s formula,

�Var(x�y)�Var(x)�Var(y)�/2�(0.6172�0.2222�0.2469)/2�
0.1482/2�0.0741

as in the direct calculation. Note that the covariance 0.0741 is one-third
of 0.2222 which is the variance of x. If y is modified to match x more
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Figure 4.4 Association as a function of distance when one species has a local
negative effect on the other, as in competition.



closely, for instance y�111000111000000000111000111 or y�
111111111000111000111111111, the covariance increases to two-thirds
of that variance, 0.1481.

Kershaw suggests calculating the correlation coefficient, r:

r�CAB/(VAVB)0.5, (4.3)

which can then be tested for statistical significance by comparison with
tabulated critical values or by transformation and comparison with the t-
distribution. (Of course, because of spatial autocorrelation in the data,
significance tests must be interpreted with caution.) Positive and negative
peaks in the graph of covariance are interpreted as reflecting positive and
negative association at the scale of the block size. For instance, Kershaw
(1962) studied the relationship of Festuca rubra and Carex bigelowii in a
Rhacomitrium heath in Iceland, and interpreted a negative peak in covari-
ance at a particular block size as resulting from competitive interaction
between the species at that scale, affected by the scale of variation in
microtopography.

Many of the drawbacks of BQV,described for single-species analysis in
Chapter 3, remain as problems in the two-species case. The approach has
therefore been superseded by other methods, which the following sec-
tions will describe.

Paired quadrat covariance (PQC) and conditional
probability
Given the drawbacks of two-species pattern analysis based on BQV, an
obvious step is to develop two-species versions of methods that avoid its
problems in the one-species case. If the basic technique of spaced
quadrats is used to calculate the variance of the two species separately and
of their joint occurrence, a PQC for spacing b, CP(b), can be calculated
from them using Kershaw’s equation given above. An alternative
formulation is as follows:

CP(b)� (xi�xi�b)(yi�yi�b)/2(n�b), (4.4)

where xi is the density of the first species in the ith quadrat and yi is the
density of the second.

The properties of this covariance are easily illustrated using simple
artificial patterns of strings of 1’s alternating with strings of 0’s. Figure 4.5
shows the range of responses as the strings start matching and are sub-

�
n�b

i�1
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Figure 4.5 The range of response of the paired quadrat covariance as identical
patterns go from perfect alignment to being completely out of phase.Here the scale
of pattern is 5 and the offset of the two patterns goes from 0 in part a to 1 in b, 2 in c,
3 in d, 4 in e, and finally complete offset of 5 in f.



sequently offset until it is the mismatch that is perfect. As with other
applications of the spaced quadrat approach, there are strong nondimin-
ishing resonance peaks in the covariance plot. In the covariance applica-
tion, these resonance peaks are more than a nuisance because they can
lead to serious misinterpretations.We shall investigate the difficulties later
in this chapter,when comparing techniques.

In Chapter 3, we related the single-species PQV to the geostatistical
concept of the variogram. In the two-species case, the appropriate geo-
statistical equivalent is the cross-variogram:

2�AB(h)�E{[YA(�)�YA(��h)][YB(�)�YB(�i�h)]} (4.5)

E is the expected value,YA is the spatial process of species A,YB the spatial
process of species B, � is a measure of position, and h is a displacement
vector. In one dimension, the displacement vector is just a distance scalar
h, and the cross-variogram is estimated by (David 1977):
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2gAB(h)� [YA(�i)�YA(�i�h)][YB(�i)�YB(�i�h)]/(n�h)

� [xi�xi�h][yi�yi�h]/(n�h). (4.6)

This equation is obviously the same as Equation 4.4 for PQC. Again the
paired quadrat analysis is being using to estimate the (cross) variogram.

The cross-variogram can be standardized relative to the variogram
values of the single species, just as the correlation coefficient relates the
covariance of two variables to their individual variances. The single
species variogram estimate is:

2gA(h)� [xi�xi�h]
2/(n�h). (4.7)

Then the standardized variogram,R(h), is:

R(h)�gAB(h)/ . (4.8)

As in the single-species case, we can formulate a three-term or triplet
version of this spaced quadrat covariance:

Ct(b)� (xi�2xi�b�xi�2b)(yi�2yi�b�yi�2b)/8(n�2b). (4.9)

The divisor of 8 is to ensure that this version gives the same value as
PQC when the block size is equal to the scale. As in the single-species
analysis, the three-term version, triplet quadrat covariance (tQC), pro-
duces a more angular covariance plot and is less sensitive to trends in the
data. Using the notation from Chapter 3, B is the scale of pattern, p is
patch size, g is gap size, and b is the block size. Figure 4.6 illustrates the
calculation of PQC and tQC for B�p�g�8 and b�7 with an offset, f,
of 2 between the two patterns. The relationship between the two ver-
sions is illustrated in Figure 4.7. When applied to field data in which the
patterns are not distinct, the tQC curve will usually be closer than the
PQC curve to the b-axis. The fact that both methods produce nondi-
minishing resonance peaks in the covariance is very clear in Figure 4.7,
and that resonance may be a serious drawback in interpreting the
covariance curves derived from data in which more than one scale of
pattern is present. Figure 4.8 shows the application of PQC and tQC to
the data from the OWT transect on Ellesmere Island. Most pairs of
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species show covariance, either positive or negative, at a scale close to
block size 6.

Galiano (1986) describes the use of a method referred to as ‘condi-
tional probability spectra’ to examine segregation between species. The
method compares the probability of finding species B in a quadrat at dis-
tance b from a quadrat known to contain species A, P(B|A), with the
probability that a randomly chosen quadrat contains B, P(B). The condi-
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Figure 4.6 PQC and tQC for identical patterns with p�g�8, b�7 and f�2.
The first two lines show the quadrat data for the two species A and B with 1
representing presence and 0 representing absence.The upper part of the Figure then
shows how the terms (xi�xi�b) and (xi�2xi�b�xi�2b) for species A and (yi�yi�b)
and (yi�2yi�b�yi�2b) for species B arise.The lower part of the Figure shows the
values of those terms as a function of position, i, their product, �, for each position
and the sum of eight terms. For PQC each cycle of eight terms adds to 4 and for
tQC the same sum is 16.



tional probability is estimated from the frequency with which there are
two quadrats separated by distance b, one of which contains the first
species and the other of which contains the second. The data are really
presence/absence data and therefore the values of xi and yi are restricted

Paired quadrat covariance and conditional probability · 111

Figure 4.7 A comparison of the spaced quadrat techniques PQC and tQC.
Artificial data with a scale of 5. As with the variance analyses from which they are
derived, tQC produces a peak where PQC produces only a plateau.

Figure 4.8 PQC and tQC analysis of data from the OWT transect on Ellesmere
Island,Carex membranacea and Dryas integrifolia.After a hint of positive covariance at
distance 2, there are negative peaks at 4, 6, and 8.



to 0’s and 1’s.Based on the formula that P(B|A)�P(B&A)/P(A) (Gellert
et al. 1977), and letting G(b) be the bidirectional conditional probability
for distance b:

G(b)� (xiyi�b�xi�byi ) / (xi�xi�b). (4.10)

The divisor is not simply the proportion of the quadrats containing
species A because quadrats that contain A and are less than b units from
the end of the transect can have a B neighbor at separation b only in one
direction.

The method is closely related to the PQC method described above,
especially when applied to presence/absence data. Divisors ignored, the
important term in G(b) is:

(xiyi�b�xi�byi). (4.11)

The important term in the PQC calculation is:

(xi�xi�b)(yi�yi�b)

which can be rewritten as

(xiyi�xiyi�b�xi�byi�xi�byi�b). (4.12)

The first and fourth terms are determined by the species compositions
of the quadrats, not their spatial arrangement, so that only the central
terms respond to spatial pattern. Since those two terms are the additive
inverse of the important component of G(b), G(b) and PQC react simi-
larly, but in opposite directions, to the characteristics of spatial pattern.
Note that G(b) is a probability and therefore takes values between 0 and 1
whereas PQC runs from �1 to 1.

One problem with the conditional probability method is that the
difference between patterns perfectly in phase and those perfectly out of
phase results in what looks like a shift in the position of the probability
peak.Based on the comparison with PQC,a more accurate description is
that a peak has been turned into a trough, from a probability of 1 to prob-
ability 0.

In presenting the results of conditional probability analysis, Galiano
(1986, Figure 4) shows 95% confidence limits. It is not clear how these
were calculated but, as always in studies of spatial pattern, they should be
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treated with caution because of the spatial autocorrelation in the data (the
quadrats, as trials, are not fully independent) and because the values for
adjacent distances are not independent.

Using this approach, Galiano (1986), in a study of the herbaceous
plants of an oak parkland in central Spain, showed that perennials such as
Agrostis castellana and plants with basal rosettes such as Plantago lanceolata
exhibited strong exclusion of other species up to distances of 10cm.
Other plants such as Trifolium sp. and Poa bulbosa did not have the same
negative effect on neighbors. This result suggests that the asymmetric
relationship of fine-scale competitive exclusion is an important factor in
the community.

Two- and three-term local quadrat covariance (TTLQC
and 3TLQC)
The recommended methods for the analysis of two-species pattern are
based on the single-species blocked quadrat methods TTLQV and
3TLQV, described in Chapter 3. Defining sb(i) as the sum of the densities
of species A,x, in the b quadrats starting at quadrat i:

sb(i)� xm. (4.13)

By analogy, tb is for sums of y and ub is for sums of x�y:

tb(i)� ym and ub(i)� (xm�ym). (4.14)

The two-term variance for species A is:

VA(b)� [sb(i)�sb(i�b)]2/2b(n�1�2b). (4.15)

The three-term variance for species A is:

VA(b)� [sb(i)�2sb(i�b)�sb(i�2b)]2/8b(n�1�3b). (4.16)

Similar variances can be calculated for species B using tb , and for
the combined densities using ub. For either the two-term or three-
term version, the covariance at block size b, CAB(b), is calculated using
Kershaw’s formula (Equation 4.1).

As in the single-species analysis, the three-term version of covariance
calculation is preferred (cf. Greig-Smith 1983). The covariance can be
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calculated from the sum of products rather than the sum of squares; for
example, the two-term version is:

CAB(b)� [sb(i)�sb(i�b)][tb(i)�tb(i�b)]/2b(n�1�2b). (4.17)

In Chapter 3, we discussed a measure of the intensity of a pattern,
based on the variance of the calculated for the block size of the pattern’s
actual scale.We can produce a similar measure of intensity for covariance:

IC(B)� , (4.18)

where B is the scale of pattern. This intensity can used to compare
covariances at different block sizes by removing the effect of scale.We can
compare the covariance with the magnitude of the single-species vari-
ances using the correlation coefficient:

r(b)�CAB(b)/ . (4.19)

Some researchers have tried to use peaks in the correlation coefficient
to detect scales of covariance, but our own studies have shown that it is
unreliable and cannot be used in that way. (Dale & Blundon 1991; cf.
Grieg-Smith 1983). You can prove this to yourself: suppose the patterns
are identical for both species. If that is so then VA�VB and VA�B�4VA
for any block size; thus CAB�VA and the correlation is always 1.0.Under
these circumstances correlation takes its maximum value at block sizes
unrelated to the scale of pattern.

The value of r can be used to evaluate the strength of the covariance by
comparing it with critical values of the correlation coefficient for the
appropriate numbers of degrees of freedom.For example, if the transect is
600 quadrats long and you examine block sizes up to 100, there seem to
be between 300 and 600 degrees of freedom (df ) for the range of block
sizes studied. The 95% critical value for 500 df is 0.088, and for 300 is
0.113, and therefore a value of 0.1 can be chosen as a guideline, consider-
ing only those covariance peaks for which �r�	0.1. As usual, in our
studies of spatial pattern, while the argument is appealing, the term
‘guideline’ must be emphasized because of lack of independence. First,
there is spatial autocorrelation in the data; second, the variances calcu-
lated at different block sizes are not independent. These evaluations are
not strict tests of statistical significance.

In a graph of covariance as a function of block size, the important fea-
tures are the positions of peaks, whether positive or negative, and their
intensities. For example, Figure 4.9 shows the covariance analysis of
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artificial data in which the two species are negatively associated at a scale
of 5 and negatively associated at a scale of 30. As in TTLQV and
3TLQV, there is a small discrepancy between the pattern scale and the
block size at which a covariance peak occurs (as discussed in Chapter 3)
and that complicates the interpretation of peaks. Therefore, decompos-
ing covariance plots to look for hidden peaks or trying to partition the
covariance among scales, while theoretically possible, are probably too
unreliable to be practical. Two simple summary variables are N, the
number of negative covariance values in the range of block sizes exam-
ined and A, the net area between the covariance curve and the block size
axis (see Figure 4.10).

Artificial patterns of density and presence/absence data with various
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Figure 4.9 a Artificial data for two species that are positively associated at large
distances (b�30) and negatively associated at short distances (b�5). b TTLQC and
3TLQC analysis of the artificial data in a showing negative covariance around b�5
and positive covariance around b�30.



numbers and combinations of scales of pattern can be used to explore the
response of covariance analysis to features of the data. When identical
patterns become more and more offset from each other, the correlation
coefficient declines from 1.0 when they are perfectly in phase to �1.0
when the patches in one pattern exactly match the gaps in the other.The
position of the covariance peak does not change but declines to about
half of its original value and then returns to it. For instance, for a pattern
consisting of patch�gap�10 quadrats and density in the patches of 1.00,
a covariance peak is found at 9 with IC(10)�1.00 when the patterns
match (offset 0); IC(10) declines to 0.54 when the offset is 4 or 6 and then
increases back to 1.00 when the patterns are completely opposite, with
offset 10 (Figure 4.11).

When patch:gap (or gap:patch) ratios are changed from 1:1, the value
of IC also declines. Trends in patch density and in pattern scale produce
measured intensities and positions of covariance peaks close to the
average of that variable in the data.

Comparison of methods
So far we have looked at two classes of covariance method, PQC and
tQC on the one hand and TTLQC and 3TLQC on the other. The two
approaches have somewhat different properties. These differences can be
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Figure 4.10 Illustration of two useful summary statistics of a covariance plot: (1) N
is the number of block sizes at which the covariance was negative, here 15 out of 23;
(2) A is the net area, the difference between the area above the axis labelled ‘�’ and
the area below the axis labelled ‘�’. In this case, the net area is negative.The two
different symbols on the block size axis indicate the sign of the covariance,white for
positive and black for negative.



illustrated either with artificial or with field data. Figure 4.8 shows PQC
and tQC analysis of Carex membranacea and Dryas integrifolia from the
OWT transect on Ellesmere Island and Figure 4.12 shows TTLQC and
3TLQC analysis. It is obvious that the PQV-type analysis produces a vari-
ance plot that is much less smoothed because individual quadrats are used
rather than the sums of blocks of quadrats. As we have commented
before, spaced quadrat methods have resonance peaks that do not dimin-
ish; in covariance analysis, the result of resonance may be that important
features of the data are obscured. The OWT data themselves and the
TTLQC analysis show a clear positive association of the two species at a
scale around 20 quadrats. In the PQC analysis this fact is obscured
because of resonance from the negative peaks at 5, 7, 9 and 12. Figure
4.13 illustrates the same feature with artificial data that negatively covary
at scale 6 but are positively associated at scale 30; there is no peak in the
PQC plot at 30 but it is obvious in the TTLQC and 3TLQC analyses.

We used the covariance approach to two-species pattern analysis of
data collected on the recessional moraines at Mt. Robson, British
Columbia. We concentrated on six species: the legume Hedysarum
mackenzii, a dwarf shrub Dryas drummondii, the tree Picea engelmannii, and
three willows Salix vestita, Salix glauca, and Salix barclayi. Only covariance
peaks for which �r� exceeded 0.1 were considered. The data were ana-
lyzed twice: in the original density form and also converted into pres-
ence/absence data.We found that in some instances the covariance peaks
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Figure 4.11 The behavior of Ic which is a measure of covariance intensity as
two identical patterns of scale 10 and density 1 are offset by different amounts, f.
When f�0, the patterns match perfectly and when f�10, they are completely out
of phase; in both those cases Ic takes its maximum value.When f�5, the covariance
is 0.



were closely related to scales of pattern of the individual species, but in
other cases there seemed to be little relationship.For instance,on moraine
7, Picea has variance peaks at 60 (density) and 63 (presence), Dryas has
peaks at 57 and 61, and their covariance has peaks at 58 and 60. These
scales match well, suggesting the existence of a natural grouping of at least
two species which covary spatially. Hedysarum also has a variance peak in
the same range, 64 (density), but there is no sign of pattern at that scale in
the Picea-Hedysarum covariance analysis. This result shows that while a
third species seems to be responding to the environment at a similar scale,
it is not part of that grouping of species.

The covariance plots were more complicated than would be predicted
from simple explanations of how the plants of different species interact
with each other. Competitive exclusion in a pair of ecologically similar
species should give a clear negative peak at small block sizes but the
covariance should be positive for large block sizes, as in Figure 4.4. On
the other hand, local positive association, caused by a positive influence
such as nucleation, should produce a clear positive peak at small block
sizes with the covariance declining to zero, as in Figure 4.3. Dale and
Blundon (1990) found that the main species on the Robson moraines
exhibited about four scales of pattern each; the covariance analysis of
pairs of these species detected three to four scales of pattern (Dale &
Blundon 1991).

Carter and O’Connor (1991) studied a two-phase mosaic in a wood-

118 · Spatial pattern of two species

Figure 4.12 Covariance analysis of Carex membranacea and Dryas integrifolia at the
OWT site on Ellesmere Island.PQC and tQC are in Figure 4.8.Here are TTLQC
and 3TLQC (dashed).The blocked methods produce a more smoothed response to
the spatial pattern.



land savanna in South Africa; many species were present but the two
phases are dominated by Setaria incrassata and by Themeda triandra. The
authors analyzed the spatial pattern of the two species separately using
PQV and TTLQV, but they did not use the covariance equivalents.
They found that the two species that dominate the two phases were
strongly negatively associated at the scale of a single quadrat, and a
glance at the sample of the data presented suggests that strong negative
covariance would be found at the matching scales of pattern found in
the two species when analyzed separately (see Carter & O’Connor
1991, Figure 1).

The sort of covariance analysis that we have been considering would
not be appropriate for data derived from a mosaic that had only two
phases. If the two phases are A and B, the combined density of the two
would be 100% for each quadrat, so that VA�B would be constant with
changing block size.Since A and B are complementary,VA and VB will be
identical and, recalling Kershaw’s formula, the covariance will therefore
be an additive inverse of those curves. In this situation, then, covariance
analysis can contribute no new information.

Veblen (1979) used a somewhat different approach to study the effect
of scale on the association of two species of Nothofagus in Chile. He used
plots divided into 3m�3m subplots and examined the correlation of the
densities of Nothofagus pumilio and Nothofagus betuloides as the subunits
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Figure 4.13 PQC and tQC (dashed) analysis of artificial data in which the two
species are negatively associated at scale 5 but positively associated at scale 30, much
as in Figure 4.9a.The TTLQC analysis resembles 4.9b but in the spaced quadrat
method, the 5B resonance of the negative peak at block size 6 flattens the positive
peak that should occur at b�30.



were combined into larger blocks. The correlation was most negative at
the smallest block size (�0.8 at 3m�3m) and although it increased with
block size, it remained negative and decreased again at the largest block
size (�0.7 at 24m�24m). The two species are patchily distributed and
the author attributes the negative correlation to interspecific interactions,
with N.betuloides,which is evergreen and more shade tolerant, tending to
replace the deciduous N.pumilio.

Extensions of covariance analysis
So far in this chapter, the analysis of association and covariance has been
related to examining the relationship between a pair of species. An
obvious variant of this approach is to use the same kind of analysis to
examine the relationship between a species and an environmental factor.
Kershaw (1964) discusses the use of BQV to investigate, in a Rhacomitrium
heath in Iceland, the relationships of two species, Carex bigelowii and
Festuca rubra, with a measure of microtopography, the height of the
quadrats’ centers. Carex was positively associated with microtopography
at most scales whereas Festuca was negatively associated with it at most
scales, both most intensely at block size 32. The negative small-scale
covariance of the two species (block size 4) is attributed to the biotic
interaction of competition, not to different responses to abiotic factors
(Kershaw 1964).

In our Ellesmere Island data sets, we looked at the covariance of the
most common species with microtopographic height. We found that
species such as Carex aquatilis and Carex membranacea had negative covari-
ance with height at a scale around 5 quadrats, but species associated with
drier microsites, such as Carex misandra, Dryas integrifolia, Polygonum vivip-
arum and Saxifraga oppositifolia, had positive covariance at the same scale.
What is interesting here is that the covariances between pairs of species
do not seem to reflect the response to moisture, indicating that biological
interactions may be complicating the simpler patterns arising from the
plants’ response to an environmental factor.

One feature that has emerged from the analysis of the Mt.Robson and
Ellesmere Island data sets is that the scales of covariance often do not
match the scales of the individual species.This characteristic seems at first
very puzzling and an interesting question is whether it can be duplicated
using artificial data. The answer is yes. There are several ways in which
sets of artificial data can be combined to produce covariance peaks that
do not match the the original scales.One way to approach the problem is
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to consider what happens when two identical patterns are used; the result
will depend on how the patterns are aligned, the amount of offset. Given
two identical patterns of scale 20 with g�10 and p�30, if they are offset
from each other by any amount from 0 to 9, there is a variance peak
around 20. (Figure 4.14a shows the TTLQC and 3TLQC analysis.) If,
however, the offset is 10 or 11, there is a strong negative peak at block size
10 and no evidence of pattern at scale 20 (Figure 4.14b). Equations 3.10
and 3.11 given in Chapter 3 can be used to explore why the covariance
behaves this way. It is not clear how this result should affect our ecological
interpretations of blocked quadrat covariance.

Other approaches
Other approaches that have not been pursued much include the possi-
bility of a cross-covariance method and cross-spectral analysis. Cross-
covariance is closely related to the geostatistical approach to estimating
the cross-variogram described in ‘Paired Quadrat Covariance (PQC)
and Conditional Probability’. Cross-covariance functions are of the
form:

E��x(i)�
x��y(i�h)�
y�� (4.20)

and

E��x(i�h)�
x��y(i )�
y�� (4.21)

where 
x and 
y are the means of the two spatially dependent variables x
and y (Jenkins & Watts 1969).

Cross-spectral analysis compares the characteristics of two spatial series
using the techniques of spectral analysis. It produces a cross-amplitude
spectrum that shows whether frequency components in one variable are
matched by large or small amplitudes at the same frequency in the other
variable. It also gives the phase spectrum, which shows whether the fre-
quency components of one series are ahead of or behind components of
the same frequency in the other (Jenkins & Watts 1969). Kenkel (1988b)
used cross-spectral analysis to compare the spectra of elevation and
vegetation derived from data collected in a mire hummock-hollow
system. In that instance, the vegetation spectrum was based on a multi-
species analysis (see Chapter 5), rather than making strictly pairwise
comparisons. The availability of this technique in software packages such
as S-Plus (MathSoft Inc., Seattle,Wash.,U.S.A.) will make it more access-
ible to researchers.
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Figure 4.14 TTLQC and 3TLQC analysis of artificial data consisting of two
species with scale 20, patch size 30 and gap 10. a When the patterns are offset by 9,
the analysis correctly shows that they are negatively asssociated at that scale but
positively associated at scale 20. b When the offset is 10 or 11, the positive peak at 20
disappears.



Relative pattern: species association
All the methods described thus far in this chapter have examined pattern
defined by a fixed spatial reference, usually determined by a transect of
contiguous quadrats. To finish the discussion, we should examine the
situation in which the absolute positions of the plants of two species are
not important but only their positions relative to each other. This
involves an examination of the association of two species at only the
smallest scale, but is clearly related to the detection of natural groupings
of species within the community.

Using presence/absence data from quadrats, the usual method of
analysis is a 2�2 contingency table which counts the number of quadrats
that fall into each of four categories,where a is the number of quadrats in
which both species are present, and so on:

A goodness of fit test is carried out using the X2 or G statistic and a
significant result is interpreted as indicating positive association if ad	bc
and as negative association if ad�bc.

As has already been discussed, where there are actually more than two
species in the study, not all pairwise tests are independent. In addition, if
the quadrat data are collected in transects of contiguous or evenly spaced
quadrats, the data from adjacent quadrats are not independent, giving
spatial autocorrelation. In Dale et al. (1991), we describe a method for
dealing with the effects of autocorrelation, by deflating the test statistic
calculated, based on an underlying first-order Markov model and a
Monte Carlo procedure to determine the amount of deflation needed to
reduce the proportion of 1000 trials that are found to be significant to the
correct level.Use of this procedure will depend on the appropriateness of
a Markov model. For instance, in the Ellesmere Island sedge meadow
data, while statistical testing provided no reason to reject low-order
Markov models of multispecies spatial dependence, first-order models
were rejected for single-species and two-species data.We would therefore
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not be able to use that approach in the analysis of those data.The topic of
species association will be dealt with at greater length in Chapter 5,
which deals with multispecies data.

Concluding remarks
The study of the joint spatial pattern of two species using covariance is
closely related to the study of the scales of pairwise species associations
and to the detection of natural groupings of species in a plant community.
This kind of investigation should be able to find evidence for important
community processes such as nucleation and competition.Paired quadrat
techniques are closely related to the geostatistical approach of using cross-
variograms, but the potential for confusion resulting from the existence
of resonance peaks (both positive and negative) leads to preference being
given to the bocked-quadrat methods of TTLQC and 3TLQC. Of the
two, the three-term method is probably a better choice because it is less
sensitive to trends in the data. In our own investigations, we found that
density data and presence/absence data often gave similar results where
both were available. We also found that results from field studies were
much more complex than the simple hypothetical nucleation or
competition results we had first considered.

Recommendations

1. For the analysis of two-species pattern in data from transects of
contiguous quadrats, 3TLQC is the recommended method, although
it is not perfect. In paired quadrat methods (PQC and tQC), the reso-
nance peaks can cause problems for interpretation.

2. The correlation coefficient can be used to evaluate the strength of
joint pattern compared to single-species patterns, but it should not be
used by itself to detect scale.

3. Two-species pattern can be interpreted in terms of scales of positive
and negative association. In the 2�2 contingency table approach to
detecting species association, the tests of all pairs of several species are
not independent. The potential effects of spatial autocorrelation on
those tests must also be considered.

4. Analysis of the spatial pattern of covariance between a plant species
and an environmental factor may provide different insights into the
structuring of vegetation.
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5 · Multispecies pattern

Introduction
In this chapter, we will present and discuss methods designed to examine
the spatial pattern of groups of species or of whole plant communities.
While it is true that plant communities are made up of individual species,
we do not expect to be able to capture the essential features of the spatial
structure of the whole community by compiling information on the
spatial patterns of single species.Similarly,while we tend to think of species
interactions as being pairwise,we know that the relationship between two
species, A and B, can be modified by the presence and absence of other
species (Dale et al.1991).We cannot, therefore, in studies of plant commu-
nities, restrict our examination of species interactions only to pairs.
Instead, we must find ways to look at the spatial structure and pattern of
vegetation more holistically,by looking at many species simultaneously.

In Chapter 3, we described how the spatial pattern of a single species
can be studied using methods that examine the effects of distance or
block size on a calculated variance, with low variance indicating similar-
ity and high variance indicating dissimilarity. In analyzing the spatial
pattern of a single species using the data from a string of contiguous
quadrats, the information for each quadrat is a single value, either some
measure of the species’density,or simply 0 for absence and 1 for presence.
A technique like two-term local quadrat variance (TTLQV) combines
the quadrats into blocks of a range of sizes to determine which block size
maximizes the difference between adjacent blocks of quadrats. The high
variance is caused by strings of quadrats with low density alternating
with strings of quadrats with high density. The scale of the pattern can
be defined equivalently as half the average distance between the centers
of successive patches or as the average distance between the centers of
patches and the centers of their neighboring gaps. The two definitions
give the same value because only two phases are considered (Figure 5.1).



In Chapter 4, we examined an obvious extension of single species
pattern analysis to the analysis of the pattern of pairs of species by looking
at the effect of scale on covariance (Greig-Smith, 1983; Dale & Blundon
1991). A further extension would be to study the spatial pattern of a
whole community by looking at the covariance of all possible pairs, but
the covariance analysis of many species pairs might be more confusing
than helpful, depending on how subtle or consistent the overall pattern
was. The desire to study and to quantify the spatial pattern of sets of
species, including whole plant communities, has prompted researchers to
develop a variety of methods for examining multispecies pattern.

One way in which the concept of multispecies pattern may have
arisen is a perception that, in two dimensions, vegetation can be treated as
a mosaic made up of patches of distinguishable vegetation types defined
by combinations of species densities or occurrence. Each phase may not
be completely homogeneous, but there is greater similarity within a
patch and less between patches. As in the cycle-mosaic view of vegeta-
tion, there may be a continuum of phases that grade into each other
through time, or there may be only two phases that are distinct and
obvious.

There are many examples of natural systems that consist of two phases,
including the vegetation stripes of some arid regions where lines of
vegetation alternate with patches of bare ground (cf. Chapter 1 of White
1971,Montaña 1992).Whittaker and Naveh (1979) examined the multi-
species pattern in three communities characterized by patches of shrubs
in grassland: a mallee in Australia, a mesquite grassland in Texas, and
Pistacia lentiscus woodland in Israel. All three were clearly two-phase
mosaics. In a savanna grassland in South Africa, Carter and O’Connor
(1991) also found a two-phase mosaic, with each phase dominated by a
different perennial grass, Setaria incrassata in one and Themeda triandra in
the other. In these cases in which there are only two phases and the
demarcation between them is unambiguous, the definition of spatial scale
is easy since half the distance between the centers of similar phases is the
same as the distance between the centers of adjoining different phases.
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Figure 5.1 When there are only two phases to the mosaic, the average distance
between the centers of adjacent patches (small triangles) is the same as half the
average distance between the centers of patches of the same kind (large triangles).



In many other communities, however, there may be more than two
phases in the mosaic, and then the ‘scale’ of the pattern will be different
depending on whether it is defined in terms of distances between the
centers of similar phases or distances between the centers of different
phases (Figure 5.2). It is best to define the scale of multispecies pattern as
half the distance that maximizes the probability of finding the most
similar combination of species’ densities (Dale and Zbigniewicz 1995).
The average distance between the centers of adjoining phases that are
different is the same as the average patch width, which is itself an impor-
tant property of the vegetation pattern. In many natural communities, the
demarcation between different phases may not be clear and the vegeta-
tion types may grade into one another, rather than having abrupt transi-
tions. This feature may require multivariate analysis to be used in the
analysis of spatial pattern.

One consequence of our definition of scale is that it is possible for
different phases to have different scales of pattern (Figure 5.2). Allowing
different phases to have different scales may, at first glance, seem to be a
difficulty for the concept of multispecies pattern, but it probably reflects
the nature of spatial structure of vegetation better than a definition that
would force all phases to exhibit the same scale. The example used in
Dale and Zbigniewicz (1995) to illustrate this point is a hummock-
hollow system in which species that specialize in hummock tops or
hollow bottoms will have a scale of pattern that is twice the scale of
species that inhabit the sides of the hummocks. For instance, in bogs in
Western Canada, Sphagnum fuscum is most abundant on the tops of the
hummocks, Sphagnum megellanicum on the sides and Sphagnum angusti-
folium in the pools between the hummocks (Gignac & Vitt 1990). The
scale of pattern of S. megellanicum is half the scale of the other two species
(Figure 5.3). In this example, there is a single controlling environmental
variable but there is more than one scale of pattern. If there are several
important environmental variables, the situation may be much more
complicated.

It is possible that various factors in the environment such as light, soil
nutrients, moisture, and grazing all impose patchiness of different scales;
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Figure 5.2 When there are more than two phases, the average distance between the
centers of adjacent patches (small triangles) is less than half the average distance
between the centers of patches of the same kind (large triangles).



then the groups of species that are most strongly controlled by each factor
will have patterns of different scales. The vegetation, as a whole, has
several scales of pattern, at least one for each set of species. Any method
designed to investigate multispecies pattern must therefore be able to
detect several different scales.The clarity of the detection of several scales
of pattern is an important criterion to be used in evaluating the methods
available.

Multiscale ordination
The first method proposed for multispecies pattern analysis is multiscale
ordination (MSO) developed by Noy-Meir and Anderson (1971) and its
concept remains one of the most sophisticated. The basis of the pro-
cedure is to calculate a variance-covariance matrix of the species for each
of a range of block sizes and then the matrices are summed.The summed
matrix is then subjected to principal components analysis (PCA) which
gives several independent linear combinations of the species that explain
as much of the variance as possible. For each new combination, its associ-
ated variance is partitioned by block size to produce a graph analogous to
those in single-species methods (Chapter 3).

In the original version of the method (Noy-Meir & Anderson 1971),
the variances and covariances were calculated using blocked quadrat vari-
ance (BQV); the modern version by Ver Hoef and Glenn-Lewin (1989)
used TTLQV (Hill 1973) and its related covariance TTLQC (Greig-
Smith 1983).We used three-term local quadrat variance (3TLQV) and its
related covariance because it should be less affected by trends in the data
(Dale & Zbigniewicz 1995, and see Chapter 3 for discussion of the
advantages and disadvantages of those two methods).

Let the number of species be k; a k�k variance-covariance matrix,
C(b), is calculated for each block size, b, from 1 to some maximum, M,
using 3TLQV and 3TLQC, as described in Chapters 3 and 4. For clarity,
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Figure 5.3 In a hummock-hollow system, species that specialize on the sides of the
hummocks (Sphagnum megellanicum,M) will have a scale that is half of the scale of
species found exclusively on the tops of the hummocks (S. fuscum, F) and those
found only in the hollows (S. angustifolium,A).



the procedure will be illustrated with artificial data for four species, as
shown in Figure 5.4.Two of the species have pattern at scale five,but they
are offset by four quadrats; they are negatively associated. The other two
have pattern at scale three and are positively associated. Table 5.1 gives
the variance-covariance matrices for block sizes 1 to 10. The M matrices
for the range of block sizes are added together, as illustrated at the bottom
of Table 5.1:

S� C(b). (5.1)

The sum is eigenanalyzed as in the familiar procedure of PCA. That
procedure can be explained in several ways; for instance,we can say that it
finds the linear combination of the k species that explains more of the
variance than any other such combination. It then finds a second linear
combination that maximizes the amount of the remaining variance
explained and that is orthogonal to the first. It proceeds to find a third
axis with the same properties, and so on.The variance associated with the
first combination is called the first eigenvalue �l, the variance of the
second is the second eigenvalue �2, and so on. Because the linear combi-
nations are forced to be orthogonal, their covariances are all zero.
Therefore, another way of explaining the process is to say that the origi-
nal variance-covariance matrix S is transformed into a diagonal matrix of
the eigenvalues, �:

�
M

b�1
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Figure 5.4 Artificial data for multiscale ordination (MSO) analysis.The shaded
squares represent quadrats with high density.The first and second species have a
scale of 5, but they are negatively associated.The third and fourth species have scale
of three and are offset by one quadrat.
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Table 5.1.Variance-covariance matrices for block sizes 1 to 10 (artificial data
from Figure 5.4)

b�1
499.161 247.483 331.376 �335.570
247.483 494.966 331.376 �331.376
331.376 331.376 834.732 �419.463

�335.570 �331.376 �419.463 834.732
b�2

1250.000 �625.000 �31.780 �6.356
�625.000 1250.000 19.068 �19.068
�31.780 19.068 3756.356 1887.712
�6.356 �19.068 1887.712 3756.356

b�3
4162.386 �3232.021 37.101 �128.425

�3232.021 4140.982 142.694 �142.694
37.101 142.694 6095.891 2762.557

�128.425 �142.694 2762.557 6095.891
b�4

8135.813 �6585.208 �45.415 �9.732
�6585.208 8153.114 22.708 �22.707

�45.415 22.708 1878.244 943.988
�9.732 �22.707 943.988 1878.244

b�5
9000.000 �7027.972 61.189 �61.189

�7027.972 9055.944 75.175 �75.175
61.189 75.175 166.958 �83.916

�61.189 �75.175 �83.916 166.958
b�6

5407.097 �4349.234 0.000 0.000
�4349.234 5382.803 0.000 0.000

0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000

b�7
1785.714 �1392.857 44.005 �49.107

�1392.857 1785.714 49.107 �49.107
44.005 49.107 119.260 �59.949

�49.107 �49.107 �59.949 119.260
b�8

313.064 �156.814 �6.769 0.000
�156.814 311.372 5.077 �5.077

�6.769 5.077 939.192 472.134
0.000 �5.077 472.134 939.192

b�9
55.758 27.879 34.469 �38.524
27.879 55.758 38.524 �38.524
34.469 38.524 2031.630 920.519

�38.524 �38.524 920.519 2031.630



�1
�2 0

. (5.2)� . �0 .
�k

Table 5.2 shows the diagonal matrix of eigenvalues derived from the
sum matrix for the artificial example.

There are several ways of explaining how this transformation is
accomplished, but one way is to say that for each eigenvalue, �i, we are
looking for an eigenvector, ui, such that uiS��iui. We can, in fact,
standardize the vector such that uiu i

T�1;u i
T is the transpose of ui, so their

product is a scalar. (The squares of the elements of ui add to 1.) Most
computer algorithms for performing eigenanalysis, such as Hotelling’s
procedure, will provide these vectors directly. Knowing vector ui, the
eigenvalue can be partitioned by block size:

�i�uiSu i
T�uiC(1)u i

T�uiC(2)u i
T�. . .�uiC(M)u i

T

��i(1)��i(2)�. . .��i(M). (5.3)

For an analysis of k species, k eigenvalues are produced, but the
first few are the largest and may account for a large proportion of total
variance and thus only they need to be considered further. In other
applications of the procedure, such as PCA, the technique is used to
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Table 5.1. (cont.)

b�10
0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000
0.000 0.000 751.384 377.767
0.000 0.000 377.767 751.384

sum over all block sizes
30608.994 �23093.744 424.175 �628.903

�23093.744 30630.654 683.728 �683.728
424.175 683.728 16573.646 6801.350

�628.903 �683.728 6801.350 16573.646

Notes:
The first two species have scale of five and are negatively associated; see b�5 and
b�10. Species three and four are positively associated with scale three; see b�3 and
b�6.



reduce the number of dimensions that need to be considered.The largest
eigenvalues are then each partitioned into the contributions of each
block size and peaks or plateaux in the plot of variance as a function of
block size are interpreted as corresponding to scales of pattern (cf. Ver
Hoef & Glenn-Lewin 1989). In our example, the first eigenvalue
accounts for 57% of the variance and its associated eigenvector is
(0.71,�0.71,0,0). When the eigenvalue is partitioned, there is a variance
peak at block size five (Table 5.3), reflecting the scale of pattern of the
first two species. (Note that 0.71 is 1/ and so the sum of the squares of
the vector elements is 1.0.) The values for species 1 and 2 have opposite
signs since they are negatively associated. The second eigenvalue accouts
for 25% of the total variance. Its eigenvector is (0,0,0.71,0.71),picking up
the third and fourth species and producing a variance peak at block size 3,
as we would expect. The values have the same sign since the species
are positively associated. The third and fourth eigenvectors are
(0.29,0.28,0.65,�0.65) and (0.65,0.65,�0.28,0.29) with variance peaks
at three and five. In a real analysis, we probably would not examine the
third and fourth axes because they represent only a small proportion of
the total variance, 11% and 7%.

As in single-species 3TLQV analysis, small-scale patterns may produce
‘shoulders’ in the variance plot, due to the large variance associated with
pattern at large block sizes. Another feature of methods like 3TLQV is
that pattern of scale B produces resonance peaks at block sizes approxi-
mately 3B, 5B, 7B . . ., with peak variances diminishing to 1/3, 1/5, 1/7.
This phenomenon appears in the multispecies pattern analysis.

In evaluating the multiscale ordination technique, Ver Hoef and
Glenn-Lewin (1989) suggest that, because larger block sizes tend to
produce larger variances, the covariance matrices should be weighted
prior to summing. Such a weighting procedure would be similar to sub-

�2
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Table 5.2.The diagonal matrix of eigenvalues
derived from summed matrices of Table 5.1

53714.48 0 0 0
0 23375.32 0 0
0 0 10299.65 0
0 0 0 6997.50

Notes:
The proportion of the total variance accounted for by
the values are 57%, 25%, 11% and 7%.



stituting the intensity for the variance at each block size. As in single-
species pattern, the intensity of the pattern at block size b, I(b), is a func-
tion of the block size and the variance, V(b):

I(b)� . (5.4)

We therefore suggested weighting the variance-covariance matrices
by the factor 6b/(b2�2) before summation and eigenanalysis. The
square-root is omitted, so that the matrices remain truly variance-covari-
ance matrices and their sum can be partitioned (Dale & Zbigniewicz
1995). After eigenanalysis and partitioning, the values are converted back
to the equivalent of the original variances by multiplying by (b2�2)/6b.
In our artifical example, the process of conversion and back conversion
has little effect on the analysis because the scales are both small and close
together.

For each eigenvalue, �i, from the analysis, there is a variance at each
block size,�i(b).Where there is a variance peak, it is useful in interpreting
its importance to look at the associated intensity, Ji(b):

Ji(b)� . (5.5)

In the example based in Figure 5.4, the first two axes have variance
peaks of high intensity, 0.89 and 0.66, and the last two have low intensi-
ties, 0.30 and 0.22 (Table 5.3).

There is a second property of multispecies pattern that is important in

�6b �i(b)/(b2�2)

�6b V(b)/(b2�2)
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Table 5.3.Eigenvalues partitioned by block size and their associated intensities;
maxima are underlined

b �l(b) J1(b) �2(b) J2(b) �3(b) J3(b) �4(b) J4(b)

1 249.59 0.11 415.30 0.14 1660.01 0.22 338.68 0.10
2 1875.40 0.31 5643.93 0.53 1674.28 0.22 819.10 0.15
3 7384.40 0.61 8858.38 0.66 3112.37 0.30 1140.00 0.18
4 14729.84 0.86 2822.49 0.37 1037.57 0.17 1455.52 0.20
5 16055.68 0.89 83.31 0.06 630.46 0.13 1620.42 0.22
6 9743.94 0.70 0.15 0.00 167.32 0.07 878.49 0.16
7 3178.53 0.40 59.38 0.05 283.49 0.09 288.55 0.09
8 469.13 0.15 1411.28 0.26 418.43 0.11 203.98 0.08
9 27.95 0.04 2952.01 0.38 1001.83 0.17 192.98 0.07

10 0.02 0.00 1129.09 0.24 313.89 0.10 59.77 0.04

Notes:
�i is the eigenvalue (Equation 5.3) and Ji(b) is the associated intensity (Equation 5.5).



evaluating the pattern: how much the various species contribute to the
pattern. If one species dominates one of the eigenvectors, any pattern
detected based on that eigenvector is not truly multispecies.A measure of
species’ contributions can be derived from the eigenvectors produced by
the analysis.Recall that one explanation of the procedure is that from the
k original variables, the xj’s, for each eigenvalue �i there is a new variable,
yi, that is a linear combination of the species densities with weights uij:

yi� uijxj. (5.6)

We know that uij
2�1,because uiui

T was set at 1.The variance of the

squares of the weights, uij
2, can be used to evaluate the evenness of the

species’ contributions. The mean of the uij
2 is 1/k by definition. Let Ci be

their coefficient of variation in eigenvector ui, variance over mean,
expressed as a proportion not in percent. If evenness is at a maximum
with all species having equal weights, Ci is 0, and if evenness is at a
minimum with one weight of 1.0 and the other k�1 being 0, then Ci is

.A measure of evenness is therefore:

Ei�1�Ci/ . (5.7)

In the small example we have been using as an illustration, the first two
axes have low evenness,E�0.43,but the last two are more even with E�
0.77.

The weights, uij, can also be used to evaluate species association at the
scale of pattern indicated by peaks in an eigenvalue’s partitioning.Pairs of
species which have large weights of the same sign are strongly positively
associated and species which have large values of opposite sign are nega-
tively associated at that scale (cf. Ver Hoef & Glenn-Lewin 1989). We
have already commented on this feature of the artificial example; in the
first eigenvector species one and two are of opposite signs whereas in the
second eigenvector species three and four have the same sign. It is impor-
tant to note, however, that the meaning of the signs does not carry
through to the last two eigenvectors, which must be orthogonal to the
first two and to each other.

We have applied this multiscale ordination to a range of data sets (cf.
Dale & Zbigniewicz 1995), including the successional communities on
the Robson moraines. On moraine three, the first eigenvalue represents
83% of the total variance, but it does not represent true multispecies

�k�1

�k�1

�
k

j�1

�
k

j�1
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pattern because it is very strongly dominated by a single species, Picea
engelmannii, giving Ei�0.093. If you glance at Figure 3.30, you will see
why. The next two axes were also dominated by single species. The first
three eigenvalues accounted for 95% of the total variance. On the
younger moraines, the axes are also dominated by single species but the
first eigenvalues were not as high.

In their study of a basalt glade prairie, Ver Hoef and Glenn-Lewin
(1989) found much more even eigenvector loadings. An interesting
hypothesis for future testing is whether the evenness of contributions to
multispecies pattern is low in seral communities but is greater in climax
vegetation. A last optional step in the analysis procedure is to plot the
score of each quadrat for the first few axes along the length of the transect
to portray the multispecies response. Noy-Meir and Anderson (1971)
refer to such a diagram as a component profile. Ver Hoef and Glenn-
Lewin (1989) recommend using a running average of the quadrat scores
using a moving window of size equal to the major scale of pattern
detected for that axis. For example, with their field data, the first eigen-
value had a peak at block size 50 (5m) and so they plot moving averages of
50 quadrats.The 5m scale of pattern was attributed to patches of crustose
lichens on basalt outcrops, somewhat less than 5m in size, separated by
larger patches of other growth forms.The second eigenvalue had a similar
peak at about 5m but it had a second peak at 9m.This second scale is due
to the segregation of regions between the lichen patches into two types,
one dominated by cryptogams and the other dominated by graminoids.
This situation is similar to that in Figure 5.3, with the crustose lichens
(like ‘M’ in the figure) having a scale of pattern that is half that of the other
cryptogams and of the graminoids (like ‘F’ and ‘A’ in the figure).

Our evaluation of the MSO technique using artificial data is that it
recovers most of the major features of the data reasonably well, even with
presence/absence data which may violate the assumption of multivariate
normality which underlies the eigenanalysis. One somewhat puzzling
feature of the technique is that the results may depend on the maximum
block size used (Dale & Zbigniewicz 1995). Ver Hoef and Glenn-Lewin
(1989) also found much to recommend about this method: not only did
it recover the known structure of fabricated data, but also, in field data, it
revealed details of species associations over a range of scales.

Castro et al. (1986) used PCA for multispecies pattern analysis, but fol-
lowed a different approach. They calculated covariance matrices for
block sizes 1, 2, 4, 8, 16, and 32, and applied PCA to each matrix separ-
ately. The results were used to plot the first axis score as a function of
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position on the transect and to plot the first axis score of individual
species as a function of block size. Because the matrices were analyzed
separately, a high first axis score at one block size may have a different
interpretation from a high first axis score at the next block size. Another
problem of this method, compared to MSO, is that only the first axis is
considered and, therefore, scales of pattern that may be associated with
the second and third axes may be missed.

Semivariogram and fractal dimension
The analysis of fractal dimension as a means of detecting multispecies
pattern is a method introduced into ecology from geostatistics. It is based
on the empirical semivariogram which estimates the semivariance. For
distance b, where xj(i) is the density of the jth species in the ith quadrat,
the calculation is (Palmer 1988):

�(b)� �xj(i)�xj(i�b)�2/2(n�b). (5.8)

Because the terms that contribute to � are measures of dissimilarity at
distance b, this technique is actually a multispecies version of spaced
quadrat variance, PQV, described for the single-species case in Chapter 3
(cf. Ludwig & Goodall 1978). Ver Hoef et al. (1993) discuss the relation-
ship between several spatial analysis methods and they show that PQV is a
variogram estimator that can be used approximate TTLQV;therefore this
multispecies spaced quadrat method is actually closely related to the
MSO blocked quadrat method.

Having calculated �(b), the slope of log(�) as a function of log(b) is
m(b). There is a choice of methods for calculating the slope, including
linear regression over a small range of points or, more simply, following
Palmer (1988):

m(b)� �log �(2b)� log �(b)�/log(2). (5.9)

The slope is then used to calculate the fractal dimension at scale b
(Phillips 1985):

�(b)� �4�m(b)�/2. (5.10)

When quadrats at distance b are very dissimilar and quadrats at distance
2b are similar, m(b) will be large and negative, giving large positive values
of �. When quadrats at distances b and 2b have the same similarity, m(b)
will be zero and � will be 2.0. Large values of � greater than 2.0 there-

�
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i�1
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fore indicate scales of pattern in the data. Because m(b) can be negative, it
is possible for � to take values greater than two; for example, suppose the
density data are in percent, and there are two species, the first has densities
99, 99, 99, 1, 1, 1, 99, 99, 99, . . . and second has complementary densities
1, 1, 1, 99, 99, 99, 1, 1, 1, . . .Under these conditions, �(3)�9604 and �(6)
�0, giving m(3)� �13.23 [replacing log(0) with 0 by convention], and
thus ��8.6. The ability of � to take such large values makes its inter-
pretation as a fractional dimension difficult. One reason for this difficulty
may be that the method was not originally designed for situations in
which repeating spatial pattern would give a series of peaks and valleys in
the variogram, but rather for variograms of phenomena for which
increasing distance gives a continuing increasing difference (see Bell et al.
1993). Alternate methods for calculating the slope of the variogram may
also improve the application of this method.

The strength of multispecies pattern as detected by the fractal method
can be measured by the maximum value of �, since it will reflect the
difference between the low similarity of quadrats at distance b and the
high similarity at distance 2b. If similarity is independent of distance,m(b)
will be zero, giving �(b)�2.0; therefore, peak values of � that are close
to 2.0 indicate multispecies pattern that is very weak. For example, the
Ellesmere Island transect data when treated with this kind of analysis pro-
duced peaks in � that were close to 2.0 indicating that any multispecies
pattern that was present was very indistinct. When we analyze the
artificial data used to illustrate MSO with species patterns at scales three
and five the plot of � has peaks at 3 and 9 with values of 2.5 and 2.8, but
the strongest peaks are at 15, 45 and 75 with values of 13.0!

Palmer (1988) applied the same method of fractal analysis to data sets
from a range of plant communities including a suburban lawn and the
trees and the understorey of a hardwood forest. As in our analysis of the
Ellesmere data, he found fractal dimensions close to 2.0, suggesting weak
spatial pattern in the communities.He also concluded that because fractal
dimension is not a constant function of scale, patterns of spatial variation
cannot be extrapolated from one scale to another.

Methods based on correspondence analysis
There are several methods available for multispecies pattern analysis based
on correspondence analysis (CA).Galiano (1983) carried out that ordina-
tion procedure on data from transects consisting of 400 2cm�2cm
quadrats in a grassland in central Spain. The data used a three-category
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cover scale and so it was argued that CA was a more appropriate ordina-
tion procedure than PCA. Having performed the ordination, the
quadrats’ scores on the first ordination axis were analyzed by two-term
new local variance (NLV). Before that analysis, the plot sequence was
divided into two sequences: A, in which all the negative scores were
replaced with zeros, and B, in which all the positive scores were replaced
with zeros and the negative scores made positive. For example, the
sequence 0.3, 0.9, 0.2, �0.4, �0.7, �0.5, 0.1, 0.6,… gives A�0.3, 0.9,
0.2, 0, 0, 0, 0.1, 0.6, . . . and B�0, 0, 0, 0.4, 0.7, 0.5, 0, 0,. . . . Each of A and
B are analyzed separately. The argument for this conversion is that the
first CA axis will represent a major environmental gradient from moist to
dry and NLV will then detect the sizes of the patches of plants associated
with the two extremes of that gradient. This is more or less what the
analysis found.

In general applications, in which CA would be followed by analysis
using 3TLQV in order to detect the scale of pattern, the division of the
transect into phases which are then analyzed separately would not be rec-
ommended (Gibson & Greig-Smith 1986). There are other two crit-
icisms of the approach used by Galiano. The first is that NLV should be
complemented by 3TLQV or PQV to examine the overall scale of
pattern, not just the average size of the smaller phase. The second is that
more than one axis should be examined since there may be sources of
spatial pattern in the vegetation other than the moist to dry gradient.The
interpretation of this procedure is made more complicated by the ‘arch’
or ‘horsehoe’ effect in CA: samples that are in fact arranged linearly along
a gradient often appear in a horseshoe shape in the ordination diagram
that shows the positions of the samples relative to the first two axes. This
effect can be removed by a procedure known as detrending. If detrending
is not used, the possible effects of this phenomenon on the use of the
ordination procedure for pattern analysis must be investigated.

Gibson and Greig-Smith (1986) used a somewhat different method
based on ordination by CA. They sampled dune grassland vegetation
using three parallel transects of 64 5cm�5cm quadrats. All 192 quadrats
were subjected to detrended correspondence analysis (DCA).For each of
the first two axes, the quadrats were assigned their scores for that axis and
the scores were then analyzed with TTLQV and 3TLQV. TTLQV and
3TLQV were used to examine the scale of pattern of the micro-
topography, quantified by the relative height of the center of each
quadrat.
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Gibson and Greig-Smith extended their analysis by examining the
correlation values derived from TTLQC between the microtopography
and the DCA axis score.The analysis showed that microtopography had a
scale of pattern of about 30cm. The first DCA axis had a similar scale of
pattern (40cm) but was negatively correlated with microtopography.This
correlation was interpreted as being related to the fact that the vegetation
was comprised of hummocks that included the dominant grass
Arrhenatherum elatius, alternating with hollows that contained the domi-
nant herb Hydrocotyle vulgaris. The second DCA axis had a scale of about
15cm, with a weak positive correlation with microtopography. The
authors interpreted these results with reference to small tussocks includ-
ing Carex nigra out of phase with other species group including Equisetum
variegatum. Remember that our examination of artificial patterns showed
that peaks in correlation were not good indications of pattern scale, only
peaks in covariance.Using correlation to evaluate the relationship of scale
already identified is a different procedure.

While Gibson and Greig-Smith used DCA and correlation analysis to
examine the scale of the joint pattern of vegetation and an underlying
environmental factor, we expect that in the future such joint pattern
analysis will be based on the ordination canonical correspondence analy-
sis (CCA) (ter Braak 1987). It includes both species data and environ-
mental data in simultaneous ordination and therefore seems to be an
obvious basis for a joint species-environment pattern study. Like CA, it
also available in a detrended form.

Euclidean distance
A method suggested by  Lepš (1990b) is based on a measure of dissimilar-
ity, the average Euclidean distance, calculated from the species abun-
dances, between adjacent blocks of b quadrats. When this distance
measure is calculated for a range of block sizes, peaks in the plot of dis-
tance as a function of block size will correspond to scales of pattern in the
whole community.The calculation of the average Euclidean distance at a
range of block sizes can be achieved by adding together all the TTLQV
curves of the individual species (Lepš 1990b). The 3TLQV equivalent is
to be preferred over the TTLQV based method described by Lepš
(1990b), for the reasons mentioned in previous discussions (see Chapter
3, ‘Local Quadrat Variances’), including the fact that it is less susceptible
to trends in the data.The calculation is then:
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VE(b)� �xh(j)�2xh(j�b)�xh(j�2b)� /8b(n�1�3b).

/8b(n�1�3b). (5.11)

The consistency of this overall pattern can be measured by comparing
the intensity of the pattern with the average density of species in quadrats
where they are present. If Dj is the average of the nonzero densities of
species j, and Davg is �Dj/k, then a measure of total pattern consistency is:

T(b)� /Davg. (5.12)

For presence/absence data, Davg is omitted, of course.
To illustrate the application of this method, we will use data from the

successional communities on the proglacial deposits adjacent to the SE
Lyell Glacier (52 N, 119 W) in the Canadian Rockies (Dale & MacIsaac
1989). The surfaces are at about 1600m altitude and were uncovered by
the retreat of the SE Lyell and Mons glaciers. The development of the
vegetation begins with Dryas drummondii which forms an almost continu-
ous carpet within 20 years. Shrubs, such as Shepherdia canadensis and Salix
spp.appear at age 40 years and the tree canopy of Picea engelmannii starts to
close around 90 years.At that point, the Dryas cover starts to decline.The
terminal moraine (130 years) is vegetated by a Picea forest with a dense
shrub stratum and almost no Dryas, but a ground cover of mosses.

The chronosequence was sampled at 11 locations, ranging in age from
6 years to 143 on the terminal moraine, and at a twelfth location in the
adjacent old-growth forest, more than 400 years old. Each location was
sampled with two transects of 300 contiguous 30cm�30cm quadrats
parallel to the moraine crests. Percentage cover was estimated for all
species,with the cover of Dryas being divided into live and dead.

In applying the Euclidean distance method to data from these succes-
sional communities at SE Lyell, we found that the peak in VE (variance
based on Euclidean distance) often matched peaks in the variance related
to the first eigenvalues derived from MSO,but the values of T (total consis-
tency) associated with the peaks were quite low,averaging around 0.4.One
of the strongest examples of multispecies pattern was at subsite 11 at Lyell,
where the Euclidean distance method had a variance peak at block size 27
(T�0.62) and the first axis of the MSO analysis,which accounted for 40%
of the total variance,had a peak also at 27 with E�0.4 and an intensity of
0.68.In other cases,the peaks did not match so well,indicating that the two
methods are sensitive to different features of the data. Table 5.4 compares

�6b VE(b)/k(b2�2)

�
2

�
k

h�1
�

n�1�3b

i�1
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Table 5.4.A comparison of multiscale ordination (MSO) and Euclidean
distance multispecies pattern analysis; transects in older vegetation at SE Lyell site

Multiscale ordination
Euclidean distance

�i/�� Ei Peak position (intensity) Peak position (T)

Transect 8.1
0.71 0.39 38 (0.42) 61 (0.36) 36 (0.28) 62 (0.24)
0.15 0.46 28 (0.20) 65 (0.14)
Transect 8.2
0.84 0.29 53 (0.47) – 53 (0.25) –
Transect 9.1
0.76 0.31 26 (0.63) – 26 (0.40) –
0.15 0.33 16 (0.37) –
Transect 9.2
0.48 0.47 11 (0.66) 33 (0.43) 33 (0.42) 57 (0.35)
0.39 0.49 21 (0.49) 61 (0.35)
Transect 10.1
0.48 0.54 33 (0.46) – 40 (0.50) –
0.26 0.41 45 (0.39) –
0.18 0.44 14 (0.48) 43 (0.22) – –
Transect 10.2
0.47 0.56 15 (0.57) 55 (0.34) 23 (0.54) 53 (0.39)
0.22 0.56 18 (0.35) 26 (0.30) 42 (0.24)
Transect 11.1
0.48 0.40 27 (0.68) 27 (0.62)
0.25 9 (0.48) 29 (0.31)
Transect 11.2
0.39 0.57 7 (0.52) 27 (0.38) s59 (0.48)
0.27 0.53 35 (0.43)
0.18 0.62 11 (0.33)
Transect 12.1
0.44 0.63 12 (0.52) 31 (0.33) 13 (0.60) 31 (0.41)
0.23 0.66 14 (0.33) 27 (0.27)
Transect 12.2
0.50 0.53 53 (0.69) 60 (0.64)
0.26 0.49 15 (0.51)
0.15 0.60 14 (0.42) 43 (0.23)

Notes:
Only those eigenvalues that account for 15% or more of the total variance are
included. ‘s’ indicates a shoulder rather than a peak in the variance plot.



the results of MSO and Euclidean distance for transects on the older sur-
faces at the SE Lyell site.

The Euclidean distance method has the advantage that it summarizes
the spatial pattern of many species in a single variance curve. The dis-
advantage is that any technique that produces only one curve may not be
able to show that there is actually more than one scale of pattern. When
the method is applied to our usual four-species artificial data set with
scales of three and five, a curve with a strong peak at 3 is produced in
which there is little evidence of the scale of 5 (Figure 5.5). The variance
curve would have to be partitioned as described by Dale and Blundon
(1990), removing the variance due to the pattern at scale three and the
residual variance would then have a peak at scale five.

The satisfactory performance of the method reported by Lepš (1990b)
was due, in part at least, to the fact that three of the five species used
showed evidence of pattern at the same scale, about 2.4m, so that the
analysis of the overall spatial pattern correctly reflected this characteristic.

Comments
In evaluating three of the methods so far described (MSO,Fractal dimen-
sion and Euclidean distance), we found that if the vegetation consists of
several groups of species with different scales, neither the fractal dimen-
sion nor the Euclidean distance method can reliably pick out all scales of
pattern (Dale & Zbigniewicz 1995). Their output is too much a
summary in which important detail can become lost. We have to use
MSO or DCA score pattern analysis because only those methods give
several axes each of which can display more than one scale of pattern.The
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Figure 5.5 The variance based on Euclidean distance,VE, for the artificial data in
Figure 5.4.The scale of 5 is not very evident in the variance plot.



choice between the two will depend on the suitability of the data for the
application PCA or DCA, and there is a wealth of literature on that and
related topics (cf. Ludwig & Reynolds 1988; ter Braak & Prentice 1988;
James & McCulloch 1990). Note, however, that in studies of artificial
pattern,we found that MSO recovered the characteristics well, even with
presence/absence data. We have also explored the possibility of using
nonmetric multidimensional scaling (NMDS, Anderson 1971) as the
ordination procedure from which to derive quadrat scores for several axes
which are subsequently subjected to 3TLQV (unpublished). It also seems
to perform well with artificial data.

Spectral analysis
In Chapter 3, we describe the use of spectral analysis to examine the
spatial pattern of a single species. Like the other basic methods, it can be
applied to quadrat ordination scores as well as to species density. Kenkel
(1988b) applied spectral analysis to data from a hummock-hollow
complex in a mire in Northern Ontario, by first applying CA. The first
CA axis was highly correlated with microelevation and spectral analysis
found similar scales of pattern in both variables. He also looked at the
relationship between the two spectral series using cross-spectral analysis,
which evaluates the relationship between two series.The similarity of the
two series was evaluated by two spectra, the coherence spectrum which
measures the similarity of amplitudes at particular frequencies and the
phase spectrum which evaluates ‘lead-lag’ relationships. Cross-spectral
analysis is described in greater detail in specialized texts on the subject of
spectral analysis such as Jenkins and Watts (1969) or Koopmans (1974). In
the mire study, the coherence values asssociated with the identified peaks
were over 0.8 and their phase spectra were close to 0. These results show
that the spatial patterns of the vegetation and of the microtopography are
very similar and closely in phase.The hummock-hollow pattern is there-
fore thought to be related to the growth of Sphagnum on the branches of
the low-growing Chamaedaphne calyculata shrubs.

Other field results
An early example of the use of MSO is by Williams et al. (1978) who used
a BQV-based version of MSO to look at the influence of sheep on the
spatial pattern of Atriplex vesicaria. Instead of looking at several species
they looked at several ages of plants of the same species and concluded
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that multiple pattern analysis provided an economical description of the
total pattern of the age-structured population. They conclude that the
plants’ interactions with sheep are influenced by plant size, sex and loca-
tion relative to other plants of the same species.

The Ellesmere Island sedge meadow data (Young 1994) were analyzed
by performing 3TLQV on the individual species and most of them showed
pattern at a scale below block size 20. That small-scale pattern does not
show up clearly in the multispecies analysis. For instance, at site BMS, five
of the eight most important species had pattern at block size six or seven,
but there is no sign of matching scale in any of the three analyses using
MSO, fractal dimension and Euclidean distance. This may be the result of
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Figure 5.6 3TLQV performed on the first CA axis scores for the Ellesmere Island
transects: a OWT, b CRT, c BMS and d BRS.All show evidence of small scale
pattern (arrows).



the individual patterns not being consistent in their phase relationships:
neither constantly in phase nor constantly out of phase. It may be related,
also, to nonstationarity in the patterns.At all four Ellesmere sites, the MSO
produced three axes with the eigenvalue, �,	0.10, usually with moderate
values for Ei, the measure of evenness (average 0.59). In many instances,
there was no evidence of pattern in the range of block sizes studied (up to
75 quadrats�7.5m), especially using the Euclidean distance method. The
values of � for peaks in the fractal dimension analysis were very close to
2.00, indicating little true pattern. What is especially interesting about this
particular example is that when the data were subjected to CA and
3TLQV was carried out on the first CA axis scores, the pattern at small
scales reappears, as is shown in Figure 5.6a–d. There was no clear agree-
ment among the methods, not even among MSO, fractal dimension, and
Euclidean distance which are closely related (Dale & Zbigniewicz 1995).
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We applied these methods also to data from shrub communities in the
Kluane Lake–Kloo Lake valley in the Yukon (61°N 138°W). This valley
is the site of a collaborative project studying the effects of experimental
treatments on the vertebrate and plant communities of the boreal forest
(Krebs et al. 1995). The vegetation consists primarily of white spruce
(Picea glauca) forest, varying from closed to very open, with many
meadows and shrublands. In the shrublands sampled for this data set, the
most prominent species were Salix glauca, Arctostaphylos uvi-ursi, Festuca
altraica, Betula glandulosa, and Picea glauca. We sampled the vegetation at
five sites using visual estimates of cover in 100m transects of 1001 10cm
�10cm quadrats.

While there was no agreement among the methods when applied to
the Ellesmere Island data, the data from the Yukon shrub communities
often gave good agreement between the peak positions in the Euclidean
distance method, the fractal approach and one of the first two axes in
MSO (Dale & Zbigniewicz 1995). In MSO, the evenness was often very
low because of dominance of the axis by one or two species.

Maslov (1990) studied the multispecies pattern in Russian forest com-
munities near Moscow, using a method like MSO, combining PCA and
nested blocks.The results showed that the communities had several scales
of pattern in the 40m to 70m transects studied. The axes were also inter-
preted using the ecological indicator values of the species. Each quadrat
was giving an indicator value for each of several environmental variables
such as light regime,moisture, and soil nitrogen (cf. Persson 1981).By cal-
culating rank correlation coefficients between the derived variables and
the axis scores, he showed that in the Oxalis-type mixed forest, most of
the scales of pattern found on the first two axes were significantly related
to the amount of nitrogen in the soil. He used a related approach (for
details see Maslov 1990) to look at the influence of canopy species, and
concluded that while most axes are interpretable with respect to a gradi-
ent of the influence of tree species, their influence works through the
modification of the environmental factors.

Ver Hoef et al. (1989) examined the relationship between horizontal
pattern in a grassland community and its vertical structure. The horizon-
tal pattern was measured using the first four axes from MSO analysis and
the vertical structure was characterized by vertical cover, vegetation
height and center of vertical biomass in a 10cm-wide strip transect. The
relationship between the two was evaluated using standardized cross-
variograms (Chapter 4). Although both the first eigenvalue and the mea-
sures of vertical structure had scales of pattern at 3m, the relationship
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between the two characteristics was weak because they moved in and out
of phase with each other along the length of the transect. This clearly is
an important area of research for our understanding of the spatial struc-
ture of vegetation and it should receive more attention.

Species associations
In Chapter 4, we alluded to the spatial relationship of the plants of two
species as being a kind of spatial pattern which is usually investigated as
the association of the two species at a single spatial scale.We will concen-
trate in this chapter on multispecies aspects of species association, using
two sampling methods, quadrats and point-contact samples.

The standard pairwise approach to the analysis of species association in
a community is based upon the presence and absence of the two species
in sampling units such as quadrats. The approach has been to test all pairs
of species, using a 2�2 contingency table for each pair to determine
whether the plants of the two species have a significant tendency to be
found together or a significant tendency to be found apart. The cells in
such 2�2 contingency tables are usually referred to as ‘a’ (the number of
quadrats with both present), ‘b’ (A absent, B present), ‘c’ (A present, B
absent), and ‘d’ (both absent).

The significance of a 2�2 table’s departure from the null hypothesis of
equal proportions is tested by comparing a test statistic like X2 or G with
the 
2

1 distribution and, if significant, the association is positive if ad�bc is
positive and negative when ad�bc is negative.

This method of analysis can be used to investigate the dependence of
species associations on scale when small quadrats are combined into
blocks or when a range of quadrat sizes is used. For example, Økland
(1994) used quadrats of five sizes, from 1/256m2 to 1m2, to investigate
bryophyte associations in a Norwegian boreal forest. Very few of the
associations detected were negative, probably resulting from a strong
trend in diversity from under tree canopies to more open microsites
between trees (Økland 1994). As quadrat size decreased from 1m2 to

Species associations · 147

A: A: present absent

present a b
B:

absent c d



1/64m2, there was no trend in the ratio of observed positive associations
to the potential number, but it dropped markedly when the size
decreased to 1/256m2. This result indicates that the strength of associa-
tions does not change with scale but that the smallest quadrats are too
small to be representative of the community, with fewer than 2.5 species
per sample (Økland 1994).

It has long been recognized that all these pairwise tests cannot be inde-
pendent of each other because knowing that species pair A and B and
pair B and C are both positively associated makes the positive association
of A and C less surprising.There is, however, another problem in that, for
biological reasons, the association between a particular pair of species may
depend on the combination of other species in their neighborhood or on
the environmental factors that determine that combination.

A simplistic version of this problem is illustrated by the following
tables which show the joint occurrences of species A and B when species
C is present, when it is absent, and when the presence or absence of
species C is ignored.

This example shows that while A and B are positively associated when
C is present, they are negatively associated in its absence. Ignoring species
C leads to the erroneous conclusion that the two species occur inde-
pendently of each other. We can imagine more complex examples in
which the association of species A and B depends on the combinations of
species C and D, or of C, D, and E, and so on. Therefore, in considering
species association,we need to consider not only spatial scale, as discussed
in Chapter 4, but also the effects of combinations of other species.

To test whether pairwise associations are independent of other species
combinations, we must look at multispecies association and therefore the
data cannot be reduced to a number of 2�2 contingency tables, one for
each pair of species of which there are . We have to use as a single 2k

table.
�k
2�
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C present C absent C ignored
A: present absent present absent present absent

B: present 100 50 50 100 150 150

B: present 50 100 100 50 150 150

test result: significant significant not significant
ad�bc: positive negative zero



As in Dale et al. (1991), we will describe the method for six species,
assuming that extensions to higher values of k are clear. Let the observed
count in cell (i,j,k,l,m,n) be oijklmn, and its expected value, based on the
hypothesis of complete independence, be eijklmn. The variables i to n are 0
when the corresponding species is absent and 1 when it is present. Based
on the complete independence model, the expected value is calculated
as:

eijklmn� , (5.13)

with the plus signs indicating summation over the variable in that posi-
tion. Thus, o

������
is the number of quadrats sampled. The test statistic

for the whole table is:

G�2 oijklmn log (oijklmn/eijklmn). (5.14)

This G statistic is compared with the 
2 distribution on 2k�k�1 degrees
of freedom, �, which is 57 for k�6. If the observed table differs
significantly from the expected, the next step is to determine the extent
to which each cell deviates from its expected value.This deviation can be
measured by the Freeman–Tukey standardized residual:

dijklmn� � � . (5.15)

These residuals are used to determine which cells are the most aber-
rant and contribute most to the overall significance. Bishop et al. (1975)
caution that there is no critical value that assures that a cell is different
from its expected value with a known probability, and thus can be consid-
ered statistically significant, but Sokal and Rohlf (1981) suggest a value of

as a guideline. For example, for k�6 and ��0.05, the guide-
line value is 1.85.

The presentation of the results of this analysis will be difficult for large
numbers of species, but, if there are relatively few,our 1991 method (Dale
et al. 1991) seems to work well. A line of k boxes is drawn for the cell of
each significant deviate and these are arranged in two columns, one for
those in which o	e and one for those with oe. An empty box corre-
sponds to a species being absent and the box is filled with a square if the
species is present. Figure 5.7 gives an example.

One disadvantage of the method is that with many species the number
of cells in the table increases quickly and even with moderately large data
sets, the expected value for each cell falls rapidly, and it is well known that
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the test statistic’s approach to the 
2 distribution becomes poor when the
expected values are small.

Another area of concern is the relationship between the number of
species, the physical size of the plants, and the size of the sample unit. For
instance, if the quadrat is small relative to the plants, there may be a prac-
tical upper limit to the number of different species that can be found in
the quadrat because of the limit to the number of plants. (Think of sam-
pling a forest canopy with 1m�1m quadrats.) In those circumstances,
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Figure 5.7 An example of how the box diagrams can be used to portray the results
of 2k testing.There are four species and the column labelled H shows combinations
of presence (filled) and absence (empty) that were much more common than
expected, the pairs 1 and 2, 2 and 3, and 3 and 4; the triplets 1, 2, and 3 and 2, 3, and
4.The column labelled L shows those combinations that had much lower frequency
than expected, combinations with only one species present and combinations that
have both species 1 and 4 present.



the combinations that have many species included will have 0 in the
observed counts, and the results of the test will be affected.

A third factor is the fact that if the quadrat data are collected in tran-
sects, the detection of association will be affected by the spatial auto-
correlation in the data. Spatial autocorrelation decreases the effective
sample size because ten adjacent quadrats may provide information
equivalent to that in fewer than ten independent quadrats. For this
reason, spatial autocorrelation leads to more apparently significant results
and to avoid this effect, a deflation factor, �, is divided into the test statis-
tic to decrease its value. Dale et al. (1991) discuss the problem and
describe one way to calculate deflation factors. That method was based
on the underlying model of a Markov chain. For multispecies testing, it
may be that the amount of deflation necessary is small, again based on
underlying Markov processes. Dale et al. (1991) describe a Monte Carlo
procedure for deflating multispecies association test statistics. Willingness
to apply the technique will depend on a researcher’s assessment of the
assumption of Markov processes. [Remember that Pielou (1977a) sug-
gested that Markov models of two-species sequences were probably
seldom tenable hypotheses.] It is our impression that the more species
that are considered, provided at least some of them do not occur in long
runs of quadrats, deflation values are small for multispecies association
analysis. For example, in examining the Ellesmere Island data set, we
found that as more species were considered, the degree of the Markov
model needed to describe the spatial process decreased; in other words, as
more species are considered, the combinations of species in adjacent
quadrats become more independent. For this reason, the effect of spatial
autocorrelation must be taken more seriously in pairwise tests than in
multispecies testing.

For an illustration of the technique, we will use data sets from two
sites, one from moraines one and three (dated 1801 and 1890) at Mt.
Robson, and the other from proglacial deposits at the SE Lyell glacier,
Alberta.The SE Lyell data were subdivided into two sets of 1200 quadrats
(4 transects) each: those labelled 8 and 9 (dated at 1894 and 1885) and
those labelled 10 and 11 (dated 1855 and 1840). We analyzed the eight
most frequent species in each data set. In these seral communties, the
deflation required for the multispecies test, �a, averaged 1.35. In the data
there are several examples of the species combination of only A and B
being rare but the combination of A, B and C (or A, B, C, and D) being
common, and there are examples where the reverse is true (either can be
referred to as a reversal). There are several instances of species A and B
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being positively associated in the pairwise test, with the combination of
species A and B only being significantly low in frequency. For instance in
the first part of Figure 5.8, high-frequency combination one,which con-
tains three species, reverses low-frequency combination seven, which
contains two of the three. Low-frequency combination 26, with three
species, reverses the high-frequency combination 15. An intriguing
comparison is ‘high 1’ and ‘high 2’with ‘low 4’ and ‘low 6’; all four of the
bryoids are a common combination whereas some combinations of three
of the four are very rare and one is very common.

The major division between the species is that, in all cases, the first four
are vascular plants and the last four are bryophytes or a lichen (‘bryoids’).
The morphology of the last four combines with the choice of quadrat
size to make combinations of one, two, or even three of them in a
quadrat,with no vascular plants, rare (Mt.Robson L1 to L7;Lyell 8 and 9
L1 to L5;Lyell 10 and 11 L1 to L3).Not surprisingly,only ‘dominant’vas-
cular plants like Picea or Dryas are commonly found alone in a quadrat,
whereas the bryoids are very rarely found alone (Figure 5.8). There are
many instances of high frequencies for combinations of a single vascular
species with or without bryoids; this explains the predominance of nega-
tive associations in the tests of pairs of vascular plants (Tables 5.5 and 5.6).
The large numbers of positive pairwise associations between bryoids
must be caused by the high frequencies of combinations of one or two
vascular plants with several bryoids. For instance, at Mt. Robson,
Hedysarum (Table 5.6) was frequently found in association with three or
all four (H5–H8) and rarely with only one or two (L8–L11), and most
reversals contained Tortella and Ditrichum.

At the SE Lyell subsite 8 and 9, there is a clear division between
quadrats in the more closed phase with Picea and/or Shepherdia and those
in the Dryas-dominated open areas.Of the low-frequency combinations,
nine have Dryas with Picea or Shepherdia. In spite of the overall negative
associations between Dryas and Shepherdia and between Dryas and Picea,
there are some high-frequency combinations containing Dryas and at
least one of the other two: H20–H23. In fact, the combination of only
Dryas and Picea has a high frequency (Figure 5.8b,H21).

The association between Picea and Shepherdia changes from positive at
subsite 8 and 9 to negative at subsite 10 and 11 (Table 5.6),probably as the
result of increased shading by the conifer. This is reflected by a change
from ten high-frequency and two low-frequency combinations with
both species at the first subsite to two high-frequency and eight
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Figure 5.8 Box diagrams portraying the 2k association analysis for the eight most
important species in seral communities at a Mt.Robson, b SE Lyell subsites 8 and 9,
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Figure 5.8 (cont.)
and c SE Lyell subsites 10 and 11. The column labelled H contains the combinations
that occurred with much higher frequency than expected and the column labelled L
shows those that occurred with much lower frequency than expected. In many
instances, there are ‘reversals’, triplets or quadruplets of species of high frequency
that contain pairs of low frequency, or vice versa.We will point out some of these:
a H2 and H5 are reversals of L2;H1,H2,H6,H7,H9 and H12 reverse L7; L26,L27,
L28 and L31 reverse H15. b H4 and L15 are complements; L15 to L19 are reversals
of H21. c H8 and H10 reverse L7;H8 and H14 reverse L9; L5, L15, and L16 are
reversals of H3; L17 to L19 reverse H12.The species and plant groups are given in
Table 5.5, p. 156.



low-frequency combinations at the older site. Between the younger and
the older site, there also seems to be a decrease in the number of species
present in the high-frequency combinations and an increase in the
numbers in the low ones.This trend may be attributable to an increase in
the sizes of the patches and in the scales of pattern, making it less likely
that a single quadrat can contain many species.

The preceding discussion shows that analysis using the 2k approach
obviously can reveal details about the spatial relationships of species not
available from the traditional analysis.We are not suggesting that the pair-
wise analysis of species associations should be abandoned. In many
instances, the average association of two species, which is what the results
of 2�2 table testing represent, will be of interest and the 2k method may
not be tractable for large numbers of species. However, in other cases, the
greater detail revealed by the multispecies method will prove informative,
even if applied only to the subset of species that are most of interest.
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Before we leave the topic of species association as detected using data
from strings of contiguous quadrats, we should emphasize a comparison
with quadrat covariance analysis. Covariance analysis allowed us to look
at the scales of association between two species, which could be positive
at some scales and negative at others.Similarly,multispecies pattern analy-
sis can be interpreted in terms of scales of association. In fact, Ver Hoef et
al. (1989) refer to groupings of species detected by MSO as microassocia-
tions. These groupings are created, relative to each axis of the ordination,
by the eigenvectors which give positive and negative weights or loadings
to each species. For example, in their grassland study, the first eigenvector
had a large positive weights for Leontodon hispidus, Carex flacca, and
Rhinanthus serotinus and large negative weights for Hypericum perforatum
and Knautia arvensis.Because the eigenvalue had a variance peak at 30cm,
we can interpret the positive and negative associations within that group
of species as having a scale of 30cm. On the other hand, the third eigen-
vector,which peaked at 3m,had positive loadings for Festuca pratensis and
Linum catharcticum and negative loadings for Centaurea jacea and Carex
flacca; we would therefore interpret the positive and negative associations
within that grouping of species as occurring at that larger scale.
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Table 5.5.Species and plant groups used in the
analysis of field data

Mt.Robson moraines
1. Picea engelmannii Parry ex Engelm.
2. Dryas octopetala L.
3. Arctostaphylos rubra (Rehder and Wils.) Fern.
4. Hedysarum boreale var mackenzii Nutt. (Rich.)
5. Tortella inclinata (Hedw.) Limpr.
6. Ditrichum flexicaule (Schwaegr.) Hampe
7. Bryum sp.Hedw.
8. Cladonia sp.(Hill) Hill

SE Lyell moraines
1. Dryas drummondii Richards
2. Picea engelmannii Parry ex Engelm.
3. Shepherdia canadensis (L.) Nutt.
4. Salix glauca L.
5. Brachythecium groenlandicum (C. Jens.) Schljak.
6. Bryum caespiticium Hedw.
7. Drepanocladus uncinatus (Hedw.) Warnst.
8. Tortella tortuosa (Hedw.) Limpr.



The second method for detecting species associations is contact sam-
pling which was introduced by Yarranton (1966) for the study of a
bryophyte-lichen community. At each of many regularly or randomly
placed points, the species present at the point, the initial sample, is
recorded together with the species that touches the initial one closest to
the point, the contact neighbor.The method is said to examine the com-
munity from ‘a plant’s eye view’ in that it investigates the plant’s
neighborhood as defined by physical contact (Turkington & Harper
1979a,b).When the distinction between the initial sample and its contact
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Table 5.6.Pairwise associations in seral communities based on quadrat data

Species

Species 2 3 4 5 6 7 8

a) Mt.Robson moraines
1 · · � � � � �
2 : � � · · � ·
3 : � · · � ·
4 : � � � ·
5 : � � �
6 : � �
7 : �

b) SE Lyell 8 and 9
1 � � · · � � ·
2 : � · - � � ·
3 : · � · � ·
4 : · · · ·
5 : � � �
6 : � �
7 : �

c) SE Lyell 10 and 11
1 � � · · · · �
2 : � · � � · �
3 : � · · · �
4 : · · · ·
5 : � � ·
6 : · ·
7 : �

Notes:
‘�’ Indicates positive association and ‘�’ indicates negative, ‘.’ indicates that the test
result was not significant.A blank indicates that no significant association was
detected. See Table 5.5 for species names.



neighbor is preserved, the method can be used to examine asymmetric
associations. That is, we can distinguish among three possibilities: (1) A is
associated with B but not B with A; (2) B is associated with A but not A
with B, and (3) A and B are associated with each other.

The original ‘Chi-square’ approach to the analysis of this kind of data
has been shown to be wrong because the expected values based on the
hypothesis of random pairing were calculated incorrectly (de Jong et al.
1980, 1983). Their 1983 paper gives the correct method of calculating
expected values.They suggest that it is misleading to treat cases where the
initial sample has no contact neighbor as if the plant were in contact with
the pseudospecies ‘no contact’, because of the asymmetry it imposes on
the count matrix. Their method uses an iterative technique to derive
maximum likelihood expected values for contact frequencies based on
the null hypothesis of random pairing. The de Jong method assumes that
within-species contacts are disallowed, so that the main diagonal of the
data matrix consists of zeros.The expected values can be calculated in two
ways, with and without the ‘proportionality hypothesis’. That hypothesis
is the assumption that the probability of a species being a contact neighbor
is proportional to the probability of its being an initial sample.

The proportionality hypothesis is unlikely to hold if the morphology
of some plants makes it more probable that they will be initial samples
rather than contact neighbors, such as a savanna tree, or more probably
contact neighbors, such as climbing vines. Even in vegetation that is
strictly two-dimensional, different probabilities might result from the
shapes and sizes of the species patches: species that grow as large round
patches will have a higher initial sample to contact neighbor ratio than
those that form very irregular patches with a high perimeter to area ratio.

The usual method of analyzing this kind of data for k species is to
make a k�k frequency table with the entry oij being the observed
number of times that species i was the initial sample and species j was its
contact neighbor.The expected value for that cell of the table, eij, is calcu-
lated based on the hypothesis of independence, and the deviation of the
observed from the expected is measured by a test statistic for the whole
table (Sokal & Rohlf 1981):

G�2 oij ln(oij/eij). (5.16)

The test statistic is then compared to the 
2 distribution with an
appropriate number of degrees of freedom. The test statistic, G, is calcu-
lated using expected values based on the assumption of randomness, first
with the hypothesis of proportionality, Gp (k2�1 df), and then without

� �
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the hypothesis, Gn (k2�k df). The proportionality hypothesis can be
tested by comparing Gh�Gp�Gn to the 
2 distribution with k�1
degrees of freedom (de Jong et al. 1983).

Having tested the whole k�k sample-contact frequency table, with
and without the proportionality hypothesis, and found it significant, we
will want to know which pairwise associations are significant. de Jong et
al. (1983) discuss the possibility of collapsing the table in order to test
specific pairwise associations. If, however, the proportionality hypothesis
has been found to be false, it is impossible to test a pairwise association
without assuming that relationships of the two species of interest with
others in the table are random (de Jong et al. 1983, Appendix 2). If the
table as a whole is significantly nonrandom,no subsection of the table can
be assumed to be random. It is certainly impossible to make that assump-
tion while testing all possible pairs of species. The alternative is to calcu-
late the Freeman–Tukey standardized residual for each cell:

zij� . (5.17)

We studied a lichen community at Jonas Rockslide, a large rockslide in
Jasper National park, 75km south of the town of Jasper on Highway 93
(52°26�N, 117°24�W). It is 3.5km long and 1km wide, ranging in eleva-
tion from 1500m to 2200m. The rock is honey-colored quartzite sand-
stone and is in blocks of a variety of sizes, commonly up to 3m�3m�
1m, with flat surfaces. The slide faces southwest and, based on licheno-
metric evidence, it is at least 500 years old (John 1989).

Saxicolous lichens cover 87% of the exposed rock surface, and more
than 100 species were identified, with growth forms including crustose
(e.g., Rhizocarpon), foliose (e.g. Umbilicaria, Melanelia), and fruticose (e.g.,
Pseudephebe). Rock faces were selected for sampling with the criteria of
low microtopographic relief, size larger than 1m�1m, between 0° and
90° in slope angle and not closely sheltered by trees (see John 1989).
Twenty-five rock faces were sampled using a rectangular grid of sample
points with vertical spacing of 10cm along the rock surface and horizon-
tal spacing of 20cm. The total sample was 2200 points. The species at
each grid point was identified as well as the species touching the initial
lichen closest to the grid point.Uncolonized rock was treated as if it were
a species.

In this analysis of the rockslide community, only the 17 most common
lichen species were used (those that occurred as an initial sample or a
contact neighbor at least 70 times),with all the rest being lumped into an
‘other species’ category. Those 17 included bare rock treated as a species

�oij��oij�1��4eij�1
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both as an initial sample and as a contact neighbor (no contact).The pro-
portionality hypothesis was tested as outlined above,but the result may be
affected by small expected values.

In the lichen community, the table of sample-contact frequencies was
very significantly nonrandom,both with and without the proportionality
hypothesis:Gp�658.3 on 323 df. and Gn�524.9 on 306 df.The propor-
tionality hypothesis is strongly rejected: Gh�133.4 on 17 df. The pair-
wise species associations shown to be significant using the
Freeman–Tukey residuals are shown in Table 5.8.

Because the lichen data were collected on a grid of sample points, we
were concerned about possible effects of spatial autocorrelation. The
effective sample size may be reduced because the probability of finding a
particular species at a sample point is dependent on the species found at
nearby points, due to their microhabitat ecology (John 1989). Therefore,
more tests may give apparently significant results than the data justify. To
evaluate spatial autocorrelation,we used join-count statistics.
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Table 5.7.Frequency of lichen species as initial samples or contact neighbors and
ratios, r, of occurrence as initial sample and as contact neighbour

Number Species r f(i)�s(i)

1. bare rock 0.66 822
2. Rhizocarpon bolanderi 1.11 393
3. Spilonema revertens 0.61 421
4. Umbilicaria hyperborea 2.04 76
5. Rhizocarpon sp. (grey) 1.02 261
6. Aspicilia cinerea 1.62 160
7. Pseudephebe pubescens 0.80 227
8. Melanelia sorediata 0.94 91
9. M. stygia 1.14 137

10. R.disporum 1.33 100
11. R. grande 1.49 117
12. R. geographicum 1.05 123
13. M.granulosa 0.92 71
14. Schaereria tenebrosa 1.65 82
15. U. torrefacta 1.51 188
16. Lecidea paupercula 1.17 89
17. Lepraria neglecta 0.51 80
18. ‘other’ 1.26 1084

Notes:
f(i)�s(i) is the total number of times the species occurred in the frequency table.



Join-count statistics are used to determine whether the classes of
points in a regular grid or other spatial structure are random or patchy in
their distribution, by comparing the observed number of times that
members of the same class are found at adjacent grid points with the
number expected if the classes are randomly arranged (Upton &
Fingleton 1985, Chapter 3). For rectangular grids, it is possible to
compute the mean and variance based on the hypothesis of randomness
which can then be used with a normal approximation to test whether
observed numbers of adjacencies are significantly high or low (see Pielou
1977a, p. 146). The grids of sample points in the lichen study, however,
were irregular because of the shapes of the rock faces, and so these
calculations could not be used. We therefore used a Monte Carlo
approach to the analysis.

On each rock face we counted the number of times that at any two
adjacent sampling points were initial sample points of the same species,
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Table 5.8.Pairwise asymmetric species associations in the Jonas rockslide lichen
community, based on point-contact sampling

Contact neighbor

Sample 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1. : � · · � · � · · · · · · · · � � ·
2. � : � · · � � � · · · · · � · · · �
3. � � : · � � � · · · · · � · · � · ·
4. � · · : · · � � · · · · · · · · · ·
5. � · · · : · · · · � � · · · · · � �
6. · · � · � : · · · · · · · · · · · ·
7. · � · · · · : · · · · · � � · · · ·
8. � · � · · � · : · · · · · · · · · ·
9. � · · · · · · · : · · · · · � · � ·

10. · · · · · · · · · : · · · · · · · ·
11. · · · · · · � · · · : · · · · · · ·
12. · · · · · · · · · · · : · · · · · �
13. · · · · · · � · · · · · : · · · · ·
14. · · · · · · · · · · · · · : · · · �
15. · · · · · · · · · · � · · · : · · ·
16. � · � · � · · · · · · · · · · : · ·
17. � � · · · · · · � · · · · · · · : ·
18. · � � � � � · � · · · · � · · · � :

Notes:
Species numbers as in Table 5.7. See legend to Table 5.6 for explanation of symbols.



contact neighbors of the same species, and ordered pairs of initial sample
and contact neighbor of the same two species. Adjacency was defined in
the ‘queen’s move’ sense, including horizontal, vertical and diagonal
neighbors.The species were then reassigned at random to different points
on the sampling grid, preserving the sample-contact pairs, and the three
types of joins were counted again. Observed join counts that were
equalled or exceeded in fewer than 50 of 1000 trials were considered
to be evidence of significant autocorrelation. Since it is the sample-
contact pairs that are of interest in a study of association, it is the join
counts of the third kind that are the most important here. If these
were consistently significant, the association findings would have to be
re-evaluated.

In examining the lichen data for spatial autocorrelation, it was found
that 11 of the 25 rocks had significant spatial autocorrelation in the initial
sample species and 11 in the contact neighbor species.However,only 1 of
the 25 showed significant autocorrelation in the sample-contact pairs (1
in 20 is expected based on randomness). Therefore, while there is spatial
autocorrelation in the data, it does not greatly decrease the effective
sample size for species association analysis and the procedure and inter-
pretation do not have to be modified.

The second vegetation type that was studied was the successional
communities on moraines at the Robson Glacier in British Columbia,
already described. In total 200 point samples were used on each of
moraines 8, 7, 5, 4, 3, and 1. The points were located using random
numbers and a rectangular reference grid along the top of the moraine.
For each sampling point the species of the first plant hit by the sampling
point and the next different species in contact with it and nearest to the
sample point were recorded. In cases where a species hit by the sample
point did not touch another plant, or where the only individuals con-
tacted were members of the same species, a ‘no contact’ was recorded.
‘No contact’ samples were recorded to provide information on the ten-
dency of a particular species to occur as isolated clumps or individuals.

In analyzing the successional communities, we used the same
methods, with one modification. We wanted to lump together some tax-
onomic groups (Salix species) and some life-form groups such as lichens
and mosses (bryoids). When this is done, the contact neighbor can be a
member of the same class as the sample, so that the elements on the main
diagonal are not all zero. The diagonal entries for single species remain
zero because self-contact was not allowed. Therefore, we used
Deming–Stephan iterative proportional fitting to derive the expected
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values (Bishop et al. 1975). This was done both with and without the
proportionality hypothesis, and the difference between the two test statis-
tics,Gh�Gp�Gn,was used to test that hypothesis.

For the successional community data, ‘bare rock, no contact’ was not
used as a species in the analysis. Instead, we examined the frequency of
‘no contact’ for each species or class, using the standard goodness-of-fit
test, to determine whether species tend to occur as isolated patches.
Because of small numbers, we combined pairs of transects based on
surface age: young,middle, and old.

The frequency tables of contact sampling of the successional vegeta-
tion were significantly nonrandom on all six moraines, both with and
without the proportionality hypothesis (Table 5.9). The proportionality
hypothesis was rejected for all six moraines.

The results of pairwise tests of association are given in Table 5.10. In
general, there is positive association between Hedysarum and Dryas, with
bryoids associated with Hedysarum, and there are positive associations
among Picea, Salix and ‘other’, with negative associations between these
two groups.

Species with significantly many or significantly few cases of no contact
are given in Table 5.11. Since the tests for the species are more or less
independent, the number of tests that would result in apparently
significant results from randomness alone is one. Since eight were found,
we interpret them as reflecting real biological effects. On the youngest
surfaces, there are three categories with more no contacts and none with
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Table 5.9.Results of goodness-of-fit tests on the
successional communities at Mt.Robson

Moraine Gp Gn Gh

8 73.6 42.7 30.9
7 130.5 98.9 31.6
5 180.2 105.3 75.0
4 167.25 121.4 45.9
3 219.4 177.5 41.9
1 178.0 161.0 17.0

Notes:
Gp is the test statistic calculated with the
proportionality hypothesis,Gn is the test statistic
calculated without the hypothesis and Gh is the statistic
testing the proportionality hypothesis itself.
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Table 5.10. Species associations based on initial sample:contact neighbor data in
successional communities

Moraine Positive associations Negative associations

8 Dryas → Hedysarum
other → other

7 Picea → Salix Picea → bryoid
Salix → Picea Hedysarum → Salix
Salix → Hedysarum Salix → bryoid
Hedysarum → bryoid bryoid → Salix
Dryas → bryoid bryoid → other
bryoid → bryoid other → other
other → Salix

5 Picea → Salix Picea → bryoid
Salix → Picea Hedysarum → Salix
Hedysarum → bryoid Hedysarum → Picea
Dryas → bryoid Salix → bryoid
other → Salix Dryas → other

4 Salix → Picea Picea → bryoid
Picea → Salix Hedysarum → Salix
Picea → other Salix → bryoid
Hedysarum → bryoid bryoid → Salix
bryoid → bryoid bryoid → other

3 Picea → Salix Picea → bryoid
Salix → Picea Salix → bryoid
Salix → other bryoid → Salix
Hedysarum → bryoid bryoid → Picea
bryoid → bryoid Hedysarum → Picea

Hedysarum → Salix
Hedysarum → other
other → bryoid

1 Picea → Salix Picea → bryoid
Salix → Picea Salix → bryoid
Hedysarum → bryoid Hedysarum → other
Picea → other bryoid → Salix
bryoid → bryoid bryoid → other
Salix → other other → bryoid
other → other

Notes:
Dryas → Hedysarum in the positive column means that Hedysarum was found as a
contact neighbour of Dryas significantly more often than expected.



fewer, whereas on the oldest surfaces, there are no cases of too many no
contacts and three or four with too few. The difference can be related to
the sparseness and density of vegetation in the developing community.

Concluding remarks
In looking at species association,whether the data are from point-contact
sampling or from quadrats, it is clear that the plants of different species do
not occur independently of each other. Quadrats represent small subsec-
tions of the area occupied by a community and the combinations of
species found in those small areas are not random; some combinations are
very common and some are very rare.

These nonrandom combinations are an important feature of the struc-
ture of a plant community, but this spatial heterogeneity has implications
for its dynamics as well. One version is the ‘spatial segregation hypothe-
sis’; it states that ‘finite dispersal and spatially local interactions lead to
spatial structure that enhances ecological stability (resilience) and biodi-
versity’ (Pacala 1997). This hypothesis is especially important because it
explains the coexistence of similar species which lack other methods of
reducing the intensity of competition such as resource partitioning.
Pacala (1997) suggests that an informal appreciation of the hypothesis can
be gained by the inspection of a species-rich lawn. Estimate the abun-
dance of one species, A, first by counting the number of individuals of A
in small circles of a constant diameter centered on plants of species B and
second in similar circles randomly placed. If the species are spatially segre-
gated, the first estimate will be considerably less than the second. In the
terminology of this chapter, the nonrandom arrangement of the plants of
the two species shows that they are negatively associated.

Nonrandom combinations of species are an important precondition
for the existence of multispecies pattern. In many instances, however, the
high-frequency combinations are not particularly distinct but grade into
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Table 5.11. Tests of clump isolation: plant categories that have significantly more
or fewer no contacts than expected based on G test

Moraines More ‘no contacts’ Fewer ‘no contacts’

7 and 8 Hedysarum,Dryas, other
4 and 5 Picea
1 and 3 Hedysarum,Salix,Picea, other



each other by the loss or gain of a single species. For example, in the high
(H) combinations of Figure 5.8a, numbers 5, 6, 7, and 8 are just sets of
four or five of the last five species.Therefore, if we are picturing the high-
frequency combinations as each representing a color of tile in a mosaic,
many of the colors may be very similar so that the phases of the mosaic
are not very distinct.On the other hand, the presence or absence of a par-
ticular species can have a big effect; in the same figure, high-frequency
combinations in which spruce is present (14–20) seem to have fewer
species present than high-frequency combinations in which it is absent
(1–13).This phenomenon is related to the fact that, in MSO, the first axis
was dominated by this single species, and thus was not truly multispecies
at all.

Even given distinct high-frequency combinations of species in
quadrats, the existence of spatial pattern and our ability to detect it
depend on how the combinations are arranged in space. For instance,
given combinations of species that we can label A, B, C, D and E, with
closeness in the alphabet reflecting compositional similarity, if a string of
quadrats looks like ‘ABECADBDEACEADABCEAECE . . .’, there is
little spatial pattern to detect.Only if the phases of the mosaic show more
order such as ‘AABCCCDDEEDCBBAABCDDDCCBBCCDEEE . . .’
will pattern be detectable.

As in other parts of this book, the message is that a single method of
analysis cannot tell you all you need or want to know about the data.The
2k association analysis will tell you whether the combinations of species
are nonrandom and what the common combinations are. If several of
them are single species, of course, the chances of finding meaningful
multispecies pattern are greatly reduced.MSO does its best to find multi-
species pattern in the data, and the association analysis can help you
interpret what pattern is found. The use of a complementary approach
such as examining the CA scores of the quadrats (using the first two or
three CA axes) and applying 3TLQV to them may also provide useful
insights into the spatial structure of the vegetation.Further developments
in the area of combined analysis for the evaluation of multispecies pattern
await us.

Recommendations

1. For the analysis of multispecies pattern, we recommend the use of a
multiscale ordination procedure, MSO, based on 3TLQV and
3TLQC, using the squared intensity weighting. It is a good idea, also,
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to evaluate the multispecies nature of the pattern by examining the
evenness of the species’ contributions.

2. In the detection of species association, using either quadrats or point
sampling, any interpretation of the results should be based on the fact
that all pairwise tests are not independent.The 2k method can be used
to study the complex structure of multispecies association for particu-
lar small groups of species.
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6 · Two-dimensional analysis of
spatial pattern

Introduction
The preceding three chapters have examined various aspects of the study
of spatial pattern in one dimension using data acquired by several sampling
methods including strings of contiguous quadrats. In fact,we know that in
real vegetation, spatial pattern exists in at least two, if not three, dimen-
sions. We know, also, that spatial pattern may be anisotropic, exhibiting
different characteristics in different directions.Depending on the applica-
tion,we may want to retain that anisotropy in the analysis,or we may want
to average over all possible directions to look at the overall spatial pattern.

There are several approaches to two-dimensional analysis available,
most of which are adaptations of methods initially developed for one-
dimensional analysis. It is interesting that one of the earliest methods,
blocked quadrat variance (BQV), was originally proposed in a two-
dimensional version (Greig-Smith 1952), for the analysis of spatial
pattern in grids of quadrats.

The practical problem associated with two-dimensional analysis is the
collection of data. Studies of pattern in one dimension have usually
sampled the vegetation with strings of small contiguous square quadrats
from as few as 36 (Usher 1983) to 1001 (Dale and Zbigniewicz 1995).
The amount of work necessary for one-dimensional studies is often
great, and to extend them into two dimensions would, in many instances,
be impractical. Most of the two-dimensional analysis methods described
here may be most useful when applied to data collected by means such as
the digitizing of images or the direct acquisition of digital images. For
instance,one of the methods described below (Dale 1990) was developed
to compare the scale of pattern of different vegetation types at Kluane
based on LANDSAT imagery.



Having just said how impractical traditional quadrats may be for two-
dimensional studies, we will now describe some data that we will use for
illustration in this chapter that were collected in just that way. Stadt
(1993) studied four forest sites dominated by Pinus contorta (lodgepole
pine) in the Rockies using 20�20 grids of 5m�5m quadrats. All living
trees were classified by species, height and diameter class and ocular esti-
mates were made of the cover of understorey species. What is especially
interesting about this data set from an ecological point of view is that the
quadrats which Stadt sampled in 1989 were the same ones that had been
sampled in the same way by Hnatiuk in 1967 (Hnatiuk 1969). Three of
the sites are in Jasper National Park (Athabasca,Whirlpool and Sunwapta)
and one (Hector) is in the adjacent Banff National Park.

Blocked quadrat variance
The original pattern analysis method is blocked quadrat variance and,
when applied in two dimensions, it requires that the dimensions of the
grid in two quadrats (or grid units) be powers of two in length, such as
64�64. The quadrats are then combined into exclusive blocks of two,
four, eight, and so on and the variance is calculated in the usual way for
each block size. Peaks in the variance are interpreted as being related to
the scale of pattern, but the scale here is actual area rather than linear
dimension. We listed some of the drawbacks of the one-dimensional
version of this technique in Chapter 3. The two-dimensional version
shares those problems with an additional consideration: the blocks with
areas that are even powers of two are square, but those with areas that are
odd powers of two are rectangular (e.g. 4�8�32�25) and the orienta-
tion of those rectangles may affect the outcome of the analysis (see Figure
6.1 cf. Pielou 1977a, p.141). For these reasons, as in the one-dimensional
case,BQV is not recommended.

Spatial autocorrelation and paired quadrat variance
In examining quadrats in a grid, their spatial relationships lead us to
expect that adjacent quadrats will be more similar in species composition
than ones that are not adjacent. If there is a repeating spatial pattern in the
data, similarity should first decrease with increasing distance and then
increase again. The distance at which similarity reaches a minimum (or a
maximum) can be converted into information about the scale of pattern
because the scale of pattern is approximately the average distance
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between the most unlike quadrats or half the distance between those that
are most similar. This approach to the study of pattern is the analysis of
spatial autocorrelation because it examines correlation within the data set
as a function of distance.As we saw in Chapter 3, there is a close relation-
ship between the analysis of spatial autocorrelation and the paired quadrat
variance (PQV) approach, with one being almost the additive inverse of
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Figure 6.1 In two-dimensional BQV, the orientation of the rectangular blocks
affects the outcome.The dark areas are patches and the light areas are gaps. In part a,
all eight blocks have the same density and the variance is low; in part b, some blocks
are dense and some empty so that the variance is high.



the other. That relationship holds equally well in two-dimensional
studies.

Sokal and Oden (1978a,b) discuss a variety of methods and provide
examples of the analysis of spatial autocorrelation in biological studies.
They do not explicitly apply their techniques to the detection of scale of
spatial pattern, but it is easy to do so. Just as peaks in a variance plot are
related to pattern scale, minima in the autocorrelation plot indicate the
scale of pattern.

In evaluating spatial autocorrelation, there are three different ways of
considering which quadats of a grid are adjacent. These are usually
described with reference to the moves of chess pieces (cf. Sokal & Oden
1978a). If only horizontal and vertical neighbors are considered to be
adjacent, this is referred to as the ‘rook’s move’ definition of adjacency
(see Figure 6.2). If only diagonal neighbors are considered as adjacent,
this is the ‘bishop’s move’ definition of adjacency (Figure 6.2). If all eight
surrounding neighbors are considered to be adjacent, this is ‘queen’s
move’ adjacency (Figure 6.2). These adjacencies can then be used as a
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Figure 6.2 Three kinds of neighbors of the central quadrat ‘X’. ‘R’ quadrats are
rook’s move neighbors. ‘B’ quadrats are bishop’s move neighbors. ‘Q’ quadrats are
queen’s move neighbors.



framework for the analysis of spatial structure: first-order neighbors are
reachable by one move, second-order neighbors by two, and so on.

In queen’s move adjacency, there is a certain ambiguity in the calcula-
tion of the separation between quadrats: a quadrat that is four to the right
and four up is separated by that path by eight rook’s moves but only four
diagonally (bishop’s moves). To avoid this ambiguity, the rook’s move
definition may be preferable and also because quadrats that are adjacent
by that definition are fully contiguous.

None of the three definitions solve the ‘ problem’ which is that
quadrats that are M moves away may actually be M units away or M 
units or M/ in actual distance, depending on the definition. By the
queen’s move, for example, each quadrat has 32 neighbors with a separa-
tion of 4 moves, which range in actual distance from 4 to 4 ; the rook
definition gives 16 such neighbors at distances from 2 �4/ to 4.
We will look at one solution to the problem later in this section.

The autocorrelation analysis proceeds by calculating the correlation
coefficient between all quadrats separated by r moves for r�1, 2, 3 . . . and
then plotting that correlation as a function of separation. Negative peaks
in that plot indicate the scale of pattern and positive peaks show the dis-
tance between areas of high similarity. Figure 6.3 shows the autocorrela-

�2�2
�2

�2
�2

�2
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Figure 6.3 Spatial autocorrelation analysis of the Athabasca site smallest diameter
class.There is evidence of pattern at a scale of about 5 quadrats or 25m.The
correlation of �0.24 is highly significant when tested without correcting for spatial
autocorrelation.



tion plot for the smallest class of trees at the Athabasca site in 1989; there
is evidence of pattern at a scale of five quadrats or 25m.

An alternative calculation that is similar to the autocorrelation
approach is to calculate the variance associated with quadrats separated by
r moves for r�1, 2, 3 . . . and then to plot variance as a function of r. This
is a two-dimensional version of PQV and,as usual,peaks in that plot indi-
cate the scale of pattern. Because it uses pairs of individual quadrats,
rather than blocks, one drawback in its application is nondiminishing res-
onance peaks.

Because of the difficulties of interpreting distance as measured by
moves, instead of basing the analysis on the autocorrelation framework of
adjacent quadrats, PQV analysis can be based on the actual measured dis-
tance between quadrats.Based on moves, PQV is calculated as:

VM(r)� (xij�xpq)
2/nr , (6.1)

where xij is the density of the species of interest at grid position (i,j), r�
|i�p|�|j�q|, so that xij and xpq are separated by exactly r moves, and nr
is the number of such pairs.Based on actual distance, the calculation is:

VD(d)� (xij�xpq)
2/nd , (6.2)

with d� , so that xij and xpq are separated by distance of
approximately d (usually an integer), and nd is the number of such pairs. It
is important in implementing this analysis that the pairs of quadrats are
chosen in an unbiassed manner; for example from an initial quadrat,
quadrats south and east should be examined as well as quadrats south and
west.

As an illustration of the methods, Figure 6.4 shows that analysis of all
trees at Stadt’s Athabasca site. VM and VD give similar results, of course,
with the curves diverging due to the different measures of distance. On
the whole, for most purposes, the distance-based method is to be pre-
ferred because the interpretation as physical distance is more straightfor-
ward. The move-based approach to autocorrelation has advantages in
situations where the samples are not in a regular grid and not contiguous.
Under those circumstances, it may be important to identify which
samples are immediate neighbors, which are neighbors of immediate
neighbors, and so on. Related material will be discussed in Chapter 7.
Interpretation of either move- or distance-based PQV should be based
on the fact that the methods average over all directions, so that a peak

�(i�p)2� ( j�q)2

�

�
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variance at scale 10 could result from anisotropic pattern that had a scale
of 7 in the North-to-South direction and 13 in the East-to-West direc-
tion.The following methods make an evaluation of anisotropy possible.

Two-dimensional spectral analysis
A two-dimensional version of spectral analysis was described by Bartlett
(1964) and by Renshaw and Ford (1984); what follows is based on their
work. They put forward the technique as an improvement over BQV,
particularly because the new method made possible an evaluation of
anisotropy. The basic calculations are very similar to those for the one-
dimensional case (Chapter 3).

Consider a grid that is m�n units in size, with species density xij at
grid position (i,j). The periodogram for frequencies p, in the direction of
the first axis of the grid, and q, in the direction of the second axis, is Ipq:

Ipq�mn(c 2
pq�s 2

pq), (6.3)

where:

cpq� xij[cos 2�(ip/m� jq/n)] (6.4)

and

spq� xij[sin 2�(ip/m� jq/n)]. (6.5)�
m

i�1
�

n

j�1

�
m

i�1
�

n

j�1
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Figure 6.4 Two-dimensional PQV analysis of all trees at the Athabasca site.Both
the move-based (solid line) and distance-based (broken line) methods are shown.
There is evidence of pattern at a scale of 6 quadrats or 30m.



The results of this analysis can be presented as a three-dimensional plot
with two axes representing the values of p and q, and the third represent-
ing the magnitude of Ipq (see Figure 6.5). The significance of individual
values of Ipq can be tested by comparing the proportion of the total vari-
ance that Ipq represents with the critical value of � 2

2/mn (Renshaw & Ford
1984).

The three-dimensional representation can be collapsed into summary
figures into two ways, referred to as the R-spectrum and the �-spectrum.
The R-spectrum combines all Ipq for which the values of r� are
the same and plots I as a function of r (Figure 6.6).The �-spectrum com-
bines all Ipq for which the values of ��tan�1(p/q) are the same and plots I
as a function of � (Figure 6.7). Individual components of either spectrum
can also be tested for statistical significance by comparison with the �2

distribution. The critical value for a component which contains N
periodogram elements is (1/2N)� 2

2N (Renshaw & Ford 1984).
In a companion paper, Ford and Renshaw (1984) investigated the

development of spatial pattern in populations of Calluna vulgaris

�p2�q2
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Figure 6.5 Results of two-dimensional spectral analysis of artificial data.The
height of the column represents the magnitude of Ipq for combination of p and q.
There are obvious peaks at (2,2) and (8,8).



(heather), shown in Figure 1.1, and of Epilobium angustifolium (fireweed).
They found strong anisotropy in both populations, based on the �-
spectrum, which they related to the process of colonization and the
plants’morphology.

Following their approach, we split the Calluna data into the left and
right halves and analyzed them separately using the distance-based
version of PQV, Equation 6.2. Our analysis of both halves showed a scale
of pattern around 0.8m, which is somewhat smaller than the scale in the
single one-dimensional transect illustrated in Figure 1.1 (1.2m).Ford and
Renshaw found that the R-spectrum of spectral analysis gave similar
results, showing wavelengths of 2m and 1.67m which convert to scales of
1m and 0.83m.They interpreted this scale as representing the interaction
between the size and spacing of the bushes.

Newbery et al. (1986) used two-dimensional spectral analysis in an
interesting study of Kerangas forest, examining the spatial pattern of the
64 most common tree species. Some species exhibited pattern and some
did not. The scale of pattern in the former group of species matched the
size of gaps produced by wind throw, and the authors concluded that the
most strongly patterned species were the shade-intolerant ones that
require gaps for recruitment. On the other hand, they found little evi-
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Figure 6.6 Results of spectral analysis summarized by distance classes: the
R-spectrum. I is shown as a function of separation �r�p2�q2.The peaks at 3 and
10 correspond to the peaks in Figure 6.5 at (2,2) and (8,8).



dence that species distributions were influenced by the topography of
slight ridges and shallow valleys.

The spectral analysis method is clearly one way in which anisotropy
can be examined. One cautionary comment is that the analysis requires
that the anisotropy is stationary, that is, the same in the entire region
sampled. Curving patterns of high and low densities do not give clear
results.

Two-dimensional local quadrat variances
For the analysis of two-dimensional pattern, we can develop methods
based directly on the one-dimensional method TTLQV, which was
described in Chapter 3 (cf. Hill 1973). That method calculates a variance
for each block size:

V2(b)� 2b(n�1�2b), (6.6)

with the positions of peaks in the variance plot being interpreted as
reflecting pattern at that scale.

� �
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Figure 6.7 Results of spectral analysis summarized by directional classes: the
�-spectrum. I is shown as a function of the angle, �.There is a strong peak at
���/4 or 45°, corresponding to the peaks at (2,2) and (8,8) in Figure 6.5.



In extending this method to two dimensions, one possibility would be
to look at the average squared difference between the total density in a
b�b square and the average total density in the eight b�b squares that
surround it, its Queen’s move neighboring blocks (Figure 6.8). This
approach can be referred to as a nine-term local quadrat variance
(9TLQV). Another possibility is to use a 2�2 arrangement of a b�b
blocks (Figure 6.9), given a four-term variance (4TLQV). We will
examine the four-term version of two-dimensional analysis first.

Four-term local quadrat variance
In the m�n grid of quadrats, let sb(i,j) be the total of the observations in
the b�b block of quadrats starting at position (i,j):

sb(i,j)� xpq, (6.7)

where xpq is the density of the quadrat in the pth column and qth row of
the data (see Figure 6.10).There are four different ways of calculating the
variance in this square of four blocks, since the value of any of the four
can be multiplied by three and the other totals subtracted.The four terms
are, of course, not independent; they are:

v1(b)� , (6.8)
[3sb(i,j)� sb(i�b,j)� sb(i,j�b)� sb(i�b, j�b)]2

8(n�1�2b) (m�1�2b)b3�
n�1�2b

i
�

m�1�2b

j

�
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�
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Figure 6.8 The template for the calculation of nine-term local quadrat variance
(9TLQV): the data in the ‘�’ block are summed and multiplied by 8; the data in the
‘�’ blocks are subtracted and the result squared. 9TLQV averages the squared
differences over all possible positions of the template.



v2(b)� , (6.9)

v3(b)� ,

(6.10)

v4(b)� .

(6.11)

Then the overall two-dimensional variance, based on the four blocks, is
V4(b):

V4(b)�[v1(b)�v2(b)�v3(b)�v4(b)]/4 (6.12)

[3sb(i�b,j�b)� sb(i�b,j)� sb(i,j�b)� sb(i,j)]
2

8(n�1�2b)(m�1�2b)b3�
n�1�2b

i
�

m�1�2b

j

[3sb(i,j�b)� sb(i�b,j)� sb(i,j)� sb(i�b,j�b)]2

8(n�1�2b)(m�1�2b)b3�
n�1�2b

i
�

m�1�2b

j

[3sb(i�b,j)� sb(i,j)� sb(i,j�b)� sb(i�b,j�b)]2

8(n�1�2b)(m�1�2b)b3�
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Figure 6.9 The template for the calculation of 4TLQV: the data in the ‘�’ block
are summed and multiplied by 3; the data in the ‘�’ blocks are subtracted and the
result squared. 4TLQV averages the squared differences over all possible positions of
the template and over the four orientations of the template.



(cf. Dale & Powell 1994). Peaks in the plot of V4 as a function of b corre-
spond to scales of pattern in the vegetation. Another version is to create
terms such as:

Dij�[3 sb(i,j)�sb(i�b,j)�sb(i,j�b)�sb(i�b,j�b)]2. (6.13)

There are four such terms possible for each block size and each initial
position (i,j).The other three are:

Di�b,j�[3sb(i�b,j)�sb(i,j)�sb(i,j�b)�sb(i�b,j�b)]2, (6.14)

Di,j�b,�[3sb(i,j�b)�sb(i�b,j)�sb(i,j)�sb(i�b,j�b)]2, (6.15)

Di�b,,j�b�[3sb(i�b,j�b)�sb(i�b,j)�sb(i,j�b)�sb(i,j)]
2. (6.16)

For example, if the four values for a particular block size are the follow-
ing:
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Figure 6.10 The definition of sb(i,j): it is the sum of quadrats in a b�b block
starting at quadrat (i,j) and ending at quadrats (i, j�b�1), (i�b�1, j) and
(i�b�1, j�b�1).



2 4
6 5

Dij�(3�2�4�6�5)2�81,
Di�b,j�(3�4�2�6�5)2�1,
Di,j�b�(3�6�2�4�5)2�49,
Di�b,j�b�(3�5�2�4�6)2�9.

The average of the four is 35.
Then:

V4(b)� . (6.17)

Because V4 is the two-dimensional equivalent of TTLQV, most of the
comments made about that method in Chapter 3, concerning the effects
of resonance peaks and the detection of shoulders in the plot of V2, apply
to V4 as well. That maximum value of V4(b) is achieved when the data
consist of solid stripes B units wide consisting alternately of dense
quadrats, d’s, and of empty quadrats, 0’s, oriented parallel to either the x-
or the y-axis. In that case, V4(b)�d2(B2�2)/6 which for
presence/absence data with d�1 simplifies to (B2�2)/6. A measure of
the consistency of the pattern is, as usual:

I4(B)� . (6.18)

An earlier version of this method (Dale 1990) presented a slightly
different formulation, with 18b2 in the denominator of the variance
where we have 8b3 above (Equations 6.8–6.11). The reason for the
modification is that the new version gives exactly the same values as the
one-dimensional TTLQV when the pattern is parallel to one of the axes.
Figures 6.11 and 6.12 illustrate the fact that each term added to the two-
dimensional variance is (2b)2 times the terms added to the one-dimen-
sional version. This modification allows the one-dimensional findings to
be applied directly in the two-dimensional case, including the rate at
which the variance peak drifts away from the true scale of pattern with
increasing block size.

As in TTLQV, pattern at scale B will produce resonance peaks at 3B,
5B, 7B, and so on; with the earlier formulation, these variance peaks
were at the same height as the peak at b, rather than diminishing to 1/3,
1/5, 1/7, . . . as they do with the new version. As we discussed in Chapter

�6BV4(B)/(B2�2)

Dij�Di�b,j�Di,j�b�Di�b,j�b

32b3(n�1�2b)(m�1�2b)�
n�1�2b

i�1
�

n�1�2b

j�1
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3, there is a tradeoff between the disadvantages of peak drift and non-
diminishing resonance peaks determined by the factor of b in the
divisor. In many applications, block size precision may be less important
than the ease of interpretation, and that is the reason why the new
version is recommended here.

Dale (1990) showed that the method detects the characteristics of
most artificial patterns tested. The change in the divisor does not change
that conclusion. The method is not totally independent of the orienta-
tion of the pattern with respect to the sampling grid (cf. Dale 1990). For
instance, a checker-board pattern at 45° to the axes is interpreted by the
method as stripes of varying width.

The usefulness of the V4 analysis is enhanced when TTLQV is carried
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Figure 6.11 Comparison of TTLQV and 4TLQV computation. Scale and block
size are the same:B�4 and b�4.TTLQV averages terms such as (3d�1d)2�(2d)2;
4TLQV averages terms such as (3�12d�12d�4d�4d)2�(16d)2 and (3�
4d�12d�12d�4d)2�(16d)2.The 4TLQV term is (2b)2 multiplied by the TTLQV
term.



out separately on the rows (parallel to the x-axis) and columns (parallel
to the y-axis) of the grid to produce variances Vx and Vy. The one-
dimensional analyses help in the interpretation of the two-dimensional
results.

The method was applied in a landscape-scale study of a valley approx-
imately 30km long and 10km across between Kluane and Kloo Lakes in
the Yukon. Knowing that the valley was heterogeneous in its vegetation,
we wanted to test whether there were large differences in the scale of the
vegetation’s pattern. This concern was particularly important because we
were applying experimental treatments to 1 km units of the valley (Krebs
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Figure 6.12 Comparison of TTLQV and 4TLQV computation.Scale and block size
are the same:B�5 and b�5.TTLQV averages terms such as (4d�1d)2�(3d)2;
4TLQV averages terms such as (3�20d�20d�5d�5d)2�(30d)2 and (3�5d�20d�
20d�5d)2�(30d)2.The 4TLQV term is (2b)2 multiplied by the TTLQV term.



et al. 1995). The data were derived from a LANDSAT image in which
each pixel represents a 30m�30m square. The pixels were classified by
their spectral properties related to the kind of vegetation in them. An
analysis was carried out for each of the most common classes in 2km�
2km squares by converting the data into 66�66 matrix of 1’s (pixels in
the class) and 0’s (pixels not in the class).

In the original analyses of the data, most of the 68 2km�2km squares
analyzed show a single scale of pattern in each vegetation type in each
square. The scale of pattern was fairly consistently in the range of 11–23
pixels (330–690m) suggesting that there may be a single cause or set of
causes for the observed patterns. This consistency gives some reassurance
that different parts of the valley would not respond differently to experi-
mental treatments because of large differences in the scale of their spatial
pattern. The values of I4 associated with the variance peaks were close to
0.30 for common vegetation classes and near to 0.20 for the less common
ones, indicating that the patterns are somewhat diffuse.

A minor drawback of the method just described is that the horizontal
and vertical adjacency of blocks (centers b units apart) is treated the same
as diagonally adjacent blocks (centers b units apart), creating a certain
amount of uncertainty about the conversion of the block size that gives a
variance peak to physical distance. The major drawback of the method is
the fact that, used alone, it cannot detect or evaluate anisotropy.

Having shown that the four-block approach to spatial pattern analysis
is equivalent to one-dimensional TTLQV, we will examine the nine-
block method which is comparable to 3TLQV. Using sb(i,j) as defined
above, define:

Tb(i,j)�sb(i�b,j�b)�sb(i�b,j)�sb(i�b,j�b)
�sb(i,j�b)�8sb(i,j)�sb(i,j�b)
�sb(i�b,j�b)�sb(i�b,jb)�sb(i�b,j�b). (6.19)

Then:

V9(b)� . (6.20)

The 72b3 in the divisor comes from the fact that the one-dimensional
version, 3TLQV, has 8b in the divisor and, as Figure 6.13 shows, each
term added to the two-dimensional version is (3b)2 times the one-
dimensional term and 8b�9b2�72b3. The properties of V9 will follow
those of V3.As usual, a simple measure of the pattern’s intensity is:

I9(b)� . (6.21)�6bV9(b)/(b2�2)

[Tb(i,j)]
2

72b3(n�1�3b)(m�1�3b)�
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If large grids of quadrats are being analyzed, the nine-term method
will have the same advantages over the four-block version as 3TLQV
does over TTLQV. The 4TLQV method allows the examination of
larger block sizes if we are willing to break Ludwig and Reynold’s rule
that the block size examined should not exceed 10% of n or m, the
lengths of the sides of the grid (Ludwig & Reynolds 1988).

As an illustration, we analyzed two 100 pixel�100 pixel grids from
the Yukon LANDSAT data, from near the center of the valley. The first
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Figure 6.13 Comparison of 3TLQV and 9TLQV computation. Scale and block
size are the same:B�4 and b�4. 3TLQV averages terms such as (3d�2�1d�3d)2

�(4d)2; 9TLQV averages terms such as (8�4d�6�12d�2�4d)2�(48d)2 and
(8�12d�6�4d�2�12d)2�(48d)2 .The 9TLQV term is (3b)2 multiplied by the
3TLQV term.



indicated a scale of pattern around seven pixel widths (200m) for the
most common vegetation types and the second at a somewhat larger scale
averaging 11 (330m). In these data, there was good agreement between
the results of the 9TLQV analysis and the 4TLQV analysis. Given that
the change in the divisor of the four-term method tends to shift the vari-
ance peak downward, the results also agree with the overall findings of
Dale (1990) which showed a general feature of two-dimensional pattern
at a scale of 330–690m.

Random paired quadrat frequency 
To examine anisotropy, we have developed a method based on the
random paired quadrat frequency method (RPQF) method (Goodall
1978). It was specifically developed to examine spatial pattern in closed
mosaics of saxicolous lichens, and it will be presented initially in those
terms. The lichen mosaics can be treated as two-dimensional grids of
numbers or symbols representing the different species.

This method is designed to deal with mosaic data which have been
converted to a grid of quadrats, with each quadrat assigned to the domi-
nant species in it. Let us consider first the analysis of spatial pattern of a
single species. Pairs of quadrats are chosen randomly and we record their
distance apart parallel to the x-axis, dx, and their distance parallel to the
y-axis, dy. We then count the frequency with which quadrats with
separation (dx, dy) both have the species of interest and the frequency
with which they do not. Let f(1,u,v) be the frequency with which pairs
with dx�u and dy�v both have the species and let f(0,u,v) be the fre-
quency with which they do not. If q is the maximum distance of interest
between quadrats parallel to either axis, the result is a q�q�2 table. For
each cell of the q�q target species half of the table, we can calculate an
expected value, euv, as the product of the totals for row u, column v and
the target species plane divided by the square of the overall total. We
then compare the expected value with the observed frequencies, ouv�
f (1,u,v), by calculating for each cell the Freeman–Tukey standardized
residual:

zuv� . (6.22)

These can be printed out as a table or portrayed graphically by circles or
squares with positions determined by the coordinates u and v, the size
determined by the absolute value of zuv, and solid or hollow according to
whether they are positive or negative (see Figure 6.14). A threshhold

�ouv��ouv�1��4euv�1
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value of 2.0 can be used to determine which differ most from expecta-
tion although we cannot, strictly speaking, call them significant (cf.
Bishop et al. 1975). We can also calculate a goodness-of-fit statistic to test
for overall departure from randomness in the table.

If it is the intention to look at all species, rather than just one at a time,
f(1,u,v) becomes a count of the frequency with which quadrats of separa-
tion (u,v) are the same species and f(0,u,v) becomes a count of the fre-
quency that they are different. We analyze the ‘same species’ plane of the
table as we analyzed the ‘target species’ plane in the first version.
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Figure 6.14 Application of the random paired quadrat frequency (RPQF) method
to artificial data consisting of angled stripes of 1’s and 0’s each 10 quadrats wide.The
resulting diagram shows correctly the angle and the spacing of the stripes and also
the feature of resonance.



A third version would be based not on the identities of the species in
the mosaic, but on the shapes of the thalli or tiles of the mosaic. This can
be accomplished by setting up a rectangular grid as before, but with
entries of 1 when the unit contains an interthalline boundary and 0 when
it does not.The analysis then proceeds as above.

This RPQF method avoids the problem of two-dimensional
TTLQV, because the actual x- and y-distances are retained, and it also
both handles and portrays anisotropy in the spatial pattern very well.

As stated above, the observed and expected values can be used to
perform a goodness-of-fit test using the G test statistic.Almost any devia-
tion from expectation will give a significant result if large numbers of
pairs of grid elements are used.For example, if the grid is 100�100, there
are 10 grid units and 5�107 pairs of them. It is certainly practical to
sample 100000 pairs. If we limit dx and dy to a maximum of 30, then the
observed frequency table has 900 cells, giving an average expected value
per cell of about 100. Such large numbers will make the method very
sensitive to departures from expectation, but the significant results need
to be treated with caution, because of the large amount of spatial auto-
correlation in the data. It is not possible to evaluate, with current knowl-
edge, how much the test statistic should be deflated to account for this
spatial autocorrelation. The amount of deflation necessary will change
with the relationship between the sizes of the tiles of the mosaic and the
size of the grid units used (cf.Dale et al. 1991).

For small grids, it might be practical to sample all pairs up to a certain
distance, but as grids become larger, an ‘all pairs of quadrats’ approach
becomes impractical. Notice that for large grids, only a very small pro-
portion of quadrat pairs may be sampled; in the numerical example above
only 1 in 500.

Dale (1995) shows that the random pair method detects the essential
features of artificial data sets, including anisotropy.

As a field example, let us look at lichen mosaics from three sites in the
Subalpine and Alpine zones of the Canadian Rockies in Yoho National
Park (N.P.) and Glacier/Mt. Revelstoke N.P. The sites had many species
in common, including several species of Rhizocarpon (R. geographicum, R.
polycarpum,R.grande,R.disporum),Lecidea auriculata,Lecidea paupercula, and
Aspicilia cinerea. The data were converted from photographs into 50�70
grids. Figure 6.15 shows the analysis of a single species, Rhizocarpon poly-
carpum; it displays anisotropy, with greater similarity horizontally than
vertically. Figure 6.16 shows the analysis of all species in the same mosaic
from which Figure 6.15 was derived; it is much less anisotropic than the

�2
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single-species pattern. One explanation is that the anisotropy of another
single species, R. geographicum, resulted from strong vertical similarity so
that when both species are included, the two directions of anisotropy
cancel.

The RPQF approach has several advantages: it is simple to use, the
output is easy to interpret, and the problem is avoided.Like all paired
quadrat techniques, however, pattern at scale B will give large positive
residuals at distance 2B, 4B, 6B, and so on as a result of resonance (cf.
Figure 6.14). This resonance may cause confusion if there are several
scales of pattern.The main advantage of the method is that it gives a clear
portrayal of anisotropy.

As a second example of this method, we will use the brousse tigrée
illustrated in Figure 1.2. We converted about a fifth of the figure into a

�2
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Figure 6.15 RPQF analysis of a single species, Rhizocarpon polycarpum, in a lichen
mosaic showing anisotropy.



40�40 matrix of 1’s and 0’s (Figure 6.17). Figure 6.18 shows the results
of the analysis, in which the effects of anisotropy are very obvious at a
scale of three quadrats.

Variogram
In Chapter 3, we described the close relationship between the paired
quadrat variance technique for studying spatial pattern in one dimen-
sion and the geostatistical approach of estimating the semivariogram or
variogram. It is no surprise that the variogram approach has been used
in two dimensions. The variogram can be calculated in different direc-
tions to determine whether the spatial structure is isotropic (Rossi et al.
1992).

190 · Two-dimensional analysis of spatial pattern

Figure 6.16 RPQF analysis of all species in the same lichen mosaic; the anisotropy
is greatly reduced.



In their discussion of spatial pattern and its importance in ecological
analysis, Legendre and Fortin (1989) use the example of a temperate
forest in Québec, containing 28 tree species, which was sampled with
200 regularly spaced quadrats. To demonstrate the evaluation of
anisotropy, they calculated directional variograms at 45° and at 90°, each
with a window of 22°. The two angles gave different scales of pattern,
445m and 685m, indicating that the pattern was anisotropic. When the
variogram was calculated for all directions, while there was an indication
of a scale of pattern just less than 400m, the pattern at 685m produced a
larger variance.
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Figure 6.17 A 40�40 grid of brousse tigrée data used for analysis as 1’s and 0’s.



For a visual evaluation of anisotropy,Rossi et al. (1992) suggest drawing
a contour diagram of the variogram value as a function of displacement in
the 0° and 180° direction and in the 90° and 270° direction.

Covariation
Many of the single-species methods described above, such as RPQF and
4TLQV,can be modified to deal with two different kinds of plants, just as
the one-dimensional single species methods from Chapter 3 were
modified for two species in Chapter 4. There are at least two approaches
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Figure 6.18 RPQF analysis of the brousse tigrée data showing both the scale of the
pattern and its strong anisotropy.



to the relationship between two kinds of plants in a plane. The first is to
describe the spatial arrangement of each kind separately and then to des-
cribe how the two separate patterns are combined. The second is to
describe the spatial arrangement of all the plants of either kind and then to
label the plants’positions as belonging to the two different kinds. In either
case, it is of interest to find out whether the plants of the different kinds
are segregated or aggregated. When the data collected are the counts or
densities of the two species in quadrats, we will examine whether those
measures for the two species covary positively or negatively.

One feature of the concepts of segregation and aggregation is that
the phenomena are scale dependent. Hurlbert (1990) points out that,
‘(The) degree of aggregation in nature is always strongly a function of
spatial scale.’ Therefore, we should not ask whether the two kinds of
plants are segregated or aggregated; we should ask at what scale or scales
they are segregated and aggregated. For quadrat data, the question will be
translated into the question of what block sizes maximize or minimize
the two species’ covariance.

If the data are in the form of mapped plant locations, they can be con-
verted into the equivalent of grids of contiguous quadrats by setting up a
matrix in which the elements of the matrix are the numbers of plants of
each kind in a corresponding square of the map (Figure 6.19).The use of
smaller and thus more numerous quadrats will lose less information in
this conversion. In most applications, the matrices will be sparse, consist-
ing mainly of 0’s with a sprinkling of 1’s. With data on the densities of
species in a grid of contiguous quadrats, as in the Stadt data set, the data
are used directly.

Paired quadrat covariance (PQC)
The study area is represented by a square n�n or rectangular n�m grid
of quadrats. Let xij be the number of individuals or the density of species
A in the quadrat (i,j ) of the grid and yij is the measure of the density of
species B.Then we define the covariance as:

CD(d)� (xij�xpq)(yij�ypq)/nd, (6.23)

with d� , so that quadrats (i,j) and (p,q) are separated
by distance of approximately d and nd is the number of such pairs. The
term ‘approximately d’ can refer to the nearest integer less than the real

�(i�p)2� ( j�q)2

�
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distance. A move-based measure of distance can also be used in calculat-
ing covariance as we did above for variance, but we do not include it
here. Figure 6.20 shows the covariance of all regenerating stems, includ-
ing seedlings and all size classes of trees at Stadt’s Athabasca site in 1989.
There is evidence of negative covariance or segregation at a scale of five
quadrats or 25m, probably reflecting the size of open areas in which
regeneration is more successful.
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Figure 6.19 The conversion of mapped data to quadrats.The plants are Salix arctica
on Ellesmere Island, the triangles are male plants and the squares are female plants
(data from M.H. Jones, personal communication).The counts are as follows:

male female

3 2 0 8 2 4 8 4

6 0 1 4 1 4 9 3

1 1 3 1 6 3 0 3

3 1 3 2 3 1 4 1

The sexes are negatively correlated in the quadrats.



Four-term local quadrat covariance
The next method we examine is a modification of 4TLQV described
above,now in a covariance form to deal with two species.Define sb(i,j ) as
the sum for species A in the b�b square of quadrats starting at (i,j )
(Figure 6.10):

sb(i,j )� xgh. (6.24)

The equivalent for species B is:

tb(i,j )� ygh. (6.25)

We then use terms such as:

Dij�[3sb(i,j )�sb(i�b,j )�sb(i,j�b)�sb(i�b,j�b)]2. (6.26)

There are four such terms possible for each block size and each initial
position (i,j), as described above.

Then:

VA(b)� (6.27)

The divisor of this calculation is modified from that in Dale and Powell
(1994) with 32b3 replacing 72b2, for reasons explained above to bring the
calculation into line with TTLQV. The net effect of this change is not
large, but it tends to shift the peak downward because of the division by
an extra factor of b.

Dij�Di�b,j�Di,j�b�Di�b,j�b

32b3(n�1�2b)2�
n�1�2b

i�1
�

n�1�2b

j�1

�
i�b�1

g�1
�

j�b�1

h�j

�
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Figure 6.20 Paired quadrat covariance (PQC) analysis of regenerating stems and
trees at Stadt’s Athabasca site.The two classes are segregated at a scale of 5 quadrats.



The variance of species B,VB, and that of the combined data,VA�B, are
calculated in the same way for block size b. The covariance of A and B at
scale b is:

CovAB(b)� �VA�B(b)�VA(b)�VB(b)�/2, (6.28)

(cf. Kershaw 1961).When covariance is plotted as a function of block size,
peaks, both positive and negative, can be interpreted as the approximate
scales of covariance.

We suggest looking at the plot of the total variance VT�VA�B, since it
will reflect the spatial arrangement of all the plants, whatever kind they
are. We can also examine the one-dimensional variances and covariances
parallel to the x-axis and parallel to the y-axis, to help interpret the
pattern if it is anisotropic.

To evaluate the significance of the pattern detected, we can calculate
the expected value of V4 on the assumption that the plants are randomly
arranged in space. On that assumption, for small values of b, we need to
derive the expected value of terms such as (3	�
����)2 where the 	,

, �, and � are treated as independent random binomial variables. Where
m is the number of plants, the size of the grid is n�n, and the block size is
b, then:

E[(3	�
����)2]�12 Var(	)�mp(1�p) (6.29)

where p�b2/n2.
For b�1,E[V(1)]�2(1�1/n2)m/3n2,which is approximately 2m/3n2.

As b increases, 	 is increasingly negatively correlated with (
����).
At the maximum value of b, which is n/2, E[V(n/2)] can be derived
by calculating E[3	�(m�	)]2�E(16	2�8	m�m2)�16mp(1�p)�
m2(4p�1)2 where p�1/4. This gives E[V(n/2)]�2m/3n2. Computer
trials confirm that the average value of V4 remains near this value from b
�1 to b�n/2.

We know that the expected value of the covariance is zero if the plants
of the two species are arranged independently of each other. There is,
however, little point in pursuing an analytical approach because the dis-
tribution of the covariance will change with the arrangement of the
plants and we do not really expect that to be random. If the plants are
known to be patchily distributed, it is preferable to determine whether
any apparent aggregation of the different kinds of plants is due solely to
the overall patchiness, or whether there is aggregation in addition to the
overall patchiness. This question can be addressed using a randomization
approach. Keeping the positions of the plants constant, the ‘labels’ of the
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plants are randomly permuted a number of times with the variances and
covariance calculated for each relabelling.Then,100 or more trials can be
used to judge whether the observed results are significantly high or low
for the positions of the plants. Dale and Powell (1994) found that these
methods were successful in recognizing the characteristics of artificially
constructed data.

We can illustrate the method using data from a large hay field at the
Wagner Natural Area near Edmonton,Alberta.The field was seeded with
grasses and alfalfa more than 15 years before the study and it had been
mowed for hay in each intervening year. Several weed species, including
Solidago canadensis, were invading the field from the edges. The plant is
attacked by several kinds of insect herbivores including gall-formers (cf.
Felt 1940, Hartnett and Abrahamson 1979). Twelve 2m�2m plots were
placed at the edge of the field and all Solidago stems were mapped in each
plot with each classified as having a gall or not.

The mapped data were converted to 50�50 grids of 4cm�4cm units
and analyzed using the method just described.

All 12 plots had evidence of spatial scale between block sizes 14 and 21
(0.56m to 0.84m) and ten were judged to be significant compared to
random dispersion. Only three covariance plots showed segregation at
small scales (block sizes 1–3) and nine showed aggregation at larger scales
(13–22).

The variances for all plants and the covariances calculated parallel to
the x-axis and to the y-axis provide little evidence that the spatial pattern
was anisotropic. The variance profiles were usually similar in the two
directions, as were the covariances which were often close to zero.

The randomization test showed that in most cases there was either no
significant aggregation of galled and ungalled plants within the overall
patchiness, or that the two kinds of plants were actually segregated when
tested in that way. Therefore, much of the apparent aggregation of the
galled and ungalled plants is attributable to the overall patchiness of the
plants.

The second example of this kind of analysis uses data from the litera-
ture, specifically the Lansing Woods data given in Diggle (1983) and dis-
cussed by Upton and Fingleton (1985). These data are the mapped
positions of trees of various species in a hardwood forest in Clinton
County, Michigan, U.S.A. As with the Solidago data, the positions were
converted to a 50�50 grid of counts. Upton and Fingleton (1985)
remark that maples (Acer sp.) and hickories (Carya sp.) are comple-
mentary, with maple gaps matching hickory patches and vice versa. Figure
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6.21a shows that the segregation of the two species has a maximum at a
scale of 12 quadrats (68m). In contrast, red oaks and hickories show
aggregation at a scale of 8 quadrats (45m) as illustrated in Figure 6.21b.
Black oak (Quercus nigra) with hickory, on the other hand, has a very
different pattern, with aggregation increasing with scale (Figure 6.21c).
This example shows that, within a single community, and a small set of
species, there is a wide range of covariance responses, indicating that
interspecific association changes over distance in different ways depend-
ing on the pair of species.

Plant–environment correlation
Many of the methods we have been describing for examining the spatial
covariation of two kinds of plants in two dimensions can obviously be
used to investigate the relationship between a species and an environ-
mental factor. Reed et al. (1993) used a somewhat different technique to
examine the scale dependence of correlation between vegetation and
environmental factors. In a woodland in North Carolina, they sampled
the vegetation using a grid of 256 16m�16m cells,each containing eight
nested quadrats in one corner from 0.0156m to 256m2 in size. They also
collected 289 soil samples from the corners of the cells and analyzed them
for a number of characteristics including pH, bulk density and the avail-
able amounts of a range of elements. In the absence of directly measured
soil variables for the small nested quadrats, those values were interpolated
using the geostatistical technique of kriging (David 1977; Bailey &
Gatrell 1995). The vegetation data were subjected to ordination,
detrended correspondence analysis (DCA), and the environmental vari-
ables’coefficients of multiple determination with the first DCA axes were
calculated.These values tended to be larger for the larger quadrats,which
the authors interpreted as indicating that the correlation of vegetation
and environment increases with increasing grain size or scale.

Cross-variogram
In Chapter 4, we introduced the general concept of the cross-variogram
(Equation 4.5) which is the geostatistical equivalent of a covariance that
is calculated over a range of distances. In that chapter, the concept was
applied in one dimension, but it can obviously be used equally well in
two dimensions.As with the variogram, in two dimensions it can be used
either with averaging over all directions or in a directional manner. Rossi
et al. (1992) provide an interesting example of the application of the
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Figure 6.21 4TLQC analysis of Lansing Woods data. a Maples and hickories.
b Red oak and hickory. c Black oak and hickory.There is a complete range of
responses in the one data set.



directional cross-variogram in the study of the ecology of two carabid
beetles. The cross-variogram showed that their pattern was strongly
anisotropic, being strongly positively correlated in some directions at the
same scales at which they were strongly negatively correlated in other
directions. This pattern was interpreted as indicating that if habitat parti-
tioning is the cause of the pattern, its spatial dependence had a strong
directional component, probably related to a trend in soil moisture in the
area sampled. It would not be surprising if a similar study of the plants in
the same area produced results indicating the same kind of patterns. A
spatial gradient in an environmental factor such as soil moisture provides
an obvious and interesting kind of anisotropy (see Chapter 8).

Landscape metrics
The field of ‘landscape ecology’was originally envisioned as dealing with
a human-based definition of a landscape, that is systems on a scale of kilo-
meters or more (Forman & Godron 1986), but its concepts can be
applied to ecological mosaics of any scale, depending on the focus of the
study (Wiens & Milne 1989; Kotliar & Wiens 1990). While the focus of
this book is spatial pattern in plant communities, there is some overlap
with quantification in landscape ecology, and our discussion of two-
dimensional pattern should include some reference to related landscape
metrics. We will not give the technical details of the landcape metrics,
which can be found elsewhere (see McGarigal & Marks 1995).

Landscape ecology is based on the underlying concept of a mosaic of
discernible patches of different kinds. The structure of the landscape is
then determined by the characteristics of individual patches such as type,
size, and shape, and by spatial relationships among the patches of different
types (Turner et al. 1991). A number of metrics has been developed to
quantify the characteristics of individual patches and of the landscape as a
whole. Many of the metrics relate to basic quantities such as the number
of patches of a certain kind and the mean and variance of their areas.
Other measures are related to the amount of edge between patches in the
landscape and the amount of contrast between patches separated by the
edges (McGarigal & Marks 1995). One aspect of spatial pattern that is of
great importance in landscape ecology,which we have not emphasized in
our discussion of spatial pattern, is the shape of the patches. Shape can be
measured, in part, by metrics such as perimeter to area ratio or the fractal
dimension of the boundary.

Part of the reason that shape is emphasized in landscape ecology is that
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organisms may be sensitive to the effects of edges between different kinds
of patches and may be restricted to what is called the ‘core’ area of their
preferred patch type. How organisms are affected by the ratio of edge to
core has important management implications in fragmented landscapes
(Turner 1989). Similar concerns about the movement of organisms
between patches of their preferred type has led to the introduction of a
number of metrics related to the distances to the nearest patches of the
same type. The ability of organisms to move between patches and thus
recolonize after local extinction will depend, at least in part,on the spatial
arrangement of the patches (Turner 1989).

In quantitative landscape ecology,as in spatial pattern analysis, there is a
need to evaluate how heterogeneity changes with scale. A recent
development in landscape ecology is the application of lacunarity analysis
which is a scale-dependent measure of heterogeneity or the ‘texture’ of
an object (Plotnick et al. 1993, 1996). The easiest way to explain this
concept is to revert to one dimension. Consider a string of 1’ and 0’s of
length n. For each block size b, count the number of 1’s in all possible
positions of a single block of size b and derive the frequency distribution.
Where x̄(b) is the mean of this distribution and s2(b) is the sample vari-
ance, the lacunarity at scale b is (Plotnick et al. 1996):

(b)�1�s2(b)/x̄2(b). (6.30)

This index is one more than the square of the coefficient of variation and
higher values indicate clumping. It is therefore also closely related to the
variance to mean ratio and to a variety of familiar measures such as
Morisita’s index (Chapter 3). As with quadrat variance methods, the
characteristics of the spatial pattern are based on the shape of the plot of
the index (b) as a function of b, usually in a log-log form. Fractal pat-
terns produce straight lacunarity plots because the fractals are self-similar
at all scales;patterned data produce lacunarity plots with distinct breaks in
the slope corresponding to the scales of pattern (Plotnick et al. 1996).

The basic method we have outlined can be extended to quantitative
data and into more spatial dimensions. Plotnick et al. (1996) suggest that
one strength of this approach is that it can be applied to real patterns
which may not be fractal, by determining scale-dependent changes in
spatial structure. They believe the method will have wide applicability in
fields concerned with spatial pattern description.

There is clearly overlap between the spatial characteristics studied in
landscape ecology and in pattern analysis in plant ecology. Both are con-
cerned with the relationship between pattern and process and with the
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quantification of that pattern. Both are concerned with the concept and
importance of spatial scale (Turner et al. 1991).For example,Cullinan and
Thomas (1993) evaluate some pattern analysis methods for determining
the scale of pattern in a landscape, including TTLQV, spectral analysis,
and the semivariogram. They concluded that more than one method
should be used, because no single method consistently gave reliable esti-
mates of scale.

On the other hand, spatial pattern analysis and landscape ecology have
differences in emphasis, arising in part from the underlying motivation. If
the focus is the conservation of birds of the interior of old-growth forests
in an exploited landscape, the emphasis on edges, core area and fragment
shape is crucial. The motivation to examine those characteristics is less
strong in studies of processes in natural vegetation. In the future,however,
the questions and methods of the two areas will undoubtably converge
further.

Other methods
Other approaches to the analysis of spatial pattern in two dimensions are
possible. For instance, we can speculate on how a two-dimensional
version of multiscale ordination (MSO) might work but it has not yet
been introduced to our knowledge. A two-dimensional equivalent of
MSO would calculate a variance–covariance matrix for each block size,
as in the one-dimensional case, but would use 4TLQV and 4TLQC or
the nine-term equivalents. These matrices would be summed over block
sizes, eigenanalyzed with the resulting variance repartitioned by block
size. As with the methods that are its basis, this version of MSO does not
deal with anisotropy.

Another approach to examining the scale of multispecies pattern in
two dimensions is illustrated in Legendre and Fortin (1989) based on
Oden and Sokal (1986) and Sokal (1986). A matrix of ecological multi-
variate dissimilarities among the samples is calculated, call it X.A series of
matrices, Y, is calculated, one for each distance class, consisting of 1’s for
pairs of samples in that distance class and 0’s elsewhere. A normalized
Mantel (1967) statistic is calculated for X with each Y and the value of
the statistic is tested and plotted against distance in the usual way. In the
Québec forest example described above, Legendre and Fortin found that
the statistic reached a maximum at distance class two and declined there-
after, indicating spatial pattern at a scale of 50m (see our discussion of the
concept of scale in multispecies pattern in the introduction to Chapter 5).
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A two-dimensional version of new local variance (NLV) would
average the absolute values of adjacent 4TLQV or 9TLQV terms. The
purpose would be to detect the size of the smaller phase. The details of
this approach would require careful consideration before the results could
be reliably interpreted.

We can also imagine a revised version of the RPQF method described
earlier: rather than focusing our attention on the pairs of cells that both
were dominated by species A (same species), we could count and analyze
the number of pairs of cells in which one belonged to species A and one
belonged to species B. The rest of the analysis would proceed as
described. If each quadrat could contain many species, the quadrat pairs
could be classified as similar or dissimilar in composition and then
counted and analyzed in the usual way. There are many variants of this
technique possible.

An interesting and very promising approach is to include spatial
information in the analysis of ecological data in order to partial out the
variation that can be attributed to spatial structure (Borcard et al. 1992).
The underlying concept is that the observed variation is caused by
environmental factors and by spatial structure, but there is also variation
that can be explained by neither. It is important to recognize that
environmental variance and spatial variance overlap, and therefore the
explained variation is divided into three parts: nonspatial environmental
variation, variation due to spatial structure alone, and variation due to
spatial structuring shared by the environmental data. The procedure is to
use a canonical ordination technique like canonical correspondence
analysis (CCA, ter Braak 1986, 1987), which ordinates species and
environmental data together, including the spatial information as one
kind of environmental data. The spatial data are included not just as
simple (x,y) coordinates, but with sufficient polynomial terms for a cubic
trend surface regression:

z�b1x�b2y�b3x
2�b4xy�b5y

2�b6x
3�b7x

2y�b8xy2�b9y
3. (6.30)

This ensures that more complex spatial structures such as patches and
gaps can be accounted for (Borcard et al. 1992).

Among the several data sets used to illustrate the technique, the
authors included the data previously analyzed by Legendre and Fortin
(1989). The data are from 200 regularly spaced quadrats and include
species abundance of 28 species of tree (12 retained in this example), 6
geomorphological variables and the spatial locations of the samples.They
found that 18% of the total variation was accounted for by space, 11% by
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the environmental variables, and 8% by a combination of space and
environment, leaving 63% unexplained (Borcard et al. 1992). The high
proportion of unexplained variation may be related to the environmental
factors chosen in the study. Almost 50% of the explained variation was
due to spatial structure.

Økland and Eilertsen (1994) applied the same analysis to understorey
data from coniferous forest patches in southeastern Norway. They sub-
divided the data in two ways: by forest type, pine or spruce dominated,
and by plant type, vascular or cryptogam. In the four subgroups, the
average amount of the total variation explained was about 10% space,
20% environment, 10% space and environment, and 60% unexplained.
Although the proportion of the variation explained is similar in this study
to that in Borcard et al. (1992), here about 50% of the explained variation
is due to environmental factors rather than to space.Økland and Eilertsen
(1994) interpret this result as supporting the view that topography is an
important factor in differentiating between forest vegetation in geolog-
ically homogeneous areas.

The method developed by Borcard et al. (1992) is a modification of
established ordination methods to include spatial information. In a similar
way, classification methods can be modified to include spatial informa-
tion by allowing the clustering of groups only if they are spatially
contiguous (Legendre & Fortin 1989). The approach of including spatial
information in ordination or classification analysis is an area of spatial
pattern analysis where there are more interesting techniques to be
explored and facts to be discovered.

Concluding remarks
Most of the vegetation that we discussed exists in at least three dimen-
sions, but we often chose to analyze it in fewer dimensions, chiefly for
practical reasons.Advances in technology,particularly in the area of com-
puting, have made the task of analysis so much easier over the last few
decades; it will be interesting to see whether technology can be equally
helpful in the collection of data for the study of two-dimensional spatial
pattern.

Recommendations

1. Fully mapped data of some kind probably provides the greatest
flexibility for different kinds of analysis. Spaced samples can also
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provide valuable insights, as can be seen from some of the examples
discussed in this chapter.

2. Measures of spatial autocorrelation are complementary to the two-
dimensional version of PQV analysis. As in one dimension, resonance
peaks occur with PQV.

3. Two-dimensional spectral analysis permits the evaluation of
anisotropy, but the anisotropy must be stationary.

4. The two-dimensional versions of TTLQV and 3TLQV seem to be
reliable methods, but they do not detect anisotropy. In converting
mapped data to grids of quadrats for this kind of analysis, more than
one grid orientation should be used.

5. The frequency of like or unlike species in random pairs of quadrats
gives a good visual portrayal of anisotropy in the two-dimensional
pattern.

6. The two-dimensional quadrat variance methods can be converted
into covariance methods to look at the scales of segregation and
aggregation of two kinds of plants. These methods have the same
strengths and weaknesses as those from which they were derived. The
cross-variogram can also be used for two species.

7. In spite of differences in history and motivation, the methods of
pattern analysis and quantitative landscape ecology have many similar-
ities.

8. Many kinds of multivariate analysis of ecological data, such as ordina-
tion and classification,may benefit from including the spatial relation-
ships of the samples in the analysis.
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7 · Point patterns

Introduction
In Chapter 1, one of the first topics introduced was the distinction
between treating the information on the spatial arrangement of plants as
dimensionless points in a plane or as a mosaic of patches filling the plane.
In this chapter, we will examine a number of methods that evaluate
certain properties related to spatial pattern using the positions of individ-
ual plants in a plane. Several reviews of the analysis of spatial point pat-
terns are available (Diggle 1983; Upton & Fingleton 1985; Cressie 1991),
and it is not the intention to repeat a great deal of the material covered in
those books. Instead, those methods that parallel the approaches
described elsewhere in this book, but using points rather than density or
presence,will be emphasized. In general, the kind of data that will be used
here is mapped plant positions within a defined study area or plot.
Considerations of the shape of the study plot to be used are discussed in
Chapter 2.

There are several considerations to be included in our examination
and evaluation of methods based on the positions of individual plants.
The first is that for an investigation of spatial pattern, techniques that
merely distinguish among the three possibilities of clumped,more-or-less
random, and overdispersed are not really of interest for the purposes of
this book.We want to get more out the analysis; for example, if the plants
are overdispersed,what is their spacing,how uniform is the spacing, is the
spacing the same between plants of different kinds? If the plants are
clumped, what size are the clumps, what size are the gaps between them?
If there are two or more kinds of plants, are the different kinds segregated
or are they aggregated? How does the segregation or aggregation relate
to the overall pattern of the plants?

The second consideration is that it is desirable for methods to deal



equally well with clumps of points in an otherwise empty plane and with
definite gaps or holes in a plane that is otherwise densely populated (that
is a ‘positive-negative’ pair of spatial patterns as in Figure 7.1). Because of
the way that the quadrat variance methods are formulated in terms of
density differences (Chapter 3), spatial patterns in which patches and gaps
are reversed give similar results (cf. Pielou 1977a). In analyzing point pat-
terns, it will not always be true that positive-negative pairs of patterns like
those in Figure 7.1 give the same result. It would be best to find a method
that gives the same evaluation of the scale of spatial pattern in both the
positive and negative versions, but that also provides a way of dis-
tinguishing between them.

Univariate point patterns
A large number of methods have been described that can be used to
quantify the characteristics of spatial point patterns such as the mapped
positions of plants (cf.Diggle 1983).Many of them concentrate on deter-
mining whether the plants are clumped or overdispersed as opposed to
being randomly arranged in the plane. As we pointed out in Chapter 1,
spatial dispersion is scale dependent: the same set of points can appear
overdispersed at one scale and clumped at another (cf. Figure 1.10). In
this section, one focus will be the investigation of the scale of spatial
pattern: given that the plants are clumped, we want to determine the size
of the clumps and their spacing.

The size of the clumps combines with the overall density of plants to
determine the local density of plants. It is the local density that is of
ecological importance, since, if all else is equal, plants with the highest
local density of neighbors grow more slowly and experience the highest
rates of mortality (Mithen et al. 1984; Silander & Pacala 1985, 1990).

Neighbor distance methods

The literature on the analysis of point patterns includes a large number of
methods based on the distance of each plant to its nearest neighbor. One
of the most famous is the Clark and Evans (1954) test that distinguishes
random dispersion from clumped or overdispersed based on nearest-
neighbor distances. From the point of view of analyzing spatial pattern,
the draw-back of many of these methods is that while they can dis-
tinguish the kind of dispersion, having found clumping, for instance, they
give no information on the size or spacing of the clumps. In other words,
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Figure 7.1 Spatial pattern that consists of: a clumps of points in an otherwise empty
plane, or b a plane that is otherwise densely populated by plants except for definite
gaps or holes.



they are related to the intensity of pattern rather than to the scale (Pielou
1977a). It is easy to see why this is so by considering that very different
spatial patterns can have the same distribution of nearest neighbor dis-
tances, for example when all nearest neighbor distances are the same
(Figure 7.2). For this reason, the usefulness of nearest neighbor distances
for spatial pattern analysis is very limited.

If the distances from plants to their single nearest neighbor cannot be
used to analyze or characterize spatial point pattern fully, an obvious
extension is to look at the first and second nearest neighbors or first,
second, and third nearest neighbors (cf. Thompson 1956). Clearly, the
characteristics of the pattern will be captured more fully as more neigh-
bors are used.

Plant-to-all-plants distances

The most extreme extension of nearest neighbor analysis uses the dis-
tances between all possible pairs of plants and the method is therefore
called plant-to-all-plants distance analysis (Galiano 1982b). It looks at the
frequency distribution of the distances between all pairs of plants in the
plot. Where t is one of a given range of distances (e.g. 0–1cm, 1–2cm,
2–3cm, . . .), let f(t) be the number of pairs of plants, i and j, for which the
distance between them,dij, is in the range of t. f(t) is then plotted as a func-
tion of t and the plot is interpreted: large increases in f(t) indicate overdis-
persion at scale t and decreases indicate clumping. For example, if the
plants occur in clumps of diameter d separated by gaps also of size d, then
there will be an excess of distances smaller than d, due to distances
between plants within clumps. There will also be a deficit of distances of
length d and greater because, for most plants, points at distance d will be
outside their own clump. There will also be an excess of interplant dis-
tances just under 3d due to pairs of plants in adjacent clumps (see Figure
7.3; cf.Galiano 1982b).

Based on the null hypothesis of complete spatial randomness, the
expected value of f(t) increases linearly with t. Galiano (1982b) suggests
converting the frequencies to ‘conditioned probabilities’ by calculating
the number of distances within each distance class per unit area. Another
modification suggested by Galiano (1982b) is that to avoid edge effects,
the distances to all other plants should be calculated only for those plants
in the center of the sample plot, specifically those further from the edge
than the maximum distance examined.Unfortunately, if the plot is circu-
lar, and the maximum distance examined is 2/3 of the plot’s radius, the
result is that less than half the plants are fully used.
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Figure 7.4 shows the arrangement of plants in clusters and Figure 7.5
shows the plant-to-all-plants analysis, f(t) as a function of t when all plants
are used. The method does not give as clear a result for the ‘negative’ of
that pattern, where there are distinct gaps in a general backgound of
points; as Figure 7.6 shows, the results are not readily distinguishable from
those for points placed at random. Figures 7.5 and 7.6 show the raw fre-
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Figure 7.2 Illustration of the fact that two very different spatial point patterns can
have the same distribution of nearest neighbor distances.Here all nearest neighbor
distances are the same because the plants occur in pairs.



quencies as a function of t with no edge correction, but the results are
similar when only the plants in the center of the plot are used, following
Galiano’s suggestions. In either case, the results do not give a clear picture
of the characteristics of the spatial pattern.

Second-order analysis

Although described as an extension of nearest neighbor methods, the
plant-to-all-plants analysis is closely related to another approach referred
to as a second-order statistic, introduced earlier by Ripley (1976,1977). It
is one of the more commonly used methods for studying the spatial
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Figure 7.3 When the plants are in clumps of diameter d separated by gaps of size d,
there are many interplant distances less than d.There are very few of about 2d
because that distance goes beyond the plant’s patch and more again at distance 3d,
because circles of that size can reach adjacent patches.
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Figure 7.5 Plant-to-all-plant analysis: f(t ) as a function of t for all plants when the
plants are in clusters (Figure 7.4).

Figure 7.4 An example of plants in clusters for which the plant-to-all-plants
analysis is illustrated in Figure 7.5 (artificial data).



pattern of mapped points and one of the better ones available (Andersen
1992).The method is also based on the distances between pairs of points,
because it counts the number of points within a certain distance, t,of each
point,with t taking a range of values.The process is essentially the same as
counting the number of points in circles of radius t centered on the n
points. It can be considered to be an examination of the cumulative fre-
quency distribution of the plant-to-all-plants technique.

Formally, let dij be the distance between points i and j and let It take the
value 1 if the distance between i and j is less than t, and the value 0 other-
wise. Where � is the density of plants per unit area, the expected number
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Figure 7.6 (a) f(t ) as a function of t when the points are placed randomly except for
four gaps or holes. It is not readily distinguishable from the result when the plants
are completely random, (b).All plants were used.



of other plants within radius t of a randomly chosen plant is just � multi-
plied by some function of t, call it K(t).We estimate K(t) by K̂(t):

K̂(t)�A
�

wijIt(i,j)/n2, (7.1)

where A is the area of the plot, and wij is a weighting factor used to reduce
the problem of edge effects. If the circle centered on i with radius t lies
totally within the study plot then wij�1, otherwise it is the reciprocal of
the proportion of that circle’s circumference that lies within the plot
(Figure 7.7). The purpose of the weighting factor is to remove edge
effects,where large circles centered on points near the edge contain fewer
points than expected merely because much of the circle being considered
is outside the area studied. For further details see Ripley (1977), Diggle
(1983) or Upton and Fingleton (1985, p. 88). Ripley (1988) provides a
detailed discussion of edge correction procedures and Haase (1995) eval-
uates several possibilities.

�
n

j
�

n

i
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Figure 7.7 Edge correction technique: the reciprocal of the proportion of the
circle centered on point i going through point j that is within the sample plot is
added to the frequency count.Here wij�1.77.



In addition to the weighting method described above, there are two
other straightforward ways to reduce edge effects. The first is to map the
plants in a buffer area around the region of interest.The second is toroidal
edge correction where the map is considered to be wrapped around so
that its north and south edges join and its east and west edges join.
Essentially the map is used as its own buffer area (Figure 7.8). Mapping a
buffer area is the most reliable method, but requires more work; the tor-
oidal correction is not recommended because it can give biassed results
for nonrandom patterns (Haase 1995).

Since K(t)��t 2 if the plants are randomly arranged in a Poisson forest,
we plot:
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Figure 7.8 Toroidal edge correction: eight copies of the original data (central
square) are placed around it.Analysis then proceeds using circles centered on the
plants in the middle square only. Plants in the outer squares are only included in
counting.



L̂ (t)�t� (7.2)

as a function of t, which on the null hypothesis has an expected value of
zero. Large positive values of L̂ (t) indicate that the plants are overdis-
persed at scale t and large negative values indicate clumping. Upton and
Fingleton (1985) recommend using a Monte Carlo approach to testing
the significance of observed values. Given the study unit of area A, n
points are placed at random and the analysis is performed on these
random data. This procedure is repeated a number of times, say 100
times, and the observed results are compared with the frequency distribu-
tion of the random trials. As an approximate guide to the significance of
the most extreme values, Ripley (1978) suggests 1.42 /n and 1.68

/n as 5% and 1% significance values. The Monte Carlo approach to
assessing the results is more commonly used (Prentice & Werger 1985;
Skarpe 1991,Zhang & Skarpe 1995).

Figure 7.9 illustrates the sensitivity of L̂ (t) to overdispersion and
clumping. As with the plant-to-all-plants method, however, the method
does less well in conveying information about spatial pattern consisting of
‘holes’ rather than clumps (Figure 7.10a); it is detecting only large-scale
clumping.When there are two scales of pattern, as when the plants occur
as clumps of clumps, the two scales are apparent in the analysis if they are
sufficiently distinct (Figure 7.10b).

One characteristic of this method is that, because the circles are cen-
tered on the plants, if the plants are in clusters, none of the circles are ever
placed in the large empty areas. One consequence of this feature is that if
the plants occur in regular strips of width d separated by gaps of width d,
when t�d/2 even the most empty circles will have some plants in them
(Figure 7.11).When t�d,most circles will be half in the patch and half in
the gap, thus containing a number of plants close to the expected value,
the overall density.The scale of the spatial pattern is d, and L̂ (d ) is about 0
(see Figure 7.11).

Getis and Franklin (1987) added an interesting refinement to the
second-order analysis. They were studying the spatial pattern of Pinus
ponderosa in the Klamath National Forest in California. In their paper,
they present data from a 120m�120m subsample, containing 108 trees
apparently in clusters. Using a slightly different version of the statistic,
they calculated, for each point i:

Mi(t)� wijIt(i,j)/�(n�1)
2

. (7.3)��A�
n

j

�A
�A

�K̂(t)/�

216 · Point patterns



Univariate point patterns · 217

Figure 7.9 Second-order analysis: L̂(t ) as a function of t when the plants are
a overdispersed,with hard core inhibition of 5 units in which no plants are
permitted within 5 units of any other and b clumped with clumps of radius 20.



They then plotted contour maps based on the values of Mi(t) for the indi-
vidual trees, using different values of t. The accuracy of the contours was
enhanced by calculating Mp(t) for control points, p, in the areas where
there were few trees.They then examined the contour diagrams for clus-
ters, defined as areas in which M was greater than the Poisson expecta-
tion. The clusters that were identified in this way changed with the value
of t, indicating that the spatial heterogeneity that is perceived depends on
the scale of the analysis.
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Figure 7.10 Second-order analysis: L̂(t ) as a function of t when a the pattern
consists of holes radius 30 units in a plane of otherwise randomly placed points and
b when the points are arranged in clumps of clumps.



Another characteristic of this method is that because it looks at the
number of plants contained in a circle of a particular radius, it does not
use the information of the directions of the plants from the center. That
is, it treats patterns as isotropic,whether they are or not.

The second-order analysis is an improvement over first-order methods
but, as Andersen (1992) points out, a complete description of the spatial
structure would require functions analogous to K(t) describing the
expected numbers for specific configurations of three events, four events,
and so on. Such an approach would quickly become both difficult to do
and difficult to interpret.

Kenkel (1988a) used the second-order analysis to investigate self-thin-
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Figure 7.11 Using second-order analysis, circles centered on plants can never occur
in completely empty areas; there is no plant to give circle A.Here, the plants are in
strips of width d;when t�d/2, even relatively empty circles like B will contain some
plants.When t�d, the majority of circles will be half in the strip and half in the gap,
like C and D, thus containing a density of plants close to the overall density.



ning in jack pine, Pinus banksiana, growing on a sandy plain near Elk
Lake, Ontario. Self-thinning is density-dependent mortality in a plant
population and it is usually accompanied by changes in the spatial
pattern of the surviving plants (Hughes 1988). Kenkel (1988a) wanted to
test whether the spatial pattern of the trees, living and dead, was compat-
ible with random mortality. He found that when all trees were analyzed,
their arrangement was locally random (distances less than 4m) and
clumped at intermediate distances (4–19m). Living trees had a spatial
pattern that was significantly regular, with an obvious dearth of distances
between live trees in the range less than 3m. In contrast, the dead trees
were significantly clumped compared to the hypothesis of random
mortality and had an excess of observed distances between dead trees at
distances between 2.5m and 17m. He concluded that the development
of strongly regular pattern in the surviving trees was the result of two
phases of competition, an early stage of symmetric competition for soil
resources and a later stage of asymmetric competition for light (Kenkel
1988a).

Petersen and Squiers (1995) present very different results from a
similar study of the spatial pattern of tree mortality, in this case of aspen
(Populus grandidentata and Populus tremuloides), growing in a mixed forest
in northern Michigan.Using the same second-order method, they found
that the living aspen stems in 1979 were significantly clumped at 12–16m
and that those still alive in 1989 were not just clumped, but more
clumped than would be predicted from the random mortality of those
alive in 1979. The scale of aggregation of living stems in 1989 (14–18m)
was comparable to that in 1979. They attribute the difference between
their findings and the theoretical predictions of increasing dispersion and
the contrast with Kenkel’s (1988a) results to the clonal nature of aspen’s
growth (Petersen & Squiers 1995).

Tessellations

In the preceding sections,we have concentrated on the kinds of questions
we might ask when the plants occur in clumps: how big are the patches
and how far apart are they,or how big are the gaps? In this section,we will
turn our attention, at least in part, to the kinds of questions we might ask
having found that the plants are overdispersed: how far apart are the
plants? From the earlier discussion of plant-to-plant distance techniques,
it is probably clear that to answer the question of interest, it is not
sufficient to examine only the distances to the first nearest neighbors.On
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the other hand, we probably do not need to examine the distances of
each plant to all other plants, because far away plants will have little effect
on growth or survival. Instead, it makes sense to think about all the plants
that are somehow immediate or primary neighbors, if only because those
are the plants with which interactions are probably most intense (Czárán
& Bartha 1992).We need, therefore, a method to determine which plants
are primary neighbors.

Models of plant competition have been based on the concept of the
Dirichlet domain introduced in Chapter 1.The Dirichlet domain associ-
ated with a plant in the plane is the region of the plane that is closer to
that plant than to any others.The idea is that the resources (soil nutrients,
water, light) that are associated with that region of the plane are available
to the closest plant before or more than they are available to others.
Mithen et al. (1984) have shown that there is a some association between
the size of a plant’s Dirichlet domain and its subsequent success, although
the size of the plant itself is critical. The Dirichlet domain model also
provides a simple definition of which plants are primary neighbors and
therefore which distances to other plants are important.Plant i and plant j
are neighbors if and only if their Dirichlet domains share a boundary (cf.
Figure 7.12). If lines are drawn joining the plants that are neighbors
according to this definition, the result is the Delaunay triangulation of the
plane, which technically is the dual of the Dirichlet tessellation. We can
use the frequency distribution of line lengths in the Delaunay triangula-
tion to answer some questions about the spatial pattern of the plants. For
example, if the plants are overdispersed, the frequency distribution would
be unimodal with lower variance indicating more regular spacing of the
plants. On the other hand, if the plants occur in simple clumps, the fre-
quency distribution will be bimodal, including short distances between
neighbors in the same clump and longer distances between neighbors in
adjacent clumps.

Another model that produces a tessellation that is very similar to the
Delaunay tessellation starts with the distances between plants ordered
from least to greatest. The two plants that are closest are joined first and
then the lines joining points are added to the tessellation in order from
the smallest, subject to the condition that no line can be added to the
tessellation if it crosses a pre-existing line (Figure 7.13).This tessellation is
referred to as the Least Diagonal Neighbor Triangulation (LDNT, cf.
Fraser & Van den Driessche 1972).

Having joined all the plants in pairs to create a tessellation, we can
examine the distribution of distances from plants to their neighbors.
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Figure 7.12 Plants i and j are neighbors where their Dirichlet domains share a
boundary (solid line).The broken lines join plants that are neighbors by this
definition; they form a Delaunay tessellation.



Figure 7.14 shows the LDNT for points that are overdispersed by a hard-
core inhibition process. (A hard-core inhibition process does not just
decrease the probability of finding another point within a certain radius
of an existing point; it makes the probability zero.) The associated fre-
quency distribution of edge length reveals the underlying structure
clearly. Figure 7.15 shows the frequency distribution for a clumped and
for a random arrangement of points in the plane.The increase in the vari-
ance of edge length is apparent as the dispersion becomes more clumped.

Quadrat counts

In the introductory comments of this chapter, we said that we were not
interested in techniques that merely distinguish among the possibilities of
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Figure 7.13 The least diagonal neighbor (LDN) tessellation joins plants in pairs
based on their distance.The two closest plants are joined first; the lines joining
points are then added in order from shortest to longest, provided that they do not
cross any pre-existing lines.The first 21 lines are labelled in order.The dotted line
is shorter than line 20 but it is not used because it crosses line 15.
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Figure 7.14 The LDN triangulation for points that are overdispersed in a hard core
inhibition process (a); the underlying structure is revealed in the associated
frequency distribution of edge length (b).



the points being clumped, random, or overdispersed. That is true, but the
chapter would not be complete without a brief discussion of the com-
monly used technique of investigating dispersion using counts of plants
in quadrats.

The basic technique is to count the plants in a set of n quadrats, letting
xi be the number of plants in the ith quadrat. The mean and sample vari-
ance are calculated and their ratio is often referred to as an index of dis-
persion:

Id� (xi� )2/ . (7.4)

This index is interpreted as indicating clumping if it is greater than 1,
overdispersion if it is less than 1, and random dispersion if it is close to 1.

xx�
n

i�1

Univariate point patterns · 225

Figure 7.15 The frequency distribution of LDNT edge lengths for the clumped
and random arrangements of points in a plane (a); the increase in the variance of
edge length is apparent (b).



Many texts suggest testing the significance of this index by comparing
(n�1)Id with the � 2

n�1 distribution (see Ludwig & Reynolds 1988). The
implication is that if the test result is not significant, then the plants are
more-or-less random in their dispersion.

The reasoning behind the use of this method is as follows:

1. If the plants are randomly arranged then the frequency distribution of
plants per quadrat will follow a Poisson distribution.

2. Since the variance and mean are equal in a Poisson distribution, if the
frequency distribution is approximately Poisson the sample variance
and mean should be about the same.

Both of these statements are true and if the plants are random then the
index of dispersion will be around 1. The reverse reasoning, however, is
not sound. Having the variance equal to the mean does not guarantee a
Poisson distribution of frequencies and a Poisson distribution of frequen-
cies does not guarantee spatial randomness (Figure 7.16).

As Hurlbert (1990) points out, there are many frequency distributions
that have the variance equal to the mean; he calls this class of distribution
‘unicornian’ because of the well-known but surprising fact that the dis-
persion of all unicorn populations has this property. Because of the
possibility of a nonPoisson but unicornian distribution, many authors
suggest that a goodness-of-fit test comparing observed and expected fre-
quencies is a better approach to testing for a Poisson distribution. That is
a good suggestion.The next difficulty,however, is that even if the number
of plants per quadrat follow a Poisson distribution, the dispersion of
plants may still not be random, as Figures 7.17 and 7.18 show. The spatial
relationship among the high- and low-density quadrats must be consid-
ered whether the quadrats are regularly placed as in Figure 7.17 or are
themselves randomly placed as in Figure 7.18. In both examples, spatial
autocorrelation is high; in the grid of quadrats the correlation coefficient
of rook’s move neighbors is 0.83 and using the LDNT definition of
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Figure 7.16 The logic of the variance:mean ratio. If the plants are randomly
dispersed, then the frequency distribution in quadrats is Poisson. If the distribution is
Poisson then the variance and the mean are the same.The reverse inferences are not
valid.



neighbors for the scattered quadrats, the correlation of neighboring
samples is 0.88.

Quadrat counts cannot, therefore, be used alone to test for spatial ran-
domness. The spatial autocorrelation of the quadrat counts needs to be
analyzed.

Anisotropy
The methods discussed so far in this chapter have been based on the
assumption of isotropic pattern; that is, the detection of pattern is aver-
aged over all directions. In this section, we will describe some
modifications of the methods in order to evaluate the directional nature
of spatial point pattern.
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Figure 7.17 The frequency distribution of plants in quadrats is Poisson, but their
dispersion is not random: a grid of quadrats. The correlation of rook’s definition
neighbors is 0.83.



For any of the methods that look at distances to plants or that count
plants in circles, a simple modification is to divide the circle around each
point into a number of sectors (12 in Figure 7.19). In this way, second-
order analysis can be modified to examine anisotropy, dividing the circle
around each point into N sectors and calculating K̂s(t) for each sector, s:

K̂s(t)�A
�

wijIt(i,j,s)/n2, (7.5)

where A is the area of the plot. Where dij is the distance between points i
and j, It(i,j,s) is 1 if dij�t and j is in sector s of a circle around point i. If
sector s centered on plant i with radius t is completely within the study
plot then wij�1, otherwise it is the reciprocal of the proportion of that
sector’s circumference that lies within the plot.

K̂s(t)��t2/N if the plants are randomly arranged in a Poisson forest,
and it would make sense to plot:

L̂ s(t)�t� (7.6)

as a function of t for each sector. In most cases, however, the order of the
points, i and j, is not important and so we would combine sectors on
opposite sides of the circle, and thus plot:

�NK̂s(t)/�

�
n

j
�

n

i
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Figure 7.18 The frequency distribution of plants in quadrats is Poisson, but their
dispersion is not random: random quadrats.When the samples are joined using a
LDNT, the correlation among neighboring samples is 0.88.



L̂ s(t)�t� (7.7)

where sector r is opposite sector s (see Figure 7.19).On the null hypothe-
sis of complete spatial randomness, L̂ s(t) has an expected value of zero.
Large positive values of L̂ (t) indicate that the plants are overdispersed and
large negative values indicate clumping at scale t in the sector.
Significance testing can use the guidelines given above in the general
treatment of the second-order technique or by a Monte Carlo approach.

As an example of anisotropy, we reanalyzed part of the huon pine
(Lagarostrobos franklinii) data presented by Gibson and Brown (1991). We
used a 36m�32m subsample from the top part of their Figure 2 (site
D1), in which the stems greater than 10cm in diameter appear to form
three linear patches parallel to the x-axis. Figure 7.20 shows two plots of
L̂ s(t) resulting from this analysis, using N�8. Parallel to the x-axis, apart
from the repulsion of individual stems at a scale of 0.5m, the stems are
clumped at a range of scales to the maximum tested, 10.8m. In contrast,
in the direction of the y-axis, the stems are clumped only to a scale of 2m
and then strongly overdispersed in the range of 7.8m to 9m. Gibson and
Brown (1991) detected this same scale of pattern, using the standard
second-order analysis that averages over directions, and attributed it to

�N[K̂s(t)	K̂r(t)]/2�
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Figure 7.19 The division of the circle centered on a plant into 12 sectors. Sectors r
and s are opposite each other.
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Figure 7.20 Two of four possible plots showing second-order analysis using eight
sectors.The data for opposite sectors are combined. a Parallel to the x-axis, there is
repulsion at small scales and clumping at larger scales. b Parallel to the y-axis, the
opposite is true.



seedling dispersal or to canopy disturbance. The fact that the pattern is
strongly anisotropic will affect our evaluation of which processes have
given rise to it.

Bivariate point patterns
Having described methods that analyze the spatial point pattern of plants
when they are treated as being of only one kind,we turn now to examine
methods that consider plants of two different kinds. The different kinds
may be two species, the two sexes of dioecious plants, the two forms of a
dimorphic species, or plants that are attacked or not by a particular herbi-
vore, pathogen or parasite, and so on. One of the most basic questions
that can be asked about plants in natural vegetation concerns how they
are arranged in space, and when the plants are of two kinds there is
the further question of how the plants of the two kinds are arranged rela-
tive to each other. One way to approach the question is to describe the
spatial arrangement of each kind separately and then to ask how the
two arrangements are related.A second approach is to describe the spatial
arrangement of all the plants, and then to consider different labellings of
the plants as they are assigned to different classes. In either case, it is of
interest to determine whether the plants of the different kinds are segre-
gated from each other or whether they are aggregated.

As with many other phenomena discussed in this book, segregation
and aggregation are scale dependent, as Hurlbert (1990) points out
‘Degree of aggregation in nature is always strongly a function of spatial
scale’. One version of this scale dependence is shown in Figure 7.21: in
part b the two kinds appear to be segregated, but in the context of more
empty space around them, they appear aggregated (part a).The two kinds
are actually segregated within the patches; their aggregation is the result
of the overall patchiness of the plants. Therefore, it may not be appropri-
ate to ask simply whether the kinds are segregated or aggregated, but
rather we should ask at what scales are they segregated and at what scales
aggregated.

Nearest neighbor methods

The discussion of two-species methods can follow the structure of the
above discussion of the methods used for point pattern analysis as applied
to plants of one kind. The most simple approach to examining segrega-
tion and aggregation is to look at the kinds of plants that are nearest
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neighbors. Whether the plants of either kind are overdispersed, clumped,
or random, as a general rule (to which there may be exceptions) if the
kind of plant is independent of the plant’s position, then the identity of
that plant’s nearest neighbor will be independent of its own identity. On
the other hand, if the kinds are segregated, then the frequency of nearest
neighbors of the same kind will be greater than expected, and if the kinds
are aggregated then the number of unlike nearest neighbors will be
greater than expected.

For example, we mapped the stems of Solidago canadensis in 2m�2m
plots at the edge of a hay field, and recorded whether or not they had been
attacked by insect herbivores, the most obvious and common result being
the formation of a gall (Dale & Powell 1994). (This example is described in
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Figure 7.21 Scale of segregation and aggregation. a In relation to the surrounding
empty space, the two kinds appear aggregated, although they are segregated within
the patches.Their aggregation results from overall plant patchiness. b When a small
area is considered, the two kinds of plants appear to be segregated.



greater detail in Chapter 6.) The plants were classified as obviously
attacked or as ‘clean’. We restricted the nearest neighbor analysis to the
plants in the central 1.6m�1.6m square to avoid edge effects; another
method for avoiding edge effects is described by Kenkel et al. (1989).
Figure 7.22 shows plot 3 and nearest neighbors of those 183 central plants.
Ninety of the nearest neighbors were of the same kind.We performed 100
randomizations of all the plants’ labels and found that in 38 cases there
were fewer than 90 like joins and in 62 cases there were 90 or more.Based
on this analysis, there is no evidence to suggest that the two kinds of plants
are segregated or aggregated at the scale of nearest neighbors.

We could also test whether like nearest neighbors tend to be closer
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Figure 7.22 The nearest neighbors of 183 Solidago canadensis plants that are further
than 5% of the plot’s side length from the edge (plot 3 of Dale & Powell, 1994).
Ninety of the nearest neighbors were of the same kind, ‘attacked’ or ‘clean’.A
randomization analysis of the plants’ labels found no evidence to suggest that the
two kinds were either aggregated or segregated.



than unlike nearest neighbors. In the same data set, just analyzed, the
average distance between alike nearest neighbors was 5.1cm (s.d.3.27cm)
and between unlike nearest neighbors was 5.8cm (s.d.3.10cm).The large
variance prevents the difference between them from being significant.

We can extend this kind of analysis to look at second or third nearest
neighbors in the same sort of way. Interestingly enough, in analyzing the
same Solidago plot, looking at the first and second nearest neighbors, the
randomization tests finds 75 out of 100 less than the observed number of
like joins; using the first, second, and third nearest neighbors 94 out of
100 randomizations have fewer like joins than observed. Clearly, there is
something about the spatial relationship of the two kinds of plants that
will be discovered by more extensive analysis than the simple nearest
neighbor method was able to discern.

In a study of a dioecious tropical tree Ocotea tenera in Costa Rica,
Wheelwright and Bruneau (1992) looked at the sexes of nearest neighbor
trees to determine whether there was spatial segregation. In the natural
population, the frequency of nearest neighbors being of different sexes
was much greater than expected by chance. Because the trees of this
species are able to change their sexual expression, the authors speculated
that the observed pattern could be attributed to labile sexual expression
modified by the neighboring trees. The spatial nonrandomness of the
sexes may increase their fitness.

Frameworks

The nearest neighbor methods just described essentially provide a frame-
work within which the plants’ positions are simplified to lists of the
nearest neighbors or of the first two nearest neighbors.What is done then
is to examine the categories to which plants joined in this way belong
and what proportion are ‘like’ joins,between two plants of the same kind.

Clearly, there are other and more extensive frameworks of joins
between pairs of plants that can be used. A Delaunay tessellation or a
least diagonal triangulation as described in the subsection entitled
‘Tessellations’ can obviously be used in this way. Once a framework is
established, the procedure is to look at the frequency of like joins and ask
whether the number of these is significantly less or greater than expected.
The significance will usually be determined using a randomization pro-
cedure. It may also be informative to compare the frequency distributions
of the lengths of like and unlike joins to examine the properties of the
joint spatial pattern. In the Solidago example described in the previous
section, first nearest neighbors were not significantly often of the same
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kind but when neighbors are defined by LDNT, the result becomes
significant. On the other hand, even using LDNT, there was no
significant tendency for the distance to like neighbors to be shorter than
the distance to unlike neighbors.

Other frameworks are available for this kind of approach,one of which
is the point pattern’s minimum spanning tree. A tree, in graph theory, is a
set of lines that join points together without producing cycles, closed
loops of lines.The minimum spanning tree is the set of lines with smallest
total length that connect all the points into a single structure without
cycles. It is like a chain of nearest neighbors and it includes more joins
than just the nearest neighbor joins (Figure 7.23). As with the nearest
neighbor analysis, the minimum spanning tree would then be used to
compare the frequencies and lengths of like and unlike joins.

Another candidate is the Gabriel graph which consists of lines con-
necting points i and j whenever the circle of diameter dij that passes
through the two points contains no other points (Gabriel & Sokal 1969,
Figure 7.24).Using a framework to examine the frequency of like joins is
essentially an examination of autocorrelation in the data, but the auto-
correlation of categorical rather than quantitative attributes (cf. Sokal &
Oden 1978a,b; Upton & Fingleton 1985). The disadvantage of using a
minimum spanning tree or Gabriel graph as the framework is that it may
be too restrictive of the plants that are considered to be neighbors.
Because the minimum spanning tree allows no cycles, it tends to have
fewer lines and the Gabriel graph also typically does not produce a full
triangulation (see Figure 3 of Gabriel & Sokal 1969).
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Figure 7.23 A minimum spanning tree, connecting the points using the smallest
distances (artificial data).



Second-order or neighborhood methods

All of the framework techniques are based on considering pairs of points
joined by lines. Neighborhood methods are based on sets of plants, more
than two at a time, and examining the combinations of the kinds of plants
in those sets. One of these methods is an extension of the second-order
method described above for single species. The procedure is to count the
number of plants of type 2 within distance t of a plant of species 1, and so
on. If the definition of It(i,j) is changed to take the value 1 only when
dij
t and plant i is of species 1 and plant j is of species 2, then we can
define the following:

K̂1,2(t)�A wijIt(i,j )/n1n2 (7.8)

K̂2,1(t) �A wjiIt(i,j )/n1n2. (7.9)

A is the area of the plot and wij is a weighting factor defined for Equation
7.1. K̂1,2(t) and K̂2,1(t) are estimates of the same function, and the com-
bined estimator is n2K̂1,2(t)	n1K̂2,1(t)/(n1	n2) (Upton & Fingleton
1985).

To investigate the joint spatial pattern of the two species,we plot:

�
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�
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Figure 7.24 A Gabriel graph with some of the test circles shown.Points i and j are
joined if the circle of diameter dij that passes through the points is empty.The dotted
line is not part of the graph because the circle associated with it is not empty.



L̂ (t)�t� (7.10)

as a function of t, which on the null hypothesis has an expected value of
zero. Large positive values of L̂ (t) indicate that the two kinds of plants are
segregation at scale t and large negative values indicate aggregation.

Figure 7.25 shows two kinds of plants, occurring together in clusters,
but with the plants of one kind excluded to the outer rim of the clusters.
Figure 7.26 shows the bivariate analysis of this arrangement, with strict
segregation up to a distance of 5 units and aggregation at a distance of 17.

Szwagrzyk and Czerwczak (1993) used a version of this kind of analy-
sis to study the spatial pattern of trees in old growth forests in Poland and
the Czech Republic. The two most common species were Fagus sylvatica
and Picea abies; the other species included Tilia cordata, Carpinus betulus,
Acer campestre, Fraxinus angustifolia, Ulmus glabra, and Acer pseudoplatanus.
They looked at three different kinds of bivariate analysis: pairs of species,
small versus large trees based on diameter class, and living versus dead. For
all three kinds of bivariate analysis the result was usually the same: the
trees of the two kinds seem to occur independently of each other. The
authors provide an interesting discussion of this finding, but wisely point
out that the lack of significant departure from randomness and inde-
pendence does not mean that the processes causing the spatial pattern are
truly stochastic.

Conversion to quadrats

One approach to dealing with mapped plant positions is to convert them
to quadrat form. Mapped plant locations can be converted into grids of
contiguous quadrats by setting up a matrix for each kind of plant in which
the elements of the matrix are the numbers of plants of that kind found in
each quadrat. The smaller and more numerous the quadrats are, the less
information will be lost by this conversion,but there is an obvious tradeoff
between losing less information and having to deal with larger matrices.In
most cases, the matrices will be ‘sparse’, containing mainly 0’s with just a
sprinkling of 1’s. In Chapter 6 in the section of 4TLQC, we described a
method for examining segregation and aggregation using quadrat data.

Multispecies point pattern and quantitative attributes
In investigating spatial pattern in point data where the plants are of several
species, the techniques usually employed are the same as those described
above for the two-species case. Nearest neighbor or framework methods

�[n2K̂1,2(t)	n1K̂2,1(t)]/�(n1	n2)
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can be used and the number or length frequency distributions of particu-
lar like joins or particular unlike joins can be compared. For example,
Armesto et al. (1986) compared the spatial patterns of trees in two north
temperate, two south temperate, and three tropical forests; one method
they used was to examine the distance from a tree to its nearest
conspecific. The south temperate forests had noticeably shorter distances
to conspecifics, which the authors suggest may be related to a lower
diversity of  insect herbivores.
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Figure 7.25 Two plant types occur together in clusters, but with one kind only
occurring at the outer edge (artificial data).



The two-species version of second-order analysis described above has
been used to analyze many-species data, as in the study by Szwagrzyk and
Czerwczak (1993) discussed above. As a second example, Diggle (1983)
presents an analysis of the trees in the Lansing Woods, looking at three
types of tree (oaks, Quercus spp.; hickories, Carya spp.; and maples, Acer
spp.). The three types were analyzed in pairs, using K̂(t). The analysis
showed that maples and hickories seemed to occur as a balanced process,
with maples being common where hickories are rare and hickories
common where maples are rare.However,when the two were combined
and analyzed as univariate data, the result did not resemble complete
spatial randomness. When the oaks were included, the stems of the three
kinds of trees, considered together in a univariate analysis, appeared to be
randomly placed in the plane.

We have found no example of truly multispecies analysis, in the sense
of looking at combinations of species simultaneously,using mapped point
data. It would certainly be possible to convert point pattern data to
quadrat form and then to use a two-dimensional equivalent of multi-
species pattern analysis (such as multi-scale ordination) described in
Chapter 5, but it has yet to be done. The area of multispecies point
pattern analysis is another in which there is room for new approaches and
further investigation.

Multispecies point pattern analysis can be considered as dealing with
the spatial pattern of mapped categorical data, where the categories are
the species. This approach can be compared with the analysis of mapped
quantitative data, of which there are many examples. A simple case is a
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Figure 7.26 Bivariate second-order analysis of the pattern in Figure 7.25. L̂(t ) as a
function of t, showing segregation up to a distance of 5 units and aggregation up to
17.



mapped stand of trees, where, in addition to the spatial coordinates of
each tree, we have recorded the tree’s size, whether that is height, diame-
ter, or volume. It is then an easy matter to use a spatial framework like
LDNT to define the neighbors of each tree and then investigate the
spatial autocorrelation of the size of immediate neighbors, of the neigh-
bors of neighbors, and so on.

A more complicated example would be one in which the mapped
plants had several different measures associated with them, such as the
height of a herbaceous plant, number of leaves, widths and lengths of
leaves, number of flowers, number of flower buds, measures of herbivore
damage to various parts of the plant and so on. More work needs to be
done on the question of how best to analyze such multivariate spatial
data, but it is an important area for our understanding of plant ecology.
James and McCulloch (1990) are correct in stating that the multivariate
approach to population studies is currently poorly developed but is
important even at the level of description; we would add that it is even
more important when the spatial pattern of that population can be
included.

Quantitative attributes can be converted into categorical data by
dividing the plants into classes based on their size. Gibson and Brown
(1991) studied the spatial pattern in stands of Huon pine, Lagarostrobus
franklinii, in Tasmania. When trees of all sizes were considered together, it
was difficult to discern the scale of spatial pattern using second-order
analysis. When the trees were divided into size classes by diameter,
however, the situation was clarified, with the smallest size class consis-
tently showing a scale of 1m to 3.5m, and the larger size classes either
showing no significant pattern, or pattern at a larger scale, 3.5m to 9.5m.
(Those authors used a concept of scale that is double that used in this
book and therefore the values they report are 2m to 7m and 7m to 19m,
respectively.) They interpreted the scale of pattern of the smaller trees as
representing clumping of seedlings on fallen logs and the clumping of
vegetative sprouts arising from the same fallen tree (Gibson & Brown
1991).

Categorical and quantitative data can be combined in mapped point
data, and can be analyzed together.For example,we mapped the positions
of all the plants in a 200m�300m plot on a gravelly outwash near
Kluane Lake in the Yukon (unpublished data). We also measured their
heights. Three species dominated: Picea glauca, Populus tremuloides, and
Hedysarum mackenzii. Based on an analysis of first and second nearest
neighbors, we determined that there was a significant tendency for
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neighbors to be of the same species. There was also a significant positive
correlation (r�0.197) of the heights of nearest neighbor pairs, which
might just reflect the clumping of species if the species had different
average heights. We therefore calculated the correlation of heights of
nearest neighbors when they were of the same species, and it too was
significant (r�0.212). This example shows that the vegetation is patchy
not only in the tendency of neighbor plants to belong to the same species
but also in the correlation of heights of conspecific neighbors. Either soil
nutrients or disturbance history may be responsible for this observed
pattern.

Concluding remarks
As stated at the beginning of the chapter, its purpose is not to provide a
comprehensive treatment of point pattern analysis, for which there are
other sources, but to discuss those methods of point pattern analysis most
directly relevant to the topic. There are undoubtably other methods in
this area to be explored or developed and at the time of writing it seems
that there will be exciting developments in the next few years. As in the
previous decades, the availability of ever faster and greater computing
power will continue to increase the range of methods that we can use and
thus the range of approaches that we can imagine.

Recommendations

1. For univariate point pattern, Ripley’s K function, known also as
second-order analysis, seems to be the best available technique. It does
not do well at detecting gaps. The refinement of using counts from
control points in the gaps to help draw contour lines based on the
values associated with individual plants may be very informative.

2. Quadrat counts cannot be used alone to detect or quantify non-
randomness.

3. For examining the characteristics of neighbors, a framework such as
the least diagonal neighbor triangulation is a convenient approach.
That tessellation or the Delaunay also provides a method for deter-
mining a plant’s primary neighbors.

4. For bivariate point pattern analysis, the K function approach is again
recommended.

5. In the area of the analysis of multispecies point pattern, there is a need
for further research and the development of techniques.

Concluding remarks · 241



8 · Pattern on an environmental
gradient

Introduction
In this chapter, we will discuss the arrangement of plants on environ-
mental gradients. In this context, an environmental gradient is a mono-
tonic directional change in the intensity of an environmental factor with
distance. It is the class of gradients that Keddy (1991) calls ‘spatially con-
tinuous’ and includes cases that may give rise to obvious zonation in the
community.

Obviously the concept of spatial pattern is somewhat different in this
context than in previous chapters,but it still refers to nonrandomness that
has a certain predictability. As we move along a gradient, we do not
expect to see the repeated alternation of different phases of a mosaic, but
rather we expect species to become present and perhaps abundant where
they were previously absent and then to become absent again. The pre-
dictability is in the way that species come and go along the gradient and
the relationship between the ranges and densities of the species.

In Chapter 1,we discussed the importance of spatial pattern, as an area
of study, pointing out that there are two facets to consider: (1) making
inferences about processes based on observed pattern, and (2) the effect
current spatial pattern has on future processes and interactions. The same
two categories apply to the study of pattern on gradients. The potential
positions of individual species are determined by their physiological
responses to the gradient. Then, the arrangements of species on gradients
can be used to examine questions about the forces that structure these
communities, the interaction between species whether positive or nega-
tive, and the niche relations of the species in the community. Therefore,
the pattern we observe arises from the interaction of the physiology of
each species and the biotic effects of competition, positive association,
predation and so on.On the other hand, the arrangement of species on an
environmental gradient will determine which species will be able to



interact in the future. The plants that are closest on the gradient are the
ones that may be competing most strongly. Similarly, the arrangement of
the plants along the gradient will determine what potential positive
interactions between species may actually occur (see Bertness &
Calloway 1994).

A simple model of a single species response to an environmental gradi-
ent is a symmetric unimodal response like a bell-shaped curve, when
density is plotted as a function of the controlling factor on the gradient,
or of distance along the gradient (Figure 8.1).These may not be the same
thing: the same physical distance along a gradient may produce different
degrees of change in a controlling environmental factor in different
places, resulting in broader or narrower species ranges (cf. Figure 8.2).The
symmetric unimodal response curve is seldom found,with skewed curves
being more common, as we will describe later in the Chapter (Austin &
Austin 1980; Minchin 1989; Collins et al. 1993). It is worth noting that
the perceived symmetry or skewness of a unimodal response will depend
in part on the scaling of the factor axis: logarithmic, arithmetic, or expo-
nential.

Austin (1980) has pointed out that it is important to distinguish
among three kinds of gradients.There are direct environmental gradients
in factors that affect plant growth themselves, such as pH and tempera-
ture.There are indirect gradients like elevation or aspect that produce the
observed effect on plants through factors that do act directly such as tem-
perature or insolation. Lastly, there are resource gradients which are gra-
dients in the amounts of nutrients. Species may respond differently to the
three kinds of gradients. Having set up the classification, we should point
out that some gradients may fit into several of the categories; for example,
water availability may represent a gradient of water as a resource, a direct
gradient and an indirect one acting through temperature. Similarly,
Økland (1992) argues that in mires, the water-table gradient has aspects
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Figure 8.1 The density of a single species, d, as a function of distance along an
environmental gradient,x, is often modelled by a bell-shaped curve.



of all three categories. In natural vegetation, plants must respond to
several gradients simultaneously and different combinations of gradients
will produce differently shaped responses to the set of gradients (Austin &
Smith 1989).

If the controlling factor is known and it can be measured, then a direct
analysis of species’ responses to the factor is possible but, in many cases,
the gradient may be the result of the interactions of several environmental
variables (e.g., water supply and temperature) or the actual controlling
factor may be unknown, in which case we are forced to make inferences
about the plants’ responses to the gradient (cf. Austin et al. 1984; Austin
1987).

Not only may the rate of change in a controlling factor vary along the
length of a gradient, it is also possible that plants may respond more or less
strongly to the same amount of change in the controlling factor, depend-
ing on its intensity. One version of this thinking is called the ‘critical tide
level hypothesis’ which suggests that in communities of intertidal algae,
there are particular levels on the shore where species replacement occurs
more rapidly over small differences in height, because the response of
individual species to changes in the duration of immersion or exposure to
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Figure 8.2 The intensity of the controlling environmental factor, i,may not change
at a constant rate with distance,x, leading to a compression of species’ ranges.



desiccation is much stronger at that level (Doty & Archer 1950). It is easy
to imagine similar critical levels on other kinds of environmental gradi-
ents, such as temperature or soil moisture. For example, with increasing
altitude or latitude, particular combinations of temperature and moisture
regime may limit the functioning of, first, any broad-leaved evergreen
tree, then any broad-leaved deciduous tree, and then any trees at all.Thus,
there may be boundaries that apply to several different but functionally
similar species.

There are a variety of ways in which species can be arranged on an
environmental gradient, and the arrangement reveals much about the
organization of plant communities. For instance we can examine their
arrangement for evidence of critical levels in the controlling factor, or we
can look for evidence of biological interaction among the species. It has
been suggested that competition between species is an important process
in the development of spatial pattern on a gradient. Depending on how
competition affects the plants, for instance, if the two species cannot
coexist, it could result in the beginning of one species’ range following
immediately after the ending of another species’ range (Figure 8.3a). On
the other hand, it is possible that species replacement occurs with a zone
where the two species can coexist (Figure 8.3b). In that zone of coexis-
tence, the density of one species decreases as that of the other increases.
One spatial model of this kind of species replacement is Rapoport’s
(1982) Gruyère model in which the transition resembles Swiss cheese,
going from solid white, to white with small black patches in it, the black
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Figure 8.3 a Competing species replacing each other along an environmental
gradient with no intermediate zone of coexistence. b Competing species replacing
each other with an intervening zone of coexistence.



patches then becoming larger and coalescing to the point that the end of
the transition is solid black (Figure 8.4).

Shipley and Keddy (1987) discuss the arrangement of species on an
enviromental gradient in terms of two opposing views of plant commu-
nities: the individualistic view and the community unit view. The com-
munity unit view suggests that groups of species will replace each other
along the gradient so that clusters of upper and lower boundaries will be
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Figure 8.4 Rapoport’s ‘Gruyère’model of species replacement.The black
represents one species or vegetation type and the white represents another.



found (Figure 8.5a). On the other hand, the individualistic view suggests
that the species occur more or less independently of each other so that
upper and lower boundaries occur independently and boundaries of
either kind should not be clustered (Figure 8.5b). The two models illus-
trated in Figure 8.5 are not the only ones: Whittaker (1975) described
two others and we could certainly devise more. For example, where one
species replaces another, there is a choice between sharp exclusion as in
Figure 8.3a and gradual replacement as in 8.3b.Distinguishing among the
possible arrangements and questions related to them will be important
themes in subsequent sections of this chapter.

In addition to the nature of plant communities, there are a number of
other areas of plant ecology that can be studied using the patterns
observed on gradients. Keddy (1991) suggests that gradients are a power-
ful research tool because they take some of the apparent obstacles of
spatial heterogeneity for ecological studies and turn them into advan-
tages. One particularly attractive approach is to use two different gradi-
ents such as water depth and exposure to wave action (Keddy 1991) or
altitude and drainage in montane vegetation (Minchin 1989).We will not
review all aspects of this fascinating area of research, but will concentrate
on those topics directly related to spatial pattern on gradients.

There are two different sampling designs that need to be considered
and two kinds of data.The two kinds of data are density (including cover)
and presence/absence; the two designs are continuous records as a func-

Introduction · 247

Figure 8.5 Two models of species’ densities along an environmental gradient.
a Community unit model where groups of species have similar responses and
boundaries. b Individualistic model in which the species’ responses are independent
of each other.



tion of distance and spaced samples, such as quadrats. For the beginning
sections of this chapter, we will concentrate on continuous pres-
ence/absence data, where a species range is defined by its first and last
occurrence. The mathematical techniques of combinatorics have proved
useful in this area of research. (Combinatorics is the branch of discrete
mathematics that deals with finite problems of counting, selection and
arrangement of objects.)

Continuous presence/absence data
This approach ignores species abundances and represents the range of
each species on the gradient as a line segment joining its uppermost and
lowermost occurrences.The whole gradient is therefore represented by a
‘sheaf ’ of line segments, the position and lengths of which correspond to
the species’ ranges on the gradient. There are at least four models that we
can consider, as rephrased from Whittaker (1975):

1. Distinct groups of species with sharp exclusion boundaries, compar-
able to Shipley and Keddy’s (1987) community unit model.

2. Sharp exclusion boundaries between competing species but no
natural groupings.

3. Groupings of species that are not exclusive.
4. No groupings and no exclusion, comparable to Shipley and Keddy’s

(1987) individualistic model.

These four models, for the kind of data under consideration, are illus-
trated in Figure 8.6.

We will now describe a variety of methods that can be used to detect
particular features of this kind of data.These methods are illustrated using
the ranges of seaweed species on rocky intertidal shores in Nova Scotia,
on which the environmental gradient is the length of time of emergence
from seawater each day, which acts through related desiccation and tem-
perature effects and therefore is an indirect gradient. The data discussed
here are from three sites in Yarmouth County (approximately 43°40�N,
66°W): Wedge Pt. near Tusket, St. Ann Pt. near Pubnico, and Chegoggin
Pt. near Yarmouth (Dale 1986). Each site was sampled at several stations
(identified by its compass point e.g. South side, East side, . . .) using three
to seven line transects from above the high-tide level to the upper sub-
tidal. The shores are gently sloping (1:23 to 1:30) and the spring tide
range is 3.6m. The most common species at these sites included
Ascophyllum nodosum, Fucus spiralis, Fucus vesiculosus, Fucus serratus,
Chondrus crispus, and Gigartina stellata. Chondrus crispus, known locally as
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‘Irish moss’, is harvested for commercial use.The transects used were line
intercept transects, as described in Chapter 2, on which were recorded
the linear positions of different species of algae as they intersected the
edge of a measuring tape. Thus, for example, the first transect record
might be:0–35cm,bare rock;35–102cm,Fucus spiralis; 102–127cm,Fucus
spiralis and Ascophyllum nodosum; and so on.From these transects, the posi-
tions in running length of the upper and lower boundaries of each species
were determined. In our brief example, the upper end of the range of
Fucus spiralis on the first transect is at 35cm and that of Ascophyllum
nodosum is at 102cm.There were 29 transects in all.

In order to distinguish among the various models of how the ranges
are arranged on the gradient, we will examine the overlap of ranges, the
intermingling of upper and lower boundaries, the contiguity of ranges,
and the clustering of boundaries.The consistency of the order of bound-
aries at different parts of the shore will be measured by concordance.

Overlap

The first approach to the analysis of species ranges on a gradient that we
will consider was originated by Pielou (1977b) in a study of the overlap
of latitudinal spans of seaweeds. The pattern of overlap is evaluated by
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Figure 8.6 Four models of species’ ranges arranged on a gradient.The presence of
each species on the gradient is represented by a line. In the first model, each zone
consists of a group of species that occur together and the zonal units replace each
other completely over a short distance. In the second, the vegetation consists of four
sequences of species;within each sequence, one species begins where another ends.
In the third model, the zonal groupings of species overlap. In the fourth, the species
occur more or less independently along the gradient.



counting the numbers of pairs of species in each of three classes desig-
nated by the variable �: no overlap, ��0; partial overlap, ��1; complete
overlap, ��2 (see Figure 8.7). The numbers of pairs of species’ ranges in
the classes can be compared with the expected results based on certain
hypotheses, as will be illustrated below (Pielou 1977b, 1978).

Let L�(�0, �1, �2) be the overlap vector in which �t is the number of
pairs of lines in the sheaf for which ��t. For n species in the sheaf, �0�
�1��2�n(n�1)/2�k. For example, in Figure 8.8, L�(3, 2, 1) with ��i
�6.

One null hypothesis, call it Ho, is that the order of the 2n events, n
beginnings and n endings, is fully random with the only constraint being
that each ending follows its own beginning.On this simple null hypothe-
sis,we can derive the means and variances:

E(L|Ho)�k (1,1,1)/3 (Pielou 1977b), (8.1)

and

Var(L|Ho)�2k(2n�1,n�3,n�3)/45 (Dale 1979). (8.2)

All four patterns of overlap in Figure 8.6 have 12 species and so E(L | Ho)
�(22, 22, 22) and Var(L|Ho)�(73.3, 44, 44).Based on the assumption of
convergence of the distributions of the �i to the Normal distribution, the
95% confidence limits for L are (5, 9, 9) and (39, 35, 35). Examining the
third example in Figure 8.6, we find that L�(16, 45, 5). Based on Ho, we
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Figure 8.7 Definition of �: ��0,where there is no overlap; ��1 where there is
partial overlap; and ��2 where there is complete overlap.



would conclude that a surprisingly large number of pairs of ranges
overlap partially and a surprisingly small number overlap completely. We
are not able to affirm that numbers are significantly larger or smaller than
expected, with a known significance level of ��0.05, because the three
values in L are not independent.

A second use of Ho for a set of many transects is to examine the signs
of L�E(L|Ho) for general tendencies. For example, in the 29 transects
from the three Nova Scotia sites described above, there was a tendency
for L�E(L|Ho) to be of the form of (�,�,�). This form matches
examples one and two in Figure 8.6 best.

Ho is a useful null hypothesis to examine L, but to examine the
amount of overlap of species’ ranges,we can use a second null hypothesis,
call it Hd. This hypothesis assumes that the length of each species mea-
sured along the gradient is fixed, but that the boundaries are placed ran-
domly and independently, apart from the constraints imposed by the
lengths.Given the range of length a and a total length of gradient w,being
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Figure 8.8 An example of overlap �12�2, �13�1, �14�0, �23�0, �24�0, �34�1.
L�(3, 2, 1).



considered, the position of the upper boundary can be treated by a rec-
tangular probability distribution for the distance from the top of the
gradient running from 0 to w�a. In considering a pair of species’ ranges,
let a be the longer and b the shorter. It is obvious that if a�b�w then � ≠
0, so that those pairs need to be treated separately.Let A be the set of pairs
for which a�b�w and let B be the set of all other pairs. We can show
that:

E(�0|Hd)� (8.3)

E(�1|Hd)� (8.4)

and

E(�2|Hd)� (Dale 1986). (8.5)

The observed overlap vectors for the seaweed data were compared
with the expected values based on the null hypothesis Hd, as was done
above for Ho. As with Ho, the general finding was an excess of �0 values
and a deficit for both �1 and �2 (Dale 1986); that is, L�E(L|Hd) tended
to be of the form (�,�,�) as in examples one and two of Figure 8.6.
The fact that this was found for Hd as well as for Ho means that fewer
pairs of ranges than expected overlapped at all, even when the lengths of
the ranges were considered.

Intermingling of boundary types

A related characteristic of communities on gradients is the extent to
which the two kinds of events, upper and lower boundaries, are inter-
mingled along the gradient. To measure the extent to which they are
intermingled, we can use �0, already introduced, but it is useful to define
it somewhat differently.Let qi be the number of lower boundaries that are
above the ith upper boundary; then:

�0� qi. (8.6)

This is the same variable that counts the number of nonoverlapping
ranges, but it also measures the intermingling of the two types of bound-
aries. For example, where X represents an upper boundary, and o repre-
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sent a lower boundary, in the sequence XXXXoooo, the two kinds are
separated and �0�0; in the sequence XoXoXoXo, they are highly inter-
mingled and �0�6. We commented above that because �0, �1, and �2 are
not independent we cannot legitimately test all three. We can, however,
derive a statistical test for one of them,here �0.We have derived the mean
and variance of �0,based on Ho,but there is no direct derivation of its fre-
quency distribution which we need in order to derive or confirm
approximations of critical values. Dale (1988a) uses a bivariate distribu-
tion of �0 and T, the number of lower boundaries at the end of the
sequence, to solve this problem.

Based on that approach, we find that the frequency distribution of �0
seems to be asymptotically Normal. (Remember,we assumed asymptotic
normality for all three components of L in our discussion above.) Table
8.1 gives the critical values for �0 derived from the frequency distribu-
tions described by Dale (1988a), and also from the Normal approxima-
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Table 8.1.Upper one-sided critical values for �0, calculated from the exact
distribution (‘exact’ in table) and from the Normal approximation using a
continuity correction of 0.5 (‘approx.’)

�0

p�0.05 p�0.025 p�0.01

n exact approx. exact approx. exact approx.

5 8 7.5 9 8.2 9 9.0
6 11 10.3 12 11.3 13 12.3
7 15 13.7 16 14.8 17 16.2
8 19 17.4 20 19.3 21 20.5
9 22 21.6 24 23.3 26 25.3

10 27 26.2 29 28.2 31 30.6
11 32 31.2 34 33.5 37 36.3
12 37 36.6 40 39.3 43 42.4
13 43 42.4 46 45.5 50 49.0
14 50 48.6 53 52.1 57 56.0
15 56 55.3 60 59.1 64 63.5
20 – 94.4 – 95.3 – 107.1
30 – 202.0 – 212.8 – 225.4
40 – 347.7 – 364.4 – 383.8
50 – 530.8 – 554.2 – 581.3

Notes:
The null hypothesis is rejected if �0 is greater than or equal to the value in the table:
p is the significance level. (From Dale 1988a.)



tion using a continuity correction of 0.5. The two sets of critical values
are similar. When we apply this test to the Nova Scotia seaweed data, 26
of the 29 transects had an �0 greater than the expected value based on Ho,
but only 11 were significant at the 5% level. These results confirm a ten-
dency toward greater intermingling of upper and lower boundaries than
predicted by Ho.

Contiguity

The next method investigates a particular kind of boundary inter-
mingling in order to test the contiguity hypothesis mentioned above. In
describing the zonation of marine algae,Chapman (1979) stated that, ‘on
a shore, species zones are commonly contiguous, so that the lower limit of
one species marks the upper limit of another.’ (See also Chapman 1973.)
Two versions of this hypothesis can be tested: a strong form, that it is a
general rule that the number of such contiguities (upslope boundaries
immediately following a downslope boundary) is significantly greater
than the number expected; and a weak form, that the number of contigu-
ities merely tends to be greater than the number expected. The bound-
aries are considered contiguous even if there is some physical distance
between them.

To test the weak form of the hypothesis, we need to know only the
expected number of contiguities. We can then use the sign test to see
whether the observed values exceed the expected value significantly
often.To test the strong form of the hypothesis,we need to derive the fre-
quency distribution of the number of contiguities so that we can evaluate
the statistical significance of the observed numbers of contiguities (Dale
1984).

As we did in evaluating the intermingling of boundaries, we will treat
the transect data as sequences of paired events, n beginnings and n
endings. Let c be the number of contiguities, the number of times an
ending immediately precedes a beginning. For example, in the sequence
X1 X2 o2 X3 o3 o1 X4 o4 , c�2 since o2 immediately precedes X3 and o1
precedes X4. If the events are labelled, as in this example, and either the
beginnings or the endings are constrained to be in fixed order, the
number of such sequences that can be produced with n pairs of events is
(2n)!/2nn! or (2n�1)!! The frequency distribution of c in these sequences
is described by the Münch numbers, Table 8.2, where h(n,j) is the fre-
quency with which c� j in rankings of n pairs of (labelled) events when
the order of the beginnings is fixed.We can prove that E (c|n)�(n�1)/3
and we can generate frequency distributions of c (Dale 1984).The critical

254 · Pattern on an environmental gradient



values of c can be calculated from these distributions and the 1%,5%,95%
and 99% critical values of c for n�4 to n�45 are given in Table 8.3.
McGregor (1988) has shown that the distribution of c is asymptotically
Normal with increasing n; for large values of n, therefore, the Normal
approximation can be used.

The relative positions of the upper and lower boundaries of species of
marine algae in zoned communities on rocky shores were recorded on
line transects at various sites in Nova Scotia and at one site on the South
Coast of England. In only 35 of the 139 transects studied was the
observed number of contiguities significantly greater than expected at
the 5% significance level. In most of the transects (110 of 139), however,
the observed number of contiguities was greater than the expected (see
Dale 1984) and, in fact, the observed number of contiguities exceeded
the expected number significantly often. It appears, therefore, that the
upper and lower boundaries of species do not occur in a truly inde-
pendent fashion and so the individualistic view of the nature of plant
communities is not supported by this kind of data from a spatially
continuous gradient (see Shipley & Keddy 1987).

It is obvious that there is a relationship between the number of
contiguities and the degree of intermingling between the two kinds of
boundaries because, for instance, a sequence such as XXXXXXoooooo
has no contiguities and no intermingling and the sequence
XoXoXoXoXo has many contiguities and much intermingling.
However, the two are not measuring the same thing. For example,
for n � 10, the sequence XXXXXoooooXoXoXoXo has a value of
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Table 8.2.The frequency distribution of c, the number of contiguities, as a
function of n, the number of species or of pairs of events.These are the Münch
numbers (Dale 1984)

c

n 0 1 2 3 4 5 6 �

1 1 1
2 2 1 3
3 6 8 1 15
4 24 58 22 1 105
5 120 444 328 52 1 945
6 720 3708 4400 1452 114 1 10395
7 5040 33984 58140 32120 5610 240 1 135135
8 40320 341136 785304 644020 195800 19950 494 2027025
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Table 8.3.Critical values for c, the number of
contiguities (Dale 1984)

n 1% 5% 95% 99%

4 – – 3 3
5 – – 4 4
6 – 0 4 4
7 – 1 4 5
8 – 1 5 6
9 – 1 5 6

10 1 1 6 6
11 1 2 6 7
12 1 2 7 7
13 1 2 7 8
14 2 2 7 8
15 2 3 8 9
16 2 3 8 9
17 2 3 9 10
18 2 3 9 10
19 3 4 9 10
20 3 4 10 11
21 3 4 10 11
22 3 4 11 12
23 4 5 11 12
24 4 5 11 12
25 4 5 12 13
26 4 6 12 13
27 5 6 13 14
28 5 6 13 14
29 5 6 13 15
30 6 7 14 15
31 6 7 14 15
32 6 7 14 16
33 6 8 15 16
34 7 8 15 17
35 7 8 16 17
36 7 8 16 17
37 7 9 16 18
38 8 9 17 18
39 8 9 17 19
40 8 10 17 19
41 8 10 18 19
42 9 10 18 20
43 9 10 19 20
44 9 11 19 20
45 10 11 19 20



�0 that is significantly high (35) but the number of contiguities
(5) is not significant. On the other hand, the sequence
XXXXoXoXoXoXoXoXoooo has significantly more contiguities than
expected (6), but �0 (21) is not significantly high. The difference is that
contiguities are a very local feature of the pattern, since they are a
characteristic of adjacent boundaries; whereas the amount of inter-
mingling is a characteristic of the overall pattern. The same is true
ecologically. Contiguities may reflect the interaction between pairs of
species, where one replaces another along the gradient, but the inter-
mingling of boundaries reflects the response of all the species in the com-
munity to that gradient.

Gap and partial overlap

The next step in our study of transect data giving the ranges of species
along an environmental gradient is to examine the sizes of gaps between
nonoverlapping ranges and the sizes of partial overlaps.

When a pair of lines do not overlap, the gap between them can be
measured by variable g and when they overlap partially, variable y can be
used to measure that overlap (see Figure 8.9).We do not need to define a
similar sort of measure for cases of complete overlap, since it will always
be the length of the shorter line.

Since g and y are measured lengths of gap and overlap, in deriving their
expected values we need to use the null hypothesis Hd that the lines are
placed independently of each other but keep their measured length. The
expected values of g and y are:

E(g|Hd)�(w�a�b)/3, if a�b	w. (8.7)

E(y|Hd)�b/2�b2/6(w�a) where a�b	w and (8.8)

�b�(w�a)/3 where a�b�w (Dale 1986). (8.9)
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Figure 8.9 The gap size is g and y measures the amount of partial overlap.w is the
length of the entire transect; b is the length of the shorter line and a that of the
longer.



For example, in Figure 8.10 w�100, a�25 and b�15; E(g|Hd)�
(100�25�15)/3�20. In the upper part of Figure 8.11, w�100, a�25,
and b�20; E(y|Hd)�10�[400/(6
75)]�10.89. In the lower part of
Figure 8.11,w�100, a�73, and b�50;E(y|Hd)�50�(27/3)�41.

In devising statistical tests for these two variables we can consider
testing individual observed values or compare the overall distributions of
g or y with the expected distributions. The fact that the set of values of g
or y are not independent makes the second kind of test difficult, so we
will examine only the first kind of tests.

We can show that g is significantly different from its expected value if:

g�(1� ) (w�a�b) (8.10)

or

g	(1� ) (w�a�b) (Dale 1986). (8.11)

Using the usual 5% level, the critical values are 0.01258(w�a�b) and
0.8419(w�a�b) (Dale 1986). We can also show that the critical values
for y are:

) b and ) b if a�b	w,

and

if a�b�w (Dale 1986).

For example, based on Figure 8.10, even if g is as low as 2, it is not
significantly small because the critical value is 0.755, but if g is 55, it is
significantly large because the critical value is 50.5. Based on the lower
part of Figure 8.11, the critical values for y are 24.05 and 49.5, which are
very close to its minimum (23) and maximum (50).

The same seaweed data set was analyzed using these techniques and
the results show that not all contiguities have significantly small gaps.
There are, however, a large number of partial overlaps that are
significantly small.This result means that if species replacement along the

��/2(a�b�w)2� (1��/2)b2

�(1��/2)(a�b�w)2��/2b2,

�1��/2��/2

�1��/2

��/2
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Figure 8.10 Illustration of E(g):w�100, a�25, b�15;E(g)�20.



gradient is mediated by competition, there may be a small zone in which
the competitors overlap, a phenomenon which is theoretically possible
(Pielou 1974; see also Czárán 1991).

Event measure

The use of Hd,which measures the positions of the species’boundaries by
the length along the transect, can be criticized because the same distance
at one part of the gradient may produce a greater change in the environ-
ment experienced by the plants than at some other part. One version of
this phenomenon for intertidal communities is the critical tide level
hypothesis (Doty & Archer 1950). Therefore running length may not be
the best measure of position. To avoid this problem we could measure
position using the boundaries or events themselves, and redefining the
length of a range as the number of events it includes. For example, using
capital letters to represent upper boundaries, in ABCbac, the length of the
range of the first species is the number of events from A to a, which is 5.
We can re-examine overlap using a third null hypothesis He, that any two
ranges occur independently of each other, but keeping their own length
as measured by events. For enumeration, we can assume that the order of
the upper boundaries is fixed. If there are n species we know that their
arrangement can be described by a sequence of n pairs of labelled events
and that there are (2n�1)!! such sequences (Dale and Narayana 1984).
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Figure 8.11 Illustration of E(y): in the upper example, w�100, a�25, b�20;
E(y)�10.89. In the lower example w�100, a�73, b�50;E(y)�41.



If the ranges of two species do not overlap, the gap between them is
called g. For example, in the sequence ABCbDEaFdecGfg, the gap
between Bb and Ff is g�3, occupied by D,E, and a.

If the ranges overlap partially, the partial overlap is y.
In the same example, the overlap of Aa and Cc is y�5, occupied by

events C, b,D,E, and a.
If the ranges overlap completely, the overlap is the length of the shorter

range,z. In the sequence we have been using as an example, the overlap of
the first two species,Aa and Bb, is z�3, the events B,C, and b.For n pairs
of events, g can have values from 0 to 2n�4, and y and z can have values
from 2 to 2n�2.

Let fg(n,j) be the frequency with which g� j in all (2n�1)!! sequences
of n labelled pairs of events.We can show that for n�2:

fg(n,j)�(2n�5)!! . (8.12)

E(g|He)�(2n�4)/5 and Var(g|He)�4(2n�1)(n�2)/75 (Dale 1988b).
The distribution is skewed and does not approach the Normal distribu-
tion with increasing n.

Let fy(n,j) be the frequency with which y� j in the (2n�1)!! sequences
of n pairs of events and define fz(n,j) similarly for z.We can show that:

fy(n,j)� fz(n,j)� fg(n,j�2) (Dale 1988b). (8.13)

In devising a one-sided statistical test for small values of g, we know
that Pr(g�0)�2/n, so that g�0 can be significantly small only in cases
where n�40, which may not be very useful. One-sided tests for
significantly large values of g are more practical.Table 8.4 gives the upper
5% critical values for g, y, and z. In the sequence ABaCDEcFdebGgf, the
gap between Aa and Gg is 8 which is greater than the critical value of 7
and is therefore significantly large.

These methods allow us to examine gaps and overlaps of species’
ranges from the ‘plant’s eye view’, by using the upper and lower bound-
aries of other species as measures of the intensity of change in the
environmental factor. The approach also provides a test for values of z,
which is not possible if the species’ ranges are measured by length along a
transect. The main disadvantage of this approach is that to test for
significantly small values of the variables, large values of n are required.
We should point out also that all pairs of species cannot be tested because
of the lack of independence among such tests. We would therefore

�2n� j�1
3 �
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reserve this approach for special cases in which particular pairs of species
are of interest.

Clumping and spacing of boundaries

So far we have examined a variety of properties of the arrangements of
species in communities on environmental gradients. We now examine
the extent to which the boundaries of the species (either upper or lower)
are clumped together (or widely spaced out) along the gradient. This is a
useful characteristic for distinguishing among the different models of the
arrangement of species on a gradient. For example, the clumping of
boundaries is one of the characteristics predicted by the community unit
model of plant communities (Shipley & Keddy 1987). It is also useful for
testing hypotheses such as the critical tide level hypothesis (Doty and
Archer 1950), described above, which would cause the boundaries of
species to be clumped at the critical levels of the gradient where the
effect of the gradient is most intense.

To evaluate the spacing and clumping of boundaries, it is usual to
standardize the gradient to a length of 1 between the upslope boundary
of the first species at 0 and the last species’ downslope boundary at 1.The
other boundaries of the species ranges are then treated as points in the
unit interval,x1,x2, . . .xm,which break the interval into m�1 parts,u1,u2,
. . . um�1(see Figure 8.12). Where there are n species and the whole gradi-
ent is considered, m�2n�2. If the boundaries are clumped, there should
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Table 8.4.Critical values of g,y and z (upper 5%)
for n�4 to n�100

n g y and z

4–15 n n�2
16–33 n�1 n�3
34–51 n�2 n�4
52–69 n�3 n�5
70–88 n�4 n�6
89–�100 n�5 n�7

Notes:
These measures of gap and overlap use events as units
of length (Dale 1988b).



be a large number of small segments and a number of large segments
separating the clumps, and the first step in looking for clumping would
be to measure the variability of the u1 values.

Several authors have described the measure

Wm� ui
2 (8.14)

under a variety of names (Greenwood 1946; Kimball 1947; Darling
1953). On the null hypothesis that the xi’s are randomly and indepen-
dently placed in the unit interval, each governed by a rectangular distrib-
ution on (0,1), the mean and variance of the distribution of Wmare:

E(Wm)�2/(m�2) (8.15)

and

V(Wm)�4m/[(m�2)2(m�3)(m�4)]. (8.16)

For example, for m�20,E(Wm)�0.091 and V(Wm)�0.000299.
The distribution of Wm is asymptotically Normal with increasing m,

but the convergence is very slow (Moran 1947). The slow convergence
makes it impossible to use the Normal approximation for significance
testing. Instead, we used a Monte Carlo approach to derive critical values
for Wm. Table 8.5 presents the approximate critical values for m�4, 5, . . .
50, based on 100000 randomly broken unit intervals.

The measure Wm really examines the pairwise clumping of boundaries
because the small values of the ui’s are the result of two boundaries being
close together. That measure cannot detect whether the boundaries
occur in clumps of more than two and therefore we need a second statis-
tic that measures the serial autocorrelation of the sizes of adjacent seg-
ments:

hm� uiui�1. (8.17)

Based on the same null hypothesis, the mean and variance of hm are:

�
m

i�1

�
m�1

i�1
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Figure 8.12 Random numbers in the interval 0 to 1, x1,x2 . . .xm, break the interval
into m�1 segments,u1,u2, . . .um�1



E(hm)�m/[(m�1) (m�2)] (8.18)

and

V(hm)�(m3�3m2�4m�4)/[(m�1)2(m�2)2(m�3)(m�4)] (Dale
1988a). (8.19)

For example, for m�20, E(hm)�0.0433 and V(hm)�0.0000787,
which would give the confidence interval of (0.0259,0.0607) if we could
reliably use a Normal approximation.

We have not investigated the asymptotic distribution of this statistic in
a formal way, and so we give the approximate critical values for hm based
on 100000 trials in Table 8.6. The distribution of hm seems to approach
the Normal distribution much more rapidly than that of Wm. For
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Table 8.5.Approximate critical values of Wm from 100000 simulations.p is
the cumulative probability

p

m 0.001 0.025 0.05 0.95 0.975 0.999

4 0.214 0.222 0.231 0.511 0.566 0.639
5 0.184 0.192 0.200 0.434 0.487 0.551
6 0.162 0.169 0.176 0.373 0.415 0.477
7 0.146 0.151 0.157 0.330 0.370 0.417
8 0.132 0.137 0.143 0.293 0.327 0.369
9 0.121 0.126 0.131 0.265 0.294 0.334

10 0.112 0.116 0.121 0.239 0.265 0.302
11 0.104 0.108 0.113 0.221 0.245 0.276
12 0.097 0.101 0.105 0.203 0.225 0.254
13 0.092 0.095 0.099 0.189 0.208 0.234
14 0.086 0.090 0.093 0.175 0.193 0.214
15 0.082 0.085 0.088 0.163 0.180 0.203
16 0.077 0.081 0.084 0.154 0.169 0.189
17 0.074 0.077 0.080 0.145 0.158 0.178
18 0.071 0.073 0.076 0.136 0.148 0.165
19 0.068 0.070 0.073 0.130 0.141 0.156
20 0.065 0.067 0.070 0.123 0.135 0.150
25 0.054 0.056 0.058 0.098 0.105 0.117
30 0.046 0.048 0.050 0.081 0.088 0.097
35 0.041 0.042 0.043 0.070 0.074 0.081
40 0.036 0.037 0.039 0.069 0.064 0.070
50 0.030 0.031 0.032 0.048 0.051 0.054



instance, when we compare the approximate critical values for m�40
and p�0.025 and p�0.975 which are 0.017 and 0.031 in Table 8.6 with
those from the Normal approximation, 0.0164 and 0.0307, they are
much closer than the equivalent values for Wm.

As a numerical illustration of these two indices, consider the sequence
of values 0.001, 0.001, 0.001, 0.001, 0.001, 0.147, 0.15, 0.45, 0.25. These
data give Wm�0.309 and hm�0.202,both of which are significantly high
for m�8.When the same data are rearranged to give alternating high and
low values, 0.001, 0.147, 0.001, 0.15, 0.001, 0.45, 0.001, 0.25, 0.001, Wm
is unchanged, but hm�0.002 which is significantly low. Figure 8.13 illus-
trates the usefulness of the two statistics in detecting the high variability
of interboundary distances and their clumping. Almost all combinations
of test results for Wm and hm seem to be possible, except for the combina-

264 · Pattern on an environmental gradient

Table 8.6.Approximate critical values of hm from 100000 simulations.p is the
cumulative probability

p

m 0.001 0.025 0.050 0.0950 0.975 0.999

4 0.022 0.033 0.046 0.211 0.223 0.232
5 0.026 0.037 0.048 0.188 0.199 0.211
6 0.028 0.038 0.048 0.165 0.177 0.191
7 0.030 0.039 0.047 0.147 0.159 0.173
8 0.031 0.038 0.046 0.133 0.143 0.156
9 0.030 0.037 0.044 0.120 0.130 0.143

10 0.030 0.036 0.043 0.110 0.118 0.130
11 0.029 0.035 0.041 0.101 0.109 0.119
12 0.029 0.034 0.039 0.094 0.101 0.110
13 0.028 0.033 0.038 0.087 0.094 0.102
14 0.028 0.032 0.036 0.082 0.088 0.096
15 0.027 0.031 0.035 0.077 0.082 0.090
16 0.026 0.030 0.034 0.072 0.077 0.084
17 0.026 0.029 0.033 0.068 0.073 0.079
18 0.025 0.028 0.031 0.064 0.069 0.075
19 0.025 0.028 0.030 0.061 0.065 0.071
20 0.024 0.027 0.029 0.058 0.062 0.068
25 0.021 0.024 0.025 0.047 0.050 0.054
30 0.019 0.021 0.022 0.039 0.041 0.044
35 0.017 0.019 0.020 0.033 0.035 0.038
40 0.016 0.017 0.018 0.029 0.031 0.033
50 0.013 0.014 0.015 0.023 0.024 0.026



tion of Wm being significantly low and hm being significantly high. This
exception occurs because when the segments are significantly more
equal than expected, the autocorrelation of adjacent segments cannot be
significantly high.

When large values of hm indicate that the boundaries are clumped, we
need to identify the parts of the gradient where the boundaries are most
clumped together.Those parts, if any,will indicate the critical levels of the
controlling factor. What we do is to identify the sections of the gradient
where the observed concentrations of boundaries have the lowest proba-
bilities based on the null hypothesis of independent rectangularly random
placement.

For each pair of boundaries xi and xj, where i	 j, we calculate the
probability that the interval between them contains at least as many
boundaries as it does; call it p(i,j ). That interval contains exactly j� i�1
boundaries. On the null hypothesis, any boundary, except xi and xj and
those that define the end points, falls between them with a probability of
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Figure 8.13 Different test results for wm and hm arising from the arrangement of
boundaries.The long lines represent environmental gradients and the short bars are
the species’ boundaries.The curly brackets indicate regions of clumping of
boundaries. From the top down, the results are as follows:wm significantly high, hm
not significant;wm low, hm not significant;wm not significant, hm high;wm not
significant, hm low;wm high, hm low;wm high, hm high. (Redrawn from Dale 1988a.)



xi�xj. Let q be the number of other boundaries available; if both xi and xj
are endpoints,q�m and if only one of them is an endpoint,q�m�1.For
most pairs if xi and xj, q�m�2.Then (Dale 1988a):

p(i,j)�1� (xj�xi)
k(1�xj�xi)

q�k. (8.20)

Small values of p(i,j) indicate that the number of boundaries in the
interval between xi and xj has a low probability of occurring by random
processes. If there are several overlapping intervals containing improbably
large numbers of boundaries, we can choose the one with the lowest
probability as the most likely to indicate a critical level on the gradient. If
there are several nonoverlapping intervals with large numbers of bound-
aries, we can look for a preset number of clumps of boundaries and
choose those with the lowest probability,or we may choose all those with
p(i,j) less than some threshhold value such as 5%. The p(i,j ) are not inde-
pendent of each other, and so this is not a proper statistical test of whether
the boundaries clumped, with a known level of significance. Combined
with a statistical test for hm, however,which examines the whole gradient,
calculating p(i,j), for all i and j provides an objective method for detecting
critical levels.

These methods can be illustrated using the Nova Scotia seaweed data
which we have already analyzed in other ways. For these data, we started
at the top of the shoe and the transect ended in the upper subtidal.
Because the range of some species extended into deeper water that we
did not sample, the last records of several species do not necessarily repre-
sent the end of their range. The run of T endings at the end of the tran-
sect, the terminal run of the sequence, may be broken by unperceived
beginnings, the upper boundaries of species growing in water deeper
than we could sample. Therefore, the terminal run of endings should be
omitted from the analysis, and we should set m�2n�2�T and have the
end of the unit interval defined by the last species’ upper boundary.

The values of Wm and hm calculated from these data were tested using a
two-sided test at the 5% significance level. For all transects, even if hm was
not significantly large, we identified the regions of greatest boundary
clumping using p(i,j ) and a threshold probability of 5%. All 29 transects
had values of Wm that were greater than expected, and 13 were
significantly greater. In 22 transects, hm was greater than expected and in
11 of them was significantly high. In two transects, hm was significantly
low and in those cases Wm was significantly high. We found that most of

�
j�i�1

k�0
�q

k�

266 · Pattern on an environmental gradient



the transects have one possible critical level, even if hm was not
significantly high; 5 of the 29 have two. Most of the critical levels were
detected in the bottom quarter of the transect and most had probabilities
less than 0.1%.

To summarize the seaweed data analysis:

1. The observed values of �0 tended to be greater than expected and 11
of the 29 were significantly high.

2. There was a significant tendency to have more contiguities than
expected but not all contiguities had significantly small gaps.

3. A large number of partial overlaps were significantly small.
4. There is some evidence for the existence of clumps of boundaries in

the lower parts of the transects.

When comparing these results with the various models of the arrange-
ments on gradients, it must be remembered that we have not looked at
densities, only the ranges of species defined by their highest and lowest
occurrences. The evidence we have, however, does not support the indi-
vidualistic model. In a study of marsh vegetation, Shipley and Keddy
(1987) examined the upper and lower boundaries separately and also
found reason to reject the individualistic model. The relationship of evi-
dence to models will be discussed further in more general terms at the
end of the chapter.

Concordance

The last topic that needs to be discussed with regard to the analysis of the
ranges of species on a spatially continuous environmental gradient is a
measure of the similarity of the orders of the upper and lower bound-
aries. This topic is an important one in evaluating the community unit
model, because if such units exist the order of boundaries should be very
similar in all transects through the same vegetation. On the other hand, if
the individualistic model holds and the endpoints of each species’ range is
strongly and precisely controlled by its physiology, the order of the
boundaries on the gradient will show little variability.

The order of the boundaries is essentially a ranking of events and the
similarity of such rankings is generally referred to as concordance. There
are several measures available for the evaluation of the concordance of
several rankings (Conover 1980). Let n be the number of objects in each
ranking and let m be the number of rankings. Let rij be the rank of the ith

Continuous presence/absence data · 267



object in the jth ranking and Ri be its rank sum: Ri��rij. Let � be the
mean of the Ri and V their variance; ��m(n�1)/2; V�m(n3�n)/12.
The usual form of the test is to calculate:

T�(n�1) (Ri��)2/nV, (8.21)

which then can be compared to a table or for larger values of m and n, the
�2 distribution with n�1 degrees of freedom (cf. Conover 1980).

This technique can be used to examine either all the upper boundaries
or all the lower boundaries separately. In studying seaweed zonation, we
might hypothesize that upper limits are probably set by the plants’ physi-
ology but that lower limits are set by biological interactions such as
competition and predation. The prediction would then be that the order
of the lower boundaries would be much more variable than that of the
upper boundaries. The Nova Scotia seaweed data we have been using to
illustrate these methods give no clear evidence that the prediction is true.

In dealing with both the upper and lower boundaries of species’
ranges,we are dealing with rankings of paired events; the lower boundary
must be below the upper boundary of any species, so the 2n events are
not all independent.Clearly then,we cannot use the procedure for testing
rankings of simple events unmodified; the lack of independence must be
incorporated into the test.

In devising a test of concordance for rankings of paired events, there
are at least two possible approaches.The first is to use standard techniques
to evaluate the concordance of the orders of the upper boundaries con-
sidered separately, and of the lower boundaries considered separately, to
create a new measure of the concordance of order of upper and lower
boundaries (now ignoring the species) and then to combine the three
into a single measure. An alternative is to modify an existing measure of
concordance to deal with paired data and determine its limiting distribu-
tion.We shall explore the second approach.

There are m rankings of n pairs of events. Let Rxi
be the rank sum for

the ith beginning and Roi
be the rank sum for the ith ending. The overall

mean of the rank sums is ��m(2n�1)/2, but the expected value of the
Rxi

is �x�m(2n�1)/3 and �o�2m(2n�1)/3. It is important to realize,
however, that the actual means of the Rx or the Ro may not be those
expected values in a particular set of rankings; the observed means
depend on the intermingling of the two kinds of events.The variances of
the rank sums about their own expected values are both the same: Vx�

�
n

i�1
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Vo�m(2n�1)(n�1)/9. From this fact we can derive their variance
about the common mean:

V
�

�m(2n�1)[m(2n�1)�4(n�1)]/36. (8.22)

The test statistic to consider is then:

Tp�S/V
�

(8.23)

where:

S� [(Rxi
��)2�(Roi

��)2]. (8.24)

Unfortunately, the limiting distribution of the statistic is unknown,but
it is probably a noncentral �2 distribution (cf. Kendall & Stuart 1973).The
best we can offer the reader with our present knowledge is to suggest
randomization procedures to evaluate the statistic and to provide an
index for comparison.

The randomization procedure shuffles the labels of the beginnings and
endings in the rankings, but leaves the ‘template’, the pattern of begin-
nings and endings, of each ranking intact. The number of times that the
observed value of S is exceeded in 1000 such relabellings is counted to
test whether the observed level of concordance can be considered to be
statistically significant.A Monte Carlo procedure can be used to comple-
ment this randomization test: S is calculated for each of 1000 randomly
generated sets of m rankings for n species and the statistics again com-
pared.

For example, one of the Nova Scotia seaweed study sites gives the fol-
lowing rankings of the upper and lower boundaries of the five species
common to the three transects:

1,2; 3,5; 4,9; 6,8; 7,10
1,2; 3,6; 4,5; 7,10; 8,9
1,2; 4,6; 3,5; 7,10; 8,9.

Calculations give S�690.5, V
�

�44.9 and thus Tp�15.3. Both the ran-
domization and Monte Carlo tests show that the rankings are highly
significantly concordant.

Another way in which to evaluate and compare the degree of concor-
dance is to create an index that runs between 0 and 1:

W�(Sobs�Smin)/(Smax�Smin). (8.25)

�
n

i�1
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The subscripts refer to the observed value, the minimum and maximum
values.Dale (1979) shows that:

Smax�m2n(2n�1)(2n�1)/6 (8.26)

and

Smin�m2n/2. (8.27)

The minimum value is actually somewhat larger if m is odd and n is
even, but the value given above is a convenient generalization. For the
data just described:

W�(690.5�44.9)/(742.5�44.9)�0.925,

clearly indicating a high degree of concordance.
When we use this technique on the Nova Scotia seaweed data, while

the concordance of transects at the same site is usually significantly high,
the values of W are usually between 0.8 and 0.9, showing a high degree of
similarity, but also a certain amount of variability.

Quadrats: presence/absence data
Many studies of the pattern of species on environmental gradients have
used contiguous or spaced quadrats and recorded density or pres-
ence/absence in them. For some kinds of analysis, density data can be
converted to the presence/absence form. Quadrat data can be used for
many of the kinds of analyses described above, such as overlap, gap size,
intermingling of boundary types, and clustering of boundaries. If the
quadrats are small enough that there is never more than one boundary in
a quadrat, then the methods described above for continuous ranges can
be transferred over directly and used, with quadrat position in the
sequence being the equivalent of distance along the transect. The
problem comes when the quadrats are larger and there are many ties in
the ranking of boundary order.For instance,Wulff and Webb (1969) used
quadrats 4cm in height to study seaweed zonation on pilings and the data
they present have many ties, with as many as six boundaries in a single
height interval.These ties obviously represent a loss of information. If the
relationships among the ranges and boundaries of species are of interest
and several quadrats contain more than one boundary, the scale of sam-
pling does not match the scale of the pattern: the quadrats are too small.

For data in which the positions and orders of boundaries are not all
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known, we need tests for the clustering of species boundaries that are
different from the ones already described. A number of workers have
examined the detection of clustering of upslope boundaries or of down-
slope boundaries using data from transects of quadrats (Pielou 1975,
1979; Pielou and Routledge 1976; Underwood 1978a,b; Shipley &
Keddy 1987).There are several different methods for testing for clustered
boundaries based on two different null hypotheses.

Suppose there are Q quadrats of which q contain at least one of the K
boundaries being considered. Pielou’s approach (Pielou & Routledge
1976) was to calculate pq:

pq� . (8.28)

Having observed that exactly z quadrats contain boundaries, we can
test whether z is sufficiently small by calculating the probability, P, and
seeing whether it is less than our chosen significance level:

P� pq. (8.29)

The approach of Underwood (1978b) was to consider a set of tran-
sects.Using the same symbols, the expected value of q is

E(q)�Q[1�(1�1/Q)K]. (8.30)

For each transect of the set, the deviation of the observed value from
the expected is calculated, di for the ith transect. The mean and sample
variance of the di are then calculated and the standard t-test is used to see
whether the mean is significantly different from zero.

The second method is less appealing than the first since its requires
several transects for the test and since its resolving power will increase the
more transects are used in a particular area.There might be some concern
about spatial autocorrelation in the data. Neither method provides an
objective method for determining where the critical levels (if any) are on
the shore. It is interesting that Underwood (1978a,b), using his method,
found no evidence for the clustering of boundaries and thus no critical
levels on rocky shores in England. On the other hand, using the auto-
correlation statistic, hm, on the Nova Scotia data, we found that there was
significant clustering of boundaries.Underwood’s quadrats were 0.5m by
0.5m, and it is not entirely clear what the effect of different quadrat sizes

�
z

q�1

�Q
q � �K�1

q�1 � � �Q�K�1
K �
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might have on this kind of test. Shipley and Keddy (1987) comment that
Underwood’s test is conservative in that it has a tendency to miss nonran-
dom patterns.

In their own study, Shipley and Keddy (1987) used spaced quadrats to
examine the spatial pattern in a marsh near Breckenridge, Quebec. The
data were presence/absence and the first and last occurrence of each
species was considered a boundary. They wanted to evaluate whether the
data supported the community unit or the individualistic model of com-
munity structure described above by testing for the clustering of both
types of boundary and the coincidence of upper and lower boundaries.
They used a technique called the analysis of deviance to test the hypothe-
ses, which tests the significance of the improvement of goodness of fit as
successive terms are added to a model (the residual deviance is analogous
to the residual sum of squares in analysis of variance). Their results
showed that both kinds of boundaries were clustered in relative height
classes, but the two kinds were clustered in different height classes. The
conclusion was that both the individualistic and the community unit
models being tested should be rejected.

Working at a different scale,Auerbach and Shmida (1993) analyzed the
distribution of vascular plants along an altitudinal gradient on Mt.
Hermon in Israel.They used 50m and 100m altitude bands and looked at
the number of upper and lower boundaries in each.Expected values were
calculated using a randomization method in which the altitudinal ranges
of the species were preserved, as in our Hd described earlier in this
chapter (p. 251). They found that the downslope boundaries were not
different from expected but that the upslope boundaries were. They also
found a clustering of the two kinds of boundaries at about 1200m a.s.l.
indicating the transition from maquis (shrubland) to open deciduous
forest. They concluded that while there were vegetation discontinuities
along the gradient, there was no evidence of discrete communities.

Density data
Up to this point of the chapter,we have been discussing methods for ana-
lyzing presence/absence data, recorded in a continuous fashion, so that
the endpoints of the species’ ranges are known. It is easy to imagine
density data continuously recorded along an environmental gradient to
give a picture of the species’ response as in Figure 8.1. Such figures are
frequently presented in papers and textbooks, but they are usually based
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on data from spaced quadrats, not contiguous quadrats. In using the
species’ ranges in the first part of this chapter, we have represented them
as solid lines, although in any single transect a more realistic representa-
tion of the species occurrence would be an irregularly broken line with
lots of small gaps. In the same way, a continuous record of density would
be extremely ragged which would then have to be smoothed to produce
a curve (cf. Gauch 1982, Figure 3.8). We have found no studies that have
used continuous density data, probably because in most vegetation types,
collecting such data would be extremely difficult.

Density data from quadrats, either contiguously or regularly placed
along an environmental gradient, can, of course, be used to draw density
response curves such those in Figure 8.5.The uses to which such data can
be put get us into the broad area of multivariate analysis, including direct
gradient analysis, niche overlap measurement, and so on.Those topics are
covered with varying degrees of detail and sophistication in other places
(Gauch 1982; Ludwig & Reynolds; Kent & Coker 1992), and we will
therefore not deal with all of them here. Many of the kinds of analysis
already presented in this chapter can be used with such data.

Keddy (1991) distinguished between spatially continuous and spatially
discontinuous gradients. In the first case, the result will be some kind of
zonation but in the second the gradient will have to be (re)constructed by
the researcher.Since we are interested in spatial pattern on environmental
gradients, it is the first kind that is more straightforward to deal with.

In the second kind of gradient, there are three components that need
to be dealt with: the spatial relationships among samples in which the
controlling environmental factor(s) have the same and different values,
the relationship of the vegetation to the factor(s), and the spatial relation-
ships among the plants in different samples.Keddy (1991) suggests that in
these cases direct, rather than indirect, gradient analysis is to be preferred
for looking at the relationship between the plants and the environment.
Even using direct analysis, such a study would be complex, and given
natural variability it could be very difficult to interpret, especially if more
than one gradient is active.

One kind of discontinuous gradient that can be dealt with in spatial
pattern analysis is the case where the gradient is actually piecewise
continuous. That is what gives the spatial pattern in hummock-hollow
systems for instance, where there are moisture gradients for wet to dry
and dry to wet repeated through the community. We have discussed this
kind of situation at several places in this book (for example in Chapters 1,
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3, and 5).The pattern of the gradients and the pattern of the plants match
up because the pattern in both is the result of interactions between the
biotic and abiotic factors.

Perhaps the most important feature of density data is that it allows us
to examine the response of a species to the environmental gradient
within its range in a quantitative way. As we said at the beginning of this
chapter, one underlying model of a species’ response is the Gaussian or
bell-shaped curve illustrated in Figure 8.1. The overall finding is that few
species follow such an idealized response, but it is worth examining some
of the details.

Austin and Austin (1980) studied the behavior of 13 grass species
along an experimental nutrient gradient. They found no evidence to
support the assumption of a Gaussian response curve, the physiological
responses being asymmetric. Werger et al. (1983) examined a transect
through a grassland in the Netherlands. Of the species, 21% showed a
Gaussian response, 23% had strongly skewed unimodal responses, 10%
were bimodal and 15% had complex irregular curves. Austin (1987)
examined the distribution of canopy species of a sclerophyll forest in
Australia with respect to mean annual temperature and found that posi-
tively skewed curves rather than bell-shaped curves were characteristic of
the major canopy species. Minchin (1989) studied the distribution of
species in the montane vegetation of Tasmania with respect to elevation
and drainage. Of the species 45% had responses that were unimodal and
symmetric, 33% were skewed, and 22% were complex. Gignac et al.
(1991) examined the response surfaces of six species of mire bryophytes
with respect to ecological and climatic gradients; most are skewed or
bimodal. Austin et al. (1994) found that all of nine eucalypt species that
they examined had skewed responses to temperature and that the direc-
tion of skew was a function of the position on the gradient. Austin and
Gaywood (1994) extended this research, suggesting that the tail of the
skewed distribution is toward the more mesic portion of the gradient;
they found that 21 of 24 species of eucalypt conformed to the model.

Density data also allow us to look at among-species pattern along a
gradient, by examining the relative positions of the modal densities of the
species. For instance, Minchin (1989) tested some of the propositions of
Gauch and Whittaker (1972) concerning the organization of species’
responses.He tested whether the modes of the major species were evenly
distributed along the gradient, perhaps because of competition and
resource partitioning, and whether the modes of the minor species were
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randomly distributed. Using the same data on Tasmanian montane
vegetation used to look at individual species’ responses he found that the
modes of the major species were in fact randomly distributed.He divided
the minor species into structural groups and all but one supported the
hypothesis of random dispersion.A somewhat similar result was obtained
by Austin (1987) for the eucalypt forest trees: the proposition that the
modes of the major species were evenly distributed was not supported,
but in this instance there was some concern that changes in species’ rich-
ness along the gradient might be a confounding factor.

Concluding remarks
It is clear from the material discussed in this chapter that spatial pattern
on environmental gradients is an important aspect of the spatial organiza-
tion of vegetation. The spatial pattern here takes into account several
different kinds of characteristics: the upper and lower boundaries of
species, the ranges of their presence, the way in which the densities of
individual species respond to the gradient and the way in which the
maxima of different species are arranged with respect to each other. All
these characteristics can be used to help ecologists generate ideas and to
test hypotheses. Based on the studies cited here, it seems that while there
is little evidence for the existence of vegetation units on gradients,
neither are the arrangements of species random. More work waits to be
carried out to explain this kind of spatial pattern and the processes that
give rise to it.

Recommendations

1. It is probably best to choose the sampling method that gives the most
detail on the species’ distributions along the gradient because that will
increase the number of different characteristics that can be examined,
as well as the precision with which they can be quantified.Depending
on the spatial scale of the gradient, the measured line intercept
method is preferred. If quadrats are used, they should be small.

2. It is also best to use several sampling transects, in order to evaluate the
variability in the patterns.

3. The continuous presence/absence data derived from line transects
give the measured positions of the upper and lower boundaries of
each species. These data can be used to investigate several properties
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that will help distinguish among models of how species are arranged
on the gradient: overlap of ranges, intermingling of boundary types,
contiguity of upper and lower boundaries, gaps between ranges, and
the clustering of boundaries.

4. The degree of agreement among the transects should be measured by
a concordance statistic.

5. For quadrat data, randomization methods are probably the safest statis-
tical procedures for testing their properties.

6. In using the density of species along spatially continuous environ-
mental gradients, it is unsafe to rely on the assumption that the
response is a symetric bell-shaped curve.
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9 · Conclusions and future
directions

Summary of recommendations
In order to study spatial pattern and to answer questions about the rela-
tionship between the pattern and the processes that either give rise to it
or are affected by it, we need to be able to detect pattern reliably and to
quantify its characteristics. The highest quality data for pattern analysis
come from strings or grids of relatively small contiguous quadrats in
which some quantitative measure of species’ densities has been recorded,
or from the direct mapping of individual plant units such as stems. Even
with the best data, no single method of analysis can quantify all the
important characteristics of pattern.

For contiguous quadrat data, three-term local quadrat variance
(3TLQV) and new local variance (NLV) form a good combination of
methods to evaluate single-species pattern (Chapter 3). These methods
detect the scales of pattern and the size of the smaller phase; the intensity
associated with a 3TLQV peak can be used to evaluate the consistency of
the pattern. For two species, three-term local quadrat covariance
(3TLQC) is recommended; paired quadrat covariance (PQC) cannot be
used because of the effects of resonance peaks, and the correlation
coefficient cannot be used by itself to detect scale (Chapter 4).
Multispecies pattern is best investigated using the modified multiscale
ordination (MSO) technique based on 3TLQV; among its advantages are
an evaluation of the evenness of the species’ contributions to the multi-
species pattern (Chapter 5).

In studying the associations of species, it is an important consideration
that the results of pairwise tests are not independent of each other. It is
also important to realize that the associations may not themselves be pair-
wise, and the choice of sampling and analysis methods should reflect this
possibility (Chapter 5). Studying multispecies association of k species
using the 2k contingency table method is not practical for large numbers



of species. It may, however, provide valuable insights into the structure of
a community when applied to a selected group of important species.

In most applications, spaced samples are not recommended for pattern
analysis, but in some instances the collection of data in contiguous
quadrats may be impractical or impossible. This situation will arise, for
example,when the substrate is itself discontinuous or when the size of the
sample that can practically be collected or processed is at a much smaller
scale than the scale of pattern that is of interest. In any of these cases, the
most important thing is to keep the spatial relationship among the
samples and to use it in the analysis (Chapter 6). The samples and their
values can then be treated as objects in space and their autocorrelation
evaluated. For example, the samples can be joined in a least diagonal
neighbor triangulation (Figure 9.1) and the autocorrelation of first-order
neighbors, second-order neighbors and so on can be plotted. Another
approach is to evaluate the amount of correlation between pairs of
samples in defined distance classes.

For mapped point data, the group of methods based on Ripley’s K
function are the most highly recommended, but there is room for the
development of new methods for point pattern analysis to complement
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that approach, particularly for the evaluation of gaps in the point pattern
(Chapter 7). A major strength of the method is that it can be applied to
univariate or bivariate data, to answer different questions about scales of
overall pattern or of segregation or aggregation of two kinds of plants.

To study the response of species’ densities to a continuous environ-
mental gradient, there are advantages to sampling methods that give
detailed information on how density varies with distance and that gives
the order of the end points of species’ ranges with some precision. Such
data can then be analyzed by several different techniques to answer ques-
tions about the relationships between different species ranges, such as the
patterns of overlap. The same data can be used to evaluate hypotheses
about the spatial distributions of the upper and lower boundaries of
species; for example, whether they occur in clusters or whether the two
types of boundary are intermingled (Chapter 8).

A general theme throughout this book is the lack of independence,
whether in the form of associations that are not pairwise by nature, tests
that are not independent, or spatial autocorrelation. Even statistical tests
for analysis methods that we wish to recommend, such as 3TLQV, are
made difficult because of lack of independence arising from the way in
which the data are used. In many instances, the covariation in the data we
wish to analyze may be so difficult to quantify or partial out that it will
make randomization procedures the best approach to evaluating the
results.

What next?
Having worked through the preceding eight chapters that represent the
body of the book, it will have become clear that we are not yet at the
point where final conclusions can be drawn; the field of spatial pattern
analysis in plant ecology is really just beginning. Several of the technical
chapters have ended with concluding remarks and recommendations, but
it seems appropriate to end the book with a look ahead. We will end,
therefore,with a sample of problems to be solved, techniques to be devel-
oped, and questions to be answered.

Three dimensions
Chapters 4–6 described extensions of the basic methods of Chapter 3 to
two species, to many species and to two dimensions. Many communities
of plants are three dimensional and in some, at least, the vertical dimen-
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sion is very important to an understanding of their physical structure.
Epiphytes in a rain forest, corticolous lichens, and phytoplankton in an
aquatic community are just three examples. Much of the influence of a
plant community on the animals that live within it arises from the three-
dimensional structure. Quantitative description of the three-dimensional
pattern of vegetation is therefore an important component of defining
habitat structure. Without working out full details, we can speculate
about new methods that could be developed to deal with three-dimen-
sional data.

What will the data look like? As discussed in earlier chapters, the data
may consist of points arranged in an otherwise empty volume. For
instance,we could make a three-dimensional map of the positions of fruit
or aphids on a tree,or of the positions of a particular species of orchid in a
patch of rain forest. The alternative is to have sampling units from which
we obtain presence/absence data, counts or density estimates.An obvious
arrangement would be to use the equivalent of a lattice of cubic sampling
units and, for instance, record the counts of various species of
phytoplankton in each cube of a volume of water.

For point pattern data, many of the methods described in Chapter 7
for two-dimensional analysis can be transferred into a three-dimensional
form without difficulty. For instance, nearest neighbor methods and
point-to-all-points can be used without modification. On the other
hand,Ripley’s second-order method will require some changes.

As in the two-dimension case, the number of pairs of points with dis-
tance t or less between them will be counted. This is now the equivalent
of counting points in spheres of radius t centered on the data points.As in
Chapter 7, dij is the distance between points i and j and It(i,j) is 1 if dij�t
and 0 otherwise. Where � is the density of points per unit volume, the
expected number of other plants within radius t of a randomly chosen
plant is just � multiplied by the function K(t).We estimate K(t) by K̂(t):

K̂(t)�V
�

wijIt(i,j)/n2, (9.1)

where V is the volume of the study plot, and wij is a weighting factor used
to reduce edge effect. If the circle centered on point i with radius t lies
totally within the study plot then wij�1, otherwise it is the reciprocal of
the proportion of that sphere’s surface that lies within the plot.

If the points are randomly arranged in space, K(t)�4�t3/3, and we
therefore plot:

L̂ (t)�t� (9.2)
3
�3K̂(t)/4�

�
n

j
�

n

i

280 · Conclusions and future directions



as a function of t.On the null hypothesis of complete spatial randomness,
the expected value is zero. Large positive values indicate overdispersion
and large negative values indicate clumping. Figure 9.2 illustrates the
method with data consisting of clumps of clusters of points (a) and the
detection of the two scales of underdispersion (b).

It is possible to create the three-dimensional equivalent of a tesselation
based on the positions of points.For instance,Okabe et al. (1992) describe
the division of three-space into domains that are the parts of space closest
to each of the data points than to any other. The walls of the domains are
made up of parts of the planes that are right bisectors of the lines joining
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Figure 9.2 a Three-dimensional data for second-order analysis.The 64 points are
in clumps of clumps.



the points.This division of space into domains is the same as the Dirichlet
or Voronoi tessellation described previously (Chapters 1 and 7). That
division has a dual that is the three-space equivalent of the Delaunay
tessellation, joining all points that share a boundary between their
domains (see Okabe et al. 1992).

We can also imagine a three-dimensional equivalent of the least diago-
nal neighbor triangulation (LDNT). The two points that are closest join
first. Thereafter, the lines joining pairs of points are added to the tri-
angulation in order from shortest to longest on condition that they do
not pass through any triangle (not the plane of a triangle) already in exis-
tence. As in two dimensions, the LDNT will be similar to the Delaunay,
but we have found no theoretical work on this subject.

In three dimensions, the concept of anisotropy becomes more
complex. We can treat the three dimensions using spherical systems and,
as Upton and Fingleton (1989) point out, there are a number of different
notations available for their description. Plant ecologists would be best to
follow the lead of geographers and use the horizontal x-y plane as 0° ver-
tical. We can then measure the angle to any point from that plane with
angle � and the angle in that plane with �, breaking with the convention
used by Upton and Fingleton but consistent with the summary of two-
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Figure 9.2 (cont.) b Second-order analysis of the data in 9.2a; two scales of pattern
are obvious in the plot.



dimensional spectral analysis (Figure 9.3). Any (x,y,z) coordinate in
three-space can be related to polar coordinates using � and � as follows:

x�r cos� cos�, y�r cos� sin�, and z�r sin�. (9.3)

(See Figure 9.3.) Anisotropy can now be thought of as having a � com-
ponent related to elevation and a � component. In thinking about
anisotropy in point pattern,we will have to keep that distinction in mind.
In addition, it is possible that the pattern will be isotropic in one plane but
not in others. For example, for motile phytoplankon in a water body, the
cells might be isotropically dispersed in the x-y plane,but highly clumped
vertically at the same range of depth throughout. On the other hand,
with a steady wind blowing, the spatial pattern may be very different in
the east-west direction compared to the north-south direction depend-
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Figure 9.3 The relationship between Cartesian coordinates,x, y, and z, and polar
coordinates using r, �, and �.



ing on the wind. When wind blows over the surface of water with a
velocity greater than 3m s�1, it creates convection cells in pairs that rotate
in opposite directions (Figure 9.4; Chapman 1987). These cells are
referred to as Langmuir cells and are usually a metre or two wide. Where
their circulation converges there is a downward flow produced and
where they diverge, there is an upward flow. The phytoplankton, which
may be denser than water, become entrained in these convection cells
(Chapman 1987). Under these conditions, the vertical variation in
density will be changed and will have a scale different from that of any in
the horizontal directions. What is more, the vertical pattern through the
water column will vary with horizontal location, depending on position
in the Langmuir cells. In this way, simple physical forces give rise to a
complex three-dimensional pattern in the phytoplankton.

Any analysis of spatial pattern in three-space could be summarized in
three diagrams related to the three axes, x, y, and z. It could equally well
be summarized with respect to radius r and the two angles, � and �, or by
r, �, and z, depending on the data set under discussion.

As in the discussion of two-dimensional point patterns in Chapter 7, if
there are two or more kinds of object in the three-dimensional data, we
can examine the scales of their segregation and aggregation using frame-
works of lines joining pairs of points and looking at the autocorrelation
in that structure. The second-order method outlined above can also be
modified to investigate the joint spatial pattern of two species in three-
space, in an obvious way. Lastly, mapped point data can be converted to
sample unit data and dealt with in that form, which we will describe
next.

The following discussion of sampling unit data will be based on the
assumption that the units are cubes. Other shapes are possible, but proba-

284 · Conclusions and future directions

Figure 9.4 Langmuir convection cells develop in water when the wind blows
across the surface.They are typically a metre or two in width (based on Reynolds
1984).



bly not practical.The data collected from the sampling units may be pres-
ence/absence, counts (as with mapped data converted to this form), or
densities. For example, the data for a single cube might be: 20% spruce
foliage, 10% spruce twigs, 10% aspen foliage, 5% aspen twigs, 3% aspen
trunk.Many of the methods that we can imagine for analyzing this sort of
data will just be modifications of methods already described elsewhere in
this book.

Three-dimensional versions of PQV and random paired quadrat fre-
quencies (RPQF) are obvious extensions of existing methods that could
be used to analyze this kind of data. If PQV is used the results can be
summarized as an R-spectrum, looking at variance as a function of dis-
tance between units, without regard for direction, or looking at variance
as a function of angle, either � or �. In displaying the results of the RPQF
analysis in two dimensions, to evaluate anisotropy, the results were pre-
sented as a two-dimensional array of circles or squares representing the
Freeman–Tukey standardized residuals (as in Figures 6.14–6.16). A
similar approach would be more difficult in three dimensions, but com-
puter graphics could provide us with an apparent three-dimensional
lattice of spheres the size and color of which represent the magnitude and
sign of the Freeman–Tukey standardized residual for each combination of
displacement in the x, y and z directions.

In Chapter 6, we saw how spectral analysis could be modified for use
in two dimensions and there is nothing to prevent us from extending its
application to three. Let the data be in a lattice m
n
w units in size,
with species density xijk at grid position (i,j,k). The periodogram for fre-
quencies p, q, and g is Ipqg:

Ipqg�mnw(c2pqg�s2
pqg), (9.4)

where

cpqg� xijk[cos 2�(ip/m� jq/n�kg/w)] (9.5)

spqg� xijk[sin 2�(ip/m� jq/n�kg/w)]. (9.6)

The results of this analysis can be presented as a three-dimensional plot
with three axes representing the values of p, q, and g,with a sphere at each
lattice point representing the magnitude of Ipqg. The results can be col-
lapsed into summary figures in three ways, the R-spectrum, the �-
spectrum, and the -spectrum. The R-spectrum combines all Ipq for
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which the values of r� are the same and plots I as a func-
tion of r. The �-spectrum combines all I for which the values of �, as
defined above, are the same and plots I as a function of �; the -spectrum
does the same for angle �, as defined above.

One method that seems to hold promise for the assessment of spatial
structure is the measurement of fractal dimension. The method involves
counting the number of cubes of size � that the object(s) in question
occupies; call the number C (Kenkel & Walker 1993).The fractal dimen-
sion, �, is then the slope of the line in a plot of log(C) as a function of
log(�). Because of the practical difficulties of counting cubes of different
sizes, what is actually done is to count squares in photographs and deter-
mine the fractional dimension in a single plane through the habitat, �2.
The actual fractal dimension, �3, then lies between �2�1 and 2�2
(Morse et al. 1985). Shorrocks et al. (1991) used this method to relate the
fractal dimensions of lichens to arthropod body lengths and found a clear
relationship: because of the fractal spatial structure, there is more usable
space for smaller organisms and, therefore, they are more abundant.While
determining the fractal dimension does not tell us everything about the
spatial structure, it may be an important characteristic to which other
organisms respond.Kenkel and Walker (1993) add an important caution-
ary note that the orientation of the grid or lattice can affect the outcome,
so that several orientations should be used.

Most of the approaches to three-dimensional pattern analysis that we
have sketched here have not been used, mainly because the kind of data
appropriate for these analyses is difficult to collect. Three-dimensional
pattern analysis is the key to the quantification of habitat structure; it is
just not clear at the moment how it is best done.

Relation to spatial structure of physical factors
In Chapter 1, we discussed various causes of spatial pattern in vegetation,
and stated that one cause is spatial pattern in some environmental factor
which affects the plants; topography is an obvious example (Matérn
1986). It seems clear that, for this system to work, there must be pattern in
the environmental factor; the difference in the factor’s intensity at two
places should at first increase with distance and then decrease. In contrast
to this picture, the underlying model of geostatistics is a semivariogram
that increases from some minimum value, the nugget, at distance 0 to a
maximum, the sill, at some critical distance, the range (Figure 9.5).As dis-
tance increases beyond R, the semivariance remains more or less constant.

�p2�q2�g2
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Remember that it is the variogram that PQV estimates (Chapter 3) so
that the geostatistical model is predicting a variance plot that looks like
Figure 9.5, rather than one with a peak. If analysis of an environmental
factor does indeed give a variance curve that increases to a constant value,
we might be concerned that it indicates the absence of repeating spatial
pattern.

Palmer (1990b) studied the variation in 16 soil characteristics using
samples taken at 10cm intervals along a transect. The semivariograms for
some of the characteristics seem to peak and then decrease, indicating
repeating pattern, but others seem to level off, and yet others continue to
increase over the range of distances studied (to 40m).Oliver and Webster
(1986) also examined the semivariograms of soil properties; in their study
all the variance plots flattened out at a maximum value, with the range
being about 30m.

Bell et al. (1993) investigated the spatial structure of physical variables
at much larger scales, up to 106m. They examined forest soil properties,
water chemistry of lakes, and temperature and precipitation in
Northeastern North America. What they found was no clear indication
that variance reaches a maximum value with increasing distance. For
example, there was a clear linear increase in log variance of soil calcium,
nitrogen, and phosphorous with log distance. This finding has interesting
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Figure 9.5 The standard form of a variogram from geostatistics, after Palmer
(1990a).The nugget is related to the inherent variability in the material at a very
small scale.The sill is the variance among spatially independent samples. The range
is the distance at which the sill is reached, and the distance beyond which samples
can be considered to be spatially independent.



implications for the interpretation of large-scale pattern in vegetation, an
area of study that has received little attention to date.

One interpretation of the increasing variogram result is that spatial
patterns may be locally stationary but exhibit ‘long-distance’ trends
(Matérn 1986). The variograms given by Bell et al. (1993) deal with a
range of distances from about 1km to 250km or even 1500km. In most
of the examples we have used in this book, the scale of sampling has been
an order of magnitude less than the smallest scale in their study, and so it is
perhaps not surprising that different kinds of pattern are detected. This
comparison may demonstrate that natural phenomena are not self-similar
at all scales.

Obvious extensions
There are a number of methods that have been described in this book
that have obvious extensions that are yet to be developed. One method
that we can consider, although it has yet to be fully developed, is a multi-
scale version of the popular canonical correspondence analysis. That
technique produces an ordination that includes both the vegetation data
and the environmental variables simultaneously. One of the results of the
analysis is a biplot of species and environmental variables in ordination
space. The strength of the relationship between a species and a variable is
interpreted by the species’ position with respect to the variable’s arrow in
the ordination plot (see Figure 9.6). Most published examples of this
analysis have used quadrats that are not transect strings. We have two data
sets where the quadrats are contiguous and part of transects, from
Ellesmere Island sedge meadows and Yukon shrub communities. For
these data sets, the analysis could be carried out on individual quadrats,
blocks of two quadrats, blocks of three and so on. This approach is yet to
be explored and evaluated, but it will permit us to examine how the rela-
tionships among species and environmental descriptors change with scale
without using a size hierarchy of sampling units

Temporal aspects of spatial pattern analysis
In previous chapters, especially Chapter 1, we discussed the relationship
between temporal processes and spatial pattern. One approach to stud-
ying the change of spatial pattern through time is just to consider time as
one more dimension, but with the understanding that any pattern in the
system will be anisotropic. Figure 9.7 shows an example of a one-dimen-
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sional transect (as in the bottom part of Figure 1.1) observed through
time as colonization, mortality, coalescence, breakup, and re-establish-
ment occur. In its initial stages, to the beginning of breakup, it is some-
what similar to the Rapoport Gruyère model. In a similar way the growth
and mortality of patches of lichens or the projections of forest trees’
canopies can be pictured and analyzed as solid objects, the cross-section of
which represent the two-dimensional extent at a particular point in time.
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Figure 9.6 An example of a CANOCO ordination in which species and
environmental variables are ordinated together (redrawn from John & Dale 1990).
The arrows represent the quantitative environmental variables, the squares are the
categorical variables and the dots are individual species.The relationship between
the species and the variables can be interpreted from their relative positions. For
example,Rhizocarpon superficiale (‘rhi sup’) is closely associated with the edge and top
of rock faces (‘edge’ and ‘top’); Phaeophyscia sciastra (‘pha sci’), on the other hand, is
associated with rock faces that are weathered, dark in color, not steeply sloping and
low in altitude (‘weath.’, ‘colour’, ‘slope’, and ‘alt.’).



Wavelets
A method known as wavelet analysis has been enjoying increasing
popularity in a variety of applications (Chui 1992; Daubechies 1993).
The method resembles spectral analysis or Fourier analysis to a certain
extent but does not assume stationarity of the underlying process.
Therefore, it can examine a sequence both with regard to frequency and
to position in the sequence rather than just frequency. Bradshaw and
Spies (1992) suggest that one way of viewing the technique is to visualize
a particular wave form and a moving window along the sequence. The
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Figure 9.7 A one-dimensional transect, such as the one depicted in Figure 1.1, is
recorded through time with the horizontal lines representing presence (black) or
absence (white) in the quadrats at each of several times. It produces the equivalent of
an anisotropic pattern in two dimensions.



transform gives a low value when the data in the window do not match
the wave template and a high value when the data match the wavelet in
shape and dimension (Figure 9.8).

It is possible that this approach will be able to provide insights in the
area of spatial pattern analysis. For example, Antoine et al. (1992) used
two-dimensional wavelet transform in image analysis and found that it
could be used to detect the position, orientation and visual contrast of
simple objects. Slezak et al. (1992) used wavelet analysis to detect clusters
of galaxies and voids between them at a range of scales. The similarity of
these studies to spatial pattern analysis in ecology suggests that this
approach may prove very useful in our future work.The only application
of this kind we have found is Bradshaw and Spies (1992),who used wave-
lets to characterize canopy gap structure in forests.

They used the wavelet transform

W(a,xi)� f(xj) g[(xi�xj)/a], (9.7)

where xi measures distance along a transect of n units, f(x) is the measure
in unit x, such as density, a is scale and g is some windowing function or
wavelet. Different functions can be used but one function they used was
the ‘Mexican hat’ template,which for a�1 is:

1
a �

n

j�1
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Figure 9.8 A wavelet template (upper left) is compared to the data sequence at a
range of positions and scales. At point (a) the match is poor; at point (b) it is good. Y
is a spatial process that is a function of position, z.



g(x)� ��0.25(1�4x2)e�2x2. (9.8)

The results are present in gray-scale diagrams with distance along the
transect on the X-axis, scale on the Y-axis and the intensity of the gray
scale representing the magnitude of the wavelet coefficient (Figure 9.9).
The results were also summarized by wavelet variance, which, for scale a,
is the squares of the wavelet coefficients averaged over positions:

V(a)� W 2(a,xi)/n. (9.9)

The plot of this variance as a function of scale is very much like a plot
of one of the quadrat variance techniques (Figure 9.9). With artificial

�
n

i�1

1
30.5
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Figure 9.9 a Gray-scale output from wavelet analysis for Betula glandulosa at the
Yukon site called Flint.The Mexican hat wavelet was used.The darker the color the
better is the match of the wavelet template to the data. b Wavelet variance as a
function of scale.This analysis indicates strongest pattern at 1.5m,with a second
scale of pattern at 9.0m.



data, input scales of 5 and 25 produce peaks in the wavelet variance at 5
and about 20, just as in TTLQV. Figure 9.9 shows the gray-scale and
wavelet variance plots for a sample of data from the Yukon shrub study
(Betula glandulosa at Flint, transect 1). The variance plot indicates spatial
pattern at 1.5m and 9m; the accompanying 3TLQV analysis (Figure
9.10) shows the same scales. The wavelet method reduces the apparent
importance of the larger scale pattern.Using the same method,Bradshaw
and Spies (1992) found that in the Douglas Fir-Hemlock forests small to
intermediate disturbances significantly influence canopy structure.

The advantage of the wavelet approach is that different wavelet tem-
plates can examine the data for different shapes of spatial pattern, thus
providing fuller evaluation of its characteristics.This flexibility may make
the technique very popular in the future.

Questions and hypotheses
Throughout this book, we have alluded to a variety of ecological ques-
tions and hypotheses related to the interplay between pattern and process
in plant communities.We can organize those questions into groups.

The first group is a set of questions about the relationship between
spatial pattern in vegetation and the environment.

1. ‘Patch-gap’models of vegetation dynamics deal with community het-
erogeneity and dynamics based on cycles of disturbance and recovery.
What is the relative importance of disturbances of different sizes and how
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Figure 9.10 3TLQV analysis of the same data as in Figure 9.9.The same scales of
pattern are detected, but the variance is greater for the larger scale.



do the dynamics of disturbance and recovery depend on patch size? The
cycle-mosaic hypothesis, described in Chapter 1, is closely related, sug-
gesting that different patches of vegetation are at different phases of the
same temporal cycle. How is the mosaic structure of vegetation (particu-
larly in forests) related to local spatial effects on the regeneration of dom-
inant species?

2. What is the relative importance of biotic compared to abiotic factors
in the spatial distribution of species? Do abiotic factors act at different
scales than biotic factors? Do they tend to act at larger scales?

3. The community’s ‘memory’ is the extent to which the past distribu-
tion and pattern of species determines the future distribution and
pattern.How strong is this effect and what factors determine its strength?
Is spatial pattern a long-lasting equilibrium characteristic or is it, by
nature, transitory?

4. To what extent do the spatial patterns of environmental factors, such
as soil nutrients, determine the spatial patterns of the plants? To what
extent are they themselves determined by the past plant pattern and how
long does the effect persist?

5. What factors determine the observed densities of species as composi-
tion changes along an environmental gradient?

The second group of questions are about interactions among the
plants.

1. Are there natural groupings of species in vegetation and do vegetation
units exist? If there are groupings, how tightly are the members of a
group linked? How sharp are spatial boundaries between groupings? If
there are assembly rules for plant communities, how important are spatial
effects in those rules?

2. Do some species have stronger spatial pattern because of life-history
characteristics such as dispersal or regeneration niche? To what extent is
the scale of a species’ spatial pattern dependent on its abundance?

3. Interactions between plants can be negative or positive. Can we see
the effects of competition in spatial pattern? Can we detect indirect
effects such as those of second-order neighbors? How common are posi-
tive interactions? How important are spatial effects such as nucleation for
the facilitation of vegetation change?
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4. In some communities, the vegetation consists of several layers. In
layered vegetation, what is the relationship between spatial pattern in the
different layers?

5. Spatial pattern may affect the coexistence of species in natural vegeta-
tion. How is species’ coexistence affected by spatial aspects of plant
growth, for example phalanx versus guerilla growth of clones? In Chapter
5, we introduced Pacala’s ‘spatial segregation hypothesis’ which suggests
that ecological stability is enhanced by limited dispersal and local interac-
tions. How can we use spatial pattern analysis to evaluate the importance
of this effect? At what scales does it act in different kinds of vegetation?

6. In looking at communities, when do we expect true multispecies
pattern? What hypotheses predict that it exists? In multispecies pattern,
does the evenness of species’ contributions to the pattern increase
through succession?

The third group of questions are about the nature of spatial pattern itself.

1. How can spatial data be used to test whether orderly spatial pattern
exists only at relatively small scales? It is possible that repeating pattern
occurs only at smaller scales, with trends or greater disorder at larger
scales. How is the perception of large-scale spatial pattern or large-scale
spatial disorder affected by temporal scale?

2. Over what range of scales are spatial patterns self-similar? What can
we learn about the biological processes of spatial organization from com-
paring the fractal dimensions of different kinds of plant communities?

3. What is the general and fundamental relationship between spatial
pattern and temporal cycles?

4. How does the strength of the relationship between horizontal pattern
and vertical structure change with vegetation type and successional stage?

5. What is the importance of repeating spatial pattern as an aspect of
habitat structure?

This list of questions is not intended to be exhaustive, but only to give an
idea of the kinds of questions that we can associate with the study of
spatial pattern in plant ecology.While some in this list of questions can be
answered using methods described in this book, for others we may need
new methods or further extensions of the ones we already have.
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Concluding remarks
A common thread in the concluding remarks of preceding chapters is
that there is more work to be done on the development and evaluation of
methods to be used for spatial pattern analysis. In effect, this chapter has
followed this theme by pointing out at least some of the directions in
which this area of endeavour might or should move in the next few years.
Of course, there is no way of knowing what new and different
approaches will appear and which of the yet to be explored approaches
will prove to be the most fruitful. Fractal geometry is an attractive
approach that is receiving a fair amount of attention and it will be inter-
esting to see whether it proves to be as useful as is hoped. Similarly, some
of the speculations of this chapter will prove useful but others may not.

The writing of this book has been a fascinating journey of discovery
and rediscovery; that journey will continue but the book must end here.
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Glossary of abbreviations

ANOVA Analysis of variance is a statistical method in which the total
variability in data is partitioned according to the source of the
variability. For example, given several sets of quadrats from
different sites,we can test whether the variance among sites is
significantly greater than the variance among quadrats within
sites.

BQV Blocked quadrat variance is the original method for analysis
of spatial pattern by combining quadrats into blocks. In this
approach, the number of quadrats in a block is a power of 2,
and for each blocksize any quadrat is included in only one
block.The variance among blocks is calculated for each
block size and the positions of peaks in the variance are inter-
preted as reflecting scales of pattern in the data (Eq. 3.3).

CA Correspondence analysis, also referred to as reciprocal aver-
aging, is an ordination technique in which samples and
species are ordinated simultaneously. It is accomplished by an
iterative process of weighted averages (hence ‘reciprocal aver-
aging’) or by eigenanalysis.

CCA Canonical correspondence analysis is an extension of corre-
spondence analysis (CA) not only to ordinate samples and
species simultaneously, but to include environmental variables
in the procedure using multiple regression.

CSR Complete spatial randomness is the usual null model for the
analysis of spatial point patterns.The points are distributed in
the plane independently of each other.Because the number
of points per unit area follows a Poisson distribution, this
pattern is also referred to as a Poisson forest.

DCA Detrended correspondence analysis. In correspondence
analysis (CA) (and in other ordination procedures), samples



that are arranged linearly on a gradient often form an arch or
horseshoe in the ordination diagram.Detrending is a tech-
nique to remove this arch effect.

ED Euclidean distance refers generally to a measure of distance
or difference between two samples equal to the square root of
the sum of the squares of the differences in density of each of
the individual species. In multispecies pattern analysis, the
average Euclidean distance for a particular block size is the
sum of the TTLQV or 3TLQV values for all species, calcu-
lated at that blocksize (Eq. 5.11).

FD Fractal dimension is a measure of the spatial complexity of an
object, based on the concept that it is possible for objects to
have noninteger dimensions. For example,when iterated, the
Koch curve shown in Figure 1.11 has fractional dimension
1.26. In spatial pattern analysis, fractal dimension is usually
calculated from the slope of the semivariogram (Eq. 3.44).

GIS Geographical Information System: a combination of com-
puter hardware and software for the acquisition,manipula-
tion, display, and analysis of large-scale spatial data.

LANDSAT This term is sometimes written ‘Landsat’ and refers to a class
of remote sensing satellites and the images acquired by them.
The Thematic Mapper (TM) sensor records the intensity in
seven wavelengths of electromagnetic radiation; this informa-
tion is then converted into inferences about characteristics of
the earth’s surface.

LDNT Least diagonal neighbor triangulation is a method of creating
a framework for point pattern analysis by joining the points
in pairs to form triangles.This particular triangulation joins
pairs of points from the shortest line to the longest,with the
provision that at each stage the new line crosses no other.

MSO Multiscale ordination is one method for analysing multi-
species pattern. It combines a blocked quadrat method like
TTLQV with the ordination method of principle compo-
nents analysis (PCA).

NLV New local variance is a method based on two-term local
quadrat variance (TTLQV), that detects the average size of
patches or of gaps,whichever is smaller. It calculates the
average absolute value of the difference between adjacent
TTLQV terms for each of a range of block sizes
(Eq. 3.35).
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NMDS Nonmetric multidimensional scaling is a nonlinear ordina-
tion method based on the rank order of measured differences
between the sample units. The method reduces the number
of dimensions used to describe the data while disturbing the
rank order of differences as little as possible.

PCA Principle components analysis is an ordination technique that
reduces the number of dimensions used to explain multivari-
ate data. It does so by creating new orthogonal axes that are
linear combinations of the original variables and that explain
as much as possible of the total variance.

PQC Paired quadrat covariance is a method of joint pattern analy-
sis for two species that uses spaced individual quadrats from a
grid or transect. It is based on paired quadrat variance (PQV)
and calculates covariance for a range of distances, b. Positive
and negative peaks in the plot of the covariance, CP(b), are
indicative of scales at which the two species are positively or
negatively associated (Eq. 4.4).

PQV Paired quadrat variance is a method of spatial pattern analysis
that uses spaced individual quadrats from a grid or transect.
It calculates the average squared difference between quadrats
at each of a range of distances, b.This version uses all
possible pairs of quadrats. Peaks in the plot of the variance,
VP(b), are indicative of scales of pattern in the data
(Eq. 3.28).

RPQF Random paired quadrat frequencies is a method of analyzing
spatial pattern that counts the number of times that pairs of
quadrats with a certain horizontal and vertical displacement
contain the same or different species.

RPQV Random paired quadrat variance is a method of spatial
pattern analysis that uses spaced individual quadrats from a
grid or transect. It calculates the average squared difference
between quadrats at each of a range of distances, b.This
version uses randomly chosen pairs of quadrats rather than all
possible pairs. Peaks in the plot of the variance, VP(b), are
indicative of scales of pattern in the data.

3TLQC Three-term local quadrat covariance analyzes the joint
spatial pattern of two species using blocks of adjacent
quadrats from a transect of contiguous quadrats. It is based on
three term local quadrat variance (3TLQV) and calculates
covariance for a range of distances, b. Positive and negative
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peaks in the plot of the covariance, C3(b), are indicative of
scales at which the two species are positively or negatively
associated.

3TLQV Three-term local quadrat variance is a method of spatial
pattern analysis that uses blocks of adjacent quadrats from a
transect of contiguous quadrats. It calculates the average
squared difference between a block and the sum of the two
adjacent blocks on either side of it for a range of block sizes,
b. Peaks in the plot of the variance, V3(b), are indicative of
scales of pattern in the data (Eq. 3.5).

4TLQV Four-term local quadrat variance is the two-dimensional
equivalent of TTLQV, for studying the spatial pattern of a
single species, based on square blocks of quadrats from a grid
of quadrats. It calculates a variance for each of a range of
block sizes and peaks in the variance are interpreted as indi-
cating scales of pattern (Eqs. 6.12 and 6.17).

9TLQV Nine-term local quadrat variance is the two-dimensional
equivalent of 3TLQV, for studying the spatial pattern of a
single species, based on square blocks of quadrats from a grid
of quadrats. It calculates a variance for each of a range of
block sizes and peaks in the variance are interpreted as indi-
cating scales of pattern (Eq. 6.20).

TM The Thematic Mapper (TM) sensor of a LANDSAT satellite
records the intensity in seven wavelengths of electromagnetic
radiation; this information is then converted into inferences
about characteristics of the earth’s surface.

tQC Triplet quadrat covariance is a method of joint pattern analy-
sis for two species that uses spaced individual quadrats from a
grid or transect. It is based on triplet quadrat variance (tQV)
and calculates covariance for a range of distances, b. Positive
and negative peaks in the plot of the covariance, Ct(b), are
indicative of scales at which the two species are positively or
negatively associated (Eq. 4.7).

tQV Triplet quadrat variance is a method of spatial pattern analysis
that uses spaced individual quadrats from a grid or transect. It
is the three term equivalent of PQV, calculating the average
squared difference between a quadrat and the sum of the two
on either side of it at distance b. Peaks in the plot of the vari-
ance,Vt(b), as a function of block size are indicative of scales
of pattern in the data (Eq. 3.34).
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TTLQC Two-term local quadrat covariance is a method of joint
pattern analysis for two species that uses blocks of quadrats
from a transect. It is based on two-term local quadrat vari-
ance (TTLQV) and calculates covariance for a range of dis-
tances, b. Positive and negative peaks in the plot of the
covariance,C2(b), are indicative of scales at which the two
species are positively or negatively associated.

TTLQV Two-term local quadrat variance is a method of spatial
pattern analysis that uses blocks of adjacent quadrats from a
transect of contiguous quadrats. It calculates the average
squared difference between pairs of adjacent blocks for a
range of block sizes, b. Peaks in the plot of the variance, V2(b),
are indicative of scales of pattern in the data (Eq. 3.4).
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List of plant species

Species* Family Reference

Abies amabalis Dougl. ex Pinaceae Keenan 1994
Forb.

Abies balsamea (L.) Mill. Pinaceae Sprugel 1976
Abies magnifica Murr. Pinaceae Taylor & Halpern 1991
Acacia aneura F.Muell. Fabaceae Lamont & Fox 1981
Acacia ehrenbergiana Hayne Fabaceae Greig-Smith &

Chadwick 1965
Achillea borealis Bong. Asteraceae Dale 1990
Acer spp. L. Aceraceae Upton & Fingleton 1985
Acer campestre L. Aceraceae Szwagrzyk &

Czerwczak 1993
Acer pseudoplatanus L. Aceraceae Szwagrzyk &

Czerwczak 1993
Adenostoma fasciculatum Rosaceae Crawley 1986
H.,& A.

Agrostis spp. L. Poaceae Kershaw 1958
Agrostis castellana Boiss & Poaceae Galiano 1986
Reuter

Agrostis tenuis Sibth. Poaceae Kershaw 1958
Ammophila arenaria (L.) Poaceae Grieg-Smith 1961b
Link 

Arabidopsis thaliana (L.) Brassicaceae Silander & Pacala 1985
Heynh 

Aralia nudicaulis L. Aralicaceae Kenkel 1993
Arctagrostis latifolia (R.Br.) Poaceae Dale et al. 1993
Griseb

Arctostaphylos rubra Poaceae Blundon et al. 1993;
(Rehder & Wils.) Dale & MacIsaac 1989
Arctostaphylos uvi-ursi (L.) Ericaceae Schaefer 1993
Spreng.

Arrhenatherum elatius (L.) Poaceae Gibson & Greig-
Beauv. ex J.,& C.Presl. Smith 1986



Species* Family Reference

Ascophyllum nodosum (L.) Fucaceae Lewis 1964
Le Jol.

Aspicilia cinerea (L.) Körber Hymeneliaceae John 1989
Aster spp. L. Asteraceae Dale & Powell 1994
Atriplex vesicaria Heward Chenopodiaceae Williams et al. 1978
ex Benth.

Betula glandulosa Michx. Betulaceae Dale 1990
Brachythecium groenlandicum Brachytheciaceae Blundon et al.1993
(C. Jens.) Schljak.

Bryum caespiticium Hedw. Bryaceae Blundon et al.1993
Calluna vulgaris (L.) Hull Ericaceae Diggle 1981
Carex aquatilis Wahleb. Cyperaceae Dale et al. 1993
Carex bigelowii Torr. Cyperaceae Kershaw 1964
Carex flacca Schreber Cyperaceae Ver Hoef et al. 1989
Carex membranacea Hook. Cyperaceae Dale et al. 1993
Carex misandra R.Br. Cyperaceae Dale et al. 1993
Carex nigra (L.) Reichard Cyperaceae Gibson & Greig-

Smith 1986
Carpinus betulus L. Betulaceae Szwagrzyk &

Czerwczak 1993
Carya spp.Nutt. Junglandaceae Upton & Fingleton 1985
Centaurea diffusa Lam. Asteraceae Powell 1990
Centaurea jacea L. Asteraceae Ver Hoef et al. 1989
Chamaedaphne calyculata Ericaceae Kenkel 1988b
(L.) Moench

Chamaerhodos erecta Rosaceae Dale (unpublished)
Chondrus crispus Stackh. Fucaceae Dale 1979
Cladonia cariosa (Ach.) Cladoniaceae Blundon et al.1993
Spreng.

Cladonia pyxidata (L.) Cladoniaceae Dale & MacIsaac 1989
Hoffm.

Clematis fremontii S.Wats. Ranunculaceae Ricklefs 1990;
Silvertown &
Lovett Doust 1993

Cornus canadensis L. Cornaceae Schaefer 1993
Cupressus pygmaea Cupressaceae Whittaker & Levin 1977
(Lemmon) Sarg.

Dactylis glomerata L. Poaceae Kershaw 1959a
Ditrichum spp.Hampe Ditrichaceae Blundon et al. 1993
Ditrichum flexicaule Ditrichaceae Blundon et al. 1993
(Schwaegr.) Hampe

Drepanocladus uncinatus Amblystegiaceae Blundon et al. 1993
(Hedw.) Warnst.

Dryas drummondii Richards Rosaceae Blundon et al.1993;Dale
and MacIsaac 1989

Dryas integrifolia M.Vahl Rosaceae Dale et al. 1993
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Species* Family Reference

Dryas octopetala L. Rosaceae Blundon et al.1993
Epibolium angustifolium L. Onagraceae Dale 1990
Equisetum variegatum Equisetaceae Gibson & Greig-
Schleich. Smith 1986

Eriogonum ovalifolium Nutt. Polygonaceae Day & Wright 1989
Eriophorum angustifolium Cyperaceae Kershaw 1964
Honck.

Eriophorum scheurchzeri Cyperaceae Dale et al. 1993
Hoppe 

Eriophorum triste (Th. Fr.) Cyperaceae Dale et al. 1993
Hadac & Löve

Erythronium grandiflorum Liliaceae Thomson et al. 1996
Pursh

Fagus crenata Blume Fagaceae Peters & Ohkubo 1990
Fagus japonica Maxim.- Fagaceae Peters & Ohkubo 1990
Fagus sylvatica L. Fagaceae Szwagrzyk &

Czerwczak 1993
Festuca spp. L. Poaceae Kershaw 1958
Festuca altraica Trin. Poaceae Dale 1990
Festuca pratensis Huds. Poaceae Ver Hoef et al. 1989
Festuca rubra L. Poaceae Kershaw 1964
Fraxinus angustifolia Vahl Oleaceae Szwagrzyk and

Czerwczak 1993
Fucus serratus L. Fucaceae Dale 1979
Fucus spiralis L. Fucaceae Dale 1979
Fucus vesiculosus L. Fucaceae Dale 1979
Gigartina stellata (Stackh. Gigartinaceae Dale 1979
in With.) Batt.

Hedysarum boreale var. Fabaceae Blundon et al. 1993
mackenzii (Nutt.) Rich.

Hedysarum mackenzii Fabaceae Dale & Blundon 1991
Richards

Hydrocotyle vulgaris L. Apiaceae Gibson & Greig-
Smith 1986

Hypericum perforatum L. Hypericaceae Ver Hoef et al. 1989
Knautia arvensis (L.) Dipsicaceae Ver Hoef et al. 1989
Coulter

Kochia scoparia (L.) Schrad. Chenopodiaceae Franco & Harper 1988
Lagarostrobus franklinii Pinaceae Gibson & Brown 1991
(Hook. f.) Quinn

Lecidea auriculata Th.Fr. Lecideaceae Dale 1995
Lecidea paupercula Th.Fr. Lecideaceae John 1989
Leontodon hispidus L. Asteraceae Ver Hoef et al. 1989
Lepraria neglecta (Nyl.) Leprariaceae John 1989
Erichsen

Linum catharcticum L. Linaceae Ver Hoef et al. 1989
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Species* Family Reference

Lolium perenne L. Poaceae Kershaw 1959a
Melanelia granulosa (Lynge) Parmeliaceae John 1989
Essl.

Melanelia sorediata (Ach.) Parmeliaceae John 1989
Goward & Ahti

Melanelia stygia (L.) Essl. Parmeliaceae John 1989
Mercurialis perennis L. Euphorbiaceae Hutchings 1979
Mimosa luisana Brandeg Fabaceae Valiente-Banuet &

Ezcurra 1991
Neobuxbaumia tetetzo Cactaceae Valiente-Banuet &
(Weber) Backeberg Ezcurra 1991

Nepeta cataria L. Lamiaceae Sih & Baltus 1987
Nothofagus betuloides Fagaceae Veblen 1979
(Mirb.) Bl.

Nothofagus pumilio Fagaceae Veblen 1979
(Poepp.et Endl.) Krasser

Ocotea tenera Mez & J.D. Lauraceae Wheelwright &
Smith ex Mez Bruneau 1992

Oxalis spp. L. Oxalidaceae Persson 1981
Pastinaca sativa L. Apiaceae Thompson 1978
Phaeophyscia sciastra (Ach.) Physciaceae John & Dale 1989
Moberg

Picea abies (L.) Karst. Pinaceae Szwagrzyk &
Czerwczak 1993

Picea engelmannii Parry ex Pinaceae Blundon et al. 1993;
Englm. Dale and MacIsaac 1989

Picea glauca (Moench) Voss. Pinaceae Dale 1990
Pinus banksiana Lamb. Pinaceae Kenkel 1988a
Pinus contorta Loudon Pinaceae Stadt 1993
Pinus muricata D.Don. Pinaceae Whittaker & Levin 1977
Pinus ponderosa Dougl. Pinaceae Getis & Franklin 1987
Pinus strobus Pinaceae Petersen & Squiers 1995
Pistacia lentiscus L. Anacardiaceae Whittaker & Naveh 1979
Plantago lanceolata L. Plantaginaceae Galiano 1986
Poa bulbosa L. Poaceae Galiano 1986
Polygonum viviparum L. Polygonaceae Dale et al. 1993
Polysiphonia lanosa (L.) Rhodomelaceae Lewis 1964
Tandy

Populus grandidentata Michx. Salicaceae Petersen & Squiers 1995
Populus tremuloides Michx. Salicaceae Thompson 1978
Pseudephebe pubescens (L.) Usneaceae John 1989
Choisy

Quercus nigra L. Fagaceae Upton & Fingleton 1985
Quercus rubra du Roi Fagaceae Upton & Fingleton 1985
Rhacomitrium spp.Brid. Grimmiaceae Kershaw 1964
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Species* Family Reference

Rhinanthus serotinus Scrophulariaceae Ver Hoef et al. 1989
(Schöenheit) Oborny

Rhizocarpon bolanderi Lecideaceae John 1989
(Tuck.) Herre

Rhizocarpon disporum Lecideaceae John 1989
(Nägeli ex Hepp)
Mull.Arg.

Rhizocarpon eupetraeoides Lecideaceae John 1989
(Nyl.) Blommb & Forss.

Rhizocarpon geographicum Lecideaceae John 1989
(L.) DC.

Rhizocarpon grande (Flörke Lecideaceae John 1989
ex Flotow) Arnold

Rhizocarpon polycarpum Lecideaceae Dale 1995
(Hepp) Th. Fr.

Rhizocarpon superficiale Lecideaceae John & Dale 1989
(Schaer.) Vain

Rhododendron macrophyllum Ericaceae Whittaker & Levin 1977
D.Don ex G.Don

Rubia peregrina L. Rubiaceae Navas & Goulard 1991
Rubus fruticosus (L.) Rosaceae Hutchings 1979
Salix arctica Pall. Salicaceae Dale et al. 1993
Salix barclayi Anderss. Salicaceae Blundon et al. 1993
Salix glauca L. Salicaceae Dale 1990
Salix vestita Pursh Salicaceae Blundon et al. 1993
Saxifraga oppositifolia L. Saxifragaceae Dale et al. 1993
Schaereria tenebrosa Lecideaceae John 1989
(Flowtow) Hertel & Poelt

Sequoia sempervirens Taxodiaceae Whittaker & Levin 1977
(D.Don.) End

Setaria incrassata (Hochst.) Poaceae Carter & O’Connor
Hack 1991

Shepherdia canadensis (L.) Eleagnaceae Dale & MacIsaac 1989
Nutt.

Solidago canadensis L. Asteraceae Dale & Powell 1994
Solidago multiradiata Ait. Asteraceae Dale 1990
Solidago sempervirens L. Asteraceae Lee 1993
Sphagnum spp.Dum. Sphagnaceae Kenkel 1988b
Sphagnum angustifolium Sphagnaceae Gignac & Vitt 1990
C.E.O. Jensen

Sphagnum fuscum Sphagnaceae Gignac & Vitt 1990
(Schimp.) Klinggr.

Sphagnum megellanicum Sphagnaceae Gignac & Vitt 1990
Brid.

Spilonema revertens Nyl. Coccocarpiaceae John 1989
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Themeda triandra Forsk. Poaceae Carter & O’Connor
1991

Thuja plicata D.Don Cupressaceae Keenan 1994
Tilia cordata Mill. Tiliaceae Szwagrzyk &

Czerwczak 1993
Tortella inclinata (Hedw.) Pottiacaeae Blundon et al.1993
Limpr.

Tortella tortuosa (Hedw.) Pottiacaeae Blundon et al.1993
Limpr.

Trifolium repens L. Fabaceae Kershaw 1964
Tsuga canadensis L.Carr. Pinaceae Legendre & Fortin 1989
Tsuga heterophylla (Raf.) Pinaceae Keenan 1994
Sarg.

Typha domingensis Pers. Typhaceae Grace 1987
Typha latifolia L. Typhaceae Grace 1987
Ulmus glabra Huds. Ulmaceae Szwagrzyk &

Czerwczak 1993
Umbilicaria hyperborea Umbilicariaceae John 1989
(Ach.) Hoffm.

Umbilicaria torrefacta Umbilicariaceae John 1989
(Lightf.) Schrader

Umbilicaria vellea (L.) Umbilicariaceae John 1989
Hoffm.

Vaccinium myrtillus L. Ericaceae Maubon et al. 1995
Vaccinium vitis-idea L. Ericaceae Schaefer 1993

*Compiled from, among many sources, Egan 1987, Ireland et al. 1980;Moss 1983,
and through the Missouri Botanical Garden species list,
http://mobot.mobot.org/Pick/Search/pick.html.
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Numbers in bold refer to glossary definition

aggregation 193–8, 231–7, 279, 284
allelopathy 27
analysis of variance (ANOVA) 56,314
anisotropy 37, 39, 77, 168, 174–7, 186–97,

227–31, 282–8
association 25–7, 31, 42, 45–7, 100–3, 117–24,

134–5, 147–8, 198, 277ff
autocorrelation 23–4, 46, 113, 123–4, 151,

160–5, 170–4, 226, 235, 262–71, 284

bivariance 231–41, 279
blocked quadrat variance (BQV) 56–8, 104–6,

168–74,314
bryophytes 7, 9, 127, 143, 162, 274

canonical correspondence analysis (CCA) 139,
203,314

cellular automata 25
classification 100, 204, 243
clonal 6, 25, 32, 38, 51, 295
clumped 20–1, 206–7, 220–32, 261–6, 283
combinatorics 96, 248
competition 2, 9, 24, 26–7, 34, 104–6, 120–4,

165, 220–1, 245, 259, 274
complete spatial randomness (CSR) 20, 209,

229, 239, 281,314
contiguity hypothesis 249–54
contingency table 123–4, 147–8, 277
correlation 26, 72, 106–9, 114–16, 119–20, 139,

170–2, 198–200, 241, 278
correspondence analysis (CA) 137ff,314
covariance 72, 104–14, 128–33, 193–205

see also: paired quadrat covariance; three-term
local quadrat covariance; triplet quadrat
covariance; two-term local quadrat covariance

detrended correspondence analysis (DCA) 138,
198,314

Dirichlet domain 14, 221, 282
dispersal 19, 165

dispersion 9, 19–21, 37, 95, 197, 207–26, 275,
281

disturbance 8, 31, 53, 231, 293
diversity 3, 9, 147, 165

edge effect 209, 214, 233, 280
eigenanalysis 129–35, 202
eigenvalue 129ff
environment 3, 6ff, 10, 26, 44–51, 120, 127, 139,

148, 198–200, 203, 242–5, 286–8, 293
epiphyte 26, 280
Euclidean distance (ED) 139–46,315

fire 8, 10, 25, 44
forest 4–5, 7–8, 30, 32, 50, 53, 78, 95, 140,

146–7, 169, 176, 191, 197, 204, 216, 220,
237–8, 291–4

four-term local quadrat variance (4TLQV)
178–95,317

fractal 28, 90–8, 136–46, 200–1, 296
fractal dimension (FD) 28, 90–1, 136–42, 286,

315

gap 1, 5, 8, 12, 14, 16–19, 50–4, 96, 176, 206–10,
216, 257, 270, 279, 291, 293

Geographic Information System (GIS) 44,315
geostatistics 31, 71, 108, 136, 190, 198, 286
goodness-of-fit 163, 187–8, 226
gradient 30–2, 37–8, 48–9, 138, 242–52
grassland 6, 38, 47, 77, 126, 137–9, 146, 156, 274
Gruyère model 245, 289

habitat 3, 280
herbivory 4–10, 30, 197

intensity 16, 35, 50, 61–8, 83–4, 114, 133, 140,
209

intertidal 242–8

join counts 161–2, 234–5

K function 214–20, 228, 236

Index



lacunarity 201
LANDSAT 43, 168, 184–5,315
landscape 10, 43–4, 183, 200–5
Least Diagonal Neighbor Triangulation

(LDNT) 221–6, 235, 240, 282,315
lichen 25, 135, 159–62, 186–8, 286

map(s) 1, 14, 33–4, 39, 43–9, 193–7, 206–7,
237–40, 280–5

Markov (models) 24–5, 51, 102, 123, 151
microclimate 5
microhabitat 26, 160
microtopography 12, 120, 138–9, 143
Monte Carlo 123, 151, 161, 216, 229, 262, 269
mortality 8, 9, 207, 220, 280
mosaic 1–8, 14–16, 43, 100–1, 119, 126–7, 166,

186–8, 200–6, 242
multiscale ordination (MSO) 128, 135–46, 156,

166, 202,315
multispecies pattern 17, 125–46, 156, 202
multivariate analysis 43, 100, 273

neighborhood 3, 24, 26, 46–7, 103–4, 157–62,
171–3, 207–9, 220–1, 231–40

new local variance (NLV) 78–83, 97–9, 138,
203,315

nine-term local quadrat variance (9TLQV)
178,317

nonmetric multidimensional scaling (NMDS)
143,316

nucleation 9, 47–8, 103–4
nutrient(s) 7, 9, 53, 221, 243, 274

ordination 128–46, 198, 203–5, 288
overlap 249–61

paired quadrat covariance (PQC) 106–17, 193,
316

paired quadrat variance (PQV) 71–8, 86, 117,
119, 136, 169–76, 285,316

patch 1–9, 14–19, 28–30, 50–5, 78–86, 96–100,
125–7, 135, 155–61, 196–207, 220, 245

phase (of cycle) 8, 112, 116, 121, 143–5
phase (of mosiac) 1, 14–17, 77, 98, 100–1, 119,

126–7, 166
phytosociological structure 6, 27, 100
point(s) 12–14, 19–21, 24–5, 32–3 46–9,

157–62, 206–19, 280–6
point-contact 46, 47, 147, 157–63
presence/absence 41, 54, 91, 103–4, 111, 115,

117, 123, 124, 135, 140, 143, 181, 248–52,
270–2, 280, 285

principal components analysis (PCA) 128ff,316

quantification 3, 35, 46, 101, 200–2, 277, 286

random paired quadrat frequency (RPQF)
186–90,316

random paired quadrat variance (RPQV) 71–8,
316

randomization 77–8, 196–7, 233–4, 269, 279
randomness 1, 12–13, 19–21, 32, 37, 71–4,

157–63, 197, 206–10, 214–16, 225–9, 274–6,
280–4

resonance 67, 74–7, 81, 91–5, 108–9, 117, 132,
173, 181–2, 189

sampling 31–49, 103, 157, 247, 277–85
segregation 110, 165, 193–8, 205–6, 231–7, 284
self-thinning 48, 220
semivariogram 72, 90, 136, 190, 202, 286, 287
shrub 5, 9, 41–2, 47, 126, 140, 143, 146, 293
spectral analysis 91–8, 121, 143, 174–7, 283–90
standardized residuals 149, 159, 186, 285
stationarity 18, 51, 83, 177, 288
succession 8–9, 12, 26, 47–8, 55, 78

tessellation 220–1, 234, 241, 281–2
Thematic Mapper (TM) 43,317
three-term local quadrat covariance (3TLQC)

113–17, 128, 317
three-term local quadrat variance (3TLQV)

58–61, 68–70, 82, 85, 95, 115, 128, 132, 138,
144–5, 184–5, 277, 293

tides/tidal 30, 244, 248, 259, 261
topography 177, 204
trees 5, 8, 30, 32, 47, 50, 53, 95, 98, 137, 146,

169–73, 176, 191, 194, 197, 203, 220, 234,
237–40, 275

triplet quadrat covariance (tQC) 109–11, 117,
128, 139, 317

triplet quadrat variance (tQV) 75–6, 86,317
two-term local quadrat covariance (TTLQC)

113–17, 121, 317
two-term local quadrat variance (TTLQV)

58–71, 83–6, 97–9, 113–19, 136–9, 181–8,
202–5,318

unicornian distribution 226

variance
see:blocked quadrat variance; four-term local
quadrat variance; new local variance; nine-
term local quadrat variance; paired quadrat
covariance; random paired quadrat variance;
three-term local quadrat covariance; triplet
quadrat covariance; two-term local quadrat
covariance

variogram 71–3, 90–1, 108–9, 136–7, 190–2,
198–200, 286–8

wavelet 290–3
wetland 5, 10, 34, 45, 53, 267, 272

zonation 30, 45, 242, 254, 270
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