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Preface

Mathematical models and concepts have been important in ecology since its incep-
tion as a discipline. However, symbiosis between the disciplines of mathematics and
ecology on any appreciable scale is a far more recent phenomenon. Fortunately, in
the last few decades, there has been a growing recognition among many theoreti-
cal and empirical ecologists and mathematical scientists that they can and should
work together to the benefit of both disciplines, science more broadly, and society
at large. Promoting this kind of interaction and integration was the theme of a con-
ference we helped organize here at the University of Miami in January 2005, along
with colleagues from the Department of Biology and the Rosenstiel School of Ma-
rine and Atmospheric Sciences. The title of the meeting was “Workshop in Spatial
Ecology.” The choice of topic was deliberate and two-fold. First of all, space and spa-
tial features are now solidly established as essential considerations in ecology, both
in terms of theory and practice. Second, the mathematical challenges in advancing
understanding of the role of space in ecology are substantial and mathematically se-
ductive. We believed that the benefits of bringing together a select group of top-flight
ecologists and mathematicians, many of whom would not have heretofore met each
other, would be enormous, and if the atmosphere at the meeting is any indication, we
were correct. Not long into our interactions, the suggestion arose for some kind of a
follow-up volume to the workshop; not a conference proceedings per se, but some-
thing more substantial, more thoughtful, that would promote the kind of interplay
between mathematics and ecology, and between theory and data, that we so enjoyed
during the workshop. We immediately thought of two volumes of essays on ecolog-
ical theory that have greatly influenced our development as mathematical scientists
interested in serious ecological questions: Perspectives in Ecological Theory, edited
by J. Roughgarden, R. M. May, and S. A. Levin, Princeton University Press, 1989;
and Spatial Ecology: The Role of Space in Population Dynamics and Interspecific
Interactions, edited by D. Tilman and P. Kareiva, Princeton University Press, 1997.
We thought that a volume along those lines that considered emerging challenges in
spatial ecology could be highly valuable to a new generation of mathematical scien-
tists and ecologists, especially if the choice of contributors to the volume reflected
the current trend toward increased interaction of mathematical and ecological scien-
tists and the resulting trend toward integration of the two disciplines. It was in that
spirit that we arrived at the current volume.

We have identified emergent challenges in spatial ecology: understanding the impact
of space on community structure, incorporating the scale and structure of landscapes

xiii
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xiv PREFACE

into mathematical models, and developing the connections between spatial ecology
and the three other disciplines of evolutionary theory, epidemiology, and economics.
This volume is divided into sections focused on those topics. Many of the authors of
essays in this volume spoke at the Workshop in Spatial Ecology, but quite a number
did not attend. Nevertheless, all of them share a commitment to the advancement
of ecology as a truly quantitative science, particularly as it touches upon the role of
space.

One of the fundamental problems in spatial ecology is to understand how spatial
effects influence the dynamics of populations and the structure of communities.
There has been significant progress in recent years on developing and analyzing
spatial models for a single population in a temporally constant environment, and
at least some on models for two competitors or a predator and its prey, but there has
been much less work on models for spatial effects in communities involving sev-
eral species or trophic levels or environmental variability in both space and time.
On the mathematical side, much of the progress on understanding spatial models
has been related to the development of a theory that can give criteria for uncondi-
tional persistence or extinction, that is, determining when a model has some sort
of globally attracting set with certain species present and others absent. There has
been some progress, but not as much, on methods for treating models that have mul-
tiple attracting sets so that their predictions are conditional on factors such as the
initial state of the system. The chapter by DeAngelis et al. describes how models
and simulations can provide insight into community and food chain structure in as-
semblages of fish species in wetland environments where the area of fish habitat
is seasonally fluctuating. The chapter by Amarasekare presents results from models
that illuminate how dispersal and spatial heterogeneity influence the mechanisms and
patterns of species coexistence in multi-trophic communities with intraguild preda-
tion or predator-mediated coexistence. The chapter by Jiang and Shi describes recent
progress on the mathematical theory for treating models where Allee effects, strong
competition, or other mechanisms give rise to “bistability,” that is, to multiple stable
equilibria.

Classical modeling approaches in spatial ecology typically treat space as homoge-
neous and isotropic. For example, most spatially explicit models based on partial dif-
ferential equations envision that organisms disperse through a uniform environment
via simple diffusion. However, many ecological processes occur in spatial structures
that display various sorts of heterogeneity and/or directionality at various scales, and
the nature of the spatial structure of populations themselves is not always obvious.
Organisms may disperse via nonrandom mechanisms that arise directly from the
physical environment, for example by advection, and may decide whether or how
to move in nonrandom ways based on environmental cues. The idea of connecting
spatial scale and structure and dispersal behavior to phenomena in population dy-
namics, evolution, epidemiology, and economics is a recurring theme that is present
in many of the chapters in this collection, and it is the specific focus of several of
them. The chapter by Ovaskainen and Crone discusses how diffusion models can be
extended and refined to describe dispersal in heterogeneous landscapes consisting of
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PREFACE xv

patches and corridors of various types, and to account for dispersal behavior that may
involve effects such as habitat preferences. The next three chapters are motivated or
partly motivated by the problem of understanding ecological processes in river sys-
tems. Those systems present a branching spatial structure that is different from that
of typical terrestrial environments, and dispersal in them is influenced by physical
advection. The chapter by Fagan et al. addresses the issue of formulating metapopu-
lation models for river networks and examines the effects of the “branchiness” of the
network on metapopulations inhabiting it. The chapter by Hadeler et al. treats a vari-
ety of effects related to models for populations with quiescent phases. One particular
problem that is discussed in that chapter is the “drift paradox,” that is, the problem of
understanding how populations in streams can resist being washed out by advection.
Shifting into a quiescent phase is one possible mechanism by which a population
can resist washout. The chapter by Nisbet et al. treats population dynamics in ad-
vective media, reviews the drift paradox, and identifies characteristic length scales
related to population dynamics in such media. The final chapter in this section, by
Hinrichsen and Holmes, addresses the problem of determining the spatial structure
(or absence thereof) of a population from measurements at different sites. Specifi-
cally, it treats the application of state-space models to the problem of determining
whether multi-site data correspond to independent populations with independent en-
vironmental drivers, independent populations with a shared environmental driver, a
collection of populations with the same growth rate but independent environmental
drivers, or a single population. Each of those cases would call for a distinct modeling
approach, so determining which one represents the actual situation is important for
connecting models with data.

The remaining chapters in the collection treat topics related to space and ecology,
but do so relative to the perspectives of evolutionary theory, epidemiology, or eco-
nomics. These areas are related to ecology by both direct connections among the
phenomena they examine and philosophical similarities in the issues they address.
Ecology describes the framework in which the natural selection that drives evolution
occurs. In a sense, epidemiology describes the population interactions between mi-
crobes and other organisms, and may involve other aspects of ecology in the contexts
of vector-borne or zoonotic diseases. The economics of harvesting resources such as
fish or forests are tied to the ecology of those resources. More broadly, all of these
disciplines aim to describe the large-scale emergent behavior of systems consisting
of many interacting independent agents that may cooperate, compete, or exploit each
other. For that reason modeling ideas and approaches that have worked well in the
context of one of them may be relevant to others. Finding unifying approaches to
these disciplines may be one of the grand intellectual challenges of current scientific
thought.

At our present level of understanding, the conclusions about spatial aspects of evolu-
tion that can be drawn from models seem to depend to a considerable extent on the
detailed assumptions built into the models. The chapters on topics related to evolu-
tion in this volume provide a guided tour through a number of scenarios and mod-
eling approaches that represent active areas of current research, and suggest some
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paths toward conceptual unification. The chapter by Hanski discusses how realistic
metapopulation models may provide a unifying approach to ecological and evolu-
tionary theory in fragmented habitats. Those models account for the areas of patches
and the connectivity among patches. Hanski discusses how metapopulation models
can be used to study the evolution of migration rates in fragmented environments.
The chapter by Holt and Barfield also connects metapopulation theory to evolution.
It specifically addresses the problem of understanding how environmental hetero-
geneity influences the evolution of species’ niches. The chapters by Cantrell et al.
and Bolker, in contrast, treat problems related to the evolution of dispersal in contin-
uous environments. Both of those chapters take the viewpoint of adaptive dynamics
as a starting point. The key assumption behind adaptive dynamics is that the strate-
gies which can be expected to be successful in an evolutionarily sense are those that
allow populations using them to successfully invade resident populations using other
strategies. Although Cantrell et al. and Bolker use similar philosophical approaches
based on adaptive dynamics, they use different types of models to study different
scenarios. Cantrell et al. use reaction-advection-diffusion models in spatially het-
erogeneous environments to examine the evolution of dispersal mechanisms arising
from local movement behavior that may be responsive to environmental conditions.
Bolker uses spatial moment equations to examine how the nature and scale of spa-
tial autocorrelation in environmental suitability influence the evolution of the shape
of nonlocal dispersal kernels. Taken together the chapters treating spatial aspects of
evolutionary theory show how strongly assumptions about the nature of dispersal
and the scale and structure of the environment influence the conclusions that can be
drawn about the evolutionary causes and effects of dispersal.

Recent concerns about the emergence or resurgence and global spread of infectious
diseases have motivated renewed interest in epidemiology. Many potentially danger-
ous pathogens are zoonotic or vector-borne and thus have aspects that are directly
related to ecology. Some similar problems arise in both disciplines, and often these
can be addressed by similar modeling approaches. That point is well illustrated by
the chapters on epidemiology. The chapter by Lloyd and Sattenspiel uses a metapop-
ulation approach to examine how nonlinear disease dynamics interact with seasonal
forcing to determine spatiotemporal patterns in disease dynamics. The chapter by
Potts and Kimbrell describes how simulation models can be used to compare differ-
ent control strategies for vector-borne diseases. The chapter by Ruan and Wu reviews
a selection of reaction-diffusion models for the spread of diseases with animal hosts.
In each case the modeling approach is reminiscent of ideas that are widely used in
ecology, but is modified by the specific features of the epidemiological system it
describes.

As human populations increase they put increased pressure on natural resources,
which makes it crucial that we learn how to use them in sustainable ways and if
possible to optimize the benefits derived from them. To do that it is necessary to
understand how economics interacts with ecology and then apply ideas from opti-
mal control theory. The chapter by Sanchirico and Wilen addresses the problem of
optimal fisheries management from the viewpoint of metapopulation modeling. The
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PREFACE xvii

chapter by Olson explores the general issue of constructing models that describe the
dynamics of resources, human factors in harvesting them, and the flow of capital
investment needed to support the harvesting. The chapter by Herrera and Lenhart re-
views some results on optimal control in metapopulation models and shows how to
extend the approach to reaction-diffusion models and related models based on partial
differential equations.

Our friend and colleague Alan Lazer once remarked: “It is better to open up an area
of research than to close one down.” As the chapters in this volume show, there is
a great deal more to be done before the discipline of spatial ecology is ready to be
closed down. We hope that this volume will inspire readers to open up new areas
of research in the mathematical theory of spatial ecology and its connections with
evolutionary theory, epidemiology, and economics.

Robert Stephen Cantrell
Chris Cosner

Coral Gables, FL Shigui Ruan
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CHAPTER 1

Competition dynamics in a seasonally
varying wetland

Don L. DeAngelis
U. S. Geological Survey and University of Miami

Joel C. Trexler
Florida International University

Douglas D. Donalson
Everglades National Park

Abstract. We have used one- and two-dimensional, spatially explicit models to simulate
fish communities in freshwater wetlands in which the seasonality of rainfall in these wet-
lands causes annual fluctuations in the amount of flooded area, or fish habitat. We have
modeled the competition between small fish species that differ from each other in efficiency
of resource utilization and dispersal ability. The simulations showed that these tradeoffs,
along with the spatial and temporal variability of the environment, allow coexistence of
several species competing exploitatively for a common resource type. This mechanism,
while sharing some characteristics with other mechanisms proposed for coexistence of
competing species, is novel in detail. Simulated fish densities resembled patterns observed
in Everglades empirical data. We are also modeling trophic chains and how these chains
respond to the annual fluctuations in available habitat. These studies are a step towards
understanding the community and food chain structure of fishes in seasonally fluctuating
environments. They raise many theoretical questions that we plan to discuss in our essay.

1.1 Introduction

Models used in applied aspects of ecology, such as dealing with specific questions of
conservation, assessment, and restoration, are usually far different from models used
to elucidate theoretical issues. The former tend to include details that may be impor-
tant to the particular applied question, while the latter are kept as simple as possible
to reveal theoretical insights. However, theory should and can play a more prominent
role in influencing the way that ecosystems are managed. The concept of trophic cas-
cades from food web theory and metapopulation theory from spatial ecology are ex-
amples where theoretical models are beginning to make inputs to management plans.

1
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2 COMPETITION DYNAMICS IN A SEASONALLY VARYING WETLAND

As ecological theory is extended to more and more complex phenomena in which
spatial heterogeneity and temporal fluctuations play a role, its potential application
to real ecosystems and to specific applied issues is increasing. Practical models, even
though necessarily more detailed and specific than those of theoretical ecology, may
contain kernels of simpler theoretical concepts and models. Here we consider such a
case of application of theory to a key component of the Everglades ecosystem.

The Everglades is a large freshwater marsh, characterized by the strong seasonal
rainfall pattern of the region, which creates a cycle of wet and dry seasons. Water
depths vary seasonally, but are seldom greater than one meter in this hydroscape of
thousands of square kilometers. Because of the flat landscape, relatively small differ-
ences in mean water level amplify into large differences in the amount of wetted area
and flooding duration, which affect the plant and animal communities. A commu-
nity of small-bodied fishes, along with macroinvertebrates like crayfish, is a crucial
component of the Everglades ecosystem (Kushlan 1990), as it is in many other sea-
sonal wetlands, such as the Pantanal (Heckman 1998). These fishes are important
connections that link both the small herbivorous fauna that feed on periphyton and
the detritivores with the higher trophic level species, such as wading birds.

A question of great practical importance is how water levels in the Everglades should
be regulated to maintain a system that is as close as possible to the natural ecosys-
tem. The wetland small-fish community is strongly influenced by seasonal hydro-
logic fluctuations (Loftus and Kushlan 1987, Trexler et al. 2002). Human-induced
changes in hydrology over the last several decades have altered hydroperiods in most
wetland areas, thereby diminishing this fish forage-base or changing the pattern of
its availability. Lack of sufficient biomass and availability of prey is hypothesized to
have been a major factor in the decline of wading bird nesting at traditional Ever-
glades’ rookeries (Ogden 1994).

The species richness of the fish community is deemed to be important, both for its
intrinsic value and for the contribution of species richness to biomass productiv-
ity of the community. The coexistence of many fish species of similar small body
size and resource use also poses interesting questions for ecological theory. Numer-
ous hypothesized mechanisms have been proposed for the maintenance of species
richness in communities and the maintenance of the diverse Everglades freshwater
fish community may be related to some current ecological theory on nonequilibrium
communities. Environmental fluctuations are often proposed as means for maintain-
ing richness in a dynamic community by preventing competitively dominant species
from eliminating others. Chesson (2000) reviewed mathematical models showing
that environmental fluctuations could promote diversity in nonequilibrium commu-
nities, when the fluctuations effectively provide distinct niches for the competing
species. These circumstances may occur when the competing species have tradeoffs
in key physiological and/or behavioral traits that allow the relative advantages to
alternate among species in a fluctuating environment.

It is possible that some of the tradeoffs involve differences in the ability to move
quickly into newly flooded areas and in the competitive ability in the permanently
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INTRODUCTION 3

flooded areas. As vast areas of wetland are re-flooded each year, opportunistic fish
species can disperse into and exploit those areas first; while other species appear
better at dominating more permanently inundated areas of marsh. Species better at
exploiting more stable areas should have higher reproductive and/or survival rates in
long-hydroperiod areas, and they should be slower to disperse.

This idea is related to some current theoretical ideas developed for other commu-
nities. For example, Litchman and Klausmeier (2001) developed a model based on
tradeoffs in coexisting species, phytoplankton species in their case, competing under
seasonally periodic light availability. One species (‘opportunist’) was able to grow
faster under initially high levels of light, but, when phytoplankton biomass increased
to the point that self-shading occurred, the advantage shifted to the other (‘gleaner’)
species. Both species declined during the period of the year when external solar ra-
diation was low. For certain ratios of light to dark period, coexistence was possible.

The model of Litchman and Klausmeier (2001) relies on periodic temporal variations
for coexistence. Other theoretical ideas emphasize spatial movement, as in “succes-
sional mosaic” models (Armstrong 1976, Tilman 1994, Holmes and Wilson 1998).
In that hypothesis, disturbances occur asynchronously across the landscape, creating
new habitats ready to be recolonized. If some members of the regional species pool
have traits that allow invasion of newly available gaps where they increase rapidly,
while others invade slowly but are better competitors and eventually displace the pi-
oneers, species diversity can be maintained. Areas within this dynamic landscape of-
fer a range of successional stages at a given time, allowing niches for many different
life-history traits. Other models of this class assume that all patches are continuously
occupied by all the species, but differences in dispersal rates, along with differences
in resource growth rates on different patches, can maintain more than one species on
a given resource (Abrams and Wilson 2004, Namba and Hashimoto 2004).

Our conceptual model, which attempts to account for at least some aspects of co-
existence within the South Florida wetland fish community, contains elements of
the above nonequilibrium hypotheses. However, the mechanism we propose differs
slightly from each of those. As in the “successional mosaic” hypothesis, fish species
populations move at different rates into newly opened (flooded) habitat, with the
more competitive species moving more slowly than the more opportunistic ones. But
this re-colonization process does not occur in randomly and asynchronously opened
habitat patches, as in gap creation in forest systems. As in the Litchman and Klaus-
meier (2001) model, rather than random disturbances, deterministic periodic tem-
poral variation is assumed, here as large annual pulses during the seasonal flooding
period. In addition, during the dry season, the recession of water forces all popu-
lations together into permanent or semi-permanent waterbodies, so that all species
may be squeezed together for part of an annual cycle. The gradual opening of new
habitat by the rising water gives the more effectively dispersing fish species a tem-
porary advantage, during which they can build in numbers before being subjected to
competition by the other invaders. When the waters recede, the opportunistic fish are
subjected again to heavy competition, but if they have built up high enough numbers,
the species may persist.
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4 COMPETITION DYNAMICS IN A SEASONALLY VARYING WETLAND

1.2 Model

The mechanism for small fish coexistence described above was incorporated into a
detailed spatial simulation model of competing fish species described by DeAngelis
et al. (2005). However, the mechanism can be transparently illustrated by a more
abstract model. We first describe it conceptually and then show that it is plausible by
showing model output for a particular parameterization.

Table 1.1. X1, X2, and X3 represent the three species. ↑ represents increasing pop-
ulation size, ↓ represents decreasing population size,→ represents emigration from
a region,← represent immigration to a region, and c stands for constant. There are 6
time periods denoted in the table, and 6 transitions between time periods, which may
be very short.

Period of Time During the Year

Region I I→II II II→III III III→IV IV IV→V V V→VI VI VI→I

A X1 c X1 c X1 c X1 c X1 c X1 c X1 c X1 c X1 c X1 c X1 c X1 c
X2 ↓ X2 X2 ↓ X2 → X2 ↓ X2 X2 ↓ X2 X2 ↓ X2 ← X2 ↓ X2
X3 ↓ X3 → X3 ↓ X3 X3 ↓ X3 X3 ↓ X3 X3 ↓ X3 X3 ↓ X3 ←

B X2 ← X2 ↑ X2 X2 ↑ X2 X2 ↑ X2 →
X3 ← X3 ↑ X3 X3 ↓ X3 → X3 ↓ X3 ← X3 ↓ X3 X3 ↑ X3 →

C X3 ← X3 ↑ X3 →

The conceptual model considers three fish populations, each of which has a tradeoff
in its competitive ability and ability to disperse into newly flooded areas. Instead of
considering a smooth elevation gradient, we assume a step-wise gradient of three
elevations. The first region, Region A, is low elevation and permanently flooded.
Region B is flooded for a fraction of the year and Region C is flooded for a smaller
fraction of the year. Fish Species 1 can only survive in Region A; the water is too
shallow for it in Regions B and C. Both Species 2 and 3 can invade Regions B when it
floods, but Species 3 can invade sooner and stay longer. When Region C, the highest
elevation region is flooded, only Species 3 can invade.

The competitive dynamics are simplified in a crucial way by making competition
asymmetrical. Species 1 has a negative effect on Species 2 and 3, and Species 2 has
a negative effect on Species 3, but the reverse does not occur. We assume further
that each population grows logistically in the absence of competition, but when in
the presence of a competitively superior species, a population (e.g., Species i) is af-
fected via Lotka-Volterra competition (i.e.,−cijXiXj) by the competitively superior
species j. Because the population of Species 1 does not move out of Region A and
because it is assumed to suffer no negative effects of competition, it remains constant
at its carrying capacity.

Imagine a yearly cycle in which water level rises and falls in a smooth, relatively de-
terministic manner. The dynamics of the community can be described by considering
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MODEL 5

the year divided into 12 intervals, as shown in Table 1.1. The simplifications made
above allow the model to be solved analytically. The equations and parameters for
a particular quantitative realization of this conceptual model are shown in the Ap-
pendix. Conceptually, the temporal sequence of dynamics through a year should be
as follows.

Time period I. The water level is low, so all three fish species are confined to Region
A. Species 1 is the best competitor. It is assumed to remain constant during this and
all other period. The other two species are declining.

Time period I→II. This is an interval during which the water depth in Region B
reaches a level that some part of the population of Species 3 can invade. (This, and
all other transition intervals, is considered to be very brief in the model.)

Time period II. The population of Species 3 increases in density in Region B, follow-
ing logistic growth. Both Species 2 and 3 continue to decline in Region A.

Time period II→III. With rising water level, during this brief interval part of the pop-
ulation of Species 2 invades Region B. The remaining populations of both Species 2
and 3 in Region A continue to decline.

Time period III. The population of Species 2 increases in Region B, and Species 3
may either grow, or decline, depending on the balance between its own growth rate
and the Lotka-Volterra competition from Species 2.

Time period III→IV. Water level continues to increase, such that part of the popula-
tion of Species 3 invades Region C.

Time period IV. The population of Species 3 increases in Region C according to
logistic growth. The dynamics in the other regions remain the same.

Time period IV→V. The water level is now falling and is shallow enough in Region
C that some of Species 3 migrates back to Region B, though some fraction of the
population is stranded in Region C and dies.

Time period V. The dynamics in Regions A and B continue as before.

Time period V→VI. The water level is now falling and is shallow enough in Region
B that some of Species 2 migrates back to Region A, though some fraction of the
population is stranded in Region B and dies.

Time period VI. The population of Species 3 is able to increase again in Region B
without competition from Species 2.

Time period VI→I. The water level is now falling and is shallow enough in Region
B that some of Species 3 migrates back to Region A, though some fraction of the
population is stranded in Region B and dies. The cycle now repeats.
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6 COMPETITION DYNAMICS IN A SEASONALLY VARYING WETLAND

1.3 Results

A quantitative evaluation of the model can be made using a hypothetical set of pa-
rameter values. At the beginning of the year, water level is assumed to be low and
all populations are squeezed together in Region A. Populations of Species 2 and 3
decline at first in Region A (Figure 1.1a), a decline that is sharpened by a migration
of parts of these populations (Species 3 first, and then Species 2) to Region B as wa-
ter levels rise (Figure 1.1b). In Region B, Species 3 is first able to increase, but after
Species 2 invades and starts to increase, the population of Species 3 declines. Species
3 is then able to invade Region C with further increase in water levels, where it grows
logistically until falling water level causes that region to dry out (Figure 1.1c). Part of
the population of Species 3 is able to migrate back to Region B, where competition
with Species 2 continues. Finally, falling water levels compress both Species 2 and
3 back into Region A and the cycle begins again. This yearly cycle is stable and the
system will return to it if perturbed.

This simple model illustrates the role that periodic fluctuations in the environment,
in this case in water level, can play in biodiversity. Species 3 cannot exist if the
amplitude of the regular flooding is decreased. If this amplitude is decreased such
that the period of time that Region C is flooded decreases sufficiently from the 110
day period shown in Figure 1.1, Species 3 will disappear from the system (Figure
1.2).

1.4 Discussion

The model displays a highly simplified version of the actual dynamics of fish species
along an elevation gradient subject to temporal fluctuations in water level. However,
this is a first building block onto which more complexities can be added. The ability
of this mechanism to operate in more realistic models has been demonstrated in a
multi-species simulation model in which as many as five fish species with different
competitive and dispersal abilities were able to coexist along an elevation gradient
(DeAngelis et al. 2005). A surprising outcome of that model was that a species that
was both a poorer competitor and had less dispersal ability than at least one other
species in the model was still able to coexist. That result illustrates the emergent
complexities that multiple competing species in a spatially and temporally varying
environment can create. The simple model here, with highly asymmetric competi-
tion, cannot produce such complex phenomena as that. However, even the simple
model of this paper demonstrates the importance of amplitude of annual fluctuations
in water level. A decrease in amplitude may lead to the loss of a population that
requires sufficient time in an area without competition to maintain population size.

The real Everglades ecosystem contains further complexities that must be encom-
passed by any model that aims at realism. One such complexity is the existence
of microscale elevation heterogeneity, which leads to the existence of small perma-
nent and temporary ponds in areas that have otherwise dried out. These can serve as
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Figure 1.1 This shows the dynamics of three populations in three discrete regions of increas-
ing elevation in a wetland, subject to regular seasonal fluctuations in water level that result in
Regions B and C being flooded only part of the year. (a) Species 1 (solid line) exists on in
Region A, and has a negative effect on the two other species. (b) Species 2 (dashed line) and 3
(dotted line) can migrate instantaneously to Region B when water becomes sufficiently deep.
(c) Species 3 can briefly occupy the highest elevation area, Region C. The parameter values
used are as follows. T1 = 40., T2 = 90., T3 = 130., T4 = 240., T5 = 290., T6 = 340.,
r2 = 0.012, r3 = 0.02, k2 = 50., k3 = 50., c12 = 0.004, c13 = 0.005, c23 = 0.0002,
f2wet = 0.5, f2dry = 0.6, f3wet = 0.7, f3dry = 0.5.
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Figure 1.2 Size of the population of Species 3 in Region A at the end of the year, as a function
of the length of the period that Region C is flooded.

refuges for fish, so that population recovery in a new flooded region does not have
to depend on the arrival of immigrants from distant larger permanent waterbodies.
Another complexity is that of the total food web. Predator-prey interactions gener-
ate oscillations, and the movement of pulses of migrating fish across the landscape
creates spatially varying concentrations of periphyton, detritus, and nutrients. These
dynamics are now being studied using a large, spatially explicit simulation model.
This model, by using a 100× 100 cell grid, also allows us to extend the analysis be-
yond the simple topography of the model described here, and also to more complex
temporal changes in water levels, which may be highly irregular in the Everglades.
These all may be expected to contribute to novel emergent qualities in the commu-
nity dynamics. However, the new model still contains at its heart, though in far more
elaborated form, the mechanism of species coexistence illustrated in the Appendix.
As expected, it can produce results of coexistence that reflect those of the simpler
model. Importantly, both the simple model and the more complex one demonstrate
the importance of environmental fluctuations in maintaining species richness.
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1.5 Appendix

A number of simplifying assumptions are made so that the mechanism behind coex-
istence of competing fish along an elevation gradient can be explained analytically.
The equations for the three fish species, where the elevation gradient is divided into
three regions of different elevation, are as follows.

Region A - Lowest elevation

This region is always flooded and always occupied by all three species. It is assumed
that Species 1 is the dominant competitor, whose biomass density stays close to its
carrying capacity, k1. Species 2 and 3 always decline in this region due to asymmet-
ric or one-sided competition, but are reinforced by immigration from the Region B
when it dries, which prevents these populations from going to zero. The simplified
equations for the three species are always

X∗1 = k1

dX2

dt
= −c12X∗1X2

dX3

dt
= −c13X∗1X3

(1.1)

Region B - Intermediate elevation

Both Species 2 and 3 can invade this region when it floods, though Species 3 invades
first, at time T1, and leaves at time T6, while Species 2 invades at time T2 and leaves at
time T5. Species 2 is competitively dominant and is always described by the equation

dX2

dt
= r2

(
1− X2

k2

)
X2 (1.2)

When Species 3 is alone, during the time intervals T1 < t < T2 and T5 < t < T6, it
is described by

dX3

dt
= r3

(
1− X3

k3

)
X3 (1.3)

However, when both Species 2 and 3 are present, Species 3 is described as having
the negative effect of one-sided competition from Species 2, as follows, where, for
simplicity, we ignore the carrying capacity effect on Species 3:

dX3

dt
= (r3 − c23X2)X3

=
(
r3 − c23f2wetX

∗
2(T2)k2e

r2(t−T2)

f2wetX∗2(T2)er2(t−T2) + (k2 − f2wetX∗2(T2))

)
X3 (1.4)

Here f2wet is the fraction of population of Species 2 that migrates from Region A to
Region B when it floods.
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10 COMPETITION DYNAMICS IN A SEASONALLY VARYING WETLAND

Region C - Highest elevation

Only Species 3 can invade this region, during the interval T3 < t < T4. Its growth is
described by

dX3

dt
= r3

(
1− X3

k3

)
X3 (1.5)

When these equations are integrated over each of the time intervals, with appropriate
initial conditions at the start of each interval, the following mathematical expressions
are obtained in each time period and region (see Table 1.1):

Time Period I (0 < t < T1)

Region A:

X2A(t) = X2A(0)e−c12X∗
1t

X3A(t) = X3A(0)e−c13X∗
1t

(1.6)

Time Period II (T1 < t < T2)

Region A: Here f3wet is the fraction of population of Species 3 that migrates to
Region B from Region A when it floods.

X2A(t) = X2A(T1)e−c12X∗
1(t−T1)

X3A(t) = (1 − f3wet)X3A(T1)e−c13X∗
1(t−T1)

(1.7)

Region B:

X3B(t) =
f3wetX3A(T1)k3e

r3(t−T1)

f3wetX3A(T1)er3(t−T1) + (k3 − f3wetX3A(T1))
(1.8)

Time Period III (T2 < t < T3)

Region A:

X2A(t) = (1 − f2wet)X2A(T2)e−c12X∗
1(t−T2)

X3A(t) = X3A(T2)e−c13X∗
1(t−T2)

(1.9)
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Region B:

X2B(t) =
f2wetX2A(T2)k2e

r2(t−T2)

f2wetX2A(T2)er2(t−T2) + (k2 − f2wetX2A(T2))

X3B(t) = X3b(T2)eQ3B

Q3B = r3(t− T2) +
c23k2

r2
ln(R(t)/k2)

R(t) = f2wetX2A(T2)er2(t−T2) + (k2 − f2wetX2A(T2))

(1.10)

Time Period IV (T3 < t < T4)

Region A:

X2A(t) = X2A(T3)e−c12X∗
1(t−T3)

X3A(t) = X3A(T3)e−c13X∗
1(t−T3)

(1.11)

Region B: Here f3wet is the fraction of population of Species 3 that migrates from
Region B to Region C when it floods

X2B(t) =
X2B(T3)k2e

r2(t−T3)

X2B(T3)er2(t−T3) + (k2 −X2B(T3))

X3B(t) = (1− f3wet)X3B(T3)eQ3B

Q3B = r3(t− T3) +
c23k2

r2
ln(R(t)/k2)

R(t) = X2A(T3)er2(t−T3) + (k2 −X2A(T3))

(1.12)

Region C:

X3C(t) =
f3wetX3B(T3)k3e

r3(t−T3)

f3wetX3B(T3)er3(t−T3) + (k3 − f3wetX3B(T3))
(1.13)

Time Period V (T4 < t < T5)

Region A:
X2A(t) = X2A(T4)e−c12X∗

1(t−T4)

X3A(t) = X3A(T4)e−c13X∗
1(t−T4)

(1.14)

Region B: Here f3dry is the fraction of population of Species 3 that migrates from
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12 COMPETITION DYNAMICS IN A SEASONALLY VARYING WETLAND

Region C to Region B when the former is too shallow.

X2B(t) =
X2A(T4)k2e

r2(t−T4)

X2B(T4)er2(t−T4) + (k2 −X2B(T4))

X3B(t) = (X3B(T4) + f3dryX3C(T4))eQ3B

Q3B = r3(t− T4) +
c23k2

r2
ln(R(t)/k2)

R(t) = X2B(T4)er2(t−T4) + (k2 −X2B(T4))

(1.15)

Time Period VI (T5 < t < T6)

Region A: Here f2dry is the fraction of population of Species 2 that migrates from
Region B to Region A when the former is too shallow.

X2A(t) = (X2A(T5) + f2dryX2B(T5))e−c12X∗
1(t−T5)

X3A(t) = X3A(T5)e−c13X∗
1(t−T5)

(1.16)

Region B:

X3B(t) =
X3B(T5)k3e

r3(t−T3)

X3B(T5)er3(t−T3) + (k3 −X3B(T5))
(1.17)

Time Period VII (T6 < t < 365)

Region A: Here f3wet is the fraction of population of Species 3 that migrates from
Region B to Region A when the former is too shallow.

X2A(t) = (X2A(T5)e−c12X∗
1(t−T6)

X3A(t) = (X3A(T5) + f3dryX3B(T6))e−c13X∗
1(t−T5)

(1.18)

Then set
X2(0) = X2(365)

X3(0) = X3(365)
(1.19)

and begin a new annual cycle.
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CHAPTER 2

Spatial dynamics of multitrophic
communities

Priyanga Amarasekare
University of California at Los Angeles

Abstract. I discuss the influence of dispersal on two multitrophic communities: intraguild
predation and keystone predation. The key finding is an asymmetry between species in
their dispersal effects and responses. In both intraguild predation and keystone predation,
dispersal of the predator-resistant inferior competitor has a large effect, but dispersal of
the predator-susceptible superior competitor has little or no effect, on coexistence and
species’ distributions. In the case of keystone predation, the inferior competitor’s disper-
sal also mediates the predator’s dispersal effects: predator dispersal has no effect when
the inferior competitor is immobile, and a large effect when it is mobile. The direct and
indirect effects of the inferior competitor’s dispersal changes species’ distributions from
inter-specific segregation in resource-poor and resource-rich habitats to inter-specific ag-
gregation in resource-rich habitats. The important point is that the interaction between com-
petition and predation creates asymmetries between species that lead to unexpected effects
of dispersal. These asymmetries suggest the existence of keystone dispersers, species that,
through their dispersal, have disproportionately large effects on species distributions and
diversity in multitrophic communities.

2.1 Introduction

The interplay between species interactions and dispersal is the key determinant of
diversity in spatially structured environments (Leibold et al. 2004, 2005). A great
deal is known about this interplay in communities with one or two trophic levels (e.g.,
resource, consumer; Levin 1974; Holt 1985; Murdoch et al. 1992; Amarasekare and
Nisbet 2001; Jansen 2001; Abrams and Wilson 2004) but relatively little is known
about it in communities with multiple trophic levels (e.g., resource, consumer, natural
enemy).

Most theory on spatial coexistence focuses on nontrophic or pairwise trophic interac-
tions where species cannot coexist in the absence of dispersal (e.g., competitive dom-
inance, predator overexploitation, Allee effects induced by the absence of a mutual-

15
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16 SPATIAL DYNAMICS OF MULTITROPHIC COMMUNITIES

istic partner). In such situations, dispersal can allow coexistence given spatial varia-
tion in species’ traits (Levin 1974; Holt 1985, 1993; Amarasekare and Nisbet 2001;
Codeco and Grover 2001; Amarasekare 2004; Leibold et al. 2004). Two aspects of
multitrophic communities suggest the need for a different framework for understand-
ing the interplay between dispersal and species interactions. First, multitrophic com-
munities are characterized by two types of interactions (trophic and nontrophic in-
teractions) that are dynamically quite different. Second, in multitrophic communities
species occupying a particular trophic level can coexist in the absence of dispersal,
but the operation of such coexistence mechanisms is variable in space and time. Thus,
local and spatial coexistence mechanisms can operate simultaneously, and their inter-
action can lead to emergent properties (Amarasekare 2006, 2007). Dispersal effects
on multitrophic communities are therefore likely to be quite different from dispersal
effects on communities with only one type of species interaction.

Two examples of multitrophic community modules illustrate these differences. In-
traguild predation (IGP) occurs when species competing for a common resource also
prey on or parasitize one another (e.g., Polis et al. 1989; Arim and Marquet 2004);
keystone predation (KP) occurs when species competing for a common resource also
share a natural enemy (e.g., Sih et al. 1985; Navarette and Menge 1996). In both
cases the two consumer species can coexist via a trade-off that allows for local niche
partitioning. In intraguild predation local niche partitioning is possible because the
inferior resource competitor can prey on or parasitize its competitor; in keystone
predation it occurs because the inferior competitor gains more of the resource by
being less susceptible to the predator. A key feature of these trade-offs is that their
expression depends on traits of species occupying other trophic levels within the
community (Amarasekare 2007, 2008). In intraguild predation it is the common re-
source; in keystone predation it is the common resource and/or natural enemy. In the
absence of dispersal or other ameliorating factors, spatial variation in resource pro-
ductivity or predator mortality can shift the advantage to one consumer species and
cause the other’s exclusion. For instance, when resource productivity is low (preda-
tor mortality is high), exploitative competition dominates and the inferior resource
competitor is excluded; when resource productivity is high (predator mortality is
low), predation dominates and the species more susceptible to predation is excluded
(Holt and Polis 1997; Diehl and Feissel 2000; Noonberg and Abrams 2005). Thus,
the trade-off between competition and predation allows coexistence only at interme-
diate productivity/mortality levels. This illustrates another feature that distinguishes
multitrophic interactions. In nontrophic or pairwise trophic interactions, spatial vari-
ation in species’ traits typically facilitates coexistence (Leibold et al. 2004). In mul-
titrophic interactions, spatial variation in resource or predator traits can constrain the
coexistence of intermediate consumers. Thus, diversity maintenance in multitrophic
communities depends crucially on whether dispersal by intermediate consumers can
counteract the diversity reducing effects of spatial variation that act through a shared
resource or natural enemy (Amarasekare 2007).

Here I present some theoretical insights on the spatial dynamics of multitrophic com-
munities characterized by competition and predation. These insights are based on a
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comparative analysis of dispersal effects on intraguild predation and keystone pre-
dation (Fig. 2.1). I focus on these two multitrophic interactions because they are
widespread in nature, occurring in a wide variety of taxa from microbes to mammals
(Polis et al. 1989; Chase and Leibold 2003; Arim and Marquet 2004).

Predator

Prey1 Prey2
competition

Keystone predationIntraguild predation

IGPrey IGPredator

Resource

predation/parasitism

competition

Resource

Figure 2.1 Multitrophic (resource-consumer-predator) interactions with competition and pre-
dation. On the left is intraguild predation where two consumers compete for a common re-
source but one consumer can prey on or parasitize the other. On the right is keystone predation
where two consumers compete for a common resource but also share a common natural enemy.

2.2 Theoretical framework

When studying the interplay between dispersal and the local multitrophic dynamics,
it is instructive to consider a metacommunity that experiences spatial variation in
resource or predator traits (e.g., resource productivity and predator mortality; Noon-
berg and Abrams 2005; Amarasekare 2006) but no spatial variation in the traits of
the consumers themselves. The consumer species experience spatial variation in re-
source/predator traits via dispersal. The minimal model that can incorporate local
dynamics, dispersal, and spatial heterogeneity is a three-patch metacommunity with
each patch exhibiting a level of resource productivity/predator mortality that leads
to the three outcomes observed in the absence of dispersal (Leibold 1996; Holt and
Polis 1997; Amarasekare 2006, 2007, 2008): (i) resource productivity (predator mor-
tality) is too low (too high) for the predator-resistant inferior competitor to invade
when rare, (ii) resource productivity (predator mortality) is too high (too low) for
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18 SPATIAL DYNAMICS OF MULTITROPHIC COMMUNITIES

the predator-susceptible superior competitor to invade when rare, and (iii) resource
productivity (predator mortality) is within the range that allows both species to in-
vade and coexist via a trade-off between competition and predation. Here I focus on
the key insights that emerge from analysis of such three-patch models. I defer the
mathematical details to the Appendix.

2.3 Results

The crucial outcome of the interplay between dispersal and local multitrophic dy-
namics is an asymmetry between consumer species in their dispersal effects and re-
sponses. In both intraguild predation and keystone predation, dispersal of the predator-
resistant inferior competitor has a large effect, but dispersal of the predator-susceptible
superior competitor has no effect, on coexistence and species’ distributions. In the
case of keystone predation, the inferior competitor’s dispersal also mediates the
predator’s dispersal effects: predator dispersal has no effect when the inferior com-
petitor is immobile, and a large effect when it is mobile (Table 2.1). Below I explain
the biological mechanisms underlying this dispersal asymmetry.

2.3.1 Intraguild predation

The dispersal asymmetry between the superior competitor (the IGPrey) and the infe-
rior competitor (IGPredator) can be understood by considering the way each species’
abundance changes with changes in resource productivity. The IGPrey’s abundance-
productivity relationship is strongly affected by the IGPredator’s dispersal rate, while
the IGPredator’s abundance-productivity relationship is qualitatively unaffected by
the dispersal rates of either the IGPrey or the IGPredator (Fig. 2.2; Amarasekare
2006). For instance, the IGPredator’s abundance increases monotonically with in-
creasing productivity regardless of its dispersal rate (Fig. 2.3). In contrast, the IG-
Prey’s abundance-productivity relationship is highly sensitive to the IGPredator’s
dispersal rate (Fig. 2.3). When the IGPredator’s dispersal rate is low relative to the
within-patch mortality rate, the IGPrey’s abundance declines monotonically with
increasing productivity, which is the same pattern observed in the absence of dis-
persal (Fig. 2.3). When the IGPredator’s dispersal rate is moderate relative to the
within-patch mortality rate, the IGPrey’s abundance-productivity relationship be-
comes hump-shaped with the highest abundance at intermediate productivity. When
the IGPredator’s dispersal rate is high relative to the within-patch mortality rate, the
IGPrey’s abundance increases monotonically with increasing productivity (Fig. 2.3;
Amarasekare 2006). Thus, low IGPredator dispersal leads to inter-specific segrega-
tion with the IGPrey being concentrated in areas of low resource productivity and
the IGPredator in areas of high resource productivity. In contrast, high IGPredator
dispersal leads to inter-specific aggregation with both species being concentrated in
areas of high productivity (Fig. 2.3). These differences arise solely because of the
IGPrey’s differential response to the magnitude of IGPredator’s dispersal. The IG-
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Predator’s abundance-productivity relationship is qualitatively insensitive to changes
in its own dispersal rate as well as that of the IGPrey’s (Figs. 2.2 and 2.3).

The mechanisms underlying these abundance-productivity relationships can be un-
derstood by examining the change in the IGPrey’s abundance as a function of the IG-
Predator’s dispersal rate (Fig. 2.2). The important point is the existence of a threshold
value of the IGPredator’s dispersal rate, below which the IGPrey’s abundance is the
lowest in the high productivity patch, and above which the IGPrey’s abundance is
the lowest in the low productivity patch (Fig. 2.2c). Below this threshold the high
productivity patch is a sink for the IGPrey (i.e., it cannot maintain a positive per
capita growth rate when rare in the absence of dispersal). It is rescued from extinc-
tion by immigration from the intermediate productivity patch where local coexis-
tence occurs, in the absence of dispersal, via a trade-off between competition and
IGP. Thus at low dispersal rates of the IGPredator we have within-patch coexistence
via a combination of source-sink dynamics in the IGPrey, and a competition-IGP
trade-off. Within-patch coexistence is still possible once the IGPredator’s dispersal
rate exceeds the threshold, but it occurs via a combination of mechanisms that do
not require the IGPrey’s dispersal (Amarasekare 2006). Coexistence in the interme-
diate productivity patch occurs via the competition-IGP trade-off while coexistence
in the high productivity patch occurs via high emigration of the IGPredator. The lat-
ter mechanism comes about because random dispersal leads to a net movement of
individuals from areas of higher to lower abundance. The IGPredator’s emigration
out of the high productivity patch, where it has the highest abundance, far exceeds
immigration into it. This reduces the strength of IGP in the high productivity patch
and allows the IGPrey to invade when rare, even in the absence of its own dispersal.
The key point is that spatial coexistence of the IGPrey and IGPredator, and the result-
ing abundance-productivity relationships, arise from two different combinations of
mechanisms. Which combination operates depends on the magnitude of the IGPreda-
tor’s dispersal rate (Table 2.1; Amarasekare 2006). With low dispersal, when the
competition-predation trade-off operates in the intermediate patch, local coexistence
in the low productivity patch occurs via source-sink dynamics in the IGPredator, and
coexistence in the high productivity patch occurs via source-sink dynamics in the
IGPrey; with moderate to high dispersal, local coexistence in the low productivity
patch still occurs via source-sink dynamics of the IGPredator, while local coexis-
tence in the high producitivity patch occurs via emigration of the IGPredator, which
operates in the absence of any spatial dynamics in the IGPrey. Thus, the IGPreda-
tor’s dispersal determines which type of spatial coexistence mechanism operates in
the metacommunity.

2.3.2 Keystone predation

The dispersal asymmetry is such that the predator-resistant inferior competitor’s dis-
persal has a much stronger effect on coexistence than dispersal of the predator or the
predator-susceptible superior competitor (Amarasekare 2008). The inferior competi-
tor’s dispersal enables consumer coexistence in high productivity habitats by allow-
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Figure 2.2 Long-term (equilibrium) abundances under variable dispersal rates for intraguild
predation (panels (a)-(d)) and keystone predation (panels ((e)-(p)). In each graph, the three
lines with increasing thickness depict, respectively, abundances in the low, intermediate,
and high productivity patches. The vertical dashed line in panels (c) and (h) depicts the
threshold dispersal rate below which source-sink dynamics drive coexistence in the low and
high productivity patches, and above which source-sink dynamics of the inferior competi-
tor drives coexistence in the low productivity patch while emigration of the inferior com-
petitor drives coexistence in the high productivity patch. Note that in keystone predation,
the predator’s dispersal has no effect on the superior competitor when the inferior competi-
tor is immobile, and a large effect when the inferior competitor is mobile. Parameter val-
ues used for intraguild predation: a1 = 10, a2 = 2, α = 2, f = 2, β1 = 0.2 (panels
c and d) and β2 = 0.2 (panels (a) and (b)); parameter values for keystone predation are:
a1 = 9, α1 = 9, a2 = 2, α2 = 1, e1 = e2 = 1, δ = 1, f = 2 and dP = 0.5.
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Figure 2.3 The abundance-productivity relationships of the superior and inferior competitors
and predator (in the case of keystone predation) as a function of the inferior competitor’s
dispersal when all species (except the resource) are mobile. In each panel, the x-axis is the
resource productivity (rj) and the y-axis is long-term abundance. In each row, panels from
left to right depict the abundance-productivity relationships for a particular species under in-
creasing levels of the inferior competitor’s dispersal. The key point is that the superior com-
petitor’s abundance-productivity relationship is highly sensitive to the inferior competitor’s
dispersal rate but the inferior competitor’s and the predator’s (in the case of keystone preda-
tion) abundance-productivity relationships are insensitive to such dispersal. Parameter values
used for intraguild predation: a1 = 10, a2 = 2, α = 2, f = 2, β1 = 0.2; parameter values
for keystone predation: a1 = 9, a2 = 2, α1 = 9, α2 = 1, e1 = e2 = 1, δ = 1, f = 2, dP =
0.5, β1 = 0.5, βP = 0.5.
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ing the superior competitor to invade such habitats even when the superior competitor
does not disperse. In contrast, dispersal of the superior competitor does not allow co-
existence in the low productivity habitats (where predator-mediated coexistence is
impossible) when the inferior competitor is immobile. As with intraguild predation,
the inferior competitor’s dispersal rate determines the type of spatial mechanism that
allows within-patch coexistence. When the inferior competitor’s dispersal is below
a critical threshold (Fig. 2.2h), coexistence in the low productivity patch occurs via
source-sink dynamics of the inferior competitor, and coexistence in the high pro-
ductivity patch occurs via source-sink dynamics of the superior competitor. In both
cases, the intermediate productivity patch, where local coexistence can occur via
the competition-predation trade-off, acts as the source population. When the inferior
competitor’s dispersal is above the critical threshold (Fig. 2.2h), coexistence in the
high productivity patch occurs via emigration of the inferior competitor, which re-
quires no spatial dynamics of the superior competitor. Since the superior competitor’s
emigration from the low productivity patch does not allow the inferior competitor to
invade that patch, within-patch coexistence still requires source-sink dynamics of
the inferior competitor. Thus, the inferior competitor’s dispersal determines the type
of spatial coexistence mechanism that operates in the metacommunity (Table 2.1;
Amarasekare 2008).

The inferior competitor’s dispersal also drives species’ distributions. Specifically,
the inferior competitor induces a qualitative change in the superior competitor’s
abundance-productivity relationship, causing it to increase rather than decrease with
increasing productivity. This change comes about directly through the inferior com-
petitor’s own dispersal and indirectly through the predator’s dispersal. As a conse-
quence, species’ distributions across the landscape also undergo a qualitative change,
from inter-specific segregation to inter-specific aggregation (Fig. 2.3). When the in-
ferior competitor does not disperse the predator’s dispersal has no effect on the supe-
rior competitor’s abundance-productivity relationship (Figs. 2.2k-m); when the infe-
rior competitor disperses the predator’s dispersal has a strong effect on the superior
competitor’s abundance-productivity relationship (Figs. 2.2m-o). The superior com-
petitor’s dispersal has no effect on any species’ abundance pattern (Figs. 2.2h-j).

The mechanism by which the inferior competitor’s dispersal changes the superior
competitor’s abundance-productivity relationship is as follows. The inferior com-
petitor’s abundance increases with increasing productivity in the absence of disper-
sal, and hence its net movement occurs in the direction of decreasing productivity.
The inferior competitor’s net emigration from the high productivity patch allows
the superior competitor to invade that patch. As the inferior competitor’s dispersal
rate increases the superior competitor is able to establish in the high productivity
patch with increasingly higher abundances. When the predator does not disperse,
the inferior competitor’s net immigration into the low productivity patch decreases
the superior competitor’s abundance via a mass effect. This is, however, a relatively
weak effect. It becomes much stronger when the predator also disperses. Then, the
predator’s net movement into the low productivity patch imposes high mortality on
the superior competitor and decreases its abundance. Thus, the inferior competitor’s
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dispersal has the direct effect, through emigration, of increasing the superior com-
petitor’s abundance in the high productivity patch, and the indirect effect, through
the predator’s dispersal, of reducing the superior competitor’s abundance in the low
productivity patch.

Table 2.1. Effects of the predator-resistant inferior competitor’s dispersal on coexis-
tence and species distributions (reproduced from Amarasekare 2008).

Inferior Coexistence Abundance- Species
competitor’s mechanisms2 productivity distributions
dispersal1 relationship

Superior Inferior
competitor competitor &

predator

Low Source-sink in ↑ with ↑ ↑ with ↑ Inter-specific
both species productivity productivity segregation

Medium Emigration- Hump-shaped, ↑ with ↑ Partial
mediated, highest abundance productivity inter-specific
Source-sink in at intermediate segregation
inf. competitor productivity

High Emigration- ↑ with ↑ ↑ with ↑ Inter-specific
mediated, productivity productivity aggregation
Source-sink in
inf. competitor

1 relative to the within-patch mortality rate (Amarasekare 2006, 2007, 2008)

2 in the consumer species when trade-off mediated local niche partitioning also op-
erates

The mechanism by which the inferior competitor’s dispersal mediates the effects of
the predator’s dispersal is as follows. When the inferior competitor does not disperse,
the predator’s abundance is only weakly related to productivity. This is because the
predator’s abundance depends on consumers’ traits rather than the basal resource’s
traits. When the inferior competitor disperses, its net movement into the low pro-
ductivity patch causes an overabundance of the prey less palatable to the predator.
This causes a decrease in the predator’s abundance in the low productivity patch,
thus creating an abundance gradient in the direction of increasing productivity. The
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resulting influx of predators into the low productivity patch causes a further decline
in the superior competitor’s abundance in that patch.

Why does the superior competitor’s dispersal have no effect on the predator’s or
the inferior competitor’s abundance? The superior competitor’s abundance decreases
with increasing productivity in the absence of dispersal, and hence its net movement
is in the direction of increasing productivity. However, net emigration of the superior
competitor from the low productivity patch does not allow the inferior competitor to
invade that patch. This is because the inferior competitor’s poor resource exploita-
tion ability prevents it from maintaining self-sustaining populations in resource-poor
areas; it can only maintain a small sink population, via dispersal, in such habitats.
The superior competitor’s net immigration into the high productivity patch has no
effect on the inferior competitor, because the latter’s abundance is much higher than
the former’s in the presence of the predator. Because of these two constraints, the
superior competitor’s dispersal also cannot alter the predator’s spatial distribution.

2.4 Discussion and conclusions

Multitrophic communities are the basic units of biodiversity. Yet, our knowledge of
their spatial dynamics is sketchy at best. Here I have provided a summary of recent
work that illustrates the unexpected emergent properties arising from the interplay
between dispersal and local multitrophic dynamics.

The most important result is an asymmetry between species in their dispersal effects
and responses. In both intraguild predation and keystone predation, dispersal of the
predator-resistant inferior competitor has a large effect, but dispersal of the predator-
susceptible superior competitor has no effect, on coexistence and species’ distribu-
tions. In the case of keystone predation, the inferior competitor’s dispersal also me-
diates the predator’s dispersal effects: the predator’s dispersal has no effect when the
inferior competitor is immobile, and a large effect when it is mobile. Together, the
direct and indirect effects of the inferior competitor’s dispersal change species’ dis-
tributions from inter-specific segregation in resource-poor and resource-rich habitats
to inter-specific aggregation in resource-rich habitats (Amarasekare 2007, 2008).

In communities characterized by intraguild predation, the inferior competitor is also
the intraguild predator. Hence it is difficult to determine whether the dispersal asym-
metry results from the intraguild predator’s role as a competitor or predator. A com-
parative analysis of intraguild predation and keystone predation, as illustrated here,
allows one to separate the competitive interactions that occur within a trophic level
from the predator-prey interactions that operate between trophic levels. It thus es-
tablishes that it is not the predator but the predator-resistant intermediate consumer
whose dispersal drives coexistence and species distributions.

The observed dispersal asymmetry arises from the different ways in which the two
consumer species solve the conflicting problems of resource acquisition vs. preda-
tor avoidance. One species is better at resource acquisition and worse at predator
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resistance/tolerance, while the other species has the opposite trade-off. This differ-
ence leads to species-specific responses to spatial variation in resource productivity
(or predator mortality) such that the superior competitor’s abundance decreases with
increasing productivity, while the inferior competitor’s abundance increases with in-
creasing productivity. It is these abundance gradients occurring in opposite directions
that drive the dispersal asymmetry. Random dispersal in the face of opposing abun-
dance gradients leads to a net movement of the superior competitor from areas of
low to high productivity, and a net movement of the inferior competitor from areas
of high to low productivity. The inferior competitor is more limited by resources
than predation, and hence net movement of the superior competitor from low to high
productivity habitats does not allow the inferior competitor to invade the low pro-
ductivity habitats in the absence of its own dispersal; it can only maintain a small
sink population, via dispersal, in such habitats. Thus, the superior competitor’s dis-
persal induces no qualitative change in the inferior competitor’s abundance gradient.
The superior competitor is limited less by resources than by predation, and hence net
movement of the inferior competitor from high to low productivity habitats allows
the superior competitor to invade the high productivity habitat and attain high abun-
dances even in the absence of its own dispersal. The inferior competitor’s net move-
ment from high to low productivity areas also reduces predator abundance in the low
productivity habitat, thus creating an abundance gradient in the direction of increas-
ing productivity for the predator. The resulting net movement of the predator from
high to low productivity habitats inflicts high mortality on the superior competitor in
the low productivity habitat. This decreases the superior competitor’s abundance in
the low productivity habitat below that in the absence of dispersal. The net result is a
qualitative change in the superior competitor’s abundance gradient, with abundances
now increasing with increasing productivity. This in turn induces a qualitative change
in the species’ distributions across the landscape, from inter-specific segregation to
inter-specific aggregation.

The important implication of these results is that the interaction between competition
and predation creates asymmetries between species that lead to keystone effects in
dispersal. Just as preferential consumption by a top predator plays a keystone role
in maintaining local diversity of intermediate consumers, dispersal by the species
less susceptible to predation plays a keystone role in the diversity and distribution of
intermediate consumers.

The results discussed here reflect multitrophic communities that are interconnected
by random dispersal. The keystone disperser effect also emerges when species in
such communities interact via nonrandom dispersal (Amarasekare 2007; P. Ama-
rasekare, unpublished manuscript). However, establishing the generality of the key-
stone disperser phenomenon requires investigations of larger metacommunities con-
taining more complex multitrophic communities. This next step is crucial in devel-
oping a theoretical framework for spatial community ecology that can stimulate em-
pirical investigations.
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2.6 Appendix: Spatial models

Consider a spatially structured environment consisting of a number of patches of
suitable habitat embedded in an inhospitable matrix. There is permanent spatial het-
erogeneity in habitat quality as would occur if there were differences in soil, nutrient
availability, or moisture content that would make some host plant patches or ponds
more productive than others. These spatial differences are assumed to occur within a
spatial scale that can be traversed by the organisms occupying these habitats.

Within each habitat patch we have a multitrophic interaction characterized by in-
traguild predation or keystone predation. In both cases coexistence can occur within
a habitat patch if there is an interspecific trade-off between competitive ability and
susceptibility to predation. The expression of this trade-off, however, depends on
on variability in resource and/or predator traits. At very low or very high resource
productivity/predator mortality one species gains an overall advantage and excludes
the other (Leibold 1996; Holt and Polis 1997; Noonberg and Abrams 2005). Co-
existence in variable environments thus requires additional mechanisms besides the
competition-predation trade-off.

I consider the simplest mathematical representation of a metacommunity with in-
traguild predation or keystone predation: a three patch model with each patch exhibit-
ing a level of resource productivity that leads to a qualitatively different outcome: (i)
resource productivity is too low for the predator-resistant inferior competitor to in-
vade when rare, (ii) resource productivity is too high for the predator-susceptible
superior competitor to invade when rare, and (iii) resource productivity is within
the range that allows both species to invade and coexist via a competition-predation
trade-off (Holt and Polis 1997; Noonberg and Abrams 2005; Amarasekare 2006,
2007).

I consider a situation in which the resource species is sedentary. The two consumer
species do disperse, as does the predator in the case of keystone predation.

2.6.1 Intraguild predation

The spatial dynamics of a community with IGP are given by:

dRj

dt
= rjRj

(
1− Rj

K

)
− a1RjC1j − a2RjC2j (2.1)

dC1j

dt
= e1a1RjC1j − d1C1j − αC1jC2j − β1C1j +

β1

3

3∑
j=1

C1j (2.2)
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dC2j

dt
= e2a2RjC2j − d2C2j + fαC1jC2j − β2C2j +

β2

3

3∑
j=1

C2j (2.3)

whereRj is the resource abundance in patch j, andCij is the abundance of Consumer
species i in patch j (i = 1, 2, j = 1, 2, 3; Amarasekare 2006). The parameter rj is
the per capita rate of resource production in patch j and K is the resource carrying
capacity. Resource productivity varies spatially while the resource carrying capac-
ity remains invariant across patches. The parameter ai is the Consumer i’s attack
rate, ei is the number of its offspring resulting from resource consumption, and di

is its background mortality rate. The parameter α is the Consumer 2’s attack rate on
Consumer 1, and f is the number of Consumer 2 offspring resulting from intraguild
predation. Consumer 1 therefore is the IGPrey, and Consumer 2 is the IGPredator.
The parameter βi is the per capita emigration rate of Consumer i.

I nondimensionalize Equations (2.1)-(2.3) using scaled quantities. Nondimensional
analysis not only reduces the number of parameters but also highlights the biolog-
ically significant scaling relations between parameters (Nisbet and Gurney 1982;
Murray 1993).

I use the substitutions

R̂j =
Rj

K
, Ĉij =

Cij

eiK
, r̂j =

rj
d1
, âi =

eiaiK

di
, α̂ =

e2αK

d2
, β̂i =

βi

di
, f̂ =

e1f

e2
,

δ =
d2

d1
, τ = d1t (di �= 0, i = 1, 2, j = 1, 2, 3)

to transform the original variables into nondimensional quantities. The dimensionless
time metric τ expresses time in terms of the IGPrey’s death rate. This time scaling
allows for comparing systems that differ in their natural time scales. Resource abun-
dance is expressed as a fraction of the resource carrying capacity, and varies from
0 to 1. The consumers’ abundances are scaled by their respective conversion effi-
ciencies and the resource carrying capacity. The scaled attack rates (âi) depend on
the resource carrying capacity and the consumer death rate (di); the scaled interfer-
ence parameter α̂ shows that the per capita inhibitory effect of the IGPredator on
the IGPrey depends on the IGPredator’s conversion efficiency and mortality rate as
well as the resource carrying capacity. The parameter δ is the ratio of the consumers’
mortality rates, and β̂i is the per capita emigration rate of Consumer i relative to its
within-patch mortality rate. The other important parameter is the efficiency metric f̂ .
On their own, the efficiency parameters ei and f have little meaning; as a composite
they reveal important scaling relationships between conversion efficiencies for re-
source consumption and IGP. For instance, large values of f̂ imply that for any value
of e1, f >> e2, i.e., the IGPredator obtains a greater benefit from the IGPrey than
from the basal resource.

I substitute the nondimensional quantities into Equations (2.1)-(2.3) and drop the
hats for convenience. This yields the nondimensional system:

dRj

dτ
= rjRj(1 −Rj)− a1RjC1j − δa2RjC2j (2.4)
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dC1j

dτ
= a1RjC1j − C1j − δαC1jC2j − β1C1j +

β1

3

3∑
j=1

C1j (2.5)

dC2j

dτ
= δ

(
a2RjC2j − C2j + fαC1jC2j − β2C2j +

β2

3

3∑
j=1

C2j

)
. (2.6)

Unless otherwise noted, all variables and parameters from this point on are expressed
as nondimensional quantities.

Because the goal is to understand the possible interplay between local coexistence
mechanisms and those mediated by dispersal, I restrict attention to the situation
where local coexistence via a competition-IGP trade-off is possible in at least one
patch. The trade-off is such that the IGPrey is the superior resource competitor (i.e.,
it has a lower R�; Tilman 1982), but the IGPredator can prey on the IGPrey (α > 0).
From Equations (2.4)-(2.6) R� in the absence of dispersal is 1

ai
, and hence compet-

itive superiority of the IGPrey translates into having a higher attack rate than the
IGPredator. Throughtout, I use ai as the measure of competitive ability and α as a
measure of the strength of IGP while keeping the mortality ratio (δ) and conversion
efficiency (f ) fixed.

I introduce spatial variation by setting the resource productivity in each patch to
a level that leads to one of the three outcomes observed in the absence of disper-
sal: (i) IGPrey only, (ii) Coexistence, (iii) IGPredator only. Adopting the convention
that patches 1, 2, and 3 represent increasing levels of resource productivity we have
r1 = (0, rC2), r2 = (rC2 , rC1), and r3 = (rC1 , rmax) where rC1 and rC2 are,
respectively, the threshold resource productivities required for the IGPrey and IG-
Predator to invade when rare, and rmax is the maximum resource productivity.

Because the focus is on the interplay between IGP and dispersal, I assume that the
two consumer species differ in their attack rates (ai) and dispersal propensities (βi)
but have similar background mortality rates (i.e., δ = 1). Further details of model
analyses are given in Amarasekare (2006).

2.6.2 Keystone predation

The spatial dynamics of a community with keystone predation are given by:

dRj

dt
= rjRj

(
1− Rj

K

)
− a1RjC1j − a2RjC2j (2.7)

dC1j

dt
= e1a1RjC1j − d1C1j − α1C1jPj − β1C1j +

β1

3

3∑
j=1

C1j (2.8)

dC2j

dt
= e2a2RjC2j − d2C2j − α2C2jPj − β2C2j +

β2

3

3∑
j=1

C2j (2.9)
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dPj

dt
= f1α1C1jPj + f2α2C2jPj − dPPj − βPPj +

βP

3

3∑
j=1

Pj (2.10)

whereRj is the resource abundance,Cij is the abundance of consumer species i, and
Pj is the predator abundance in patch j (i = 1, 2, j = 1, 2, 3; Amarasekare 2008).
The parameter rj is the per capita rate of resource production in patch j, andK is the
spatially invariant resource carrying capacity; ai is consumer species i’s attack rate
on the resource, ei is the number of its offspring resulting from resource consump-
tion, and di is its background mortality rate. The parameter αi is the predator’s attack
rate on consumer i, and fi is the number of resulting predator offspring, and dP is
the predator’s background mortality rate. The parameters βi and βP are, respectively,
the per capita emigration rates of consumer i and the predator.

I nondimensionalize Equations (2.7)-(2.10) using the scaled quantities

R̂j =
Rj

K
, Ĉij =

Cij

eiK
, P̂j =

Pj

f1f2K
, r̂j =

rj
d1
,

âi =
eiaiK

di
, α̂i =

f1f2αiK

di
, f̂ =

f1
f2
, êi =

ei

fi
, δ =

d2

d1
, d̂p =

dP

d1
,

τ = d1t, β̂i =
βi

di
, β̂P =

βP

dP
(di �= 0, i = 1, 2, j = 1, 2, 3).

(Note that I have separated the nondimensional parameter f̂ = ei

fk
, (i, k = 1, 2, i �=

k) into êi = ei

fi
and f̂ = f1

f2
because it allows for a more biologically meaningful scal-

ing relationship; Amarasekare 2008) The nondimensional time metric τ expresses
time in terms of the superior competitor’s death rate. The nondimensionalized attack
rate of the predator on consumer i (α̂i) depends on the predator’s conversion efficien-
cies (fi), consumer i’s mortality rate, and the resource carrying capacity. The param-
eter d̂P is the predator’s mortality rate relative to that of the superior competitor, and
β̂P is the predator’s per capita emigration rate scaled by the predator’s death rate.
Other nondimensional quantities have the same meaning as in the IGP model (Equa-
tions (2.4)-(2.6)). Substituting these quantities into Equations (2.7)-(2.10) yields the
following nondimensional system:

dRj

dt
= rjRj(1 −Rj)− a1RjC1j − a2RjC2j (2.11)

dC1j

dt
= e1a1RjC1j − C1j − α1C1jPj − β1C1j +

β1

3

3∑
j=1

C1j (2.12)

dC2j

dt
= δ

(
a2RjC2j − C2j − α2C2jPj − β2C2j +

β2

3

3∑
j=1

C2j

)
(2.13)

dPj

dt
= e1fα1C1jPj +

δe2
f
α2C2jPj − dPPj − dPβPPj +

dPβP

3

3∑
j=1

Pj . (2.14)

Further details of model analyses are given in Amarasekare (2008).
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Abstract. Alternative stable states exist in many important ecosystems, and gradual change
of the environment can lead to dramatic regime shift in these systems (Beisner et.al. (2003),
May (1977), Klausmeier (1999), Rietkerk et.al. (2004), and Scheffer et.al. (2001)). Exam-
ples have been observed in the desertification of Sahara region, shift in Caribbean coral
reefs, and the shallow lake eutrophication (Carpenter et.al. (1999), Scheffer et.al. (2003),
and Scheffer et.al. (2001)). It is well-known that a social-economical system is sustain-
able if the life-support ecosystem is resilient (Holling (1973) and Folke et.al. (2004)).
Here resilience is a measure of the magnitude of disturbances that can be absorbed before
a system centered at one locally stable equilibrium flips to another. Mathematical mod-
els have been established to explain the phenomena of bistability and hysteresis, which
provide qualitative and quantitative information for ecosystem managements and policy
making (Carpenter et.al. (1999) and Peters et.al. (2004)). However most of these models
of catastrophic shifts are non-spatial ones. A theory for spatially extensive, heterogeneous
ecosystems is needed for sustainable management and recovery strategies, which requires a
good understanding of the relation between system feedback and spatial scales (Folke et.al.
(2004), Walker et.al. (2004) and Rietkerk et.al. (2004)). In this chapter, we survey some
recent results on structured evolutionary dynamics including reaction-diffusion equations
and systems, and discuss their applications to structured ecological models which display
bistability and hysteresis. In Section 1, we review several classical non-spatial models with
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bistability; we discuss their counterpart reaction-diffusion models in Section 2, and espe-
cially diffusion-induced bistability and hysteresis. In Section 3, we introduce some abstract
results and concrete examples of threshold manifolds (separatrix) in the bistable dynamics.

3.1 Non-structured models

The logistic model was first proposed by Belgian mathematician Pierre Verhulst (Ver-
hulst (1838)):

dP

dt
= aP

(
1− P

N

)
, a,N > 0. (3.1)

Here a is the maximum growth rate per capita, and N is the carrying capacity. A
more general logistic growth type can be characterized by a declining growth rate per
capita function. However it has been increasingly recognized by population ecolo-
gists that the growth rate per capita may achieve its peak at a positive density, which
is called an Allee effect (see Allee (1938), Dennis (1989) and Lewis and Kareiva
(1993)). An Allee effect can be caused by shortage of mates (Hopf and Hopf (1985),
Veit and Lewis (1996)), lack of effective pollination (Groom (1998)), predator satu-
ration (de Roos et.al. (1998)), and cooperative behaviors (Wilson and Nisbet (1997)).

If the growth rate per capita is negative when the population is small, we call such a
growth pattern a strong Allee effect (see Fig.3.1-c); if f(u) is smaller than the max-
imum but still positive for small u, we call it a weak Allee effect (see Fig.3.1-b). In
Clark (1991), a strong Allee effect is called a critical depensation and a weak Allee
effect is called a noncritical depensation. A population with a strong Allee effect
is also called asocial by Philip (1957). Most people regard the strong Allee effect
as the Allee effect, but population ecologists have started to realize that an Allee
effect may be weak or strong (see Wang and Kot (2001), Wang, Kot and Neubert
(2002)). Some possible growth rate per capita functions were also discussed in Con-
way (1983,1984). A prototypical model with Allee effect is

dP

dt
= aP

(
1− P

N

)
· P −M|M | , a,N > 0. (3.2)

If 0 < M < N , then the equation is of strong Allee effect type, and if−N < M < 0,
then it is of weak Allee effect type. At least in the strong Allee effect case,M is called
the sparsity constant.

The dynamics of the logistic equation is monostable with one globally asymptoti-
cally stable equilibrium, and that of strong Allee effect is bistable with two stable
equilibria. A weak Allee effect is also monostable, although the growth is slower at
lower density. Another example of a weak Allee effect is the equation of higher order
autocatalytic chemical reaction of Gray and Scott (1990):

da

dt
= −kabp, db

dt
= kabp, k > 0, p ≥ 1. (3.3)

Here a(t) and b(t) are the concentrations of the reactant A and the autocatalyst B,
k is the reaction rate, and p ≥ 1 is the order of the reaction with respect to the
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Figure 3.1 (a) logistic (top); (b) weak Allee effect (middle); (c) strong Allee effect (bottom);
the graphs on the left are growth rate uf(u), and the ones on the right are growth rate per
capita f(u).

autocatalytic species. Notice that a(t) + b(t) ≡ a0 + b0 is invariant, so that (3.3) can
be reduced to

db

dt
= k(a0 + b0 − b)bp, k, a0 + b0 > 0, p ≥ 1, (3.4)

which is of weak Allee effect type if p > 1, and of logistic type if p = 1. An auto-
catalytic chemical reaction has been suggested as a possible mechanism of various
biological feedback controls (Murray (2003)), and the similarity between chemical
reactions and ecological interactions has been observed since Lotka (1920) in his
pioneer work.

The cubic nonlinearity in (3.2) has also appeared in other biological models. One
prominent example is the FitzHugh-Nagumo model of neural conduction (FitzHugh
(1961) and Nagumo et.al. (1962)), which simplifies the classical Hodgkin-Huxley
model:

ε
dv

dt
= v(v − a)(1− v)− w, dw

dt
= cv − bw, ε, a, b, c > 0, (3.5)

where v(t) is the excitability of the system (voltage), and w(t) is a recovery variable
representing the force that tends to return the resting state. When c is zero andw = 0,
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(3.5) becomes (3.2). Another example is a model of the evolution of fecally-orally
transmitted diseases by Capasso and Maddalena (1981/82, 1982):

dz1
dt

= −a11z1 + a12z2,
dz2
dt

= −a22z2 + g(z1), a11, a12, a22 > 0. (3.6)

Here z1(t) denotes the (average) concentration of infectious agent in the environ-
ment; z2(t) denotes the infective human population; 1/a11 is the mean lifetime of
the agent in the environment; 1/a22 is the mean infectious period of the human in-
fectives; a12 is the multiplicative factor of the infectious agent due to the human
population; and g(z1) is the force of infection on the human population due to a
concentration z1 of the infectious agent. If g(z1) is a monotone increasing concave
function, then it is known that the system is monostable with the global asymptoti-
cal limit being either an extinction steady state or a nontrivial endemic steady state.
However if g(z1) is a monotone sigmoid function, i.e. a monotone convex-concave
function with S-shape and saturating to a finite limit, then the system (3.6) possesses
two nontrivial endemic steady states and the dynamics of (3.6) is bistable, which can
be easily seen from the phase plane analysis.
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Figure 3.2 Equilibrium bifurcation diagram of (3.8) with h = 0.1, where the horizontal axis
is r and the vertical axis is V .

Now we turn to some existing models which could lead to catastrophic shifts in
ecosystems. In 1960-70s, theoretical predator-prey systems are proposed to demon-
strate various stability properties in systems of populations at two or more trophic
levels (Rosenzweig and MacArthur (1963) and Rosenzweig (1971)). A simplified
model with such a predator-prey feature is that of a grazing system of herbivore-plant
interaction as in Noy-Meir (1975), see also May (1977). Here V (t) is the vegetation
biomass, and its quantity changes following the differential equation:

dV

dt
= G(V )−Hc(V ), (3.7)

whereG(V ) is the growth rate of vegetation in absence of grazing,H is the herbivore
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population density, and c(V ) is the per capita consumption rate of vegetation by the
herbivore. If G(V ) is given by the familiar logistic equation, and c(V ) is the Holling
type II (p = 1) or III (p > 1) functional response function (Holling (1959)), then
(3.7) has the form (after nondimensionalization):

dV

dt
= V (1− V )− rV p

hp + V p
, h, r > 0, p ≥ 1. (3.8)

This equation (with p = 2) also appears as the model of insect pests such as the
spruce budworm (Choristoneura fumiferana) in Canada and northern USA (Ludwig
et. al. (1978)), in which V (t) is the budworm population. In either situation, the
harvesting effort is assumed to be constant as the change of the predator population
occurs at a much slower time scale compared to that of the prey. The function c(V ) =
γV p

hp + V p
with p ≥ 1 is called the Hill function in some references. We notice that

a Hill function is one of sigmoid functions which is defined in the epidemic model
(3.6).
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Figure 3.3 (top) Graph of the growth rate function f(V ) = V (1 − V ) − rV p

hp + V p
with

h = 0.1; (bottom) Graph of the growth rate per capita f(V )/V . (a) r = 0.17 (left); (b)
r = 0.2 (middle); (c) r = 0.3 (right).

To describe the catastrophic regime shifts between alternative stable states in ecosys-
tems, a minimal mathematical model

dx

dt
= a− bx+

rxp

hp + xp
, a, b, r, h > 0, (3.9)

is proposed in Carpenter et.al. (1999), see also Scheffer et.al. (2001). (3.9) can be
used in ecosystems such as lakes, deserts, or woodlands. For lakes, x(t) is the level
of nutrients suspended in phytoplankton causing turbidity, a is the nutrient loading,
b is the nutrient removal rate, and r is the rate of internal nutrient recycling.

The equations (3.8) and (3.9) are examples of differential equation models which ex-
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Figure 3.4 Equilibrium bifurcation diagram of (3.9) with a = 0.5, b = 1, where the horizontal
axis is r and the vertical axis is x.
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Figure 3.5 (top) Graph of the growth rate function g(x) = a− bx +
rxp

hp + xp
with a = 0.5,

b = 1; (bottom) Graph of the growth rate per capita f(x)/x. (a) r = 2.5 (left); (b) r = 4
(middle); (c) r = 5.5 (right).

hibit the existence of multiple stable states and the phenomenon of hysteresis. From
the bifurcation diagrams (Fig. 3.2 for (3.8), and Fig. 3.4 for (3.9)), the system has
three positive equilibrium points when r ∈ (r1, r2) for some∞ > r2 > r1 > 0, and
the largest and smallest positive equilibrium points are stable. For the grazing system
(3.8), the number of stable equilibrium points changes with the herbivore density r.
For low r, the vegetation biomass tends to a unique equilibrium slightly lower than 1
(the rescaled carrying capacity); as r increases over r1, a second stable equilibrium
appears through a supercritical saddle-node bifurcation, and it represents a much
lower vegetation biomass; as r continues to increases to another parameter threshold
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r2 > r1, the larger stable equilibrium suddenly vanishes through a subcritical saddle-
node bifurcation, and the lower stable equilibrium becomes the unique attracting one.
As h increases gradually, the vegetation biomass first settles at a higher level for low
h, but it collapses to a lower lever as h passes r2; after this catastrophic shift, even if
h is restored slightly, the biomass remains at the low level unless h decreases beyond
r1. This irreversibility of the hysteresis loop gives raise to a serious management
problem for the grazing systems, see Noy-Meir (1975) and May (1977). Similar dis-
cussions hold for (3.9) as well as r decreases, see Scheffer et.al. (2001), where the
drop from high density stable equilibrium to the low one is called “forward shift”,
and the recovery from the low one to high one is a “backward shift”.

It is worth pointing out that the S-shaped bifurcation curve in Fig. 3.2 and Fig. 3.4 can
also be viewed as a result of bifurcation with respect to conditions such as nutrient
loading, exploitation or temperature rise (Scheffer et.al. (2001)). That is a transition
from a monostable system to a bistable one, or mathematically, a cusp bifurcation
from a monotone curve to a S-shaped one with two turning points (see Fig. 3.6).
Such fold bifurcations have been discussed in much more general settings in Shi
(1999), and Liu, Shi and Wang (2007). In general it is hard to rigorously prove the
exact transition from monostable to bistable dynamics, especially for higher (includ-
ing infinite) dimensional problems. In (3.8) with p = 2, one can show the cusp
bifurcation occurs when h crosses h0 =

√
3/27 ≈ 0.1925. A mathematical survey

on the fold and cusp type mappings (especially in infinite dimensional spaces) can
be found in Church and Timourian (1997).
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Figure 3.6 Cusp bifurcation in (3.8) with p = 2, where the horizontal axis is r and the vertical
axis is V . (a) h = 0.15 (left); (b) h =

√
3/27 ≈ 0.1925 (middle); (c) h = 0.25 (right).

We note that in Fig. 3.3-a and Fig. 3.5-c, the system is monostable with only one sta-
ble equilibrium point, yet the graph of “growth rate per capita”(see the lower graphs
in Fig. 3.3-a and Fig. 3.5-c) has two fluctuations before turning to negative. This
is similar to the weak Allee effect defined earlier where the growth rate per capita
changes the monotonicity once. These geometric properties of the growth rate per
capita functions motivate us to classify all growth rate patterns according to the
monotonicity of the function f(u)/u if f(u) is the gross growth rate in a model
u′ = f(u):

1. f(u) is of logistic type, if f(u)/u is strictly decreasing;
2. f(u) is of Allee effect type, if f(u)/u changes from increasing to decreasing

when u increases;
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3. f(u) is of hysteresis type, if f(u)/u changes from decreasing to increasing then
to decreasing again when u increases.

In all cases, we assume that f(u) is negative when u is large, thus f(u) has at least
one zero u1 > 0. In the Allee effect case, if f(u) has another zero in (0, u1), then it
is a strong Allee effect, otherwise it is a weak one; in the hysteresis case, if f(u) has
two more zeros in (0, u1), then it is strong hysteresis, otherwise it is weak. Here we
exclude the degenerate cases when f(u0) = f ′(u0) = 0 (double zeros). Considering
the ODE model u′ = f(u), the weak Allee effect or hysteresis dynamics appears
to be no different from the logistic case in terms of the asymptotic behavior, since
f(u) > 0 for u ∈ (0, u1) and f(u) < 0 for u > u1. The definitions here are not
only for mathematical interest. In the next section, we shall show that the addition of
diffusion to the equation can dramatically change the dynamics for the weak Allee
effect or hysteresis.

3.2 Diffusion induced bistability and hysteresis

Dispersal of the state variable in a continuous space can be modeled by a partial
differential equation with diffusion (see Okubo and Levin (2001), Murray (2003),
Cantrell and Cosner (2003)):

∂u

∂t
= dΔu + f(u), t > 0, x ∈ Ω. (3.10)

Here u(x, t) is the density function of the state variable at spatial location x and time
t, d > 0 is the diffusion coefficient, the habitat Ω is a bounded region in Rn for

n ≥ 1, Δu =
n∑

i=1

∂2u

∂x2
i

is the Laplace operator, and f(u) represents the non-spatial

growth pattern. We assume that the habitat Ω is surrounded by a completely hostile
environment, thus it satisfies an absorbing boundary condition:

u(x) = 0, x ∈ ∂Ω. (3.11)

It is known (Henry (1981)) that for equation (3.10) with boundary condition (3.11),
there is a unique solution u(x, t) of the initial value problem with an initial condition
u(x, 0) = u0(x) ≥ 0, provided that f(u), u0(x) are reasonably smooth. Moreover,
if the solution u(x, t) is bounded, then it tends to a steady state solution as t→∞ if
one of the following conditions is satisfied: (i) f(u) is analytic; (ii) if all steady state
solutions of (3.10) and (3.11) are non-degenerate (see for example, Polácik (2002)
and references therein). Hence the asymptotical behavior of the reaction-diffusion
equation can be reduced to a discussion of the structure of the set of steady state
solutions and related dynamical behaviors. The steady state solutions of (3.10) and
(3.11) satisfy a semilinear elliptic type partial differential equation:

dΔu(x) + f(u(x)) = 0, x ∈ Ω, u(x) = 0, x ∈ ∂Ω. (3.12)

Since we are interested in the impact of diffusion on the extinction/persistence of
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population, we use the diffusion coefficient d as the bifurcation parameter. One can
also use the size of the domain Ω as an equivalent parameter. To be more precise, we
use the change of variable y = x/

√
d to convert the equation (3.12) to:

Δu(y) + f(u(y)) = 0, y ∈ Ωd, u(y) = 0, y ∈ ∂Ωd, (3.13)

where Ωd = {y :
√
dy ∈ Ω}. This point of view fits the classic concept of criti-

cal patch size introduced by Skellam (1951). When Ω = (0, l), the one-dimensional
region, the size of the domain is simply the length of the interval. In higher dimen-
sion, Ωd is a family of domains which have the same shape but “size” proportional to
d−1/2. Here “size” can be defined as the one-dimensional scale of the domain. Size
can also be defined through the principal eigenvalue of −Δ on the domain Ω with
zero boundary condition, which is the smallest positive number λ1(Ω) such that

Δφ(x) + λ1φ(x) = 0, x ∈ Ω, φ(x) = 0, x ∈ ∂Ω, (3.14)

has a positive solution φ. Apparently λ1(Ωd) = λ1(Ω)/d. In application a habitat
slowly eroded by external influence can be approximated by such a family of do-
mains Ωd with similar shape but shrinking size. This is a special case of habitat frag-
mentation. In the following we use d as bifurcation parameter, and when d increases,
the size (or the principal eigenvalue) of the domain Ωd decreases.

The multiplicity and global bifurcation of solutions of (3.12) have been consid-
ered by many mathematicians over the last half century. Several survey papers and
monographs can be consulted, see for example (Amann (1976), Cantrell and Cos-
ner (2003), Lions (1981), and Shi (2009)) and the references therein. In this section
we review some related results on that subject for the nonlinearity f(u) discussed in
Section 1 and their connection to ecosystem persistence/extinction.

For the Verhurst logistic model, the corresponding reaction-diffusion model was in-
troduced by Fisher (1937) and Kolmogoroff, Petrovsky, and Piscounoff (1937) in
studying the propagation of an advantageous gene over a spatial region, and the trav-
eling wave solution was considered. The boundary value problem

dΔu + u
(
1− u

N

)
= 0, x ∈ Ω, u = 0, x ∈ ∂Ω, (3.15)

was studied by Skellam (1951) when Ω = (0, L). Indeed in this case an explicit
solution and dependence of L on D can be obtained via an elliptic integral (Skellam
(1951)). When Ω is a general bounded domain, it was shown (see Cohen and Laetsch
(1970), Cantrell and Cosner (1989), Shi and Shivaji (2006)) that when 0 < d−1 <
λ1(Ω) ≡ λ1, the only nonnegative solution of (3.15) is u = 0, and it is globally
asymptotically stable; when d−1 > λ1, (3.15) has a unique positive solution ud

which is globally asymptotically stable. It is also known that ud(x) is is an decreasing
function of d for d < λ−1

1 , and ud(x) → 0 as d−1 → λ+
1 . Hence the critical number

λ1 represents the critical patch size. When the size of habitat gradually decreases,
the biomass decreases too, and when it passes the critical patch size, the biomass
becomes zero through a continuous change. Hence the bifurcation diagram of (3.15)
is a continuous monotone curve as shown in Fig.3.7 (a).

The bifurcation diagram in Fig.3.7 (a) changes when an Allee effect exists in the
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growth function f(u). For the boundary value problem

dΔu+ u
(
1− u

N

)
· u−M|M | = 0, x ∈ Ω, u = 0, x ∈ ∂Ω, (3.16)

one can use M as a parameter of the bifurcation in the bifurcation diagrams. We
always assume M < N . When M ≤ −N , the growth rate per capita is decreasing
as in logistic case, thus the bifurcation diagram is monotone as in Fig 3.7 (a). When
−N < M < 0, the growth rate per capita is of weak Allee effect type, and a new type
of bifurcation diagram appears (Fig 3.7 (b)). We notice that the nonlinearity in (3.16)
is normalized so that the growth rate per capita at u = 0 is always 1 when M < 0.
Rigorous mathematical results about exact multiplicity of steady state solutions and
global bifurcation diagram Fig 3.7 (b) are obtained in Korman and Shi (2001), and
Shi and Shivaji (2006) for a more general nonlinearity and the domain being a ball in
Rn. We also mention that if the dispersal does not satisfy a linear diffusion law but a
nonlinear one, then a weak Allee effect can also occur, and the bifurcation diagram
of steady state solutions is like Fig. 3.7-b, see Cantrell and Cosner (2002), and Lee
et.al. (2006).

Compared to the logistic case, a backward (subcritical) bifurcation occurs at (d−1, u) =
(λ1, 0), and a new threshold parameter value 0 < λ∗ < λ1 exists. For d−1 < λ∗ (ex-
tinction regime), the population is destined to extinction no matter what the initial
population is; for d−1 > λ1 (unconditional persistence regime), the population al-
ways survive with a positive steady state. However in the intermediate conditional
persistence regime, λ∗ < d−1 < λ1, there are exactly two positive steady state so-
lutions u1,d and u2,d. In fact, it can be shown that the three steady state solutions
(including 0) can be ordered so that u1,d(x) > u2,d(x) > 0. Here u1,d and 0 are both
locally stable. Hence the diffusion effect induces a bistability for a monostable model
of weak Allee effect. A sudden collapse of the population occurs if d increases (or
the domain size decreases) when d−1 crosses λ∗, and the system shifts abruptly from
u1,d to 0 and it is not recoverable. This may explain that in some ecosystems with
weak Allee effect, a catastrophic shift could still occur although the corresponding
ODE model predicts unconditional persistence.

For 0 < M < N in (3.16), a strong Allee effect means that bistability occurs even
for the small diffusion case (d small). If N/2 ≤ M < N , u = 0 is the unique non-
negative solution of (3.16) thus extinction is the only possibility. If 0 < M < N/2,
there exist at least two positive steady state solutions of (3.16) following a classical
result of variational methods due to Rabinowitz (1973/74). When the domain is a ball
in Rn, it was shown by Ouyang and Shi (1998, 1999) that (3.16) has at most two pos-
itive solutions and the bifurcation diagram is exactly like Fig.3.7-c. Earlier the exact
bifurcation diagram for the one-dimensional problem was obtained by Smoller and
Wasserman (1981). It is well-known that in this case that a small initial population
always leads to extinction, thus a single threshold value λ∗ exists to separate the ex-
tinction and conditional persistence regimes. Earlier work on the dynamics of (3.10)
and (3.11) with strong Allee effect was considered in Bradford and Philip (1970a,
1970b) and Yoshizawa (1970).
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Figure 3.7 Bifurcation diagrams for (3.16): (a) logistic (upper); (b) weak Allee effect (mid-
dle); (c) strong Allee effect (lower).

The exact multiplicity results proved in Ouyang and Shi (1998, 1999) (see also Shi
(2009)) hold for more general nonlinearities f(u), and the criterion on f(u) for the
exact multiplicity are given by the shape of the function f(u)/u and the convexity of
f(u). Another example is the border line case for (3.16) between the weak (M < 0)
and strong Allee effect (M > 0), or more generally, the equation of autocatalytic
chemical reaction (3.4) (assuming that a0 + b0 = 1):

dΔu + up(1 − u) = 0, x ∈ Ω, u = 0, x ∈ ∂Ω, p > 1. (3.17)

The bifurcation diagram of (3.17) is similar to Figure 3.7-c, and a proof can be found
in Ouyang and Shi (1998, 1999) or Zhao, Shi and Wang (2007). Precise global bi-
furcation diagrams can also been given for the reaction-diffusion systems of autocat-
alytic chemical reaction (3.3) and epidemic model (3.6), and we will discuss them in
the next section along with the associated dynamics.

The threshold value λ∗ is important biologically as λ∗ could give early warning of
extinction for the species. Usually it is difficult to give a precise estimate of λ∗ and it
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seems that there is no existing result on that problem. Here we only give an estimate
of λ∗ for the equation (3.16) with N = 1 and M ∈ (0, 1/2). Hence we consider

dΔu+ u(1− u)(u−M) = 0, x ∈ Ω, u(x) = 0, x ∈ ∂Ω. (3.18)

Here we have f(u) = u(1 − u)(u −M). From an idea in Shi and Shivaji (2006),
λ∗ > λ1/f∗, where f∗ = maxu∈[0,1] f(u)/u, or the maximal growth rate per capita.
An upper bound of λ∗ can be obtained if (3.18) has a nontrivial solution for that d.
We define an associated energy functional

I(u) =
d

2

∫
Ω

|∇u|2dx−
∫

Ω

F (u)dx, (3.19)

where F (u) =
∫ u

0 f(t)dt = −1
4
u4 +

1 +M

3
u3 − M

2
u2. It is well-known that a

solution u of (3.18) is a critical point of the functional I(u) in a certain function
space (see Rabinowitz (1986) or Struwe (2000) for more details.) In particular, if
inf I(u) < 0, then (3.18) has a nontrivial positive solution. For small d, it is apparent
that inf I(u) < 0 if M ∈ (0, 1/2). Hence for largest d = d̃ so that inf I(u) < 0, we
must have λ∗ < d̃−1. For the case Ω = (0, L), we can obtain that

2π2

L2(1 +M)
< λ∗ <

48
L2(3−M)

. (3.20)

Here the upper bound is obtained by using a test function u(x) = x/l for x ∈ [0, l],
u(x) = 1 for x ∈ [l, L/2] and u(x) = u(L − x) for x ∈ [L/2, L], then optimizing
among all possible value of l. The estimate (3.20) is indeed quite sharp. For example,
for L = 1 and M = 0.2, the estimate (3.20) becomes 16.45 < λ∗ < 17.14. A
numerical calculation using Maple and the algorithm in Lee et.al. (2006) shows
that λ∗ ≈ 16.61. The threshold value for other problems can be estimated similarly,
and in general the determination of the threshold value remains an interesting open
question.

Next we turn to bifurcation diagrams with hysteresis. The hysteresis diagrams in
Section 1 (Fig. 3.2 and 3.4) are generated with parameter r, which is the herbivore
density in (3.8) or the rate of internal nutrient recycling in (3.9). In this subsection, we
consider the corresponding reaction-diffusion models. First the steady state reaction-
diffusion grazing model

dΔV + V (1− V )− rV p

hp + V p
= 0, x ∈ Ω, V = 0, x ∈ ∂Ω, (3.21)

was considered in Ludwig, Aronson and Weinberger (1979). For the case n = 1,
by using the quadrature method, they show that the rough bifurcation diagram goes
from a monotone curve with a unique large steady state, to an S-shaped curve, to
a disconnected S-shaped curve, and finally a monotone curve with a unique small
steady state, when r increases from near 0 to a large value (see Fig. 3.8 or the ones in
Ludwig et.al. (1979)). Note that the bifurcation diagrams in Ludwig et.al. (1979) are
not exact, and it is only shown that the equation has at least three positive solutions
but not exactly three. An exact multiplicity result like the one in Ouyang and Shi
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Figure 3.8 Bifurcation diagrams for (3.21): (a) weak hysteresis, r small but close to the first
break point in ODE hysteresis loop, corresponding to f in Fig 3.3-a (upper); (b) strong hys-
teresis, corresponding to f in Fig 3.3-b (middle); (c) “collapsed”, r larger than the second
break point, corresponding to f in Fig 3.3-c (lower).

(1998, 1999) is not known even when n = 1. But it is known that in Fig. 3.8-b, the
upper bound of the lower branch is the first zero of f(u), and the lower bound of the
upper branch is the smallest zero of F (u) =

∫ u

0 f(t)dt = 0 such that f(u) > 0; in
Fig. 3.8-a, the lower turning point λ∗ → ∞ if the positive local minimum value of
f(u) tends to zero.

The transition of rough bifurcation diagrams suggests a bistable structure exists for
intermediate range of r (see Fig. 3.2) when the nonlinearity is of strong hysteresis
type, but a bistable structure could also exist when r is smaller when the nonlinearity
is of weak hysteresis type (see Fig. 3.8-a). Indeed the S-shaped bifurcation diagram
implies a hysteresis loop even though the weak hysteresis nonlinearity is positive
until the zero at the “carrying capacity”. Hence this is a hysteresis induced by the
diffusion. Back to the context of shrinking habitat size, this suggests that for a seem-
ingly safe ecosystem with the grazing is not too big so that the ODE model predicts
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a large stable equilibrium, the addition of diffusion can endanger the ecosystem if
the habitat keeps shrinking, and a sudden drop to the small steady state is possible
if the habitat size passes a critical value. Note that we do not exclude the possibil-
ity of catastrophic shift due to the increase of the grazing effect r, but the results
in reaction-diffusion model offer another possible cause for such a sudden collapse,
namely the decreasing natural vegetative habitat.

For the model (3.9) of lake turbidity, a reaction-diffusion model can also be proposed:⎧⎪⎨
⎪⎩

ut = dΔu+ a− bu+
rup

hp + up
, t > 0, x ∈ Ω,

u(x, t) = 0, x ∈ ∂Ω,
u(x, t) = u0(x), t > 0, x ∈ Ω.

(3.22)

A similar argument can be made to offer another possible cause of the turbidity in
shallow lakes, i.e. the shrinking that has occurred for many freshwater lakes because
of the expanding of agriculture or industry. Here the bifurcation diagram of the steady
state equation is not readily available in the existing literature, but similar problems
with S-shaped bifurcation diagrams can be found in (Brown et.al. (1981), Du and
Lou (2001), Korman and Li (1999), and Wang (1994)), to name a few. Indeed the
nonlinearity f(u) in (3.22) is qualitatively similar to the one in (3.21) (comparing
Fig. 3.3 and Fig. 3.5), hence their bifurcation diagrams are similar.

In our discussion to this point, we have used a homogeneous Dirichlet boundary con-
dition (u = 0 on the boundary). While diffusion plays an instrumental role in induc-
ing bistability, the Dirichlet boundary condition also plays an important role. In some
rough sense, a Dirichlet boundary condition is much more “spatially heterogeneous”
than a Neumann boundary condition (or no flux, reflection boundary condition), and
is more rigid than Neumann boundary condition. Here we also comment briefly on
reaction-diffusion models with Neumann boundary condition:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∂u

∂t
= dΔu + f(u), t > 0, x ∈ Ω,

∂u

∂n
= 0, t > 0, x ∈ ∂Ω,

u(0, x) = u0(x) ≥ 0, x ∈ Ω.

(3.23)

A classical result of Matano (1979), Casten and Holland (1978) is that (3.23) has
no stable nonconstant equilibrium solution provided that the domain Ω is convex. A
direct consequence is that the reaction-diffusion equation (3.23) has same number of
stable equilibrium solutions as the ODE u′ = f(u), hence diffusion does not induce
“more”stability. However the geometry of the domain Ω is also an important factor
in the stability problem. Matano (1979) shows that if f(u) is of bistable type, say
f(u) = u(1 − u2), then (3.23) has a stable nonconstant equilibrium solution if Ω is
dumbbell-shaped, see also Alikakos, Fusco and Kowalczyk (1996) for more intricate
results in that direction. Indeed it was recently shown that the geometry of the domain
is even important for the magnitude of the first non-zero eigenvalue of Laplacian
operator under Neumann boundary condition, see Ni and Wang (2007). The work of
Matano (1979) has been extended to two species competition models (Matano and
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Mimura (1983)) for nonconvex domains and to cooperative models (Kishimoto and
Weinberger (1985)) for convex domains. More results on Neumann boundary value
problems can be found in Ni (1989, 1998).

To summarize, we have examined the reaction-diffusion ecological models of bista-
bility or hysteresis in this section. When the diffusion coefficient d is small, or equiv-
alently the habitat is large, we show the existence of multiple spatial heterogeneous
steady states, so that the system possesses alternative stable spatial equilibrium so-
lutions. Moreover, even when the non-spatial model is not bistable, the reaction-
diffusion model may be bistable as we show in the weak Allee effect or weak hys-
teresis case. Hence diffusion enhances the stability of certain states in such systems.

The bifurcation diagrams can also be explained with habitat size as the bifurcation
parameter. Indeed habitat fragmentation has been identified as one of the possible
causes of the regime shift in the ecosystems [122]. The results here provide theoret-
ical evidence to support that claim via the reaction-diffusion model approach. Other
mathematical approaches concerning the implications of spatial heterogeneity in the
catastrophic regime shifts have been taken. van Nes and Scheffer (2005) investigated
lattice models with same nonlinearities in (3.21) and (3.22), but their numerical bi-
furcation diagrams have r or a as bifurcation parameters, just as in the ODE models
(see Fig. 3.2 and Fig. 3.4). Bascompte and Solé (1996, 2006) consider spatially ex-
plicit metapopulation models to show the existence of extinction thresholds when a
given fraction of habitat is destroyed.

Another question is as follows. When the existence of multiple steady states indicates
bistability, what is the global dynamics of the system? We present some mathematical
results in that direction in the following section.

3.3 Threshold manifold

For an ordinary differential equation such as (3.2) with strong Allee effect, u = M
is a threshold point so that the extinction and persistence depends on whether the
initial value u0 < M or > M . Bistable dynamics in higher dimensional systems
are characterized by a separatrix or threshold manifold. Sometimes such dynamics
is also called saddle point behavior (Capasso and Maddalena (1982), Capasso and
Wilson (1997)). This can be illustrated by considering the classical Lotka-Volterra
competition model (in nondimensionalized form):

u′ = u(1− u−Av), v′ = v(B − Cu− v), (3.24)

where A,B,C > 0 satisfy C > B > A−1 > 0. The system is bistable since it pos-
sesses two locally stable equilibrium points (1, 0) and (0, B), and a separatrix—the
stable manifold of the unstable coexistence equilibrium (u∗, v∗) = ((AB−1)/(AC−
1), (C −B)/(AC − 1)), which separates the basins of attraction of two stable equi-
libria, see Fig. 3.9. We also note that (3.24) possesses another invariant manifold
connecting (1, 0), (0, B) and (u∗, v∗), called carrying simplex, see more remarks
about it in later part of this section.
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Figure 3.9 Phase portrait of the competition model (3.24). The stable manifold of (u∗, v∗)
(connecting orbit from the origin) is the threshold manifold which separates the basins of
attraction of two stable equilibria; and the unstable manifold of (u∗, v∗) (connecting orbits
from stable equilibria) is the carrying simplex.

An abstract mathematical result about the threshold manifold has been recently given
by Jiang, Liang and Zhao (2004). They prove that in a strongly order preserving
or strongly monotone semiflow in a Banach space, if there are exactly two locally
stable steady states, and any other possible steady state is unstable, then the set
which separates the basins of attraction of two stable steady states is a codimension-
one manifold (see more precise statement in Jiang et.al. (2004)). A scalar reaction-
diffusion equation such as (3.10) and (3.11) generates a strongly monotone semi-
flow in some function space. Thus this result is immediately applicable to the scalar
reaction-diffusion equation. Hence the existence of a codimension-one manifold for
the Nagumo equation or all examples discussed in Section 2 with exactly two stable
steady state solutions follows from Jiang et.al. (2004). The existence of the threshold
manifolds relies on earlier results of Takáč (1991, 1992). We also mention that the
earliest example of threshold manifold was given by McKean and Moll (1986), and
Moll and Rosencrans (1990) where the Nagumo equation

ut = duxx + u(a− u)(u− b), x ∈ (0, L), u(0) = u(L) = 0, (3.25)

with 0 < b < a, was considered. They also examined the case when the cubic
function is replaced by a piecewise linear function, suggested by McKean (1970)
as an alternative to the FitzHugh-Nagumo model. We remark that the existence of
exactly two stable steady state solutions for (3.10) and (3.11) heavily depends on

© 2010 by Taylor and Francis Group, LLC



THRESHOLD MANIFOLD 49

the geometry of the domain Ω. Most exact multiplicity results in Section 2 hold for
the ball domains but not general bounded domain Ω, as shown by Dancer (1988)
in the example of dumbbell shaped domains. A similar remark can be applied to
Neumann boundary value problem (3.23). For the convex domains Ω, the bistable
reaction-diffusion equation (3.23) with f(u) = u(1 − u2) (Allen-Cahn equation
from material science) has exactly two stable steady state solutions u = ±1 from
the results of Casten and Hollnad (1978) and Matano (1979). Hence the existence
of a threshold manifold follows from Jiang et.al. (2004). But for dumbbell shaped
domain, it could have more stable steady state solutions from the result of Matano
(1979).

The two locally stable equilibrium points in Jiang-Liang-Zhao’s theorem can also be
replaced by one locally stable steady state and “infinity” which is locally stable. An
abstract formulation of this kind has been obtained in Lazzo and Schmidt (2005),
but concrete examples have been given much earlier. For a matrix population model,
Schreiber (2004) proved the existence of a threshold manifold that separates the ini-
tial values leading to extinction or unbounded growth. A more famous example in
partial differential equations is the Fujita equation (Fujita (1966)):

ut = dΔu+ up, x ∈ Rn, p > 1. (3.26)

Fujita (1966) observed that for p > (n + 2)/(n − 2) and n ≥ 3, then the solution
to (3.26) with certain initial values blows up in finite time, while some other solu-
tions tend to zero as t → ∞. Since the solution of the ordinary differential equation
u′ = up with p > 1 always blows up, then the bistability in the Fujita equation is
a combined effect of diffusion (stabilization) and growth (blow up). Aronson and
Weinberger (1978) obtained some criteria on the extinction and blow-up of similar
type equations, and they called the sensitivity of initial value between the extinction
and blow-up the “hair-trigger effect”. Mizoguchi (2002) proved the existence of the
unique threshold between extinction and complete blow-up for radially symmetric
compactly-supported initial values, although the existence of a threshold manifold
cannot directly follow from Lazzo and Schmidt (2005) due to the lack of compact-
ness when the domain is the whole space. Similar results have also been proved for
bounded domain, see for example Ni, Sacks and Tavantzis (1984).

An intriguing question is whether such a precise bistable structure is still valid for
systems of equations. When the system is still a monotone dynamical system, ap-
parently this is true. For example, it holds for the reaction-diffusion counterpart of
(3.24): the diffusive competition system with two competitors and no-flux boundary
condition:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

ut = duΔu + u(1− u−Av), t > 0, x ∈ Ω,
vt = dvΔv + v(B − Cu− v), t > 0, x ∈ Ω,
∂u

∂n
=
∂v

∂n
= 0, t > 0, x ∈ ∂Ω,

u(0, x) = u0(x) ≥ 0, v(0, x) = v0(x) ≥ 0, x ∈ Ω.

(3.27)

Here du ≥ 0 and dv ≥ 0. The steady states of (3.24) are still (constant) equilib-
rium solutions of (3.27). Moreover it is known that any stable steady state of (3.27)
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is constant if Ω is convex from Kishimoto and Weinberger (1985). Thus a threshold
manifold of codimension-one exists when Ω is convex following Jiang et.al. (2004)
although the dynamics on the threshold is not clear. In a more general setting, Smith
and Thieme (2001) studied abstract two species (u, v) competition systems with the
origin being a repeller. Assuming that the unique nontrivial boundary steady state
on each axis is stable and there is a unique positive steady state, they showed that
there is an invariant threshold manifold through the positive steady state separating
the attracting domains for both axis steady states. See Jiang and Liang (2006) and
Castillo-Chavez, Huang and Li (1999) for more about threshold manifold of bista-
bility in competition models. It should be noted that the results of Jiang et.al. (2004)
are not valid for general competition systems with more than two competitors.

By way of contrast, for non-monotone dynamical systems, in general there is no such
structure even with only two stable steady states. Some systems may however inherit
threshold structure from their limiting systems or subsystems. Consider the reaction
and diffusion of the two reactants A and B in an isothermal autocatalytic chemical
reaction. We have the system⎧⎨

⎩
at = DAΔa− abp, bt = DBΔb+ abp, t > 0, x ∈ Ω,
a(x, t) = a0 > 0, b(x, t) = 0, t > 0, x ∈ ∂Ω,
a(x, 0) = A0(x) ≥ 0, b(x, 0) = B0(x) ≥ 0, x ∈ Ω.

(3.28)

where a and b are the concentrations of the reactantA and the autocatalystB, p > 1,
DA andDB are the diffusion coefficients ofA andB respectively, and Ω is a bounded
reaction zone in Rn (Gray and Scott (1990)). It is known that when reactor Ω is a
ball in Rn, (3.28) has either only the trivial steady state (a0, 0), or exactly three
non-negative steady state solutions with two of them stable. Under the additional as-
sumption of equal diffusion coefficients (DA = DB), Jiang and Shi (2008) shown
that in the latter case, the global stable manifold for the intermediate steady state
(a2, b2) is a codimension-one manifold which separates the basin of attraction of
the two stable steady states, and moreover every solution converges to one of three
steady state solutions. Here we use the fact that the asymptotic limit of (3.28) is an
autonomous scalar reaction-diffusion equation, which is a monotone dynamical sys-
tem, see Chen and Poláčik (1995), Mischaikow, Smith and Thieme (1995). Although
rather special, this is a rare example where the complete dynamics is known for a
non-monotone dynamical system in infinite dimensional space. A different bistabil-
ity result for (3.28) in Rn is also obtained in Shi and Wang (2006) which uses some
ideas from Aronson and Weinberger (1978).

Capasso and Wilson (1997) analyzed the spread of infectious diseases with a reaction-
diffusion system:⎧⎪⎪⎨

⎪⎪⎩

u1t = dΔu1 − a11u1 + a12u2, t > 0, x ∈ Ω,
u2t = −a22u2 + g(u1), t > 0, x ∈ Ω,
u1(x, t) = u2(x, t) = 0, t > 0, x ∈ ∂Ω,
u1(x, 0) = U1(x) ≥ 0, u2(x, 0) = U2(x) ≥ 0, x ∈ Ω.

(3.29)

This system models random dispersal of a pollutant while ignoring the small mobility
of the infective human population. Here u1(x, t) denotes the spatial density of the
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pollutant, and u2(x, t) denotes the density of the infective human population. With
g(u) being the monotone sigmoid function discussed in Section 1, the steady state
equation can be reduced to

dΔu1 − a11u1 +
a12

a22
g(u1) = 0, x ∈ Ω, u1 = 0, x ∈ ∂Ω. (3.30)

The nonlinearity here f(u1) = −a11u1 + a12
a22
g(u1) is of strong Allee effect using

the term introduced in the last subsection. Hence under some reasonable conditions
and Ω being a ball, the bifurcation diagram of (3.30) is the one in Fig.3.7-c. This
is shown in Capasso and Wilson (1997) for the case of n = 1, and the general
case when n ≥ 2 can be deduced from the results in Ouyang and Shi (1998). Since
(3.29) is a monotone dynamical system, then again (3.29) admits a codimension-one
manifold which separates the basin of attraction of the two stable steady states (Jiang
et.al. (2004)), which confirms the conjecture in Capasso and Wilson (1997). But it is
still not known that whether every solution on the threshold manifold converges to
the intermediate steady state solution.

Even less is known about the dynamical behavior of FitzHugh-Nagumo system:⎧⎪⎪⎨
⎪⎪⎩

εvt = dvΔv + v(v − a)(1− v)− w, t > 0, x ∈ Ω,
wt = dwΔw + cv − bw, t > 0, x ∈ Ω,
v(x, t) = w(x, t) = 0, t > 0, x ∈ ∂Ω,
v(x, 0) = V (x) ≥ 0, w(x, 0) = W (x) ≥ 0, x ∈ Ω.

(3.31)

Here dv > 0 and dw ≥ 0. When c = 0, it follows that w → 0, and the dynamics of
(3.31) is reduced to that of Nagumo equation (3.25) (in higher dimensional domain).
Since (3.25) has the saddle point behavior, then (3.31) still possesses this saddle point
behavior for 0 < c � 1 by structural stability theory. For more general parameter
ranges, the existence of multiple positive steady state solutions of (3.31) is known,
see for example Matsuzawa (2005) for a nice summary. Notice that (3.31) is not a
monotone dynamical system, so even the information of stable steady state solutions
cannot imply the saddle point behavior.

Threshold manifolds are a class of invariant manifolds in applied dynamical systems,
and they are sensitively unstable in the dynamic sense as a small perturbation will
shift it to the basin of attraction of a stable equilibrium. If one reverses the time t
to −t to a system with threshold manifold, then the manifold becomes an attracting
manifold, or vice versa. For example, in the logistic model (3.1), if time is reversed,
then it has the exactly same dynamical behavior as Fujita equation or the abstract
formulation in Lazzo and Schmidt (2005): both the origin and the infinity are stable
and the carrying capacityN becomes a threshold point. Similarly, if one reverses the
time in the classical Lotka-Volterra competition system (3.24) without diffusion, then
the origin and the infinity become stable, and there is a threshold manifold containing
the boundary steady state (1, 0), (0, B) and coexistence steady state on which “hair-
trigger effect” occurs, which is deduced from Hirsch (1988) or an analysis for phase
pictures. Of course it is not realistic to reverse the time in logistic model or Lotka-
Volterra competition system. Nevertheless, in logistic model (3.1) or Lotka-Volterra
system (3.24), both the origin and the infinity are repellers, and there is a threshold
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manifold separating the repelling domains for the origin and the infinity. Such a
threshold manifold plays the role of carrying capacity in the logistic model, so it
is often called Carrying Simplex.

The first example of a carrying simplex was given by Hirsch (1988) in his seminal
paper. For a dissipative and strongly competitive Kolmogorov system:

dxi

dt
= xiFi(x1, x2, · · · , xn), xi ≥ 0, i = 1, 2, · · · , n, (3.32)

Hirsch (1988) proved that if the origin is a repeller, then there exists a carrying sim-
plex which attracts all nontrivial orbits for (3.32) and it is homeomorphic to proba-
bility simplex by radial projection. Note that dissipation implies that the infinity is
also a repeller.

Smith (1986) investigated C2 diffeomorphisms T on the nonnegative orthant K
which possesses the properties (see the hypotheses in Smith (1986)) of the Poincaré
map induced by C2 strong competition system

dxi

dt
= xiFi(t;x1, x2, · · · , xn), xi ≥ 0, i = 1, 2, · · · , n, (3.33)

where Fi is 2π-periodic in t, Fi(t; 0) > 0, and (3.33) has a globally attracting 2π-
periodic solution on each positive coordinate axis. This implies that the origin is a
repeller for T and it has a global attractor Γ. He proved that the boundaries of the
repulsion domain of the origin and the global attractor relative to the nonnegative
orthant are a compact unordered invariant set homeomorphic to the probability sim-
plex by radical projection. He conjectured both boundaries coincide, serving as a
unique carrying simplex. Introducing a mild additional restriction on T , which is
generically satisfied by the Poincaré map of the competitive Kolmogorov system
(3.33), Wang and Jiang (2002) proved this conjecture and that the unstable manifold
of m−periodic point of T is contained in this carrying simplex. Diekmann, Wang
and Yan (2008) have showed the same result holds by dropping one of the hypothe-
ses in Smith’s original conjecture so that the result is easier to use in the setting of
competitive mappings. Hirsch (2008) introduces a new condition—strict sublinear-
ity in a neighborhood of the global attractor, to give a new existence criterion for
the unique carrying simplex. The uniqueness of the carrying simplex is important in
classifying the dynamics of lower dimensional competitive systems, for example the
3-dimensional Lokta-Volterra competition system (Zeeman (1993)). The classifica-
tion of many three dimensional competitive mappings (see Davydova, Diekmann and
van Gils (2005a, 2005b), Hirsch (2008) and references therein) are still open, and the
uniqueness of the carrying simplex is one of the reasons.

Note that if one reverses the time t to −t in the n-dimensional competition system
(3.32), then the system becomes a monotone system with both the origin and the
infinity stable (under the assumption that the origin and the infinity are repellers).
However this new system is not strongly monotone as required in Jiang et.al. (2004)
and Lazzo and Schmidt (2005). Thus the existence of the carrying simplex cannot
follow from Jiang et.al. (2004) and Lazzo and Schmidt (2005) except in the case of
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n = 2. Indeed this is one of the main difficulties in Hirsch (1988), Wang and Jiang
(2002), and Diekmann, Wang and Yan (2008).

We conclude our discussion of threshold manifolds with a model of biochemical
feedback control circuits. More details on the modeling can be found in, for example,
Murray (2003) or Smith (1995). A segment of DNA is assumed to be translated to
mRNA which in turn is translated to produce an enzyme and it in turn is translated
to another enzyme and so on until an end product molecule is produced. This end
product acts on a nearby segment of DNA to produce a feedback loop, controlling the
translation of DNA to mRNA. Let x1 be the cellular concentration of mRNA, let x2

be the concentration of the first enzyme, and so on, finally let xn be the concentration
of their substrate. Then this biochemical control circuit is described by the system of
equations

x1
′ = g(xn)− α1x1, xi

′ = xi−1 − αixi, 2 ≤ i ≤ n, (3.34)

where αi > 0 and the feedback function g(u) is a bounded continuously differen-
tiable function satisfying

0 < g(u) < M, g′(u) > 0, u > 0. (3.35)

Hence it models a positive feedback. For the Griffith model (Griffith (1968)) we have

g(xn) =
xp

n

1 + xp
n

(3.36)

where p is a positive integer (the Hill coefficient). For the Tyson-Othmer model
(Tyson and Othmer (1978)) we have

g(xn) =
1 + xp

n

K + xp
n

(3.37)

where p is a positive integer and K > 1. The solution flow for (3.34) is strongly
monotone (see Smith (1995) for detail). The steady states for (3.34) are in one-to-
one correspondence with solutions of

g(u) = αu (3.38)

where α =
∏
αi. Suppose that the line v = αu intersects the curve v = g(u)

(u ≥ 0) transversally. Then every non-negative steady state for (3.34) is hyperbolic,
which implies that the number of steady states for (3.34) is odd for either the Griffith
or Tyson-Othmer model. For most of biological parameters in the Griffith or Tyson-
Othmer model, there are exactly three steady states (Selgrade (1979, 1980, 1982) and
Jiang (1992, 1994)). In this case, the least steady state and the greatest steady state are
asymptotically stable and intermediate one is a saddle point through which there is
an invariant threshold manifold whose norm is positive. In the multistable case, there

are
[
n− 1

2

]
invariant threshold manifolds which separate the attracting domains for

stable steady states (see Jiang et.al. (2004)). From a general result of Mallet-Paret and
Smith (1990), we know that on each invariant threshold manifold every orbit either
converges to the saddle point or is asymptotic to a nontrivial unstable periodic orbit.
For n ≤ 3, all orbits tend to the corresponding saddle point on threshold manifolds,
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which was proved by using topological arguments in Selgrade (1979,1980), the Du-
lac criterion for 3-dimensional cooperative system in Hirsch (1989) and a Lyapunov
function in Jiang (1992); for n ≥ 5, in the bistable case for the Griffith or Tyson-
Othmer model, there may exist Hopf bifurcation on the unique threshold manifold
(see Selgrade (1982)). But for n = 4, whether there is a nontrivial periodic orbit or
not on threshold manifold is an open problem. In Jiang (1994), it was proved that for
4-dimensional Griffith or Tyson-Othmer model all orbits are convergent to a steady
state via Lyapunov method for parameters with biological significance.

Hetzer and Shen (2005) added a third equation to the classical Lotka-Volterra equa-
tions for two competing species, which describes explicitly the evolution of toxin,
called an inhibitor. The equations in rescaled form are⎧⎨

⎩
u̇ = u(1− u− d1v − d2w),
v̇ = ρv(1− fu− v),
ẇ = v − (g1u+ g2)w,

(3.39)

where d1, d2, ρ, f, g1, g2 > 0. Note that O(0, 0, 0), Ex(1, 0, 0), and Ey(0, 1, g−1
2 )

are non-negative steady states of (3.39). Observing that O is a saddle, not a repeller,
Hetzer and Shen (2005) studied the long-time behavior for (3.39) and the existence
of threshold manifold in the bistable case, where they called a “thin separatrix” fol-
lowing Hsu, Smith and Waltman (1996), Smith and Thieme (2001). Jiang and Tang
(2008) gave a complete classification for dynamical behavior for (3.39) and proved
that the bistability occurs if and only if

a∗ > 0, b∗ < 0, c∗ > 0, Δ∗ = (b∗)2 − 4a∗c∗ > 0, 2a∗ + b∗ > 0, a∗ + b∗ + c∗ > 0,
(3.40)

where a∗, b∗, c∗ are given by

a∗ = g1(1 − d1f), c∗ = g2(d1 +
d2

g2
− 1), (3.41)

and
a∗ + b∗ + c∗ = (1− f)(d1g1 + d1g2 + d2). (3.42)

In this case the system (3.39) has exactly two hyperbolic positive steady states, one
of which is stable, denoted by E∗, while the other is a saddle point, denoted by E∗.
(3.39) has exactly two stable steady states Ey and E∗. The stable manifold for the
saddle point E∗, which is a 2-dimensional smooth surface, separates the basins of
attraction for Ey and E∗. Hence this smooth surface is a threshold manifold.

The production of the various proteins in the biochemical control circuit model (3.34)
is, of course, not instantaneous and it is reasonable to introduce time delays into these
terms. If one does so, (3.34) becomes a delay differential equation:

x1
′ = g(xn(t− rn))− α1x1, xi

′ = xi−1(t− rj−1)− αixi, 2 ≤ i ≤ n, (3.43)

with all delays ri positive. It is easy to see that all steady states for (3.43) are the same
as (3.34) and if a steady state for (3.34) is linearly stable (unstable) then it is also lin-
early stable (unstable) for (3.43) (Smith (1995) p.111). Thus in the bistable case for
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(3.43), there is a codimension-one threshold manifold through a saddle point separat-
ing the attracting domains for the two steady states. The only difference is that such
a threshold manifold in the space of continuous functions is infinite dimensional and
less information is known for the dynamics on the threshold manifold. The results
are similar for the multistable case (see Jiang et.al. (2004)). Of course another way to
have an infinite dimensional threshold manifold is to add diffusion to bistable (mul-
tistable) monotone ODEs or FDEs with no-flux boundary condition on a smooth and
convex domain, so that codimension-one threshold manifolds still exist (see Jiang
et.al. (2004)).

3.4 Concluding Remarks

Sharp regime shifts occur in some large-scale ecosystems such as lakes, coral reefs,
grazed grasslands and forests. Mathematical models have been set up to explain the
sudden changes and hysteresis cycles in these systems. In this article, we review
some of these models with a focus on the impact of spatial dispersal and habitat frag-
mentation. The rich dynamics of these problems share some common mathematical
features such as multiple steady states, threshold manifold (separatrix), and non-
monotone bifurcation diagrams. Mathematical tools from partial differential equa-
tions, bifurcation theory, and monotone dynamical systems have been applied and
further developed in studying these important problems rooted from various applied
areas.

Establishing the basic structure of multiple steady states and threshold manifold is
the first step in a complete understanding of the bistable dynamics, regime shifts and
ecosystems resilience. The dynamics on the separatrix could be very complicated,
and there is also evidence that bistability in a reaction-diffusion predator-prey system
could imply existence of more complex patterns (see Morozov, Petrovskii and Li
(2004,2006), Petrovskii, Morozov and Li (2005)). Another important question is how
to make early warning of the regime shifts. The bifurcation diagrams suggest that the
regime shifts occur at saddle-node bifurcation points, at which the largest eigenvalue
(principal eigenvalue) of the linearized system is zero. Near bifurcation points, the
principal eigenvalue is small. It has been recognized that the principal eigenvalue at
a steady state is related to the return time, which is another definition of resilience
of the system (see Pimm (1991)). The return time is how fast a variable that has
been displaced from equilibrium returns to it. For the dynamical models described
here, such return time to the equilibrium is characterized by exp(λ1t), where λ1 is
the principal eigenvalue at the equilibrium. Hence early warning for regime shifts in
large scale could be triggered by a change in return time, provided that information
on the return time is obtained from small scale experiments.
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CHAPTER 4

Modeling animal movement with
diffusion

Otso Ovaskainen
University of Helsinki

Elizabeth E. Crone
University of Montana

Abstract. Diffusion models have long been used in theoretical ecology, but they have of-
ten been considered too simplistic to be applied to real data. In this chapter, we discuss
how diffusion-advection-reaction models can be used to analyze animal movement. We
consider a family of models that apply to heterogeneous landscapes by assuming that the
model parameters (diffusion, advection, and reaction) depend on the landscape features
at the present location of the animal. The landscape features may include both discrete
(e.g., a classification to habitat types) and continuous (e.g., elevation) variation. We pay
special attention to linear landscape features, discussing how behavioral responses to one-
dimensional movement corridors and barriers and edge-mediated behavior can be built into
the diffusion framework. We illustrate the application of the modeling framework by using
diffusion to mimic wolf movements in a mountainous landscape. We conclude that recent
developments in mathematical and computational methods make it possible to bridge the
gap between theory and data by using diffusion models to facilitate the analysis of move-
ment data acquired from heterogeneous landscapes, and discuss future research priorities
in this area.

4.1 Introduction

Animal movement in heterogeneous environments involves the interplay of land-
scape features, such as resource patches, barriers, and different land cover types, with
behavioral responses of animals to those features and their interactions with other an-
imals. To account for this complexity, ecologists typically describe movements using
rule-based simulation models such as variants of correlated random walks. Random
walk models are a natural way to describe animal movement in that they can easily be
modified to incorporate increasingly complex behaviors and landscapes (e.g., Revilla
et al., 2004; Vuilleumier and Perrin, 2006; Matanoski and Hood, 2006; Peer et al.,
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2006), and they provide rules that can be used to simulate long-term consequences
of these behaviors under current conditions, or to examine the potential responses of
animals to novel environments (e.g., Tischendorf et al., 2003). However, at the same
time, the ability of these models to incorporate system-specific behavior makes them
potentially idiosyncratic and data-intensive descriptors of particular populations, that
can be difficult to generalize, or even compare, using a common currency (Grimm et
al., 1999).

General theoretical models of animal movement often approximate random walks
with advection-diffusion models (Turchin, 1998; Okubo and Levin, 2001; Cantrell
and Cosner, 2003). Diffusion is a mathematical approximation of a random walk, so
biologically they can be considered the same model. However, in many cases, us-
ing diffusion instead of random walks facilitates the parameterization and analysis
of movement models. Diffusion approximations are simpler to interpret than random
walk models because they aggregate the many parameters of a simulation model
(e.g., distributions of turning angles, step lengths, and movements speeds) into rel-
evant summary statistics (e.g., diffusion coefficient), and hence provide a common
currency that facilitates comparison among studies (Turchin, 1998). Using diffusion
instead of random walks also makes models more transparent, as diffusion can be
written down as an exact equation, whereas simulation models are often described
in terms of a complex computer algorithm. However, diffusion models have typi-
cally been used only for relatively simple scenarios, such as population dynamics
and species interactions in homogeneous environments or movement in landscapes
composed of two habitat types. Therefore, diffusion models are often viewed as too
simple to describe animal responses to heterogeneous environments.

Random walks and their corresponding diffusion models have been related to ani-
mal movement in three ways. The first and most common is to work in the context
of random walk by quantifying distributions of move lengths, turning angles, di-
rected orientation, and so forth, possibly as a function of habitat type (Revilla et al.,
2004; Stevens et al., 2004; Haynes and Cronin, 2006). If one wishes to do so, the
resulting random walk model can then be approximated by a diffusion model (e.g.,
Patlak, 1953; Turchin, 1998). In general, the limitation of this approach has been
estimating the necessary parameters for animal movement directly, and perhaps sec-
ondarily by the availability of mathematical formulae that translate these parameters
into meaningful statistics (such as diffusion rates through heterogeneous environ-
ments) (c.f. Okubo and Kareiva, 2001). Second, continuous-time diffusion models
can be approximated by stochastic discrete-time difference equations (e.g., Preisler
et al., 2004; Fieberg, 2007). This approach is in many ways identical to simulation
of random walks, but with the advantage of explicitly specifying the model using a
diffusion equation from the very beginning. Third, a diffusion model can be analyzed
by solving directly how the probability density of an individual’s location evolves in
time. This approach involves the same kinds of models as the second approach, but
the models are used differently. Solutions over finite time periods lead to a probabil-
ity density of an individual’s location at some future time, conditioned on its current
location (e.g., Ovaskainen, 2008; Ovaskainen et al., 2008a; Horne et al., 2007). The
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stationary state (or the quasi-stationary state) describes an individual’s location in
the absence of information about the individual’s past history, or the distibution of
representative locations (Fieberg, 2007; Ovaskainen, 2008). In this chapter, we focus
on this third approach because working directly with probability densities facilitates
the use of likelihood-based approaches in relating models to data.

In this context, diffusion is not as simplistic a model as is often thought, but it can
be used to model many of the complex behaviors that have been previously built
into random walk models. We discuss a framework from which it is natural and
mathematically feasible to extend the diffusion approximation to complex behaviors
and heterogeneous environments (c.f. Ovaskainen and Cornell, 2003; Ovaskainen,
2008). We start by describing a general model of animal behavior in heterogeneous
environments, and then explore how habitat features such as patch edges and corri-
dors interact with behavior to affect animal movement. To demonstrate the flexibility
of the modeling framework, we finish with a specific example, in which we use dif-
fusion to mimic wolf movements in a mountainous landscape (see, e.g., Whittington
et al., 2005; Hebblewhite et al., 2005).

4.2 Advection-diffusion in heterogeneous environments

In general, models of movement are specified using two components: random undi-
rected movement (diffusion), and directed movement towards particular objects or
locations (advection, also known as biased movement). If two-dimensional move-
ment is affected by diffusion and advection, the probability density of an individual’s
location at time t, v = v(x, t), changes as follows (e.g., Turchin, 1998; Ovaskainen
and Cornell, 2003; Ovaskainen, 2008):

∂v(x, t)
∂t

=
2∑

i,j=1

∂2[aij(x, t)v(x, t)]
∂xi∂xj

−
2∑

i=1

∂[bi(x, t)v(x, t)]
∂xi

−c(x, t)v(x, t). (4.1)

Here x = {x1, x2} refers to the spatial location, A(x, t) = {aij(x, t)}2i,j=1 is the
matrix of diffusion coefficients that may vary in space (x) and time (t) (the random
component of movement); b is a vector of advection coefficients, again with the po-
tential to vary in space (x) and time (t) (the deterministic component of movement);
and c is mortality at location x and time t. Because v is the probability density for
an individual’s location at time t, PX(t) =

∫
X v(x, t)dx is the probability that the

individual is within a region X at time t. If we include the possibility of mortality
(c > 0) or an absorbing boundary condition, PR2(t) ≤ 1 gives the probability that
the individual is still alive at time t, and v(x, t)/PR2(t) is the probability density
conditional on the individual being alive. In this chapter, we focus on the biological
interpretation rather than on mathematical issues such as existence and uniqueness of
solutions. However, we note that for the diffusion model to be mathematically well-
posed, the coefficients A and b need to have a given degree of smoothness through
space.

If the individual is initially at time t0 at a location x0, the initial condition is given
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by v(x, t0) = δ(x − x0). Here δ is the Dirac delta distribution, i.e., a narrow peak
concentrated at location x0 describing that the individual is known to be at this loca-
tion with certainty. We note that the probability density v has also a population level
interpretation. Assuming that N individuals have been released to a point x0 at time
t0, and that the individuals move independently of each other, Nv(x, t) gives the
expected density of individuals at time t, and hence NPX(t) the expected number
of individuals in a regionX . However, if the individuals do not move independently,
a population level model would need to describe the joint distribution of all indi-
viduals, and would hence become much more complex than the model for a single
individual.

Using the population level interpretation, the probability density at a given location
changes over time if the number of individuals arriving to the location does not equal
the number of individuals leaving from that location. The net flow of movement is
called the flux (Turchin, 1998). In the context of the general model 4.1, the flux F at
a location x (Ovaskainen and Cornell, 2003) is given by

F(x, t) =
2∑

i,j=1

∂j [aij(x, t)v(x, t)]ni −
2∑

i=1

bi(x, t)v(x, t)ni, (4.2)

where ni is the unit vector in direction i, so that in two dimensions n1 = {1, 0} and
n2 = {0, 1}. Consider a curve S with normal vector z. Then

∫
S F · zdS gives the

net rate at which individuals cross the curve in the direction of z.

The diffusivity matrix needs to be positive definite, meaning that both of its eigenval-
ues are greater than zero. Such a matrix can be visualized as an ellipse, the lengths
of the semi-axes being given by the eigenvalues, and the orientation by the eigenvec-
tors. Intuitively, the next location of the animal is randomized from such an ellipse
centered at the animal’s current location, more precisely the ellipse representing a
quantile of an underlying multinormal distribution. Allowing the diffusion coeffi-
cient (A) to vary in space allows spread rates to differ as a function of landscape
features such as discrete habitat types (e.g., Ovaskainen, 2004; Ovaskainen et al.,
2008a), or continuous characteristics (Turchin, 1998) such as ruggedness (Fortin et
al., 2005; Whittington et al., 2005), density of food resources (Kareiva and Odell,
1987; Fortin, 2003; Forester et al., 2007), or density of predators (Fortin et al., 2005;
Forester et al., 2007).

Allowing the advection parameter (b) to vary in space allows animals to move in a
particular geographic direction, or to be attracted toward a particular point in space
(e.g., Moorcroft et al., 1999; Moorcroft et al., 2006; Moorcroft and Lewis, 2006).
The mortality rate c may vary in space if the mortality risk is different in differ-
ent habitat types. Allowing these parameters to vary in time accounts for switching
among behavioral states such as sleeping and waking hours, or foraging and traveling
modes (e.g., Morales et al., 2004). Such composite random walks can also be used
to approximate Lévy walks (Benhamou, 2007).

If diffusion, advection, and mortality are constant in space and time, the advection-
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diffusion model reduces to

∂v(x, t)
∂t

=
2∑

i,j=1

aij
∂2v(x, t)
∂xi∂xj

−
2∑

i=1

bi
∂v(x, t)
∂xi

− cv(x, t). (4.3)

The constant advection term b represents a deterministic force pushing the individual
to a given direction. In this case, the diffusion equation solves in the closed form,
giving

v(x, t) = e−c(t−t0)N(x|x0 + b(t− t0), 2A(t− t0)), (4.4)

where N(x|μ,Σ) denotes the probability density of the multivariate normal distri-
bution with mean μ and variance-covariance matrix Σ. The time evolution of this
probability density is illustrated in Fig. 4.1. As time goes by, the most likely posi-
tion moves due to the advection term, but uncertainty about the individual’s location
increases due to cumulative effects of the diffusion term.
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Figure 4.1 Time evolution of the probability density for an individual’s location, assuming
that the individual is originally (at time t = 0) in the origin (indicated by the black dot). The
circles show the 50% (solid) and 95% (dashed) ellipsoid quantiles of the probability density v
at times t = 0.1 (smaller ellipsoids) and t = 1 (larger ellipsoids). The vector field shows the
flux at time t = 1. Parameters A = (1,−1;−1, 2), b = (2; 1), c = 0.

In the isotropic case A = AI, where A is a scalar and I is the identity matrix cor-
responding to a circle. In this case the diffusion part of the model reduces to the
familiar form

2∑
i,j=1

aij
∂2v(x, t)
∂xi∂xj

= A

(
∂2v(x, t)
∂x2

1

+
∂2v(x, t)
∂x2

2

)
= AΔv(x, t), (4.5)

where Δ is the Laplacian operator.

The general model (Eq. (4.1)) allows the diffusion and advection terms to vary in
space and time, and it can hence be used to describe arbitrarily complex behav-
ioral responses to heterogeneous landscapes. However, to connect models to data
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in a fruitful way, one needs to simplify the general modeling framework by mak-
ing biologically plausible assumptions. In the rest of this section, we introduce some
possible simplifications, focused particularly on describing behavioral responses of
animals to heterogeneous environments.

4.2.1 Edge behavior and habitat selection

In real landscapes, habitat boundaries are often to some degree abrupt. Many species
of insects specialize on particular host plants or habitat types, and are likely to turn
back to their preferred habitat at patch boundaries, or return to habitat patches shortly
after leaving them (Crone and Schultz, 2008). Such behavior could be modeled with
Eq. (4.1) by defining a boundary zone, in which the advection term b points to-
wards the preferred habitat with some smooth functional variation in space (e.g., Fig.
4.2). However, incorporating this kind of behavior into Eq. (4.1) in a complex land-
scape becomes numerically challenging. In addition, although it is clear that many
species display edge mediated behavior (e.g., Kindvall, 1999; Ries and Debinski,
2001; Schultz and Crone, 2001; Conradt and Roper, 2006; Schtickzelle et al., 2007;
Crone and Schultz, 2008), the exact functional form of advection towards preferred
habitat types is rarely known (e.g., Crone and Schultz, 2008).

If the boundary in which edge-mediated behavior takes place is narrow compared to
the dimensions of the landscape, it is convenient to simplify edge behavior by taking
the limit in which the width of the boundary zone decreases to zero. To obtain a
nontrivial limit, one needs to assume that, at the same time as the boundary gets more
and more narrow, the per unit area strength of the bias increases, so that its integral
over the boundary zone remains constant (Fig. 4.2). At the limit, this assumption
leads to a discontinuity in the probability density across the edge (the black line in
Fig. 4.2),

lim
H1�x′→x

v(x′, t)
k1

= lim
H2�x′→x

v(x′, t)
k2

, (4.6)

where k1 and k2 are the habitat preferences for habitat types H1 and H2, and x is a
point at the boundary (Ovaskainen and Cornell, 2003; Ovaskainen, 2004; Ovaskainen,
2008). The second matching condition is given by the fact that the flux F needs to
be continuous across the boundary,

lim
H1�x′→x

F(x′, t) · nH1(x) + lim
H2�x′→x

F(x′, t) · nH2(x) = 0, (4.7)

where nH(x) denotes the corridor’s normal vector at location x towards the habitat
type H . We note that if the flux would not be continuous, the individuals would
accumulate at the boundary.

In a landscape consisting of a mosaic of different habitat types, the diffusion equation
(Eq. (4.1)) holds in the interior of each habitat type, and the two matching conditions
(discontinuous probability density and continuous flux) describe the net result of
edge-mediated behavior.

Figure 4.2 and the discussion above relate to one particular behavioral mechanism
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Figure 4.2 One-dimensional illustration of edge-mediated behavior. The positive x-axis (x >
0) represents preferred habitat, the negative x-axis (x < 0) avoided habitat. Panel A shows
the advection term b describing the tendency of the individuals to move towards the preferred
habitat when close to the boundary. Panel B shows the resulting profile of the probability
density v. In both panels, the lighter lines correspond to a wide boundary zone, the darker
lines to a narrow boundary zone. In both cases the net effect of edge-mediated behavior (spatial
integral of the bias b) is the same. The thin black line in panel B shows the limiting probability
density obtained when the width of the boundary zone tends to zero.

at a boundary between two habitat types. Because the net result is simply a propor-
tional difference in animal densities between the two habitat types, we believe that
a number of other particular mechanisms could lead to exactly the same matching
condition. If researchers are primarily interested in larger scale phenomena such as
rates of movement through heterogeneous environments, or the proportion of time
spent in particular habitat patches, it is not necessary to find out the exact behavioral
mechanism that generates the density difference between different habitat types.

4.2.2 Responses to linear landscape features

Many important landscape features, such as roads, trails, fencerows, and manmade
wildlife movement corridors, are similar to patch boundaries in that they are narrow
compared to their length. We next consider such a narrow linear element L sur-
rounded by habitat types H1 and H2 (Fig. 4.3A). As with patch boundaries, it is
possible in principle to use Eq. (4.1) to model responses to these elements by speci-
fying movement rules in two-dimensional space. For example, one may assume that
the animal shows edge-mediated behavior at both edges of a corridor, being more
likely to turn back to the corridor than to leave it. However, as with our derivation
related to edge-mediated behavior, it may be simpler to approximate the net effect of
a corridor with a one-dimensional landscape element. In this case, the animals would
switch between 1-dimensional and 2-dimensional modes of movement as they move
into and out of corridors or other linear landscape features. Such a simplification can
be derived by taking the limit in which the width of the linear element Δ→ 0.

In what follows, we will assume that the diffusion, advection, and mortality coeffi-
cients within the linear element remain fixed, and focus on the effect of the relative
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Figure 4.3 (A) A linear element L surrounded by habitat types H1 and H2. The panels
(B-E) illustrate the matching conditions for a corridor (B,C) and for a barrier (D,E). The
1-dimensional domain can be considered as a line perpendicular to the corridor in a 2-
dimensional domain, the linear element being presented by a single point at x = 0. Panels
(B) and (D) depict the habitat preference k, and panels (C) and (E) the resulting profile of the
probability density v at time t = 1, assuming that the individual is at time t = 0 at location
x = 0.2. The lighter lines correspond to a wide element (Δ = 1/10), the darker lines to a
narrow element (Δ = 1/20). The black lines in panels (C,E) correspond to the limiting case
Δ→ 0. Note the discontinuities in the y-axis in the panel (C). In panel (C), the limiting prob-
ability that the individual is in the corridor (exactly at the origin) is 0.62. Preference outside
the element (x < 0 or x > 0) was set to kH = 1, preference for the corridor to zL = 10 and
for the barrier to zL = 1/2. Other parameters A = 0.1, b = 0, c = 0. Numerical solution in
panels (C,E) was obtained by the finite element method.

density kL within the corridor (resulting, e.g., from edge-mediated behavior at the
edges between the corridor and the surrounding habitats). If the preference kL for
the linear element remains fixed, the net effect of the linear element would disappear
at the limit Δ→ 0. In the case of edge-mediated behavior, we assumed that the spa-
tial integral of the advection term remained constant when the width of the boundary
zone decreased to zero. Similarly, in the case of the narrow linear element, we scale
preference with width, kL = zLΔα, where the parameter zL is independent of the
width of the linear element. The properties of the linear element are thus described by
the parameter pair (α, zL). If α > 0 the preference for the linear element decreases
as its width gets smaller, whereas for α < 0 the preference increases as the width gets
smaller. It turns out that a nontrivial limit appears only if α = ±1. Hence, we define
preferred elements (α = −1) as structural corridors, and avoided elements (α = 1)
as structural barriers. If α < −1, the individual prefers the corridor so much that
at the limit it never leaves the corridor after first encountering it (hence the corridor
becomes an absorbing boundary condition), whereas for α > 1 the individual would
never enter the linear element (hence the barrier would become a reflecting boundary
condition). If −1 < α < 1, the effect of the linear element disappears at the limit
Δ→ 0.
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Structural corridors (α = −1)

Let the rectangle in Fig. 4.3A be centered at a location x ∈ L. Assume that the
rectangle is small enough so that the probability density v and the flux F can be
considered constants within the regions H1 and H2 representing the habitats sur-
rounding the corridor from the two sides. Assume then that the rectangle remains
fixed, but the width Δ of the linear element goes to zero. Then the probability that
the individual is within the corridor part of the rectangle scales as kLΔ = zLΔα+1.
Hence a nontrivial limit is obtained if α = −1, in which case we denote by p(x, t)
the 1-dimensional probability density of the individual being at location x at time t.
The probability PLX

(t) that the individual is within a finite part LX of the corridor is
given by PLX

(t) =
∫

LX
p(x, t)dS(x), where dS refers to 1-dimensional integration

along the corridor.

The flux describes the rate at which individuals drift towards the corridor, hence
the difference in the flux at the two sides gives the rate at which the individuals
accumulate to or dissolve from the corridor. The probability of the individual being
at location x within the corridor hence evolves as

dp(x, t)
dt

= lim
H1�x′→x

F(x′, t) · nH1(x) + lim
H2�x′→x

F(x′, t) · nH2(x) (4.8)

+ terms representing diffusion, advection and mortality inside the corridor,

where nH(x) denotes the corridor’s normal vector at location x towards the habitat
type H . The second matching condition is given by

p(x, t)
zL

= lim
H1�x′→x

v(x′, t)
k1

= lim
H2�x′→x

v(x′, t)
k2

, (4.9)

where k1 and k2 are the habitat preferences for habitat typesH1 andH2. This match-
ing condition is identical to the discontinuity of the probability density in case of
edge-mediated behavior, applied over the edges from H1 to L, and from L to H2.
The two matching conditions are illustrated in Fig. 4.3B-C.

To make the connection between two-dimensional (kL) and one-dimensional (zL)
preference values, assume that the preference zL for a corridor of finite width Δ
has been measured using the 1-dimensional approximation. In this case, the cor-
responding 2-dimensional preference kL can be calculated simply by the equation
kL = zL/Δ.

Structural barriers (α = 1)

If α = 1, so that kL = zLΔ, the individual avoids entering the linear element
more and more the more narrow it becomes (Fig. 4.3D). At the limit, we obtain the
matching conditions

lim
H1�x′→x

F(x′, t) · nH1(x) + lim
H2�x′→x

F(x′, t) · nH2(x) = 0, (4.10)
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and

lim
H1�x′→x

v1(x, t)
k1

= lim
H2�x′→x

v2(x, t)
k2

+ λ(x)F(x(H1), t)nH1 , (4.11)

where λ(x) = 1/(zLA(x)). The first matching condition follows from the observa-
tion that the probability of the individual being in the barrier is zero, hence the flux
must be continuous across the barrier. In the second matching condition the parame-
ter λ measures the time delay that the barrier causes to the stabilization of the prob-
ability density at the two sides of the boundary. To see this, we note that λ(x) = 0
would correspond to the usual effect of the edge-mediated behavior between the
habitat types H1 and H2 without the intervening barrier. The delaying effect is de-
termined both by the preference for the corridor (zL) and by the diffusion rate within
the corridor (A(x)), which we have for simplicity assumed to be isotropic. The con-
dition (4.11) can be derived informally from a simple graphical considerations in a
1-dimensional domain. Consider the shape of the probability density in Fig. 4.3E,
and let the negative x-axis represent habitat H1 and the positive x-axis habitat H2.
The probability density inside the corridor changes from (kL/k1)v1 to (kL/k2)v2,
where vi = limHi�x′→0 v(x′, t) denotes the probability density at the two sides of the
barrier. Hence the spatial derivative of the probability density v within the corridor is

∂v(x, t)
∂x

=
(kL/k2)v2 − (kL/k1)v1

Δ
= (zL/k2)v2 − (zL/k1)v1. (4.12)

Assuming that there is no advection term pushing the individual across the barrier,
the flux (Eq. (4.2)) is given by F(x, t) = A(x)∂v(x, t)/∂x, leading to the second
matching condition.

4.3 Application: Wolf movement in a mountainous landscape

To illustrate how diffusion models can be made complex enough to describe ani-
mal movement in real landscapes, we next relate the diffusion and advection terms to
wolfpack movements in a mountainous landscape near Banff, AB, Canada. In this re-
gion, mountaintops typically consist of rock and ice, whereas the valleys are forested
and also often contain roads or trails (Franklin et al., 2001). Typical responses of
wolves to landscape features in the southern Canadian Rocky Mountains include
preference for valley bottoms over mountain tops and tendency to avoid steep slopes
(Whittington et al., 2005; Hebblewhite et al., 2005). In addition, wolves appear to
respond to roads and trails, although this response ranges from preference to avoid-
ance, possibly depending on the spatial scale of development (Whittington et al.,
2005). Based on these observations, we constructed advection-diffusion models to
include possible behavioral responses of wolves to landscape structure using maps
derived from Franklin et al. (2001). We solved the models numerically using the fi-
nite element method (Ovaskainen, 2004; Ovaskainen, 2008), modified to account for
1-dimensional barriers and corridors. To begin, we created a diffusion model corre-
sponding to a pure random walk, i.e., isotropic diffusion with no advection or habitat
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preference,

k(x, t) = 1
A(x, t) = 1000I
b(x, t) = (0, 0).

As our example is not rooted to real data, the units are somewhat arbitrary, but for the
sake of illustration the spatial unit can be considered to be a meter and the temporal
unit an hour. Then, we modified the model to represent possible responses to slope,
elevation, and roads that might lead to a higher proportion of locations in valleys than
mountains:
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Figure 4.4 Graphical illustrations of six models describing how wolves might respond to el-
evation (see text). In all panels, the grey color shows the preference k (the lighter, the more
preferred), the ellipses correspond to the diffusivity matrix A, and the arrows show the advec-
tion term b. The lower left corner is located at (x=5,640, y=57,060), and the size of the area is
4*4 km. In this part of the landscape, the altitude varies between 2081 and 2912 meters, and
the slope varies between 0 and 55 degrees.

1. Preference for low altitudes over high altitudes. The most straightforward mecha-
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nism of habitat preference is to make the habitat selection parameter k a function
of altitude. As the preferences are restricted to positive values, and as only their
relative values count, we model k in Fig. 4.4A as

log k(x, t) = c1a(x), (4.13)

where a(x) is the altitude (in meters) at location x, and the parameter c1 is set to
c1 = −0.003.

2. Faster diffusion at high altitudes. Alternatively, animals might spend less time at
high elevations because they move more quickly through high elevation sites. This
mechanism is analogous to a random walk in which animals have shorter move
lengths and/or larger turning angles at lower elevations. Foraging animals typi-
cally move more slowly through areas with more prey, so this mechanism might
result if wolves were responding to higher prey availability at low elevations. To
illustrate this mechanism, we replaced the constant diffusion rate with an increas-
ing function of elevation (Fig 4.4B):

A(x, t) = ec0+c1a(x)I, (4.14)

where we have set the parameters to c0 = 0.8 and c1 = 0.0025.
3. Preference for forests. As a third example, wolves might not respond to altitude

per se, but might prefer forests over rock and ice, and hence show habitat selection
at the edge between these two habitat types. Fig. 4.4C illustrates this assumption
with

k(x, t) =
{

1 for x in forest ,
1/10 for x in rock and ice. (4.15)

4. Preference for roads. In this case, the animal would not respond to altitude or
habitat type, but just prefer roads and trails, for example because they create ac-
cessible terrain. Because roads and trails tend to occur in valley bottoms, this
might lead to more locations in adjacent valley bottoms. To test this possibility,
we set the 1-dimensional preference zL for roads to zL = 1000 (Fig. 4.4D).

5. Following contour lines. Some animals may tend to follow contour lines, e.g., to
minimize the energetic costs of movement (c.f. Fortin et al., 2005). To incorporate
this mechanism into our diffusion model, we assumed anisotropic diffusion, with
higher preference for following contour lines at higher slopes (Fig. 4.4E). In the
anisotropic case, it is convenient to describe the matrix A by its eigenvalues and
eigenvectors. We set the eigenvalues to

λ1(x) = 1000
λ2(x) = λ1e

−c1 sin(s(x)),

and the eigenvectors to

w1(x) = (− cos(α(x)), sin(α(x)))
w2(x) = (sin(α(x)), cos(α(x))),

where s(x) is the angle of inclination (the slope is given as tan s), and α(x) is the
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aspect, measured as the angle from due north in the clockwise direction, and we
have set the parameter to c1 = −6.5.

6. Advection downhill. As a final example, it is possible that animals spend more
time at low elevations because they prefer to move downhill when possible. This
behavior could be modeled by adding advection towards downhill directions. We
illustrate this behavior by assuming in Fig. 4.4F

b(x, t) = c1 sin(s(x)) · (sin a(x), cos a(x)), (4.16)

where we have set the parameter to c1 = −6.

Figure 4.5 illustrates the movement patterns that would follow from these six alterna-
tive models. In general, three out of the six behaviors lead to higher probabilities of
animal locations at low altitudes: preference for low altitudes, faster diffusion at high
altitudes, and advection downhill. In this landscape, preference for forests also leads
to higher probabilities at low altitudes, because forests are mainly found in the valley
bottoms. Following contour lines did not cause animals to spend time in valleys, at
least not as implemented in this example. Because we assumed that the strength of
the tendency to follow the contour line increases with increasing slope, individuals
tended to spend most time following contour lines in steep areas and were less likely
to return to valley bottoms. Preference for roads increased the possibility of long-
distance movements along the roads. The probability density is very high exactly
at the locations of the roads, but locally not affected by the proximity of the roads,
because the possibility that individuals leave the road is exactly compensated by the
attraction back to the roads. In order for preference for roads to lead to increased
locations in valley bottoms also outside the roads, it might be necessary to add ad-
vection from a distance towards roads, e.g., due to spatial memory and knowledge
that roads represent accessible terrain, or attraction towards prey items that congre-
gate on roads.

To demonstrate that it is possible to construct and solve diffusion models with com-
binations of behavioral responses, we constructed a model with three of the above
behaviors: preference for forests, preference for roads, and tendency to travel down-
hill. In addition, we added home range behavior, modeled as advection towards the
release point, with the strength of the advection term increasing with increasing dis-
tance from the release point (Okubo and Levin, 2001; Moorcroft and Lewis, 2006).
We assumed the functional form

f(x,x0, h1, h2) = h1
(x− x0)
|x− x0| (1− e

−|x−x0|/h2), (4.17)

where x is the current location, and x0 is the home-range center. The parameter h1

is the maximum speed towards the home-range, obtained when far away from the
home-range center, and h2 measures how quickly the bias increases with increasing
distance.

These modifications lead to k = 1 for forests, k = 1/10 for rock and ice, z = 1000
for roads, A = 1000I, and

b(x, t) = c1 sin(s(x)) · (sin a(x), cos a(x)) + f(x,x0, h1, h2), (4.18)
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Figure 4.5 Movement behaviors corresponding to the six models described in Fig. 4.4. The
black lines show a simulation track from t = 0 to t = 50, and the shading illustrates the
probability density at time t = 50, with the initial location shown by the dot.

The prediction of this model is illustrated in Fig. 4.6A.

Finally, we added autocorrelated movement directions to the above model. In the
context of correlated random walks, correlation refers to a tendency to continue in
the current movement direction, i.e., turning angles that are not uniform. At longer
time scales, the correlation fades out, and correlated random walks can be approx-
imated by diffusion. All other things being equal, a correlated random walk simply
results in a higher diffusion coefficient than an uncorrelated random walk (Patlak,
1953; Turchin, 1998). However, the basic diffusion model (4.1) fails to approximate
the structure of a correlated random walk at small time scales. This failure is a fun-
damental shortcoming of the diffusion model, if we want to analyze or predict fine
scale responses to environmental features using detailed movement data. However,
it is possible to bring a correlation structure to fine scale predictions by modifying
the advection term in the diffusion model to include a tendency to continue moving
towards a previous direction. For example, we may add to the advection b the term
f(xt,xt−Δt, q1, q2), where the functional form of f is as in Eq. (4.17).

© 2010 by Taylor and Francis Group, LLC



APPLICATION: WOLF MOVEMENT IN A MOUNTAINOUS LANDSCAPE 77

Simulating diffusion with such an autocorrelation structure is as easy as simulating
a corresponding random walk (Fig. 4.6B). Due to the correlated nature of the move-
ments, the area covered by the movement track is larger than with the same model
parameters but without autocorrelation. However, this implementation of diffusion
with autocorrelation is not a Markov process, so the mathematical and numerical
tools that make diffusion models more tractable than the underlying random walk
models do not apply.
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Figure 4.6 Simulation of the diffusion model with preference for forests, preference for roads,
tendency to travel downhill, and home range behavior. Panel A shows a simulation run with
a model without temporal autocorrelation, panel B for a model with temporal autocorrelation.
The initial location is shown by the dot, the center of the home-range by a square. The pa-
rameters of the model (see text) were set to c1 = −6, −h1 = 4, h2 = 2, q1 = 3, q2 = 0.5,
Δt = 5. The size of the area is 10*10 km.
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4.4 Applications of diffusion models

As shown in the examples above, diffusion models can not only be analyzed by simu-
lating them, but also by calculating probability densities of an animal’s location over
time, as a function of its location at a particular starting time. This feature makes the
diffusion framework particularly powerful for both predicting and analyzing animal
movement. In this section, we discuss in more detail why this is the case.

4.4.1 Predictions from diffusion models

One difficulty of synthesizing the literature and data about animal movement mod-
els is that different people report many different statistics about animal movement,
making it difficult to synthesize or compare numerous case studies. Diffusion mod-
els lend themselves naturally to ecologically meaningful parameters that summarize
potentially complex movement behavior in heterogeneous environments. The most
important of these is the habitat-specific diffusion coefficient, which integrates move
lengths, frequencies, and turning angles. A higher diffusion rate within a particular
habitat type means faster movement through it, and hence as a side product, less time
spent in that habitat type. Similarly, the "habitat preference" parameter, k, combines
the effect of biased behavior at habitat boundaries, and the fact that habitat-specific
diffusion rates can lead to habitat-specific differences in animal densities even with-
out any behavioral bias at the boundaries.

The probability density v is the fundamental solution to the diffusion model, and
in a sense sufficient to describe all aspects of the model’s behavior. However, it is
often convenient to summarize model predictions in terms of parameters that in-
tegrate the probability density over time or space (Turchin, 1998; Ovaskainen and
Cornell, 2003; Ovaskainen, 2008; Gardiner, 2002). These include, for example, the
occupancy time, which describes how long the individual is expected to stay within
a given region (Ovaskainen, 2004). Hitting probabilities describe the probability that
an individual ever visits a given region, and first passage times the time it takes to do
so (Frair et al., 2005). Conditional diffusion processes can be used to reconstruct the
likely movement path of an individual between two observations (Horne et al., 2007).
As many of these derived quantities are independent of time, they are actually often
easier to calculate than the time evolution of the probability density v. While analyt-
ical solutions are available only in the very simplest cases, numerical solutions using
the finite-element method or similar techniques can be calculated in very complex
domains (Preisler et al., 2004; Ovaskainen, 2008).

Residence times and hitting probabilities predicted by diffusion models can be inter-
preted as measures of functional connectivity (Ovaskainen et al., 2008a). It is more
interesting to compare these measures across studies than, say, move lengths and
turning angles, because they are independent of the time-scale used for their mea-
surement, and relate to behaviors at larger scales relevant to management issues such
as conservation planning. Further, these kinds of integrated measures of movement
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are ecologically significant since they can be directly used as components in popula-
tion dynamic models (Ovaskainen and Hanski, 2004).

4.4.2 Data analysis with diffusion models

Though diffusion models can readily be defined and numerically solved for realisti-
cally complex scenarios, relating them to data from animal populations is still some-
what in its infancy. Currently, most of the statistical methods parameterizing move-
ment models are developed in the context of random walks rather than diffusion. As
movement data seldom come without error, much of the recent developments have
been focused on state space models, which explicitly model the observation pro-
cess on top of the movement process (Jonsen et al., 2005; Patterson et al., 2008).
State-space models are most naturally parameterized using maximum likelihood or
Bayesian methods. State-space models can be as readily used for random walks (Pat-
terson et al., 2008) as for diffusion models (Horne et al., 2007; Ovaskainen, 2004;
Moorcroft and Lewis, 2006; Ovaskainen et al., 2008a). In fact, diffusion models can
be viewed as a more natural match to these statistical techniques because they, un-
like random walk models, explicitly generate probability densities of locations, as a
function of the landscape between animal locations as well as the observed locations
(see, e.g., Horne et al., 2007; Ovaskainen et al., 2008a; Ovaskainen et al., 2008b).
In other words, a key difference between parameter estimation from random walk
vs diffusion models is that diffusion integrates over all possible movement tracks,
hence integrates the unobserved locations (which can be thought of as a nuisance
parameter) out of the likelihood expression (Patterson et al., 2008). This integration
makes diffusion computationally efficient, and solves the problem of how to deal
naturally with habitat characteristics between starting and final locations in random
walk models (c.f. Whittington et al., 2005; Fortin et al., 2005).

4.5 Conclusions

In this chapter, we have presented a general diffusion model for animal movement,
and demonstrated that it can be made complex enough to include many aspects of an-
imal behavior and, especially, responses to environmental heterogeneity. As noted by
Kareiva and Odell (1987) and Moorcroft and Lewis (2006), an advantage of working
with mechanistic models in general is that it may be possible to extrapolate beyond
observations, e.g., predicting responses to habitat alteration or asking how param-
eters might evolve in current or altered landscapes. In the context of the diffusion
model, this was demonstrated by Ovaskainen et al. (2008a), who showed that a model
parameterized with data from a reference landscape successfully predicted clouded
apollo butterfly movements in a structurally dissimilar landscape. If behaviors are
built phenomenologically into simulation models or purely statistical models, it is
less reliable to predict how these behaviors would change if the landscape changes.

Given the advantages of diffusion models, why aren’t they used more widely to de-
scribe animal movement? We speculate that one reason is that theoretical ecologists
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working with these models have tended to focus on general, analytically tractable
examples as case studies, rather than working with the complexities of the interac-
tions of behavior and environmental features. At the same time, animal ecologists
collecting movement data have tended to be most interested in the complexities of
environmental responses, so have used statistical, rather than mechanistic, models
to relate animal movement or locations to the environment. Also, many ecologists
may not be comfortable working with differential equations, or not familiar with
numerical methods needed for solving them. Finding solutions to diffusion models
with complex behaviors and environments is computationally intensive, which, in
the short term, might limit application to data analysis. Finally, it is clear that all
kinds of movement behaviors cannot be fruitfully described by diffusion. The main
assumption of the basic diffusion model (4.1) is that of a pure Markov process. If
the animal’s past movement history is needed to predict its future behavior, diffusion
may not be likely to be the most successful modeling approach. Examples of such
behavior include autocorrelation at fine spatial scales, and learning from experience
moving in a particular landscape.

So where to go from here? We encourage readers of this book to consider diffusion
as a simple though biologically plausible framework for describing and especially
analyzing animal movement. The most important area for future research is relating
models to data. This flows naturally from using diffusion models to calculate proba-
bility densities of animal’s location, but is not yet widely recognized. In tandem with
developing such techniques, we can take advantage of the growing number of animal
movement studies and advances in remote tracking technologies, such as radio and
satellite tracking. Important conservation questions to address in this area include
the effects of habitat loss and fragmentation on animal movement, the role of matrix
habitat in determining among-site dispersal, and the effects of landscape alteration on
encounters between animals, such as predators and prey, or human-wildlife conflicts.
Basic ecological questions include the consequences of different foraging strategies,
the evolution of dispersal under different landscape structures, and the interaction of
movement behavior and landscape structure in shaping species interactions. We will
only learn from case studies how well different mechanisms of movement can be
distinguished for real populations in real landscapes.
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Abstract. Ecologists interested in spatial processes are increasingly turning to models and
sampling efforts that are spatially explicit. By definition, such explicitness necessitates a
conceptualization of the underlying geometry of the landscapes in which important eco-
logical processes (e.g., habitat loss, fragmentation, transport) are seen to operate. Perhaps
because humans are fundamentally a terrestrial species, the default perspective in much of
ecology—and in theoretical ecology in particular—is of two-dimensional terrestrial land-
scapes in which habitat patches of various types are interspersed within a habitat matrix.
However, riverine landscapes (including riparian systems as well as creeks and rivers them-
selves) exhibit fundamentally different geometric properties than do 2-D terrestrial land-
scapes. These geometric properties likely have important consequences for population,
community, and ecosystem ecology, but they have been relatively little explored. Draw-
ing upon several examples, we lay out a rationale for increased research on the linkages
between the branching geometry of riverine landscapes and ecological dynamics, focusing
on the fundamental issue of the ‘branchiness’ of riverine networks. Given the rich biodiver-
sity of riverine landscapes and the pervasive threats that these key systems face, extensive
opportunities exist for theoretical and empirical research in this alternative geometry.

5.1 Dendritic networks as a problem in spatial ecology

Whether one considers the evolution of new species, the dynamics of invading species,
or the maintenance of biodiversity, spatial processes play central roles in ecology. A
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Figure 5.1 A dendritic landscape (left) differs fundamentally from the standard two dimen-
sional landscape often featured in spatially explicit investigations in ecology.

key aspect of such spatial processes is the degree to which subunits of a system or
network are connected to one another, because connectivity is often a linchpin for
population persistence, patterns of biodiversity, and ecosystem function (Calabrese
and Fagan 2004).

Thus far, however, ecological studies of landscape connectivity have dealt almost ex-
clusively with ‘planar’ geometries, wherein habitat units or patches (such as forests,
fields, and cities) extend in two dimensions and can completely ‘fill up’ a landscape.
In contrast, other natural landscape geometries have received far less attention. For
example, dendritic networks, such as river systems, which consist of effectively linear
(rather than 2D) habitat units sequentially arranged, have inherently different geome-
tries than planar landscapes (Fagan 2002, Grant et al. 2007) (Fig. 5.1). River systems
(and their associated riparian zones: Gregory et al. 1991, Malanson 1993, Naiman
and Décamp 1997) are perhaps the most obvious dendritic networks in nature, but
caves, plant structures, and animal migratory pathways exhibit similar topologies.
Geometry is a critical feature of these dendritic networks because it is intimately
tied to network dynamics. For example, branching, hierarchical networks may slow
down movement, altering opportunities for interactions between individuals or net-
work components (Cuddington and Yodzis 2002, Campos et al. 2006).

Despite their potential importance, the unique contributions of dendritic geometry to
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the dynamics and emergent functions of networks have only rarely been studied by
theoreticians (Johnson et al. 1995, Charles et al. 1998a,b, Fagan 2002, Anderson et al.
2005, Muneepeerakul et al. 2007). Empirical studies addressing dendritic geometry
are also scarce, but the extant few highlight the potential importance of hierarchical
geometry for species persistence and patterns of biodiversity (Bornette et al. 1998,
Crabbe and Fausch 2000, Cottenie and de Meester 2003, Muneepeerakul et al. 2008).
For example, in the Amazon, river confluences exhibit dramatically higher diversities
of predatory ‘electric’ fishes than do other reaches (Fernandes et al. 2004), suggest-
ing a key link between connectivity and community structure. Likewise, in Sonoran
stream networks, fish species with highly fragmented distributions have exhibited
markedly increased rates of local extinction compared to species whose historical
distributions were more connected (Fagan et al. 2002, 2005a,b).

5.2 Unique features of dendritic landscapes and their consequences for
ecological theory

Given the profound lack of research on the ecology of dendritic geometries, even
fundamental issues remain unresolved. For example, within a branching network,
what are the relative contributions of linear components and branching frequency to
individual movements, population persistence, and species diversity? When species
move through a dendritic landscape, do transient changes in density influence popula-
tion persistence, competition, predation, and the transmission of pathogens, and what
is the contribution of network geometry to those changes? What are the functional
differences between rooted networks (e.g., rivers or ant trails) and other dendritic
geometries where hierarchical branching occurs on both ends (e.g., avian flyways)?
These and many other interesting problems remain to be explored.

Clearly, issues of dendritic geometry are related in certain ways to the increasingly
popular ‘network theory’ approaches that have been used in studies of telecommu-
nication (Albert et al. 2000), epidemiology (Grenfell and Bolker 1998), foodwebs
(Brose et al. 2004, Garlaschelli et al. 2003), and elsewhere. However, several key
differences set the problem of dendritic geometries apart from network theory more
generally (Grant et al. 2007). The most important of these is that dendritic ecolog-
ical networks exist as physical entities, whereas in network theory the ‘branches’
or links of a network represent rates or magnitudes of connections among entities
(e.g., patches). Dendritic networks require separate investigations because organ-
isms actually live and interact in those alternative geometries (Grant et al. 2007).
Consequently, the important issues in the ecological dynamics of dendritic networks
are not easily addressable via graph theory or similar approaches that are so popular
with network theorists (Vincent and Myerscough 2004, Grant et al. 2007). Instead, to
explore these issues theoretically, one must often build model landscapes of patches
arranged in a variety of branching, hierarchical fashions and then simulate popula-
tions or communities of species that interact on those landscapes (e.g., Fagan 2002,
Muneepeerakul et al. 2007).

Despite commonalities with other network-related topics, dendritic ecological net-
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works present several unique complications that, together, constitute a novel research
frontier in spatial ecology. Four of these sources of complexity are:

1. Intrinsic effects of configuration
Even without any additional complications (i.e., even if the three sources of com-
plexity listed below are not present), the hierarchical, branching arrangement of
local communities per se can affect ecological patterns and dynamics in dendritic
networks. In dendritic geometries, confluences and spatial sequencing are impor-
tant considerations because they can act as impediments to spatial averaging as
the scale changes (Guo et al. 2003, Kuby et al. 2005). For example, temporal
variation in a natural process (e.g., water retention) may have starkly different
consequences depending on whether the process occurs upstream or downstream
within a river network (Guo et al. 2003).

2. Directional biases
River networks feature directionally biased flows (e.g., river flows) that intro-
duce systematic anisometries and noncommutativities into problems of dispersal
in branching networks (e.g., the ‘distance’ or ‘ease of travel’ from patch A to B
is not necessarily the same as from patch B to A). Directionality has received
some theoretical attention via advection-diffusion models focusing on questions
of population persistence, critical patch sizes, and the ‘drift paradox’ (Anderson et
al. 2005, Lutscher et al. 2005, Pachepsky et al. 2005), but these studies considered
linear habitats, not branching geometries.

3. Out-of-network connections
Some processes in dendritic networks are out-of-network by nature. For example,
forest fires and other disturbances, which need not follow the geometry of river
networks, represent situations in which out-of-network processes are mismatched
against the geometry of organisms’ in-network dispersal (Fagan 2002). Likewise,
human trucking of salmon and overland ‘walking’ by invasive snakehead fish
are good examples of situations where out-of-network movement is critical to
network-level dynamics. Some species (e.g., fish) are restricted to travel along
the network, while others (e.g., stream insects) may occasionally make overland
movements.

4. Transient connectivity
The connectivity among patches in a river network may be transient (that is,
time-dependent) rather than static. For example, river networks featuring regional
droughts (Arizona) or episodic flooding (Amazonia) exhibit reduced or enhanced
connectivity, periodically altering opportunities for dispersal and redistribution of
resources.

To investigate how hierarchical, dendritic geometries influence ecological dynamics
and patterns of biodiversity will require the development of a series of models of
varying complexity, detail, and focus. Explicit dendritic landscapes should be at the
core of these models, providing a common framework that transcends differences in
model structure and purpose. For example, to explore the interface between dendritic
geometry and network dynamics, one could vary the geometric properties of those
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landscapes (e.g., branching frequency, rooted versus nonrooted topology, hierarchi-
cal form of spatial heterogeneity) and impose one or more of the four complications
above to examine their joint impacts on ecological patterns and dynamics. Of the
four sources of complexity, the last item, transient connectivity, is arguably the most
novel and most likely to yield results that generalize in important ways to network
problems far beyond theoretical ecology. In such models, a difference or differen-
tial equation (such as those routinely used to study local population dynamics and
species interactions) could operate within each compartment, and the compartments
would then be linked to other compartments within the hierarchy. Given their com-
plexity, such models will typically be solved via extensive numerical simulations, but
in some cases variable aggregation methods may be useful (Charles et al. 1998a,b).
Across model runs, outputs could be interpreted in terms of scaling laws for such
metrics as population persistence times, average abundance or occupancy, or rates
of spatial spread (Muneepeerakul et al. 2008, unpublished ms.). This approach is
commonly used in ecohydrology (Rodriguez-Iturbe and Rinaldo 1997).

5.3 The ‘branchiness’ of a river network influences colonization opportunities
and extinction risk

To illustrate the importance of dendritic geometry for ecological systems, we focus
in this chapter on one important geometric factor, namely the ‘branchiness’ of a river
network. Branchiness refers to the arrangement of a number of patches in a hierar-
chical network. With an increasing mean number of connections for each branch,
the network is seen as being more complex (i.e., branchiness high). Extending some
ideas about riverine metapopulation dynamics that were initially laid out in Fagan
(2002), we first use a simulation model to explore how branchiness of a network al-
ters opportunities for recolonization and consequently extinction risk. We then draw
upon a database of fish distributions to illustrate the effects of network branchiness
in a real system where fragmentation is already known to be an important driver of
extinction risk.

5.4 Modeling the effects of network branchiness for metapopulation dynamics

We investigated the relationship among network branchiness, movement probabili-
ties, and extinction risk of a metapopulation within networks of 15 stream reaches
(‘habitat patches’). In our model, all patches are of equal habitat quality, and we
assume a uniform distribution of a population in the network. After investigating ex-
tinction risk in general, we look closer at a particular metapopulation scenario using
parameter values guided by a mark-recapture study of a stream salamander species.

We created two 15-patch dendritic networks with different topologies: (1) a fractal
network (‘Full’) with bifurcations at each branch node, and (2) a network with re-
duced complexity (‘Pruned’), where only one bifurcation is present at each depth
in the network (Fig. 5.2). The first configuration corresponds to the model in Fagan
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Figure 5.2 Fifteen patch network configurations (A = Full, B = Pruned) considered in inves-
tigations of extinction risk in dendritic metapopulations. The network depth is used to index
position in the network.

(2002), whereas the second configuration results in a network with branches of dif-
fering lengths from the mainstem (Fig. 5.2). Realistic networks in nature may fall
between the dendritic network topologies considered here. Location in the network
is indexed by specifying a network ‘depth,’ or location along the mainstem of the net-
work, and the horizontal position in the network (Fig. 5.2). In our ordering schema,
starting from the downstream terminus of the network, a patch in position (3,2) is
located 3 steps along the mainstem, and 2 branches from the leftmost patch (at the
first bifurcation point, keep left, at the second, keep right).

For each model run, we initialized full occupancy of all patches in the network
and fixed the time-specific extinction probability in each patch for each model run.
At each time step, we allowed colonization of extinct patches via three movement
routes: (1) upstream, (2) downstream, and (3) overland (out-of-network) coloniza-
tion from one of the two closest neighboring patches within the same depth. We
investigated three probabilities for extinction probability (0.1, 0.01, 0.001), and four
movement probabilities (0, 0.1, 0.01, 0.001). The model was run for a maximum of
10,000 time steps (or until full extinction of the network) for all parameter combi-
nations, and each combination was replicated 100 times. We present here results for
the case with upstream = downstream movement probabilities.
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For the full dendritic network, the presence of out-of-network connectivity has a large
effect on the time to extinction. This effect was most prominent with high levels
of within-network movement, suggesting that out-of-network movement is not the
sole driver of extinction risk (Fig. 5.3, left panels). When per-patch extinction risk
was low (0.001), the network persisted for a wide range of both within- and out-
of-network dispersal probabilities (Fig. 5.3, left panels). At intermediate levels of
extinction probability (0.01), the network had a reduced time to extinction when there
was at least a small amount of out-of-network movement compared to the scenario
without out-of-network movement. The metapopulation persisted when both within
network dispersal was high (0.1), and out-of-network dispersal was moderate to high
(0.01–0.1). Extinction risk in the Pruned network (Fig. 5.3, right panels) was similar
to that in the Full network but featured a damped pattern that was especially evident
at intermediate levels of extinction probability (Fig. 5.3, middle panels, extinction =
0.01). With high extinction probability (0.1), the Pruned network goes extinct rather
quickly (Fig. 5.3 bottom right panel; note different axis scale), regardless of the level
of out-of-network dispersal.

Finally, we compared 15-patch networks in two configurations (Full vs. Pruned net-
works) guided by empirical within-network movement data on a species of stream
salamander, Gyrinophilus porphyriticus (Lowe 2003). Little is known about rates
of out-of-network movements in stream amphibians, though populations of some
species are more closely associated with stream networks with confluent first order
branches (Lowe and Bolger 2002, Rissler et al. 2004, Grant et al. in press), suggesting
that this type of movement may be naturally low in some species. Stream networks
in altered landscapes typically lose complexity via loss of small headwater streams
(Dunne and Leopold 1978). In species that are adapted to live in streams, the loss
of network complexity may result in an increased extinction risk, especially when
within-network movements are the predominant mode of dispersal. Some species
may be capable of making out-of-network movements, which may be important for
stabilizing populations (a type of weak link, Csermely 2004). Further, in undisturbed
populations, stream salamanders likely have low rates of extinction (Hairston and
Riley 1993), though with increasing landscape disturbance, rates of extinction are
likely higher (Price et al. 2006). Using our model, we found that at low rates of ex-
tinction (0.01), both network complexities have similar extinction risk when there
is a small amount of out-of-network dispersal (Fig. 5.4, top). However, at higher
extinction rates (0.1), the Full dendritic network has a greater potential for popula-
tion persistence, when out-of-network movements are proportional to or greater than
other modes of dispersal (Fig. 5.4, bottom).

From our simulation results, it is apparent that the spatial layout of a stream network
helps determine the risk of metapopulation extinction. Consequently, understanding
how network complexity interacts with population extinction risk may be important
for managing stream network habitats. More complex patterns of extinction (e.g.,
correlated disturbances, Fagan 2002, Lowe 2002) and biases in animal movements or
habitat preferences in the network (e.g., preference for higher order branch locations)
may alter the results from our simple model discussed here. However, we expect
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Figure 5.3 Effects of river network ‘branchiness’ on extinction risk in 15-patch dendritic
metapopulations. Panels on the left are from a Full dendritic network, and on the right are
from the Pruned network. Three extinction probabilities were modeled (0.001, top row; 0.01,
middle; 0.1 bottom row), under combinations of within- and out-of-network dispersal proba-
bilities (0, 0.001, 0.01, 0.1). (See color insert following page 202.)
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Figure 5.4 Effects of river network ‘branchiness’ on extinction risk for the spring salaman-
der Gyrinophilus porphyriticus under different levels of out-of-network dispersal (upstream
dispersal probability = 0.15, downstream dispersal probability = 0.05). Top panel, extinction
probability = 0.01. Bottom panel, extinction probability = 0.1.
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that more realistic models will strengthen the relationship among movement proba-
bilities and network complexity, especially considering variation in out-of-network
colonization probabilities.

For most species that live in dendritic networks, empirical estimates of movement
probabilities are a critical information need for managing populations in these habi-
tats, though these estimates are largely unavailable at large scales. As our results
suggest, the specific combination of movement probabilities is important for assess-
ing metapopulation extinction risk. While out-of-network connectivity generally in-
creases the time to metapopulation extinction, the effect of increasing this movement
is mediated by the within-network movement probabilities. Few long-term data ex-
ist to test our model in existing dendritic network systems at large scales, though
recently established monitoring programs that recognize the potential importance of
the spatial layout of dendritic networks should prove useful.

Finally, we note that the modeling approach employed here may be useful for plan-
ning repatriation, translocation or stocking programs in dendritic stream networks.
Viewing out-of-network dispersal as a translocation or stocking event, alternative
scenarios could be explored in advance of implementing a management action. Ex-
tensions to our model could specify stocking or translocation frequency via modifi-
cation of the out-of-network colonization probability, consider the impact of stocking
location within the network hierarchy, and allow for a greater range of colonization
distances (e.g., allowing for long distance dispersal events in the network).

5.5 Network branchiness and extinction risk for desert fishes

A key prediction emerging from the above modeling scenarios is that ‘branchier’
networks should facilitate recolonization among subpopulations and thereby buffer
the system as a whole from regional extinctions. To test this prediction in the real
world, we investigated the link between network branchiness and local extirpation
risk in an assemblage of fish species native to the Sonoran Desert ecoregion.

Occurrence records for this group of species are summarized in the Sonoran Fishes
(or ‘SONFISHES’) database, initially developed by the late ichthyologist W. L. Minc-
kley. This GIS database provides extensive distributional data for native freshwa-
ter fishes in the southwestern USA and northwestern Mexico. Within the Sonoran
ecoregion, the Lower Colorado River basin, and within that, the Gila River, feature
the most detailed biogeographical coverage and the greatest density of collecting
records. Parts of this landscape are highly fragmented due to a lack of perennial wa-
ter resulting from the interplay among precipitation, discharge, and substrate, and
more recently as a result of diversion and drawdown by human activities (Brown
et al. 1981). Moreover, even when contiguous stretches of surface water exist, the
widespread introduction of multiple, nonnative, invasive fish species induce a type
of biological fragmentation due to larvivory, in which nonnative species prey on ju-
venile native fish and greatly limit their recruitment (Unmack and Fagan 2004).
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Figure 5.5 Measures of river network branchiness as predictors of extinction risk in fish
species of the Gila River in the Sonoran Desert ecoregion.

The SONFISHES database encompasses∼160 years (from 1843 to∼2005) and con-
tains incidence, identity, and collection data for the complete holdings of the major
museum collections from this region, numerous smaller collections of southwestern
fishes, records from the Non-Game Branch of the Arizona Game and Fish Depart-
ment, and peer-reviewed and ‘gray’ literature sources. Due to the intensity and time
span of sampling, SONFISHES summarizes virtually all that is known about past
and present distributions of fishes in the region and represents an unusually compre-
hensive resource for examining changes in species’ spatial distributions over time.

Previous analyses of the SONFISHES database have demonstrated that, among 25
fish species native to the Lower Colorado River basin, the degree to which a species’
distribution was fragmented historically is a strong predictor of the frequency of local
extirpations that the species has since experienced (Fagan et al. 2002a, 2005a,b).
Although a species’ historical frequency of occurrence (i.e., number of localities at
which it was found) is also correlated with the risk of extirpation on local scales (e.g.,
5 km or 25 km reach lengths), historical fragmentation of occurrences is a far stronger
predictor of variation in extinction risk among species (Fagan et al. 2002), and this
dependence manifests on small through large spatial scales (5 to 2500 km reach
lengths; Fagan et al. 2005a). Thus the physical arrangement of species’ populations
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and not just the number of those populations has been an important determinant of
extinction risk in the Sonoran ecoregrion.

Here we seek to expand on this understanding by quantifying the relationship be-
tween the branching geometry of river networks in particular watersheds and the
observed frequency of local extinctions in those watersheds. To quantify network
branchiness, we will adopt two measures of riverine geometry from the theoreti-
cal hydrology literature (Rodriguez-Iturbe and Rinaldo 1997, Dodds and Rothman
1999, Turcotte et al. 1998). However, before introducing the branchiness metrics
themselves, we first define some important hydrological terms that provide context.
Using the conventional methodology for characterizing watershed geomorphology
(Strahler 1967), a stream’s ‘order’ is an index that relates to both flow capacity and
network position. Starting from tiny trickles far upstream (first order streams), stream
order increases when two streams of equal order merge together. For a given stream
of order n, a ‘major side tributary’ is a stream of order n − 1 that merges with the
parent stream partway along its course (rather than at its upstream confluence). Like-
wise, a ‘stream segment’ is defined as a contiguous reach of stream with the same
order (i.e., a stream segment is bounded by upstream and downstream confluences
where order changes). In idealized watersheds, these concepts are related by Toku-
naga’s Law (Dodds and Rothman 1999) which states

Tn = T1R
n−1
T (5.1)

where Tn is the expected number of tributaries of order n in a given watershed, T1

is the average number of major side tributaries per stream segment, and RT is a
multiplicative factor describing the average rate at which numbers of side tributaries
of successively lower orders accumulate in a watershed. Example calculations of
these branchiness metrics appear in Dodds and Rothman (1999). Although Equation
(5.1) is typically used in theoretical hydrology problems, the metrics T1 and RT ,
which quantify different, but complementary, aspects of stream network complexity,
can also be calculated for real watersheds via tedious effort.

To characterize the branchiness of different river networks, we quantified T1 and RT

for 13 watersheds within the Gila River drainage (central Arizona and western New
Mexico, USA, plus small portions of northern Sonora, Mexico). We used watersheds
defined at the HUC-8 scale (Hydrological Unit Code 8; Seaber et al. 1987), and given
the monotony involved in calculating the branchiness metrics, chose a subset (52%)
of the HUC-8 watersheds that spanned the range of watershed complexity evident
in the Gila drainage. We focused our analyses on six species of small- and medium-
sized fish: Agosia chrysogaster, Catostomus insignis, Gila intermedia, Meda fulgida,
Rhinichthys osculus, and Tiaroga cobitis. These species were all widespread in the
Gila River drainage historically, and, unlike other fish native of the region, were
not restricted to particular elevational zones (e.g., Onchorhynchus spp.) or river flow
volumes (e.g., Xyrauchen texanus, Ptychocheilus lucius). We then used logistic re-
gression to quantify relationships between watershed branchiness and the observed
frequency of extirpation at the local scale (=5 km of reach).

Gila River watersheds vary substantially in branchiness, whether that geometric com-
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plexity is measured in terms of the average number of major side tributaries (T1)
or the rate at which reaches accumulate lower order tributaries (RT ). On average,
a given stream segment in Gila River watersheds has T1 = 1.00 major tributaries
(range: 0.85–1.42) and finer scale branching occurs at an average rate of RT = 2.21
branches per segment (range: 1.44–3.15).

For four of our six focal species, the frequency of local extirpation was strongly and
significantly dependent on one or both measures of network branchiness (Fig. 5.5).
Catostomus and Rhinichthys both exhibited lower local extinction risk in those wa-
tersheds with relatively high T1 scores, whereas observed extinction risk in Gila and
Tiaroga were more strongly related to RT . In contrast, extinction risk in neither
Agosia nor Meda was significantly related to watershed branchiness, although ex-
tinction risk for Agosia trended downward with increasing branchiness for both RT

and T1.

In a system like the Sonoran ecoregion, where connectivity may be determined largely
by in-stream proximity of individual populations, it is intuitive that the extent of
fragmentation in populations is a strong predictor of extinction risk, and this has
been borne out by several analyses (Fagan et al. 2002, 2005a,b). Our analysis here
suggests that watershed ‘branchiness’ may contribute to those previously observed
relationships between fragmentation and extinction risk, with branchier watersheds
being less prone to local population extinctions. Consequently, conservationists and
resource managers may want to consider the branching geometry of riverine net-
works when seeking to identify watersheds that will yield a high probability of local
population persistence for Sonoran fishes.

5.6 Conclusion

Although this chapter has focused on riverine geometry, river networks are only one
example within a broader class of ecological networks involving dendritic geome-
tries. For example, caves feature network-like geometry, but exist in three dimensions
rather than just two (Curl 1986, Palmer 1991). Likewise, avian flyways, ungulate mi-
gratory pathways, and ant trails possess branching, hierarchical geometries but exist
at a functional level (for migration or resource acquisition) rather than in a structural
sense (Watmough and Edelstein-Keshet 1995, Speirs and Gurney 2001, Hindmarch
and Kirby 2002, Jackson et al. 2004, Xia et al. 2004). The architecture of individ-
ual plants also involves dendritic geometries that may alter species interactions and
drive emergent food web dynamics (Kareiva and Sahakian 1990, Cuddington and
Yodzis 2002). Unfortunately, links between geometry and dynamics in these other
dendritic systems have received even less theoretical attention than have river net-
works. Consequently, the ecology of alternative geometries will afford rich research
opportunities for years to come.
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Abstract: Quiescence or dormancy plays an important role in biological systems, from
spore formation in bacteria to predator-prey cycles. In a mathematical framework, quies-
cence is modeled by diffusive coupling of the active dynamics to quiescent phases. Al-
though coupling a given vector field to the zero field may appear simple at first glance,
quiescent phases have biologically relevant effects which can be cast into rigorous math-
ematical formulations: permanence of stationary points, stabilization against oscillations
and Hopf bifurcations, decrease in amplitude of periodic orbits. These features are com-
mon to ordinary and partial differential equations and delay equations and persist to some
extent even for density-dependent transition rates. Applications range from tumor growth
to engineered bacteria.

6.1 Introduction

On all levels of biological organization we find quiescent phases although these may
occur with different names. Genes may be suppressed, tumor cells quiescent, nerve
cells at rest, animals hibernating or just inactive. Although these phenomena are quite
diverse, there are some common general features. There is an active phase and a
quiescent phase and there are transition laws which govern the exit to the quiescent
phase and reentrance into the active phase.

In this chapter we investigate mathematical models for biological systems which
have a sedentary, quiescent, removed or immobile phase. A quiescent phase typi-
cally describes immobile periods of mobile individuals, or refuges from predation,
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shelters and nests, as well as quiescent phases in a cell cycle, or bound state of dif-
fusible proteins. For the purpose of the general analysis, we call all these phenomena
quiescent phases. Later, in the application section, we come back to the more specific
notions.

Modeling with quiescent phases can be summarized in a common mathematical
framework. We will first introduce the general mathematical set up and then present a
selection of applications, including ecological and epidemiological models, and cell
and protein dynamics.

It is a general trend in all the results presented here, that a quiescent phase stabilizes
the system; stable equilibria become more stable in the presence of a quiescent state,
Hopf bifurcations become less likely, attractors become more stable, and traveling
waves slow down.

In the following section, we introduce the class of models with quiescent phase and
we summarize some basic mathematical properties.

6.2 Diffusive coupling and quiescence

Suppose n types of particles can exist in two different phases v, w ∈ IRn that are
governed by two systems of ordinary differential equations

v̇ = f(v)
ẇ = g(w). (6.1)

Particles switch between phases according to Poisson processes with rates depending
on the type of particle. Then we have a system in IR2n,

v̇ = f(v)− Pv +Qw
ẇ = g(w) + Pv −Qw (6.2)

with diagonal matrices P,Q with positive entries. We say that the vector fields f, g
are diffusively coupled. This type of coupling is very different from seasonal switch-
ing which leads to nonautonomous systems.

The vector of total particle densities u = v + w and the vector of probability flows
z = Pv −Qw satisfy the equations

u̇ = f(Q̃u+ Sz) + g(P̃ u− Sz)
Sż = P̃ f(Q̃u+ Sz)− Q̃g(P̃ u− Sz)− z (6.3)

with positive diagonal matrices

P̃ = (P +Q)−1P, Q̃ = (P +Q)−1Q, S = (P +Q)−1.

If the particles switch frequently (rates going to infinity with fixed proportions) then
we get the limiting system, again in IRn,

u̇ = f(Q̃u) + g(P̃ u). (6.4)
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The situation of quiescent phases occurs when g is the zero vector field. Then we
compare the system

u̇ = f(u) (6.5)

in IRn to the system

v̇ = f(v)− Pv +Qw

ẇ = Pv −Qw (6.6)

in IR2n. One may think that adding a zero field does not change much. But from (6.6)
we get the three following equations

v̈ = f ′(v)v̇ − P v̇ +Qẇ

Qẇ = QPv −Q2w

Qv̇ = Qf(v)−QPv +Q2w.

We add these equations, multiply by S, and get an equivalent second order equation
in IRn for the active component v,

Sv̈ + (I − Sf ′(v))v̇ = Q̃f(v). (6.7)

This equation has the general form of a damped oscillator. Hence introducing a qui-
escent phase may lead to new phenomena. The following examples suggest that this
is indeed the case.

From (6.4) we get the limiting equation u̇ = f(Q̃u) for u = v + w (the total popu-
lation) and from (6.7) the limiting equation v̇ = Q̃f(v) for v (the active population).
These are equivalent by v = Q̃u.

Example 6.1 The equation for exponential growth, u̇ = au, with a > 0, leads to
the system, with p, q > 0,

u̇ = au− pu+ qx
ẋ = pu− qx. (6.8)

For the system (6.8) the exponent of growth is

ρ = ρ(a, p, q) =
1
2

[
a− p− q +

√
(a− p+ q)2 + 4pq

]
. (6.9)

It is easy to see that 0 < ρ < a and that ρ is a decreasing function of p and an
increasing function of q. In the limiting cases we have

ρ(a, p, 0) = max(a− p, 0), ρ(a, 0, q) = a.

The first formula shows that there may be population growth even if there is no return
from the quiescent phase.

If we choose a negative, the result is reverted; we get a < ρ < 0.

Example 6.2 (Hadeler and Hillen, 2006) The logistic equation u̇ = au(1 − u/K)
is coupled to a quiescent phase and the limiting equation for the total population
becomes u̇ = aq̃u(1− q̃u/K), where q̃ = q/(q + p).
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Hence the growth rate is reduced by the factor q̃, and the carrying capacity K is
enlarged to K/q̃. A quiescent phase slows down population growth and increases the
capacity.

The equation with an Allee effect u̇ = u(1 − u)(u − α), with 0 < α < 1, leads to
the limiting equation u̇ = q̃u(1− q̃u)(q̃u− α). Here the threshold α is increased to
α/q̃.

Example 6.3 The harmonic oscillator (which can be seen as the linearization of a
Volterra population system)

u̇ = v
v̇ = −u (6.10)

becomes
u̇ = v − pu+ qx
v̇ = −u− pv + qy
ẋ = pu− qx
ẏ = pv − qy.

(6.11)

The characteristic polynomial of the matrix is

λ2(p+ q + λ)2 + (q + λ)2

or
λ4 + 2(p+ q)λ3 + (1 + (p+ q)2)λ2 + 2qλ+ q2

and hence the Routh-Hurwitz criterion tells that all roots have strictly negative real
parts. The example shows that quiescence stabilizes the system.

In the following we show that the features of the examples are not accidental. In
systems with quiescence (and equal rates) real eigenvalues move towards zero while
purely imaginary eigenvalues move into the left half-plane (as has been observed first
in Neubert et al. (2002)).

We mention in passing that quiescent phases need not be exponentially distributed. In
fact, allowing other distributions and studying the stability properties of the resulting
systems is a challenging problem (Hadeler and Lutscher, 2008). A case of particular
interest is when exit to the quiescent phase is Poisson distributed with rate p and the
length of the quiescent phase is exactly τ > 0. Then the limiting equation is

v̇(t) = f(v(t)) + p(v(t− τ) − v(t)). (6.12)

Again, the model is controlled by two parameters, p, τ, instead of p, q above.

6.3 Stationary states and stability

From a biological point of view we want to know how the dynamics of the system
(6.5) is changed by introducing quiescent phases. This problem is also interesting
from a mathematical point of view. Some aspects concerning global existence of so-
lutions and of compact global attractors are presented in Hadeler and Hillen (2006).

© 2010 by Taylor and Francis Group, LLC



STATIONARY STATES AND STABILITY 105

General results on global attractors are surprisingly difficult. On the other hand we
have some detailed results on stationary points and their stability and some prelimi-
nary results for periodic orbits.

At first glance introducing quiescent phases seems similar to introducing delays. For
delay equations we know that combining a negative feedback with sufficiently large
delays leads to oscillations and then periodic orbits. Quite on the contrary, quiescent
phases stabilize against oscillations.

Suppose ū is a stationary point of the system (6.5), i.e., f(ū) = 0. Then

(v̄, w̄) = (ū, Q−1P ū) (6.13)

is a stationary point of (6.6). Let A = f ′(ū) be the Jacobian matrix of (6.5) at the
stationary point. Then the Jacobian matrix of (6.6) is given by

B =
(
A− P Q
P −Q

)
. (6.14)

The eigenvalue problem of the matrix B is equivalent to that of the matrix pencil

λ2I + λ(P +Q−A)−AQ. (6.15)

Equal rates: In the case of equal rates we have P = pI , Q = qI , the matrices
P,Q,A commute and we can apply the spectral mapping theorem to the pencil
(6.15). To each eigenvalue μ of the matrix A there are two eigenvalues λ1 and λ2,
ordered by �λ2 ≤ �λ1, which can be obtained from the equation

λ2 + λ(p+ q − μ)− μq = 0. (6.16)

This is a very simple quadratic equation. In principle the two solutions can be rep-
resented by an explicit formula. The problem is that μ is a complex number. The
following can be shown. Always �λ2 < 0. Hence λ2 does not affect stability. Sta-
bility is governed by the eigenvalue λ1.

Now there are three quite distinct cases: If μ = 0 then λ1 = 0. If μ is real then λ1

is located between μ and 0. Hence, with respect to real eigenvalues, quiescence does
not change stability. If μ is complex (with nonvanishing imaginary part) then, gen-
erally speaking, for eigenvalues with positive real parts the real parts are decreased
by introducing quiescence and may eventually become negative. This effect is most
prominent for eigenvalues with large imaginary parts, i.e., high frequency oscilla-
tions are damped. Detailed information is given by the following theorem.

Theorem 6.1 (Hadeler, 2008a) Let μ = α+ iβ be an eigenvalue of the linearization
of (6.5) at a steady state ū. Then the linearization of (6.6) at (ū, pū/q) has two
corresponding eigenvalues λ1, λ2 with �λ2 ≤ �λ1. The eigenvalues μ and λ1, λ2

are related as follows:

(a) Let μ = α ∈ IR. Then λ1, λ2 are real.

(a.i) If α < 0 then λ2 < α < λ1 < 0.

(a.ii) If α = 0 then λ2 = −(p+ q) < 0 = λ1.
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(a.iii) If α > 0 then λ2 < 0 < λ1 < α.

(b) Let μ = α± iβ, β > 0. Then �λ2 < 0.

(b.i) If α ≤ 0 then �λ1 < 0.

(b.ii) If α > 0 then �λ1 < α.

(b.iii) If α ≤ 0 and

β2 + (p+ q + α)2 + 4αp > 0 and β2(q + α) + α(p+ q + α)2 > 0,

then �λ1 < α.

(b.iv) If α > 0 and

β2 > 4αq − (p+ q − α)2 and β(p− α) > α(p+ q − α)2,

then �λ1 < 0.

Unequal rates: If the matrices P and Q are not multiples of the identity and the
various types of particles go quiescent and return with pairwise distinct rates, then the
situation is quite different and the stability problem has about the same complexity
as the Turing stability problem. Indeed, here as in the Turing problem we have a
given stable matrix and a matrix pencil depending on positive diagonal matrices. So
far only the case n = 2 of two types has been dealt with (Hadeler, 2008a). Recall
that a 2 × 2 matrix A = (aij) is stable if trA = a11 + a22 < 0 and detA =
a11a22 − a12a21 > 0, and strongly stable (in the sense of Turing) if, in addition,
a11 ≤ 0, a21 ≤ 0. (A is excitable if A is stable, but not strongly stable.) Suppose
that A is stable. Then the matrix B is stable for all choices of P and Q if and only
if A is strongly stable. Thus, if A is excitable in the sense of Turing, the system may
become destabilized by introducing quiescent phases with suitably chosen distinct
rates. The problem for n > 2 is open.

However, there are classes of problems for which additional mathematical tools are
available (Hadeler and Thieme, 2008). For example, if the system (6.5) is cooperative
then the system (6.6) is cooperative as well; or if the system (6.5) is competitive then
the system for v and −w is competitive as well.

6.4 Periodic orbits

Numerical simulation of standard biological systems like the MacArthur-Rosenzweig
model (Holling type II predator response) as well as analytic results on highly sym-
metric systems show that limit cycles of the system (6.5) undergo some systematic
changes if quiescent phases are introduced. From the local stability analysis at a
stationary point it is evident that introducing a quiescent phase works against Hopf
bifurcations. Suppose we have a system depending on some parameter α which un-
dergoes a Hopf bifurcation. A stationary state is stable for α < 0 and unstable for
α > 0 in such a way that a pair of eigenvalues crosses the imaginary axis at α = 0.
The stability Theorem 3.1 suggests that by introducing a quiescent phase the Hopf

© 2010 by Taylor and Francis Group, LLC



RATES DEPENDING ON DENSITY 107

bifurcation is shifted to some parameter value α > 0. This is what indeed happens in
concrete examples.

Example 6.4 (Bilinsky and Hadeler, 2008) The MacArthur-Rosenzweig model with
quiescence reads

u̇ = au(1− u

K
)− b uv

1 +mu
− p1u+ q1w

v̇ = c

(
u

1 +mu
− B

1 +mB

)
v − p2v + q2z

ẇ = p1u− q1w (6.17)
ż = p2v − q2z.

It is known that the two-dimensional system without quiescence has either a stable
coexistence point or a unique (stable) limit cycle. In the latter case the system with
quiescence either has no limit cycle at all or again a limit cycle, this time in dimension
four, whereby the “size” of the projection in the active phase gets smaller. If the
coexistence state in the problem without quiescence is stable then it is strongly stable.
For every choice of P andQ there is a gain in stability. Let δ and τ be the determinant
and the trace at the coexistence state of the system without quiescence. In the τ, δ-
plane the stability domain is given by δ > 0, τ < 0. For given P,Q the stability
domain extends into the range τ > 0. The boundary of the stability domain can be
found explicitly as a curve τ = φ(δ) with φ(0) = 0 and φ(δ) > 0 for δ > 0 (Bilinsky
and Hadeler, 2008).

In numerical experiments, the four-dimensional limit cycle of (6.17) can be visual-
ized by presenting the total population sizes u+w and v+z for prey and predator. In
this projection the effect of a quiescent phase is not easily recognized because the po-
sition of the (projection of) the stationary point is shifted. It is easier to project to the
u, v-plane and also to the w, z-plane. Then one sees that the “size” of the projected
limit cycle in the u, v-plane is smaller than the limit cycle in the system without qui-
escence and gets ever smaller if the rates are increased. Eventually the limit cycle
may contract to the stationary point.

Here “size” is used as a phenomenological description. For the typical egg-shaped
limit cycles of predator prey models area and circumference and diameter all shrink
(see Figure 6.1) . It is interesting to observe that at the same time the projection onto
the w, z-plane gets larger. For symmetric systems the shrinking of the periodic orbit
can be rigorously proven, see Hadeler and Hillen (2006).

6.5 Rates depending on density

There are various biological models that can be interpreted in terms of quiescence
and in which transition rates depend on the state. An example is Malik and Smith
(2006, 2008), where chemostat models are extended by quiescent phases. A general
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Figure 6.1 (Bilinsky and Hadeler, 2008) Phase plane for the MacArthur-Rosenzweig system
(solid) and projection to the u, v-plane for the system with quiescence (dashed). Both systems
have limit cycles. The projected limit cycle of the quiescent system is much smaller.

formulation of the problem is

v̇ = f(v)− p(v, w)v + q(v, w)w
ẇ = −q(v, w)w + p(v, w)v. (6.18)

Such a model, with f(v) = Δv, has been used in the discussion of swarming be-
havior (Edelstein-Keshet et al., 1998). For f(v) = 0 this system is equivalent to a
scalar differential equation. Here we consider the case where particles in the active
compartment avoid crowding, p = p(v), with p′(v) > 0, and q constant,

v̇ = f(v)− p(v)v + qw
ẇ = p(v)v − qw. (6.19)

This system is equivalent to the second order equation for the active phase

v̈ + [q + (p(v)v)′ − f ′(v)]v̇ = qf(v) (6.20)

and then, for large transition rates, we get the limiting equation

v̇ =
q

q + (p(v)v)′
f(v) (6.21)

which may be used (for instance in ecological applications) to estimate the total
population from the observed active phase. The equations (6.5) and (6.21) have the
same stationary points. The derivative at a stationary point of (6.21) becomes

q
f ′(v̄)

q + p(v̄)
. (6.22)
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Hence the sign of the derivative does not change but the absolute value gets smaller
than |f ′(v̄)|.

Example 6.5 Some bacteria go quiescent (become spores) if conditions are unfa-
vorable. Let v, w denote active and quiescent bacteria and s a substrate. Assume that
the rate of going quiescent is increasing with decreasing substrate concentration. As-
sume further that substrate uptake is fast in comparison to reproduction and making
spores. Then we have a system

v̇ = F (s, v)− P (s)v + qw − μv
εṡ = −sv + r

ẇ = P (s)v − qw.
Consider the limiting case ε→ 0. Then s = r/v. Define

p(v) = P (
r

v
), f(v) = F (r/v, v) − μv.

Hence we arrive at the system (6.19) and the rate (6.22) (which determines stability)
can be computed.

6.6 Slow dynamics

Rather than assuming that individuals switch between an active and a quiescent phase
one can assume that they switch between a vector field f and a “slow field” κf where
κ ∈ (0, 1). Then we have the system (with equal rates)

v̇ = f(v)− pv + qw
ẇ = κf(w) + pv − qw. (6.23)

Suppose that f(ū) = 0. We look for a related stationary point of (6.23). The choice
v = w = ū works only for the special case p = q. Otherwise it is not evident how to
proceed. In (Hadeler, 2008c) it has been assumed that f is homogeneous of degree 1
and that ū exp{λ̂t} is an exponential solution. Then we find two related exponential
solutions of the form

(v, w) = (αiū, βiū) exp{λit}, i = 1, 2

from the eigenvalue problem(
λ̂− p q
p κλ̂− q

)(
αi

βi

)
= λi

(
αi

βi

)
, i = 1, 2.

It can be shown that both solutions are real and that the larger eigenvalue is between
λ̂ and 0. It can further be shown that if ū is stable then the solution corresponding
to the larger eigenvalue is also stable (Hadeler, 2008c). We illustrate the use of this
result on a predator prey system with Holling type II functional response:
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Example 6.6 (Hadeler, 2008c) Consider the homogeneous predator-prey system

u̇ = au− b uv
u+v

v̇ = c uv
u+v − dv,

(6.24)

with a, b, c, d > 0. This system can be completely analyzed, e.g., in terms of the
variable ξ = u/(u+ v) for which we get a scalar equation

ξ̇ = ξ(1− ξ)[a+ d− b− (c− b)ξ]. (6.25)

From this equation we can determine the stationary points and their stability. A
stationary solution of (6.25) corresponds to an exponential solution of (6.24): If
(ū, v̄) exp{λ̂t} is an exponential solution of (6.24) then ξ̄ = ū/(ū+ v̄) is a stationary
point of (6.25). And if ξ̄ is a stationary point of (6.25) then there is a correspond-
ing exponential solution of (6.24). Furthermore, the exponential solution is stable (in
the sense of stability of exponential solutions) if and only if the stationary point ξ̄ is
stable. Hence the existence of exponential solutions and their stability follows from
the scalar equation, but the exponents cannot be retrieved from (6.25). It turns out
that for the equation (6.25) there are four orthants in parameter space with different
qualitative behavior (as in a Lotka competition model).
I) c < a+ d < b: Unstable coexistence point, attractors 0 and 1.
II) a+ d < b and a+ d < c: No coexistence point. The point 0 attracts [0, 1).
III) c > a+ d > b: Coexistence point globally attracting in (0, 1).
IV) a+ d > b and a+ d > c: No coexistence point. The point 1 attracts (0, 1].

In cases I) and III) the exponent of the coexistence solution is ρ = (bc−ac−bd)/(b−
c). The exponent ρ is negative in the unstable case I and positive in the stable case
III.

These observations are easy to verify but a similar analysis of the problem with slow
dynamics is very difficult. However, the general results guarantee that to each stable
exponential solution of the two-dimensional system corresponds one stable exponen-
tial solution of the four-dimensional system. In particular, in case III, the system with
slow dynamics has a stable exponential solution where prey and predator coexist.

6.7 Delay equations

In Section 6.3 we have seen that a quiescent phase and a delay have different effects.
Hence it may be worthwhile to study the effect of a quiescent phase in a scalar delay
equation with constant delay θ > 0

u̇(t) = f(u(t), u(t− θ)) (6.26)

with f(0, 0) = 0. The system

v̇(t) = f(v(t), v(t − θ))− pv(t) + qw(t)
ẇ(t) = pv(t)− qw(t) (6.27)
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could be called the natural quiescent extension of (6.26). We linearize at u = 0
and at (v, w) = (0, 0), respectively, and test with exponentials. Then we get the
characteristic equation (β and α are the partial derivatives of f )

αe−μθ + β − μ = 0 (6.28)

for (6.26) and

det
(
αe−λθ + β − p− λ q

p −q − λ
)

= 0 (6.29)

for the system (6.27). The connection between the eigenvalues λ and μ is clearly not
as simple as in (6.16). Hence the “natural extension” is not covered by Theorem 6.1.
One easily understands this fact if one replaces the delay equation by a succession
of ordinary differential equations representing the state at t, t− h, t− 2h, . . . . Then
Theorem 6.1 requires that each component, and not just the first, goes quiescent with
the same rate.

Hence, in order to get the analogue of Theorem 6.1 for the delay equation, we should
write the delay equation as an evolution equation in C[−θ, 0],

d

dt
ut(s) =

{
d
dsut(s) −θ ≤ s < 0
f(ut(0), ut(−θ)) s = 0

(6.30)

(as usual, ut denotes the “segment,” i.e., the restriction of u to the interval [t− θ, t]).
Now each “component” ut(s) must go quiescent with the same rate. So we get the
system

d

dt
vt(s) =

{
d
dsvt(s)− pvt(s) + qwt(s) −θ ≤ s < 0
f(vt(0), vt(−θ))− pvt(0) + qwt(0) s = 0

d

ds
wt(s) = pvt(s)− qwt(s) − θ ≤ s ≤ 0. (6.31)

We write the equations in an elementary notation (v(t, s) = vt(s), w(t, s) = wt(s))
∂
∂tv(t, s) = ∂

∂sw(t, s)− pv(t, s) + qw(t, s)
∂
∂tw(t, s) = pv(t, s)− qw(t, s), −θ ≤ s < 0
∂
∂tv(t, 0) = f(v(t, 0), v(t,−θ))− pv(t, 0) + qw(t, 0)
∂
∂tw(t, 0) = pv(t, 0)− qw(t, 0).

(6.32)

Again we linearize at v = w = 0, test with exponentials, and get a differential
equation and three further equations

v̇(s) = (λ+ p)v(s)− qw(s)
(λ+ q)w(s) = pv(s), −θ ≤ s < 0
(λ+ p)v(0) = αv(−θ) + βv(t) + qw(0)
(λ+ q)w(0) = pv(0).

We eliminate the functionw and arrive at a differential equation for v and a boundary
condition,

v̇(s) = μv(s)
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(λ+ p− pq

λ+ q
)v(0) = αv(−θ) + βv(0)

where at this stage
μ = λ+ p− pq

λ+ q
(6.33)

is just an abbreviation. We solve this linear differential equation and insert the solu-
tion into the boundary condition. We find that λ and μ satisfy the equation

αe−μθ + β − μ = 0 (6.34)

which is again (6.28). If we would insert (6.33) into (6.34) then we would get the
characteristic equation for λ. Assume μ is a solution of (6.28). Then μ and λ are
indeed connected by the equation (6.16) simply because (6.33) and (6.16) are equiv-
alent.

Equation (6.27), however meaningful it may be from a modeling point of view, within
the framework of quiescent phases is a system with distinct transition rates while
(6.32) is a system with equal transition rates.

Example 6.7 The difference between the two approaches can be shown in the ex-
ample of the blowfly equation (τ is the duration of the juvenile state)

u̇(t) = b(u(t− τ))e−μ0τ − μ(u(t))u(t) (6.35)

which can be derived from the Gurtin-MacCamy system (Nisbet et al., 1980; Bocharov
and Hadeler, 2000; Hadeler and Bocharov, 2003; Hadeler, 2008b) with adult birth
rate b(u), adult death rate μ(u), and constant juvenile mortality μ0. If there is no qui-
escence in the juvenile state (which amounts to p = q = 0 for the juvenile state and
hence to different rates in the adult and in the juvenile state) then we get the “natural
quiescent extension” in the form

u̇(t) = b(u(t− τ))e−μ0τ − μ(u(t))u(t)− pu(t) + qv(t)
v̇(t) = pu(t)− qv(t). (6.36)

If there is juvenile quiescence with the same rates as in the adults, then we get a
similar system where the factor exp{−μ0τ} is replaced by a larger number κ =
κ(μ0, p, q, τ) which accounts for reduced juvenile mortality due to quiescence. For
large p, q we have κ ≈ exp{−qμ0τ/(p + q)} (which follows immediately from the
properties of Poisson processes).

6.8 Spread in space

6.8.1 Reaction-diffusion equations

The idea of coupled dynamics as in (6.2) can be applied to the parabolic system of
two coupled scalar reaction diffusion equations:

vt = D1Δv + f1(v)− pv + qw
wt = D2Δw + f2(w) − qw + pv.

(6.37)
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If we imitate the procedure of (6.7), replacing f(v) by DΔv + f(v) etc., we end up
with rather clumsy “viscous damped wave equations” where there are spatial deriva-
tives within the nonlinearities, see Hadeler and Lewis (2002). If either D1 and f1 or
D2 and f2 vanish, then one arrives at a single standard damped wave equation. The
limiting equation of (6.37) for large p, q is

ut = (q̃D1 + p̃D2)Δu + f1(q̃u) + f2(p̃u).

The following two systems have been studied in Hadeler and Lewis (2002). In the
first scenario the v particles diffuse and are subject to mortality and the w particles
react,

vt = DΔv − μv − pv + qw
wt = f(w)− qw + pv

(6.38)

(see also Lewis and Schmitz (1996)), while in the second scenario a quiescent phase
is coupled to a reaction diffusion equation,

vt = DΔv + f(v)− pv + qw
wt = −qw + pv.

(6.39)

A single equation in the form of a damped wave equation results if one chooses to
focus on one of the two variables v, w. For the system (6.38) with μ = 0 we choose
w and get the equation, with τ = 1/(p+ q),

τwtt + (1− τf ′(w))wt − τDΔwt + τDΔf(w) = q̃DΔw + p̃f(w), (6.40)

while for (6.39) we choose v and get

τvtt + (1− τf ′(v))vt − τDΔvt = q̃DΔv + q̃f(v). (6.41)

These equations have features of damped wave equations (terms like Δwt correspond
to viscous damping) but they are parabolic because of the (almost) equivalence with
(6.38) and (6.39), respectively. These systems have been studied in bounded domains
with zero Dirichlet boundary conditions in Hadeler and Lewis (2002).

The problem of traveling fronts and the spread rate has been discussed in Lewis and
Schmitz (1996) and Hadeler and Lewis (2002). Traveling waves are those solutions
that can be expressed in terms of a single moving reference frame z = x − ct. The
spread rate is the speed at which a locally introduced population spreads spatially.
The two problems are connected. Traveling waves connecting the trivial steady state
to a nontrivial steady state describe population spread with speed c. In the case that
the nonlinear growth functions satisfy a convexity constraint (no Allee effect), the
cooperative nature of the interaction dynamics in (6.38) and (6.39) means that the
traveling wave solutions and spread rates can be fully characterized using the meth-
ods of Weinberger et al. (2002). Specifically, there exists a family of traveling wave
solutions for various speeds c. Solutions exist for all speeds c greater than or equal
to a minimum speed c∗. The minimum traveling wave speed is also the spread rate
for a locally introduced population. Finally, the value of c∗ can be determined by
linear analysis about the leading edge of the invasive wave. Details are in Lewis and
Schmitz (1996) and Hadeler and Lewis (2002).
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6.8.2 Reaction-transport equations

In Hillen (2003) transport equations for spatial spread have been coupled to qui-
escent phases. Transport equations present alternative models to classical reaction-
advection-diffusion equations, if detailed information about the movement of indi-
viduals is available. Modern tracking techniques, such as GPS data for collared mam-
mals or birds, allow one to follow the paths of individuals and measure their mean
speed, mean rate of change of direction and the distribution of turning angles. These
measurements can be directly used for transport equations.

Besides moving, individuals will also stop movement to rest, to find shelter, or to
forage. To model the dynamic between activity and resting the transport equation
is coupled to an equation for the resting compartment, whereby the rate of stop-
ping is spatially dependent. Let u(t, x, s) denote the density of moving individuals,
where t ≥ 0 denotes time, x ∈ IRn space and s ∈ V velocity. The set of possi-
ble velocities, V , is assumed to be a spherical shell and |V | denotes its Lebesgue
measure. The resting compartment is denoted by r(t, x) and the total density by
N(t, x) =

∫
V u(t, x, s)ds+r(t, x). Resting individuals that start moving can choose

any velocity uniformly in V , hence a factor |V |−1 shows up in the corresponding
transition term. The stopping rate p(x) is spatially dependent, while the rate q at
which individuals start moving is constant. Also the turning rate μ > 0 is assumed
to be constant. The distribution of the newly chosen velocity is given by T (s, s′) .
The functions l(N), g(N) denote loss and gain-terms, respectively. The full transport
model reads

ut + s · ∇u = −μu+ μ

∫
V

T (s, s′)u(., ., s′)ds′

−p(x)u +
q

|V |r − l(N)u (6.42)

rt = p(x)
∫

V

u(., ., s)ds− qr + g(N)r − l(N)r.

Notice that the arguments of the functions have been suppressed, except in the in-
tegrals. The turning kernel T (s, s′) needs to satisfy certain positivity conditions as
described in detail in Hillen (2003). It is sufficient if T is positive and square inte-
grable.

A useful tool to study transport equations is the so called “parabolic limit” (see Alt,
1980; Hillen and Othmer, 2000; Dickinson, 2000; Hillen, 2003; Chalub et al., 2004).
This is in fact a scaling method for large speeds and large turning rates, or equiva-
lently, for macroscopic time and space scales of the form

τ = ε2t, ξ = εx

for a small parameter ε > 0. The details of the formal asymptotics and the corre-
sponding convergence estimates are given in the literature cited above. Here, we only
summarize the results. Up to leading order, the total population N(τ, ξ) satisfies the
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parabolic reaction-advection-diffusion equation

Nτ = ∇ξ

(
Dpq(ξ)∇ξN −Dpq(ξ)

N

q + p(ξ)
∇ξp(ξ)

)

+
p(ξ)

p(ξ) + q
g̃(N)N − l̃(N)N, (6.43)

where Dpq(ξ) denotes the diffusion tensor

Dpq(ξ) =
q

|V |(p(ξ) + q)

∫
V

vFp(ξ)v dv;

Fp(ξ) is a pseudo inverse:
Fp(ξ) =

(Lp|〈1〉⊥
)−1

and Lp denotes the effective turning operator

LpΦ(s) = −(μ+ p(ξ))Φ(s)

+(μ+ p(ξ))
∫

V

(
μ

μ+ p(ξ)
T (s, s′) +

p(ξ)
|V |(μ+ p(ξ))

)
Φ(s′)ds′

and 〈1〉 ⊂ L2(V ) denotes the linear subspace of functions constant in s ∈ V . The
functions g̃, l̃ are rescaled versions of g = ε2g̃, l = ε2 l̃, ensuring that death and repro-
duction occur on the macroscopic scale, and not on the scale of individual movement.

Remarks: The diffusion limit in (6.43) is remarkable in several ways:

1. The procedure quite naturally leads to nonisotropic diffusion expressed through
the diffusion tensorDpq. In many situations, however, the diffusion will be isotro-
pic in which case Dpq = dpqI with a diffusion constant dpq and the identity I .
For example, if individuals have a constant speed σ > 0, V = σSn−1 and change
of direction is uniformly distributed, T (s, s′) = |V |−1 then, as shown in Hillen
and Othmer (2000), we obtain isotropic diffusion with

dpq =
σ2

n|V |
q

(p(ξ) + q)(p(ξ) + μ)
.

More general conditions for isotropy and examples for nonisotropic diffusion are
given in Hillen and Othmer (2000) and Othmer and Hillen (2002).

2. It is remarkable that (6.43) shows a taxis term including ∇p(ξ). This is a drift
term in direction of higher levels of p(ξ). Since the stopping rate, p(ξ), is larger
in favorable environments (more food, better shelter), the corresponding term de-
scribes taxis towards favorable environments. Reaction-diffusion equations with
drift towards favorable environments were studied by Cosner and Lou (2003). Al-
ternatively, the appearance of this additional taxis term can be directly motivated
from a quiescent-diffusion equation, where the stopping rate is spatially depen-
dent:

vt = DΔv − p(x)v + qw
wt = p(x)v − qw, (6.44)
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where v describes individuals moving in space and w individuals at rest. Notice
that this model corresponds to model (6.38) and model (6.39) for f = 0 and
spatially dependent stopping rate p(x).
For large transition rates p, q we obtain the limiting equation

ut = DΔ
(

qu

q + p(x)

)

= D∇
(

q

q + p(x)
∇u− qu

(q + p(x))2
∇p(x)

)
,

which shows the same taxis term as in (6.43).

3. To look at steady states that are induced by the taxis term, we assume there is no
birth and death (f = g = 0). We consider a one-dimensional version of (6.43) on
an interval [0, l] with homogeneous Neumann boundary conditions. We find that
for steady states we have the relation

N(ξ) = κ(q + p(ξ)),

with an integration constant

κ =

∫ l
0 N(ξ)dξ

ql +
∫ l

0 p(ξ)dξ
.

This means that the shape of N(ξ) follows the shape of the stopping rate, i.e.,
N(ξ) and p(ξ) have common maxima and minima.

6.9 Applications

Applications of systems with quiescent phases have been mentioned throughout the
previous sections. Here we specifically discuss applications to the river drift paradox,
to radiation treatment of tumors, to engineered bacteria and to infectious diseases.

6.9.1 The river drift paradox

The “river drift paradox” describes the phenomenon that various animal species per-
sist in rapidly flowing rivers although continually individuals are drifting down the
river. Apparently this problem is of a kind that showed up in Example 6.1 and also
in a chemostat with washout.

Pachepsky et al. (2005) investigated the interaction of a benthic reproducing phase
w and a moving phase v where individuals move (by diffusion) and can be carried
away by convection. In a nondimensional form their model reads (compare (6.38))

vt = vxx − νvx − pv + qw
wt = w(1 − w) + pv − qw, (6.45)
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where ν denotes the drift velocity.

The river drift paradox can be approached in several ways. First one can consider
a classical critical domain size problem with advection. When the link between the
stationary and the mobile phases is weak (q < 1) then wt remains positive for small
w, and the population persists unconditionally. However, when the link is strong
(q > 1), then persistence depends upon both the advection speed ν and the domain
(river) length L. A necessary condition for persistence is that the advection speed lie
below a critical threshold (ν < ν∗ = 2

√
p/(q − 1)). When this threshold condition

is satisfied, the critical domain size approach employs the domain lengthL as a bifur-
cation parameter for existence of nontrivial solutions (i.e., persistence). Reasonable
boundary conditions for the moving phase are zero flux at the top end of the stream
(x = 0) and hostile at the bottom end of the stream (x = L) (Pachepsky et al., 2005).
The condition for persistence is then

L >
2√

4p
q−1 − ν2

tan−1

(
−1
ν

√
4p
q − 1

− ν2

)
. (6.46)

Second, the authors consider spread in a river of infinite length, and calculate up-
stream and downstream traveling wave speeds. The methods for this traveling wave
analysis are similar to those outlined in Lewis and Schmitz (1996) and Hadeler and
Lewis (2002), but now with advection included (Pachepsky et al., 2005). The anal-
ysis can be connected to the critical domain size analysis through the threshold ν∗.
A positive upstream traveling wave speed is conditional upon ν < ν∗. At ν = ν∗

the upstream invasion stalls. Thus, quite separate approaches, traveling wave speeds
and critical domain size, are linked together by the critical advection speed. This ap-
proach has been extended to include generalized dispersal behavior in Lutscher et al.
(2005).

Pachepsky et al. (2005) also derived the limiting equation under rapid transfer be-
tween mobile and stationary phases (p, q → ∞, with q/p = ρ), which they call the
“second Fisher approximation” for the total density of individuals,

(1 + ρ)ut = u(1− u) + ρuxx − ρνux. (6.47)

They use the limiting equation to find simple conditions for persistence and inva-
sion under the assumption of strongly linked mobile and stationary populations. In
agreement with our general results the authors state that “... finite residence time on
the benthos (p, q < ∞) enhances persistence of a population.” (Pachepsky et al.,
2005, page 12). Also, in this problem the resting phase (immobile phase) stabilizes
the dynamics.

6.9.2 Spread of genetically engineered microbes

Genetically engineered microbes (GEMs) can provide useful services in agriculture,
and field trials are likely to increase in the future. Services include, for example, an
extension of the growing season. This is due to prevention of ice nucleation on crops
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by engineered “ice-minus” bacteria (Lewis et al., 1996). However, concerns remain
regarding proliferation and spread of GEMs, as well as the potential for ecosystem
disruption and gene transfer.

Lewis et al. (1996) modeled spread of GEMs in the presence of competition with
wild bacteria. For example, the wild counterpart to “ice-minus” bacteria is a naturally
occurring “ice-plus” strain that nucleates ice crystals. While a traditional ecological
approach would emphasize details of local competition, a key to modeling spread of
GEMs is inclusion of a mobile compartment, describing aerosols, or surface water
and groundwater suspensions, where there is rapid movement but high mortality.
Here the model is

∂sw

∂t
= sw(1− sw − γwse) + pmw − qsw

∂se

∂t
= rse(1− se − γesw) + pme − qse

∂mw

∂t
= −μwmw − pmw + qsw +

∂2mw

∂x2

∂me

∂t
= −μeme − pme + qse + δ

∂2me

∂x2
,

(6.48)

where s and m refer to stationary and mobile compartments, and subscripts w and e
denote wild and engineered strains. Note that spatial spread of strains requires linked
growth and dispersal and hence nonzero transfer rates q and p.

The simplest case, which we consider here, is where wild and engineered strains are
identical in all aspects but their ability to compete (r = δ = 1 and μw = μe = μ).
The case with competitive exclusion of one strain by another requires one competi-
tion coefficient larger than one, and the other less than one. When one strain is only a
slightly better competitor, it is reasonable to also assume γw + γe ≈ 2. Without loss
of generality we consider the case where the engineered strain is the better competi-
tor (γe < 1). Although this may not always be true, it is the case of interest when it
comes to the spread of GEMs.

We start by considering the limiting equation, where there are strong, balanced links
between sedentary and mobile classes (q, p → ∞, with q/p = ρ). Here the system
(6.48) simplifies to a modified spatial Lotka-Volterra competition equation∗

(1 + ρ)
∂sw

∂t
= sw [1− ρμ− sw − γwse] + ρ

∂2sw

∂x2

(1 + ρ)
∂se

∂t
= se [1− ρμ− se − γesw] + ρ

∂2se

∂x2
.

(6.49)

In this case the approach of Okubo et al. (1989) can be employed: addition of the

∗ Note the typo in the equivalent equations (16) and (17) from Lewis et al. (1996).
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two equations and application of the condition γw + γe = 2 yields a single equation
of Fisher form for the sedentary individuals

(1 + ρ)
∂s

∂t
= s [1− ρμ− s] + ρ

∂2s

∂x2
. (6.50)

Although the sedentary individuals do not actually diffuse, their behavior is con-
sistent with the diffusion-type term in equation (6.50), because they are coupled
strongly to a diffusive mobile component. This equation has a globally attracting
invariant manifold s = 1 − ρμ, which is positive, providing the growth during time
spent in the stationary class exceeds mortality during time spent in the mobile class.
We expect initial conditions to start close to this invariant manifold, with sw ≈ 1−ρμ
and se ≈ 0 except at a local perturbation which corresponds to localized introduc-
tion of the engineered strain. Hence it is reasonable to consider the case of population
spread on the invariant manifold. Substitution of se = 1 − ρμ− sw into the second
of equation (6.49) yields another Fisher type equation

∂se

∂t
=

(1− ρμ)(1− γe)
(1 + ρ)

se

[
1− se

1− ρμ
]

+
ρ

1 + ρ

∂2se

∂x2
, (6.51)

with asymptotic spread rate

c∗ = 2

√
(1− ρμ)(1 − γe)ρ

1 + ρ
. (6.52)

Note that spread is slowed by interstrain competition γe and mortality μ, but is non-
monotonic with respect to the transfer rate balance ρ = q/p. Indeed, the worst,
or speediest, invasion occurs when the mobile to stationary transfer rate slightly
exceeds the stationary to mobile rate so that p = q(1 + 2μ), with speed c∗ =√

(1− γe)/(1 + μ). As the mortality rate in the mobile class, μ, approaches zero,
the speed simplifies to c∗ =

√
1− γe, which is exactly half the rate calculated by

Okubo et al. (1989) for the spread of a competitively superior species into another
via Lotka-Volterra with simultaneous competitive growth and diffusion. The halving
of the spread rate comes from differing original assumptions. Rather than allowing
for simultaneous competitive growth and diffusion, equation (6.48) assumes that in-
dividuals either compete and grow, in one class, or diffuse, in another.

The case with weakly linked mobile and stationary classes can be understood using
similar mathematical methods (see Lewis et al. (1996), Appendix). The invariant
manifolds are found by adding the first two and second two equation of (6.48), under
the assumption γw + γe = 2, to obtain a reduced system

∂s

∂t
= w(1 − w) + pm− qs

∂m

∂t
= −μm− pm+ qs+

∂2m

∂x2
.

(6.53)

Here the variables s = sw + se and m = ms + me represent the total number of
microbes, both genetically engineered and wild, in the stationary pool and the mobile
pools, respectively. Spatially homogeneous steady-state solutions to this system are
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(0, 0) and (s̄, m̄), where

s̄ =
μ(1− q) + p

μ+ p
m̄ =

q

μ+ p
w̄. (6.54)

Contracting rectangle arguments (Smoller, 1982) show that (s̄, m̄) is a globally stable
equilibrium point for (6.53) (Schmitz, 1993), and hence sw +se = s̄ andms +me =
m̄ is a globally attracting invariant manifold. On this manifold, the invading GEMs
obey

∂se

∂t
= se(1 − se − γe(s̄− se)) + pme − qse

∂me

∂t
= −μme − pme + qse +

∂2me

∂x2
.

(6.55)

Because s̄ < 1 (6.54) and γe < 1, equation (6.55) describes logistic growth in
the stationary state and switching between sedentary phase and a mobile state (see
Section 6.8.1). Here the spread of GEMs can be calculated as for equation (6.38). As
with the strongly coupled case (above), zero mortality (μ = 0) and balanced transfer
rates q and p lead to a spread rate of c∗ =

√
1− γe. Figure 2 of Lewis et al. (1996)

shows spread rates for nonzero μ and unbalanced transfer rates.

6.9.3 Tumor growth: The linear-quadratic model

We can use the mechanism of quiescent dynamics to derive the linear quadratic
model in cancer radiation treatment. There it is assumed that the surviving fraction
S(D) of a tumor after radiation treatment with dose D(t) can be expressed as

S(D) = e−αD(t)−βD(t)2 , (6.56)

where α and β are nonnegative constants. It has been shown that this model fits many
data really well (Wheldon, 1988).

It is known that proliferating cells can enter a quiescent phase to eventually enter the
cell cycle again. The quiescent phase is of particular interest in radiation treatment of
cancer because radiation is most damaging to highly active proliferating cells. Qui-
escent cells are hit by radiation as well but they have time enough to repair DNA
damage and recover. Hence for treatment to be successful it is important to estimate
the quiescent phase. Cancer control cell cycle models were studied by Dawson and
Hillen (2005) and Swierniak et al. (1996) and many others. Here we study the fol-
lowing model.

LetN(t) denote the active tumor cells andR(t) the resting tumor cells. It is assumed
that cells randomly switch between the active and quiescent phases. An alternative
model, where cells after proliferation directly enter the quiescent phase, has been
studied in Dawson and Hillen (2005). Here we study:

Ṅ = μN(1−N/K)− pN + qR− (A1 +BD(t))Ḋ(t)N,
Ṙ = −qR+ pN −A2Ḋ(t)R.
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The growth of the tumor is modeled through a logistic term. Alternative models use
a Gompertz law, the Bernoulli equation or a von Bertalanffy growth law (see Gyllen-
berg and Webb (1989), Britton (2003)). We describe the radiation damage through
the hazard function h(t) = (A1 + 2BD(t))Ḋ(t) (see Zaider and Minerbo (2000)),
where D(t) is the total dose and Ḋ(t) is the dose-rate. The parameters A1 and A2

describe the radiation damage caused by single hit events while the coefficientB de-
scribes double hit damage. It is assumed that quiescent cells can recover from double
hit events, since they have time to repair the damage. We also assume that A2 < A1.

The limiting equation reads

u̇ = q̃u(1− q̃u/K)− ((q̃A1 + p̃A2)Ḋ(t) + q̃BḊ(t)D(t))u. (6.57)

To derive the linear-quadratic model (6.56) we assume that cell proliferation is slow
on the time scale of radiation treatment. Hence we study

u̇ = −((q̃A1 + p̃A2)Ḋ(t) + q̃BḊ(t)D(t))u (6.58)

which has the solution

u(t) = u(0) exp(−αD(t)− βD(t)2),

with
α = q̃A1 + p̃A2, β = q̃B.

The α/β-ratio is used in clinical applications to choose the best radiation protocol.
It has been observed experimentally that cells in a long cell cycle have a large α/β-
ratio, while cells in a short cell cycle have a low α/β-ratio. The model shows that α
is a weighted mean of A1 and A2, while β is proportional to q̃ and B. Then a large
α/β-ratio corresponds to small q̃, or small B. Small q̃ implies that a small fraction
of the population is in the active compartment.

6.9.4 Infectious diseases

Introducing quiescent phases in the classical Kermack-McKendrick model amounts
to assuming that individuals avoid contacts at random intervals (Castillo-Chavez and
Hadeler, 1995; Hadeler and van den Driessche, 1997). One obtains

Ṡ = −βSI
N
− p1S + q1W

İ = β
SI

N
− αI − p2I + q2Z

Ṙ = αI + αZ

Ẇ = p1S − q1W
Ż = −αZ + p2I − q2Z
N = S + I +W + Z + R
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where S denotes active susceptible, I active infected, R the recovered, and W,Z in-
dividuals that temporally leave the risk group. The parameter β denotes the infection
rate and α is the recovery rate. Here one can assume thatN is constant. Hence it does
not matter whether one uses mass action kinetics or standard incidence.

However, the interpretation of a quiescent phase matters. It makes a difference if
people avoid social contact at all or just contacts that could cause transmission of
the disease. It also matters if the total number of contacts is reduced or if it remains
constant and hence the same number of contacts is distributed in the smaller then
active population.

The basic reproduction number is

R0 =
β

α

q1
p1 + q1

q2 + α

p2 + q2 + α
. (6.59)

In view of d(S+I+W+Z)/dt = −α(I+Z) it is evident that eventually I+Z → 0.
From d(S+ I)/dt = −βSI it follows that the total number of potential susceptibles
S +W is decreasing. Hence on limit sets S +W is a constant and p1S = q1W . In
contrast to the classical case there is no explicit formula or equation for the proportion
of individuals which have never been infected.

Hence the model behaves essentially as the classical Kermack-McKendrick model
but the quiescent phase reduces the basic reproduction number. Hadeler and van den
Driessche (1997) discussed more general (and more realistic) situations where the
rates depend on the prevalence of the disease.

6.9.5 Contact distributions versus migrating infective

Traditionally, the spread of epidemic diseases in space has been modeled in different
ways, by contact distributions (Kendall) and by migrating individuals (Noble). A
contact distribution describes the infectious force which one infectious individual at
position y exerts upon a susceptible individual at position x. The contact distribution
is a nonnegative symmetric convolution kernel k with k ∗ 1 = 1,

(k ∗ u)(x) =
∫

IRn
k(x− y)u(y)dy.

The model assumes the form

St = −β(k ∗ I)S
It = β(k ∗ I)S − αI. (6.60)

On the other hand, one can model the motion of individuals by migration processes
via

St = −βIS + dS(k ∗ S − S)
It = βIS − αI + dI(k ∗ I − I) (6.61)

where again k is a nonnegative symmetric convolution kernel with k ∗ 1 = 1 and
dS , dI are diffusion coefficients, typically different for susceptible and infected. For
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instance, in rabies models one assumes that only infectious individuals move, dS =
0.

The contact model and the diffusion model describe different scenarios. In the con-
tact model each individual “sits” at some location and meets other people at other
locations with probability of contact decreasing with distance. The diffusion model
is based on the idea that people move around and get into contact with other people.
Of course this model does not imply that every person has a home base to which
he/she will eventually return.

In either model, one can perform a diffusion approximation (using that the kernel is
normalized and symmetric)

k ∗ u ≈ u+
1
2

∫
IRn

k(z)z2
1dzΔu. (6.62)

Then the contact model (6.60) becomes Kendall’s model and the diffusion model
(6.61) becomes a standard system of reaction diffusion equations.

In practice the contact models and the migration models show very similar behavior.
In order to compare the two approaches we consider the SIS case for both models.
The contact model:

St = −βS(I + σIxx) + αI

It = βS(I + σIxx)− αI
and thus

It = β(1 − I)(I + σIxx)− αI.
The diffusion model:

St = −βSI + αI +DSxx

It = βSI − αI +DSxx

and thus
It = β(1 − I)I − αI +DIxx.

Notice that this last equation is essentially the logistic equation with diffusion. We
get the wave speed simply by linearizing at the leading edge (this argument can be
made rigorous):
c0 = 2

√
(β − α)βσ for the contact model.

c0 = 2
√

(β − α)D for the diffusion model.
Hence the two formulas agree if we put D = βσ.

The question is whether these are just two similar but different models or whether
there is some deeper connection. One connection can be made by designing a larger
model for two types of stochastically moving individuals, the “quiescent” who move
only in their neighborhood and the “active” who travel far. Then the two models
before can be obtained as limiting cases of a larger model. Such a larger model is

St = −S(β1I
(1) + β2I

(2))
I
(1)
t = δ(k̃ ∗ I(1) − I(1))− αI(1) + qI(2) − pI(1)

I
(2)
t = S(β1I

(1) + β2I
(2))− αI(2) − qI(2) + pI(1)

(6.63)
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with a nonnegative convolution kernel k̃, k̃ ∗ 1 = 1 and a coefficient δ > 0.

There are susceptible S and infected individuals of two kinds, migrating I(1) and
sedentary I(2). The parameters β1 and β2 are the transmission rates for sedentary
and migrating infected individuals, respectively. A sedentary susceptible can be in-
fected by either an infected individual residing at the same position or by a passing
migrating infected. I = I(1) + I(2) is the total number of infected individuals.

Hadeler (2003) showed that different scalings of this system lead to limiting models
with contact distributions (6.60) or to limiting models with migrating infective (6.61).
The migration models correspond to the situation of slow progression of the disease
within the population while contact models describe spread by rapid excursions of a
few highly infectious individuals.

Hence migration models and contact models can be seen as limiting cases of models
with different levels of mobility.

We sketch a proof of (6.62) for normalized symmetric kernels with existing second
moments. By Taylor expansion we find∫

IRn
k(x− y)u(t, y)dy =

∫
IRn

k(z)u(x+ z)dz

=
∫

IRn
k(z)(u(x) + ux(x)z +

1
2
zTuxx(x)z + o(|z|))dz

= u(x) +
1
2

∫
IRn

zTuxx(x)z + o(|z|).

We have used k ∗ 1 = 1; the ux term goes away because of symmetry; uxx is the
Hessian matrix. Now∫

k(z)zTuxx(x)zdz =
∫
k(z)

∑
ij

uxixj
(x)zizjdz

and ∫
k(z)zizjdz =

{
0 i �= j∫
k(z)z2

i dz i = j

and, because of the symmetry,∫
k(z)z2

i dz =
∫
k(x)z2

1dz.

Hence ∫
k(z)zTuxx(x)zdz =

∫
k(z)z2

1dz (Δu)(x).

6.10 Discussion

Throughout this chapter, biological systems have emerged in which quiescent phases
drastically change the dynamics quantitatively or even qualitatively. Generally, qui-
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escent phases tend to slow the dynamics near equilibria, stabilize equilibria against
the onset of oscillations, and enhance persistence of certain species or types.

The effect of quiescent states may be significant with respect to outcomes in specific
biological systems. In fact, quiescent phases can have a quite surprising effect on the
population as a whole. For example, quiescent states can induce taxis terms in move-
ment equations. The extinction of populations (through washout) in river ecosystems
can be prevented when there is a stationary phase weakly coupled to the mobile state.
Cancer tumors can resist radiation treatment when cells have refuge in a quiescent
state, which needs to be accounted for in radiation treatment planning. A similar ef-
fect is known for antibiotic resistance in bacteria. Balaban et al. (2004) have used a
model involving a quiescent state (they called it "persisters") to fit survival data of
E. coli bacteria which were exposed to the antibiotic ampicillin. They show that the
existence of a persisting compartment can explain population survival and re-growth
after treatment.

Moreover, our systematic approach to quiescent phases solves the longstanding dis-
crepancy between diffusion and contact distribution models for spatial spread of epi-
demics, which can now be understood in terms of different scaling limits of a larger
model with quiescence. It further highlights a risk of potentially erroneous conclu-
sions about the joint effects of quiescent phases and delays.

In general, systems with quiescent phases have twice the dimension compared to sys-
tems without. Hence the mathematical analysis of such systems may become quite
cumbersome (in particular in the transition from dimension two, where phase plane
analysis is available, to dimension four). The methods and examples presented here
provide tools to handle such systems provided the qualitative behavior of the systems
without quiescent phases is well understood. However, further mathematical chal-
lenges remain, in particular to derive a solid theory for infinite dimensional systems,
such as PDE’s and to understand the effects of quiescent phases on global behavior,
specifically the existence of compact global attractors.
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Spatial scale and population dynamics
in advective media
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Abstract. We review recent research on mathematical models of populations that disperse
in media with net unidirectional flow. Examples include drifting invertebrates in rivers
and streams, marine organisms whose larvae are dispersed in local longshore currents, and
plants with wind or waterborne seeds. We focus on theory relating to two issues: condi-
tions for population persistence and biotic responses to abiotic forcing. For both issues, we
identify key length scales that impact qualitative dynamics. Population persistence in an
idealized, spatially homogeneous, infinitely long system is commonly guaranteed if inva-
sion waves can advance upstream. Demographic and dispersal characteristics of organisms
in finite systems determine the “critical domain size,” i.e., the minimum system size for
population viability. Spatial heterogeneity introduces a number of scenarios where popu-
lation persistence involves source-sink dynamics. Interpretation of many aspects of steady
state and transient responses to environmental forcing involves the “response length,” a
measure of the distance over which the impact of a point-source disturbance is felt. The re-
cent advances have implications for future theoretical, experimental and field work, along
with policy development in the areas of conservation biology and environmental assess-
ments.

7.1 Introduction

Many organisms live in advective media, defined as media possessing either a net
unidirectional flow or a complex velocity field with local unidirectional flow due to
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© 2010 by Taylor and Francis Group, LLC



130 SPATIAL SCALE AND POPULATION DYNAMICS

features such as vortices. Examples include drifting macroinvertebrates in rivers and
streams, marine organisms whose larvae are dispersed in local longshore currents,
and plants with wind or waterborne seeds. If the directional bias in dispersal is strong,
the theory underpinning many fundamental questions in population ecology may no
longer hold, or at least requires careful re-interpretation. Our aim in this essay is
to review recent developments concerning population dynamics in advective media,
with particular focus on two issues: conditions for population persistence and biotic
responses to abiotic forcing. Although we hope that the new theory will have broad
applicability, our primary emphasis is on population dynamics in rivers and streams.

We pay particular attention to the interrelationship between processes operating at
multiple spatial and temporal scales. Establishing such links empirically is com-
monly impossible, even with large quantities of data and sophisticated statistical
approaches (Diehl et al. 2008). Our essay rests on the premises that determining
the underlying ecological mechanisms is an essential prerequisite to understanding
these links, and that simple mathematical models can help elucidate the broader im-
plications of mechanisms found to occur at one particular scale in space or time.

One recurring theme in the essay will be characteristic lengths that influence pop-
ulation dynamics in advective systems. Each of our main themes introduces a key
length scale. Population persistence commonly requires that a river be longer than
the critical domain size (defined in Section 7.3), or that there is a “source” region
that exceeds a critical length. Many aspects of the population response to forcing can
be related to the response length (defined in Section 7.4).

We use two relatively simple, single-species models to illustrate most of our points.
These are introduced in Section 7.2. Section 7.3 introduces the so-called “drift para-
dox” and reviews requirements for population persistence. Section 7.4 focuses on
responses to abiotic forcing for both steady-state and transient situations. We end
with a brief discussion, where we suggest directions for future theoretical and empir-
ical studies.

7.2 Models

Speirs-Gurney model

Many properties of populations in advective systems can be conveniently described
using “strategic,” single species models. The simplest of these are reaction-advection-
diffusion models, the formulation of which is well covered in many texts (Cantrell
and Cosner 2003; Edelstein-Keshet 1988; Gurney and Nisbet 1998; Kot 2001; Mur-
ray 1989; Nisbet and Gurney 1982; Okubo 1980; Shigesada and Kawasaki 1997).
A key study of population dynamics in rivers and estuaries by Speirs and Gurney
(2001), subsequently referred to as SG, assumed logistic population growth with ad-
vection and diffusion. This model was generalized by Lutscher et al. (2006), who
added some simple hydraulics, and allowed for spatial variability in both the envi-
ronment and in biotic parameters.
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The SG model is a one-dimensional representation of a river (the x-axis) with x = 0
representing the “source,” and the point x = L the “mouth”. Water in the river flows
at a uniform speed v. A population of organisms, with density n(x, t) at location x
at time t, has a local per capita growth rate (births - deaths) rf(n) where f(0) = 1
and f ′(n) ≤ 0 for all n ≥ 0 . Thus r represents the intrinsic growth rate of a small
population and f(n) characterizes density dependence, if present. Organisms are ad-
vected by the stream at a uniform velocity v, and, in addition, move randomly (due
to individual behavior and/or small-scale turbulence) with diffusion coefficient D.
The local population at any point changes due to the combined effects of reproduc-
tion and mortality, advection, and diffusion, the mathematical representation of this
combination being the partial differential equation

∂n

∂t
= rnf(n)︸ ︷︷ ︸

population growth rate

− v
∂n

∂x︸︷︷︸
advection

+ D
∂2n

∂x2︸ ︷︷ ︸
diffusion

for 0 < x < L. (7.1)

A “zero-flux” boundary condition is assumed at the point x = 0. Individuals that
leave the river at its mouth are assumed not to return. Speirs and Gurney implemented
this by assuming that the boundary x = L is “hostile” or “absorbing,” so that

vn(0, t)−D
[
∂n

∂x

]
x=0

= 0, and n(L, t) = 0, for all t ≥ 0. (7.2)

There are other representations of the boundary condition at the river mouth (Ballyk
and Smith 1999; Fagan et al. 1999); these typically make quantitative rather than
qualitative changes to the results discussed in this essay.

Drift-Benthos model

Many of the organisms that have motivated recent research spend all or part of their
lives on the benthos. Furthermore, in many riverine systems, “storage zones” of es-
sentially stationary water are important (Allen 1995). A model that retains much
of the simplicity of SG, yet recognizes these factors, is the “drift-benthos” (DB)
model, that describes a population of benthic organisms that occasionally enter the
drift where they disperse passively by advection and diffusion (Lutscher et al. 2005;
Pachepsky et al. 2005). This is an appropriate idealization for many aquatic insects.
The model shares many assumptions with a previous model, motivated by the dy-
namics of microbial populations in the gut (Ballyk and Smith 1999).

The DB model uses one partial differential equation (PDE) to describe the dynamics
of the sub-population in the drift, while an ordinary differential equation (ODE) is
used to model the sub-population on the benthos (Table 7.1) because individuals
on the benthos are assumed to be immobile. Reproduction, if included, only occurs
on the benthos. “Emigration” from the benthos occurs at a density-independent, per
capita rate μ, and settlement from the drift to benthos occurs at a rate σ. There are a
number of options for describing recruitment - see Table 7.1 for examples.

Of particular ecological interest is the situation where an organism spends a very
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small fraction of its life in the drift, but moves a significant distance with each
jump. For the DB model (Table 7.1), this corresponds mathematically to the situ-
ation σ →∞; v →∞; with the ratio v/σ and the quantity

√
D/σ remaining finite.

In that limiting situation, Lutscher et al. (2005) showed that the population dynamics
are well approximated by the integro-differential equation shown in Table 7.1. The
average distance traveled in a jump, the dispersal length, is typically close to the
larger of the two quantities v/σ and

√
D/σ, each of which has the units of length.

7.3 Population persistence and the drift paradox

One long-running concern in stream ecology is the so-called “drift paradox,” accord-
ing to which extinction is inevitable in a closed population subject only to down-
stream drift. A physical analogy is the extinguishing of a candle flame in a strong
wind (Straube and Pikovsky 2007). A variety of hypotheses involving some compen-
satory upstream movement have been proposed as resolutions of the drift paradox.
An early hypothesis (Muller 1954; Muller 1982) is that adult insects compensate for
downward drift of the insect larvae through upstream flight before oviposition. This
hypothesis can be generalized to cover a diverse range of upstream movement mech-
anisms without invoking two life stages with opposing dispersal biases. In particular,
sufficiently strong diffusion can lead to persistence (Ballyk et al. 1998; Ballyk and
Smith 1999; Speirs and Gurney 2001), a theme we emphasize in this section of the
essay. A contrasting hypothesis (Waters 1972) was that the paradox would be re-
solved if insects were to reside mainly on the benthos, and only the surplus over the
local carrying capacity would drift downstream. One of our models (DB) points to a
variant on this hypothesis.

Population persistence in an infinitely long river

For an infinitely long river (L → ∞), a necessary and sufficient condition for pop-
ulation persistence in the SG is v < cSG, where cSG = 2

√
Dr. For a proof see Ap-

pendix A of Speirs and Gurney (2001). This result is intuitively appealing, since cSG

is the speed at which an invasion of the species would propagate upstream in an in-
finitely long system in the absence of advection (Fisher 1937); thus a necessary con-
dition for a population to persist is that its tendency to propagate upstream “wins”
over washout by advection. In the absence of diffusion (D = 0), persistence is thus
impossible.

Pachepsky et al. (2005) studied persistence for a closed population described by the
DB model. They identified two situations. First, a sufficient condition for population
persistence is that r > μ, i.e., the local growth rate of a small population exceeds the
emigration rate. This condition has some loose similarity to the Waters hypothesis
(see above), but the analysis shows that persistence depends on the local population
growth rate on the benthos rather than on the carrying capacity. Second, Pachepsky
et al. showed that if this inequality is reversed, population persistence is possible if
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v < cDB where cDB is again the speed of propagation of an invasion wave in a
system with no advection. For the DB model, this speed is given by

cDB = 2
√
Dr

√
σ

μ− r = cSG

√
σ

μ− r ≈ cSG

√
σ

μ
if r� σ, μ. (7.3)

The final approximation in the above equations refers to a biologically plausible sit-
uation where an organism enters and exits the drift many times per generation. In
these circumstances, the ratio σ/μ represents the proportion of time that an animal
spends on the benthos versus the drift, and the persistence condition differs from that
in the SG model only by an easily interpreted numerical factor.

Critical domain size

Several authors (Ballyk et al. 1998; Ballyk and Smith 1999; Speirs and Gurney 2001)
have demonstrated a link between the drift paradox and the classic problem of de-
termining the minimum size for maintenance of a viable population in a region of
space with absorbing boundaries. It is well known that a population with dynamics
given by eq. (7.1), but with zero advection and with absorbing boundaries at both
ends of the system, can only persist if its size exceeds a critical value, proportional
to

√
D/r and commonly called the critical domain size (Kierstead and Slobodkin

1953; Okubo 1984; Skellam 1951). The intuitive ecological interpretation is that for
population persistence, the system must be large enough that, on average, an individ-
ual replaces itself before reaching the absorbing boundary. For a viable population
with a specified intrinsic growth rate that is confined to a region of fixed size, the
implication is that there is an upper bound to the diffusion coefficient.

For both the SG and DB models, advection increases the critical domain size, and
for population persistence in a system of known size, then there is an upper bound to
the diffusion coefficient D that increases with river velocity v. There is also a lower
bound, related to the requirement described above that the population must be able to
propagate upstream. Together, these bounds define a range of diffusivities that per-
mits population persistence.

Spatial heterogeneity

For an infinitely long system, the work described above leads to powerful, intuitive
insight relating persistence to the possibility of upstream invasion. Lutscher et al.
(2006) proved that this intuition remains valid for spatially heterogeneous versions
of the SG and DB model. There is some literature on invasion wave speeds in non-
advective 1-D systems. Shigesada et al. (1986) showed that fine-grained, periodic
spatial variation in growth and diffusive dispersal modifies the Fisher wave speed to
c =
√
raDh, where ra is the arithmetic mean of the intrinsic growth rate, and Dh is

the harmonic mean of the diffusion coefficient. Thus fine scale variation in growth
rates has only a small effect on wave speed whereas fine scale variation in dispersal
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can produce “dispersal bottlenecks” that can slow or even stop the advance (see also
Shigesada and Kawasaki (1997)).

The concept of critical domain size can inform studies of heterogeneous environ-
ments. Van Kirk and Lewis (1997) showed that populations in patchy environments
can persist, and invasion waves can advance, even when the spatially averaged growth
rates predict extinction. Their model involves “bad” (smaller than critical domain
size) patches alternating with “good” (larger than critical domain size) patches; per-
sistence was produced by source-sink dynamics.

More recent work points to another important role for source-sink dynamics; persis-
tence may be possible, even without upstream dispersal, at points downstream of a
population “source”. Straube and Pikovsky (2007) noted that for the SG model with
zero diffusion, an infinitely long tail can persist downstream of a point source (δ -
function). The mechanism is simple - population exported from the source is ad-
vected downstream while simultaneously growing at the intrinsic growth rate. This
mechanism has previously attracted the attention of ecologists (e.g., Holmes 2002;
Reynolds and Glaister 1993). Of greater interest, Straube and Pikovsky also showed
that if some finite region of a stream has sufficiently high diffusion, then population
persistence is guaranteed at all downstream points. The size of this region must ex-
ceed a critical size, the formula for which has intriguing similarity to that for critical
domain size. It can be shown that the same applies for the DB model as well (U.
Feudel, unpublished). In short, the combination of advective motion and spatial het-
erogeneity can produce source-sink dynamics. The implication is that for systems
where diffusion is insufficiently strong to explain population persistence (as in sev-
eral ecological examples discussed by Speirs and Gurney), very distant upstream
sources may be implicated. Guaranteed persistence of the downstream population
can also be achieved when the flow velocity is changing along the river. The simplest
case would be a piecewise change of the velocity which again leads to a critical size
of a region with sufficiently slow flow. This can be related to the concept of “storage
zones” mentioned above.

A contrasting approach to modeling population dynamics in advective systems with
strong heterogeneity follows an approach originally developed for studies of inter-
specific competition (Chesson 2000). The growth rate of a small population is parti-
tioned into terms involving nonlinearities and the (spatial) co-variance of vital rates
with the environment (Melbourne and Chesson 2005; Melbourne and Chesson 2006).
This work yields predictions of the differences between local versus regional scale
dynamics (appropriately defined), but in its present form does not give an estimate
of the length at which the transition occurs. There is an obvious opening for theoret-
ical studies that explore the ideas of Melbourne and Chesson in models with explicit
representations of advective movement.
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7.4 Response to abiotic forcing

Population response to variable environments is a classic theme in theoretical ecol-
ogy, with large literatures relating to both density-independent growth (e.g., Caswell
(2001) and references therein), and to fluctuations near an equilibrium (e.g., Nisbet
and Gurney (2003) and references therein). There is a similarly large body of lit-
erature on the exotic spatio-temporal dynamics that can exist in population models
where a spatially homogeneous, steady state is unstable. However, in advective sys-
tems, there are plausible arguments suggesting that local dynamics will commonly
have a stable equilibrium (Nisbet et al. 1997); for this reason we focus here on
dynamics close to a stable equilibrium state in a spatially homogeneous, or near-
homogeneous, system. We describe the key concepts, using the integro-differential
variant of the DB model with “open recruitment” (Table 7.1).

Steady-state response

In the absence of spatial heterogeneity, a population described by the DB model
would have a stable, spatially homogeneous equilibrium value. Downstream of a lo-
calized perturbation at some point x0, deviations from this steady state population
decay exponentially (proportional to exp[−(x− x0)/LR]). For illustrations and dis-
cussion see Anderson et al. (2005), Nisbet et al. (2007), and Diehl et al. (2008). The
parameter LR, which we call the response length, is a measure of the distance over
which the population perturbation is spread. For the integro-differential version of the
DB model, the response length is well approximated as the mean distance traveled in
the organism’s lifetime.

The steady-state response to arbitrary, spatially extended, environmental variation is
most easily calculated using Fourier analysis. This approach allows us to represent
any arbitrary pattern of spatial variation in the environment as a sum (or integral)
of simple sinusoids with different (spatial) wavelengths LE , and was first applied to
a spatial ecological model by Roughgarden (1974). Roughgarden demonstrated that
for systems with random (diffusive) dispersal, spatial patterns in population density
greatly amplify fine scale environmental variability when dispersal is low, with in-
creasing attenuation as dispersal rates increase. Roughgarden named these responses
tracking and averaging. Tracking and averaging were subsequently studied for other
models (Engen et al. 2002; Gurney and Nisbet 1976). Anderson et al. (2005) stud-
ied tracking and averaging for the DB model with open recruitment, by calculating
population distributions for the idealized circumstance where spatial variation in de-
mographic (i.e., recruitment and mortality) rates or emigration rate is represented as
a simple sinusoid with wavelength LE . In the case of recruitment variation,

R(x) = R̄

(
1 + a cos

(
2πx
LE

))
(7.4)

where R̄ represents the spatial mean of the recruitment rate and the amplitude, a, is
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Figure 7.1 Properties of the steady state population response to environmental forcing at
different spatial wavelengths derived for the integro-differential equation version of the DB
model (Table 7.1). Panels (a) and (b) describe the response to variability in demographic pa-
rameters; panels (c) and (d) describe the response to variability in dispersal rate. The top panels
(a,c) show the ratio of proportional amplitudes (b/a) - defined in the text. The bottom panels
(b,d) show the downstream displacement (LL). The distance units shown on the horizontal
axes scale the wavelengths of environmental variability relative to the response length of the
population. Also shown are the formulae (derived in Anderson et al. (2005) to which the reader
is referred for further details) used to construct the figures. The quantity LD in the equations
is the average distance traveled by an organism in a single jump and is equal to Q/(σA)
(parameters defined in Table 7.1). Adapted from Fig. 3 of Anderson et al. (2005).

the maximum proportional deviation of the recruitment rate from this mean value.
The spatial wavelength LE is a measure of the spatial scale of environmental vari-
ation. They showed that, far from the source, the population distribution is another
sinusoid, but with a different amplitude, b, and displaced by a “lag,” LL from the
original sinusoid (see Fig. 7.1a,b). Explicit expressions, also displayed in Fig. 7.1a,b,
for the amplification (b/a) and lag show that the small scale variations in recruitment
are averaged and the large scale variations are tracked. The pattern is reversed with
spatial variation in the per capita emigration rate from the benthos (Fig. 7.1c,d); in
that situation, small scale variation is tracked and large scale variation averaged. With
both patterns the transition from tracking to averaging occurs at a spatial scale related
to the response length. The analysis can be made more formal by the use of transfer
functions (Nisbet et al. 2007).

Anderson et al. (2006a) and Nisbet et al. (2007) extended this analysis by adding, in
turn, to the basic DB model density-dependence of demographic and dispersal rates,
an immobile resource, and predation by an “ideal-free” predator that disperses to-
wards regions with higher resource levels. In each case, the response length is read-
ily calculated, and it determines the spatial scale at the transition from tracking to
averaging. The implication is that the response length plays a central role in deter-
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mining the population response to environmental variability. It is thus encouraging
that much of the information required to estimate its value (longevity, local emigra-
tion and demographic rates and their functional dependences) is precisely the infor-
mation that is available from traditional small scale experiments (Diehl et al. 2008).
The missing link is typically the distribution of dispersal distances, which is likely to
vary strongly with flow conditions. For one case, a small stream in the Sierra Nevada
mountains in California, Diehl et al. estimated response lengths for many taxa of
aquatic insects to range from meters to hundreds of meters. For stoneflies in a creek
in southern England, Anderson et al. (2005) estimated response lengths ranging from
hundreds of meters to a few kilometers, depending on flow rate.

Transient dynamics

Describing transients is challenging because there is a different transient for every
initial disturbance. Traditional local stability analyses describe the asymptotic dy-
namics of a perturbed system, i.e., dynamics that occur if we wait long enough. A
long-established metric characterizing asymptotic dynamics in a system with a sta-
ble equilibrium is resilience, the ultimate rate of approach to equilibrium (Holling
1973) - for a recent review see Botton et al. (2006). There is a need for an analogous
metric describing the early time course of the transient (Neubert and Caswell 1997).
Thus reactivity is defined as the maximum possible growth rate that could occur im-
mediately following a perturbation; Neubert and Caswell provided a recipe for its
calculation without explicit reference to particular initial conditions. The amplifica-
tion envelope characterizes the complete time course of transients, including how big
they can get and how much time might elapse before asymptotic behavior sets in. A
system with a stable equilibrium may have positive reactivity, implying that an initial
perturbation may grow in magnitude even if it is ultimately dissipated (Neubert and
Caswell 1997; Neubert et al. 2004). Such systems are called reactive.

Anderson et al. (2008) studied these metrics for a number of models of advective
systems, paying particular attention to models incorporating multiple processes that
operate on different time scales (e.g., behavioral versus demographic; nutrient uptake
versus utilization). As in the studies of steady-state response, analysis is facilitated
by using spatial Fourier analysis. For the DB model, each Fourier component obeys a
set of ordinary differential equations (ODEs) to which the original theory of Neubert
and Caswell for nonspatial models can apply (Neubert et al. 2002). Thus, Anderson
et al. were able to investigate how reactivity and the amplification envelope vary
with the spatial wavelength - a powerful way of characterizing “scale dependence”
of these quantities.∗

A number of interesting results emerged. First, a system may be reactive at some

∗ For models with an advective component, the Fourier transformed equations are complex (meaning
they involve

√−1). However, all ecologically relevant quantities of course turn out to be real. Most of
the theory of Neubert et al. (2002) remains applicable if transposed matrices are replaced by Hermitian
conjugate matrices.

© 2010 by Taylor and Francis Group, LLC



138 SPATIAL SCALE AND POPULATION DYNAMICS

spatial scales and not at others. Second, the duration of amplification varies strongly
with spatial scale. For the DB model, there was a striking relationship between char-
acteristics of the amplification envelope and the response length - a long response
length implying that peak amplification was small and occurred fast. Indeed, each
(spatial) Fourier component of the transient response decayed over time at a rate
largely determined by the openness number, defined as the ratio LR/LE (Nisbet et
al. 2007). This clean relationship did not always hold with the consumer-resource
models, probably because interactions in this model can lead to flow-induced insta-
bility (Malchow 1995; Malchow 2000; Rovinsky and Menzinger 1993) - including
nonequilibrium spatial patterns with their own characteristic scale set by model pa-
rameters and unrelated to the response length.

7.5 Directions for future research

In the preceding sections, we surveyed recent theoretical advances relating to per-
sistence of populations in advective media and their response to abiotic forcing. Our
survey highlighted two characteristic length scales - the critical domain size and the
response length - that can guide ecologists in the design of future studies. These
length scales complement the analogous quantities in use in hydrology and in studies
of the transport and turnover of nutrients - for example the “processing length” and
“retention length” (Fisher et al. 1998; Newbold 1992; Newbold et al. 1981). Further
examples are in Table 2 of Anderson et al. (2006b).

These advances have implications for future theoretical, experimental, and field work.
We discuss each of these in turn.

The theoretical work described here is all based on 1-D models, whereas the fluid
environment in the natural environment has obvious 3-D structure in space and time.
The implications of this are poorly understood. There have been a few “strategic”
studies of population persistence in 2-D systems, (e.g., Speirs and Gurney (2001),
Holmes (2002), and Straube and Pikovsky (2007)), including applications motivated
by estuarine dynamics where tidal cycles in the advective components may be strong.
Other studies have been targeted at particular systems, for example a series of studies
of copepod dynamics in the North Atlantic (Speirs et al. 2005; Speirs et al. 2004). The
theoretical and practical issues that arise in such studies are common to many studies
that involve the interplay of physical forcing and population dynamics (Freund et al.
2006; Oschlies and Garcon 1998; Sandulescu et al. 2007), but strong advection may
induce new dynamic patterns.

A bigger challenge is “testing” the theory. Many hypotheses relating to population
dynamics can be tested using carefully designed experiments in microcosms or meso-
cosms, but strong advection introduces major problems relating to spatial scale. We
noted above that even with rather small organisms (aquatic insects), response lengths
are likely to be of order tens or hundreds of meters. This is comparable with, or
longer than all current systems of experimental stream channels. One way around
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this problem is to identify a small system that has some “functional similarity” (Pe-
tersen and Englund 2005) to the system of interest. The experimental system need not
involve the same, or even similar, organisms, if the aim is to test or develop “generic,”
process-based models. The challenge is to design these small experiments so as to be
relevant at relevant larger scales, one technique that can help such design being di-
mensional analysis (Petersen and Englund 2005; Petersen and Hastings 2001). What
matters is that important dimensionless combinations of model parameters take sim-
ilar values in the experimental system and in its larger counterpart. One recent study
(Simpson et al. 2008) illustrates the potential for this approach. Simpson et al. stud-
ies the effects of spatial heterogeneity on upstream and downstream invasion speeds
for periphyton in small experimental streams (a few meters in length). From data in
that paper, we estimate the response length to be of order 10cm. It is tempting to
conjecture that dynamics of invasion waves of periphyton in the small system will
help elucidate processes that are implicated in the dynamics of aquatic invertebrates
(response length of order tens or hundreds of meters) in stretches of streams as long
as a few kilometers.

Direct experimental testing of the models in the field is of course the ultimate chal-
lenge. There are exciting possibilities that involve exploiting the growing body of
data on the effects of stable isotope enrichment in streams. Modeling the dynamics
of a stable isotope within the framework used in this essay is particularly simple if
we assume that the isotope is added to a system at equilibrium, and that the rare
isotope does not disturb this equilibrium. Concentrations of the rare isotope bound
in different system components then obey linear equations with coefficients propor-
tional to the fluxes, a property that has previously been used to help flux estimation
in biochemical networks (Yangimachi et al. 2001) and in ecosystem ecology (Woll-
heim et al. 1999). One encouraging precedent (Wollheim et al. 1999) used a discrete
time model, very similar in spirit to those discussed above to interpret data from a
study of the Kuparuk river in Alaska (Peterson et al. 1997). The assumed food web
is complex (Fig. 1 of Wollheim et al.), but we can reasonably conjecture that simpler
models are possible as some inferred fluxes are very small.

The theory reviewed in this essay has potential applicability to many aspects of
stream, river, and watershed management. One particular problem, assessment of
in-stream flow needs in anthropogenically impacted rivers and streams, has been dis-
cussed in detail elsewhere (Anderson et al. 2006b). Current approaches often utilize
simple hydrological or habitat-association methods which lack feedback relation-
ships among biological components and/or physical biological coupling. Another
major problem concerns understanding “urban footprints” and their environmental
impact on flowing water systems. Here, recent work on the determination of nutrient
uptake lengths has provided some insight (e.g., Gibson and Meyer (2007); Haggard
et al. (2005)). However, the relationship among spatial scales identified by theory
needs to be examined along with a more complete examination of the implication
of increasing or decreasing these “lengths” for environmental quality (e.g., oxygen
profiles, eutrophication - algal blooms or increased macrophyte density clogging wa-
terways and adversely affecting other biological populations (Gucker et al. 2006;
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Scrimgeour and Chambers 2000)). Our hope is that the recent theoretical advances
may facilitate development of new, and better, methodology for investigating popu-
lation viability or ecosystem function in streams and rivers.
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Table 7.1: Equations for the “drift-benthos” (DB) model. The form presented here is
an adaptation of the formalism used by Lutscher et al. (2006).

Variables nB(x, t) = population density (number per unit length) in benthos
nD(x, t) = population density (number per unit volume) in the drift
Q(x, t) = discharge rate (volume/time)
A(x, t) = cross-sectional area of drift
F (x, t) = net flux of water into river (volume/time) - often set to zero

Balance equations A
∂nD

∂t
= μnB︸︷︷︸

emigration

− σAnD︸ ︷︷ ︸
settlement

− Q
∂nD

∂x︸ ︷︷ ︸
advection

+
∂

∂x

(
DA

∂nD

∂x

)
︸ ︷︷ ︸

diffusion

DRIFT

∂nB

∂t
= R︸︷︷︸

recruitment

− mnB︸︷︷︸
mortality

− μnB︸︷︷︸
emigration

+ σAnD︸ ︷︷ ︸
settlement

BENTHOS

∂A

∂t
= −∂Q

∂x
+ F WATER

Integro-differential equation
∂nB

∂t
= R︸︷︷︸

recruitment

− mnB︸︷︷︸
mortality

− μnB︸︷︷︸
emigration

+ σ

∫ L

0

h(x, u)nB(u)du

︸ ︷︷ ︸
settlement

with “kernel,” h(x, u) derived from balance equations

Hydrology Specification of dynamics of A(x, t) - often assumed constant

Boundary conditions QnD(0, t)−DA

(
∂nD

∂x

)
x=0

= 0 Zero flux at x = 0.

nD(L, t) = 0. Absorbing boundary at x = L.

Options R =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

constant open recruitment

rnB local reproduction

rnB(1− nB/K) logistic reproduction

Parameters L River length
D Diffusion coefficient
μ Emigration rate from benthos
σ Settlement rate
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CHAPTER 8

Using multivariate state-space models to
study spatial structure and dynamics

Richard A. Hinrichsen
Hinrichsen Environmental Consulting

Elizabeth E. Holmes
Northwest Fisheries Science Center

Abstract. Routine estimation of stochastic growth rates from population count data can
be badly biased when measurement error is present. For univariate count time series—that
is a time series of population counts from a single site or population—a number of so-
lutions have been developed for this problem. These solutions use a state-space approach
that incorporates a process model and a measurement model. In this chapter, we extend this
approach in order to analyze count data from multiple sites or subpopulations. We show
how a multivariate state-space model can be used in a maximum likelihood framework to
estimate the stochastic growth rates from multisite data. This modeling framework allows
one to take into account the spatial correlation in growth rates or process variability across
multiple sites. We also show how model selection, specifically Aikake’s information cri-
teria (AIC) and a bootstrap variant designed for state-space models, can be used to make
inferences about the underlying population structure. This allows researchers to measure
the data support for alternative models of growth rate and covariance structure within the
population. We apply multivariate state-space modeling to a multisite data set from endan-
gered salmon populations in the Snake River basin.

8.1 Introduction

Populations in nature are rarely unstructured, that is acting as a single, well-mixed,
and random-mating unit. Instead populations are structured by various mechanisms.
One ubiquitous mechanism that structures populations is spatial subdivision—spread
out across multiple sites, populations naturally form subpopulations that covary to a
restricted degree.

In our work as population analysts, we are primarily concerned with risk assess-
ment and forecasting of imperiled populations. Understanding the spatial structure
within a population is important in this context, because spatial structure has a strong
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effect on extinction risk and the degree to which a population is buffered from envi-
ronmental fluctuations. Monitoring data collected for populations of concern reflect
this ubiquitous spatial structure. Such data are typically collected from multiple cen-
sus sites, sites which are often thought to represent subpopulations that are at least
partly independent. Modeling multisite data, however, presents serious challenges
for population analysts. In many cases, monitoring data are limited to simple abun-
dance counts, and data necessary to specify spatial structure—movement patterns or
common environmental drivers—are missing. This hinders the use of mechanistic
spatial models which require knowledge of the movement and the covariance of en-
vironmental drivers throughout a landscape (such as the models used in Lahaye et al.
1994, Dunning et al. 1995, and Schumaker et al. 2004).

Recently, statistical approaches based on time-series analysis and maximum likeli-
hood estimation∗ have been developed to analyze population count data and infer
underlying dynamics (Lindley 2002, Holmes and Fagan 2002, Holmes 2004, Staples
et al. 2004, Dennis et al. 2006). These methods are based on research concerning the
asymptotic distributions of abundance that evolve from stochastic population pro-
cesses (Tuljapurkar and Orzack 1980, Dennis et al. 1991, Holmes and Semmens
2004, Holmes et al. 2007). To date, this research has focused on the analysis of
single population time series and how to deal with multiple sources of variability,
specifically variability from environmental fluctuations and from measurement er-
rors. These approaches use univariate state-space models that incorporate both vari-
ance in population growth due to process error and variance in the observations due
to measurement error.

In this chapter, we extend this theory and present an analytical framework for the
analysis of multisite count data based on multivariate state-space models. This work
has two related objectives. The first objective is to estimate the stochastic growth
rates and variances that drive the dynamics of the population given a known or hy-
pothesized spatial structure within the population. The second objective is to infer
the spatial pattern of synchrony and correlation across sites. The latter objective al-
lows us to make statistical inferences about which groups of sites act as independent
subpopulations with uncorrelated changes in population abundance, which groups of
sites act as independent but correlated subpopulations, and whether the sites appear
to be independent observations of a single population. Figure 8.1 illustrates some
of the different structures that a group of five sites might have: independent with
different growth rates, independent with a shared growth rate and uncorrelated or
correlated variability, and fully synchronized such that they appear to be observa-
tions of a single population. By synchronized, we mean that the sites not only have
correlated changes in abundance but the sites also track each other over time (without
diverging).

The methods described in this chapter are designed to infer the spatial patterns of
synchrony and correlation by disentangling the variability due to measurement error,

∗ Bayesian state-space approaches have also been developed; however, this chapter focuses exclusively
on frequentist approaches and research.
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which causes the appearance of asynchrony and uncorrelation, from the underlying
variability in population counts due to temporal variability in growth rates. How-
ever, we do not model the mechanisms causing these patterns explicitly—rather the
methods look for the consequences: synchrony and correlation. For example, disper-
sal is one mechanism that can synchronize population dynamics. We do not model
movement rather we model the resulting synchrony. Similarly common abiotic en-
vironmental drivers, common exposure to diseases, and a common prey base can
cause correlated growth rates, but we do not model drivers explicitly only the re-
sultant correlation. Determining what mechanisms drive patterns of synchronization
and correlation revealed by the analysis would require separate studies and different
types of data; however the patterns that are revealed may suggest which mechanisms
are more likely and guide further data collection and analysis.

8.2 Multivariate state-space models for multisite population processes

The stochastic exponential model with Gaussian errors is the asymptotic approxima-
tion for a wide-variety of density-independent population processes, including com-
plex age-structured and spatially-structured processes (Holmes et al. 2007). As such,
this model is the foundation of much research on stochastic population dynamics.
Written in log space, this model is

xt = xt−1 + μ+ et, (8.1)

where xt represents the log-population abundance at time t, and μ is the mean rate of
population growth per time step. The process-error term, et, represents the stochas-
tic deviations in population-growth rate through time. The process errors are as-
sumed to have a normal distribution† with a mean of zero and constant variance. The
stochastic exponential model is closely related to the stochastic Gompertz model,
xt = bxt−1 + μ+ et, which is the stochastic approximation for a variety of density-
dependent processes (Ives et al. 2003, Dennis et al. 2006). Although we use the
stochastic exponential process in this chapter, the framework we present can be used
for a stochastic Gompertz process also.

Suppose that instead of a single population, there are m subpopulations, which to-
gether comprise the total population. We can model the dynamics of this type of
population using a multivariate stochastic exponential model:

Xt = Xt−1 + B + Et, (8.2)

where Xt is anm×1 vector of log abundance in each of them subpopulations at time
t. B is an m × 1 vector of the underlying stochastic growth rates, μ1, μ2, . . . , μm,
in each of the m subpopulations. The process-error term, Et, is an m × 1 vector of
the serially uncorrelated stochastic deviations in each subpopulation’s growth rate at
time t. We assume that the process errors can be correlated between subpopulations

† The normality assumption arises not from convenience but from the multiplicative nature of population
growth. As a result, the error terms in a process become normal (in log space) over multiple time steps.
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Figure 8.1 Some of the different spatial structures possible for multisite data. The μ in the
figures refers to the subpopulation’s stochastic growth.

by specifying that Et has a multivariate normal distribution with a mean of zero and
an m×m covariance matrix Q.

Monitoring data also contain variance due to measurement error, and this will con-
found the estimation of Q—the variance due to process error. Recent methods for
addressing measurement error in population data use state-space models, which com-
bine a model for the hidden true abundances with a model for the observations of the
true abundance (deValpine and Hastings 2002, Lindley 2002, Dennis et al. 2006,
Holmes et al. 2007). We use the same approach to address measurement error in
multisite data by using a multivariate state-space model. This is achieved by combin-
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ing equation (8.2) with a measurement equation that relates the observed values of
log abundance at time t to the true abundances at time t:

Yt = ZXt + D + Υt. (8.3)

Z is an n×m matrix that defines how the n observations relate to the m true abun-
dances; in general, the n observations could be any additive combination of the m
true abundances. The n× 1 vector D specifies the bias between the observations and
the true abundances. The measurement errors at time t are denoted by Υt, which
is an n × 1 vector of serially uncorrelated disturbances with a mean of zero and an
n× n covariance matrix R. It is important to note that R and D are not the same as
the variance and bias in the sampling process—for example, the errors resulting from
counting animals from, say, a plane or the errors resulting from only sampling along
a transect. The sampling process is but one source, and probably a minor source,
of measurement variability and bias in many population data sets. Bigger sources of
measurement variability come from temporal changes in sightability due to effects of
age-structure, effects of environmental conditions, and changes in the fraction of the
population contained in a site-specific census. These other sources of measurement
variance are usually unknown and unknowable (for all practical purposes).

Equation (8.3) permits many different relationships between the measurements and
the true abundances. For this chapter, we consider only two cases. In case 1, there are
m subpopulations, and each is associated with one measurement time series. In this
case, m equals n, Z is an m×m identity matrix, and D equals 0‡. In case 2, there is
one subpopulation, m = 1, that has been measured at n different sites. In this case,
Z is an n× 1 vector of ones, and Xt is a scalar (since m = 1). In this case, we allow
D to be an n × 1 vector with the first element equal to zero and the other elements
estimated. This allows for the possibility that differences in the mean log abundance
between sites are due to different biases in the measurement errors at each site.

Equations (8.2) and (8.3) form the multisite state-space model. The objective is to use
this model to estimate the parameters {B,Q,R,D}: B gives the mean population
growth rate in each subpopulation, Q gives the variance in the population growth
between time steps, and R and D give the measurement-error variance and bias for
each site. We assume for this chapter that the process errors and measurement er-
rors are Gaussian and uncorrelated. These assumptions allow us to use estimation
methods designed for linear Gaussian state-space models. The assumption of uncor-
related errors can easily be relaxed (see for example Shumway and Stoffer 2000).
The assumption of Gaussian errors can also be relaxed (Durbin and Koopman 2000);
however parameter estimation would be considerably more involved.

8.3 Specification of the spatial structure among the subpopulations

In its unconstrained form, the multisite state-space model allows each subpopulation
to have its own population growth rate, its own process-error variance, and any level

‡ D cannot be estimated in this case because it is a scaling factor that drops out during estimation.
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of correlation in the process errors between subpopulations. It allows a similar level
of flexibility in the measurement errors. We can incorporate spatial structure by im-
posing constraints on the B, Q, and R terms. For example, we might specify that the
process-error variances are the same across subpopulations, or that the measurement
errors are independent.

We will denote the alternative model structures by the triplet {fB, fQ, fR}, where
fB denotes the constraint used for B, fQ denotes the constraint used for Q, and fR

denotes the constraint used for R. In all cases, f = 1 will denote the unconstrained
form.

8.3.1 Structure of the population growth rates (fB)

1. fB = 1 Each subpopulation has an independent and different mean growth rate.
In this case, B = μ, where μ is anm×1 vector of subpopulation-specific stochas-
tic growth rates μi. This is the unconstrained form for B.

2. fB = 2 Each subpopulation has the same mean growth rate. B = μ, where μ is
an m× 1 vector of μ’s, all of which are equal.

3. fB = 3 There is one population (m = 1) that has been measured at n different
sites. Consequently, there is only one population growth rate. In this case, B, Q,
and Xt are scalars: B = μ, Q = σvar, and Xt = xt. This case also affects the
structure in the measurement errors: Z is an n×1 vector of ones and D is an n×1
vector of biases, the first of which is set equal to 0.§

8.3.2 Structure of the process-error variances (fQ)

1. fQ = 1 An unconstrained covariance matrix. Each subpopulation has a different
level of process-error variance, and each pair of subpopulations has a different
level of covariance between their process errors. In this case, Q is an m × m
covariance matrix with terms on the diagonal and off-diagonals.

2. fQ = 2 A diagonal covariance matrix with unequal diagonal entries. In this case,
each subpopulation has a different level of process-error variance, but the process
errors between subpopulations are independent. Thus, the off-diagonal terms in
the covariance matrix are 0. Q is an m ×m covariance matrix with terms on the
diagonal and zeros on the off-diagonals.

3. fQ = 3 A diagonal covariance matrix with equal diagonal entries. Each subpop-
ulation has the same level of process-error variance, but the errors are indepen-
dent. Q = σvarI, where σvar is the common process-error variance term and I
is an m×m identity matrix. This gives a covariance matrix with all terms on the
diagonal equal to σvar and the off-diagonal terms equal to 0.

§ Effectively we are estimating the biases relative to the bias for the first measurement time series. This
should be kept in mind when interpreting the estimated true abundances.
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4. fQ = 4 A covariance matrix with equal variances and covariances. Each subpop-
ulation has the same level of process-error variance, and the covariances between
process errors are equal between any two subpopulations. Q = σvarI+σcov(U−
I), where σvar is the common variance term and σcov is the common covariance
term. I is anm×m identity matrix and U is anm×m unit matrix. This gives a co-
variance matrix with all terms on the diagonal equal to σvar and the off-diagonal
terms equal to σcov.

8.3.3 Structure of the measurement errors (fR)

The constraints on the measurement-error variances are the same as for the process-
error variance. The different measurement-error models are denoted fR = 1, 2, 3 or
4, where the constraints are defined as in Section 8.3.2 with references to ‘process-
error’ replaced with ‘measurement-error’ and with references to Q replaced with R.

8.4 Estimation of the population parameters using maximum likelihood

Equations (8.2) and (8.3), along with the model constraints specified by {fB, fQ,
fR}, form the constrained model for the multisite data. Using this model, we can
estimate the parameters that describe the population dynamics, B and Q, and the
parameters that describe the measurement error, R and D. There are two main ap-
proaches to parameter estimation: maximum likelihood estimation and Bayesian es-
timation. In this chapter, we focus on maximum likelihood estimation. However, the
likelihood functions specified in this chapter are also used in Bayesian estimation.
Thus, this chapter provides the building blocks needed for a Bayesian approach as
well.

8.4.1 The likelihood function

The first step of maximum likelihood estimation is to specify the likelihood of the
parameters, Θ = {B,Q,R,D}, given the observed data. In our case, the data are n
time series of observations for time 1 to T . We denote the n observations at time t as
Yt, and the set of all observations for time t to T as YT

1 ≡ Y1,Y2, . . . ,YT .

The observations at time t, Yt, are dependent on the past observations, Yt−1
1 . Thus

we cannot write the likelihood simply as L(Θ) =
∏T

t=1 p(Yt). Instead we write the
likelihood as a product of the conditional probabilities¶:

L(Θ|YT
1 ) = p(Y1)

T∏
t=2

p(Yt|Yt−1
1 ), (8.4)

¶ For more background on the derivation of the likelihood see, for example, Harvey (1989) section 3.4.
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where p(Yt|Yt−1
1 ) is the probability density function for Yt given all of the observa-

tions up to time t−1. Note that Y is not Markov (only X is), thus we must condition
on Yt−1

1 rather than Yt−1. The distribution of p(Yt|Yt−1
1 ) is multivariate normal,

and we denote the mean of this distribution as Ỹt|t−1 and its covariance matrix as
Ft. Ỹt|t−1 is defined as E(Yt|Yt−1

1 ), the expected value of Yt conditioned on Yt−1
1 .

Ft is defined as E((Yt − Ỹt|t−1)(Yt − Ỹt|t−1)′), also conditioned on Yt−1
1 . The

initial conditions are specified by p(Y1), and will be treated as either an estimated
or a nuisance parameter (see Section 8.4.2).

Using the probability density for a multivariate normal, we can write out the likeli-
hood function given in equation (8.4) as

L(Θ|YT
1 ) =

T∏
t=1

exp
{
− 1

2 (Yt − Ỹt|t−1)′F−1
t (Yt − Ỹt|t−1)

}

((2π)n|Ft|)1/2
. (8.5)

To calculate the likelihood, we need estimates of Ỹt|t−1 and Ft. We do not have these
directly, but we can solve for them indirectly by rewriting them in terms of Xt and the
deviations in Xt from the predicted values. First, we define xt|t−1 ≡ E(Xt|Yt−1

1 ).
Then, using the measurement equation (equation (8.3)), we have:

Ỹt|t−1 = E(Yt|Yt−1
1 ) = E(ZXt + D + Υt|Yt−1

1 )
= Zxt|t−1 + D. (8.6)

Next, we define Pt|t−1 ≡ E((Xt−xt|t−1)(Xt−xt|t−1)′). Then, using the measure-
ment equation (equation (8.3)) again, we have:

Ft = E
([

Yt − Ỹt|t−1

] [
Yt − Ỹt|t−1

]′)

= E
([

Z(Xt − xt|t−1) + Υt

] [
Z(Xt − xt|t−1) + Υt

]′)
= ZPt|t−1Z

′ + R. (8.7)

Thus using equations (8.6) and (8.7), we can solve for the likelihood if we have
estimates of xt|t−1, the expected value of Xt given the observed data up to time
t− 1, and Pt|t−1, the deviations between Xt and xt|t−1.

8.4.2 Estimation of xt|t−1 and Pt|t−1 using the Kalman filter

The multisite state-space model is a linear dynamical system with discrete time and
Gaussian errors. This type of problem is extremely important in many engineering
fields. In 1960, Rudolf Kalman published an algorithm that solves for the optimal
(lowest mean square error) estimate of the hidden Xt based on the observed data
up to time t for this class of linear dynamical system. This algorithm, now known
as the Kalman filter, gives an estimate of E(Xt|Yt

1), which we will denote as xt|t,
and the covariance, E((Xt − xt|t)(Xt − xt|t)′), which we will denote as Pt|t. The
Kalman filter also provides the optimal estimates of Xt conditioned on the data up

© 2010 by Taylor and Francis Group, LLC



PARAMETER ESTIMATION 153

to time t − 1, i.e., xt|t−1 and its covariance, Pt|t−1. These are the estimates that
are needed to calculate Ỹt|t−1 and Ft in equations (8.6) and (8.7). These in turn
are used to calculate the likelihood. The Kalman filter is widely used in time-series
analysis, and there are many textbooks covering it and its applications. The books by
Harvey (1989) and Shumway and Stoffer (2000) are particularly useful for ecologists
because they are geared towards physical, biological, and economics applications.

The Kalman filter is a recursion that consists of a set of prediction equations followed
by a set of updating equations. The prediction equations are so named because they
predict the states at time t given information up to and including time t− 1:

xt|t−1 = xt−1|t−1 + B (8.8)
Pt|t−1 = Pt−1|t−1 + Q. (8.9)

Using the output from the prediction equations, new estimates conditioned on the
data up to time t are calculated using the updating equations:

xt|t = xt|t−1 + Pt|t−1Z
′F−1

t (Yt − Zxt|t−1 −D) (8.10)

Pt|t = Pt|t−1 −Pt|t−1Z
′F−1

t ZPt|t−1. (8.11)

This recursive algorithm is started with initial values x0|0 and P0|0, which are the
mean and variance of the population abundance at time t = 0. Using those initial val-
ues, one iterates through the prediction and updating equations for t = 1, 2, 3, . . . , T .
This provides the time series, xt|t−1 and Ft, that are needed to calculate the likeli-
hood.

Typically, there is no prior information for the abundances at time t = 0. One so-
lution is to estimate x0|0 and P0|0 as extra free parameters. Alternatively, the initial
conditions can be specified using a diffuse prior distribution for X0. This is done
by setting P0|0 = κI (where I is an m × m identity matrix), substituting this into
the Kalman filter equations and allowing κ to grow arbitrarily large. Since X0 is de-
fined as normal with a mean of x0|0 and variance P0|0, this has the effect of setting
a diffuse prior on X0. When fB = 1 or 2, this diffuse prior leads to x1|1 = Y1 and
P1|1 = R. When fB = 3, x1|1 and P1|1 are scalars, and the diffuse prior leads to
x1|1 =

(
O′R−1Y1

)
/
(
O′R−1O

)
and P1|1 = 1/

(
O′R−1O

)
, where O indicates

an m× 1 vector of ones.

For simplicity, we presented the likelihood calculation as if there were no missing
values in the data. However, one of the strengths of state-space approaches is that
missing values are easy to accommodate; if some values within Yt are missing,
those values become a place-holder that will be filled with the optimal estimate for
the missing data point. Harvey (1989), section 3.4, shows how the Kalman filter
equations are modified when there are missing values.

8.4.3 Maximization of the likelihood function

The Kalman filter provides estimates of xt|t−1 and Pt|t−1 that together with equa-
tions (8.5), (8.6), and (8.7) allow us to calculate the likelihood of the parameters, Θ.
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Our objective is to find the Θ that maximizes the likelihood. There are a variety of
approaches to the maximization problem. One standard approach is a Nelder-Mead
algorithm, which is available as a pre-packaged routine for most computing soft-
ware. However, for the multisite state-space model, we found that this algorithm did
not always converge. Another approach, which we found to always converge, is the
estimation-measurement (EM) algorithm presented in Shumway and Stoffer (1982)
and Shumway and Stoffer (2000, section 4.3). The EM algorithm involves iteratively
estimating the true, hidden, abundances conditioned on all of the data, using that
to re-estimate the parameters and then using the updated parameters to re-estimate
the true abundances. This is repeated until the likelihood converges.‖ Another wrin-
kle that can be added is restricted maximum likelihood (REML). Because of the
measurement errors, there is a negative temporal correlation in the data. This neg-
ative correlation provides additional information which can be used to improve the
estimates (Staples et al. 2004, Dennis et al. 2006). In Section 8.6, we will discuss
bootstrap methods for specifying the confidence intervals, standard errors, and bias
of the maximum likelihood parameters.

One issue of concern for all of these maximization methods is that when the time
series are short (T is small) or contain many missing values, the likelihood surface
can become multimodal. The problem in this case is that the likelihood surface has
its largest peak with either the Q or R diagonal terms set at zero, and there is a
smaller peak at the correct value where all Q and R diagonal terms are nonzero. The
result is that all of the variance in the data is put into process-error or measurement-
error variance. Intuitively, what is happening is that there is not enough information
in the data to partition the variance. If this is discovered to be a problem, which
will be apparent by either of the Q or R diagonal terms going to zero, there are
two general solutions. First, the size of the model can be constrained such that it is
commensurate with the information in the data. For example, the population structure
can be constrained (e.g., by setting fB = 3 or fQ = 4) so that there are fewer
parameters to estimate. The second general approach is add an informative prior on
the variance parameters using a Bayesian approach. In this case, the prior will affect
the posterior estimates. This is the objective in this case, since the data do not contain
enough information in and of themselves to partition the variance. Obviously, the use
of an informative prior should be done with caution, but there are situations where
researchers have external information on the plausible range of measurement-error
or process-error variance.

8.5 Investigation of the population structure using model-selection criteria

In Section 8.4, we specified a particular population structure by putting constraints
on B, Q, and R. We can also use the multisite state-space framework to measure the
data support for different population structures (Figure 8.1) rather than specifying a

‖ The EM algorithm is a hill-climbing algorithm. Thus steps must be taken to ensure that it does not get
stuck on local maxima (Biernacki et al. 2003)
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structure a priori. The different structures are denoted by the triplet {fB, fQ, fR}
presented in Section 8.3. These form a nested set of models varying from unstruc-
tured (a single population but measured with multiple time series) to fully structured
(different stochastic growth rates and process-error variances in each subpopulation
and correlations in the process errors between subpopulations).

Using model-selection criteria (Burnham and Anderson 2002, Johnson and Omland
2004), we can measure the data support for the different models. The basic idea is
that different models are fit to the data, the fit of the model to the data is measured
using the likelihood function, and the fit is penalized for the number of parameters
estimated by the model. The latter corrects for the fact that more complex models
will tend to fit data better, simply because there is more flexibility in the model. The
function that specifies how the likelihood is penalized for complexity is the model-
selection criterion, and it gives a relative measure of data support. There are a variety
of different model-selection criteria used in model selection. The most commonly
used are Akaike’s information criterion (AIC) (Akaike 1973, Burnham and Anderson
2002), Bayesian or Schwarz information criterion (BIC) (Mcquarrie and Tsai 1998),
and deviance information criterion (DIC) (Spiegelhalter et al. 2002). Mcquarrie and
Tsai (1998) is a good reference for model selection approaches specific to time-series
data, and Burnham and Anderson (2002) is a good reference for model-selection
approaches for the ecological sciences. In the example below, we illustrate the use of
AIC for measuring the data support for different structures within a group of chinook
salmon subpopulations.

8.6 Analysis of Snake River chinook salmon dynamics and structure

The Snake River is one of the major tributaries of the Columbia River, and histor-
ically it produced a large proportion of the chinook salmon within the Columbia
basin. However, anthropogenic impacts such as the construction of hydropower dams
on the Columbia and Snake Rivers, habitat destruction, and over-fishing led to large
declines in the chinook populations within the Snake River and its tributaries. In
1992, the Snake River spring/summer chinook Evolutionary Significant Unit∗∗ (ESU)
was listed as threatened under the U.S. Endangered Species Act, along with other
salmonid ESUs in the Columbia River basin. This Snake River ESU includes all wild
(not hatchery-released) chinook salmon that spawn in the spring and summer in the
Snake River and its tributaries: the Tucannon, Grande Ronde, Imnaha, and Salmon
Rivers (Figure 8.2). Chinook that spawn in the spring and summer spend their first
year in freshwater near their natal streams and migrate to the ocean as yearlings.

To illustrate the use of the multisite state-space model, we analyzed time series from
six distinct chinook subpopulations in the upper reaches of the Snake River basin
(Figure 8.2). Chinook salmon show strong fidelity to their natal streams, thus the fish
spawning within a specific stream are most likely to have been spawned in that stream

∗∗ Evolutionary Significant Unit is the term for a population segment that is considered distinct for the
purpose of conservation under the U.S. Endangered Species Act (Waples 1991).
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Figure 8.2 Map of the Snake River spring/summer chinook ESU. The location of the subpop-
ulations are shown with the gray ovals: 1) Bear Valley/Elk Creek , 2) Sulphur Creek, 3) Marsh
Creek, 4) Upper Valley Creek, 5) Big Creek, 6) Lemhi River. To reach these spawning areas,
fish must pass through (or be barged around) eleven hydropower dams.

or nearby. The six subpopulations we analyzed were Bear Valley/Elk Creek, Sulphur
Creek, Marsh Creek, Valley Creek, Big Creek, and Lemhi River (Figure 8.2). The
time-series data for each subpopulation represent estimates of the spawning salmon
abundances within each subpopulation from 1980 to 2001 (Figure 8.3). Our analysis
focused on two questions: 1) Given a particular structure for the six subpopulations,
what are the maximum likelihood estimates of the stochastic growth rates and the
true abundances? and 2) What population structures are most supported by the data?

8.6.1 Estimation of the stochastic growth rates and true abundances

To separate out the measurement errors and provide estimates of the true abundances
within each spawning site, we used the Kalman smoother. The Kalman smoother
provides the optimal estimates of Xt given all the data, YT

1 . The Kalman smoother
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Figure 8.3 The 22-year time series of spawning abundance and smoothed estimates for 1) Bear
Valley/Elk Creek, 2) Sulphur Creek, 3) Marsh Creek, 4) Upper Valley Creek, 5) Big Creek,
and 6) Lemhi River. The ×’s are the actual spawner counts, the black line is the smoothed
estimates of spawner abundance from the Kalman smoother, and the gray lines give the upper
and lower 95% CIs for the smoothed estimates (the estimates with the measurement errors
removed).

starts with the xT |T estimates from the Kalman filter†† and works backwards from T
to 1 using the following updating equations:

xt−1|T = xt−1|t−1 + Jt−1

(
xt|T − xt|t−1

)
(8.12)

Pt−1|T = Pt−1|t−1 + Jt−1

(
Pt|T −Pt|t−1

)
J
′
t−1, (8.13)

where Jt−1 ≡ Pt−1|t−1P−1
t|t−1. At the end of the recursion, we have the smoothed

estimates of Xt conditioned on all the data. The smoothed estimates are denoted
xt|T .

†† The Kalman filter is a forward recursion and provides an optimal prediction of Xt given the past,
Yt−1

1 . The Kalman smoother is a backwards recursion that provides optimal estimates of the past
given the future, in this case Xt given YT

1 .
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The smoothed estimates have a simple relationship to the maximum likelihood esti-
mates for the stochastic growth rates:

B =
1

T − 1
(
xT |T − x1|T

)
, if fB = 1 or 3, (8.14)

B =
1

T − 1
O′Q−1

(
xT |T − x1|T

)
O′Q−1O

, if fB = 2, (8.15)

where O is an m× 1 matrix of ones.

8.6.2 Investigation of the subpopulation structure using AIC and AICb

To determine which population structure was best supported by the data, we used
Akaike’s Information Criteria (AIC) (Akaike 1973, Burnham and Anderson 2002)
and the bootstrap AICb (Cavanaugh and Shumway 1997). In particular, we were
interested in whether the six sites should be treated as one population sampled with
six independent time series or as six separate subpopulations with correlated process
errors. AIC and AICb measure the data support for models with different population
structure. Models with lower AIC and AICb scores have better data support relative
to models with higher AIC or AICb scores.

For model q, where q specifies a unique {fB, fQ, fR} triplet, the AIC is defined as:

AICq = −2 logL(Θ̂q) + 2p, (8.16)

where Θ̂q is the parameter set {B,Q,R,D} that maximizes the likelihood of the
observed data YT

1 given model q, and p is the number of effective parameters in
model q. We calculated the maximum likelihood estimates Θ̂q using the EM algo-
rithm (Shumway and Stoffer 1982, 2000).

AICb is a variant of AIC that corrects for AIC’s bias towards overly complex models
when the sample size is small. AICb has the same objective as the more familiar
AICc—the small sample-size corrected AIC (Burnham and Anderson 2002)—but
AICb is designed for state-space models. AICb for model q is defined as:

AICbq = −2 logL(Θ̂q) + 2

{
1
N

N∑
b=1

−2 log
L(Θ̂q(b))
L(Θ̂q)

}
, (8.17)

where Θ̂q(b), b = 1, . . . , N , represents a set of N bootstrap replicates of Θ̂q. The
bootstrap replicates are generated using the following procedure (Stoffer and Wall
1991; Shumway and Stoffer 2000, section 2.6). Using the parameters Θ̂q , the model
q is fit to the data. This provides a time series of the innovations ε for t = 1 to T ,
where εt ≡ Yt−Ỹt|t−1. The bootstrap replicates of the innovations time series, ε(b),
are generated by taking T samples with replacement from ε. The bootstrap-generated
ε(b) are then used in what is termed the innovations form of the state-space model
to generate a bootstrapped Y(b) time series. This process is repeated N times to
produce N bootstrapped Y(b) time series. For each of these Y(b) time series, the
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parameters that maximize the likelihood of the bootstrapped data Y(b) are found.
This produces the N bootstrapped estimates: Θ̂q(b), b = 1, . . . , N .

8.6.3 Confidence intervals and diagnostics

To determine the accuracy of the parameter estimates, we used a parametric bootstrap
approach (Shumway and Stoffer 2000, section 2.6). The N bootstrap replicates of
Θ̂q(b) were used to estimate confidence intervals, standard errors, and bias for each
of the estimated model parameters. To construct 95% confidence intervals for the
k-th parameter within Θ̂q, the 2.5 and 97.5 percentiles for the k-th parameter in the
bootstrap replicates Θ̂q(b) were used as the lower and upper confidence limits.

The bootstrap standard error for the k-th parameter was defined as the mean squared
difference between the k-th parameter in the bootstrapped samples and the mean
value of the k-th parameter in the bootstrapped samples:

SE =
1

N − 1

N∑
i=1

(
k̂q(b)− 1

N

N∑
b=1

k̂q(b)

)2

, (8.18)

where k̂q(b) denotes the k-th parameter in Θ̂q(b). The bootstrap bias was calculated
as:

bias =
1
N

N∑
b=1

k̂q(b)− k̂q, (8.19)

where k̂q is the maximum likelihood estimate of the k-th parameter in Θ̂q. As a rule
of thumb, bias is considered a potential problem when it exceeds 5% of the SE.

Diagnostics were applied to the fitted state-space models to determine whether they
were appropriate for analyzing the salmon data. When running model diagnostics,
prediction errors in state-space models play a similar role to that of residuals in an
ordinary least-squares regression. Like residuals, the prediction errors are assumed to
be independent and normally distributed. The normality assumption was examined
using quantile-quantile (QQ) plots (Chambers et al. 1983) of the standardized pre-
diction errors. Jarque-Bera tests for normality were also applied to the standardized
prediction errors (Cromwell et al. 1994). The assumption of serially independent pre-
diction errors was examined using autocorrelation-function plots and the Box-Pierce
test for independence (Box and Pierce 1970).

8.6.4 Results

The estimates of the mean stochastic growth rate were positive across all the top
models. This indicates a population that is increasing. The stochastic growth rate es-
timate for the best model was 0.14, suggesting a robust mean growth rate of 14%
per year. However, the estimated growth rates had large standard errors and corre-
spondingly wide confidence intervals that included negative values (Table 8.1). This
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indicates that even with six 22-year time series, the data are insufficient for confi-
dently estimating whether the population is increasing or decreasing.

Results on the population structure however are more informative. Out of the 36
state-space models considered, the model with fB = 3, fQ = 1,‡‡ and fR = 2 had
the lowest AICb and AIC values (Table 8.1). This is the model with a single pop-
ulation that is measured with six different time series, each with independent and
different measurement errors. This model had considerably more support (ΔAIC >
10) than the next competitor. The model equivalent to six independent salmon sub-
populations each measured independently, {fB, fQ, fR} = {1, 2, 2}, fit extremely
poorly. This model ranked 30 out of the 36 models with a ΔAICb score of 170.7
compared to the best model (Table 8.1).

The result that the model with a single population fit the data best indicates that the
six subpopulations were highly correlated. Surporting this, we also found that the
model {fB, fQ, fR} = {1, 1, 2}, which has an unrestricted process-error covariance
matrix, also indicated that the process-error correlations were high. The correlation
coefficients for this model ranged from 0.86 to 1.0 (Table 8.2). In contrast, the mea-
surement errors were found to be uncorrelated. The best-fitting model had a diagonal
measurement-error covariance matrix, R, with unequal variances (fR = 2) and zero
correlation between all subpopulations. The measurement-error variances differed
greatly between the six subpopulations (Table 8.3). Marsh Creek had an estimated
measurement-error variance of 0.03 (SE = 0.03) compared to Upper Valley Creek,
which had an estimated measurement-error variance of 1.14 (SE = 0.36). Changing
from a diagonal R matrix with unequal variances to a diagonal matrix with equal
variances produced the second best model with a ΔAICb of 14.5 above the best
model. Bias in the measurement-error estimates ranged from 4% to 63% of SE.

The methods are designed to look for correlation and synchrony across sites. In the
case of these salmon time series, we see both strong correlation and strong synchrony.
From the time-series data alone, we cannot infer what mechanism is driving this pat-
tern in the salmon data. These six salmon stocks are exposed to a similar ocean envi-
ronment and river-migration environment, and this would lead to correlated process
errors. However, the process errors would need to be perfectly correlated in order to
produce synchrony because without perfect correlation, the time series across the six
sites would eventually diverge. This suggests that there is another mechanism that is
causing synchrony. Dispersal, in this case straying of spawners to nonnatal streams,
is known to occur and is a possible mechanism for the synchrony.

Diagnostics were run on the model with the lowest AICb score. The QQ plots indi-
cated no deviation from normality in the prediction errors except for the Marsh Creek
subpopulation. For Marsh Creek, the normal QQ plot showed large deviations from
a straight line in the tails of the prediction errors, and the Jarque-Bera test indicated
that the distribution was not normal (p-value = 0.003). This deviation from normal-
ity, however, was driven by a single prediction error (from the year 1994), which

‡‡ Note that when fB = 3, m = 1 so Q is a scalar.
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Table 8.1 Results of the model-selection analyses which fit models with different population
structures to the salmon data. Models are by ranked by ΔAICb scores. Lower ΔAICb indicates
more data support for that model. Generally, a ΔAICb > 10 indicates low data support. p
indicates the number of parameters in each model.

Model Lower Upper
form Mean 95% 95%

Rank fB fQ fR μ limit limit p ΔAIC ΔAICb

1 3 1 2 0.14 -0.32 0.59 14 0 0
2 3 1 3 0.11 -0.27 0.54 9 19 14.5
3 3 1 4 0.09 -0.23 0.44 10 20.2 18.9
4 2 4 2 0.14 -0.37 0.60 15 22.9 31.6
5 1 4 2 0.13 -0.34 0.61 20 28.5 36
6 2 4 3 0.11 -0.27 0.52 10 44.4 46.4
7 2 2 4 0.00 -0.07 0.08 15 49.2 50.5
8 2 3 4 -0.01 -0.08 0.07 10 47 51.5
9 1 4 3 0.11 -0.31 0.51 15 52.5 53.2

10 2 4 4 0.08 -0.20 0.34 11 45.5 57.5
11 1 3 4 -0.01 -0.08 0.06 15 55.3 58.8
12 1 2 4 -0.02 -0.13 0.09 20 57.8 73
13 1 4 4 0.08 -0.18 0.35 16 53.6 73.2
14 3 1 1 0.10 -0.19 0.40 29 8.3 88.8
15 2 3 3 0.06 -0.05 0.16 9 109.1 104.3
16 2 3 2 0.07 -0.04 0.17 14 113.1 110.1
17 2 2 3 0.06 -0.07 0.17 14 117.9 118
18 2 2 2 0.05 -0.06 0.16 19 119.9 121.8
19 2 3 1 -0.01 -0.07 0.06 29 41.7 122.4
20 2 4 1 0.10 -0.19 0.39 30 28.3 123.7
21 2 1 2 0.14 -0.20 0.48 34 44.5 124.2
22 2 2 1 0.01 -0.06 0.08 34 37.1 125.5
23 1 3 1 -0.01 -0.08 0.05 34 45.6 132.8
24 1 3 3 0.06 -0.05 0.15 14 119 135.2
25 1 3 2 0.07 -0.05 0.18 19 123 144.2
26 1 1 2 0.12 -0.29 0.53 39 52.6 145.2
27 1 4 1 0.11 -0.18 0.38 35 32.6 150.2
28 2 1 3 0.17 -0.11 0.47 29 53.1 157.1
29 1 2 3 0.06 -0.04 0.17 19 127.8 161.5
30 1 2 2 0.06 -0.05 0.16 24 129.4 170.7
31 1 2 1 0.00 -0.07 0.07 39 42.4 172.3
32 1 1 3 0.12 -0.32 0.57 34 61.7 180.2
33 2 1 4 0.17 -0.12 0.47 30 54.9 213.2
34 1 1 4 0.12 -0.33 0.54 35 63.6 231.5
35 2 1 1 0.15 -0.10 0.40 49 52.3 274.9
36 1 1 1 0.09 -0.15 0.33 54 61.1 294.7
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Table 8.2 Estimated correlation coefficients for the process errors. Model {fB , fQ, fR} =
{1, 1, 2} was used to estimate the unconstrained covariance matrix Q which was then used to
calculate the correlation matrix.

Bear Valley/
Elk Cr. Marsh Cr. Sulphur Cr. Big Cr. Lemhi R.

Marsh Cr. 1.00
Sulphur Cr. 0.99 0.99
Big Cr. 1.00 1.00 0.99
Lemhi R. 0.86 0.87 0.79 0.85
Up. Valley Cr. 0.98 0.99 0.95 0.98 0.93

Table 8.3 Measurement-error variances using the best-fitting model with lowest AICb.

Lower Upper
Estimate SE 95% CI 95% CI Bias

Bear Valley/Elk Cr. 0.13 0.05 0.04 0.23 -0.20
Marsh Cr. 0.03 0.03 0.00 0.10 0.14
Sulphur Cr. 0.66 0.22 0.26 1.11 -0.17
Big Cr. 0.28 0.09 0.11 0.47 -0.22
Lemhi R. 0.53 0.16 0.24 0.87 -0.21
Up. Valley Cr. 1.14 0.36 0.49 1.83 -0.20

was 2.74 standard deviations below zero. When this prediction error was deleted, the
Jarque-Bera test indicated no significant deviation from normality (p-value = 0.59).
The Box-Pierce tests, based on lags up to five years, indicated that the prediction er-
rors were serially uncorrelated. The autocorrelation functions, however, did indicate
a relatively large negative lag-1 autocorrelation for Sulphur Creek (r = -0.53) and a
relatively large positive lag-5 autocorrelation (r = 0.45) for the Bear Valley/Elk Creek
subpopulation.

8.7 Discussion

The analysis of the salmon data suggests that the population dynamics within the
upper Snake River basin are highly synchronized. The best fitting models indicated
very high correlations in the year-to-year fluctuations in subpopulation growth rates
and a common stochastic growth rate for all of the six subpopulations. This implies
that these subpopulations tend to act as a single population. Biologically, this is not
surprising; a certain amount of straying of spawners into nonnatal streams is known
to occur and, in addition, the salmon from the different spawning sites are exposed
to a similar environment after they leave their spawning stream. They migrate down
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the same river corridor to the ocean and then spend two to four years in the ocean. In
contrast, the modeling suggests that measurement errors are uncorrelated among the
six subpopulations, with variances that differ. This is not surprising given that site
differences can greatly affect the accuracy of spawning-abundance counts and given
that counts at different subpopulations are made on different days.

Aside from revealing these important patterns in the data, does the multivariate tech-
nique improve the accuracy of the stochastic growth rate estimates—relative to sim-
ply fitting a univariate model to each subpopulation time series independently, then
taking the average? At first glance, the answer appears to be no. The univariate
stochastic growth rates can be obtained by using the model {fB, fQ, fR} = {1, 2, 2}.
This is the model that specifies an independent stochastic growth rate and variance for
each subpopulation, and treats the data as if there is no correlation between subpopu-
lations or measurements. This model gives an SE of 0.052 for the average stochastic
growth rate, while the best multivariate model, {fB, fQ, fR} = {3, 1, 2}, gives a
much larger SE of 0.23. Shouldn’t we expect the model with the lowest AICb to
produce lower standard errors? The answer is no, because standard error estimates
of models with poor AICb are unreliable. The standard errors are largely a function
of the estimated variance matrices (Harvey 1989). Therefore, poor estimates of the
variance matrices mean poor standard error estimates and poor confidence intervals.
The model {fB, fQ, fR} = {1, 2, 2}, which gives low standard errors, has one of the
worst ΔAICb scores (170.7 in Table 8.1), and therefore inferences on precision are
not as reliable as those from the top model.

Bias is another part of accuracy that must be considered. The stochastic growth rate
estimates were not biased, but variance estimates were. For example, the model with
smallest AICb had a process-error variance that was biased downward by 20% SE.
It also had biases in the measurement-error variance that ranged from 14% to 22%.
Lindley (2003) found that when time series are short, the Kalman filter (used in this
chapter) tends to lead to underestimates of the true process error. This suggests that
some bias correction procedure ought to be investigated for the variance estimates.
Another possibility is using restricted maximum likelihood, which was found to gen-
erate unbiased estimates of process- and measurement-error variance in a univariate
setting (Staples et al. 2004). Currently, however, this method does not handle mul-
tivariate data or missing values, it sometimes fails to converge, and it can generate
negative estimates of measurement-error variance. The slope method (Holmes 2001)
can also reduce process-error bias, but it also does not handle multivariate data and
may generate negative variance estimates.

Multivariate state-space modeling has a long, rich history in the engineering and eco-
nomics literature and has proved a powerful tool for modeling and forecasting dy-
namical systems. This approach allows analysts to deal with data from multiple sites
simultaneously, handle missing values, and impose different assumptions concern-
ing the spatial structure within the population dynamics and within the measurement
process. Although we have assumed a linear model with Gaussian and uncorrelated
errors, these assumptions can be relaxed and the same framework could be used
but with the parameters estimated via alternate estimation algorithms. In summary,
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the multivariate state-space approach provides a formal framework for incorporating
spatial structure into the analysis of multisite time series data and can reveal impor-
tant relationships among subpopulations—relationships that would remain concealed
with a single-site or nonspatial approach.
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CHAPTER 9

Incorporating the spatial configuration
of the habitat into ecology and

evolutionary biology

Ilkka Hanski
University of Helsinki

Abstract. Though ecologists and population biologists have appreciated the role of spa-
tial processes in natural populations for a long time, there has been relatively little work
towards integrating a realistic description of the landscape structure into population biolog-
ical theories, models, and empirical research. Landscape structure is studied by landscape
ecologists and geographers, but generally with limited or no reference to population pro-
cesses. This chapter outlines the spatially realistic approach to metapopulation dynamics,
which has facilitated the conceptual unification of population ecology and landscape ecol-
ogy, and extends the spatially realistic approach to evolutionary biology.

9.1 Introduction

The classic population concept that can be traced back to Malthus (1798) and which
was developed in ecology and evolutionary biology in the early part of the 20th cen-
tury (McIntosh 1985) assumes that all individuals interact equally and share the same
environment. This is clearly not true for real populations at spatial scales greater than
the daily movement range of individuals, for the simple reason that interactions be-
come restricted by the physical distance. At larger spatial scales, habitat heterogene-
ity is typically another factor, apart from just long distances, that influences popula-
tion processes and thereby population structures. Viewed from the perspective of a
particular species, a landscape may be heterogeneous in many different ways. It may
consist of several different types of habitat that may be used for foraging and repro-
duction, but typically in this case there is spatial variation in habitat quality: not all
habitat types are the same. The classic metapopulation concept (Levins 1969; Hanski
1999) assumes that there is just one type of habitat, but it is fragmented into discrete
patches. Incorporating spatial structure into population studies and into population
models has been a major goal in ecology and evolutionary biology for the past 20

167
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years (Tilman and Kareiva 1997; Hanski 1999), with sporadic early contributions
published since the 1930s (Wright 1931; Nicholson 1933; Andrewartha and Birch
1954; Huffaker 1958).

This chapter is concerned with the ecology and evolutionary biology of metapopu-
lations, that is, species occurring as a network of local populations in a network of
discrete habitat patches (Hanski and Gaggiotti 2004). Viewed from the perspective of
a particular local population in a particular habitat patch, there are two processes to
consider. First, the performance of the local population: its average size and temporal
variability, expected life-time, genetic composition, interactions with other species,
and so forth. Second, how well the population is connected in terms of migration (dis-
persal) and gene flow to other local populations and possibly to suitable but presently
unoccupied habitat in the fragmented landscape. In theoretical studies, the structure
of the patch network is often simplified by assuming that all local populations are
equally connected and all habitat patches are identical, in which case there is no con-
sideration for the actual spatial configuration of the habitat in the landscape. Levins’s
(1969; 1970) metapopulation model is the archetypal example. In contrast, landscape
ecologists interested in population dynamics have had a particular interest in devel-
oping an explicit account of the influence of the spatial configuration of the habitat
and the structure of the landscape on population processes as well as on other pro-
cesses (Turner, Gardner et al. 2001). For instance, recent studies have examined how
the landscape structure influences movements of individuals (Schippers, Verboom et
al. 1996; Pither and Taylor 1998; Haddad 1999; Bunn, Urban et al. 2000; Jonsen
and Taylor 2000; Byers 2001) and population persistence (Hill and Caswell 1999;
With and King 1999), and researchers have examined the significance of the spatial
configuration of the habitat as opposed to just the amount of habitat for population
persistence (Fahrig 2002).

Merging of metapopulation ecology and spatial ecology more generally with land-
scape ecology has been anticipated for a long time (Hanski and Gilpin 1991), but
the two disciplines still largely adhere to their own research traditions and own lit-
eratures (see Figure 1.2 in Hanski and Gaggiotti 2004). A reflection of disciplinary
differences is that shared key concepts such as connectivity have different meanings
(Tischendorf and Fahrig 2000; Moilanen and Hanski 2001). In landscape ecology,
connectivity is usually seen as a property of an entire landscape, and is defined in an
ad hoc manner via simulations. In metapopulation ecology, connectivity is viewed
as a property of discrete habitat patches and local populations, and is defined as the
expected rate of migration or gene flow to or from a local population or a habitat
patch in the patch network. The following measure of connectivity has been used
as a surrogate for the rate of immigration to the focal habitat patch i (Hanski 1994;
Hanski 1999; Moilanen and Nieminen 2002)

Si = Aζim

i

∑
j �=i

pjA
ζem

j

α2

2π
e−αdij . (9.1)

Here, Si is the connectivity and Ai is the area of patch i, pj is the incidence (proba-
bility) of occupancy of patch j, dij is the distance between patches i and j, 1/α is the
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average migration distance, and ζim and ζem are two parameters describing the scal-
ing of immigration and emigration rates with patch area. The factor α2/2π ensures
that the exponential dispersal kernel integrates to one over the two-dimensional space
(some other dispersal kernel could be used instead of the exponential; see Ovaskainen
and Hanski 2004).

In this chapter, I review research approaches to ecology and evolutionary biology that
I have dubbed as spatially realistic metapopulation approaches and models. These ap-
proaches take the classic metapopulation concept of a network of local populations
as the starting point, but extend it by incorporating the influence of the spatial con-
figuration of the habitat on individual and population processes. The concept and
measure of connectivity described above plays a key role here, as it provides a prac-
tical way of addressing questions about the spatial interactions of populations both in
empirical and modelling studies. I address issues from the level of individual move-
ments to the dynamics of populations and metacommunities of competing species
and to the evolution of migration rate, with a focus on the influence of the spatial
configuration of habitat.

9.2 Modeling migration in fragmented landscapes

Migration (dispersal) is the key additional process that needs to be considered in
spatial ecology in addition to the familiar demographic rates describing temporal dy-
namics. All species migrate in one way or another, and there is a plethora of good
evolutionary reasons to expect them to do so, from kin competition and inbreeding
avoidance to coping with temporal variability in environmental conditions (Clobert,
Wolff et al. 2001; Ronce and Olivieri 2004; Ronce 2007). I return to questions about
the evolution of migration rate in Section 9.5; here I address the estimation of mi-
gration parameters for species living in fragmented landscapes, which is an essential
task in empirical studies.

In the case of large-bodied mammals and birds, it is feasible to track individuals us-
ing radio telemetry, satellite tracking, and other comparable technologies. In these
cases, the limiting factor is often the number of individuals that can be studied, while
the complex and plastic movement behavior of vertebrates makes analyses challeng-
ing (see Ovaskainen and Crone, this volume). In the case of small animals, direct
study of movements is occasionally possible by other tracking technologies, such as
the harmonic radar (Ovaskainen, Smith et al. 2008), but in practice it is more feasible
to mark and recapture individuals within an appropriate study area and to infer the
parameters of migration based on individual capture histories. Analyzing such data
is complicated by the fact that the pattern of recaptures is influenced by three factors,
intrinsic migration behavior of the species, the structure of the landscape (which
necessarily influences the movement patterns), and the spatio-temporal distribution
of recapture effort (Ovaskainen 2004). For instance, just plotting the frequency distri-
bution of movement distances, which is still a common practice in empirical studies,
is clearly inadequate, because that distribution is affected by all the three factors.
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To tease apart the different components, one needs to employ models, and further-
more, to take into account the influence of landscape structure, one needs to employ
a spatially realistic model.

Mark-recapture studies conducted in metapopulations living in highly fragmented
landscapes may involve tens of local populations; hence it is out of question to param-
eterize a model for all pair-wise connections among the populations, which is a pos-
sibility when there are a few populations only (Hestbeck 1991; Hilborn 1991). How-
ever, assuming isotropic migration, one may further assume that emigrants leaving
population i are distributed among the surrounding populations and habitat patches
in relation to their distances from population i, with the area of the receiving habitat
patch potentially modifying the numbers of immigrants, as larger patches are larger
targets for immigrants. One may distinguish between mortality within populations
and mortality during migration on the reasonable assumption that the former is not
influenced by the connectivity of the patch, while mortality during migration is in-
fluenced by connectivity, as the probability of surviving migration can be expected
to increase with the connectivity of the population of origin.

Table 9.1. Simulation results for a cohort of butterflies in a fragmented landscape
using parameter values estimated with the VM model (Hanski, Alho et al. 2000) for
Proclossiana eunomia (Petit, Moilanen et al. 2001).

Males Females

Initial number of butterflies (input) 295 306

Successful migration events from one patch to another 333 543

Number of butterflies dying during migration 34 14

Pooled number of butterfly-days in the system 1833 3068

Percentage of butterfly-days spent outside the natal patch 43% 53%

These ideas have been implemented in a statistical model of mark-recapture data
(Hanski, Alho et al. 2000) with 6 parameters, namely mortality within habitat patches
and in the landscape matrix, scaling of emigration and immigration with habitat patch
area, emigration constant, and distance dependence of migration. Having estimated
the parameter values, one may calculate quantities such as shown in Table 9.1 for
the butterfly Proclossiana eunomia (Petit, Moilanen et al. 2001), including the total
number of individual-days spent in the metapopulation, number of successful migra-
tion events, percentage of time spent outside the natal population, and the number of
deaths during migration. In the example in Table 9.1, there was considerable migra-
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tion among the populations, and the migration was inferred to be mostly successful
(only 10% of individuals died during migration), apparently because in this metapop-
ulation local populations were located close to each other. Mortality during migration
is a key cost of migration with important consequences for the evolution of migra-
tion (Section 9.5). Deviations from the model fit due to specific populations may
reveal important biological factors and processes, such as, e.g., migration depend-
ing on local sex ratio (Wahlberg, Klemetti et al. 2002). Ovaskainen and Crone (this
volume; see also Ovaskainen 2004, Ovaskainen et al. 2008) describe an alternative
and more mechanistic way of modelling mark-recapture data based on a diffusion
approximation of correlated random walk with habitat selection at patch boundaries.
This model assumes that movements obey a Markov process, which is probably a
good approximation for many though not all organisms. In the present context, the
important advantage of both models is that they allow a detailed study of how the
spatial configuration of the habitat influences movements of individuals. Both mod-
els can and have been used as sub-models describing movements in individual-based
demographic or evolutionary models, with the great advantage that the movement
component can be rigorously parameterized. I return to this point in Section 9.5.

9.3 Metapopulation dynamics

I now turn to population dynamics in fragmented landscapes, where the habitat
patches are generally small and hence also the respective local populations tend to be
small and extinction-prone. In this case, long-term persistence is possible only at the
level of the patch network, with recolonization of currently unoccupied patches com-
pensating for local extinctions. This is the scenario assumed in the classic metapop-
ulation theory (Hanski 1999). The best-developed modeling approach to metapopu-
lation ecology is based on stochastic patch occupancy models (SPOM; Hanski 1994,
Day and Possingham 1995, Frank 1998, Moilanen 1999, Hanski and Ovaskainen
2000), which simplify the modelling task by considering only the presence or ab-
sence of the focal species in the habitat patches. This is an acceptable simplification
for many highly fragmented landscapes.

Mathematically, SPOMs are formulated as Markov chains (discrete time) or Markov
processes (continuous time) with 2n possible states in a network of n habitat patches
(Hanski and Ovaskainen 2003; Ovaskainen and Hanski 2004). The qualitative behav-
ior of a SPOM is simple, as the metapopulation will eventually enter the absorbing
state in which all the patches are empty, and which corresponds to metapopulation
extinction. In large patch networks time to metapopulation extinction may however
be very long in comparison with time to local extinction, and the dynamics settle to
a quasi-stationary distribution, the stationary probability distribution conditioned on
nonextinction. This is an important concept for ecologists, implying that at the time
scale of interest the size of the metapopulation fluctuates due to ongoing local ex-
tinctions and recolonizations but there is no temporal trend in metapopulation size.
Metapopulation models formulated as SPOMs have been reviewed by, e.g., Hanski
and Ovaskainen (2003) and Ovaskainen and Hanski (2004). Here I draw attention to
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four issues and results that have particular relevance for this chapter on the influence
of the spatial configuration of habitat on population processes.

First, a useful distinction may be made between homogeneous and heterogeneous
SPOMs. The familiar Levins (1969) metapopulation model is a deterministic approx-
imation of a simple SPOM with an infinite number of identical patches. A stochastic
version of the Levins model with a finite number of patches, which is often called the
stochastic logistic model, is an example of homogeneous SPOMs with identical and
equally connected patches. Homogeneous SPOMs with identical transition probabil-
ities may be solved numerically even for large n, and the models are tractable for
mathematical analysis (Kryscio and Lefèvre 1989; Jacquez and Simon 1993; N̊asell
1996; Ovaskainen 2001). These models have been applied widely in population biol-
ogy (Norden 1982), epidemiology (Weiss and Dishon 1971), chemistry (Oppenheim,
Shuler et al. 1977), and even sociology (Bartholomew 1976). In contrast, heteroge-
neous SPOMs allow for variation in patch sizes and connectivities, and are clearly
more appropriate for real metapopulations. Unfortunately, as the size of the state
space with n patches is now 2n, the analysis of large patch networks presents com-
putational challenges.

Second, helpful insight to metapopulation dynamics in heterogeneous networks can
be gained via deterministic approximations of the stochastic models. A determin-
istic continuous-time approximation of a heterogeneous SPOM describing the rate
of change in the probability of patch i being occupied, pi, is given by a system of
n equations for a network of n patches (Hanski and Gyllenberg 1997; Hanski and
Ovaskainen 2000; Ovaskainen and Hanski 2001),

dpi/dt = Ci(p)(1 − pi)− Ei(p)pi, (9.2)

where Ci(p) gives the colonization rate of patch i when it is empty and Ei(p) gives
the extinction rate of the population in patch i when it is occupied. p is the vector of
the n occupancy probabilities. The deterministic approximation given by Eq. (9.2)
is derived from the full stochastic model by accounting only for the deterministic
drift and ignoring stochastic fluctuations. To develop this model further, it is custom-
ary to make biologically plausible assumptions about patch area dependence of the
extinction rate Ei(p) and connectivity dependence of the colonization rate Ci(p).
Making the simple assumptions Ei = e/Ai and Ci = cSi, where Si is the connec-
tivity measure given by Eq. (9.1) (with some simplification), leads to the spatially
realistic Levins model (Ovaskainen and Hanski 2004). A key point is that the essen-
tial behavior of the original n-dimensional model (Eq. (9.2) for n patches) is well
approximated by a one-dimensional equation (Ovaskainen and Hanski 2001; 2002).
The equilibrium size of the metapopulation is given by

p̃∗λ = 1− δ/λM , (9.3)

where δ = e/c and λM is the leading eigenvalue of a matrix constructed with the
extinction and colonization terms. λM is called the metapopulation capacity of a frag-
mented landscape (Hanski and Ovaskainen 2000). Equation (9.3) may be compared
with the equilibrium in the Levins model that has been modified with the assump-
tion that only fraction h of the patches is suitable for colonization (Lande 1987),
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p∗ = 1 − δ/h. This comparison shows that λM is a quantity that plays in the spa-
tially realistic model the same role as the amount of suitable habitat in the original
nonspatial model. λM thus measures the influence of both the amount and the spatial
configuration of suitable habitat on metapopulation growth and size at equilibrium.
λM is a convenient parameter of landscape structure from the viewpoint of metapop-
ulation viability, and better justified for that purpose than many other parameters
commonly used in landscape ecology (Turner, Gardner et al. 2001). For instance,
λM allows one to examine the relative roles of habitat loss and fragmentation on
metapopulation persistence (Hanski and Ovaskainen 2000; Ovaskainen, Sato et al.
2002), an important issue in landscape ecology (Hill and Caswell 1999; With and
King 1999; Fahrig 2001), and in conservation biology (McCarthy, Lindenmayer et
al. 1997).

Third, though the deterministic analysis provides helpful insight to the dynamics of
metapopulations, it is inadequate for quantitative analysis in the case of small patch
networks, in which extinction-colonization stochasticity inevitably playes a big role,
and in, e.g., cases where the dynamics are spatially correlated. To model metapop-
ulation dynamics in such situations, one may turn to stochastic models, but the dif-
ficulty here is that the mathematical analysis of heterogeneous SPOMs for all but
tiny networks is hampered by the huge size of the state space. Ovaskainen (2002)
has described a useful approximation to overcome these problems. His approach is
based on the same idea as the concept of effective population size in population ge-
netics: construct a homogeneous SPOM which behaves in the same manner as the
heterogeneous SPOM with respect to some model properties of interest, and which
homogeneous SPOM can be analyzed mathematically (for technical details see the
original paper). In the case of the spatially realistic Levins model, the transformed
model has three parameters, which are the effective patch number, the effective col-
onization rate, and the effective extinction rate.

My fourth point concerns the fundamental quantity of time to metapopulation ex-
tinction. The “effective metapopulation” approach may be extended to a variety of
biologically interesting situations, such as correlated local dynamics or temporally
varying environmental conditions (Ovaskainen 2002). For example, Ovaskainen and
Hanski (2003) used this approach to show that if extinctions and colonizations are
correlated, with a correlation coefficient ρ, the effective number of habitat patches is
reduced to ne = n/((n− 1)ρ+ 1). The correlation changes the qualitative behavior
of the model in several ways. Most importantly, for ρ > 0 the mean time to extinction
does not increase exponentially with the number of habitat patches, as predicted by
a homogeneous SPOM (Ovaskainen 2001), but it grows according to the power law
T ∼ n1/ρ (Ovaskainen and Hanski 2003). This contrast between spatially uncorre-
lated and correlated metapopulation dynamics parallels the difference in extinction
time of local populations under demographic versus environmental stochasticities
(Lande 1993; Foley 1994). In both cases, the correlation can be the dominant factor
determining the life-time of a population or a metapopulation, respectively.
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Empirical studies

Ecologists and conservation biologists have conducted hundreds of empirical stud-
ies on the occurrence of species in highly fragmented landscapes. Many researchers
have set out to test what is often called the area-isolation paradigm, namely that the
spatial distribution of species is largely determined by the areas and isolations (con-
nectivities) of habitat patches. This “paradigm,” which is often seen as an integral
part of the metapopulation theory, is contrasted with the view that what really mat-
ters for the occurrence of species is not habitat area and isolation but habitat quality
and spatial variation in habitat quality from one patch to another. An extensive lit-
erature has grown around this issue (reviewed by Fahrig 1997; 2003, Hanski 2005,
Pellet et al. 2007). Incidentally, the literatures on the species-area relationship and
the island biogeographic theory (MacArthur and Wilson 1967) contain a parallel de-
bate about the importance of island area versus habitat heterogeneity in explaining
the increasing number of species on islands with increasing area (Williamson 1981;
Rosenzweig 1995; Whittaker 1998).

It is apparent from the previous section that metapopulation models for fragmented
landscapes have been constructed that incorporate the influence of habitat patch area
and connectivity on the dynamics; this is what I call the spatially realistic approach.
The rationale for this approach is that the area and isolation effects, stemming from
the general extinction proneness of small populations and general distance depen-
dence of migration, can be assumed to operate in many species in many landscapes.
The intention is not to argue that habitat quality would not matter, which would be
a biologically naive argument, but one should realize that variation in habitat quality
is very species and habitat specific and it is difficult to extract anything generally
comparable to habitat area and connectivity; there is no general answer. It is often
critically important to know what really determines the occurrence of species in par-
ticular cases, not least for conservation and management, but how much habitat area,
quality, and isolation matter must depend on the specific circumstances. Furthermore,
each empirical study is necessarily based on a limited number of habitat patches and
variables that are measured, and exactly which patches are included in the study
makes a difference. Including more patches of very low quality will most likely in-
crease the statistical significance of habitat quality in explaining habitat occupancy;
adding tiny patches (which an ecologist might be tempted to exclude because they do
not often support a local population) would increase the significance of patch area;
and including some very isolated patches might do the same for the significance of
connectivity. The point is that there is no general answer, and one should not be
misled to assume that 10 studies demonstrating the importance of habitat quality
have somehow demonstrated the general unimportance of the spatial configuration
of habitat for the dynamics of species living in fragmented landscapes.

It should also be recognized that if a species occurs as a metapopulation in a frag-
mented landscape and occupies, at the stochastic quasi-equilibrium, only a fraction
of the patches, there cannot be explanatory variables that could explain well in which
particular patches a species happens to occur at one point in time. The effects of patch
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area, quality, and connectivity are expected to become more evident if more data are
available and the long-term incidence (probability) of patch occupancy is analyzed
(the variable pi in Eq. (9.2)) rather than presence or absence at one point in time.
In a similar manner, island area typically explains a large fraction of variation in the
number of species on islands, because summing up the occurrences of many species
in a set of islands averages out much of the stochastic variation. There are also sev-
eral other biological reasons why patch area and isolation do not often explain a large
fraction of variation in the occurrence of species in empirical studies (Hanski 2005;
Hanski and Pöyry 2007), including the measure of isolation used. Most empirical
studies still employ the distance to the nearest occupied habitat patch, or even to the
nearest patch regardless of occupancy, though such measures are known to underes-
timate the effect of connectivity (Moilanen and Nieminen 2002). Biologically, Eq.
(9.1) is a well justified measure of connectivity for empirical studies.

Spatially realistic models predict that the viability of the entire metapopulation de-
pends on the amount and spatial configuration of habitat in the network. This predic-
tion is clearly of great significance for conservation and management, but conducting
empirical studies at the network level rather than at the level of individual patches
takes more time and resources and hence the former are much less numerous than
the latter. Nevertheless, a few studies have addressed the question about the extinc-
tion threshold in empirical studies. The most rigorous work has been done on the
Glanville fritillary butterfly (Melitaea cinxia) in Finland, for which data are available
from tens of patch networks. The spatially realistic model fits well to these data and
the results provide convincing evidence for the extinction threshold, absence of the
species from networks with δ > λM (see Eq. (9.3)). Qualitatively similar results
have been reported for the Marsh fritillary (Euphydryas aurinia) in England (Bul-
man, Wilson et al. 2007), for the white-backed woodpecker (Dendrocopos leucotos)
in Sweden (Carlson 2000), the three-toed woodpecker (Picoides tridactylus) in Fin-
land (Pakkala, Hanski et al. 2002), and insects and fungi living in decomposing logs
in Finland (Hanski 2005).

9.4 Metacommunity dynamics of competing species

The dynamic theory of island biogeography of MacArthur and Wilson (1963; 1967)
explains the number of species on islands by their areas and isolations from the main-
land. Hence the island model is a spatially realistic model - it incorporates the con-
sequences of the spatial configuration of the habitat on population processes. As the
basic island model assumes noninteractive species, it may be constructed by simply
adding up models for single-species metapopulation dynamics: the expected number
of species on an island, or in a habitat fragment, is given by the sum of the species-
specific long-term probabilities of occurrence on the island, in other words the p∗

values described in the previous section. As a matter of fact, it can be shown that the
island model is just a limiting case of the spatially realistic metapopulation model
(Hanski 2009). Viewing the island theory from the perspective of single-species
metapopulation theory leads to potentially helpful models, such as the species-area
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relationship derived from single-species incidence functions (Ovaskainen and Han-
ski 2003).

In reality, all species interact with a smaller or larger number of other species. Often
the interactions are spread out so thinly across many other species that no particular
species appears strongly dynamically coupled with the focal species. For instance,
most insectivorous birds feed on hundreds or even thousands of insect species, and
most are preyed upon by a common set of natural enemies. In such situations, models
ignoring interspecific interactions may successfully describe many features of mul-
tispecies communities. The island theory is an example. But not all communities are
like this.

The single-species metapopulation model has been extended to multiple compet-
ing species. In this context, models have typically assumed that competition in-
creases extinction rate, decreases colonization rate, or both (Levins and Culver 1971;
Hanski 1983; Hastings 1987; Nee and May 1992), thus reducing the chances of
landscape-level coexistence. These models have not incorporated any description of
landscape structure, as all habitat patches and local populations have been assumed
to be equally large and equally connected. On the other hand, a particular concern
has been to properly account for the spatial correlation structure in the occurrence of
species. Evidently, if interspecific competition increases the extinction rates of com-
peting species, they are less likely to co-occur locally than expected by random and
independent distribution of species. Indeed, much of the theoretical literature on the
spatial dynamics of interacting species, whether they are competitors or engaged in
predator-prey interactions, has been focused on elucidating spatial pattern formation
(nonrandom spatial patterns) due to interspecific interactions (Dieckmann, Law et al.
2000; Ovaskainen and Cornell 2006). This is a striking and interesting phenomenon,
but it should be recognized that spatio-temporal correlations maintained by interspe-
cific interactions are strongest when the fixed spatial structure of the environment
is simplest; most theoretical models assume completely homogeneous environment.
When the habitat occurs in discrete patches that differ in size and isolation, land-
scape structure constrains the spatial dynamics and greatly influences spatial patterns
in the occurrence of species. The situation is analogous with respect to ecological
differences among the species. In the case of two or more equal competitors, inter-
specific interactions generate and maintain spatio-temporal correlations in species
abundances that may critically influence metacommunity dynamics. But in real com-
munities, competing species typically exhibit differences in their ecologies that con-
strain their dynamics, just like spatial heterogeneity constrains the spatial dynamics
in a metacommunity.

With these considerations in mind, I have constructed a model for competitors in a
fragmented landscape that includes a description of the spatial configuration of the
habitat but ignores spatial correlations induced by interspecific interactions - because
such correlations are not expected to be very influential in communities of unequal
competitors in heterogeneous landscapes (Hanski 2008). The model is essentially an
extension of the single-species spatially realistic metapopulation model (Eq. (9.2))
to any number of competing species, constructed on the assumption that local com-
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petition reduces the effective patch areas (local carrying capacities) as experienced
by the co-occurring species. Reduced patch areas implicitly correspond to smaller
populations and hence translate to an increased rate of local extinction and reduced
rate of colonization in the model. Empirical studies on interspecific resource com-
petition have demonstrated that competition typically reduces the sizes of coexisting
populations (Connell 1983; Schoener 1983; Goldberg and Barton 1992). One good
example of competitive metacommunities is zooplankton living in networks of rock
pools and other small water bodies (Cottenie and De Meester 2005; Kolasa and Ro-
manuk 2005). In a well-studied metacommunity of three species of Daphnia water
fleas (Hanski and Ranta 1983), interspecific competition increased annual extinction
rate of local populations by 64% (Bengtsson 1991). Other examples are discussed by
Hanski (1999) and many chapters in Holyoak et al. (2005).

The model allows the calculation of deterministic equilibria with fast iteration. The
model predicts that, not surprisingly, the number of coexisting species decreases with
increasing strength of competition (Hanski 2008). The number of coexisting species
also decreases with decreasing average rate of colonization, for a given average rate
of extinction, essentially because poor colonizers have a more fragile occurrence
in a fragmented landscape to start with and hence their viability is more sensitive
to competition than that of good colonizers. The number of coexisting species also
decreases with increasing range of migration, modelled with the help of the connec-
tivity measure described by Eq. (9.1). In the case of species that have limited range of
migration, strong competition may lead to spatially restricted ranges of the species,
such as shown in Fig. 9.1a. This may happen when the spatial distribution of habitat
patches is random or aggregated, which leads to spatial variation in the strength of
migration. Two species may settle into a stable equilibrium in which their spatial dis-
tributions are complementary, the boundary occurring in parts of the network where
patch density is low: competition may then make it impossible for a species to cross
such a relative barrier to migration (the same result has been obtained in a different
kind of competition model; Goldberg and Lande 2006). On the other hand, in the
case of many species that compete somewhat less strongly, the spatially restricted
stable distributions may become nested, as shown in Fig. 9.1b. Several species are
now restricted to the most favorable part of the network, where the connectivity of
the patches is high due to high patch density and/or large patch areas (Hanski 2008).

This model demonstrates how the spatial configuration of habitat may lead to qualita-
tively new outcomes of competition, such as partly nested distributions of competing
species. This counterintuitive result is caused by the complex web of direct and in-
direct interactions among the species: in the case of three or more species, a shared
competitor has a negative direct effect, decreasing the patch carrying capacity for
the focal species, but a positive indirect effect, in reducing the abundance (incidence
of patch occupancy) of a shared competitor. Another interesting result concerns the
influence of spatial variation in patch areas: other things being equal, the number
of coexisting species is greater when there is spatial variation in patch areas (Han-
ski 2008). This result relates to competition-colonization trade-off, poor competitors
persisting well in small habitat patches if they are good colonizers.
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Figure 9.1 Two examples of limited spatial distributions of many similar competing species
with short range of migration. The colors indicate the presence of different species in different
habitat patches with probability of occupancy (p) greater than 0.2. (a) Very strong competitors
exhibit practically exclusive spatial distributions, while (b) moderately strong competitors may
end up with partly nested distributions. (See color insert following page 202.)

The modelling work that I have described in this section belongs to a rapidly expand-
ing literature on metacommunity ecology and dynamics, reviewed by Holyoak et al.
(2005) and Urban et al. (2008). Metacommunity dynamics have been studied within
several different frameworks, of which the above model belongs to the patch dynam-
ics framework. So far, metacommunity ecology has largely ignored the actual spatial
configuration of the habitat, with some notable exceptions, for instance contributions
that relate the species composition in local communities to the degree of isolation of
the respective habitat patch in the landscape (Kruess 2003; Gripenberg and Roslin
2005; Tscharntke, Rand et al. 2005; van Nouhuys 2005).

9.5 Genetic and evolutionary dynamics

The spatial configuration of habitat in landscapes influences ecological dynamics,
and knowing about the population dynamic consequences of spatial structure im-
proves our understanding of and capacity to predict population dynamics. In the same
manner, one could expect that the spatial configuration of habitat influences and pos-
sibly interacts with evolutionary dynamics. This is best understood in the case of
heterogeneous environments consisting of dissimilar habitats, for which there is a
vast body of evolutionary theory including processes of speciation and adaptive ra-
diation. Turning back to the theme of competing species in metacommunities, just
like a mixture of dissimilar habitats may allow a score of specialist species to coexist
– each having its stronghold in a different type of habitat – natural selection may
favor different genotypes in different habitats, and thus landscape heterogeneity is
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one of the factors that may maintain genetic diversity (Levene 1953; Hedrick 1986)
and thereby the potential for evolutionary change. My concern here is however more
circumscribed and the same as in the previous sections: assuming that there is just
one type of habitat, what difference might the actual spatial configuration of that
habitat make to genetic and evolutionary dynamics? I start with an example from
our research on the Glanville fritillary butterfly (Hanski 1999; Ehrlich and Hanski
2004). This example is particularly instructive, because the relevant genetic infor-
mation was available for the study populations for a long time, yet its significance
became apparent only when analyzed in the spatially realistic context.

The enzyme phosphoglucose isomerase (PGI) catalyzes the second step in glycolysis.
It is highly polymorphic in most animals and plants (e.g., Katz and Harrison 1997,
Filatov and Charlesworth 1999, Dahlhoff and Rank 2000), which is the reason why it
was one of the most commonly studied molecules in the enzyme electophoretic stud-
ies of genetic polymorphism in the 1970s and 1980s. It was, and still is, a convenient
genetic marker for many population genetic studies. This is how we used it in our
studies of the Glanville fritillary in the 1990s, for instance to characterize the level
of inbreeding in small populations and to study how inbreeding depression would
influence local dynamics and population extinction (Saccheri, Kuussaari et al. 1998).
It was known from previous studies on e.g., Colias butterflies that PGI may not be a
neutral locus. Watt (Watt, Chew et al. 1977; Watt 1983) had demonstrated differences
in the performance and fitness components of individuals with different genotypes.
Unfortunately, we had only samples of allele frequencies from many natural popu-
lations, no data on the performance or fitness of individuals, and there did not seem
to be any way of assessing possible selection with such samples. Some additional
information would have been needed.

In our case, progress was made when we took into account knowledge about the
spatial configuration of the landscape from which the samples originated, the areas
and the connectivities of the habitat patches, and the ages of the local populations in-
habiting these patches, which are known thanks to long-term monitoring of the large
metapopulation of the Glanville fritillary in the Åland Islands in Finland (Hanski
1999; Nieminen, Siljander et al. 2004). Several other genetic loci served as helpful
controls, as the same samples had been genotyped for multiple loci, which share
the same demographic history as the candidate gene Pgi. We found that a particular
allozyme allele was significantly more frequent in newly-established isolated popu-
lations than in old and well-connected populations (Haag, Saastamoinen et al. 2005),
and that the Pgi allelic composition of local populations influenced their growth rate,
which became apparent when the effects of habitat patch area and isolation were
also taken into account (Hanski and Saccheri 2006). These conclusions have been
subsequently supported by studies on individual butterflies, which have documented
significant associations between molecular variation in Pgi and variation in the flight
metabolic rate and dispersal rate in the field (Niitepõld, Smith et al. 2009), body tem-
perature of butterflies at flight in low ambient temperatures (Saastamoinen and Han-
ski 2008), egg clutch size (Saastamoinen 2007), and even lifespan (Saastamoinen,
Ikonen et al. 2009).
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The emerging discipline of landscape genetics addresses the influence of landscape
structure on population genetics (Manel, Schwartz et al. 2003; Storfer, Murphy et
al. 2007). However, landscape genetic studies appear to be primarily concerned with
neutral genetic variation, with descriptions of genetic variation and spatial genetic
structures, and with the application of spatial statistics and landscape ecological ap-
proaches to genetic data. In contrast, the example that I have just described is focused
on functionally important molecular variation and attempts to develop a spatially re-
alistic approach for metapopulation genetic studies (Gaggiotti 2004; Whitlock 2004).
Ultimately, all these approaches are likely to merge, just like metapopulation ecology
and landscape ecology will hopefully become increasingly integrated.

Modeling the evolution of migration

The evolution of migration rate is a classic topic in evolutionary biology and life-
history ecology (Ronce, Olivieri et al. 2001; Ronce and Olivieri 2004). Evolution of
migration rate is gaining additional importance from the threats that habitat loss and
fragmentation pose to the viability of very large numbers of species (Hanski 2005)
and from the possibility that evolutionary changes in migration rate (as well as in
other life history traits) might ameliorate the impact of fragmentation. In metapop-
ulations consisting of small extinction-prone local populations some migration is
clearly necessary for long-term persistence. On the other hand, “too much” migra-
tion may elevate mortality during migration so greatly, and it may lead to such an
excessive loss of time, that persistence is again compromised (Comins, Hamilton
et al. 1980; Hanski and Zhang 1993; Olivieri and Gouyon 1997). Though natural
selection does not operate to produce the optimal migration rate for the long-term
survival of species or metapopulations (Comins, Hamilton et al. 1980), it is nonethe-
less possible that an evolutionary change in migration rate following habitat loss and
fragmentation might reduce the risk of extinction (Leimar and Nordberg 1997).

But what is the likely change in migration rate in response to habitat loss and frag-
mentation? There are so many different selective forces affecting the evolution of
migration rate (Ronce, Olivieri et al. 2001; Ronce and Olivieri 2004) that there is
no simple answer to this question. For instance, habitat loss and fragmentation in-
crease mortality during migration, because it becomes increasingly difficult for mi-
grants to locate another fragment of habitat, which should select for reduced migra-
tion (van Valen 1971). Increasing genetic relatedness of individuals in increasingly
isolated local populations should select for increased migration (Hamilton and May
1977; Gandon and Rousset 1999), and so should the opportunity to recolonize habitat
patches that have become unoccupied following local extinction, and more generally
the chance to move to a low-density population (Gadgil 1971; Roff 1975). Given the
multitude of often opposing selection pressures, it is perhaps not surprising that re-
searchers have come up with conflicting suggestions as to what might be the net effect
of habitat fragmentation on the evolution of migration rate. For instance, Dempster
(1991) expected evolution to reduce migration rate in butterflies living in increas-
ingly fragmented habitats (see also Thomas et al. 1998, Hill et al. 1999), whereas
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Hanski (1999) suggested that fragmentation would generally select for increased mi-
gration rate. The matter cannot be settled without having a means of considering all
the major selective forces, and their interactions, at the same time. And this cannot
be done without employing appropriate models.

Heino and Hanski (2001) constructed a spatially realistic evolutionary model to in-
vestigate the evolution of migration rate in fragmented habitats, using the Glanville
fritillary butterfly as a model species. The model parameters were estimated with
independent data whenever possible. Migration was modelled using the movement
model outlined in Section 9.2, which allowed the estimation of parameter values
with empirical data. The remaining parameter values were selected in such a manner
that the model produced realistic short-term and long-term metapopulation dynam-
ics. Reassuringly, when the migration rate was allowed to evolve in the model, it
settled to a value close to the empirically observed one (Heino and Hanski 2001).
This analysis suggested that the dominant selective forces were mortality and time
lost during migration as well as the opportunity to establish new local populations in
currently unoccupied patches. Starting from a little-fragmented landscape, with in-
creasing fragmentation the predicted migration rate first declined, apparently due to
increased cost of migration, but with further fragmentation migration rate increased
when an increasing number of habitat patches became available for recolonization.

More detailed theoretical and empirical studies of the same butterfly metapopulation
have revealed how the migration rate of butterflies in particular local populations
depends on their ages and population dynamic connectivities to other populations
(Hanski, Erälahti et al. 2004). The migration rate is predicted and was observed to
be higher in new than in old populations, apparently because new populations are
likely to be established by exceptionally mobile individuals and because the rele-
vant traits exhibit high heritability in the Glanville fritillary (Saastamoinen 2008) as
migration-related traits do also more generally (Roff and Fairbairn 1991). The re-
sults on Pgi polymorphism referred to above match nicely these results and suggest
that Pgi is functionally involved in the evolution of migration rate in the Glanville
fritillary. Among the new populations, the migration rate increased with decreasing
connectivity (increasing isolation), whereas among old populations the opposite was
both predicted and observed. A reduced migration rate in old isolated populations
is largely due to emigration of the more mobile individuals away from the popula-
tion and limited immigration due to great isolation. These results resolve the two
opposing verbal predictions that have been put forward about the impact of increas-
ing habitat fragmentation on migration rate. Dempster (1991) emphasized increasing
emigration losses and expected migration rate to become reduced with fragmentation
(increasing isolation of habitat patches); in the Glanville fritillary, this was observed
for old populations. Hanski (1999) was primarily thinking of improved colonization
opportunities with increasing fragmentation, hence expecting increased migration
rate with increasing fragmentation - which was observed for new populations. Be-
cause both effects operate simultaneously in a metapopulation, one has to use a model
to work out the overall consequences of fragmentation. In the case of the Glanville
fritillary, and assuming realistic parameter values for this species and its natural land-
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scape, the overall effect has been increasing migration rate when the habitat becomes
highly fragmented (Heino and Hanski 2001; Hanski, Erälahti et al. 2004), though the
quantitative result will depend on the spatial configuration of the landscape.

To return to the question whether evolutionary changes may make a difference to the
long-term survival of species in changing environments, Heino and Hanski (2001)
showed that an evolutionary rescue is theoretically possible: natural selection may
change a migration rate to such an extent that a metapopulation will persist in a
landscape in which it would go extinct without the evolutionary change. However, the
calculations also indicated that in practice such a rescue is unlikely in the Glanville
fritillary, largely because a change in migration rate has both positive and negative
consequences for population sizes and hence cannot much compensate for habitat
loss and fragmentation. Only when the contrast is between relatively uniform and
highly fragmented habitats is the level of migration likely to make a truly significant
difference for population persistence. Clearly, conservationists should not count on
evolution to solve the extinction crisis caused by habitat loss and fragmentation!

9.6 Conclusion

I have outlined in this essay a research approach to spatial ecology - the spatially real-
istic metapopulation approach - that is helpful for bringing theoretical and empirical
studies closer to each other, and which may facilitate the integration of studies from
individual movement behavior to population and community dynamics to evolution-
ary dynamics. Much of the theory in spatial ecology has remained detached from
empirical research, to a large extent because the theory does not take into account
the influence of realistic landscape structure on population processes. The spatially
realistic metapopulation approach specifically addresses the influence of the spatial
configuration of the habitat on the ecological and evolutionary processes affecting
individuals, populations, and communities. Just like the island biogeographic theory
of MacArthur and Wilson (1967) in the 1970s, the spatially realistic approach pre-
scribes research tasks for ecologists engaged in empirical work, in terms of testing
model assumptions and predictions. A key component of this research is the measure
of connectivity described in the introduction (or some comparable measure), which
can be employed both in empirical and modelling studies.
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CHAPTER 10

Metapopulation perspectives on the
evolution of species’ niches

Robert D. Holt
University of Florida

Michael Barfield
University of Florida

Abstract. The tapestry of the history of life reveals striking examples of both niche con-
servatism, and rapid niche evolution, where "niche" is used in the Grinnellian sense as that
set of conditions, resources, etc. which permit populations of a species to persist in a local-
ity without recurrent immigration. Recent years have seen the development of a rich body
of theoretical studies aimed at understanding when one might expect niche conservatism
vs. evolution in spatially and temporally heterogeneous environments. This literature has
illuminated the role of many factors, such as genetic architecture, density dependence, and
asymmetries in dispersal, in determining the likelihood of niche conservatism. However,
most studies have assumed very simple spatial scenarios, such as a single source popula-
tion (with conditions within a species’ niche) supplying immigrants into a sink population
(where conditions are outside the niche). In this contribution, after summarizing key in-
sights from this prior literature, we will present the results of theoretical studies which
examine how the spatial structure of the landscape can modulate the direction and pattern
of niche evolution.

10.1 Introduction

The term “niche” refers to the range of conditions, resources – and indeed all biotic
and abiotic factors – that permit populations of a species to persist (deterministically)
in a given habitat without immigration. In effect, the niche is a mapping of population
dynamics onto an abstract environment space (e.g., with axes of temperature, pH,
food availability, predator density, etc.; Hutchinson 1958, Maguire 1973, Holt and
Gaines 1992), emphasizing in particular the limits outside of which a species faces
extinction. Formally, if environmental conditions in a given habitat are such that
the low-density intrinsic rate of growth r (instantaneous per capita birth rate – per
capita death rate) is negative, then conditions by definition are outside the niche, and
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introductions of the species should fail. By contrast, introductions into a habitat with
r > 0 should tend to increase. So the niche of a species in effect partitions the world
into areas where it can persist, and areas where it faces extinction. (For a species with
discrete generations, sources and sinks can be defined in terms of the average fitness
at low density, with unity being the threshold.)

To a first approximation, the geographical distribution of a species should be deter-
mined by its niche (Pulliam 2000), as should its habitat distribution at a more local,
landscape scale. Understanding niches is of great practical importance, for instance
in predicting how changes in climate might lead to shifts in distribution, and changes
in land use can lead to altered patterns of abundance on a landscape. But all such pre-
dictions – and the scientific literature is replete with them – rest on the assumption
that species’ niches remain unchanged, even as the world changes. Such evolutionary
conservatism, or the lack of change in the niche in a heterogeneous world, is called
“niche conservatism.”

The literature of evolutionary biology contains many examples that suggest niche
conservatism, from short to long time scales (Bradshaw 1991, Wiens and Graham
2005). There are also many instances of rapid niche evolution, such as the evolution
of antibiotic resistance in microbes, and the evolution of tolerance to heavy metal
toxins. Understanding the factors that lead to niche conservatism, on the one hand,
and rapid niche evolution, on the other, has been the focus of considerable theoretical
attention and an increasing amount of empirical study (Holt 1996, Kawecki 2008).
There are two circumstances in which one might look for niche evolution, or try
to understand what leads to niche conservatism. First, in a spatially closed popula-
tion (e.g., on an oceanic island), a temporal change in the environment can force a
species to experience conditions outside its niche. Alternatively, in a spatially open
population existing in a heterogeneous landscape, dispersal can take individuals out
of habitats within the niche – source habitats – and place them into habitats outside
the niche. This is a likely scenario at the edge of a species’ range, for instance. Given
genetic variation, evolution can potentially occur in both circumstances, so that sink
populations can be transformed into source populations. Alternatively, even though
genetic variation is present, sinks may remain sinks, and niche conservatism will be
observed. The goal of theory is to provide insights into conditions under which each
of these outcomes will occur.

Prior theory has largely focused on very simple landscapes, comprised either of
species with random dispersal distributed over smooth gradients or a single source
patch coupled by dispersal to a single sink patch. In this paper, we take steps towards
examining niche evolution in more complex landscapes. We first review highlights
(including previously unpublished results) from studies of models of niche evolution
for sources and sinks coupled by dispersal, and then use these to motivate models for
evolution in metapopulations comprised of two kinds of patches linked by dispersal.

We consider two limiting cases of a metapopulation. In both, the models track pres-
ence and absence of a species. The first is a “mainland-island” scenario of asym-
metrical colonization. A species is established on a mainland, where it is adapted to
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one habitat type. The mainland population provides colonists onto islands made of
the second habitat type, where the colonists are initially maladapted, and sufficiently
so that the islands are sink habitats. In the absence of evolution, successful colo-
nization is impossible. The question is how island area and distance influence col-
onization and extinction rates, taking into account the effects of selection and gene
flow on adaptive colonization outside the niche. The second limiting case is that of
classic metapopulation theory, which assumes we can ignore the details of spatial
arrangements of the patches, and focus instead on the aggregate rates of colonization
determined by average occupancy across the entire landscape.

10.2 Models for adaptive colonization into sink habitats

Theoreticians often assume that rates of dispersal are fixed parameters (e.g., a con-
stant diffusion parameter). In reality, dispersal rates can often be highly variable.
For instance, physical transport processes (e.g., the wind) can fluctuate greatly in
strength, and source populations for dispersal propagules (or dispersal vectors) may
vary greatly in density. Boreal forest bird species such as pine siskins and crossbills
may be absent from the southern United States for many years, and then experience a
large pulse of movement southward after failure of their food supply. The bottom line
is that dispersal onto distant islands or habitat patches can be episodic, so that there
is a substantial time lag between successive colonizing attempts. This assumption is
implicit in classic island biogeography theory and much of metapopulation theory.
We start with an island biogeographic perspective, which assumes that species persist
and are at evolutionary equilibrium on a mainland, but colonize onto islands where
persistence is enhanced by adaptive evolution to conditions on the islands. We then
will move to a heterogeneous metapopulation, where colonization in effect is among
islands in an archipelago or patches in a landscape.

We consider first a single episode of attempted colonization onto an island, where
the colonists find themselves “outside the niche,” hence declining in numbers. The
fate of this population depends on the outcome of a race between demography and
evolution. Without genetic variation, extinction is inevitable. If genetic variation is
present in the dispersal propagule, or generated in situ via mutation, natural selection
may increase the growth rate sufficiently to make it positive in the novel environment.
However, before this can occur, the population might reach low levels at which it
risks extinction. Fig. 10.1 schematically shows the expected pattern of population
growth.

A quantitative genetics model for adaptation to a sink habitat

Gomulkiewicz and Holt (1995) (see also Holt and Gomulkiewicz 1997) provided a
first step towards examining this process. They assumed that a single quantitative
trait is undergoing selection. At each time step, the population declines (or grows)
multiplicatively. The rate of growth itself changes over time, due to a single quanti-
tative trait that is under selection in the novel environment. They assumed that evo-
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Figure 10.1 Population dynamics for introduction into a sink habitat. Left panel: Without evo-
lution, extinction is ensured. Right panel: With evolution, the population may persist. However,
if a population starts at low densities, and/or adapts slowly, it might spend time at very low
densities, where it risks extinction. Adapted from Gomulkiewicz and Holt (1995).

lution fits the standard assumptions of quantitative genetics (Falconer 1989). The
model is deterministic in both its demography and genetics; to heuristically address
extinction, they assumed that there is a critical population size, Nc, below which a
population is quickly vulnerable to extinction (e.g., due to Allee effects, or because
of demographic stochasticity). Here we describe the assumptions of the model and
some conclusions, and refer the reader to the original papers for derivations.

The basic scenario is depicted in Fig. 10.2. There is a single phenotypic trait z. On
the mainland, stabilizing selection occurs, and genetic variation is maintained at a
constant level (presumably by mutation, though this is implicit, not explicit). The
colonizing propagule thus should have a distribution (assumed to be normal, which
is typical for a quantitative trait) around the optimum on the mainland, d0. P is the
phenotypic variance of this distribution, which includes nongenetic sources of varia-
tion among individuals, such as developmental noise, as well as heritable variation.
On the island, there is also potentially stabilizing selection on the trait, but around
a new optimum (scaled to 0 in the figure; fitness is given by the dashed line). The
fitness of an individual with phenotype z in the sink is given by a Gaussian function

W (z) = Wmax exp[−z2/2ω], (10.1)

whereWmax is the fitness an individual enjoys when it has the optimal phenotype on
the island, and ω is an inverse measure of the strength of selection. When ω is high,
a small deviation of an individual’s phenotype from the local optimum is not very
costly; when small, selection severely acts against such individuals. The initial mean
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Figure 10.2 Evolution of Gaussian character z in a population with discrete generations. The
solid line is the initial phenotypic distribution, the dashed line is the fitness function, and the
dotted line is the phenotypic distribution after a period of evolution. The initial fitness is low,
so the population size will decline initially, but could rebound once evolution has occurred,
if the population avoids extinction after the initial decline. Adapted from Gomulkiewicz and
Holt (1995).

trait value of a group of colonists introduced onto the island is d0, which means they
are initially maladapted; the larger is d0, the lower is their initial fitness. Directional
selection acts on the colonists, pushing their mean phenotypic value in the direction
of the local optimum, and so reducing their degree of maladaptation (measured by
z). The rate at which this happens is determined by the character’s heritability, h2

(which we assume fixed; this is one of many assumptions relaxed in the individual-
based models discussed below).

Because the average trait value of individuals in the colonizing propagule is well dis-
placed from the island optimum, the initial fitness of the colonizers is assumed to be
well below one (the criterion for a sink with discrete generations), and so the popu-
lation initially declines towards extinction. Propagules that potentially could persist
after a period of adaptation may nonetheless initially decline so much that they risk
extinction. Gomulkiewicz and Holt (1995) developed a discrete-time, deterministic
quantitative genetic model for a population initially declining, but adapting to a sink
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environment, which based on the above assumptions led to the following equations
for coupled demographic and evolutionary change:

Nt+1 = W̄tNt,

dt+1 = kdt,

W̄t = Ŵ exp
[ −d2

t

2(P + ω)

]
.

(10.2)

Here,
Ŵ = Wmax

√
ω/(P + ω) (10.3)

is the population growth rate when the mean phenotype has reached the local opti-
mum; this is less than the maximal possible growth rate because it reflects an average
over the distribution of trait values, and this distribution at evolutionary equilibrium
includes individuals with suboptimal phenotypes. The rate of evolution is determined
by the quantity

k =
ω + (1− h2)P

P + ω
, (10.4)

which can be viewed as a measure of evolutionary inertia. If heritability is very low,
k is near unity, so the character changes very slowly; if ω is large, selection is weak,
and again evolution is slow.

This pair of coupled difference equations can be solved in closed form, leading to

Nt = N0Ŵ
t exp

[ −d2
0(1 − k2t)

2(P + ω)(1− k2)

]
. (10.5)

One can then calculate a number of quantities, such as the combination of initial con-
ditions and parameter values that lead an introduced population to experience times
when its abundance is below Nc, and for those populations that do dip below this
value, how long they will stay there. If a population is strongly maladapted to start
with, its numbers will plummet, and even though it has the genetic potential to persist
in the new environment, the model suggests it is highly likely to go extinct first. Pop-
ulations that evolve slowly (high k) are also likely to go extinct, as are populations
which are initially low in numbers (even if they are evolving rapidly). In effect, this
exercise provides qualitative insight into the likelihood of adaptive colonization, as a
function of the degree of maladaptation in the novel environment, and the number of
immigrants, among other ecological and genetic factors.

Stochastic models

The above paragraph used the word “likely,” which is strictly speaking inaccurate.
The model is deterministic and treats N as a continuous variable, and so numbers
will not actually reach zero. Ergo, no extinction. A rigorous analysis of extinction
(i.e., N = 0) requires one to grapple with the fact that organisms are discrete, and
births and deaths are probabilistic. This is a large and challenging problem. Holt and
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Gomulkiewicz (1997) used a branching process approach to examine this problem,
assuming genetic variation at a single haploid genetic locus. They developed a proba-
bility generating function, and found that the qualitative conclusions drawn from the
deterministic model are upheld. Recently, Orr and Unckless (2007) have developed
stochastic models that also include novel mutations, and reached similar conclusions.
But for stochastic models to be analytically tractable, they have to simplify many of
the complex phenomena that occur in declining populations. When a population is
declining towards extinction, while simultaneously evolving, many stochastic pro-
cesses are at play at the same time. Genetic variation itself can be changing due to
selection, and as numbers get small the vicissitudes of demographic stochasticity
loom large. Gene frequencies and genetic variation change due to drift, and when
multiple genetic loci are considered (as is appropriate for quantitative traits such as
body size and thermal tolerance), linkage disequilibrium can shift stochastically. If
populations decline slowly, mutational input can provide a significant source of ge-
netic variation.

To develop an understanding of coupled evolutionary and demographic dynamics
when all these processes are occurring at once, in previous papers we have reported
the results of simulation studies based on individual-based models in which we track
each individual and its genotype in source and sink environments (e.g., Holt et al.
2005). These models include all the above sources of stochastic variability. Here we
just briefly sketch the assumptions of the models, and present a few results, that help
motivate the metapopulation model presented below.

The basic life-history framework of these models is shown in Fig. 10.3. Individuals
move synchronously through a series of life history stages. Selection occurs on a
trait that influences juvenile survival, and density dependence is imposed as a ceiling
number of breeding adults (K). In our genetic assumptions, we follow those used by
Burger and Lynch (1995) in exploring evolution in a constantly changing environ-
ment. There are n loci that contribute additively to a single quantitative trait z, with
free recombination. In the source, mutational input maintains variation (according
to a continuum-of-alleles model), with a Gaussian distribution of mutational effects,
and an environmental noise term (a zero-mean, unit-variance Gaussian random vari-
able). Therefore, heritability emerges as an output of the model, rather than being a
fixed quantity [as in the above model (10.1)-(10.4)]. Mutation can also occur (and
at the same rate) in the sink. Juvenile survival is a Gaussian function of an indi-
vidual’s phenotype (z), with different habitats having different phenotypes at which
survival reaches its maximum (so an individual adapted to the source generally has
low survival in the sink). We allow the source population to reach an evolutionary
equilibrium, with an emergent heritability of the trait reflecting the balance between
mutation, selection, and drift, and then we pluck a propagule of adults at random
and place them as immigrants in the sink habitat. After doing this a large number of
times, and across a wide range of parameter values, patterns emerge that characterize
when one might observe colonization outside the niche.

Persistence in the sink requires adaptation, and because colonization is occurring out-
side the niche, and adaptation is not instantaneous, colonization attempts can readily
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Schematic Life Cycle

Individual-based Model
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         f
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Figure 10.3 Schematic diagram of the life cycle in each habitat of the individual-based model,
indicating the sources of stochasticity included. Note that migration from the source to the sink
occurs before density regulation, and immigrants and residents have equal chances entering the
mating pool.
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Figure 10.4 Sample trajectories for adult population size for populations introduced into a sink
habitat. Initially, all populations decline in abundance, some going extinct (solid), but some
rebounding (dashed). K = 64, mutational rate per haplotype = 0.01, mutational variance
α2 = 0.05, strength of selection ω2 = 1, propagule size = 64; 4 births per pair. The difference
between source and sink phenotypic optima is 2.5.

fail. Fig. 10.4 shows examples of time-series of population size against time. In these
examples, 64 individuals are introduced into the sink. Some attempted colonizations
(the solid lines) fail, but others succeed (dashed lines), after an initial period of de-
cline. Even though all colonizing propagules are drawn from the same type of source
population, there is considerable heterogeneity among successful replicate coloniz-
ing episodes (see Discussion).

With such simulations in hand, we can quantify adaptive colonization as a function of
the degree of initial maladaptation and the number of colonists in the initial propag-
ule. The maladaptation is the difference between the phenotypic optima of source
and sink, a larger value indicating a lower expected fitness of source individuals in-
troduced into the sink. Fig. 10.5 shows two patterns, emphasizing the relationship
between adaptive colonization and on one hand the harshness of the sink environ-
ment, and on the other the number of individuals in the colonizing propagule. In
Fig. 10.5a (adapted from Holt et al. 2005), we depict the probability of adaptive col-
onization as a function of the degree of maladaptation experienced in the sink by
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immigrants drawn from the source, for three different propagule sizes (numbers of
introduced individuals). In the figure the top axis translates maladaptation (the bot-
tom horizontal axis) into fitness. Even in favorable environments inside the niche,
where fitness exceeds unity at low densities, demographic stochasticity can doom
small propagules, but large propagules should be able to establish with a probability
near one. However, in unfavorable environments, where fitness is initially less than
unity, in the absence of genetic variation extinction is ensured regardless of initial
population size. Given that genetic variation is present (as in the examples of Fig.
10.4), adaptive colonization becomes possible. The harsher the sink environment,
however, the less likely this will occur. Basically, there is a footrace between demog-
raphy (pushing a population towards extinction), and evolution by natural selection
(increasing fitness). When initial fitness is low, and propagule size is small to modest,
demography will overwhelm evolution, and colonization will fail.

The larger the number of individuals, the greater the chance of adaptive coloniza-
tion. Fig. 10.5b shows that the likelihood of persistence over a thousand generations
(which essentially always requires adaptation to the sink environment) has a sig-
moidal dependence upon the logarithm of the number of individuals introduced into
the sink. Recent experiments using yeast introduced into experimental sink habi-
tats (created by increasing the salt concentration of the medium to be outside the
initial niche of the species) by Andy Gonzalez and Graham Bell at McGill Univer-
sity (pers. comm.) have demonstrated a sigmoidal dependence of population survival
on the logarithm of initial numbers in a sink, consistent with the prediction of this
individual-based model. A variety of different assumptions about the genetic archi-
tecture underlying trait variation can also generate this relationship between initial
population size and persistence (R. Gomulkiewicz, pers. comm.). A function that
gives a good phenomenological fit to the output of these individual-based simula-
tions is a logistic function of lnN0 and d0:

Prob(adaptive colonization|N0, d0) =
Na

0

Na
0 + a′ exp{a′′d0} (10.6)

where a, a′, and a′′ are all positive constants.

Of course, if there are repeated attempts at colonization, as long as there is a nonzero
probability of adaptive colonization, eventually adaptation to the sink will occur. If
the probability of adaptive colonization per colonizing bout is p, the probability of
successful colonization after n colonization attempts is 1− (1− p)n. In a mild sink,
where initial fitness is not much below unity, p is not far below one, and adaptive
colonization is likely over reasonably short time-horizons. But in a severe sink, where
p is very low, there can be a very long lag before successful colonization occurs.
Niche conservatism thus may not be absolute, but reflect quasi-equilibrial, long-term
transients.

© 2010 by Taylor and Francis Group, LLC



MODELS FOR ADAPTIVE COLONIZATION INTO SINK HABITATS 199

Sink maladaptation

1.0 1.5 2.0 2.5 3.0

Pr
ob

ab
ili

ty
 o

f a
da

pt
at

io
n

0.0

0.2

0.4

0.6

0.8

1.0

Fitness

0.51.01.52.0

I = 4

16

64

Initial population size

8 16 32 64 128 256 512 1024

Pr
ob

ab
ili

ty
 o

f s
ur

vi
va

l

0.0

0.2

0.4

0.6

0.8

1.0

1.6

1.8

2.0

       sink
maladaptation

Figure 10.5 The probability of persistence and adaptation, as a function of (a)(top panel)
degree of initial maladaptation in the sink habitat, for three different sizes of initial colonizing
propagule, and (b)(bottom panel), initial population size. Other parameters as in Figure 10.4,
except panel (b) has a fecundity of 2 rather than 4.
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10.3 An island-mainland model with infrequent adaptive colonization

The bottom line is that in a metapopulation, in colonizing empty habitats outside
the niche, higher propagule numbers, or an increase in the frequency of colonizing
attempts, should facilitate adaptive colonization. This could lead to both distance
and area effects on the rates of adaptive colonization. The number of colonization
attempts into an island per unit time should decline with increasing distance from a
source. The number of viable individuals in a colonizing propagule could also decline
with distance (e.g., due to mortality in transit). The number of propagules landing on
an island might increase with island size. Productive sources, or sources large in
area, are more likely to be the progenitors of adaptive colonization into sink habitats,
simply because more colonization attempts should emerge from such sources.

We can modify the familiar equilibrial model of island biogeography (MacArthur and
Wilson 1967) to include adaptive colonization as follows (Holt and Gomulkiewicz
1997). Each island can be in one of three states: empty, recently colonized and mal-
adapted, and adapted. The fraction of islands in each state are respectively P0, Pm,
and Pa. A simple dynamical model describing transitions among these states is:

dPm

dt
= cm(1− Pa − Pm)− EPm − emPm,

dPa

dt
= EPm − eaPa,

(10.7)

where cm is the rate of colonization, em is the rate of extinction of maladapted popu-
lations, ea is the rate of extinction of adapted populations, and E is the rate at which
maladapted populations become adapted. (The sum of the three fractions is 1, so
P0 = 1− Pm − Pa.)

At equilibrium,

P ∗a =
E

ea
P ∗m,

P ∗m =
cmea

cm(E + ea) + (E + em)ea
.

(10.8)

The total occupancy is P ∗ = P ∗a + P ∗m. The fraction of occupied islands that are
adapted is E/(E + ea). Adaptation means that there will be genetic differentiation
between the island and mainland populations, and so this quantity is the fraction of
occupied islands that have endemic species. A little manipulation of (10.8) shows
that adaptation increases occupancy if ea < em, which makes intuitive sense. It is
interesting that the degree of endemism on occupied islands is not affected by either
the colonization rate, or the rate of extinction of maladapted populations, but only the
rate of evolution and the rate of extinction of adapted populations. This conclusion
is altered if there is heterogeneity among islands or species in extinction rates (R.D.
Holt, unpublished results).

At this point we could use expression (10.6) to craft some more quantitative pre-
dictions about how island area and distance might affect the likelihood of niche
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evolution. Rather than pursue that route, we instead note that there is an important
evolutionary process that we have not yet considered which complicates predictions
about the relationship between distance (between the island and mainland) and the
likelihood of observing niche evolution – gene flow.

10.4 Gene flow and population extinction

The expected relationship between island distance and the likelihood of adaptive
colonization could break down if dispersal is sufficiently frequent that there are im-
migrants entering the population each generation, because recurrent gene flow can
hamper local adaptation. The classic view of the evolutionary impact of dispersal
is that it leads to gene flow that can force local populations away from their local
adaptive optima. The genetic reason is that in a sexual species with random mat-
ing, if selection in the local environment leads towards local adaptation, on average
immigrants should carry genes that lower fitness, compared to the genes carried by
residents. The offspring of crosses between a resident and an immigrant should thus
have lower expected fitness than do the offspring of crosses between two residents.
This reproductive cost is what drives the classic scenario of gene flow “swamping”
selection, potentially permanently preventing local adaptation. On top of this, a high
rate of immigration can lead to ecological effects such as competition which depress
the fitness of residents, and thus hamper selection improving local adaptation.

Fig. 10.6 shows an example of this effect for the individual-based model described
above, for two habitats coupled by equal per capita rates of movement. Initially, we
allow a population in each habitat to reach evolutionary equilibrium. There is ceiling
density dependence, with 64 breeding adults in each habitat. The two habitats differ
from each other very sharply in phenotypic optima, however (a difference of 6 on the
scale shown in Fig. 10.5a). Each generation, there is a probability of 0.1 that an indi-
vidual will move from its natal habitat (here we are allowing two-way dispersal, and
not just a flow of individuals from the source to the sink). The figure shows the tra-
jectory of population size in each habitat (censused after selection, but before density
dependence is imposed). Because of demographic stochasticity, there is fluctuation
in population size around its equilibrium. Initially, in some generations, one habitat
has more individuals; in others, the other habitat does (the thin line; the dashed line
indicates equal population sizes), so the two habitats remain roughly demographic
equals. But eventually the system drifts to a state in which there are consistently more
individuals in one habitat than the other (heavy line), and the system then collapses to
a state in which the species is completely adapted to one habitat, and no individuals
survive selection in the other habitat. The reason is that asymmetries in abundance
between habitats lead to more individuals leaving the high-abundance habitat than re-
turning to it. This implies that relatively more matings in the low-abundance habitat
are between residents and immigrants, which on average degrades local adaptation
in this habitat, which in turn further decreases population size. Thus, relatively mod-
est asymmetries in abundance are quickly magnified by a positive feedback process,
enhancing the role of gene flow suppressing local selection. Therefore, once the lo-
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Figure 10.6 Population size phase plot for the individual-based model for two populations
differing in phenotypic optima by 6 (a large amount) and with migration in each generation of
10% of each population to the other habitat. Each habitat is limited to 64 mating individuals;
other parameters as in Figure 10.4. Initially (thin line), the habitat with the larger population
size varied with time. Eventually, however, the population in habitat 1 starts to decline, and
due to positive feedback this leads to its maladaptation and extinction (heavy line), i.e., no
individuals survive the phase of the life cycle where selection occurs.

cal population is moderately maladapted, it quickly loses its ability to replace itself,
and so relies entirely upon immigration. If we now were to cut off migration, the
individuals found in the “wrong” habitat would be so strongly maladapted there, that
extinction would be inevitable.

Ronce and Kirkpatrick (2001) called this phenomenon “migrational meltdown.” Hard-
ing and McNamara (2002) suggest that this perverse effect of recurrent dispersal on
persistence might be called an “anti-rescue” effect. The basic idea is that asymmet-
rical dispersal can lead to a kind of suppression of natural selection. The example
shown in the figure is for a single pair of patches. But much the same phenomenon
should emerge in metapopulations comprised of a mixture of distinct kinds of habi-
tats, where selection operates in different directions in different habitats (e.g., optimal
body size might vary with temperature or food availability). Too much dispersal from
one habitat type to another could lead to enhanced extinction rates.
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Figure 5.3 Effects of river network ‘branchiness’ on extinction risk in 15-patch dendritic 
metapopulations. Panels on the left are from a Full dendritic network, and on the right are 
from the Pruned network. Three extinction probabilities were modeled (0.001, top row; 0.01, 
middle; 0.1 bottom row), under combinations of within- and out-of-network dispersal prob-
abilities (0, 0.001, 0.01, 0.1).
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Figure 9.1 Two examples of limited spatial distributions of many similar competing spe-
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different habitat patches with probability of occupancy (p) greater than 0.2. (a) Very strong 
competitors exhibit practically exclusive spatial distributions, while (b) moderately strong 
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Figure 16.2 Optimal management of a metapopulation for the closed (panels 
A-C), fully integrated system (panels D-F) and source-sink system with patch 1 as 
the source patch (panels G-I). The left y-axis measures the density of the popula-
tion in the patch (solid lines), and the right y-axis measures the amount of fishing 
effort (dashed lines). The x-axis is in the time units of the simulation and should 
not be interpreted in calendar units, such as years. The parameters used in the 
numerical analysis are: (c1, c2, c3) = (.48, .42, .3), (p1, p2, p3) = (1, 1, 1.05), (q1, q2, 
q3) = (1.5, 1.5, 1.5), (r1, r2, r3) = (.26, .26, .26), dij = b = .0525 for i ≠ j and dij = 2b 
for i = j, and  δ = .05.
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Broadly, we can imagine three avenues through which gene flow between habitats
could elevate extinction rates in a metapopulation. First, there could be direct extinc-
tion, as in the example of migrational meltdown shown in Fig. 10.6. Second, gene
flow could lead to depressed average population size (an example is in Holt 1983),
and thus increase the risk of local extinction due to demographic stochasticity. Fi-
nally, a population which is displaced from its local adaptive optimum is likely to
suffer a reduced growth rate when rare, which means that it is harder for it to re-
bound following a disturbance.

10.5 A metapopulation model with maladaptive gene flow

We now develop a metapopulation model that captures the flavor of these microevo-
lutionary processes, and show that the enhancement of local extinction rates by gene
flow can lead to alternative evolutionary states in a heterogeneous landscape. In this
model, space is implicit, rather than explicit. A species occupies two distinct habitat
types (i = 1, 2), each of which occupy a fraction hi of the patches on a landscape.
The fraction of the total patches that are of type i and occupied is pi. The colonization
rate from patch type i to patch type j is cji. Because adaptive colonization should
be more difficult than colonization that does not require adaptation, we assume that
cross-habitat colonization, though it may occur, happens at a lower rate than does
colonization within a given habitat type.

If dispersal is at random, there should be an increasing rain of propagules across
the two habitats, as the occupancy in either habitat increases. This means that the
opportunity for migrational meltdown (or the other mechanisms by which gene flow
can increase extinction listed above) in a patch of type i should increase with the
occupancy of patch type j. This is modeled by making the extinction rate for each
patch type an increasing function of the occupancy of the other patch type, with
baseline extinction rates ei; the extinction rates then increase with pj at proportional
rates γij . A metapopulation model that permits both adaptive colonization, and anti-
rescue due to migrational meltdown, is as follows:

dp1

dt
= (h1 − p1)(c11p1 + c12p2)− e1(1 + γ12p2)p1,

dp2

dt
= (h2 − p2)(c22p2 + c21p1)− e2(1 + γ21p1)p2.

(10.9)

The first terms on the right-hand side describe colonization of empty habitats of each
habitat type, due to dispersers moving both within- and among-habitat types, in a
metapopulation that is a mixture of two habitats (Holt 1997).

As a limiting case of the above model, we assume that there is no cross-colonization
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into empty habitats, c12 = c21 = 0 , so the equations reduce to:

dp1

dt
= (h1 − p1)c11p1 − e1(1 + γ12p2)p1,

dp2

dt
= (h2 − p2)c22p2 − e2(1 + γ21p1)p2.

(10.10)

For Eq. (10.10), an equilibrium with neither species present is stable if and only if

ei > ciihi (10.11)

for each habitat type. If this is true for habitat type i but not for habitat j, then
the species can increase when rare in the latter habitat, and will go to the stable
equilibrium density pj = (cjjhj − ej)/cjj (while fixing pi = 0). This equilibrium
can also be stable if inequality (10.11) is violated for both habitat types, because the
presence of the species in one habitat type increases the extinction rate in the other,
and therefore makes it harder for the species to persist there (or increase when rare).

The condition for pi to increase when rare at the above (pj only) equilibrium is

ei[1 + γij(cjjhj − ej)/cjj ] < ciihi. (10.12)

Assuming γij > 0, this condition requires a lower basic extinction rate ei (or higher
ciihi) than would be required if γij = 0 [or pj = 0, either of which give the condi-
tion ei < ciihi, which is the reverse of condition (10.11)]. Similarly, if the species is
established in habitat i, it can prevent invasion of habitat j in some cases for which
habitat j could otherwise be invaded. Therefore, there is the possibility of two stable
alternative equilibrial landscapes, in each of which adaptation to one habitat sup-
presses presence and adaptation to the other. These alternative landscape states arise
when inequality (10.11) is violated for each habitat type in turn (i.e., each habitat type
could be invaded if the other one was not already occupied), and inequality (10.12)
is also violated for each habitat type (i.e., neither can be invaded if the other is at its
equilibrium). In the symmetrical case, this reduces to c < γe (where c11 = c22 = c,
γ12 = γ21 = γ and e1 = e2 = e). In this symmetrical case, there is an equilibrium
with both habitats occupied, but it can be shown that this equilibrium is unstable, if
the two single-habitat equilibria are both stable.

In the case above, the presence of the species in one habitat type has only a nega-
tive effect on the species in the other habitat type, through increased extinction rate,
because we assumed there was no cross-colonization. If there is cross-colonization,
then the presence of the species in one habitat type can increase its occupancy in
the other through colonization. However, it is still possible for there to be alternative
stable equilibria, if the negative effect on extinction is greater than the positive effect
of cross-colonization. But it is reasonable to expect that alternative stable equilibria
will be less likely with cross-colonization.

Without cross-colonization, we showed above that the species in one habitat type can
completely exclude it in the other (the alternative stable equilibria have 0 occupancy
for one habitat type). If there is cross-colonization, then the presence of the species
in one habitat type guarantees its persistence in the other through colonization from
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Figure 10.7 Isoclines for a symmetric metapopulation model with two alternative equilibrial
states. Dashed line is isocline for habitat type 1. Parameters are h = 0.5, c = 0.3, cx = 0.001,
e = 0.1, and γ = 4. The species, if adapted to one habitat type, by gene flow sufficiently
elevates extinction in the other habitat type that it remains maladapted there and hence sparsely
occupies the available habitat patches.

one habitat type to the other. Therefore, if there are alternative stable equilibria, both
habitat types will have a positive occupancy in both equilibria (assuming both cross-
colonization terms are positive). The system [Eq. (10.9)] is now more difficult to
analyze, because all equilibria (other than p1 = p2 = 0) have both habitats occupied,
and must be solved by setting the derivatives in (10.9) to 0 and solving for p1 and
p2. Unfortunately, there are no simple closed-form expressions for these equilibria in
general.

One case that can be solved with cross-colonization is to assume symmetry. So again
let c11 = c22 = c, γ12 = γ21 = γ, and e1 = e2 = e, and in addition let c12 = c21 =
cx (“x” for cross). In this case, there is a symmetric equilibrium, which can be solved
by setting the derivative in (10.9) to 0, setting p1 = p2 = p, and solving for p. This
gives the symmetric equilibrium

p = [h(c+ cx)− e]/(c+ cx + eγ). (10.13)
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It is instructive to examine the isoclines for the model (Fig. 10.7). For example, the
isocline for p1 is found by setting the derivative in the first equation of (10.9) to
0, giving an equation relating p1 and p2. This isocline is hyperbolic. It has a ver-
tical asymptote at p1 = h1c12/(e1γ12 + c12) and intersects the positive p1 axis at
(h1c11 − e1)/c11. The isoclines always cross in the first quadrant (assuming both
cross-colonization terms are positive). For some parameters, the isoclines cross only
once, but for others they can cross three times (Fig. 10.7). In the symmetric case,
if the magnitude of the slope of the p2-isocline is higher at the symmetric equilib-
rium (as in Fig. 10.7), then this isocline is higher than the p1-isocline for p1 values
just below the equilibrium. However, the p1-isocline has a vertical asymptote at a
positive p1, while the p2-isocline is approaching an oblique asymptote. Therefore,
the isoclines must cross again at a lower p1, and by a similar logic they must also
cross at a higher p1. In this case, the symmetric equilibrium is unstable, and there are
alternative stable equilibria. The condition for this is

(eγ − c)(hc− e) > hcx(2c+ cx + eγ) + ecx. (10.14)

If cx = 0, this reduces to the symmetric result above (the species cannot persist
unless hc > e, so the second term on the left must be positive). The presence of
cross colonization makes alternative stable states more difficult, since not only must
γe > c, but it must be higher by a greater amount, for greater cx. The parameters
used in Fig. 10.7 satisfy inequality (10.14), and therefore alternative equilibria exist,
as shown.

Thus, migrational meltdown can lead to alternative stable states in a metapopulation,
assuming cross-colonization between habitat types is not too common. It can also
lead to other effects, which we note below.

10.6 Discussion

We have presented several complementary models that provide building blocks for
examining niche evolution in heterogeneous landscapes. We started with models that
look closely at evolutionary processes in particular habitats that have conditions out-
side a species’ niche requirements, where with rare dispersal, extinction is inevitable
unless there is adaptive evolution, and with frequent dispersal, recurrent gene flow
can hamper adaptation.

The first deterministic model [Eqs. (10.2)-(10.4)] leads to heuristic insights about
how initial population size and the degree of maladaptation influence the likelihood
of extinction rather than adaptive changes sufficient to permit persistence in a sink
habitat. These results motivate studies of individual-based models (IBMs) that in-
corporate stochasticity in both demography and genetics. These IBMs confirm the
suggestions drawn from the deterministic models and help highlight issues that war-
rant closer theoretical scrutiny.

One of these issues is distinguishing among distinct sources of variation in adaptation
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to sink environments. Consider again the populations of Fig. 10.4. Although all col-
onizing propagules are drawn from the same type of source population, the surviving
populations show considerable heterogeneity in their patterns of evolutionary rescue.
Some populations start to evolve higher fitness permitting persistence quite quickly,
and then rapidly reach their maximum population, at which they are fully adapted.
Others barely hang on, and then even after they evolve sufficiently to persist, take
longer to increase fitness and eventually reach full adaptation (and maximum popu-
lation size). To understand this heterogeneity in responses, it is useful to reflect on
the sources of genetic variation in these novel populations and how this variation is
altered by drift, recombination, and mutation.

There are only two possible sources of genetic variation in the sink. First, coloniz-
ing propagules can sample preexisting variation in the source. Second, there can
be mutational input. Without novel mutations arising in the sink, evolutionary res-
cue entirely depends upon genotypes with expected fitness greater than unity being
potentially present in this initial sample from the source (the genotypes may only
be “potentially” present because they are generated by mating and recombination
among the immigrants and their descendents, rather than literally present in the ini-
tial generation). At low population sizes, genetic variation is lost by drift. The longer
a population spends at low numbers, the greater the amount of variation brought in
by sampling from the source that will be lost by drift. If a population persists in a
genetically depleted state after going through such a long bottleneck, further evolu-
tion may largely depend upon the input of novel mutations, which will typically play
out over a longer time scale than the reassortment of variation present in the initial
propagule. In Fig. 10.4, the populations that spend the greatest time at low densi-
ties also seem to have the most sluggish rate of evolution, once they have adapted
sufficiently to survive.

Models of demographic stochasticity show that initial population size has a large ef-
fect on population persistence, even in favorable environments. If mean fitness is less
than one, and there is no evolution, the probability of extinction is unity. With genetic
variation permitting adaptive colonization, we have shown that initial population size
again has a strong influence on population persistence. There are several distinct rea-
sons that initial population size matters in adaptive colonization into a sink. First, a
larger colonizing propagule means more variation from the source is sampled. Sec-
ond, for a given rate of decline in the sink, a larger initial population provides a larger
demographic window for novel mutations to arise and potentially rescue the declin-
ing population. In a homogeneous population declining at a constant rate, a classic
result in branching process theory is that the number of replication events that occur
before extinction for a population initially at size N0 and declining at average rate
R is N0/(1 − R) (Feller 1968, p. 299). Since mutation happens during replication,
the potential input of novel mutations should be governed by the number of repli-
cation events. All else being equal, larger initial populations have greater scope to
experience novel mutations permitting adaptation and persistence, before extinction,
than do small populations. In like manner, the less harsh the sink environment (i.e.,
the closer initial fitness is to unity), the larger the number of replication events that
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will be observed before extinction, and so the greater the opportunity for the input
of novel mutations. An interesting challenge for future theoretical work is to tease
apart the relative roles of sampling from established populations and in situ mutation
as sources of genetic variation for selection to act upon in sink populations. (A simi-
lar partitioning pertains to recurrent immigration; variation can be sampled from the
source, or generated by mutation in the sink.)

Environmental heterogeneity provides an opportunity for local adaptation, but gene
flow can prevent this from occurring. When adaptation is required for persistence,
gene flow can enhance extinction risks for some local populations. Our model for
a metapopulation in a landscape comprised of two distinct habitat types shows that
alternative landscape states are possible, in which a species by being initially adapted
to one habitat prevents itself from becoming adapted to the other. The model suggests
that evolutionary “dominance” in a metapopulation is more likely if 1) cross-habitat,
adaptive colonization is difficult (i.e., in our quantitative genetics model, there is a
large difference in adaptive optima in the two habitats); 2) recurrent gene flow across
habitats substantially increases extinction risks in the recipient habitat; and 3) one
habitat is sparse in the landscape, or high in intrinsic extinction rate, or low in intrin-
sic colonization rate, relative to the other habitat. Given these conditions, “success
breeds success,” and the habitat that a species becomes adapted to can indirectly sup-
press adaptation in the other habitat, and thus constrain the fraction of the landscape
occupied by the species.

The model helps point out the importance of historical contingencies for determining
the ultimate habitat range of a species. A species that colonizes this landscape may
evolve in a number of different directions, leading to different ultimate patterns of
habitat specialization. If it is difficult to colonize across habitats, but the anti-rescue
effect is unimportant, a species initially adapted to just one habitat type may invade
and rapidly fill up those habitats to which it is initially well-adapted, and then begin
to colonize the other habitat (Fig. 10.8a). If adaptive colonization is difficult, then this
may be a slow process. If dispersal is sufficient in magnitude to lead to anti-rescue
effects (migrational meltdown), then a variety of additional phenomena may occur.
A species may initially be a generalist, adapted to both habitats. But if one habitat
is sparse, and the other widespread, generalization may be lost, because adaptation
is biased towards the more common habitat. Or a species may actually be adapted
initially to the sparser habitat, but then switch in its habitat specialization over to the
other, more widespread, habitat, and lose its ability to persist in its ancestral habitat
(Fig. 10.8b). In this case, niche evolution is actually a niche switch between habitats.
Note that there is only one stable equilibrium for the parameters of both panels of
Fig. 10.8. The equilibrium is symmetric for the parameter choices leading to Fig.
10.8a, but very asymmetric for the parameter choices used in Fig. 10.8b, with habitat
1 having a very low occupancy.

One limitation in the above model is that when the species occupies a substantial
fraction of both habitat types in a landscape, the immigrants showing up in any given
occupied patch are likely to be a mixture of emigrants from each of the habitat types.
This observation does not affect our conclusions about the existence of alternative
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Figure 10.8 (a) Time plots for symmetric metapopulation model with h = 0.5, c = 0.3,
cx = 0.001, e = 0.1, and γ = 0.5. Initially, habitat type 2 is empty, while habitat type 1 has
an occupancy of 0.001. Because within-habitat-type colonization is much higher than cross-
colonization, habitat type 2 is occupied only after a lag. (b) Time plots for the metapopulation
model that is symmetric except for abundance of the two habitat types and colonization rates.
Parameters are h1 = 0.3, h2 = 0.7, c1 = 0.4, c2 = 0.3, cx = 0.001, e = 0.05, and γ = 4.
Initially, habitat type 2 is empty, while habitat type 1 has an occupancy of 0.01. Because habitat
type 2 is more abundant on the landscape, the species there is able to suppress the species in
habitat type 1.
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stable equilibria, but could shift the range of parameter values where one observes
this outcome.

Future extensions of this work will include examining evolution in spatially explicit
landscapes, and a consideration of multiple habitat types, arranged in various spa-
tial configurations. Studies with individual-based models in landscapes with three
distinct habitats reveal some unexpected effects, reflecting how the interplay of dis-
persal and selection affects the entire distribution of allelic values, within and among
habitats (Holt and Barfield, in prep.). Understanding niche conservatism and evolu-
tion requires a simultaneous consideration of how the structure of the environment
influences the pattern and strength of natural selection, and how selection in con-
junction with other evolutionary forces modifies the pool of variation available for
evolution. Grappling with this issue is central to many basic questions in evolution-
ary biology, and is also of urgent practical importance, given the rapidly changing
environments we humans are currently forcing the biota of the globe to experience.
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CHAPTER 11

Evolution of dispersal in heterogeneous
landscapes
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Abstract. Dispersal is the mechanism by which populations distribute themselves across
landscapes. As such, its study is an essential aspect of spatial ecology. Habitats themselves
are heterogeneous across space and time. Dispersal can reflect purely random movement or
may be conditioned on properties of the environment or the presence of other organisms.
Understanding what forms of dispersal confer selective advantage in what types of habitats
is an issue that has recently come to the forefront of spatial ecology and its interface with
evolutionary theory. The connection between ecology and evolutionary theory is usually
expressed through the concepts of evolutionarily stable strategy and invasibility. There is
some dichotomy in theoretical predictions of selective advantage. Dispersal of some sort is
favored in a metapopulation framework. Unconditional dispersal is generally not favored
in temporally constant environments in a discrete diffusion setting. Unconditional dispersal
may, however, be favored in this framework if there is temporal variability in the habitat.
Conditional dispersal may be favored when there is spatial variation. Such results have been
extended to both reaction-advection-diffusion and integrodifference modeling frameworks.
This essay will review the development of the theory of evolution of dispersal, describe the
current state of understanding in the subject, and highlight important open questions and
issues.

11.1 Introduction

The dispersal of organisms is clearly an important aspect of many ecological pro-
cesses. It drives biological invasions, allows populations to colonize empty habitats,
and allows individuals to track resources and avoid predators or competitors. It plays
a significant role of the life histories of many organisms. Yet, despite the fact that
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dispersal is ubiquitous, our understanding of its evolutionary causes and ecological
effects is still quite limited. In their introduction to the book “Dispersal” (Clobert
et al., 2001), the editors remark that “dispersal is probably the most important life
history trait involved in both species persistence and evolution” and that “One of the
most studied yet least understood concepts in ecology and evolutionary biology is
the movement of individuals, propagules, and genes.” There are a number of factors
that can influence the evolution of dispersal, and correspondingly there are a num-
ber of different modeling approaches that have been used to study it. Factors that
are commonly invoked to explain the evolution of dispersal can be either genetic
or ecological (Gandon and Michalakis, 2001). Genetic factors include kin selection,
i.e., reduction of competition between related individuals (Hamilton and May, 1977),
and avoidance of inbreeding (Gandon, 1999). The main ecological factors involve
environmental heterogeneity in time and/or space (McPeek and Holt, 1992). In the
present article we will focus our attention on ecological factors, especially spatial
heterogeneity. Most of the analysis of the ecological aspects of the evolution of dis-
persal has been based on ecological models rather than explicitly evolutionary mod-
els. Evolutionary conclusions typically have been drawn from ecological models by
means of the notion of evolutionarily stable strategies. A strategy is said to be evo-
lutionarily stable if a population using it cannot be invaded by a small population
using any other strategy. The idea is that the strategies observed in natural systems
are those that are evolutionarily stable, because they can resist invasion. If two strate-
gies are compared and the first is found to be evolutionarily stable relative to invasion
by the second while the second is not evolutionarily stable with respect to the first
then the interpretation is that the first should be able to invade and displace the sec-
ond. On the other hand, if neither strategy is evolutionarily stable with respect to the
other then each can invade the system when rare and hence they may be expected to
coexist in some sort of stable polymorphism. (The theory of uniform persistence or
permanence gives a rigorous mathematical formulation for this idea; see Hutson and
Schmitt (1992).) Most of the analysis we will describe in this article is motivated by
the idea of evolutionary stability.

It is clear that in some sorts of temporally varying environments there should be se-
lection for some amount of dispersal. In particular, for populations inhabiting patchy
environments where they are subject to local extinctions, persistence is possible only
if the population can recolonize empty patches. A collection of local populations dis-
tributed across a network of patches is called a metapopulation. The idea that local
populations may be subject to extinction but that empty patches can be recolonized
by individuals dispersing from other patches is the basis for patch occupancy mod-
els for metapopulations. Those models do not include explicit population dynamics;
they only track the probabilities that patches are occupied. In that modeling frame-
work dispersal is viewed as a factor in the rate of colonization so some amount of
dispersal is essential to prevent extinction of the entire metapopulation. Patch occu-
pancy models should be distinguished from discrete diffusion models which keep
track of population densities but do not necessarily incorporate local extinctions or
other forms of temporal variability (see Hanski (1999, 2001)). Even in the context of
patch occupancy models or stochastic individual based models that allow local ex-
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tinctions there are interesting questions about the evolution of dispersal, but we will
not pursue those here. We refer the interested reader to Heino and Hanski (2001).
For many types of plants, only seeds can disperse under normal conditions, so again
the process of dispersal is tightly connected to the process of recruitment. Indeed,
patch occupancy models where each patch represents a location where a single plant
can grow have been widely used to study dispersal and competition in plants; see for
example Tilman (1994). There are various modeling approaches that can be used to
study the evolution of dispersal; see Levin et al. (2003) and Clobert et al. (2001). We
will discuss the evolution of dispersal, including the effects of temporal variation,
in the context of reaction-diffusion models, their generalizations, and their discrete
analogues. Even in the context of reaction-diffusion or discrete-diffusion models it
turns out that temporal variation can cause selection for dispersal. This phenomenon
was observed by McPeek and Holt (1992) in numerical experiments on discrete dif-
fusion, studied further in that context from the viewpoint of adaptive dynamics by
Parvinen (1999), and studied analytically and numerically by Hutson et al. (2001) in
the reaction-diffusion context.

The effects of spatial heterogeneity on the evolution of dispersal in systems where the
environment is uniform in time are rather subtle. Hastings (1983) obtained analytic
results on reaction-diffusion models and their spatially discrete analogues that sug-
gested there would be selection for slow dispersal in spatially varying but temporally
constant environments. However, Hastings’ results were based on assumptions about
the process of dispersal and the patterns of spatial distribution of populations that it
would produce that are not universally satisfied; in particular they do not hold in some
models incorporating dispersal behavior that depends on environmental conditions.
McPeek and Holt (1992) made a number of observations on the basis of numerical
experiments on two-patch discrete-time models. They found that there was selection
for slow dispersal in the spatially varying but temporally constant case if the disper-
sal process was independent of environmental conditions, but there was not when
the dispersal process depended on environmental conditions in the right way. They
also found that there could be selection for fast dispersal in environments with both
spatial and temporal variation even if the dispersal process was independent of en-
vironmental conditions. (In later work, Holt and McPeek (1996) found that chaotic
population dynamics can induce selection for dispersal in a manner similar to the
effects of extrinsic spatiotemporal variation.) McPeek and Holt (1992) introduced
the terms “conditional” and “unconditional” respectively to describe dispersal pro-
cesses that do or do not depend on environmental conditions. The particular form
of conditional dispersal that McPeek and Holt found to be evolutionarily stable in
spatially varying but temporally constant environments has the feature that it results
in an equilibrium distribution of the population where all individuals have the same
fitness (as measured by reproduction rate), independent of their location, and there
is no net movement of individuals at equilibrium. Such a distribution is consistent
with a descriptive theory of how organisms should distribute themselves developed
by Fretwell and Lucas (1970) called the ideal free distribution. Conditional dispersal
that leads to an ideal free distribution of population is sometimes called “balanced
dispersal.” The population dynamics arising from the movement of individuals from
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regions of greater fitness to regions of lower fitness by unconditional dispersal are
sometimes called “source-sink” dynamics. There has been some empirical study of
whether natural populations display balanced dispersal or source-sink dynamics, or
perhaps neither. The empirical study in Doncaster et al. (1997) supports the view
that some populations display a form of balanced dispersal; see also Cantrell et al.
(2007a), Holt and Barfield (2001), and Morris et al. (2004) for additional discussion
and references related to the ideal free distribution, balanced dispersal, source-sink
dynamics, and the evolution of dispersal.

11.2 Random dispersal: Evolution of slow dispersal

Hastings (1983) asked whether spatial variation alone can lead to selection for in-
creased dispersal in a spatially inhomogeneous but temporal constant environment.
To that end, he envisioned a scenario where an environment was inhabited by a
resident species at a stable equilibrium density, and some mutation occurred, thus
introducing a small mutant population into the environment. He considered both
reaction-diffusion and discrete diffusion models in continuous time as models for
such a scenario. Specifically, in the reaction-diffusion case, the model for the resi-
dent population took the form

ut = D∇ · [μ(x)∇u] + F (x, u)u in Ω× (0,∞),

∂u

∂n
= 0 on ∂Ω× (0,∞),

(11.1)

where u(x, t) is a population density, the habitat Ω is a bounded region in RN with
smooth boundary ∂Ω,∇· is the divergence operator,∇ denotes the gradient operator,
μ(x) > 0 describes how the rate of diffusion varies spatially, D > 0 describes the
overall rate of diffusion, n is the outward unit normal vector on ∂Ω, and the bound-
ary condition means that no individuals cross the boundary of the habitat. We will
refer to such boundary conditions as “zero-flux.” Note that the specific form taken
by zero-flux boundary conditions depends on the flux, so that zero-flux boundary
conditions may involve additional terms, e.g., in cases where the dispersal terms in-
volve advection. In (11.1) and in most of the models described in this article we
interpret the local population growth rate F (x, u) as being determined by the level
of resources available at location x to a population living at density u. We will also
use the local population growth rate as a measure of the fitness of an individual at
the point x when the population density is u. Hastings assumed that the model (11.1)
had a stable positive equilibrium u∗ with F (x, u∗) not identically zero, modeled a
small invading mutant population v as satisfying

vt = d∇ · [μ(x)∇v] + F (x, u∗ + v)v in Ω× (0,∞), (11.2)

also with zero-flux boundary conditions, and determined when the model predicted
that the mutant population could successfully invade the resident population. The
model in (11.2) was based on the assumption that the mutant population is so small
that it has a negligible effect on the resident population. The main finding in Hastings
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(1983) was that if the mutant differs from the resident species only by having a
different dispersal rate, then it can invade when rare if and only if its dispersal rate is
less than that of the resident species. Hastings obtained a similar result for a spatially
discrete analogue of (11.1); we will return to that model later in our discussion of the
ideal free distribution. Analogous results for the discrete-time case were obtained for
the case where dispersal is unconditional (so that a hypothesis analogous to having
F (x, u∗) not identically zero is satisfied) by numerical experiments in McPeek and
Holt (1992) and proved analytically in Parvinen (1999).

The criterion for whether or not a mutant could invade the system described by (11.1)
is the instability or stability of the equilibrium v = 0 in (11.2). In this case and many
others, the stability of such an equilibrium can be determined by a linear stability
analysis. Linear second order elliptic operators on bounded domains typically have
a principal eigenvalue which has a larger real part than any other eigenvalue and
is characterized by having a positive eigenfunction. This eigenvalue is analogous to
the principal eigenvalue of a primitive matrix. Its existence follows from the Krein-
Rutman theorem, which is an extension of the Perron-Frobenius theorem on matrices
to the infinite dimensional case. It turns out that second order parabolic equations
with periodic coefficients also have a principal eigenvalue. See Cantrell and Cosner
(2003), Section 2.5, for a discussion of principal eigenvalues. The stability or insta-
bility of equilibria in most of the models we will discuss can thus be determined
by the sign of the principal eigenvalue of the linearized problem. In some cases the
principal eigenvalue may be zero, so that a nonlinear stability analysis is needed. In
the analysis of (11.2), Hastings showed that if F (x, u∗) is not identically zero then
the principal eigenvalue of the linearization of (11.2) around v = 0 is positive if and
only if d < D in (11.2). The conclusion about invasibility follows immediately.

A possible biological reason for the evolution of slow dispersal is that passive dif-
fusion takes individuals from more favorable locations to less favorable locations
more often than it does the reverse (Hastings, 1983), since it typically moves indi-
viduals from regions of high density to regions of lower density. In terms of resource
matching, one consequence of random diffusion is to cause the resident species to
undermatch the best resources at equilibrium. In fact, the zero-flux boundary condi-
tion in (11.1) and the divergence theorem imply that at the equilibrium u∗ the integral
of F (x, u∗)u∗ over Ω is zero, so that if F (x, u∗) is nonzero at equilibrium it must
change sign so that the population overmatches the resources in some places but un-
dermatches them in others. When a slower diffusing mutant population is introduced,
it can grow at locations where the resident undermatches the resources in the habitat
(which would typically be the locations with the best resources), and is more likely
to remain in those locations, so it can thus invade successfully. It is interesting to note
that the analysis in Hastings (1983) breaks down if the assumption that F (x, u∗) is
nonzero at equilibrium is removed. If F (x, u∗) = 0 on Ω then the resident matches
the resources perfectly. Furthermore, if certain technical conditions are satisfied, it
can be shown that if u∗ is unique for each D and there is a unique positive solution
u = K(x) to the equation F (x, u) = 0 then u∗ → K(x) on the interior of Ω as
D → 0; see Cantrell and Cosner (2003), Proposition 3.16. In a logistic model K(x)
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would represent the local carrying capacity of the environment. Thus, a population
that diffuses sufficiently slowly will come closer to matching the available resources
than one that diffuses more rapidly.

Hastings’ result is a local one in the sense that it concerns only the invasion of invad-
ing species when it is rare. After the invasion of the mutant, can it drive the resident
species to extinction or will it coexist with the resident species? This led Dockery
et al. (1998) to consider the following continuous-time continuous-space model for
two randomly diffusing competing species:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ut = μΔu+ u[m(x)− u− v] in Ω× (0,∞),

vt = νΔv + v[m(x) − u− v] in Ω× (0,∞),

∂u

∂n
=
∂v

∂n
= 0 on ∂Ω× (0,∞),

(11.3)

where u(x, t) and v(x, t) represent the population densities of competing species
with respective dispersal rates μ and ν. The symbol Δ stands for the Laplace operator
(Δ = ∇2), which is the composition of the divergence and gradient operators and
models the random dispersal of the species. The scalar functionm(x) represents their
common intrinsic growth rates and it reflects the quality and quantity of resources
available at the location x. The habitat Ω is as in (11.1). The zero-flux boundary
condition in (11.3) means that no individuals cross the boundary of the habitat. The
most notable feature of (11.3) is that these two species are identical except their
dispersal rates.

Dockery et al. (1998) showed that if the dispersal rate of the mutant is smaller than
that of the resident species, then the mutant not only can invade but also can drive the
resident species to extinction, i.e., a slower diffusing species always emerges as the
winner of the competition. For nonlocal dispersions, some similar results hold (see
Hutson et al. (2003)). However, when the intrinsic growth rate varies periodically
in time, it is shown in McPeek and Holt (1992) for patch models and in Hutson
et al. (2001) for diffusion models that the slower diffuser may not always be the
winner, and faster dispersal can be selected in some situations. A challenging open
problem is whether the slowest diffuser always wins the competition in the context
of k competing species with k ≥ 3 (Dockery et al., 1998).

11.3 Random dispersal vs. conditional dispersal

In reality, species do not always move randomly. As resources are often distributed
heterogeneously across the habitat, a species can often sense local environment change
and its movement may be affected by environmental factors such as resource distribu-
tions and population density. One of the simplest modeling approaches is to assume
that organisms display taxis and can move up along the gradient of a local population
growth rate. Such biased movement upward along resource gradients is an example
of conditional dispersal and has been considered in Belgacem and Cosner (1995) and

© 2010 by Taylor and Francis Group, LLC



RANDOM DISPERSAL VS. CONDITIONAL DISPERSAL 219

Cosner and Lou (2003) for a single species. Among other things, Belgacem and Cos-
ner (1995) and Cosner and Lou (2003) showed that conditional dispersal involving
both random diffusion and directed movement up resource gradients can sometimes
(but not always) make persistence of a single species more likely. For two-patch
models, McPeek and Holt (1992) showed that in spatially varying but temporally
constant environments certain types of conditional dispersal can be advantageous.

Hence, it is of interest to compare a random dispersal strategy with a conditional
dispersal strategy such as biased movement along a resource gradient, and determine
which dispersal strategy will evolve. This led Cantrell et al. (2006, 2007b) to intro-
duce the model⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ut = ∇ · [μ∇u− αu∇m] + [m(x)− u− v]u in Ω× (0,∞),

vt = νΔv + v[m(x)− u− v] in Ω× (0,∞),

μ
∂u

∂n
− αu∂m

∂n
=
∂v

∂n
= 0 on ∂Ω× (0,∞),

(11.4)

where the two species have different dispersal strategies: the species with density v
disperses only by random diffusion, the other species disperses by a combination of
random diffusion and a directed movement towards more favorable habitats, where
α is a positive parameter which measures the tendency of biased movement along
the resource gradient. Both still satisfy zero-flux boundary conditions.

When α = 0, from the previous section we know that the slower diffusing species
always wins the competition. What happens if α > 0? It turns out that the answer
is rather delicate and depends on both the magnitude of α and the geometry of the
habitat Ω.

It is shown in Cantrell et al. (2006, 2007b) that for convex habitats, the competitor
that moves upward along the resource gradient may have a competitive advantage
even if it diffuses more rapidly than the other competitor, i.e., a faster diffuser with
some (weak) advection along the resource gradient can win the competition. It means
that the advantage gained from the directed movement upward along resource gra-
dients can compensate for the disadvantage created by faster diffusion, at least for
convex habitats.

The case μ = ν also depends on the geometry of the habitat. For convex habitats,
we show in Cantrell et al. (2007b) that for small positive α, the species with density
u always wins. Hence, at least for convex habitats, species with a small amount of
biased movement have the advantage. That is, the dispersal strategy with some biased
movement can evolve there. On the other hand, there are some nonconvex habitats,
as constructed in Cantrell et al. (2007b), such that the species u always loses. It is
interesting that the geometry of the habitat can play an important role in the evolution
of dispersal, and this may have potential applications to the conservation of species.
For example, it may be helpful in understanding how habitat fragmentation affects
the loss of species.

If we further increase α, it seems that the species with density u becomes “smarter”
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and hence will continue to win the competition. Surprisingly, for sufficiently large
α, one often can expect that the two competing species can coexist (Cantrell et al.,
2007b). In other words, strong advection upward along environmental gradients can
induce the coexistence of species and provide a mechanism for the coexistence of
competing species. If we interpret the competitors as different genotypes of the same
species, this situation would correspond to a stable polymorphism. (In at least some
species there appears to be a genetic basis for some aspects of dispersal ability; see
Roff (1994).)

From the biological point of view, such coexistence results are surprising, at least at
the first look. Given any pair of μ < ν, when α is positive and small, the species u
always wins the competition, i.e., the slower diffuser still wins. As α increases, the
species with density u has the tendency to move toward more favorable regions, so it
seems to have more competitive advantage than the species with density v and should
still win the competition. However, the results in Cantrell et al. (2007b) show that the
“smarter” species may coexist with the other species, which is randomly diffusing
with a larger random diffusion rate. A possible explanation for such coexistence is
that as α becomes large, the “smarter” competitor moves toward and concentrates at
places with the locally most favorable environments, leaving enough resources else-
where for the other species to survive. Thus, there is a type of spatial segregation of
the competitors which leads to coexistence. These biological intuitions are justified
by some rigorous analytical results from Chen and Lou (2008) in the case when there
is only one local maximum of resource density.

In terms of resource matching, a big difference between random diffusion and biased
movement along the resource gradient is that random diffusion leads the species
to undermatch the best resources, while the biased movement along the resource
gradient can lead the species to better match the resources if the advection rate is
suitable, or overmatch the best resources if the advection rate is too large. Whether a
dispersal strategy is evolutionarily stable or not seems to rely crucially on how well
the species can apply the dispersal strategy to match the resources.

11.4 Evolution of conditional dispersal

What happens if both competing species disperse by random diffusion and advec-
tion along environmental gradients? Intuitively, one possible consequence of biased
movement up a resource gradient is to cause a certain degree of crowding in the fa-
vorable regions of the habitat which might change the outcome of the competition.
To understand the evolution of conditional dispersal, Chen et al. (2008) considered
the model:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ut = ∇ · [μ∇u− αu∇m] + [m(x)− u− v]u in Ω× (0,∞),

vt = ∇ · [ν∇v − βv∇m] + [m(x) − u− v]v in Ω× (0,∞),

μ
∂u

∂n
− αu∂m

∂n
= ν

∂v

∂n
− βv∂m

∂n
= 0 on ∂Ω× (0,∞).

(11.5)
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When β = 0 and α is large, from the previous section we know that the two species
can often coexist with each other. Hence, neither of the two dispersal strategies is
the winning one. What happens if β > 0? It turns out that at least two scenarios can
occur (Chen et al., 2008):

(i) If only one species has a strong tendency to move upward the environmental
gradients, e.g., β is small and α is large, the two species can coexist since one species
mainly pursues resources at places of locally most favorable environments while the
other relies on resources from other parts of the habitat. This is the same as the case
when β = 0.

(ii) If both species have a strong tendency to move upward the environmental gradi-
ents, e.g., β is large and α is even larger, it can lead to overcrowding of the whole
population at places of locally most favorable environments, which causes the ex-
tinction of the species with stronger biased movement. From the biological point of
view, strong biased movement along the resource gradient of both species can induce
overmatching of resources for both species at places of locally most favorable envi-
ronments. This is particularly disadvantageous to the species with stronger biased
movement as it puts all of its bets on such places.

These results seem to imply that selection is against excessive advection along envi-
ronmental gradients due to overmatching of the best resources, and they also suggest
that an intermediate biased movement rate may evolve in the model.

To further understand the evolution of conditional dispersal, Hambrock and Lou
(2008) recently considered the situation when the advection rates α and β are close
to each other (different from the case when one is much larger than the other as in
previous case), and their findings also support the conjecture that an intermediate
biased movement rate may evolve in the model. More precisely, suppose that μ = ν
and if both advection rates are small, then the species with the larger advection rate
always wins; if μ = ν and both advection rates are suitably large, then the species
with the smaller advection rate always wins.

Another interesting finding in Hambrock and Lou (2008) is that the evolution of
random diffusion rates also depends on the magnitude of the advection rates and
will change direction if the advection rates vary from small to large. More precisely,
suppose that α = β > 0. Then for small advection rates, the slower diffuser always
wins (this is the same as the case when α = β = 0). However, when the advection
rates are large, the faster diffuser is always the winner in the competition.

11.5 Dispersal and the ideal free distribution

Ideal free distribution (IFD) theory describes how organisms should distribute them-
selves in space if they could move freely to optimize their fitness (Fretwell and Lu-
cas, 1970). It says that individuals should locate themselves so that no individual can
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increase its fitness by moving to another location. Thus, it predicts that at equilib-
rium the fitness of individuals should be the same in all locations, and there should
be no net movement at equilibrium. (This is in contrast to the dynamics of many
source-sink models where the fitness in the source is larger than that in the sink,
which is typically negative, and the sink population is sustained by net movement
from the source to the sink; see Pullian (1988).) McPeek and Holt (1992) observed
in discrete-time discrete diffusion models that there could be selection for dispersal
in spatially varying but temporally constant environments if the dispersal rates had
the feature that the equilibria of the system were the same with and without dispersal.
If we interpret the fitness of an individual on a given patch with a given population
density as being given by the population growth rate on that patch at that density, this
feature means that at equilibrium every individual would have fitness zero, which is
consistent with the ideal free distribution. It turns out that such a form of conditional
dispersal is evolutionarily stable in many situations, see Cantrell et al. (2007a) and
Holt and Barfield (2001). To make these ideas more precise, let us consider a discrete
diffusion model of the type studied by Hastings (1983):

dui

dt
= Fi(ui)ui +

n∑
j=1
j �=i

[dijuj − djiui] for i = 1, . . . , n. (11.6)

Suppose that for each i = 1, · · · , n, u∗i > 0 is a stable equilibrium of du/dt = Fi(u),
so that Fi(u∗i) = 0 for i = 1, · · · , n, with dF/du < 0 for u = u∗i . Suppose further
that for some dispersal strategy determined by nonzero dispersal coefficients {dij},
u∗ is also a positive equilibrium of (11.6). That implies

n∑
j=1
j �=i

[
diju

∗
j − djiu

∗
i

]
= 0 for i = 1, . . . , n. (11.7)

It turns out that under these conditions the strategy defined by {dij} is evolutionar-
ily stable relative to strategies which do not satisfy (11.7). Furthermore, any dispersal
strategy leading to an equilibriumu∗∗ that does not haveFi(u∗∗i ) = 0 for i = 1, · · · , n
cannot be evolutionarily stable; see Cantrell et al. (2007a). This result extends to
some models for competition and predator-prey interactions; related results are ob-
tained in Cressman and Krivan (2006), Kirkland et al. (2006), and Padrón and Tre-
visan (2006). If the model for invasibilty by a small invading population (that is, the
model corresponding to a discrete version of (11.2)) is linearized around zero, the
resulting linear model is neutrally stable, so asymptotic stability arises from higher
order effects. For a full model for two populations with competing strategies at arbi-
trary densities, analogous to a spatially discrete version of (11.3), (11.4), and (11.5),
different strategies satisfying (11.7) have a type of neutral stability with respect to
each other. This is consistent with the findings of McPeek and Holt (1992).) Since
Fi(u∗i) = 0 for i = 1, · · · , n, all patches have the same fitness at equilibrium. Also,
by (11.7), there is no net movement at equilibrium. Thus, the evolutionarily stable
strategies represent forms of balanced dispersal in that they lead to a population dis-
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tribution that is ideal free. Note that the condition Fi(u∗i) = 0 for i = 1, · · · , n, is
exactly the negation of the condition that Fi(u∗i ) is not identically zero relative to i
imposed by Hastings (1983) and by Parvinen (1999) in results showing selection for
slow dispersal in the spatially discrete case. Furthermore, the case of condition (11.7)
with n = 2 is equivalent to the condition for evolutionary stability found by McPeek
and Holt (1992). The analysis in Cantrell et al. (2007a) depends on the fact that the
models are finite dimensional. The problem of extending the results of Cantrell et
al. (2007a), Cressman and Krivan (2006), Kirkland et al. (2006), and Padrón and
Trevisan (2006) to the infinite dimensional case is interesting and largely open.

A novel variation on these ideas was introduced by Wilson (2001) who developed
a habitat occupancy model for a source-sink situation. The model has a form sim-
ilar to a coupled pair of patch occupancy models, but with one model describing a
source habitat and the other a sink habitat. As usual in habitat occupancy models,
there must be at least some dispersal within the source patch for persistence to be
possible, but the question is whether or not dispersal into the sink habitat can evolve.
The source patch is assumed to have a stable equilibrium proportion p∗1 of occupied
habitat in isolation, so that without dispersal there is no positive equilibrium, and the
equilibrium (p∗1, 0) is stable. However, in some cases there is an evolutionarily stable
dispersal strategy with nonzero dispersal that results in positive proportions of both
the source and sink habitats. It turns out that under this strategy the fitness in both
source and sink habitats can be seen to be zero, and “surprisingly” (Wilson, 2001, p.
30) the equilibrium proportion of occupied habitat in the source is still p∗1. Perhaps
in view of the results described previously this last feature is not really so surprising.

It is natural to ask whether an ideal free distribution of population can arise from dis-
persal that is conditional on local information but does not require global knowledge
of the environment, as in reaction-diffusion-advection models. A version of the ideal
free distribution in continuous space was introduced in Kshatriya and Cosner (2001).
A dynamic model whose equilibria can be expected to fit such a distribution recently
has been developed via advection-diffusion equations in Cosner (2005), under the
assumptions that organisms move upward along the local gradient of fitness and that
fitness varies spatially and is reduced by crowding. The model in Cosner (2005) has
the form

ut = −α∇ · [u∇f(x, u)] on Ω× (0,∞),

with the no-flux boundary condition

u
∂f(x, u)
∂n

= 0 on ∂Ω× (0,∞),

where f(x, u) = m(x) − u(x) represents the local effective growth rate of the
species, m(x) is the intrinsic per capita growth rate, and u(x) is the population den-
sity.

Cantrell et al. (2008) considered a variation on that model which also includes ran-
dom diffusion as part of the dispersal process, and it has the form

ut = ∇ · [μ∇u− αu∇f(x, u)] + uf(x, u) in Ω× (0,∞), (11.8)
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with no-flux boundary conditions

μ
∂u

∂n
− αu∂f(x, u)

∂n
= 0 on ∂Ω× (0,∞). (11.9)

See Grindrod (1988) for a similar model which addresses different questions. One of
the main findings in Cantrell et al. (2008) is that as the rate of movement up fitness
gradients becomes large and/or the rate of random diffusion becomes small, the den-
sity of organisms approximately matches the availability of resources everywhere in
the habitat. This differs significantly from both unconditional dispersal by random
diffusion and conditional dispersal where organisms tend to move up gradients of re-
source density without reference to crowding effects. Both of those dispersal strate-
gies lead to population distributions where the density overmatches resource in some
locations but undermatches it in others. This fact is the essential reason why there
is selection for slow dispersal in models with purely diffusive dispersal, because for
such models the only way for the equilibrium population density to approximately
match the distribution of resources is for the diffusion rate to go to zero. It is also
the reason why too strong a tendency to move up resource gradients without regard
to crowding effects can sometimes make a population subject to invasion by another
population using a different strategy.

11.6 Dispersal in temporally varying environments

In contrast to spatial heterogeneity, temporal variation in environments can some-
times select for unconditional dispersal. It can also lead to coexistence of different
strategies in a stable polymorphism. Much of the work on the evolution of dispersal
in time varying environments involves at least some numerical computation because
analytic results are harder to obtain than in the temporally constant case. Some an-
alytic results are derived in Hutson et al. (2001) for a reaction-diffusion model of
the general form shown in (11.3) but with m(x) replaced by m(x, t) where m(x, t)
is periodic in t. In spatially homogeneous but temporally varying environments, the
results of McPeek and Holt (1992) (based on numerical experiments on two-patch
discrete-time discrete diffusion models) and those of Hutson et al. (2001) (obtained
analytically for reaction-diffusion models) indicate that there is no selection for or
against unconditional dispersal. In both of those studies the models had stable equi-
libria; in the case of models that support periodic or chaotic solutions the situation
can be different. We will return to that case later. McPeek and Holt (1992) observed
that when there is variation in time but not in space then as in the spatially and tem-
porally constant case, there can be selection against forms of dispersal that cause the
population to undermatch resources in one patch and overmatch them in the other,
but there is no selection for or against uniform unconditional dispersal. In the case
of environments with both spatial and temporal variability, McPeek and Holt (1992)
found that if only unconditional strategies are considered then except in certain spe-
cial cases, the system would evolve to a polymorphism consisting of a slow dispersal
strategy and a relatively fast dispersal strategy. Hutson et al. (2001) obtained sim-
ilar analytic results provided that the time average of the coefficient m(x, t) over
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a period is positive and some additional technical conditions are satisfied. Hutson
et al. (2001) did not consider conditional dispersal. McPeek and Holt (1992) did;
they found that there was selection for a specific conditional strategy that satisfied an
“ideal free” or “balanced dispersal” condition analogous to (11.7). (In this situation
the heterogeneity was obtained by drawing carrying capacities for discrete-logistic
within-patch models at random from some distribution, so the equilibria u∗i in (11.7)
would be replaced by the means of those carrying capacities.) This is in contrast with
the temporally constant case, where within the class of strategies satisfying (11.7)
any number of strategies were seen in McPeek and Holt (1992) to be able to coex-
ist in a state of neutral stability. It would be of interest to consider the evolution of
conditional dispersal in the reaction-diffusion setting used in Hutson et al. (2001).

In discrete-time models variability in time does not require extrinsic variation in
the environment. Such models can have periodic or chaotic dynamics without it. In
Holt and McPeek (1996), it was observed that in a two-patch discrete-time model
with equal growth rates on the two patches, chaotic dynamics generally favor the
evolution of some amount of unconditional dispersal; if the carrying capacities of
the patches are different, chaotic dynamics can support a polymorphism of slower
and faster dispersal strategies. Those results were refined and extended in Doebeli
and Ruxton (1997) and Parvinen (1999), where it was observed that if growth rates
as well as carrying capacities differ between patches then evolutionary branching
leading to a polymorphism can occur even if the population dynamics are cyclic. (In
situations where patches are ecologically identical, the dispersal rate tends to evolve
until the dynamics on the patches are synchronized, after which there is no more
selection, so that case is special.)

11.7 Future directions

It would be of interest to study the evolutionary stability of ideal free dispersal rela-
tive to other conditional dispersal strategies in spatially varying but temporally con-
stant environments. Using the modeling approach of Cantrell et al. (2006, 2007b),
Chen and Lou (2008), and Dockery et al. (1998) in that context would lead to a
system of the form of⎧⎨

⎩
ut = ∇ · [μ∇u− αu∇f(x, u+ v)] + uf(x, u+ v) in Ω× (0,∞),

vt = ∇ · [ν∇v − βv∇g(x, u + v)] + vf(x, u+ v) in Ω× (0,∞),
(11.10)

with no-flux boundary conditions

μ
∂u

∂n
−αu∂f(x, u+ v)

∂n
= ν

∂v

∂n
−βv∂g(x, u+ v)

∂n
= 0 on ∂Ω×(0,∞), (11.11)

where f(x,w) = m(x) − b(x)w (or perhaps some other or more general form of
population growth term with crowding effects) and g represents part of an alternate
dispersal strategy. For example, g = 0 would correspond to unconditional dispersal
by simple diffusion, g = m would correspond to advection up resource gradient
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without consideration of crowding, g = −(u + v) would correspond to avoidance
of crowding without reference to resource distribution, and g = m − δ(u + v) or
g = m− δb(x)(u+ v) would correspond to a combination of advection up resource
gradient and avoidance of crowding.

Many of the results on dispersal in spatially and temporally varying environments or
for populations with chaotic dynamics have been obtained through numerical simula-
tion. It would be of interest to extend the range and scope of rigorous analytic results
in that area. As noted previously, McPeek and Holt (1992) found that in spatially and
temporally varying environments, selection typically favors a certain specific fixed
conditional dispersal strategy. It would be of interest to try to see if something simi-
lar is true in other types of models. It would also be of interest to examine dispersal
strategies which themselves could include variation in time, such as movement along
the gradient of a temporally varying resource. Ultimately it might be possible to con-
nect ideas about the evolution of local dispersal in temporally and spatially variable
environments to the evolution of migration.

All of the models we have described so far operate on a single trophic level and treat
the resource upon which the focal species depends as being extrinsically determined.
It is natural to ask how including explicit trophic interactions where the resource itself
is dynamic and may even coevolve with the consumer might influence the predictions
of models for the evolution of dispersal. In Schreiber et al. (2000) it was shown that
in a discrete-time patch model for a host-parasitoid system with coevolution of patch
selection, a version of the ideal free distribution is evolutionarily stable. In Cantrell
et al. (2007a), balanced dispersal leading to an ideal free distribution was shown
to be evolutionarily stable in discrete-diffusion models for predator-prey systems
provided that the model incorporates some type of self limitation or intraspecific
competition by the predators. It would be of interest to examine extensions of models
along the lines of (11.3), (11.4), (11.5), or (11.10) where the resource was explicitly
modeled as a dynamic variable and the dispersal strategies of the consumers might
include various forms of preytaxis. Two sorts of dispersal that organisms may use to
track resources are movement upward along resource gradients and area-restricted
search or kinesis, where organisms slow down their movements in regions where
resources are dense but speed them up where resources are rare; see Farnsworth and
Beecham (1999) and Kareiva and Odell (1987). To compare dispersal strategies for
the consumers in such a setting one would use models similar to the following:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ut = ∇ · [μ(w)∇u − αu∇f(u+ v, w)] + u(eh(u+ v, w)− d),

vt = ∇ · [ν(w)∇v − βv∇g(u + v, w)] + v(eh(u + v, w)− d),

wt = ∇ · [ρ∇w] + (m(x) − w)w − (u+ v)h(u + v, w)

(11.12)

in Ω× (0,∞) with no-flux boundary conditions

μ(w)
∂u

∂n
− αu∂f(u+ v, w)

∂n
= ν(w)

∂v

∂n
− βv∂g(u+ v, w)

∂n
=
∂w

∂n
= 0 (11.13)

on ∂Ω× (0,∞). In (11.12) and (11.13) u and v are consumers that are ecologically
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identical except for their dispersal strategies, w is a resource, and h is a functional
response. The diffusion rates for u and v are allowed to depend on w to model area-
restricted search. The dispersal terms f and g could incorporate advection up the
gradient of w, or of h, or down the gradient of u + v. Clearly there are many rea-
sonable variations on the general form shown in (11.12). It would also be possible
to model coevolution of dispersal by the consumer and the resource, but that would
require a model with four equations. Incorporating trophic interactions more widely
into models for the evolution of dispersal would be an interesting but challenging
direction for future research.
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CHAPTER 12

Evolution of dispersal scale and shape
in heterogeneous environments: A

correlation equation approach

Benjamin M. Bolker
University of Florida

Abstract. Dispersal of offspring to new spatial locations is one of the fundamental ecolog-
ical processes that determines both the outcome of interspecies competition and the spatial
patterns formed in communities of sessile organisms. Classical studies in the evolution of
dispersal, motivated by the observation of discrete polymorphisms in dispersal phenotype,
have focused on the decision whether to disperse offspring out of the natal patch or not,
balancing the risks of dispersal against increased competition in the natal patch. Ecolo-
gists have also quantified the distribution of dispersal distance, and on the consequences of
different shapes of dispersal distributions (leptokurtic, fat-tailed, etc.); theoreticians have
recently begun to study how these shapes could evolve in homogeneous landscapes. This
chapter will present simulation and analytical results (using spatial moment equations) on
the evolution of dispersal distributions in heterogeneous environments: in particular, I will
show how the scale and shape of the spatial autocorrelation of environmental suitability
affects the evolution of dispersal. Polymorphism (near vs. far) dispersal can occur either
among the offspring of individuals, as shown by a leptokurtic dispersal curve, or among
individuals within a population, as shown by an evolutionary branching point in dispersal
scale.

12.1 Introduction

Organisms’ dispersal ability, the spatial scale over which they relocate themselves
or their offspring, is a fundamental life-history trait that determines a population’s
spatial pattern with respect to kin, conspecific and heterospecific competitors, and
environmental gradients. Long-distance dispersal determines species’ ability to re-
colonize new habitats after large-scale disturbance (Clark, 1998), while medium-
distance dispersal affects their ability to coexist in relatively stable habitats (e.g., via
competition-colonization tradeoffs (Holmes and Wilson, 1998)).

The evolution of dispersal is therefore a long-standing focus of evolutionary ecology
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(Clobert et al., 2001; Levin et al., 2003). Studies of dispersal often focus on natal
dispersal, the relocation of offspring relative to their parents that occurs once per
generation (at the seed stage in plants, or often at maturity in animals). Evolutionary
ecologists typically ask what natal dispersal strategies we should expect to evolve un-
der different patterns of spatial and temporal heterogeneity in the environment, and
under varying ecological constraints, such as costs of dispersal or correlations with
other life-history traits (e.g., dispersal in plants is often correlated with seed size,
which in turn trades off with seed number (Ezoe, 1998; Levin et al., 2000)). When
do we expect less (or shorter-range) vs. more (or longer-range) dispersal (Hamilton
and May, 1977; Harada and Iwasa, 1994)? When is there a single optimum dispersal
strategy as opposed to a polymorphic evolutionary stable strategy (ESS): in ecologi-
cal terms, when can multiple dispersal strategies coexist (Levin et al., 1984; Bolker et
al., 2003)? How do the advantages of particular dispersal strategies depend on other
life-history traits such as competitive ability or growth rate?

Such studies have typically focused on one of three characteristics of dispersal.

• Propensity or rate — the probability that an offspring will disperse a relatively
long distance from its parent, or between suitable patches (Hamilton and May,
1977; Comins et al., 1980; Ludwig and Levin, 1991; Harada and Iwasa, 1994;
Travis and Dytham, 1998).
• Scale — the typical distance that offspring disperse, quantified as mean or median

dispersal distance (Ezoe, 1998; Murrell et al., 2002).
• Shape — the distribution of dispersal distances among offspring (i.e., the dispersal

kernel), often quantified as leptokurtosis, tail shape, or frequency of long-distance
dispersal events (Kot et al., 1996; Clark et al., 1999).

These studies provide a clear general picture of the benefits and costs of dispersal. All
else equal, higher dispersal propensity (or longer dispersal scale) decreases crowd-
ing and therefore lessens kin or intraspecific competition. It minimizes the effects
of temporal variation by substituting an average growth rate across spatial sites (an
arithmetic average) for the temporal average growth rate that a lineage would expe-
rience at a single location (a geometric average); the geometric average is always
lower in a variable environment and drops to zero if habitats ever experience lethal
environmental conditions. Dispersal also decreases inbreeding depression. The costs
of dispersal include the cost of constructing specialized structures such as parachutes
or fruits to encourage dispersal, the risk of mortality during dispersal or when set-
tling at a new site, and the risk of dispersing to unsuitable habitat (Cody and Overton,
1996; Bolker and Pacala, 1990; Cheptou et al., 2008).

While the evolutionary dynamics of the rate and scale of dispersal are relatively well
understood, we know considerably less about the evolution of the shape of the dis-
persal kernel. Hovestadt et al. (2001) used an individual-based model to simulate
the evolution of dispersal kernels in environments with varying degrees of autocor-
relation (patchiness), generated by creating random landscapes with different fractal
dimensions. They found that in contrast to homogeneous landscapes, where the dis-
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persal kernel did not change from its initial uniform distribution, autocorrelated land-
scapes selected for power-law dispersal kernels which allowed a higher proportion
of local dispersal while simultaneously spreading those seeds that were dispersed
across a broad area. Rousset and Gandon (2002) complemented this study by de-
veloping analytical equations that predicted the evolution of dispersal shape under
distance-dependent costs of dispersal in a homogeneous environment.

These two studies show the wide range of alternatives for considering the evolution
of dispersal shape. While Rousset and Gandon (2002) used analytic tools to derive
general conclusions, they did not explicitly consider the effects of environmental
heterogeneity (although in a sense their distance-dependent costs of dispersal do in-
clude the risk of landing in unsuitable habitat). In contrast, Hovestadt et al. (2001)
did consider different types of autocorrelated habitats, but their study was purely
computational.

In this chapter I take an approach that complements these two studies. Like Hovestadt
et al. (2001), it explicitly incorporates environmental heterogeneity; like Rousset and
Gandon (2002), it uses a theoretical framework that allows for more general conclu-
sions. I combine the general approach of adaptive dynamics, asking what strategies
are invasible by others, with equations for the dynamics of populations based on the
mean densities and spatial correlations of populations. I use this combination to an-
alyze the invasion dynamics of competitors that differ only in the shape or scale of
their dispersal kernels in heterogeneous environments and ask the typical questions:
Under what conditions are longer vs. shorter or fatter vs. thinner tails advantageous?
Why?

12.2 Methods

12.2.1 Competition model

I used a continuous-time stochastic point-process version of the logistic equation
(Law et al., 2003). Individuals, which are all identical except for their dispersal ker-
nels, are located at points in space. The model space is one-dimensional with periodic
(i.e., wraparound) boundary conditions. While the dynamics of ecological models
often depend on their dimensionality, past studies of this type of model have found
quantitative, but not qualitative, differences between one and two dimensions (Bolker
and Pacala, 1997). In an arbitrarily small time interval (t, t+ Δt) individuals repro-
duce with probability fΔt and die with probability (μ(x) + αC(x))Δt, where μ(x)
is the intrinsic death rate at x (see below for the model’s description of environmental
heterogeneity) and C(x) is a measure of the local population density. A competition
kernel U(r) defines the local population density, determining the added mortality of
a focal individual due to an individual located a distance r away. If {xi} is the set
of locations of all competitors (i.e., all of the N individuals in the population) then
the local population density at x is

∑N
i=1 U(|x− xi|). If we represent the population

as a sum of Dirac delta functions (“spikes” integrating to 1) at these locations, then
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we can also represent the local density as
∫
Ω U(|x − y|) dy, where Ω is the entire

space. I normalize the integral of U to 1, so that α represents the overall strength
of competition. In the limit where U is uniform over the entire space (i.e., compe-
tition is independent of location) the model reduces to a stochastic logistic equation
with population growth rate f − μ̄ and carrying capacity (f − μ̄)/α, where μ̄ is the
spatially averaged mortality rate.

When individuals reproduce, their offspring disperse in a random direction θ, to a
random distance r chosen according to a dispersal kernel D(r, θ).

I consider only interactions among monomorphic populations, making the usual
adaptive dynamics assumptions that the mutation rate is low relative to the time scale
of competitive exclusion, so that any new advantageous mutant will fix in the popu-
lation before the occurrence of a new mutation (Abrams, 2001).

12.2.2 Dispersal curves

In contrast to the nonparametric dispersal kernels of Hovestadt et al. (2001) and
Rousset and Gandon (2002), I used a parametric family of kernels, the general error
distribution, also known as the exponential power distribution [Fig. 12.1] (Mineo and
Ruggieri, 2005). I used the parameterization

D(r) =
c1e
−(c1r)θ

2Γ(1 + 1/θ)
, (12.1)

where Γ is the Gamma function and c1 = Γ(2/θ)/(θs(Γ(1 + 1/θ))), which sets the
average dispersal distance to s independent of θ.

The general error distribution is well established as a model for dispersal kernels
(Clark et al., 1999). Special cases of the general error distribution include the normal
or Gaussian (θ = 2) and the Laplacian or radial exponential (θ = 1). Clark et al.
(1999) point out that this distribution is limited because convexity close to the source
is correlated with leptokurtosis (fat tails). When θ is small, the dispersal kernel is
concave at the origin and is leptokurtic; when θ is large, it is convex at the origin and
platykurtic.

12.2.3 Environmental heterogeneity

I assume static spatial environmental heterogeneity which is isotropic, homogeneous,
and second-order stationary. These criteria essentially mean that the entire spatial
pattern can be described by the autocorrelation function, which specifies the spa-
tial dependence between two points a distance r apart. In the first part of the paper,
I assume a homogeneous environment; in the second, I assume the environmental
autocorrelation function is Laplacian (e−c1r); and in the last, that it is power expo-
nential, which is the spatial analogue of the general error distribution, with 0 < θ ≤ 2
(Møller and Waagepetersen, 2004).
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Figure 12.1 Examples of the generalized error distribution with average dispersal distance =1
and varying θ. Curves range from leptokurtic (θ < 1) to platykurtic (θ > 2).

12.2.4 Analysis

The resulting master equations for the number of dispersal type i — that is, the
probabilities that the number of individuals at a location x will increase or decrease
by 1 during a time interval Δt — are therefore:

Prob(Ni(x)→ Ni(x) + 1) : f
∫
D(|y − x|, θi)Ni(y)dy, (12.2)

Prob(Ni(x)→ Ni(x) − 1) : Ni(x)(μ(x) + α

∫
U(|y − x|)

∑
i

Ni(y)dy). (12.3)

From the master equations we can derive ordinary differential equations that de-
scribe the dynamics of ni, the average density of a population with dispersal type i.
Because we have assumed that the environment is stationary — that is, there are no
gradients or other special points — we will assume that the average across stochastic
realizations at any point is equal to that at any other point, and that this average will
be equal to the spatially averaged density.
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Taking these averages we get:

dni

dt
= (f − μ̄− αni)ni − cμn(0)− α

∫
U(r)cnn(r) dr. (12.4)

In this equation, cμn(0) is the covariance between habitat quality (local mortality
rate) and population density, or the spatial cross-covariance at lag zero. This term
represents habitat association, the tendency for populations to build up in favorable
environments. Since μ(x) is the badness (rather than goodness) of the local environ-
ment, population density is small in areas where μ(x) is large, so cμn(0) < 0, so the
habitat association term has an overall positive effect on the population growth rate.
Similarly, c̄nn =

∫
U(r)cnn(r) dr is a local crowding term, analogous to Lloyd’s

crowding index, which averages the local increase in population density of all dis-
persal types (if c̄nn > 0) around focal individuals, weighted by the strength of com-
petition, to determine the negative effect of crowding. At equilibrium, the crowding
term may be either positive or negative, corresponding to clustering (c̄nn > 0) or
thinning (c̄nn < 0), depending on the relative strength of short dispersal (which in-
creases crowding) and local competition (which decreases it) (Bolker and Pacala,
1999). (The same general framework could apply to conspecific facilitation — for
example, through increased local densities of pollinators or other mutualists — if α
were negative, but here I consider only competitive interactions.)

These equations can be solved if the spatial pattern of the population determining
habitat association and crowding are known, but in general we have to extend the
system of equations to include integrodifferential equations for the dynamics of the
spatial covariances cnn and cμn (the habitat pattern, described by the habitat auto-
covariance cμμ, is assumed to be static). These equations in turn involve triple cor-
relations among the population density and habitat at different points. Some form of
moment closure is required in order to close the system and get a set of equations we
can analyze or (as in this case) solve numerically. The technical details of moment
closure are discussed elsewhere: here we use a power-2 symmetric closure (Bolker,
2003), which like other moment closure schemes derives an approximation for the
triple covariance among three points from the known covariances among each pair
of points. I developed Mathematica code that derives the moment equations for a
specified set of master equations and optionally uses the xtc numerical solver (by
Bard Ermentrout) to compute population trajectories, equilibrium values, or invasion
rates: all code is available at www.zoo.ufl.edu/bolker/meqs/emonk/.

In order to analyze the effects of different dispersal strategies I held the nonspatial
parameters fixed at {f = 5, μ̄ = 1, α = 1}, corresponding to a carrying capacity of
K = 4 and an intrinsic growth rate of f − μ̄ = 4.

In spatial stochastic models, the intrinsic growth ratio R = f/m̄u determines the
importance of stochasticity: the baseline value here, R = 5, represents a moderately
large growth ratio. For example, for density-dependent establishment (as analyzed
in Bolker and Pacala (1999)) a monoculture equilibrium is clustered if R < 2 and
thinned (more even than random) if R > 2.

The baseline values of the spatial parameters in the model are the competition scale
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parameter (mc) = 1; competition shape parameter (θc) = 1; dispersal scale parameter
(md) = 1; dispersal shape parameter (θd) = 1; environment scale parameter (me) =
1; and environment shape parameter (θe) = 1. In other words, unless otherwise spec-
ified, all spatial kernels are Laplacian with scale 1. The competition kernel (U ) was
held constant throughout the analyses. While the scale mc can be fixed at 1 with-
out loss of generality, since it determines the overall scale of the system, changing
the shape of the competition kernel θc does affect the dynamics (Birch and Young,
2006), but the possible interaction of dispersal, environment, and competition shape
parameters is left for future studies.

For each set of parameters of interest, I numerically solved the equations for mono-
culture equilibrium, running the equations out until the population densities and cor-
relations were stable to within a convergence tolerance of 10−4. To determine inva-
sibility, I ran the resident species out to equilibrium, then started the second species
at a density of 10−4 with all covariances equal to zero (i.e., assuming a random ini-
tial distribution with respect to residents, conspecifics, and the environment), ran the
equations out to t = 1 — potentially enough time for the population to increase
by a factor of er = e4 ≈ 55 in the absence of competition — and calculated the
proportional increase in density, (final-initial)/initial. To determine the evolutionary
dynamics as a whole, I constructed pairwise invasion plots (PIP) that evaluate the
invasion rate at each point on a grid representing combinations of resident and in-
vader dispersal traits. In general, the geometries of PIPs determine which dispersal
strategies or combinations of dispersal strategies will evolve in the long run, under
the assumptions of adaptive dynamics that mutations are infrequent but not limiting.

12.3 Results

12.3.1 Dispersal scale in homogeneous landscapes

As expected from previous studies, longer dispersal is always better in a homo-
geneous environment if it does not bear a cost. Analyzing equilibrium population
densities as a function of competition (mc) and dispersal scale (md) shows that at
any competition scale, increasing dispersal scale maximizes the population density
(Fig. 12.2). Populations are generally evenly distributed (c̄nn < 0), with population
densities greater than the nonspatial carrying capacity, when dispersal scale is large
and competition scale is small, and clustered or aggregated (c̄nn > 0) under the
opposite conditions. At large dispersal scales, the population density is highest for
intermediate scales of competition: however, this analysis focuses on dispersal evo-
lution and assumes that the scale of competition is fixed rather than evolving to an
optimal value.

The first concern about this result, although it is completely expected, is to make sure
that the moment closure approximation is reasonably consistent with the actual dy-
namics of the system. While the moment approximation overpredicts the equilibrium
density for small dispersal scales and underpredicts it for large dispersal scales, the
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Figure 12.2 Equilibrium density (relative to nonspatial carrying capacity) as a function of
dispersal and competition scale for a single species in a homogeneous environment. Thick line
represents parameters where the effects of crowding and thinning cancel and the population
density equals the nonspatial carrying capacity. Dashed lines show md = 1 and mc = 1.

qualitative pattern is correct (Fig. 12.3). (The moment approximations fail badly for
even smaller scales than those shown, where the simulated population goes extinct
while the moment approximation predicts a gradual decrease in density.)

The second concern is whether we can really predict evolution trajectories from
knowledge of equilibrium population sizes. Evolutionary studies often confound the
naïve expectation that a population will evolve in the direction that maximizes popu-
lation density; “luxury consumption” in order to reduce resources and deny them to
competitors is one simple example (van Wijk et al., 2003). In this case, however (and
in all cases explored) the PIP (not shown) agrees with the equilibrium density plot.
At all values of the resident dispersal scale, the invader growth rate is positive if and
only if it disperses farther than the resident. The expectation of adaptive dynamics is
thus that mutants with progressively larger dispersal scales will invade and displace
the shorter-dispersing resident population. (Because this concordance between traits
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Figure 12.3 Comparison of predicted density (line: deviation from nonspatial carrying ca-
pacity K = 4 from moment equations) with simulation results (points with error bars: total
time=100, transient=25, time step=0.01, total length=128). Parameters as in text, with mc = 1
(corresponding to thick arrow in Fig. 12.2), θd = θc = 1. Error bars show ±1 standard error.

leading to higher equilibrium densities and evolutionarily favored traits holds for all
the cases I have explored in this study, I have not shown the PIPs.)

12.3.2 Dispersal shape in homogeneous environments

What about the evolution of dispersal shape? I analyzed the equilibrium density and
invasion rate for dispersal shape parameters θd ranging from 0.25 (strongly leptokur-
tic) to 3 (moderately platykurtic), for competition scales (mc) from 0.2 to 100. For
any scale of competition, platykurtic dispersal (θd → ∞) gives the highest equilib-
rium density.
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Figure 12.4 Equilibrium density (relative to nonspatial carrying capacity) as a function of
dispersal shape and competition scale in a homogeneous environment. Thick line, density
equal to nonspatial carrying capacity.

As with the evolution of dispersal scale, we need to check the accuracy of the moment
closure approximation. Fig. 12.5 shows that it is reasonable, although the moment
equations predict a sharp drop-off in equilibrium density for θd < 0.3 while the
simulations show a more gradual decline. Numerical analyses of the invasion criteria
again agree with the equilibrium densities: for a resident with any dispersal kernel
shape, a mutant invader with a more platykurtic dispersal kernel can invade.

12.3.3 Dispersal scale in heterogeneous environments

Moving to a heterogeneous environment (beginning with the baseline case of expo-
nential spatial autocorrelation in mortality rate, θe = 1), we see a more interesting
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Figure 12.5 Comparison of predicted density from moment equations (lines) with simulation
results (points): simulation parameters as in Fig. 12.3, except md = 1.

pattern where population density no longer changes monotonically with dispersal
scale. For small competition scales (on the left side of Fig. 12.6), the system is com-
petition dominated: that is, the effects of local competition are much stronger than
the effects of environmental variation, and the effect of dispersal scale is similar to
the homogeneous case, with long dispersal leading to higher equilibrium population
densities. For large competition scales (on the right side of Fig. 12.6), the system
is environment dominated: local competition is unimportant and the effects of en-
vironmental variation dominate, increasing equilibrium density through habitat as-
sociation when the dispersal scale is short. For long competition scales (mc > 3),
Fig. 12.6 shows that a minimum population density occurs at intermediate dispersal
scales.

Fig. 12.7 compares the moment equation predictions to simulation results, confirm-
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Figure 12.6 Equilibrium density (deviation from nonspatial carrying capacity) as a function of
dispersal and competition scale for a single species in a heterogeneous environment (me = 1,
θe = 1). Solid lines show density contours at a spacing of 0.1, while (thin) dashed lines show
density contours at a spacing of 0.01 for the region between 0 and 0.1. Heavy dashed line
shows the location of the minimum density for each competition scale. Arrows show predicted
direction of dispersal evolution.

ing the existence of a minimum in population density at intermediate dispersal scales.
The scale of the effect is small (from a minimum of 0.05 density units greater than
the nonspatial carrying capacity K = 4 up to a maximum of about 0.11). For very
short dispersal scales (md ≤ 0.2), the simulations show that clustering causes the
population density to collapse in a way that is not captured by the moment equations.

Numerical analyses again confirm that the minimum in population density corre-
sponds to an evolutionary branching point in the dispersal scale. Selection will drive
populations starting above a dispersal scale of md ≈ 2 to larger dispersal scales and
those starting below to lower dispersal scales. Depending on the genetic and mating
systems, such a divergence point may lead to an evolutionarily stable polymorphism
in the population.
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Figure 12.7 Comparison of predicted density from moment equations with simulation results:
simulation parameters as in Fig. 12.3, except md = me = 1, mc = 10, θd = θe = θc = 1.

12.3.4 Dispersal shape in heterogeneous environments

The effects of dispersal shape on equilibrium density in a heterogeneous environment
are similar to those of dispersal scale (Fig. 12.8). In competition-dominated systems
(mc � me = 1), the results are as for homogeneous environments, with platykur-
tic dispersal (high θd) giving the highest density. In environment-dominated systems
(mc � me = 1), the situation reverses and leptokurtic dispersal (low θd) maximizes
density. In a transition range (2 < mc < 20), an intermediate θd maximizes den-
sity (in contrast to the dispersal-scale case, where an intermediate value minimized
density).

Simulation results are consistent with the moment equation predictions for θc = 10
(Fig. 12.9). However, this cross-section also shows that the predicted maximum in
density is closer to a threshold function of dispersal shape, with the predicted density

© 2010 by Taylor and Francis Group, LLC



244 EVOLUTION OF DISPERSAL

competition scale mc

di
sp

er
sa

l s
ha

pe
 θ

d

0.5 1 5 10 100

0.25

0.5

1

3

competition
dominated

environment
dominated

leptokurtic

platykurtic

Figure 12.8 Equilibrium density as a function of competition scale and dispersal shape in a
heterogeneous environment (me = θe = θc = md = 1).

barely dropping from its maximum value at (θd = 0.5) as dispersal shape increases.
The simulation results are noisy enough that the expected maximum is not detectable,
if it exists.

12.4 Discussion and conclusions

How can we understand the above results in terms of the well-understood costs and
benefits of dispersal?

Since these analyses neglect the costs of dispersal structures and the risk of disper-
sal mortality on the one hand and the benefits of avoiding inbreeding depression on
the other, the only cost/benefit that applies in a homogeneous environment is avoid-
ance of kin competition. The optimal dispersal scale, therefore, is to send one’s off-
spring as far as possible — avoiding both intergenerational competition by putting
offspring far away from the parent and sibling competition by spreading offspring far
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Figure 12.9 Comparison of predicted density from moment equations with simulation results:
simulation parameters as in Fig. 12.3, except md = me = 1, mc = 10, θe = θc = 1.

from each other. That the optimal dispersal shape in a homogeneous environment is
platykurtic makes sense if the total dispersal scale is constrained: then the next best
choice is to spread the offspring as evenly as possible.

In heterogeneous environments, the benefit of avoiding competition must now be
balanced against the costs of dispersing one’s offspring to a less favorable environ-
ment. An organism that is successfully surviving and reproducing is more likely to
be located in favorable habitat, so sending its offspring away worsens their prospect.
This benefit of short dispersal — habitat association (Bolker, 2003) or growth-density
covariance (Snyder and Chesson, 2003) — is general, applying both to abiotic het-
erogeneity and to competition with slow-moving or short-dispersing but dominant
competitors (Neuhauser, 1998; Bolker et al., 2003). How should organisms compro-
mise between short and long dispersal to balance costs and benefits?
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In the case of dispersal scale, when competition and environmental scales are similar
(so that organisms must deal with both crowding and environmental effects), the
correlation equations and simulations suggest a polymorphic strategy at the level of
the population. Either longer or shorter dispersal can increase population densities
and invasion rates, but an intermediate dispersal — trying to split the difference —
minimizes fitness.

In contrast, the density plots for dispersal scale suggest an intermediate maximum
for similar competition and environmental scales, a single optimal strategy. However,
this intermediate maximum, at moderately high levels of leptokurtosis (θd ≈ 0.5),
can be thought of as representing an individual-level polymorphism. As suggested by
Snyder and Chesson (2003) in the context of temporal variation, leptokurtic dispersal
allows an individual to send its offspring either short distances (offspring in the body
of the dispersal kernel) or long (offspring in the tail). Because the density curve is
nearly flat above a threshold value (12.9), we would expect to see a broad range of
moderately to strongly leptokurtic dispersal kernels.

This evolutionary dynamic has consequences for the theory of dispersal itself: when
dispersal kernels are strongly leptokurtic, then the extensive theory developed for
inter-patch or “near vs. far” dispersal (e.g., Levin et al., 1984) should apply well
because most offspring travel either a short or a long distance. Thus the evolutionary
process itself may push organisms into a parameter regime where simpler theoretical
frameworks can illuminate their interactions and further evolution.

The much-discussed tendency of leptokurtosis and “fat tails” to accelerate wave-like
spread (Clark, 1998), on the other hand, may not be an important determinant of dis-
persal evolution. While a rapidly spreading population would be the first to colonize
a newly opened habitat, this advantage would not persist long in a stable habitat mo-
saic of habitat patches. In Snyder and Chesson’s (2003) analysis, the higher moments
of dispersal kernels (skew, kurtosis, etc.) have extremely weak effects on coexistence.
(The difference between their results and the present analysis, where kurtosis is fa-
vored, is that their analysis does not take intraspecific crowding into account.)

Being able to derive the equations for the dynamics of spatial correlations among
species and between species and environmental factors has allowed an efficient sur-
vey of different dispersal kernels in a range of environmental conditions. Correlation
equations also allow for analytical insights, in simple enough systems. In trying to
tell a reasonably complete story about the effects of dispersal scale and shape in
heterogeneous environments I have of course neglected several important factors,
especially the cost of dispersal and the effects of temporal heterogeneity. Temporal
heterogeneity in particular raises the problem that one cannot properly understand
dispersal without considering the correlated life-history traits that make up a com-
plete life-history strategy (Snyder, 2006): how do dormancy, growth rate, time to ma-
turity, fecundity, and dormancy interact with dispersal strategies? What are the phe-
notypic and genotypic correlations among dispersal characters and other life-history
traits (Rees, 1996)? I have also assumed that dispersal is neither density-dependent
(Travis et al., 1999) nor directed (Wenny, 2001). While plants (the implicit focus of
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much of the literature on evolution of dispersal) may not appear to have much con-
trol over their dispersal, animal-dispersed seeds do have a great deal of control over
their dispersers (and thus indirectly over the environment they land in), and even
wind-dispersed seeds are affected by local density (Schurr et al., ms. in review).

Even after several decades the theory of spatial competition and evolution in het-
erogeneous environments remains incomplete, but new analytical tools open new
avenues for understanding how organisms can balance the costs and benefits of dis-
persal at different scales. Many more challenges remain, including further integration
of the theory with data and incorporation of other life history traits.
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CHAPTER 13

Spatiotemporal dynamics of measles:
Synchrony and persistence in a disease

metapopulation
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Abstract. Measles incidence records provide some of the most detailed accounts of the
spatiotemporal dynamics of a population. In a few situations they describe the ebb and flow
of the disease at a large number of spatial locations at weekly or monthly intervals over a
period of several decades. The interaction between a naturally damped nonlinear predator-
prey oscillation and seasonal variation in transmission leads to the occurrence of a rich set
of dynamical behavior in the incidence of the infection. Before the introduction of mass
vaccination against the disease, large multi-annual oscillations in incidence (i.e., recurrent
epidemics) were commonly seen in large cities of the developed world. Such oscillations
were not characteristic of all locations, however; many smaller population centers exhibited
irregular outbreaks interspersed by periods of absence of the infection. Work on identifying
and characterizing the processes that govern the transmission dynamics of measles has
been driven by attempts to understand the observed incidence patterns. In particular, three
primary questions have emerged: 1) what governs the long-term dynamics of the disease
within communities and allows oscillatory behavior to be maintained in some populations,
but to be less apparent or absent in others, 2) what determines whether and how long
measles can persist within a community, and 3) what determines the distribution and spatial
spread of measles outbreaks among communities across a region. In this chapter we review
the literature that has used statistical analyses and mathematical models to address these
questions.

13.1 Introduction

The transmission dynamics of measles have long held a fascination for population
modelers. The availability of high quality epidemiological data, sampled at large
numbers of spatial locations and covering several decades, provides an almost unri-
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valled opportunity to study spatiotemporal dynamics in a population biology setting
(Grenfell and Harwood, 1997).

The measles system exhibits a rich set of dynamical behavior, resulting from an inter-
action between a naturally damped nonlinear predator-prey oscillation and seasonal
variations in transmission (Dietz, 1976). In large cities of the developed world, partic-
ularly before the introduction of mass vaccination against the infection, large multi-
annual oscillations in the incidence of disease—so-called recurrent epidemics—were
commonly seen (Hamer, 1906; Soper, 1929). Notably, however, such oscillations
were not uniform across all populations. Outside the large cities of Western Eu-
rope and the United States these patterns were less regular or even absent altogether
(Bartlett, 1957; Cliff et al., 1981).

The development of mathematical models of the transmission of measles was stimu-
lated by a desire to understand the underlying factors that generated these observed
patterns. In particular, three primary questions have provided the motivation for
most measles modeling work: 1) what governs the long-term dynamics of the dis-
ease within communities, and especially what causes regular measles cycles to be
maintained in some populations, but to be less apparent or absent in others, 2) what
determines the persistence of infection in communities, and 3) what determines the
distribution and spatial spread of measles outbreaks among communities across a
region.

Research on the epidemiology of measles as well as early mathematical modeling
work identified several factors that are important in determining local persistence
and regular cycling of the disease. For example, the widely differing timescales be-
tween the infection process, with infection lasting on the order of weeks, and the
replacement of susceptibles by demographic turnover, means that stochastic effects
have a major impact on the dynamics of measles. Thus, the patterns of incidence
within a given community are strongly dependent on its size. This behavior was in-
vestigated by Bartlett (1956, 1957, 1960), who used both mathematical analysis and
analysis of incidence data to determine that unless populations were of sufficient size
(the critical population size), the measles transmission chain could not be maintained
over time, leading to extinction of the disease rather than persistence in an endemic
state. For cities that are large enough to maintain the infection, stochastic effects
alone would lead to fluctuations in incidence about an endemic level, but cannot ex-
plain the tight periodicity of disease incidence seen in large Western cities. Further
research (London and Yorke 1973; Yorke and London 1973) identified the impor-
tant role that seasonality in disease transmission plays in shaping local patterns of
measles incidence.

While simple mathematical models can separately depict either persistence patterns
or dynamical patterns rather easily, the development of a model that can simulta-
neously perform these two tasks has proved to be more of a challenge (Bolker and
Grenfell, 1995). This has led modelers to focus on disease patterns at the regional,
rather than the community, level. Viewed at this scale, spatial dynamics play a cru-
cial role in the persistence of measles, since transport of infection between cities can
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reintroduce infection following a local stochastic extinction. The degree to which
spatial effects can enhance persistence of infection depends in an important way on
the synchrony of epidemics in different cities. If epidemics are synchronized, then
extinctions are likely to occur simultaneously across a region, eliminating the possi-
bility of reintroduction.

In this chapter, we review the literature on the transmission dynamics of measles,
highlighting how statistical analyses and mathematical models have been used to
address the questions posed above. We begin by describing the primary data sets that
have been used to study the long-term patterns of measles and discuss the role played
by the analysis of those data in the development of mathematical models for the
dynamics. We then return to our earlier questions to assess the role of mathematical
models in developing an understanding of the spatial dynamics of measles within
and among communities.

13.2 Data sources

Detailed records of the incidence of measles (i.e., the number of new cases per unit
time) are available for many countries, providing high quality temporal and, in many
cases, spatiotemporal data (Cliff et al., 1993). Since measles has long been a notifi-
able disease in many of these locations, incidence records often span a considerable
time period. Most studies of the spatiotemporal spread of measles have considered
one of three primary data sources: a) weekly reports of measles cases from cities and
villages in England and Wales, b) monthly or weekly reports of measles cases in the
United States, and c) monthly reports of measles cases from the island of Iceland.

The majority of studies aimed at exploring the long-term persistence of measles
within communities and the role of synchrony in regional patterns of incidence have
drawn on the England and Wales data. These data have been recorded in reports of
the Registrar General, including the Registrar General’s Weekly Return. Measles has
been a notifiable disease in England and Wales since 1889; data exist for each local
authority area from this time and also for selected urban areas from a few decades
earlier. These data record measles notifications during disease outbreaks at a fine
scale in both time (weekly reports) and space (from large cities, down through small
towns, villages and rural areas). Bartlett (1957) used these records to derive his initial
estimates of the critical community size needed to maintain measles in an endemic
state within a community. The collated national data were also used by Fine and
Clarkson (1982) to assess the importance of schools and other seasonal factors on
determining the periodicity observed in the incidence data. To facilitate examination
of the spatial distribution of measles epidemics in England and Wales, Haggett, Cliff
and co-workers collated and analyzed data from southwest England (Haggett, 1972;
Cliff et al., 1975, 1993; Cliff and Haggett, 1988), using a data set covering 222 weeks
(just over 4 years) and sampled at 179 spatial locations, although some of their analy-
ses focused on subsets of this data (such as 27 locations from the county of Cornwall
or 72 locations from the counties of Cornwall and Devon). Later, Grenfell and his
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group extended this data set across all of England and Wales, first to the largest cities
and then to the entire country, eventually obtaining weekly data for the 50 year period
between 1944 and 1994 at as many as 1400 spatial locations (Bolker and Grenfell,
1996; Rohani et al., 1999; Grenfell et al., 2001, 2002; Bjørnstad et al., 2002). This
extended data set has provided the basis for much of the recent modeling work on
the spatiotemporal spread of measles.

Long-term time series of measles incidence data are also available from the United
States and have been used occasionally in studies of persistence and synchrony of
measles outbreaks. Weekly reporting of measles incidence data began in the United
States in 1893, but these reports were patchily distributed until 1925, when all states
were required by the US Public Health Service to report their measles cases (Cliff et
al., 1992a). Since 1951, weekly reports of measles cases by state and territory have
been published in The Centers for Disease Control (CDC)’s Morbidity and Mortality
Weekly Report (MMWR). These data are collated at the state level and so, while the
data set covers a larger geographic extent and population base (several US states have
population sizes that are sizeable fractions of the entire population of England and
Wales), its spatial resolution is much more coarse than the UK data set. Aspects of
this data set, particularly with regard to synchrony, are described by Cliff, Haggett
and co-workers (Cliff et al., 1992a,b). Some city-level data is available for the US,
and was used by London and Yorke (London and Yorke, 1973; Yorke and London,
1973) to examine seasonal patterns in transmission.

The Iceland measles incidence data are notable in that they provide a highly detailed
record of epidemics as they ran their course throughout the island. These data are
recorded in Heilbrigðisskýrslur (Public Health in Iceland), and extend back to 1896.
This source, which has been extensively described and studied by Cliff, Haggett and
co-workers (Cliff et al., 1981, 1993; Cliff and Haggett, 1988), not only provides nu-
merical data on incidence but also includes written descriptions of the individual
epidemics that swept across the country. The level of detail in these accounts is im-
pressive, documenting many specific events that played a role in an outbreak. Cliff
and colleagues offer a particularly illustrative example. In 1907 a young girl from
Reykjavik visited a village that was experiencing cases of measles. The village was
isolated and, in order to limit transmission of the virus, visitors to the village (in-
cluding the young girl) were confined for two weeks to homes without other young
children. After her stay in such a house, the young girl returned home with isolation
certificate in hand and mingled with a crowd of people during the Danish King’s
visit to Reykjavik. It turned out that the girl had acquired a mild case of measles in
the village, which, predictably, triggered an epidemic in Reykjavik that then spread
rapidly within the city and, from there, to the rest of Iceland.

Because of the small size of its population, measles could not persist in Iceland; in-
stead, a succession of distinct epidemic waves was seen. The majority of measles
epidemics on the island began in Reykjavik, as it was the main point of contact to
other countries. The clear separation between the epidemic waves, together with the
level of detail provided by the Icelandic records, is sufficient to allow the construction
of maps that document the routes by which infection spread from community to com-
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munity, at least during the period up to the Second World War. Using the maps that
they constructed, Cliff, Haggett and co-workers (Cliff et al., 1981, 1993) showed that
measles exhibited two different patterns of spread on the island. From the capital, the
infection first spread hierarchically to the other main urban population centers, after
which the disease spread outwards from these locations by diffusion into their sur-
rounding areas. Since measles was not an endemic infection there, we shall not focus
our attention on Iceland, although, as we shall see, the repeated invasion waves and
extinctions have parallels with the behavior seen in some regions of larger countries
such as the UK.

One particularly interesting, and, from the viewpoint of our story, fortunate feature
of both the England and Wales and US data sets is that they span the introduction of
mass vaccination against measles. This ‘natural experiment’ (Grenfell and Harwood,
1997) represented a large perturbation to the epidemiological system: the transient
behavior that resulted is extremely informative dynamically and the accurate depic-
tion of pre- and post-vaccination dynamics using a single model presents a major
challenge. The data sets provide detailed information on the dynamics of the infec-
tion in both the pre- and post-vaccine eras.

Finally, very recent work has examined data from a quite different setting: the sub-
Saharan African country of Niger (Ferrari et al., 2008). The demographics of this
country differ considerably from those of the more commonly studied Western coun-
tries. In particular, the birth rate is much higher in Niger, and since, as we shall see
below, births are a major driver of measles outbreaks, this has significant implications
for the dynamics of the infection.

13.3 Local dynamics: Periodicity and endemic fadeout

Many of the important dynamical characteristics of measles are clearly visible in
incidence records (Figure 13.1). The two most striking features are the repeated oc-
currence of large outbreaks and the importance of population size on the dynamics.

Periodicities in the incidence of many infectious diseases have long been described
(Hamer, 1906; Soper, 1929). These early studies, including Hamer’s celebrated 1906
paper, identified that the depletion and replenishment of the pool of susceptible indi-
viduals is a key mechanism underlying the oscillations. An outbreak can only occur
when a relatively large number of susceptibles is present. As the outbreak takes place,
susceptibles become infected, so their number falls while the number of infectives
rises. Eventually, the number of susceptibles falls to a level where there are insuffi-
ciently many remaining to sustain the outbreak and so the number of infectives falls.
Over time, the susceptible pool is replenished by births and rises to a level at which
another outbreak can occur. The process repeats, leading to recurrent epidemics. In
this picture, the time between outbreaks is largely determined by the birth rate of
the population. In many cases, periodicities are clear from visual inspection of the
data, although more detailed understanding can be gained by the use of time series
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Figure 13.1 Measles incidence (cases per fortnight) for three British towns: Inner London
(approximate population size 3.2 million), Oldham (119,000), and Teignmouth (11,000).
(The UK measles data used in this figure and in Figure 13.2 were obtained from
http://www.zoology.ufl.edu/bolker/measdata.html.)

analyses, such as correlograms or Fourier spectra (Anderson et al., 1984), or, if the
time series is nonstationary, wavelet analysis (Grenfell et al., 2001).

Attempts to understand the origins of periodic behavior were one of the motivations
behind the development of mathematical models for the transmission dynamics of in-
fectious diseases (Hamer, 1906; Kermack and McKendrick, 1927, 1932, 1933; Soper,
1929). These models include the now familiar deterministic SIR model:

dS

dt
= μN − μS − βSI

N
(13.1)

dI

dt
=

βSI

N
− (μ+ γ)I (13.2)

dR

dt
= γI − μR. (13.3)

Here, each member of the population is assumed to be either susceptible to infection,
infectious, or recovered, with the numbers of each being written as S, I, and R.
The terms of the model describe the flows between these three compartments as
people are born or die, become infected or recover. In the form of the model given
here, the infection is assumed to be nonfatal and the population is taken to be in
demographic equilibrium, so that the per-capita birth and death rates are equal, with
their common value written as μ. The total population size, N , is therefore constant
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and since we have S + I + R = N , we need only track the numbers in two of the
three compartments. The recovery rate is taken to be constant, and is written as γ,
corresponding an average duration of infection of 1/γ. The transmission parameter,
β, is a compound parameter that describes the contact rate at which individuals meet
and the probability that infection would occur if one of them was infectious and the
other susceptible.

Although the simplest deterministic models do exhibit oscillatory behavior, they fail
to produce sustained oscillations. Provided that the infection is sufficiently transmis-
sible, its prevalence in such models settles into a steady state, approached via damped
oscillations (Bartlett, 1956). Interestingly, for parameter values that are appropriate
for measles, it is observed that the period of these damped oscillations is on the order
of two years, in agreement with the period seen in many incidence records.

The key ingredient required for the maintenance of oscillations in the determinis-
tic model framework is seasonality in transmission. Infections such as measles have
a low average age at infection: a large number of cases involve children of school
age. As a result, schools are an important transmission venue, with contact rates be-
tween children rising and falling between school terms and vacations. The resulting
seasonal variations in transmission were documented by London and Yorke (Lon-
don and Yorke, 1973; Yorke and London, 1973) by fitting simple deterministic SIR
models to monthly incidence data obtained for several childhood diseases from sev-
eral American cities. Later studies, including those of Fine and Clarkson (1982) and
Grenfell and co-workers (Finkenstädt and Grenfell, 2000; Bjørnstad et al., 2002),
provided a more detailed picture of this seasonal variation, either by examining more
frequently sampled data (weekly or fortnightly) or by using more sophisticated mod-
els and model-fitting procedures. Perhaps the best characterization of seasonality is
provided by Finkenstädt and Grenfell (2000), using the discrete time TSIR (Time-
series SIR) model to interpret weekly data from the pre-vaccine era in England and
Wales (see also Bjørnstad et al., 2002).

Seasonality is typically included in a model by allowing the contact rate to vary ac-
cording to some function that has a period of one year. Commonly used seasonal
terms vary in complexity from a sinusoidal function (Dietz, 1976) through to a de-
tailed weekly (or fortnightly) function that accurately depicts the opening and closing
of schools (Schenzle, 1984; Finkenstädt and Grenfell, 2000). Inclusion of season-
ality in SIR-type models leads to rich dynamical behavior. In an early systematic
exploration, Dietz (1976) showed that weak seasonality typically leads to annual os-
cillations in prevalence (and hence incidence) and that amplitude magnification is
observed, i.e., a relatively small fluctuation in the contact rate can give rise to much
larger oscillations in the prevalence of infection. This magnification results from a
resonance effect between the annual forcing and the natural period of the damped os-
cillation. Moderate levels of seasonality typically lead to biennial oscillations (Dietz,
1976). Beyond annual and biennial oscillations, seasonally forced SIR-type models
generate a diverse menagerie of more complex dynamical behaviors, including tri-
ennial and longer-period oscillations and deterministic chaos (Olsen and Schaffer,
1990). A correspondingly large literature documents this complexity, although the
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relevance of some of these behaviors to real-world measles outbreaks has been ques-
tioned on the grounds that their generation requires levels of seasonality that are far
higher than those seen in reality (Pool, 1989; but see also Ferrari et al., 2008).

The recurrent epidemic pattern is clearly impacted by the size of the population un-
der consideration. In large cities or countries, the repeated outbreaks generally occur
at regular intervals. For smaller cities or countries, however, the pattern is less reg-
ular and periods are seen when there are no cases. In both settings, the number of
infectives falls to low levels between outbreaks, but if the population size is large
enough then the infection can persist through these periods. In small populations
there is a chance that the chain of infection can be broken, leading to extinction
of the infection— endemic fadeout. The endemic fadeout phenomenon was charac-
terized by Bartlett in the late 1950s in terms of the critical community size (CCS)
(Bartlett, 1956, 1957, 1960). The CCS is the smallest size of an isolated population
that can maintain infection without endemic fadeout. For measles, Bartlett showed
that the CCS was on the order of two to three hundred thousand people.

Following fadeout in a given locale, further outbreaks can only occur there when
infection is reintroduced from elsewhere. If reimportation of infection is reasonably
frequent then outbreaks can be triggered as soon as the susceptible pool has been
sufficiently replenished. Less frequent importations mean that the wait for the next
outbreak can be longer, and so outbreaks occur irregularly. These two situations are
characterized as exhibiting type II and III epidemic waves, respectively, while the
fadeout-free recurrent epidemics of the largest population centers are known as type
I epidemic waves. In type I settings, the time between outbreaks is governed by the
rate at which births refill the susceptible pool, while in type II and III settings the
inter-outbreak time also depends on the rate at which infection is reintroduced by
contact with other populations.

Deterministic models are unable to reproduce either the population size-dependent
behavior or the fadeout effects seen in the incidence records. The latter deficiency
is a consequence of such models treating the numbers of infectives (and suscep-
tibles) as continuously varying quantities, allowing infection to persist even when
the number of infectives falls to a fraction (often a very small fraction) of a single
individual (Bolker and Grenfell, 1995). Bartlett addressed this deficiency by incorpo-
rating demographic stochasticity within the nonseasonal SIR framework, taking the
numbers of susceptibles, infectives, and recovereds to be integers and modeling the
discrete transitions that occur as individuals move between classes as probabilistic
processes (Bartlett, 1956). Such models can reproduce the fadeout effect and, for bi-
ologically realistic parameter values, give reasonable estimates of the observed CCS
for measles.

Typically, stochastic models include a term depicting immigration of infective indi-
viduals in order to reseed infection following a fadeout. Without this term, which can
be thought of as mimicking certain aspects of spatial structure, fadeout would lead
to permanent extinction of infection. Bartlett argued that the rate of immigration was
likely to scale linearly with population size and showed that this leads to the period of
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epidemics in populations exhibiting type II waves having the form a+b/
√
N , where

a and b are constants and N is the size of the population (Bartlett, 1956, 1957).

Bartlett’s nonseasonal stochastic model cannot, however, reproduce the dynamical
complexities seen in incidence time series: as discussed above, this requires the in-
clusion of seasonality. Seasonally forced stochastic models, though, predict critical
community sizes that are much greater than those seen in reality unless an infective
immigration term is included (Bolker and Grenfell, 1995). This result hints at the
importance of spatial structure for persistence of the infection.

13.4 Regional persistence and spatial synchrony

Persistence of measles at the regional level can be seen as a classic metapopula-
tion problem (Levins, 1969), the outcome of which depends on the balance between
the frequency of local extinctions due to fadeout, and the rate at which infection is
reintroduced from elsewhere to locales that have undergone fadeout. The potential
for reintroduction to counteract local fadeout depends on the degree to which the
incidence of infection is synchronized between different locales. If outbreaks—and
hence fadeouts—are highly synchronized then the infection will tend to undergo si-
multaneous (or nearly simultaneous) extinction in many locales. A high level of syn-
chrony between outbreaks, therefore, reduces the probability that reintroduction will
occur, reducing the persistence of the infection (Bolker and Grenfell, 1995; Ferguson
et al., 1997; Grenfell and Harwood, 1997; Keeling, 2000).

The importance of synchrony in understanding persistence of infection has led to
numerous studies examining the spatial synchrony of epidemics. These have pro-
vided both a description of the patterns seen in spatially resolved incidence records
and a fair understanding of the mechanisms that give rise to the observed synchrony
(Bartlett, 1956; Murray and Cliff, 1977; Cliff et al., 1992a,b; Bolker and Grenfell,
1996; Lloyd and May, 1996; Rohani et al., 1999; Keeling, 2000; Grenfell et al., 2001;
Keeling and Rohani, 2002).

Two distinct patterns of synchrony are seen, depending on the sizes of communi-
ties being observed. For a collection of cities (or other locales) that are each above
the critical community size, a high degree of synchrony is often seen between their
recurrent epidemics. On the other hand, for a collection of smaller-sized towns or
locales that surround a large population center, wave-like behavior is often seen as
infection spreads outwards from the large city into the surrounding region. This sec-
ond pattern exhibits lagged synchrony, with phase differences between outbreaks in
different locales. We shall discuss these two patterns separately.

13.5 Spatial synchrony among large population centers

Measles outbreaks in the United States, before mass vaccination largely curtailed
indigenous transmission, exhibited moderate to high levels of synchrony between
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states. Cliff, Haggett and co-workers (Cliff et al., 1992a,b) documented this coher-
ence by calculating the correlation between the incidence time series of different
states. The monthly incidence data from the period 1962 to 1988 was divided into
a number of overlapping portions using a sliding window that spanned 24 months.
For each time window, correlation coefficients were calculated between pairs of time
series aggregated at three different spatial scales (states, nine standard regions, each
made up of a number of states, and three divisions, obtained by amalgamating re-
gions). Two measures of coherence were employed. External coherence was used to
quantify the correlation between incidences at the same spatial scale (e.g., between
regions or between states). Internal coherence, on the other hand, was used to mea-
sure the extent of correlation within a given region (or division) by calculating the
average of the correlation coefficients between its constituent states (or regions). For
both measures, high levels of coherence were seen at all spatial scales for the early
part of the time series, corresponding to the period before the introduction of mass
vaccination. For a majority of states, the highest synchrony seen with another state
occurred with one of the immediate neighbors. Interestingly, coherence was seen to
fall as measles incidence declined in the wake of immunization (Cliff et al., 1992b).

Using weekly data from the seven largest cities in England and Wales (corresponding
fortnightly data are shown in Figure 13.2), Bolker and Grenfell (1996) examined the
degree of synchrony between outbreaks in these urban populations over the period
1948-1988. Using correlation coefficients calculated over 4, 10, or 20 year blocks, a
high degree of synchrony was noted between outbreaks in the pre-vaccine era, with,
again, the onset of mass vaccination leading to a decline in synchrony. The bottom
panel of Figure 13.2 shows the results of a simple version of Bolker and Grenfell’s
analysis: using overlapping six-year windows, the correlation between incidence in
each of the pairs of cities was calculated and, at each time point, the average was
taken over the 21 resulting correlation coefficients. Biennial dynamics are seen to
dominate between about 1953 and the mid sixties, with most of the cities having
large outbreaks in odd-numbered years. Correlation was high during this period, but
declined noticeably as mass vaccination was introduced. (The slightly lower syn-
chrony in the first few years of the period shown in the figure reflects the fact that
some cities were undergoing annual outbreaks, while others exhibited biennial pat-
terns.)

Data were also available at the sub-city (borough) level for London, with borough-
level data exhibiting high levels of synchrony. Curiously, a preliminary investigation
at this spatial scale by Bolker and Grenfell found that vaccination did not lead to a
fall in synchrony (Bolker and Grenfell, 1996). Another analysis, however, suggested
that such a fall can be observed if the boroughs’ boundary changes are accounted for
(Ferguson et al., 1997).

A more detailed analysis at the city level was provided by Rohani et al. (1999), using
a data set covering 60 British cities. Even though many of these cities fall below the
CCS, the picture of declining synchrony with the onset of vaccination was confirmed.
(A particularly interesting observation of this study, although not of direct relevance
to us here, was that vaccination need not lead to a decrease in synchrony for all
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childhood diseases: the dynamics of whooping cough were seen to become more
synchronized over time.)
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Figure 13.2 Synchrony between measles outbreaks in seven large cities of England and Wales.
Upper seven panels show the fortnightly numbers of cases seen in each city over the period
1948-1988, plotted on logarithmic scales. (For London, the scale runs from 20 to 20,000 cases
per fortnight, for Birmingham from 5 to 5,000, and for the remaining five graphs the scale
runs from 5 to 2,000 cases per fortnight.) The lower panel depicts the mean cross correlation
between incidence in the seven cities, calculated using a six-year sliding window and with
all incidences first transformed as log10(cases + 1). The vertical dashed line denotes the
approximate date at which mass vaccination was started in the United Kingdom. Notice that
the log scale de-emphasizes the decline in incidence seen in the wake of mass immunization.

Much of the work on the synchrony of outbreaks between large population centers
has echoes of classical ecological studies of the spatiotemporal dynamics of oscil-
latory populations. Perhaps the best known example concerns the abundance of the
Canadian lynx (Lynx canadensis), described by the records of the fur catches of the
Hudson’s Bay Company. Elton and Nicholson (1942) described a ten year oscillation
in the abundance of the lynx and the surprising degree of synchrony seen in this os-
cillation across a wide area. To quote Elton and Nicholson: “The most extraordinary
feature of this cycle is that it operates sufficiently in line over several million square
miles of country not to get seriously out of phase in any part of it.” They further note
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“the remarkable degree of coherence in the cycle in regions thousands of miles apart”
(Elton and Nicholson, 1942, pg. 239).

Several mechanisms for synchronizing population cycles have been suggested, but
the two that are of most relevance to the epidemiological setting are the Moran ef-
fect (Moran, 1953) and dispersal of individuals. Moran (1953), in an attempt to un-
derstand the synchronous population cycles of the Canadian lynx, suggested that
extrinsic factors, such as meterological or other climatic factors, could synchronize
populations in two locations if they shared common local dynamics and the extrinsic
factors were correlated between the locations. Specifically, Moran considered two
populations whose dynamics were governed by the same linear model and were both
subject to random perturbations. The correlation between the resulting population
time series was shown to equal the correlation between the time series of the random
perturbations. As admitted by Moran, the analysis is much more difficult to carry
out in nonlinear settings, but synchronization due to the Moran effect is still seen
to occur both in theoretical (Ranta et al., 1995, 1997; Haydon and Steen, 1997) and
real-world (Grenfell et al., 1998) settings.

Dispersal of individuals between locations can also lead to synchrony between the
dynamics in the different locations (Levin, 1974; Hastings, 1993; Ranta et al., 1995,
1997; Haydon and Steen, 1997). Short range dispersal leads to more closely located
populations being more highly synchronized than distantly located populations: syn-
chrony tends to decrease with increasing distance (Ranta et al., 1995).

In the epidemiological setting, seasonality provides a global synchronizing mech-
anism that is somewhat analogous to the Moran effect: the simultaneous opening
of schools in different regions causes outbreaks to start at similar times (provided
that infection is present in each region in the first place). The effect of seasonality,
however, is not quite so straightforward: because this forcing often leads to cyclic
behavior with period two (or more) years, two regions can undergo oscillations in
which their large outbreaks occur in different years. Seasonality can then hinder syn-
chronization as the outbreaks in the different regions are forced to occur at particular
times of the year, making it difficult for the phase difference to be reduced. In this
way, seasonal forcing can lead to stable out of phase behavior. Examples of out-of-
phase oscillations being maintained in nearby locations have been documented, such
as the British cities of Cambridge and Norwich, which, as discussed by Grenfell et
al. (2001), remained out of phase for a 16 year period of their data set.

Dispersal of individuals underlies epidemiological coupling between regions, al-
though, for people at least, this movement more often takes the form of short-term
visits than permanent migration. Attempts to understand the impact of epidemiologi-
cal coupling on synchrony have often employed simple multi-patch (e.g., multi-city)
extensions of the basic SIR model, such as

Ṡi = μNi − μSi − Si

n∑
j=1

βijIj
Ni

(13.4)
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İi = Si

n∑
j=1

βijIj
Ni
− (μ+ γ)Ii . (13.5)

Here, Si denotes the number of susceptible individuals in patch i, Ij the number of
infectious individuals in patch j, and Ni the total size of the population in patch i.
The βij are the transmission parameters for within and between patch transmission.

Movement between patches is not explicitly modeled by these equations: individuals
remain in their home patch. Instead, movement is modeled implicitly, with the force
of infection experienced by susceptibles in a given patch being depicted as a weighted
sum of the levels of infection in each patch. An alternative to this cross-coupled
model formulation does model migration explicitly, using equations that are of the
form

Ṡi = μNi − μSi − βiSiIi
Ni

+
n∑

j=1

ΩS
ijSj (13.6)

İi =
βiSiIi
Ni

Si − (μ+ γ)Ii +
n∑

j=1

ΩI
ijIj . (13.7)

Here, transmission only occurs within a patch, described by the transmission pa-
rameters βi, and the per-capita rates of movement of susceptibles and infectives
from patch j to patch i are given by ΩS

ij and ΩI
ij . An extension of this migration

formulation separately tracks permanent and temporary residents of a patch (Satten-
spiel, 1988; Sattenspiel and Dietz, 1995; Keeling and Rohani, 2002). It turns out that,
at least in terms of some qualitative properties, these different formulations exhibit
fairly similar behaviors (Ball, 1991; Keeling and Rohani, 2002; Lloyd and Jansen,
2004).

The description of contact or movement between different locations potentially leads
to an explosion in the number of model parameters because of the n2 entries that
make up either βij or Ωij . Clearly, it would be a difficult task to estimate all of
these from epidemiological data alone, particularly since within-patch contacts are
likely much more frequent than between-patch contacts. One technique that has been
employed is to estimate these quantities from transportation data, such as train or
plane passenger movement data (Baroyan and Rvachev, 1967; Rvachev and Longini,
1985). An alternative approach curbs the number of parameters by employing a func-
tion that relates the contact between inhabitants of pairs of locations to the population
sizes of the locations and the distance between them. These so-called gravity mod-
els originated in the geography and sociology literatures (see, for example, Stewart,
1948), and were first employed in an epidemiological setting by Murray and Cliff
(1977) in a multi-patch model for the spread of measles in the British city of Bristol.
Xia et al. (2004) employed a generalized gravity model that assumes susceptibles in
location k experience an additional force of infection due to infectives in location
j equal to θN τ1

k Iτ2
j /dρ

jk . Here djk denotes the distance between the two locations,
Nk is the size of the population at location k, and Ij is the number of infectives
at location j. Their gravity model adds just four parameters, θ, τ1, τ2, and ρ, the
last of which measures the rapidity with which contact between locations declines
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with increasing separation. Even so, estimation of all four of these parameters may
not be straightforward (Xia et al., 2004), although estimates were obtained using the
pre-vaccine era England and Wales data set.

Theoretical studies often employ a highly simplified description of coupling, as-
suming, for instance, that movement only occurs between neighboring patches or
that all between-patch transmission parameters take the same value, usually written
as some multiple of the within-patch transmission parameter (Bolker and Grenfell,
1995; Lloyd and May, 1996).

Deterministic spatial models typically exhibit the threshold behavior that is familiar
from the simplest SIR models: when the basic reproductive number is greater than
one, the numbers of infectives in each patch approach an endemic equilibrium (see,
for example, Arino and van den Driessche, 2003), typically via damped oscillations.
While the spatial model is sufficiently complicated that a general analysis of the
dynamics of this behavior is impossible, progress can be made in a number of spe-
cial cases, such as when there is symmetric coupling between equally-sized identical
patches (Bartlett, 1956; Lloyd and May, 1996; Lloyd and Jansen, 2004). The system,
either under cross-coupling or migration, can be linearized about its endemic equilib-
rium and the approach towards this equilibrium can be decomposed into an in-phase
mode and a number of out-of-phase modes. The analysis provides the decay rates of
each of these modes and it is found that the typical behavior is for the out-of-phase
modes to decay much more rapidly than the in-phase mode. Consequently, following
a short transient, the system approaches its endemic equilibrium via synchronized
damped oscillations.

This analysis of the synchronizing effect of epidemiological coupling is based on
a noise-free deterministic system. Stochasticity, if uncorrelated between patches, as
demographic stochasticity would be, will tend to desynchronize patches. The syn-
chronizing effect of epidemiological coupling, however, can be strong enough to
overcome the impact of noise: synchrony can still be observed in stochastic versions
of the spatial model (Lloyd and May, 1996). Synchrony between two patches can be
assessed by examining the correlation between the numbers of infectives seen in the
two patches at different times. In the case of a two-patch stochastic model, Keeling
and Rohani (2002) used moment equations to calculate the correlation coefficient, ρ,
between the numbers of infectives in the two patches in terms of the strength of cou-
pling between patches, denoted by ε. Their relationship takes the form ρ = ε/(ξ+ε),
where the quantity ξ depends on various epidemiological parameters. The impor-
tant point to take from this relationship is the fact that synchrony (correlation) and
coupling strength are positively related.

These model-based analyses of synchrony, however, have limited applicability. For
instance, both the deterministic analysis and the moment equation-based analysis
predict that synchrony should increase with the onset of mass-vaccination (Lloyd
and May, 1996; Root and Lloyd, 2008), making exactly the opposite prediction to
what was seen in reality for measles. This failing results from these analyses being
based on behavior near the endemic equilibrium of nonseasonal models. Analytic ap-
proaches have yet to be extended to seasonal models, but several numerical studies
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(Lloyd, 1996; Rohani et al., 1999) have documented a complex interplay between the
intrinsic damped oscillatory predator-prey dynamics of measles and the demographic
stochasticity and seasonality that act upon the system. Seasonally forced stochastic
models can reproduce the decline in synchrony seen with vaccination (Bolker and
Grenfell, 1996; Lloyd, 1996; Lloyd and May, 1996; Rohani et al., 1999). Another
weakness of the above analyses is that they do not take account of the fadeout ef-
fect: their applicability is limited to population centers that are sufficiently large to
maintain infection without fadeout.

Despite their weaknesses, the above analyses demonstrate the strong synchronizing
effect of spatial coupling. This effect, however, leads to spatial coupling having two
conflicting effects on persistence in a collection of populations that are close to the
CCS. If spatial coupling is low, it will be unlikely for infection to be reintroduced
into a locale in which a fadeout has previously occurred. If it had no other effect on
the system, the probability of reintroduction would increase with increasing spatial
coupling. But stronger spatial coupling also increases the likelihood that outbreaks
are synchronized in different regions and hence increases the chance of simultane-
ous fadeout, in which case reintroduction cannot occur (Bolker and Grenfell, 1995;
Ferguson et al., 1997). Consequently, persistence is greatest at intermediate levels of
spatial coupling (Keeling, 2000).

13.6 Moving beyond simple synchrony: Reinvasion waves and phase
relationships

For towns that are below the critical community size, dynamics will be dominated
by extinction and reinvasion of infection. Consequently, in a region consisting of
such populations, the dynamics will share some similarities with invasions in more
general ecological contexts (Skellam, 1951; Elton, 1958; Shigesada and Kawasaki,
1997). Ecological invasion theory predicts the occurrence of wave-like behavior, with
infection spreading outwards from the location of reintroduction. In the epidemiolog-
ical context, this spread occurs across a heterogeneous enviroment made up of rural
locales and towns of different sizes, and for which “epidemiological distance” need
not correspond to geographical distance, given that movement of people between lo-
cations depends not just on physical separation but also on social structures (see, for
example, section 13.3 of Cliff et al., 1993). Together with the randomness that arises
from the small numbers of infectives during the invasion process, heterogeneity will
lead to a spatial pattern that is more complex than a simple wave, although signatures
of wave-like behavior will still be present.

Using a variety of approaches, Cliff, Haggett and co-workers explored the dynam-
ics of measles outbreaks in the South-West of England, primarily in the counties
of Cornwall and Devon (Haggett, 1972; Cliff et al., 1975, 1993; Cliff and Haggett,
1988). Calculation of cross-correlation functions between pairs of time series from
the 72 locales and between the time series of locales and the incidence aggregated
over the entire region showed lagged relationships: rather than being in perfect syn-
chrony, some towns’ incidences peaked before the peak in average incidence, while
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some towns lagged behind. Maps depicting phase relationships (lead, in-phase, lag,
or uncertain) were suggestive of spatial clustering and interpreted as being indicative
of spread outwards from several sources (Cliff et al., 1975).

A closer investigation of this behavior represented the region by a graph of nodes
and edges, in which nodes depicted locales and nodes were joined by an edge if the
corresponding locales were physically adjacent to each other. The spatial lag between
two locales, defined as the minimum number of edges that have to be traversed in
order to travel between the corresponding nodes on the graph (a quantity known in
graph theory as the distance between the nodes), roughly corresponds to geographical
distance. The correlation between time series at different locales was found to first
decline with spatial lag but then increase for larger lags (Cliff et al., 1975). The initial
decrease is as expected, indicating lower contact between more separated regions.
The later increase coincided with the spatial lag approaching the average separation
between locales and the two major regional cities of Bristol (population 500,000)
and Plymouth (population 250,000), in which measles remained persistent over the
entire four year observation period.

A more qualitative analysis mapped out locales in which there was either a new
outbreak, an ongoing outbreak, a recent fadeout, or no cases. The majority of new
outbreaks were found to occur in areas that were adjacent to existing outbreaks, with
new outbreaks being less frequently found at increasing spatial lags (less than 5%
were found at 3 steps away, and none were found at 4 or more steps away from
an existing outbreak). Cliff et al. (1975) concluded that the observed patterns were
consistent with a hierarchical spread, with initial outbreaks occurring in the larger
urban centers, followed by outward spread from these into the surrounding towns,
villages, and rural areas.

The statistical power of Cliff and Haggett’s studies was limited by the relatively short
length of their time series: their four-year observation window covered just two ma-
jor measles outbreaks. Grenfell and co-workers’ longer time series (Grenfell et al.,
2001) gave them more statistical power, but required an analysis that can cope with
temporal changes in the dynamics of incidence, i.e., nonstationarity of the time se-
ries. Traditional linear techniques, such as autocorrelation or Fourier spectra, assume
stationarity of time series. Measles dynamics, however, exhibit significant dynamical
changes over time, such as changes in the oscillation period in response to variations
in birth rate or level of vaccination (Earn et al., 2000). In such situations, wavelet
analysis (Torrence and Compo, 1998; Grenfell et al., 2001) provides a useful tool. In
common with Fourier analysis, wavelet analysis is a decomposition approach, but,
instead of representing the data in terms of a collection of sine and cosine functions,
it uses basis functions that are localized in time (and frequency). Using this approach
on the 1944-94 measles incidence series for London, Grenfell et al. (2001) clearly
demonstrated the mix of annual and biennial behavior seen in the immediate after-
math of World War II, which gave way to a dominant biennial behavior, and then, in
the wake of mass vaccination, a lengthening of the oscillation period and a reduction
of its amplitude.

Application of the wavelet approach allows the time series at each spatial location to
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be decomposed into a number of components (such as a two-yearly component that
would correspond to the typical dominant biennial pattern) and provides the phases
(phase angles) of these various components at each time point (Grenfell et al., 2001).
Comparison of the phases at different locations gives insight into the way in which
outbreaks spread across a region. Outbreaks in small towns and rural areas are seen to
lag behind those in large cities, and phase differences are seen to generally increase
with increasing distance from the city (Grenfell et al., 2001). For example, Grenfell
et al. describe a well-defined wave that spreads outwards from London at a speed
of around 5 km per week, with similar (also slightly less well defined) waves seen
around the other major cities. Calculation of the correlation between phase angles
at various locales in terms of their separation gives insight into the spatial extent
of the waves spreading outwards from major population centers. The overall spatial
coherence was seen to decrease with the onset of mass vaccination, in agreement with
the earlier analyses of spatial synchrony, but the wavelet analysis gives the additional
insight that the extent of the spatial waves also decreased with this change.

The wavelet analysis of the more complete data set provides a similar, but more
definitive, description of epidemic spread to that obtained from the smaller set of
data from the South-West of England: a hierarchical pattern of spread, with trans-
mission between the large cities and then outwards into the small towns and rural
areas that surround these cities (Grenfell et al., 2001). This pattern is very similar to
the one described for the repeated invasion waves seen in Iceland (Cliff et al., 1981).
Mechanistic models can reproduce this pattern of hierarchical spread (Grenfell et al.,
2001; Xia et al., 2004), and emphasize the ingredients necessary for its generation, in
particular its dependence on heterogeneity in the sizes of population centers and the
occurrence of fadeouts in smaller-sized communities. Outbreaks in large cities, i.e.,
those above the CCS, will tend to have a high degree of synchrony with each other,
while wave-like behavior will be seen in surrounding regions as a result of repeated
cycles of introduction, epidemic, and fadeout.

13.7 Discussion

One of the major challenges for the development of spatial models is providing an
appropriate description of movement or contact. As discussed above, this raises is-
sues of parameterization that have been addressed in a number of ways, including
the use of transportation data and gravity models. Several new approaches offer ad-
ditional insight into human movement, including the analysis of data on commuting
patterns (Riley and Ferguson, 2006; Viboud et al., 2006) and tracking individuals us-
ing cellphones, GPS devices, or even banknotes (Brockmann et al., 2006; González
et al., 2008). An important issue that has to be addressed before such data can inform
epidemic models is that one must not only know how many people are traveling and
the locations between which they are traveling, but also who those people are. In the
case of measles, most transmission occurs amongst children so it is more important
to know about their movement patterns than those of adults. But for other nonchild-
hood diseases, spatial coupling may be more strongly determined by the movement
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of adults. As a result, the movement pattern that influences transmission, i.e., the one
that should be incorporated into a model, could be quite different from one disease
to another (Viboud et al., 2006).

The development of mathematical models for the transmission dynamics of measles,
and the understanding and insights that these have provided into the epidemiological
processes at work, has been driven by the availability of remarkably detailed data
sets, both in terms of their spatial and temporal resolution and because of the long
time period (i.e., the number of epidemic cycles) that they document. Confrontation
of their models with the data has forced modelers to progress from simple determin-
istic models through to complex spatially-structured, seasonally forced stochastic
models, with the incorporation of additional complexities whenever the data have
highlighted the inadequacies of simpler descriptions. Clearly, this would not have
been possible without data collected at appropriate temporal and spatial scales: much
information, for instance, is hidden by spatial aggregation, with dynamical complex-
ities visible at small (e.g., city-level) scales being masked by averaging effects when
examined at larger (e.g., country-level) scales (Sugihara et al., 1990; Ferrari et al.,
2008). As a result, most work has focused on Iceland and England and Wales, pro-
viding a good understanding of the dynamics in these two locations. In contrast, the
United States has received relatively little attention, presumably in part due to the
most readily-available data being spatially-coarse state-level data.

Our discussion here has focused entirely on the dynamics seen in a few Western
countries, and since we have seen that behavior depends in an important way on both
the demographic and social structure of a population, the dynamics and patterns of
spatial spread might be quite different elsewhere. Recent work (Ferrari et al., 2008)
has examined the spatial spread of measles in Niger, a sub-Saharan African country
that has a much higher birth rate than Western countries, with particular attention
on its capital, Niamey. Apart from the higher birth rate, which, by itself would tend
to promote an annual outbreak pattern (McLean and Anderson, 1988), the epidemio-
logical system is subject to a much higher level of seasonality than is seen in England
and Wales. This seasonality, which is thought to arise from migration from rural to
urban areas with the start of the dry season, is strong enough to drive chaotic dy-
namics in deterministic epidemic models (Olsen and Schaffer, 1990). The strongly
forced dynamics lead to a much higher critical community size: model simulation
suggests fadeouts would be common even for a population size of five million—
much larger than Niamey’s 750,000 inhabitants (Ferrari et al., 2008)—and indeed,
fadeouts are frequently seen, typically as the rainy season starts. As a result, the in-
cidence records show an erratic outbreak pattern, with large outbreaks, inevitably
followed by stochastic fadeout, with a gap of several years before the next outbreak:
even with the very high birth rate, the large outbreaks mean that replenishment of
the susceptible pool takes a few years. At the national level, measles persists as a
result of weak coupling between different regions (both within and outside the coun-
try) that exhibit asynchronous outbreaks. Aggregated at this national scale, measles
incidence exhibits annual behavior, but this is somewhat misleading in terms of the
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underlying transmission dynamics because this pattern results from averaging the
(asynchronous) outbreaks seen in different locales (Ferrari et al., 2008).

As several authors have eloquently written (e.g., Grenfell and Harwood, 1997), the
main themes that emerge from the exploration of the transmission dynamics of mea-
sles are familiar ecological ones. Attempts to gain an ever more detailed understand-
ing of this epidemiological system has led its modelers to address the mechanisms
that give rise to population cycles, persistence of a population in the face of de-
mographic stochasticity, the complex dynamics that result from seasonal forcing of
populations, the dynamical intricacies that result from the interplay between stochas-
ticity and highly nonlinear systems, metapopulation dynamics and its impact on per-
sistence, spatial synchrony of cycling populations, and invasion (and reinvasion) dy-
namics. As a result of the ecological importance attached to these issues, and par-
ticularly in light of the existence of spatiotemporal data at a level of detail that few
ecological data sets can rival, it is hardly surprising that ecologists have shown con-
siderable interest in this system. Major contributions to our understanding have been
made by geographers, again drawn to the system by the availability of detailed spatial
information. Beyond this, the rich dynamics seen in measles outbreaks have attracted
much attention from statisticians, mathematicians, and physicists from a nonlinear
dynamics viewpoint. Although much of the recent work has been undertaken out-
side the field, perhaps partly because the development and widespread deployment
of measles vaccines have reduced the public health significance of the disease in de-
veloped countries (although measles is still a highly signficant disease in many other
parts of the world), the importance of the early contributions made by pioneers in the
field of epidemiology should not be underestimated or forgotten.

The natural history of measles infection is simple at the individual level, having none
of the complexities that arise with the multiple strain structure of infections such
as influenza or malaria, and having the simple picture of permanent immunity upon
infection. At first sight, at least, measles should be one of the most straightforward
infections to describe from a modeler’s viewpoint. As we have seen, a number of
factors conspire to make the modeler’s task anything but straightforward. While the
simplicity of the natural history of measles has facilitated the elucidation of its epi-
demiology (Cliff et al., 1981), the richness and complexity of this epidemiological
system remains truly surprising.
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CHAPTER 14

Rules of thumb for the control of
vector-borne diseases in a spatial

environment

Matthew D. Potts
University of California at Berkeley

Tristan Kimbrell
Temple University

Abstract. While recent infectious disease modeling efforts have started to explore the im-
pact of spatiotemporal heterogeneity on disease dynamics, few models have been devel-
oped to investigate the implications of spatial heterogeneity on the optimality of different
disease control strategies. In this chapter, we take a first step towards exploring under what
situations spatially targeted vector control strategies are superior to aspatial strategies. In-
spired by the dengue fever disease system, we develop a patch model constructed with a
series of coupled ordinary differential equations to study the spatiotemporal time course
of a dengue fever epidemic and the impact of different control strategies. We focus on two
different movement patterns of hosts and vectors. In what we term the unlimited movement
case, we assume that the vast majority of hosts and vectors are not constrained by distance
and randomly move to a different patch during each time step. In the second case, which
we term the limited movement case, we assume that only a very small percentage of hosts
and vectors move to a neighboring patch during each time step. We compare three different
rule of thumb control strategies: constant, spot, and ring control and investigate the impact
of a time lag between the onset of an epidemic and the implementation of control efforts.
We find that for the unlimited movement case, constant control is always optimal in terms
of preventing the greatest number of hosts from becoming infected, while for the limited
movement case we find that the time when control efforts begin relative to the onset of the
epidemic is the key determinant of the optimality of different control strategies. For the
limited movement case, when control efforts start immediately constant control is best, but
when there is a time lag the spatially targeted spot or ring control is better. Taken as a whole
our results suggest that the degree of spatial heterogeneity among infected hosts at the time
control is implemented is a key factor determining which control strategy is optimal. When
the distribution of infected hosts is spatially homogenous constant control is best. When the
distribution of infected hosts is spatially heterogeneous a spatially targeted control strategy
is best. We discuss the policy implications of our results for the implementation of control
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efforts in a real world setting and the greater need for more spatially explicit data on vector
borne disease incidence and dynamics.

14.1 Introduction

While epidemiology has a long history of using mathematical models to study infec-
tious diseases (Ross 1911, MacDonald 1957) and mathematical models have been
instrumental in identifying the concept of epidemic thresholds, understanding the
population dynamics of vector and host species, and designing control strategies, it
is only relatively recently that mathematical models of infectious diseases have in-
corporated aspects of spatial heterogeneity to explore the role of space in disease
dynamics and control.

Empirical studies of various disease systems have consistently demonstrated that real
world populations are not spatially homogenous (Lajmanovich and York 1976, Dietz
1988, Sattenspiel and Dietz 1995, Galvani and May 2005). Heterogeneity may exist
in the spatial distribution of vectors (Getis et al. 2003) and their dispersal patterns
(Russell et al. 2005), in the probability of being bitten by an infected vector (Kelly
and Thompson 2000), or in the infectiousness of hosts due to genetic or behavioral
factors (Woolhouse et al. 1997, Lloyd-Smith et al. 2005).

Recent mathematical models of infectious disease have incorporated spatial hetero-
geneity using a number of different approaches including metapopulation models
(e.g., Rodríguez and Torres-Sorando 2001, Dobson 2003, Luz et al. 2003, Lloyd and
Jansen 2004, Favier 2005), network models (e.g., Newman 2003, Verdasca et al.
2005), and diffusion models (e.g., Raffy and Tran 2005, Tran and Raffy 2006).

These new spatial infectious disease models illustrate the multitude of ways different
aspects of spatial heterogeneity affect disease dynamics. A few examples include:
Gudelj and White’s (2004) work on behavioral effects which shows that if a disease
causes infected individuals to behave differently in how they move through space
than noninfected individuals, then the behaviors may have large impacts on the abil-
ity of a disease to spread, and on the resulting spatial distribution of the popula-
tion; the Favier et al. (2005) study on the effect that host and vector patch structure
have on dengue disease dynamics, which demonstrates that by including heteroge-
neous patch structure the model more closely approximates real dengue epidemics in
Easter Island, Belém, and Brasília; and Bjornstad and Grenfell’s (2008) study on the
spatiotemporal time course of measles epidemics in the United Kingdom which il-
lustrates that the waiting time between epidemics is strongly determined by regional
prevalence, spatial coupling, and the density of local susceptibles.

However, a gap in this growing modeling literature is the impact of spatial hetero-
geneity on the design of control efforts. While a few papers exist (Fulford et al. 2002,
Gaff and Gross 2007, Asano et al. 2008), there has yet to be a systematic exploration
of the influence of spatial heterogeneity on the design of efficient and effective con-
trol strategies. The need to understand how spatial heterogeneity may affect existing
control efforts and inform on the design of new control efforts is especially acute
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for vector-borne infectious diseases in which both the host and disease vector of-
ten move. For many of these diseases no effective vaccine exists. The need for new
control efforts is especially great for the dengue fever disease system.

Dengue is a viral disease that causes more illness and death than any other arbovirus
and is endemic in more than 100 countries. Worldwide, there are approximately
2.500 billion people at risk of infection, and the World Health Organization (WHO)
estimates that there are about 50-100 million cases per year (WHO 2002, PAHO
2002). Aedes aegypti is the main vector. It is a mosquito that lives in close associa-
tion with humans in urban and sub-urban environments, ingesting preferably human
blood and breeding in artificial containers (Gubler 1998, Service 1992). Dengue is
generally considered a disease of urban areas and its epidemiology is highly related
to the biology of the mosquito vector and human behavior, as well as the environment
and the virus itself.

The incidence of dengue has increased significantly over the past 25 years (Gubler
2005), and it has been classified as an “emerging or uncontrolled disease” (TDR
2005). In the Americas, strong control campaigns eliminated Ae. aegypti from most
of Central and South America during the 1950s, but discontinuation of the program
led to re-infestation during the 1970s and 1980s and re-emergence of dengue (Gubler
1998). Globalization, population growth, and uncontrolled or unplanned urbanization
have all been major factors influencing the current pandemic (Kuno 1995). These
demographic and social changes, as well as a lack of effective mosquito control,
have facilitated the spread and permanence of Ae. aegypti and dengue virus in many
areas of the world (Gubler 1998).

Since there is no effective vaccine for dengue, vector control is the main approach for
control and prevention. Although insecticide spraying has been used extensively, lar-
val source reduction (eliminating or cleaning water-filled containers that can harbor
Ae. aegypti larvae) is considered the most effective way of reducing and control-
ling the mosquito populations (Gubler 1998). These vertical control methods have
had poor sustainability, as have community-based approaches with extensive health
education and community outreach. Few places have achieved and documented suc-
cessful source reduction efforts (Focks et al. 2000), and the increasing spread and
incidence of dengue suggests that the current measures employed are generally in-
effective, inappropriate, or are being applied incorrectly (WHO/TDR 2002, Ooi et al.
2006).

Given the failure of existing control efforts and the realization that spatial hetero-
geneity significantly influences diseases dynamics, there is a pressing need to de-
velop infectious disease models that explore how different spatial control strategies
perform in preventing outbreaks of vector-borne diseases. In this chapter, we take a
first step towards understanding how spatial heterogeneity affects the design of dis-
ease control strategies for the prevention and mitigation of epidemic outbreaks of
vector-borne disease in a spatial context.

Specifically, we numerically explore how the relative rates of movement of hosts
and vectors influences the relative effectiveness of different spatially explicit vector-

© 2010 by Taylor and Francis Group, LLC



276 CONTROL OF VECTOR-BORNE DISEASES

control strategies on a 10× 10 grid of patches. The patch network may be imagined
to be small villages in a rural setting or city blocks in an urban setting. To highlight
the importance of spatial heterogeneity we focus on two extreme cases of host and
vector movement: i) hosts and vectors are not movement limited and 75% of them
move to another patch in each time step; and ii) host and vectors are highly movement
limited with only 1% of hosts and vectors moving to a nearest neighbor patch in each
time step. From hereafter i) is referred to as the unlimited movement case and ii) is
referred to as the limited movement case.

To be as socially realistic as possible, we focus on rule-of-thumb control strategies
because such strategies are most likely to be implemented by agencies tasked with
disease control. The three strategies we explore are: a) constant, where the same
control effort is applied in all patches, b) spot, where all control efforts are applied
in the patch with the most infected hosts; and c) ring, where control is applied in the
focal patch with the highest number of infected hosts as well as in the surrounding
patches. We assume that the difference in cost in implementing the different control
strategies is negligible. In addition, we explore how failing to immediately recognize
a disease outbreak or a delay in implementing control strategies affects which rule-
of-thumb control strategy is optimal.

For all control types the same total amount of control is used over the course of the
whole epidemic. We judge the control method that produces the fewest number of
total infected hosts over the course of the whole epidemic to be the best.

We use parameters taken from studies of dengue fever to parameterize our model.
Dengue fever has been reported in the medical literature since 1779 (Rigau-Pérez et
al. 1998), and many of the most important parameters thought to affect the dynamics
of the disease have been empirically determined.

The layout of the rest of the chapter is as follows. In Section 14.2, we describe our
coupled ordinary differential equation model in detail and give the model parameters.
The effectiveness of different rule of thumb control strategies is presented in Section
14.3 and discussed in Section 14.4. The chapter concludes with Section 14.5 which
suggests some areas of further research.

14.2 Model specification

To model the dynamics of the infectious disease we started with the classic SI or-
dinary differential equation framework for the vectors and SEIR ordinary differen-
tial equation framework for the hosts. However, since we are modeling disease dy-
namics on a network of interconnected patches, we modified the mean-field SEIR
model so that both vectors and hosts may move between patches. Dengue fever has
four serotypes that can infect humans; in this chapter we assume that only a single
serotype is present in the system.

For anN ×N network of patches six coupled ordinary differential equations specify
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disease dynamics in each patch at time t. For an arbitrary patch i, j the equations are
as follows:

dVS(i, j)

dt
= μ

N∑
k,l=1

MVI
VI(k, l)−

N∑
k,l=1

MVS
VS(k, l)

[
c(i, j)

+

qb

N∑
k,l=1

MHI
HI(k, l)

N∑
k,l=1

MHS
HS(k, l) +

N∑
k,l=1

MHE
HE(k, l) +

N∑
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(14.1)

In the equations above, VS(i, j) is the number of susceptible vectors in patch i, j,
VI(i, j) is the number of infected vectors, HS(i, j) is the number of susceptible
hosts, HE(i, j) is the number of exposed hosts who are not yet infectious, HI(i, j)
is the number of infectious hosts, andHR(i, j) is the number of recovered hosts. The
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parameter μ is the natural daily mortality rate of the vector, b is the bite rate of the
vector per day, q is the probability of a vector becoming infected after feeding on
an infected host, w is the probability of a susceptible host becoming infected after
being bitten by an infected vector, 1/ρ is the number of days the virus is latent in the
exposed host, and 1/θ is the number of days the host is infectious.

Each state variable has its own associated movement matrix. For example, the matrix
MVS

is the movement matrix for susceptible vectors. The rate of vectors and hosts
moving from a focal patch to other patches in the system was held constant during a
model run.

We explored two extreme cases of host and vector movement: i) hosts and vectors
are not movement limited and 75% of them move to another patch in each time step
(unlimited movement); and ii) host and vectors are highly movement limited with
only 1% of hosts and vectors moving to a nearest neighbor patch in each time step
(limited movement). For all state variables for arbitrary patches k, l for i)Mkl = 0.25
for k = l and Mkl = .75/(N2 − 1) for k �= l and for ii) Mkl = 0.99 for k = l;
Mkl = .0025 for k �= l and ‖k − l‖ = 1, Mkl = 0 otherwise. In addition for case ii)
we assumed that the boundaries were reflecting.

The variable c(i, j) is the amount of control applied in patch i, j. When c(i, j) = 0
in all patches, we assume that the total vector population is constant, that vectors die
at the rate of natural mortality, and that dead vectors regardless of disease status are
instantly replaced by new adult susceptible vectors. However, when c(i, j) �= 0, we
assume that control measures kill both susceptible and infected adult vectors above
the rate of natural mortality in patch i, j thereby reducing the total number vectors in
the system.

We explored three different rule of thumb control strategies. a) Constant control in
all of the patches. Under this control strategy c equals a constant in all patches of the
model. b) Spot control, applied in only the patch with the highest number of infected
hosts. As the patch containing the most number of infected hosts changes, the patch
in which spot control is applied changes accordingly. c) Ring control, applied in the
focal patch with the highest number of infected hosts, as well as in the surrounding
patches. In the ring control strategy, the focal patch and the twelve patches two grid
steps away were treated (unless the focal patch was near an edge, in which case cor-
respondingly fewer patches were treated). In all of the control strategies examined,
the same amount of total control was always applied to the system. Thus, when spot
control was applied in one patch, c wasN2 times larger in that patch than the amount
of control applied in one patch when the constant control strategy was examined.

In practice, control strategies may not begin at exactly the same time as infected hosts
enter a system. There may be a significant lag between the emergence of infected
hosts and the start of control. As a consequence, we examined how lags in the start
of the three control strategies influenced the total number of infected hosts in the
system. If a lag occurred, the total amount of control used in the system was still the
same as when there was no lag. Thus, if a lag occurred, the rate of control used in a
patch in the remaining time of the model run was greater than if there was no lag.
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Table 14.1 shows the values of the parameters used in the various model runs. The
model was initialized with 1000 susceptible vectors and hosts in each patch, and no
infected vectors or hosts. In the case of limited vector and host movement the model
was first run for 11,000 time steps to let the distribution of hosts and vectors come to
a steady state due to the reflecting boundary condition. This was not necessary for the
cases where vector and hosts moved freely. Ten infected hosts were then introduced
into a corner patch. The model was then run for 2000 time-steps, which was sufficient
time for the disease epidemic to travel through the population. The amount of control
used was varied from none to the 0.03% increase in the natural vector mortality rate
across all patches for all time steps for the constant control case and the equivalent
total effect under the two other control strategies. Vector control was started at 0 and
600 time steps after the emergence of the first infected hosts to explore the effect of
time lags in initiating control on the optimality of different control strategies.

Table 14.1. List of parameters used in most runs of the model.

Parameter Description Value

N2 Number of patches 100

μ Natural daily mortality rate of vector 0.11

b Bite rate of vector per day 0.5

q Probability of a vector feeding on an infected 0.38
host becoming infected

w Probability of a susceptible host bitten by an infected 0.38
vector becoming infected

1/ρ Days virus is latent in host 5

1/θ Days host is infectious 6

The equations were programmed in C++ and simulated using a Runge-Kutta-Fehlberg
4, 5 method. A typical model run on a modern desktop computer took no more than
a few minutes.

© 2010 by Taylor and Francis Group, LLC



280 CONTROL OF VECTOR-BORNE DISEASES

0 500 1000 1500 2000

0
10

0
20

0
30

0
40

0

Time

N
um

be
r 

of
 In

fe
ct

ed
 H

os
ts

a)

20 40 60 80 100

0
50

0
10

00
15

00
20

00

Location

T
im

e

b)

20 40 60 80 100

0
50

0
10

00
15

00
20

00

Location

T
im

e

c)

Figure 14.1 Spatiotemporal dynamics of an epidemic in the absence of control. Panel a) is
a time series of the number of infected hosts over the course of a single epidemic. The solid
line corresponds to the unlimited movement case and the dashed line corresponds to limited
movement case. Panels b) and c) illustrate the spatiotemporal time course of the nonspatial and
spatial cases respectively. The 10× 10 patch network at each time slice has been transformed
into a vector with location 0 corresponding to patch (0, 0) and location 100 corresponding to
patch (10, 10). The darker the pixel the greater the number of infected hosts.

14.3 Results

No control

In the absence of any control efforts the two different movement rules for hosts and
vectors led to a similar total number of infected hosts during the course of an epi-
demic. Out of the population of 100,000 total hosts 17,120 became infected for the
unlimited movement case and 16,286 hosts became infected for the limited move-
ment case. Thus, the unlimited movement case led to approximately 5% more infec-
tions than the limited movement case.

However, both the temporal and spatiotemporal aspects of the epidemic differed
greatly between the two movement cases. Unlimited movement led to a much more
rapidly developing epidemic that peaked earlier with a higher number of infected
hosts at the peak (Figure 14.1a). In the limited movement case, the epidemic de-
veloped much more slowly, lasted longer, and had fewer infected hosts at the peak.
Plotting the entire spatiotemporal course of the epidemic makes these temporal dif-
ferences even more pronounced (Figures 1b, 1c). The unlimited movement case led
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to an epidemic that was homogenous in space. Infected hosts slowly built up through
the whole population, with the peak number of infected hosts occurring at the same
time in all the patches and then dying down at the same rate across all the patches. In
contrast, the limited movement case led to an epidemic that was very heterogeneous
in space. Infected hosts initially built up near where the first infected individuals were
introduced and then progressed as a wave across the patch network.

Table 14.2. Total number of infected individuals for different dispersal kernels and
control strategies. Best control strategy is indicated in italics. Panels a) & b) give
the results for the unlimited movement case while panels c) & d) give the results
for limited movement case. For panels a) and c) there is no time lag before starting
control efforts while for panels b) and d) there is a 600-time step lag after the first
infected hosts before starting control efforts. In the absence of control, scenarios a)
and b) result in a total of 17,120 infected hosts while c) and d) results in 16,286
infected hosts.

Impact of control

To highlight the impact of control we first restrict our discussion to the constant
control strategy with no time lag from the emergence of the first infected hosts and the
initiation of control efforts. For both movement cases even small amounts of control
had a significant impact on the total number of infected hosts during the course of an
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Figure 14.2 Time series of number of infected hosts for different hosts and vector movement
rates, vector control strategies and time lag before initiating vector control. The control amount
for all cases is 0.0002. Panels a) & b) illustrate the unlimited movement case while panels c)
& d) illustrate the limited movement case. For panels a) and c) there is no time lag before
starting control efforts while for panels b) and d) there is a 600-time step lag after the first
infected hosts before starting control efforts. — : no control; - - - -: constant control; . . . : spot
control; · − · − ·−: ring control.

epidemic (Table 14.2). A 0.01% increase in the intrinsic vector mortality rate for the
unlimited movement case cut the number of infected hosts nearly in half to 9,955,
while an increase of vector morality rate by 0.03% led to the number of infected
individuals dropping by nearly 90%. The results for the limited movement case were
even more dramatic. A 0.01% increase in the intrinsic vector morality rate reduced
the number of cases by 75% while a 0.03% increase cut the number of cases by more
than 95%.

The effects of control on the temporal and spatiotemporal aspects of the epidemic
for the two movement cases were equally pronounced. For both cases with a control
amount of 0.0002, Figures 14.2a and 14.2c clearly illustrate a dramatic drop in the
number of infected individuals at each time step over the course of the epidemic.
However, the length of the epidemic with control differed for the two movement
cases. With unlimited movement the length of the epidemic was more or less the
same as without control (Figure 14.2a), and although the spatial intensity was greatly
decreased, all patches still had infected individuals (Figure 14.4a). For the limited
movement case, however, application of control dramatically decreased the length of
the epidemic (Figure 14.2c) and decreased its spatial intensity (Figure 14.6a). In fact,
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Figure 14.3 Total number of infected hosts at epidemic peak for different host and vector
movement rates, vector control strategies, vector control amounts, and time lag before initiat-
ing vector control. Panels a) & b) illustrate the unlimited movement case while panels c) &
d) illustrate the limited movement case. For panels a) and c) there is no time lag before start-
ing control efforts while for panels b) and d) there is a 600-time step lag after the first infected
hosts before starting control efforts. • - constant control; � - spot control; and � - ring control.

with control the majority of patches did not have a single infected host.

Optimality of different spatial control strategies

When treatment is initiated immediately after the first host becomes infected, re-
gardless of the type of host and vector movement and amount of control used, the
constant control strategy is superior. For the unlimited movement case the superi-
ority of constant control over the other control strategies was very small regardless
of the amount of control used. The difference in the total number of infected hosts
between the different control amounts and control strategies was less than 3% (Table
14.2a). In addition, there was no difference between the control strategies in terms of
the total number of hosts infected at the peak or the number of days for which there
were more than 10 infected hosts, a measure of the total length of the epidemic (Fig-
ure 14.3a, 14.4a). Finally, the temporal (Figure 14.2a) and spatiotemporal course of
the epidemic for the different control strategies were very similar (Figure 14.5a, b, c)
though the spot control (Figure 14.5b) leads to a slightly greater number of infected
hosts at the peak.

The superiority of constant control over spot and ring was much more pronounced

© 2010 by Taylor and Francis Group, LLC



284 CONTROL OF VECTOR-BORNE DISEASES

0.00000 0.00010 0.00020 0.00030

0
50

10
0

15
0

20
0

Control Amount

N
um

be
r 

of
 D

ay
s 

A
bo

ve
 C

ut
of

f
a)

0.00000 0.00010 0.00020 0.00030

0
50

10
0

15
0

20
0

Control Amount

N
um

be
r 

of
 D

ay
s 

A
bo

ve
 C

ut
of

f

b)

0.00000 0.00010 0.00020 0.00030

0
50

10
0

15
0

20
0

Control Amount

N
um

be
r 

of
 D

ay
s 

A
bo

ve
 C

ut
of

f

c)

0.00000 0.00010 0.00020 0.00030

0
50

10
0

15
0

20
0

Control Amount

N
um

be
r 

of
 D

ay
s 

A
bo

ve
 C

ut
of

f

d)

Figure 14.4 Number of days the total number of infected hosts is above 10 individuals for
different host and vector movement rates, vector control strategies, vector control amounts,
and time lag before initiating vector control. Panels a) & b) illustrate the unlimited movement
case while panels c) & d) illustrate the limited movement case. For panels a) and c) there is
no time lag before starting control efforts while for panels b) and d) there is 600-time step lag
after the first infected hosts before starting control efforts. • : constant control; � :spot control;
and �:ring control.

for the limited movement case. With a control amount of 0.001, constant control
produced an average of 58% as many infected hosts as compared to the ring or spot
control strategies. For a higher control amount (0.0003) the superiority of constant
control was even greater leading to only an average of 14% of the number of infected
hosts as compared to the other two control strategies (Table 14.2c). In addition, con-
stant control greatly reduces the number of hosts infected at the peak (Figure 14.2c
& 14.3c) as well as the duration of the epidemic (Figure 14.2c & 14.4c). Finally,
looking at the spatiotemporal course of the infection, it is clear that the spot and ring
control strategies are far worse than constant control in terms of the length and spa-
tial extent of the epidemic (Figures 14.6a, b & c).

Impact of time lags on optimality of different spatial control strategies

Delaying the start of control efforts greatly reduced the efficacy of control in all
situations. The delay greatly increased the total number of hosts infected over the
course of the epidemic, the length of the epidemic, and spatiotemporal intensity of
the epidemic. In the unlimited movement cases where the epidemic developed and
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Figure 14.5 Spatiotemporal time series of an epidemic for different vector control strategies,
and time lag before imitating control efforts for the unlimited movement case and 0.0002
total amount of control. Panel a), b), & c) corresponding to no time lag while d), e), & f)
correspond to a 600-time step lag before starting control efforts. Control strategies employed
are as follows: a),d): constant; b),e): spot; c),f) ring.

intensified very quickly, regardless of the amount of control or control strategy used,
the total number of infected hosts was only reduced by 20% compared to no control
efforts (Table 14.2b). Likewise, the temporal and spatiotemporal time course of the
epidemic was also very similar to the no control case (Figure 14.2b & Figures 14.5b,
c, d). However, similar to the situation where control was initiated immediately, con-
stant control was superior but only slightly so. The superiority was so slight that the
number of hosts infected at the peak (Figure 14.3b) and total length of the epidemic
(Figure 14.4b) were indistinguishable for the different control strategies.

The impact of a delay in initiating control efforts for the limited movement case had a
much more pronounced and diverse impact on the efficacy of control efforts as com-
pared to the unlimited movement case. While as with the unlimited movement case
the overall number of infected hosts increased with a time delay in initiating control
the impact was less and much more dependent on the amount of control used. For
a small amount of control (0.0001) the total number of infected hosts was reduced
by 36% as compared to no control cases and for a large amount of control (0.0003)
the total number of infected hosts was reduced by 70% as compared to the no con-
trol case (Table 14.2d). In addition, there was an interaction between the amount of
control used and the control strategy employed and the temporal and spatiotemporal
time course of the epidemic. For example, for a low amount of control (0.0001) spot
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Figure 14.6 Spatiotemporal time series of an epidemic for different vector control strategies
and time lag before initiating control efforts for the limited movement case and 0.0002 total
amount of control. Panel a), b), & c) corresponding to no time lag while d), e), & f) corre-
spond to a 600-time step lag before starting control efforts. Control strategies employed are as
follows: a),d): constant; b),e): spot; c),f): ring.

and ring strategies led to a lower number of infected hosts at the peak (Figure 14.3d)
and shorter overall epidemic (Figure 14.4d).

Most importantly, though, with a time lag in starting control for the limited move-
ment case, constant control was no longer superior in terms of the total number of
infected hosts over the course of the epidemic no matter the amount of vector control
used (Table 14.2d). For low amounts of control a spot strategy was slightly superior
and for greater amounts of control the ring strategy was slightly superior. In addition,
the temporal and spatiotemporal course of the epidemic differed across strategies. For
a control amount of 0.0002, constant control led to a shorter, less spatially extensive,
initially more intense epidemic (Figure 14.2d & Figure 14.6c) as compared to ring
or spot control strategies (Figure 14.2d and Figure 14.6c & 14.6d).

14.4 Discussion

The object of our modeling effort was to explore the impact of spatiotemporal hetero-
geneity on the relative superiority of different spatial control strategies. The unlimited
movement case approximates a mean-field model that is spatiotemporal homoge-
nous. For this case, vectors and hosts are more or less randomly mixed in every time
step meaning that infected hosts and vectors quickly spread throughout the whole
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population and throughout the epidemic the number of infected hosts is more or less
spatially homogenous. Thus, it is not surprising that an aspatial control strategy is
optimal since it is an effective way to quickly reduce vector populations across the
whole community simultaneously. However, it is a bit surprising that the spatially
targeted spot and ring control strategies had a similar impact in terms of reducing
the totally number of infected hosts. The rapid random mixing of hosts and vectors
means that the effect of any control effort rapidly propagates through the entire pop-
ulation.

The limited movement case tends towards the opposite end of the spectrum with ex-
treme spatial heterogeneity in the system. In this case we might have expected that
spatially targeted control strategies would perform much better than an aspatial con-
trol strategy. We did not find this. When control efforts began shortly after disease
emergence a constant control strategy was much better than any spatially targeted
control strategy. The reason for this is that constant control kills vectors throughout
the system, whereas targeted control only kills vectors in a limited area. Thus, as tar-
geted control is continually applied in a limited area, there is eventually a diminishing
return, and fewer total vectors are killed with target control than with constant con-
trol. This would seem to indicate that quickly reducing vector populations across the
whole community is the fastest way to end an epidemic when the host and vectors are
limited in movement. However, when there is a delay in implementing control mea-
sures in the limited movement case, spatially targeted control strategies are slightly
better than the aspatial approach. The time lag case creates extreme heterogeneity in
the spatial distribution of infected hosts before control efforts are implemented and
therefore targeted control strategies make more sense.

Putting this all together, the results of the modeling effort indicate that what is most
important in choosing a control effort is to understand the spatial distribution of in-
fected hosts and vectors in the system when the time control efforts are initiated.
When the spatial distribution of infected hosts is spatially homogenous then an as-
patial control strategy is optimal. However when the spatial distributions of infected
hosts are highly spatially heterogeneous then spatially targeted control strategies are
optimal. It is important to note that this finding appears to hold regardless of the
number of infected hosts as the time control is initiated and the movement rates of
hosts and vectors.

Our findings have interesting implications for the implementation of vector-control
strategies in a real world setting. First and foremost, from the discussion above it is
clear that what is most important is to understand the spatial distribution of infected
hosts at the time that a decision is made concerning the implementation of a particu-
lar vector-control strategy. This calls for better and more detailed disease surveillance
efforts that provide real-world information on the time and location of infected hosts.
In addition, these enhanced surveillance efforts might also lead to the ability to re-
duce control efforts when the risk of outbreak is low and thereby concentrate control
efforts when the risk of outbreak is greatest. This has two distinct advantages. Many
epidemic disease control efforts, especially for dengue, rely on individual citizens
reducing the number of breeding sites in their homes and yards. Continual control
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efforts of this sort have low sustainability leading to reduced efficacy over long peri-
ods of time. Warning citizens to act when the risk of outbreak is the greatest is likely
to lead to much higher compliance. Secondly, resources for vector control are often
limited. Therefore using them when their temporal or spatial effectiveness is greatest
is most efficient.

The second policy implication is how the choice of an objective function influences
the optimality of different control strategies. In our model, we judged the optimality
of a control effort from the standpoint of which strategy led to the fewest number of
cases. For diseases with high morbidity rates this may make the most sense but for
diseases that do not have high morbidity rates but require substantial medical care it
may be socially optimal to focus on other aspects of the spatiotemporal time course of
the epidemic. For these types of diseases the key objective may be to reduce the total
number of cases at any one time rather than the total number of cases over the whole
course of the epidemic. In our model, we saw that in the limited movement case spot
and ring produced a comparable number of cases (Figure 14.2c) but spot control led
to a longer but less intense epidemic as compared to ring control. Thus, it may be
important to include other benefits of control other than the absolute reduction in
the number of infected hosts over the course of the whole epidemic as objectives of
control.

The other aspect of the impacts of control that should be taken into account when
formulating a proper objective function is the cost of control measures. In our model,
we assumed that constant, spot, and ring control measures had the same cost to im-
plement. This is probably not true in a real world setting. It is likely that constant
control could end up costing much more to implement than ring or spot control.
Constant control requires repeated visits to all patches while ring and spot control
are much more spatiotemporally targeted. The interesting part of our results is that
when there is a significant time lag in initiating treatment then there was very lit-
tle difference between the three control strategies in terms of the absolute number
of total infected hosts, meaning that costs and feasibility of implementation may be
appropriate guiding factors in terms of the choice of control efforts.

14.5 Conclusion

Our findings point to two key areas of future research. First, there is a need to obtain
better parameters for our model. While we gathered a number of parameters from
the literature the parameters most likely influencing model results (host movement,
vector movement, and relative patch size) are not well known. While there has been
considerable work on human movement through space (e.g., Hufnagel et al. 2004;
Crépey and Barthélemy 2007) there has been very little research on how vectors
move through space. To develop optimal control strategies, it will be necessary to
gain a better understanding of the range of these parameters.

There are two ways in which this might be accomplished. The first is more direct
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observational studies of host and vector movement. The second and perhaps more lo-
gistically feasible is to employ a pattern-oriented modeling (POM) approach (Grimm
et al. 2005). POM provides a strategy to deal with two problems concerning the
modeling of large multifaceted systems: complexity and uncertainty. POM leverages
the fact that patterns contain “coded” information concerning underlying model pro-
cesses and structure. Even our relatively simple models indicate that different move-
ment rates lead to readily observed temporal and spatiotemporal differences in the
dynamics of epidemics. Thus, the greatest need in terms of empirical data collection
may lie in developing detailed spatially explicit databases of disease incidence.

The second key area of future research is to place our optimization in a proper op-
timal control framework. The theory and methods to optimize systems of coupled
ordinary differential equation are well developed (Lenhart and Workman 2007). Us-
ing a proper optimal control framework would readily allow us to incorporate a range
of costs and benefits of different control strategies and determine how far away our
rule of thumb control strategies are from the optimal ones for a given disease system.
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CHAPTER 15

Modeling spatial spread of
communicable diseases involving

animal hosts

Shigui Ruan
University of Miami

Jianhong Wu
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Abstract. In this chapter, we review some previous studies on modeling spatial spread of
specific communicable diseases involving animal hosts. Reaction-diffusion equations are
used to model these diseases due to movement of animal hosts. Selected topics include the
transmission of rabies in fox populations (Källen et al., 1984; Källen et al., 1985; Murray
et al., 1986), dengue (Takahashi et al., 2005), West Nile virus (Lewis et al., 2006; Ou &
Wu, 2006), hantavirus spread in mouse populations (Abramson and Kenkre, 2002), Lyme
disease (Caraco et al., 2002), and feline immunodeficiency virus (FIV) (Fitzgibbon et al.,
1995; Hilker et al., 2007).

15.1 Introduction

Spatial spread of communicable diseases is closely related to the spatial heterogene-
ity of the environment and the spatial-temporal movement of the hosts. Mathematical
modeling of disease spread normally starts with the consideration of the transmission
dynamics within a population which is homogeneous in terms of host structures and
environmental variation, and then follows by the examination of the impact on the
transmission dynamics of the refined and detailed biological/epidemiological struc-
tures and patterns of spatial dispersal/diffusion of the hosts.

Epidemic theory for homogeneous populations has shown that the basic reproduc-
tive number, which may be considered as the fitness of a pathogen in a given pop-
ulation, must be greater than unity for the pathogen to invade a susceptible popu-
lation (Anderson and May, 1991; Brauer and Castillo-Chavez, 2000; Diekmann and
Heesterbeek, 2000; Edelstein-Keshet, 1988; Jones and Sleeman, 2003; Murray, 2003;

293
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Thieme, 2003). It is natural to ask how spatial movement of the hosts affects the
spatial-temporal spread pattern of the disease if the basic reproduction number for an
otherwise homogeneous population exceeds unity.

Answers to the above question obviously depend on the manner in which hosts move
into, out of, and within the considered geographical region. For example, adding an
immigration term so that infective individuals enter the system at a constant rate
clearly allows the persistence of the disease, because if it dies out in one region then
the arrival of an infective from elsewhere can trigger another epidemic. Indeed, a
constant immigration term has a mildly stabilizing effect on the dynamics and tends
to increase the minimum number of infective individuals observed in the models
(Bolker and Grenfell, 1995). Spread of diseases in a heterogeneous population has
also been intensively studied using patchy or metapopulation models. These models
are formulated under the assumption that the host population under consideration
can be divided into multipatches so that the host population within a patch is consid-
ered as homogeneous, and the heterogeneity is associated with the rates with which
individuals move from one patch to another (Arino and van den Dreissche, 2006).

Another popular way to incorporate the spatial movement of hosts into epidemic
models is to assume some types of host random movements, leading to reaction-
diffusion equations. See, for example, Busenberg and Travis (1983), Capasso (1978),
Capasso and Wilson (1997), De Mottoni et al. (1979), Gudelj et al. (2004), Fitzgib-
bon et al. (2007), Webb (1981). This strand of theoretical developments built on
the pioneering work of Fisher (1937), who used a logistic-based reaction-diffusion
model to investigate the spread of an advantageous gene in a spatially extended pop-
ulation. With initial conditions corresponding to a spatially localized introduction,
such models predict the eventual establishment of a well-defined invasion front which
divides the invaded and uninvaded regions and moves into the uninvaded region with
a constant velocity. The velocity at which an infection wave moves is set by the rate
of divergence from the (unstable) disease-free state and can be determined by linear
methods (Murray, 2003).

Most reaction-diffusion (or reduced/related space-dependent integral) epidemic mod-
els are space-dependent extensions of the classical Kermack-McKendrik (Kermack
and McKendrik 1927) deterministic compartmental model for a directly transmitted
viral or bacterial agent in a closed population consisting of susceptibles, infectives,
and recovereds. Their model leads to a nonlinear integral equation which has been
studied extensively. The deterministic model of Bartlett (1956) predicts a wave of
infection moving out from the initial source of infection. Kendall (1957) generalized
the Kermack-McKendrik model to a space-dependent integro-differential equation.
Aronson (1977) argued that the three-component Kendall model can be reduced to
a scalar one and extended the concept of asymptotic speed of propagation devel-
oped in Aronson and Weinberger (1975) to the scalar epidemic model. The Kendall
model assumes that the infected individuals become immediately infectious and does
not take into account the fact that most infectious diseases have an incubation pe-
riod. This incubation period was considered by Diekmann (1978, 1979) and Thieme
(1977a, 1977b, 1979), using a nonlinear (double) integral equation model. For further
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study on velocity of spatial spread, we refer to Mollison (1991), van den Bosch et al.
(1990), the monograph of Rass and Radicliffe (2003), and references cited therein.
Most of these studies concern the existence of traveling waves, and their relation to
the disease propagation/spread rate. For additional studies, see Ai and Huang (2005),
Cruickshank et al. (1999), Hosono and Ilyas (1995), Kuperman and Wio (1999),
Zhao and Wang (2004), etc.

Despite these studies on reaction-diffusion epidemic models, however, there are very
few studies on modeling spatial spread of specific diseases using partial differen-
tial equation models. In this chapter, we review some previous studies on modeling
spatial spread of specific communicable diseases using reaction-diffusion equations.
Selected topics include the transmission of rabies in fox population (Källen et al.,
1984; Källen et al., 1985; Murray et al., 1986), dengue (Takahashi et al., 2005), West
Nile virus (Lewis et al., 2006; Ou and Wu, 2006), hantavirus spread in mouse popu-
lations (Abramson and Kenkre, 2002), Lyme disease (Caraco et al., 2002), and feline
immunodeficiency virus (FIV) (Fitzgibbon et al., 1995; Hilker et al., 2007).

15.2 Rabies

The celebrated studies by Källen (1984), Källen et al. (1985), and Murray et al.
(1986) about the spatial spread of rabies among foxes show the feasibility and useful-
ness of utilizing a simple reaction-diffusion model for the description of transmission
dynamics and spread patterns of specific diseases and for the qualitative evaluation
of various space-relevant control strategies. These studies give a fine example of how
to build a reaction-diffusion model based on the known ecology of the host behavior
and the detailed epidemiology of the disease progression, how to use known data and
facts to determine model parameter values, how to calculate the speed of propaga-
tion of the epizootic front and the threshold for the existence of an epidemic, and
how to use models to quantify and evaluate space-relevant control strategies. They
also demonstrate the trade-off between simplicity and the number of parameters that
have to be estimated from field studies. It is therefore natural that we start with a
brief introduction of these studies to illustrate some of the basic ideas and techniques
involved in reaction-diffusion models for disease spread.

Rabies, a viral infection of the central nervous system, is transmitted by direct con-
tact. The dog is the principal transmitter of the disease to man, and it is a particularly
horrifying disease for which there is no known case of a recovery once the disease
has reached the clinical stage. The aforementioned studies examined the rabies epi-
demic, which started in 1939 in Poland and moved steadily westward at a rate of
30-60 km per year. The red fox was the main carrier, and victim, of the rabies epi-
demic under consideration, although most mammals are thought to be susceptible to
the disease and although an epidemic, which was mainly propagated by racoons, was
also moving rapidly up the east coast of America during that period and subsequently.

The basic model of Källen et al. (1985) is built on the assumptions that foxes are the
main carriers of rabies in the rabies epizootic considered, the rabies virus is normally
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transmitted by bite, and rabies is fatal in foxes. It also assumes that susceptible foxes
are territorial, but once the virus enters the central nervous system it induces behav-
ioral changes in its host and, in particular, if it enters the limbic system the foxes
become aggressive, lose their sense of direction and territorial behavior, and wander
about in a more or less random way.

Let S(x, t) and I(x, t) be the total number of susceptible foxes and the total number
of infective foxes, respectively, in the space-time coordinate (x, t) and ignore the
incubation period at the moment. Then the model formulated in a one-dimensional
unbounded domain takes the form (Källen et al., 1985)

∂S
∂t

= −βS(x, t)I(x, t),

∂I
∂t

= D∂2I
∂x2 + βS(x, t)I(x, t) − μI(x, t),

(15.1)

where β is the transmission coefficient, μ−1 is the life expectancy of an infective fox,
and D is the diffusion coefficient.

The basic reproduction number of the corresponding ODE model is R0 = βS0/μ,
with S0 being the initial susceptible population (with homogeneous environment).
If R0 < 1 then the mortality rate is greater than the rate of recruitment of new
infectives, and hence the infection is expected to die out quickly. We thus obtain the
minimum fox density Sc := μ/β below which rabies cannot persist. It was indeed
proven (Källen, 1984) that if R0 < 1, I(·, 0) ≥ 0 has bounded support, and if
S(x, 0) = S0 for x ∈ R, then I(x, t)→ 0 as t→∞ uniformly on R.

The case where R0 > 1 indicates the persistence of the disease in a spatially ho-
mogeneous setting. The spatial diffusion then propagates the disease so that a small
localized introduction of rabies evolves into a traveling wave with a certain wave
speed, that is, a solution with I(x, t) = f(z), S(x, t) = g(z) with the wave variable
z = x−ct so that the wave forms (profiles) f and g are determined by the asymptotic
boundary value problem

Df ′′ + cf ′ + βfg − μf = 0, cg′ − βfg = 0;
f(±∞) = 0, g(+∞) = S0, g(−∞) = S∞,

where primes denote differentiation with respect to z, S∞ gives the number of sus-
ceptible foxes that remain after the infective wave has passed, and this number is
found by solving the final size equation

S∞/S0 −R−1
0 ln(S∞/S0) = 1.

The existence of traveling waves with speeds larger than c0 = 2
√

1−R−1
0 is estab-

lished by Källen (1984) and Källen et al. (1985), and the importance of the traveling
wave with the minimal wave speed c0 is shown by Källen (1984). Namely, it was
shown that if I(·, 0) has compact support, then for every δ > 0 there exists N so
that I(x + c0t − lnt/c0, t) ≤ δ for every t > 0 and for all x > N . Therefore, if a
fox travels with speed c(t) = c0 − (c0t)−1lnt towards +∞ (in space) to the right
of the support of I(·, 0), the infection will never overtake the fox. In other words,
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the asymptotic speed of the infection must be less than c(t). As a consequence, if
I(x, t) takes the form of a traveling wave for large t, it must do so for the one with
the minimal speed c0.

Estimating such a propagation speed is feasible once we know the relevant parameter
values. In (Murray et al., 1986), R0 was set to 2 according to the observed mortality
rate 65 − 80% during the height of the epizootic. The diffusion coefficient D is
estimated to be 60 km2yr−1, using the average territory of a fox and the mean time a
fox stays in its territory. This yields the minimal wave speed near 50 km per year, in
good agreement with the empirical data from Europe.

The diffusion model provides a useful framework to evaluate some spatially related
control measures such as the possibility of stopping the spread of the disease by cre-
ating a rabies ‘break’ ahead of the front through vaccination to reduce the susceptible
population to a level below the threshold for an epidemic to occur. Based on parame-
ter values relevant to England, the model suggests that vaccination has considerable
advantages over severe culling. Using a classical logistic model for the growth of
susceptible foxes, one can explain the tail part of the wave, and in particular, the
oscillatory behavior. Indeed, Anderson et al. (1981) speculated that the periodic out-
break is primarily an effect of the incubation period, and Dunbar (1983) and Murray
et al. (1986) obtained some qualitative results that show sustained oscillations if the
classical logistic model is used and the carrying capacity of the environment is suffi-
ciently large.

It was noted that juvenile foxes leave their home territory in the fall, traveling dis-
tances that typically may be 10 times a territory size in search of a new territory. If a
fox happens to have contracted rabies around the time of such long-distance move-
ment, it could certainly increase the rate of spread of the disease into uninfected ar-
eas (see Murray et al. (1986)). To address this impact of the age-dependent diffusion
of susceptible foxes, Ou and Wu (2006) started with a general model framework
in population biology and spatial ecology wherein the individual’s spatial move-
ment behaviors depend on its maturation status, and they illustrated how delayed
reaction-diffusion equations with nonlocal interactions arise naturally. For the above
mentioned spatial spread of rabies by foxes, they showed how the distinction of ter-
ritorial patterns between juvenile and adult foxes yields a class of partial differen-
tial equations involving delayed and non-local terms that are implicitly defined by a
hyperbolic-parabolic equation. They then demonstrated how incorporating this dis-
tinction into the model leads to a formula describing the relation of the minimal wave
speed and the maturation time of foxes. Their work involves I(t, a, x) and S(t, a, x)
as the population density at time t, age a ≥ 0, and spatial location x ∈ R for the
infective and the susceptible foxes, respectively, and τ as the maturation time which
is assumed to be a constant. It was shown that the total population of the infec-
tive foxes J(t, x) =

∫∞
0 I(t, a, x) da and the density of the adult susceptible foxes
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M(t, x) =
∫∞

τ S(t, a, x)da satisfy

∂J
∂t

= DI
∂2J
∂x2 + βM(t, x)J(t, x) − dIJ(t, x) + βJ(t, x)

∫ τ
0 S(t, a, x)da,

∂M
∂t = −βM(t, x)J(t, x)− dSM(t, x) + S(t, τ, x),

where DI is the diffusive coefficient, dI is the death rate for the infective foxes, β is
the transmission rate, the constant dS is the death rate for the susceptible foxes, and
S(t, a, x) with 0 ≤ a ≤ τ can be solved implicitly in terms of (J,M) by considering{ (

∂
∂t

+ ∂
∂a

)
S(t, a, x) = DY

∂2

∂x2S(t, a, x)− βS(t, a, x)J(t, x) − dY S(t, a, x),
S(t, 0, x) = b(M(t, x)),

where DY and dY are the diffusive and death coefficients for the immature suscepti-
ble foxes and b(·) is the birth function of the susceptible foxes.

It was shown in Ou and Wu (2006) that some of the key issues related to the spa-
tial spread can be addressed, despite the difficulty in obtaining an explicit analytic
formula of S(t, a, x) in terms of the historical values of M at all spatial locations.
For example, the minimal wave speed can be shown to be a decreasing function of
the maturation period. This result coincides in principle with the speculation by An-
derson et al. (1981) and Murray et al. (1986), and gives a more precise qualitative
description of the influence of maturation time on the propagation of the disease in
space.

15.3 Dengue

Dengue fever (DF) and dengue hemorrhagic fever (DHF) are caused by one of four
closely related, but antigenically distinct, virus serotypes (DEN-1, DEN-2, DEN-3,
and DEN-4) of the genus Flavivirus. Infection by one of these serotypes provides
immunity to only that serotype for life, so persons living in a dengue-endemic area
can have more than one dengue infection during their lifetime. DF and DHF are
primarily diseases of tropical and sub-tropical areas, and the four different dengue
serotypes are maintained in a cycle that involves humans and the Aedes mosquito.
Here, Aedes aegypti, a domestic, day-biting mosquito that prefers to feed on humans,
is the most common Aedes species. Infections produce a spectrum of clinical illness
ranging from a nonspecific viral syndrome to severe and fatal hemorrhagic disease.
Important risk factors for DHF include the strain of the infecting virus, as well as the
age, and especially the prior dengue infection history of the patient (CDC, 2007a).

Winged female Aedes aegypti in search of human blood or places for oviposition are
the main reason for local population dispersal and the slow advance of a mosquito
infestation. On the other hand, wind currents may also result in an advection move-
ment of large masses of mosquitoes and consequently cause a quick advance of in-
festation. The study (Takahashi et al., 2005) we describe here focuses on an urban
scale of space, wherein a (local) diffusion process due to autonomous and random
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search movements of winged Aedes aegypti is coupled to constant advection which
may be interpreted as the result of wind transportation.

Takahashi et al. (2005) considered only two sub-populations: the winged form (ma-
ture female mosquitoes) and an aquatic population (including eggs, larvae and pu-
pae), with mortality rates μ1 and μ2. The spatial density of the winged A. aegypti
and aquatic population at point x and time t are denoted by M(x, t) and A(x, t),
respectively. The specific maturation rate of the aquatic form into winged female
mosquitoes is γ, which is saturated by a term describing a carrying capacityK1; that
is, γA(1 −M/K1). Similarly, the rate of oviposition by female mosquitoes, which
is the only source of the aquatic form, is proportional to their density but is also
regulated by a carrying capacity effect dependent on the occupation of the available
breeders; that is, rM(1 − A/K2). Since the focus is on the A. aegypti dispersal as
a result of a random (and local) flying movement, macroscopically represented by a
diffusion process with coefficient D, coupled to a wind advection caused by a con-
stant velocity flux ν, we obtain naturally the coupled system of reaction-diffusion
equations

∂M
∂t = D∂

2M
∂x2 − ∂(νM)

∂x + γA(1− M
K1

)− μ1M,

∂A
∂t

= rM(1 − A
K2

)− (μ2 + γ)A.
(15.2)

Traveling wave solutions representing an invasion process (linking two stationary
and spatially homogeneous solutions) were formally investigated under the assump-
tion that the invasion speeds obtained for the two sub-populations are equal. This
assumption was justified by the following biological argument: Suppose that there
are distinct subpopulations linked with the wave speed for the winged population
larger than that for the aquatic population. If we wait long enough there will be some
distant interval where the (faster) mosquito population will reach values close to
the saturation level with practically no aquatic population for as long as we want.
That would contradict the vital dynamics, since in that interval a large population
of mosquitoes would lay eggs at an enormous rate because (almost) no saturation
effect exists without a sizable aquatic population. A similar argument works if the
wave speed for the winged population is smaller than that for the aquatic population.
Consequently, from a practical point of view, we should only expect a time delay
between the wavefronts and a constant spatial gap, not an expanding one.

Existence and uniqueness of a positive spatially homogeneous equilibrium is guaran-
teed if the mortality rate μ1 is less than the oviposition rate r and if the basic repro-
duction numberR0 = rγ

(γ+μ2)μ1
is larger than 1. The traveling wave with the minimal

wave speed was shown numerically to have the strong stability and attractivity prop-
erty, and hence an effective strategy for controlling the A. aegypti dispersal based
on the above model is to ensure the minimal wave speed is as small as possible. In
relation to this containment strategy, a numerical examination of dependence of the
wave speed on a few vital model parameters was carried and it was shown that an ap-
plication of insecticide against the winged (mosquito) phase is much more effective
as an infestation containment strategy than insecticide application against its aquatic
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phase. This should not be surprising, since the winged form is the one responsible
for the A. aegypti movement. However, it was also shown that a saturation effect is
very apparent and massive insecticide application to increase the mosquito mortality
rate beyond a certain value will show very little improvement in wave speed reduc-
tion. In addition, it was shown that insecticide application against the aquatic form is
not very effective for wave control, but if a chemical attack against the winged form
is coupled with the elimination of infested water-holding containers, the results are
surprisingly effective.

The study of the wavefront speed dependence on advection, i.e., wind transportation,
is interesting from a prediction point of view, and numerical analysis shows that the
wavefront speed varies linearly with the advection velocity but not in the same way as
in the classical Fisher model. Since the advection only carries the winged form, and
the mosquitoes need some time to oviposit, the dependence of the wavefront speed
in the model on the advection velocity is not as strong as in Fisher’s model. Although
advection by natural causes cannot be controlled, the above discussion may be useful
for the prediction of patterns of A. aegypti invasion in urban areas exposed to strong
and constant winds.

Notice that model (15.2) only considers mosquito movement. More realistic models
need to include both host and vector populations. Some related models can be found
in Favier et al. (2005) and Tran and Raffy (2006).

15.4 West Nile virus

West Nile virus (WNV) was first isolated from a febrile adult woman in the West Nile
District of Uganda in 1937. The ecology was characterized in Egypt in the 1950s.
The virus became recognized as a cause of severe human meningitis or encephalitis
(inflammation of the spinal cord and brain) in elderly patients during an outbreak in
Israel in 1957. Equine disease was first noted in Egypt and France in the early 1960s.
WNV first appeared in North America in 1999, with encephalitis reported in humans
and horses. The subsequent spread in North America is an important milestone in the
evolving history of this virus (CDC, 2007b).

West Nile virus belongs to a family of viruses called Flaviviridae. It is spread by
mosquitoes that have fed on the blood of infected birds. West Nile virus is closely re-
lated to the viruses that cause Dengue fever, Yellow fever, and St. Louis encephalitis.
People, horses, and most other mammals are not known to develop infectious-level
viremias very often, and thus are probably "dead-end" or incidental-hosts (CDC,
2007b; PHAC, 2007).

Lewis et al. (2006) investigated the spread of WNV by spatially extending the non-
spatial dynamical model of Wonham et al. (2004) to include diffusive movements
of birds and mosquitoes, resulting in a system of 7 reaction-diffusion equations. A
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reduced 2-equation model takes the form

∂IV
∂t

= ε∂
2IV
∂x2 + αV βR

IR
NR

(AV − IV )− dV IV ,

∂IR
∂t

= D∂
2IR
∂x2 + αRβR

NR − IR
NR

IV − γRIR,
(15.3)

where dV is the adult female mosquito death rate, γR is the bird recovery rate from
WNV, βR is the biting rate of mosquitoes on birds, αV and αR are the WNV trans-
mission probability per bite to mosquitoes and birds, respectively, ε and D are the
diffusion coefficients for mosquitoes and birds, respectively, IV (x, t) and IR(x, t)
are the numbers of infectious (infective) female mosquitos and birds at time t and
spatial location x ∈ R, NR is the number of live birds, and AV is the number of
adult mosquitoes.

Phase-plane analysis of the spatially homogeneous system shows that a positive (en-
demic) equilibrium (I∗V , I

∗
R) exists if and only if the basic reproduction number R0

is larger than 1, where

R0 =

√
αV αRβ2

RAV

dV γRNR
.

Moreover, this endemic equilibrium, if it exists, is globally asymptotically stable in
the positive quadrant.

For the spatially varying model, the vector field is cooperative, therefore an appli-
cation of the general result in (Li et al., 2005) ensures that there exists a minimal
speed of traveling fronts c0 such that for every c ≥ c0, the system has a non-
increasing traveling wave solution (IV (x − ct), IR(x − ct)) with speed c, linking
(I∗V , I

∗
R) to (0, 0). The cooperative nature of the vector field ensures that the minimal

wave speed c0 coincides with the spread rate in the sense that if the initial values
of (IV (·, 0), IR(·, 0)), IV (·, 0) + IR(·, 0) > 0, have compact support and are not
identical to either equilibrium, then for small ε > 0,

limt→∞
{

sup|x|≥(c0+ε)t ||(IV (x, t), IR(x, t))||} = 0,
limt→∞

{
sup|x|≤(c0−ε)t ||(IV (x, t), IR(x, t)) − (I∗V , I

∗
R)||} = 0.

In addition, this c0 is linearly determined and thus could be explicitly calculated
from model parameters. In particular, using real data estimated from Wonham et al.
(2004) on the original 7-dimensional system, it was shown that a diffusion coefficient
of about 5.94 is needed in the model to achieve the observed spread rate of about
1000km/year in North America.

The work in Liu et al. (2006), using a patchy model based on the framework of
Bowman et al. (2004), seems to indicate the spread speed may be different if the
movement of birds has a preference direction.

One important biological aspect of the hosts in many epidemiological models, namely
the stage structure, seems to have received little attention, although structured pop-
ulation models have been intensively studied in the context of population dynamics
and spatial ecology, and the interaction of stage-structure with spatial dispersal has
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drawn considerable attention in association with the theoretical development of the
so-called reaction-diffusion equations with nonlocal delayed feedback (see the sur-
vey of Gourley and Wu (2006) and the references therein). The developmental stages
of hosts have a profound impact on the transmission dynamics of vector borne dis-
eases. In the case of West Nile virus the transmission cycle involves both mosquitoes
and birds, the crow species being particularly important. Nestling crows are crows
that have hatched but are helpless and stay in the nest, receiving more-or-less contin-
uous care from the mother for up to two weeks and less continuous care thereafter.
Fledgling crows are old enough to have left the nest (they leave it after about five
weeks), but they still cannot fly very well. After three or four months these fledglings
will be old enough to obtain all of their food by themselves. Consequently, adult
birds, fledglings, and nestlings are all very different from a biological and an epidemi-
ological perspective, and a realistic model needs to take these different stages into
account. For example, in comparison with grown birds, the nestlings and fledglings
have much higher disease induced death rate, much poorer ability to avoid being
bitten by mosquitoes, and much less spatial mobility.

Gourley et al. (2007) derived a structured population model in terms of a system of
delay differential equations describing the interaction of five subpopulations, namely
susceptible and infected adult and juvenile reservoirs and infected adult vectors, for a
vector borne disease with particular reference to West Nile virus. Spatial movement
was then incorporated into this model to yield an analogue reaction-diffusion system
with nonlocal delayed terms. This permits a consideration of some specific condi-
tions for the disease eradication and sharp conditions for the local stability of the
disease-free equilibrium, as well as a formal calculation of the minimal wave speed
for the traveling waves and subsequent comparison with field observation data.

15.5 Hantavirus

Hantaviruses are rodent-borne zoonotic agents that result in hemorrhagic fever with
renal syndrome or hantavirus pulmonary syndrome. Hemorrhagic fever with renal
syndrome was first reported in 1951 when an outbreak occurred among military
personnel involved in the Korean War (Lee and van der Groen, 1989) and now
has been identified in Asia and Europe (Shi, 2007). In 1993, hantavirus pulmonary
syndrome was identified from an outbreak in New Mexico, USA (Schmaljohn and
Hjelle, 1997). Since then, it has been discovered in various regions of southwestern
US and in other countries in the Americas. Each hantavirus is generally associated
with a primary rodent host. Human infection occurs primarily through the inhalation
of aerosolized saliva and excreta of infected rodents. The case fatality rate for han-
tavirus pulmonary syndrome in the United States is 37% (CDC, 2002a). Hantaviruses
pathogenic to humans in the United States include Sin Nombre virus hosted by the
deer mouse (Peromyscus maniculatus) (Mills et al., 1999), New York virus hosted
by the white-footed mouse (Peromyscus leucopus) (Song et al., 1994), Black Creek
Canal virus hosted by the cotton rat (Sigmodon hispidus) (Glass et al., 1998), and
Bayou virus hosted by the rice rat (Oryzomys palustris) (McIntyre et al., 2005).
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In the last few years, several mathematical models have been used to investigate the
temporal and spatial dynamics of various hantavirus reservoir species and their rela-
tion to the human population. Allen et al. (2003) proposed ordinary differential equa-
tion models to study hantavirus infection (Black Creek Canal virus) and arenavirus
infection (Tamiami virus) in cotton rats. The two viruses differ in their modes of
infection; the first virus is horizontally transmitted, whereas the second is primarily
vertically transmitted. Sauvage et al. (2003) considered Puumala virus infection in
bank voles (Clethrionomys glareolus). Their model is a system of ordinary differen-
tial equations for rodents infected with hantavirus in two different habitats: optimal
and suboptimal. The population is subdivided into susceptible and infected juveniles
and adults. Allen et al. (2006) developed two new mathematical models for han-
tavirus infection in male and female rodents. The first model is a system of ordinary
differential equations while the second model is a system of stochastic differential
equations.

Taking the random movement of the rodent population into account, Abramson and
Kenkre (2002) and Abramson et al. (2003) used partial differential equation models
to study Sin Nombre virus in deer mice. Suppose that the whole mice population
is composed of two classes, susceptible and infected, represented by MS and MI ,
respectively, with MS + MI = M. Since the virus does not affect properties such
as the mortality of the mice, the death rate is assumed to be the same for both sus-
ceptible and infected mice. It is also not transmitted to newborns, so that no mice are
born in the infected state. The infection is transmitted from mouse to mouse through
individual contacts, such as fights. The dispersal of mice is modeled as a diffusion
process. Finally, intra-species competition for resources indicates a logistic popula-
tion growth. The model is described by the following equations:

∂MS
∂t

= D∂
2MS

∂x2 + bM − cMS − MSM
K − aMSMI ,

∂MI
∂t

= D∂
2MI

∂x2 − cMI − MIM
K + aMSMI .

(15.4)

All parameters characterizing the different processes affecting the mice are supposed
constant, except the carrying capacity K of the mouse population, which we will
sometimes write K = K(x, t) explicitly to indicate the dependence on the location
and time which allows for diversity in habitats and temporal phenomena. The birth
rate b characterizes a source of susceptible mice only. The death rate, common to
both subpopulations, is c. The contagion rate is the parameter a. Finally, a diffusion
coefficient D characterizes a diffusive transport mechanism for the mice.

The sum of the two equations in (15.4) reduces to a Fisher type equation for the
whole population

∂M

∂t
= D

∂2M

∂x2 + (b− c)M
[
1− M

(b− c)K
]
. (15.5)

Abramson and Kenkre (2002) showed that, as a function of K, the system under-
goes a bifurcation between a stable state with only susceptible mice (and MI = 0)
to a stable state with both subpopulations positive. The value of the critical carry-
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ing capacity is a function of other parameters and is given by Kc = b
a(b−c) . This

critical value does not depend on D, and the same bifurcation is observed either in
a spatially independent system (D = 0) or in a homogeneous extended one in the
presence of diffusion. In a nonhomogeneous situation, for moderate values of the
diffusion coefficient, the infected subpopulation remains restricted to those places
where K(x, t) > Kc, becoming extinct in the rest.

Yates et al. (2002) found that the outbreaks of hantavirus pulmonary syndrome in
southwest US in 1993 and again in 1998-2000 were associated with the El Niño-
southern oscillation phenomenon, which produced increased amounts of fall-spring
precipitation in the arid and semi-arid regions of New Mexico and Arizona and in
turn initiated greater production of rodent food resources. Consequently, rodent pop-
ulation increased dramatically, and at high densities, rodents began dispersing across
the landscape and coming into contact with humans in homes and businesses. This
suggests that a ‘wave’ of virus infection was following the ‘wave’ of rodent dispersal.

Let z1 = x−vSt and z2 = x−vIt,where vS and vI are the speeds of the susceptible
and infected waves, respectively. The wave form equations are

Dd
2MS

dz2
1

+ vS
dMS
dz1

+ bM − cMS − MSM
K − aMSMI = 0,

Dd
2MI

dz2
2

+ vI
dMI
dz2

− cMI − MIM
K + aMSMI = 0.

(15.6)

There are two interesting scenarios.

(i) Initially the system is at a state of low carrying capacity (below Kc) and the pop-
ulation consists of uninfected mice only at the stable equilibrium. When the environ-
ment changes so that K > Kc, the population will be out of equilibrium: the suscep-
tible mice population will evolve towards a new equilibrium and a wave of infected
mice will invade the susceptible population. Analysis at the unstable equilibrium
(K(b−c), 0) implies that traveling wave speed satisfies v ≥ 2

√
D[−b+ aK(b− c)].

(ii) Initially the system is empty of mice. Consider a system with K > Kc and with
MS = MI = 0 in almost all of its range, but with a small region where MS > 0
and MI > 0. A wave of both mouse populations will develop and invade the empty
region. The wave speed of the susceptible is vS ≥ 2

√
D(b− c) and the wave speed

of the infected vI ≥ 2
√
D[−b+ aK(b− c)].

The density of susceptible mice rises from zero and lingers near the positive unstable
equilibrium before tending to the stable one.

Barbera et al. (2008) generalized the Abramson-Kenkre reaction-diffusion model to
a hyperbolic reaction-diffusion model for the hantavirus infection in mouse popula-
tions and investigated traveling wave solutions related to the spread of the infection
in the landscape. For further studies on modeling spatial spread of hantavirus, we
refer to Giuhhioli et al. (2005), Kenkre et al. (2007), and the references cited therein.
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15.6 Lyme disease

In 1975, a group of children in the Lyme, Connecticut, area were originally diag-
nosed as having juvenile rheumatoid arthritis (Steere et al., 1977). Subsequently it
became apparent that this occurrence was actually a delayed manifestation of a tick-
transmitted multisystem disease for which some manifestations had been reported
previously in Europe (Steere et al., 2004). In 1976, the disease was recognized as
a seperate entity and named Lyme disease (Steere, 1989). In 1981 the spirochetal
bacterium Borrelia burgdorferi from the deer tick Ixodes scapularis was identified
(Burgdorfer et al., 1982) and cultured from patients with early Lyme disease (Steere
et al., 1983). Lyme disease is now the most commonly reported tick-borne illness in
the US, Europe, and Asia (Dannis et al., 2002; CDC, 2002b; Zhang et al., 1998).

New cases of Lyme disease appear at unabated rates in endemic regions, the geo-
graphic distribution of the incidence of Lyme disease has expanded rapidly, and the
spread of the disease involves direct interactions among no fewer than four species
(Ostfeld et al., 1995). The hematophagous vector is the deer tick Ixodes scapularis.
Larval and nymphal ticks feed primarily on the white-footed mouse Peromyscus leu-
copus but will attack a variety of hosts; inadvertent nymph bites can infect humans
with the spirochete. Adult ticks feed preferentially on white-tailed deer Odocoileus
virginianus.

Caraco et al. (1998) proposed an ODE model focusing on these four species and
let infection in humans follow as a consequence of the community’s population dy-
namics. According to Caraco et al. (1998), Ixodes scapularis exhibits a two-year life
cycle. 89% of newly hatched larvae attack white-footed mice. Larvae that obtain a
blood meal drop off their host and then overwinter as nymphs. At the beginning of
the second year, nymphs quest for a blood meal (the second of the life cycle). If they
succeed, the nymphs mature to the adult stage. Adult females feed almost exclusively
on white-tailed deer and mate there. Females eventually drop off the deer they have
parasitized, lay about 2000 fertile eggs nearby, and die. It is estimated that 20− 33%
of nymphs in infected areas (ticks that have previously taken a single blood meal) are
infected, and that 50% of questing adults (those that have already taken two blood
meals) are infected with the spirochete. Interestingly, it is the tick to mouse to tick
enzootic cycle of infection that maintains the spirochete. Seasonality helps drive the
cycle. Nymphs infected last year appear first as warmer weather begins; these ticks
pass the spirochete to susceptible mice. After summer has arrived larvae hatch, quest
for a blood meal, and acquire the spirochete when they attack an infected mouse.
These individuals then become quiescent as infected nymphs, completing the cycle
of infection.

Since deer move fecund adult ticks, their dispersal influences the spatial pattern of
tick larvae. But deer cannot be infected and do not disperse the pathogen. Further-
more, Borrelia cannot survive outside of its hosts. Mice usually disperse juvenile
ticks, and dispersal of infectious mice can introduce the spirochete into tick popu-
lations. So the spatial advance of infection must be driven by dispersal of mice and
other hosts to juvenile ticks (Van Buskirk and Ostfeld, 1998). Caraco et al. (2002)
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modeled the advance of the natural infection cycle as a reaction-diffusion process.
The model may help identify factors influencing the rate at which the disease spreads
and predict the velocity at which spirochete infection advances spatially.

The model treats population densities at locations (x, y) in a two-dimensional do-
main Ω. Parameters for birth, death, infection, and developmental advance do not
depend on spatial location. Diffusion approximates dispersal via random motion.
It is assumed that the dynamics and dispersal of mice are independent of infesta-
tion/infection status. To limit the number of variables, dispersal of nymphs is ignored.
At equilibrium population densities, nymph dispersal does not affect the spread of
Lyme disease. Dispersal of larvae is important; spatial dispersion of replete larvae
governs the pattern in the risk of Lyme disease when these animals quest as nymphs.
Therefore, dispersal of larvae while they feed on mice is considered. Adult ticks
reproduce and disperse diffusively; dispersal of adults mimics movements of deer
while ticks mate (deer are not modeled explicitly). Natality and mortality among
black-legged ticks are apparently independent of Borrelia infection (Van Buskirk
and Ostfeld, 1998). The model requires six state variables for the reaction-diffusion
dynamics; among them, three subsidiary variables are required to model the tick’s
population structure.

Mice reproduce in a density-dependent manner and incur density-independent mor-
tality. Since mice are born uninfected, the equation for susceptible-mouse density
M(x, y, t) includes birth, death, acquisition of the spirochete from infectious-nymph
bites, and dispersal:

∂M

∂t
= DM

(
∂2M

∂x2
+
∂2M

∂y2

)
+ rM (M +m)

(
1− M +m

KM

)
− μMM − αβMn,

(15.7)
where DM is the diffusion coefficient for mice with unit (distance)2/time; rM is the
intrinsic birthrate; KM is the spatially homogeneous carrying capacity; μM is the
individual mortality rate among mice; α is the attack rate of juvenile ticks questing
for mice; β(0 < β < 1) is a mouse’s susceptibility to pathogen infection when bitten
by an infectious nymph.

The density of pathogen-infected mice m(x, y, t) increases as susceptible mice are
bitten by infectious nymphs and decreases through mortality. The equation for in-
fected mice includes infection, death, and dispersal:

∂m

∂t
= DM

(
∂2m

∂x2
+
∂2m

∂y2

)
− μMm+ αβMn. (15.8)

The subsidiary variable L(A, a) is the density of questing larvae which declines
through mortality and attacks on mice, where A(x, y, t) and a(x, y, t) are density of
uninfected adult ticks and pathogen-infected adult ticks, respectively. It is assumed
that larval hatching rate depends nonlinearly on adult tick density. Then, at each point
(x, y) :

dL

dt
= r(A + a)[1− c(A+ a)]− μLL− αL(M +m), (15.9)
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where r is the tick’s per capita reproduction at low density; μL is the mortality rate
among questing larvae; and c represents crowding among reproducing ticks. Larvae
must hatch at a positive rate when (A+a) > 0, so c is small. Essentially, c is inversely
proportional to deer density, which is assumed a constant and treated implicitly.

The density of larvae infesting susceptible mice V (x, y, t) varies in successful attack,
completion of the first blood meal, death, and dispersal while they infest mice:

∂V

∂t
= DM

(
∂2V

∂x2
+
∂2V

∂y2

)
− (σ + μV )V + αML, (15.10)

where σ is the rate at which larvae infesting mice complete their meal, and μV is the
mortality rate among larvae infesting mice. Since the duration of a larval meal seldom
exceeds a few days, σ > μV . The assumptions concerning the density of larvae
infesting pathogen-infected mice, v(x, y, t), are similar. We substitute the density of
infectious mice (m) for susceptible-mouse density (M) and obtain ∂v/∂t.

The subsidiary variable N(V, v) is the density of susceptible questing nymphs at
(x, y, t), which increases as larvae complete their first meal without acquiring the
spirochete. The larvae may have infested a susceptible mouse or attacked an in-
fectious mouse and avoided infection. As they die, bite humans, and attack mice,
N(V, v) decreases. Combining processes yields

dN

dt
= σ[V + (1− βT )v]−N [γ + α(M +m) + μN ], (15.11)

where βT (0 < βT < 1) is a tick’s susceptibility to infection when feeding on an
infected mouse. The mortality rate among questing nymphs is μN , and γ is the rate
at which nymphs bite humans.

The subsidiary variable n(v) is the density of questing infectious nymphs at (x, y, t).
Infectious nymphs must have attacked a mouse infected with Borrelia as larvae and
then acquired the pathogen. Their density at any location (x, y) varies as

dn

dt
= βTσv − n[γ + α(M +m) + μN ], (15.12)

where the term γn represents the local risk of Lyme disease to humans.

The density of uninfected adult ticks A(x, y, t) changes through attacks of those
nymphs on mice, death of adults, and dispersal:

∂A

∂t
= DH

(
∂2A

∂x2
+
∂2A

∂y2

)
− μAA+ αN [M + (1− βT )m], (15.13)

where μA is the density-independent mortality rate among adult ticks. The diffusion
coefficient DH models dispersal of adult ticks while they infest deer.

The density of pathogen-infected adult ticks a(x, y, t) increases as infected nymphs
attack any mouse and as susceptible nymphs attack infected mice and acquire Borre-
lia during their second blood meal. Adding death and dispersal yields

∂a

∂t
= DH

(
∂2a

∂x2
+
∂2a

∂y2

)
− μAa+ α[(M +m)n+ βTmN ]. (15.14)
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To analyze this model, Caraco et al. (2002) first identified three aspatial equilibria:
extinction of the system, positive abundance of ticks and mice in the absence of
spirochete, and proportional infection of both mice and ticks. Then they studied how
adult tick mortality and juvenile attack rate influence the velocity at which infection
spreads in the diffusion model. Their results indicate that as vector mortality rates
vary, the disease spread velocity is roughly proportional to the density of infectious
vectors, and thus proportional to the local risk of zoonotic infection. However, as the
rate at which juvenile ticks attack hosts varies, the spread velocity of infection may
increase or decrease. In both cases, the disease spread velocity remains proportional
to the frequency of infection among hosts.

15.7 Feline immunodeficiency virus (FIV)

In 1987, the isolation of a T-lymphotropic virus possessing the characteristics of a
lentivirus from pet cats in Davis, California was reported (Pedersen et al., 1987). The
virus is a member of the family of retroviruses and causes an acquired immunode-
ficiency syndrome in cats. It shares many physical and biochemical properties with
human immunodeficiency virus (HIV) and was therefore named feline immunodefi-
ciency virus (FIV). Today FIV has been detected worldwide. The prevalences vary,
ranging from 2% in Germany and 16% in the United States to 33% in the United
Kingdom and 44% in Japan (Hartmann, 1998).

FIV can be isolated from blood, serum, plasma, cerebrospinal fluid, and saliva of
infected cats. The infection is much more common in males than females since the
transmission mode is through bites inflicted during fights and biting is more apt to
occur between male cats (Yamamoto et al., 1989). Veneral transmission from infected
males to females is possible. In experimental studies, infection has been shown to
occur not only via a vaginal route, but also via rectal mucous membrane (Moench et
al., 1993).

Though there is no evidence that FIV can spread to humans, it is important to study
its epidemiology for a variety of reasons. Its spread mimics the spread of HIV within
the human population and it is possible that subsequent mutations of FIV could pro-
duce a virus capable of infecting humans. Courchamp et al. (1995) constructed a
deterministic model to study the circulation of FIV within populations of domestic
cats. Since all sexually transmitted diseases can be transferred from males to males,
from females to females, and from males to females and vice versa, Fitzgibbon et al.
(1995) proposed a criss-cross infection model to describe the spread of FIV. Their
model uses Fickian diffusion to account for the geographic spread of the disease and
introduces age of the disease within an individual as a structural variable.

Divide the feline population sexually into male and female classes. Each of these
classes is in turn subdivided into susceptible and infective subclasses. Consider four
state variables u,w, v, z representing population densities of susceptible males, in-
fective males, susceptible females, and infective females, respectively. Assume that
the infection spreads from infective males to susceptible males and females and from

© 2010 by Taylor and Francis Group, LLC



FELINE IMMUNODEFICIENCY VIRUS (FIV) 309

infective females to susceptible males and females, with different infection rates. Let
Ω ⊂ Rn(1 ≤ n ≤ 3) be a bounded region which lies locally on one side of its
boundary ∂Ω, which is sufficiently smooth. The criss-cross epidemic model without
age structure is, for x ∈ Ω, t > 0 :

∂u
∂t

= d1Δu− k1uw − k2uz,

∂w
∂t

= d2Δw + k1uw + k2uz − λ1w,

∂v
∂t

= d3Δv − k3vw − k4vz,

∂z
∂t

= d4Δz + k3vw + k4vz − λ2z

(15.15)

with Neumann boundary conditions

∂u

∂n
=
∂w

∂n
=
∂v

∂n
=
∂z

∂n
= 0, x ∈ ∂Ω, t > 0 (15.16)

and initial conditions

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0,
w(x, 0) = w0(x) ≥ 0, z(x, 0) = z0(x) ≥ 0, x ∈ Ω, (15.17)

where ki(i = 1, ..., 4) are the infection rates of the four subclasses; λ1 and λ2 are
the removal rate of the infective males and females, respectively; di(i = 1, ..., 4)
are the diffusion rates of the four subclasses. All parameters are positive constants.
The Neumann boundary conditions imply that all populations remain confined to the
region Ω for all time.

The analysis of Fitzgibbon et al. (1995) indicates that the infective population is al-
ways ultimately extinguished. Thus, the model applies to a short term development
of FIV, which extinguishes because of a lack of new susceptibles. From their ODE
model, Courchamp et al. (1995) claim that FIV is endemic in domestic feline popula-
tions. The reason is that the model of Courchamp et al. incorporates a logistic growth
nonlinearity for the total population, whilst the the model of Fitzgibbon et al. does
not include demographic population dynamics of the feline population.

Hilker et al. (2007) extended the model of Courchamp et al. (1995) to the reaction-
diffusion system version. Let S(x, t) and I(x, t) denote the densities of susceptible
and infectious cats in the location x ∈ Ω (in km) and at time t > 0 (in years), so that
P (x, t) = S + I is the density of the cat population (in number of individuals per
km2). The model takes the form

∂S
∂t

= DSΔS − σSIP + β(P )P − μ(P )S,

∂I
∂t = DIΔI + σSIP − μ(P )I − αI,

(15.18)

where DS and DI (km2 per year) are the diffusion rates of the susceptibles and
infectives, respectively; σ is the transmission coefficient; and α is the disease related
death rate. The fertility function β(P ) ≥ 0 and the mortality function μ(P ) ≥ 0
are assumed to be density-dependent; the intrinsic per-capita growth rate is g(P ) =
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β(P )−μ(P ). If β(P ) = b > 0, μ(P ) = m+rP/K, r = b−m,m > 0, one obtains
the well-known logistic per-capita growth rate g(P ) = r(1 − P/K). If

β(P ) =
{
a[−P 2 + (K+ +K− + e)P + c], 0 ≤ P ≤ K+ +K−
nonnegative and nonincreasing, otherwise

and μ(P ) = a(eP +K+K− + c), then the per-capita growth rate

g(P ) = a(K+ − P )(P −K−)

describes the strong Allee effect in the vital dynamics. This type of function can be
used to model the fact that cat is a very opportunistic predator and is one of the worst
invasive species threatening many indigenous species.

For the model with logistic growth, numerical simulation indicates that a traveling
infection wave emerges and advances with a constant speed. In its wake, the popula-
tion settles down to the endemic state. In the model with Allee effect, the emergence
and propagation of a traveling wave can be observed as well. However, if the trans-
mission coefficient is further increased so that the nontrivial state disappears, two
different scenarios are possible: (a) front reversal with eventual host extinction (see
Fig. 2c, Hilker et al. 2007) and (b) a transient (and spatially restricted) epidemic be-
fore disease-induced extinction (see Fig. 10, Hilker et al. 2007). In both cases, the
propagation of traveling pulse-like epidemics will wipe out the host population.

Recently, the spatial spread of some infectious diseases, including FIV and FeLV
(Feline Leukemia Virus), among animal populations distributed on heterogeneous
habitats has been extensively studied. We refer to Fitzgibbon et al. (2001), Fitzgibbon
and Langlais (2008), Malchow et al. (2008), and the references cited therein.

15.8 Summary

We have summarized a few models developed for specific diseases which involve
animal hosts and have significant implication to human health: rabies, dengue, West
Nile virus, hantavirus, Lyme disease, and feline immunodeficiency virus. A common
feature of these diseases is the involvement of a certain animal carrier and at least
a subgroup of individuals in the animal population that may move more or less ran-
domly in space. This feature leads naturally to the addition of diffusion and perhaps
advection terms to classical compartmental models.

Most studies introduced here started with the assumption that the disease is capable
of invading the susceptible population in a spatially homogeneous environment, and
these studies then considered the issue of spatial spread patterns and disease propa-
gation speeds under various conditions of spatial movement of the host population.
A particular object is the existence of traveling wave fronts and the minimal wave
speed of such fronts that is believed to coincide with the disease spread speed.

Spatial diffusion may interact with structural heterogeneity, for example, maturation
status of the host population. How this interaction leads to particular spatio-temporal
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patterns of disease spread and the implication for the design of containment strategies
was a key issue of some of the studies discussed here. Further work in this area is
discussed in two other recent review articles (Ruan, 2007; Gourley et al., 2008).

Diseases involving multiple species or higher dimensional space may also permit
different propagation speeds for different species and dimensions, and pose great
mathematical challenges for analysis. Furthermore, parameterizing spatial models
from epidemiological or biological data (Noble, 1974; Murray et al., 1986) is difficult
but crucial in studying the spatial spread of diseases.

So, despite the substantial recent progress in the study of spatial spread of diseases
using reaction-diffusions equations, the implications of spatial structure in epidemi-
ological models are still far from clear, and the statement in Murray (2003) remains:
“the geographic spread of epidemics is less well understood and much less well stud-
ied than the temporal development and control of diseases and epidemics.”
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CHAPTER 16

Economically optimal management of a
metapopulation

James N. Sanchirico
University of California at Davis

James E. Wilen
University of California at Davis

Abstract. An informational revolution is underway in the natural sciences that is generat-
ing a comprehensive picture of meso- and micro-scale phenomena of the biosphere that ap-
pear as previously unrecognized spatial patterns in natural and man-influenced landscapes.
These patterns, in turn, pose new questions about spatial-dynamic processes at various
scales in coupled human and natural systems. Many of these questions are spawning new
paradigms that focus explicitly on space and the manner in which the dynamics of pat-
terns are generated. With all of this new information, a natural question to ask is: what are
the implications for managing natural resources? And, how does the answer to that ques-
tion depend on the spatial characteristics of the resource, such as spatial heterogeneity and
dispersal processes? To provide qualitative insights into these questions, we develop a styl-
ized bioeconomic model of a metapopulation. We use the model to numerically investigate
optimal spatial-dynamic harvesting policies for a metapopulation and the consequences of
implementing policies that treat the resource as if it is uniformly distributed over a homoge-
nous environment. The latter is representative of the current framework used to develop a
suite of policies for managing marine resources. Our findings highlight the need to bet-
ter understand the economic-ecological implications of spatial-dynamic processes and to
better incorporate these processes into management decisions.

16.1 Marine metapopulations

Over the last 20 years, the assembly and synthesis of an enormous amount of new
information on ocean processes has greatly improved our understanding of oceano-
graphic processes that operate on spatial and temporal scales ranging from small
to large (Hilborn et al. 2003). We are also learning more about how oceanographic
processes along with habitat heterogeneity affect the spatial distribution of marine
populations. At one end of the spectrum are processes like the Pacific Decadal Os-
cillation (PDA) and North Atlantic Oscillation that involve long periods where wind,
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sea surface, and temperature are favorable to certain fish assemblages, followed by
"flips" in conditions that then favor other assemblages (Mantua et al. 1997). At an
intermediate scale are processes like El Ninos that operate on an intra-annual basis
and that dominate the strength and locations of upwelling conditions (Cury et al.
1995) . At the smaller scale are nearshore and short term coastal events such as the
springtime currents and winds that blow and then relax periodically.

These short and long-term external oceanographic and environmental drivers inter-
act with larval production, dispersal, and settlement processes (Caley et al. 1997) in
complex ways. For example, some populations of species, such as red sea urchins
on the west coast of North America, have their entire annual recruitment determined
by wind conditions and oceanographic currents during a window of a few days or
week (Smith and Wilen 2003). Larvae are not necessarily passive in this process and
the degree to which individuals are essentially retained either by means of active bi-
ological mechanisms (like changing buoyancy) and/or external drivers in their natal
or local habitat is becoming better understood (e.g., Cowen et al. 2000; Warner and
Cowen 2002; Swearer et al. 2002; Thorrold et al., 2002, Cowen et al. 2006). How-
ever, understanding the rates and nature of dispersal of different age classes within a
species is still a topic about which far too little is known (e.g., Shanks et al. 2003) and
movement rates appear to be highly variable among even closely related species. The
post-settlement success of the recruits also depends on scale and context-dependent
demographic factors and population regulation mechanisms that may operate at dif-
ferent strengths and different points in the life cycle (Steele 1997; Quinn and Deriso
1999).

The upshot of all this is that the new science is revealing more information about the
patchy distribution of marine populations and the determinants of that patchy distri-
bution. Because of this information revolution, the conventional aspatial paradigm
for describing the nature of marine systems is giving way to a new spatial paradigm.
One parsimonious conceptual framework for this new paradigm is the concept of a
metapopulation, which is a system consisting of local populations occupying discrete
habitat patches with significant demographic connectivity between patches (Kritzer
and Sale 2004; Sale et al. 2006). As Joan Roughgarden, a prominent mathematical
ecologist stated, the “m[M]etapopulation concept is here to stay in marine ecology.
Science demands it, fisheries management needs it, and it is the last hope for marine
conservation. It marks the most important milestone of marine ecology in more than
50 years” (page xix Sale et al. 2006).

We adopt the metapopulation framework and develop a bioeconomic model that
treats space explicitly in the form of three discrete patches (Levin 1992). Fish pop-
ulations may disperse between the patches via various mechanisms at a variety of
rates. Focusing on a small number of discrete patches may seem restrictive, but, as
Hastings and Botsford (2003) argue, such an approach can approximate models with
space treated continuously. Our framework is especially suited to investigate how
patch or habitat heterogeneity interacts with dispersal and connectivity to affect the
potential benefits from applying spatially explicit policies.

We employ the model used in Sanchirico et al. (2008). We summarize its basic prop-
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erties first. Assume that there are three habitats or patches with population sizes xi

with i = 1, 2, 3. The populations are assumed to grow at rates Fi(x1, x2, x3), which
depend on the population sizes in the system. In particular, the population dynamics
within each patch are:

dx1

dt
= F1(x1, x2, x3)−h1 = r1x1(1−x1)+ d13x3 + d12x2− d11x1−h1 (16.1)

dx2

dt
= F2(x1, x2, x3)−h2 = r2x2(1−x2)+ d21x1 + d23x3− d22x2−h2 (16.2)

dx3

dt
= F3(x1, x2, x3)−h3 = r3x3(1−x3)+ d31x1 + d32x2− d33x3−h3 (16.3)

where hi is the catch rate in patch i and dij is the dispersal rate between patch i and
patch j. The intrinsic growth rates, ri, can vary due to differences in habitat quality
across the system.

For a single isolated patch (for example, let x2 = 0 and x3 = 0), the population
x1 increases logistically with a growth rate r1 but loses individuals at a density-
independent rate d11. When additional patches are included, we assume that the set-
tlement rate is independent of the density in the arrival patch (denoted by the term
d12x2 and d13x3). This type of process can be thought of as adult settlement, where
adult survivorship is assumed unaffected by density dependent mechanisms.

While this model is very general, there are some constraints on the dispersal param-
eters that should be imposed to ensure that what leaves one area is greater than or
equal to what arrives in another. (This restriction does not allow for the possibility
of biomass entering the system from patches other than the three we consider.) In
particular, we assume that there is no mortality and that what leaves patch i for patch
j arrives in patch j.

We permit dii and djj to vary, which allows us, for example, to investigate differ-
ent types of connectivity. For example, we benchmark our results by investigating a
closed or independent system where all of the dij = 0. We also consider a system
where adult biomass can get from every patch to every other patch (denoted fully-
integrated) where dij > 0. Finally, we investigate a source-sink system, where patch
one is assumed to be the source and the dispersal is unidirectional to the sink patches
(dj1 > 0 with j = 1, 2, 3 with the remaining dij set to zero). We illustrate the three
metapopulation structures in Figure 16.1.

The model is capable of depicting the variety of behavioral characteristics of a meta-
population as well as connectivity patterns stemming from typical oceanographic
features. A discrete model of this type can also depict a range of productivity as-
sumptions in a system of individual patches. Some patches may have higher biolog-
ical productivity than others, while others may have no inherent productivity. See
Sanchirico et al. (2008) for additional types of connectivity nested within this model.
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Figure 16.1 Metapopulation structures where the arrows illustrate potential dispersal flows.

16.2 Optimal control model

In this section, we show how one might choose fishing effort rates in each patch
and in each period to optimally guide the metapopulation system toward a profit
(rent)-maximizing equilibrium. A considerable literature exists (Scott 1954; Crutch-
field and Zellner 1962; Brown 1970; Plourde 1970; Burt and Cummings 1970; Smith
1968; Clark 1976; Clark and Munro 1975) that outlines the so-called sole owner opti-
mum, which is the case we are considering, for renewable resource use in an aspatial
context. The main conclusions are as follows. First, as long as parameters are con-
stant, there is an optimal long run steady state to which the optimal dynamic trajec-
tories should converge. Second, it is desirable to get to this steady state as quickly as
possible. If there are "adjustment costs" the optimal approach will be a more gradual
asymptotic approach.

For a review of the literature that investigates the exploitation of a metapopulation
from the sole owner perspective, see Sanchirico and Wilen (2007) and the citations
therein. We extend these analyses by: (1) using a three patch metapopulation system
as opposed to the standard two patch analysis; (2) investigating the role of differ-
ent forms of connectivity; (3) characterizing the full spatial-dynamic solution rather
than just focusing on the optimal long-run steady-sate, and (4) calculating the cost
of ignoring the spatial characteristics of the resource in management decisions. A
related paper is by Neubert and Herrera (2008) who use a continuous in time and
space formulation to look at fishing effort patterns.

We assume, as does most of the previous work, that the regulator is knowledgeable,
understanding population dynamics and dispersal mechanics of the biology, with per-
fect foresight. The objective function of the social-planner is to maximize the present
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discounted value (which is essentially the sum of current plus all future profits taking
into account that the farther into the future profits accrue, the less they are worth) of
fishing rents or profits across the patches by choosing the level of fishing effort in
each patch in each period (E1(t), E2(t), E3(t)). Mathematically, we represent the
objective function as:

J(E1(t), E2(t), E3(t)) =
∫ ∞

0

exp(−δt){
3∑

i=1

[pihi(t)− ciEi(t)]}dt (16.4)

where hi(t) = qiEi(t)xi(t) is the harvest rate in patch i, qi is the catchability coeffi-
cient in patch i, pi is the price received at the dock from fish in patch i, ci is a fishing
cost parameter in patch i, and δ is the social discount rate (Clark 1990). We allow
prices to vary across space due to differences in product quality, but for simplicity
assume prices remain constant over time. We also assume that prices for the fish
are not responsive to changes in harvest levels, which is an appropriate assumption
when the fishery in question makes only a small contribution to a global fish market.
Costs and cactchability coefficients can vary due to oceanographic and geographic
characteristics of the patches.

The maximization of equation (16.4) is subject to the metapopulation dynamics rep-
resented in equations (16.1), (16.2), and (16.3), a set of initial population levels,
and additional control constraints. For example, fishing effort in each habitat is con-
strained between Emin

i and Emax
i : Emin

i ≤ Ei(t) ≤ Emax
i .

Sanchirico and Wilen (2005) and Sanchirico et al. (2008) discuss the steps for solving
this problem. Essentially, the basic procedure is as follows. First, we note that the
optimal fishing effort level is determined by maximizing the Hamiltonian (H), which
is defined as:

H = exp(−δt){
3∑

i=1

[pihi(t)−ciEi(t)]}+λ1(F1−h1)+λ2(F2−h2)+λ3(F3−h3)

(16.5)
where λi are the shadow prices or adjoint variables that represent the marginal value
of an additional unit of patch biomass on the present discounted fishery profits (Kami-
en and Schwartz 1991).

Since the problem is linear in the controls, we can first rearrange the Hamiltonian to
isolate the control variables. Once this is done, we observe that there are switching
functions in the Hamiltonian that are:

σi(t) ≡ ∂H

∂Ei
= exp(−δt)(piqixi − ci)− λi (16.6)

These switching functions are the time-varying coefficients that multiply each of the
controls in the rearranged Hamiltonian. By the Pontryagin necessary conditions, each
control must be chosen to maximize the Hamiltonian at each instant. Since controls
enter the Hamiltonian linearly, the optimal levels of the control instruments in each
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patch i must satisfy:

E∗i =

⎧⎨
⎩

Emax
i when σi(t) > 0

Es
i = singular when σi(t) = 0

Emin
i when σi(t) < 0

(16.7)

When a switching function is positive, the optimal control for that patch is set at its
maximum and when the switching function is negative the control must be set at its
minimum allowable value. If the switching function is zero, the control must be set
at its “singular value.”

These conditions have well-known interpretations of tradeoffs between current mar-
ginal profits of another unit of harvest in a patch with the shadow value of that same
marginal unit; when the difference is positive it pays to harvest and when negative it
pays to "invest" the marginal unit in biomass and future profits. In this system, the
twist is that a particular patch’s shadow value reflects not only the role of a unit of
biomass on future own-patch profits, but also the role that the patch plays in gener-
ating future harvest profits in other patches due to dispersal and other ecological and
oceanographic interconnections.

In addition to the switching functions, the six other necessary conditions include the
biomass state equations (16.1), (16.2), and (16.3) along with the adjoint equations
(16.8). With respect to the latter, Pontryagin’s Principle states that for an optimal
solution (x∗1, x

∗
2, x

∗
3, E

∗
1, E

∗
2, E

∗
3) there exist adjoint variables λ1, λ2, and λ3 such

that

λ̇i ≡ dλi

dt
= −∂H

∂xi
(16.8)

To determine the values of the singular control Es
i when one or two of the switching

functions in equation 16.6 are nonzero for a finite time period, we need to solve
for a singular feedback law (Fraser-Andrews 1989, Volker 1996). In order to obtain
the feedback law, we differentiate the switching function with respect to time, as
many times as needed (Fraser-Andrews 1989, Volker 1996), substituting equations
where appropriate, until the control appears in the expression. For our model, we
use σ̈i(t) = 0, σ̇i(t) = 0, and σi(t) = 0 along with ẋi, ẍi, λ̇i, and λ̈i to obtain a
complicated closed-form expression for the singular feedback law.

Given the initial values of the fish stock, Xi(0), and the upper and lower bounds on
fishing effort, the full solution to the optimal control path for patches pieces together
the following components:

Ei ∈ {Emin
i , Emax

i } 0 ≤ t ≤ t1, i ∈ (1, 2, 3){
Ei(t) = Es

i (t)
Ej ∈ {Emin

j , Emax
j } t1 ≤ t ≤ t2, (i, j) ∈ (1, 2, 3) with i �= j

⎧⎨
⎩

Ei(t) = Es
i (t)

Ek(t) = Es
k(t)

Ej ∈ {Emin
j , Emax

j }
t2 ≤ t ≤ t3, (i, j, k) ∈ (1, 2, 3) with i �= j, j �= k

Ei(t) = Es
i (t) t3 ≤ t, ∀i ∈ (1, 2, 3)
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In linear control problems with only one control, the full dynamic solution is found
by solving for the switch time, which is the date at which the control switches to
the singular arc. In our case, we must find three switch times (t1, t2, t3) and search
for them using a shooting algorithm that is described in Sanchirico et al. (2008). We
also employ the necessary but not sufficient Generalized Legendre-Clebsch (GLC)
condition (Volker 1996) for optimality. We utilize the numerical closed-form sin-
gular feedback law along the singular arcs to describe the singular dynamics. We
do this by building into our numerical algorithm the symbolic solver capabilities of
MATLAB R©.

16.3 Optimal spatial-dynamic paths

In designing optimal extraction plans, the regulator needs to trade off not just the
economic values associated with standing biomass in the local patch, but also the
value associated with the local patch’s contribution to productivity of other patches
via various dispersal processes. Because the regulator is setting the optimal fishing
effort which in turn determines the catch in each patch in each period, he or she will
need to trade off catching more fish in patch 1, with the consequences to the rest of
the system, namely lower population levels and therefore fewer adults dispersing to
patch 2 and/or patch 3. This trade off explicitly accounts for the relative profitability
associated with harvesting in the patch, itself a function of bioeconomic parameters
associated with each patch as well as with the nature of connectivity between patches.

We describe a set of the results that highlight the interplay between different con-
nectivity structures, such as the closed or independent system, fully-integrated, and
source-sink, and the biological and economic characteristics of the patch. In each
case, we assume that patch 1’s initial biomass density is above its economically opti-
mal steady-state and patch 2 and 3 are considerably lower ((X1(0), X2(0), X3(0)) =
(.7, .4, .1)). Such a condition is likely, for example, if patch 1 is further offshore than
patches 2 and 3 and therefore has received less fishing pressure. Our assumption that
two out of three stocks need to be rebuilt is consistent with global conditions. For
example, in the United States’ exclusive economic zone one out every four major
fish stocks was classified as an overfished stock in 2006.

We parameterize the system to be consistent with our initial conditions where fishing
costs are ordered as c1 > c2 > c3 and p3 is 5 percent higher than the prices in the
other patches. The higher price represents circumstances in which the catch might be
delivered to market sooner (e.g., fresher) due to the relative proximity of the patch
to the port. Catchability coefficients and intrinsic growth rates are equal across the
patches. We set Emin

i = 0 and Emax
i is equal to 1.5 times the open-access level

of fishing effort. (See Sanchirico and Wilen (2007) for a discussion of open-access
in a metapopulation context.) In each analysis, the generalized Legendre-Clebsch
condition is satisfied and the trebly singular steady-state solutions are all interior.

We start with the closed or independent system to develop intuition on the optimal
dynamics (see Figure 16.2 panel A-C). In this case, our 3 patch result mimics the
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most rapid approach path (bang-bang control) results found in Spence and Starrett
(1975). That is, patch 1 is fished at the maximum rate possible driving down the pop-
ulation density until the steady-state level is reached at which point the effort level
switches to the singular path, which is time-invariant. Patch 2 and 3 effort levels are
set at their minimums (zero) and, hence, rebuild at varying rates due to different ini-
tial conditions, even though the intrinsic growth rates of the populations are identical.
If the economic and ecological parameters are homogenous and there is no dispersal,
then all three patches end up at the same steady-state. With habitat heterogeneity, as
we assume, or asymmetric dispersal processes, such as in the source-sink case, the
steady-states are no longer identical but the bang-bang nature of the dynamics is the
same.

The time scales presented are determined in the simulation and caution is in order
when trying to translate these values into calendar scales, as the parameter definitions
are not specific to a unit of time (e.g., growth rate per year, etc). In the closed system,
we find that patch 1’s effort level switches offEmax

1 at t1∗ = .7361 and goes onto its
time-invariant singular path. Patch 3, however, is under a moratorium with zero effort
optimal until it switches to its singular path at t3∗ = 8.88. Patch 2 with a higher initial
condition has a shorter moratorium than patch 3. Once patch 3 switches off Emin

3 ,
the system has reached the trebly-singular steady-state.

At the trebly-singular steady-state, we find that x∗1 > x∗2 > x∗3 and the corresponding
optimal effort levels are in the reverse order. The equilibrium biomass levels align
with the relative profitability of the patches, where patch one has the highest per unit
cost of fishing effort, patch 2 is slightly lower, and patch 3 has both a higher per unit
price and the lowest per unit cost of fishing.

Next we introduce connectivity into the system by considering the optimal dynamics
for the fully-integrated (See Figure 16.2 panel D-F) and source-sink system (see Fig-
ure 16.2 panel G-I), where patch 1 is assumed the source. Some of the key differences
between these cases and the independent system are:

1. The singular portion of the effort dynamics is time-varying rather than time-
invariant.

2. The biomass in patch 1 is driven to levels below its steady-state levels and then
allowed to rebuild with fishing occurring.

3. The system reaches the steady-state in less time with connectivity than without
connectivity.

4. In the source-sink system, it is optimal to fish patch 1 harder initially and then to
essentially abandon fishing for a period of time to allow the stock to rebuild.

All of these differences are driven by the fact that connectivity creates conditions
where the sole-owner needs to consider not just the return from fishing or not in
any given patch but also the effect that an action in patch i has on the economic
returns in other patches throughout the system. We observe these trade-offs between
the fully-integrated and independent system in the following ways:
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Figure 16.2 Optimal management of a metapopulation for the closed (panels A-C), fully-
integrated system (panels D-F) and source-sink system with patch 1 as the source patch (panels
G-I). The left y-axis measures the density of the population in the patch (solid lines), and the
right y-axis measures the amount of fishing effort (dashed lines). The x-axis is in the time
units of the simulation and should not be interpreted in calendar units, such as years. The
parameters used in the numerical analysis are: (c1, c2, c3) = (.48, .42, .3), (p1, p2, p3) =
(1, 1, 1.05),(q1, q2, q3) = (1.5, 1.5, 1.5), (r1, r2, r3) = (.26, .26, .26), dij = b = .0525 for
i �= j and dij = 2b for i = j, and δ = .05. (See color insert following page 202.)

1. Relative to the independent system, the moratorium in patch 2 is longer in the
fully-integrated system. The sole owner holds off fishing in patch 2, which implies
that the owner is foregoing economic returns, to let the population rebuild to a
higher level that helps to speed up the recovery in patch 3.

2. The sole owner switches off of the maximum effort level in patch 1 sooner in
the fully-integrated system relative to the closed system, which implies a higher
population that also can feed the recovery of patch 2 and patch 3.

3. The equilibrium biomass level in patch 1 is slightly higher in the fully-integrated
system than in the closed system, as the owner holds a higher biomass level as a
means to increase the perpetual flow of fish from the high cost patch (patch 1) to
the lower cost patches (patches 2 and 3) in the system.

In the source-sink system where the biomass is flowing from patch 1 to patch 2
and from patch 1 to patch 3, we see similar responses in the dynamics but now the
results are not as pronounced as in the fully-integrated system. This is because only
patch 1 can be used to feed the recovery of the other patches. For example, while
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the recovery time in patch 3 is less than in the closed system, it is not as fast as in
the fully-integrated system (it is only 34 percent faster than the closed system). We
also see that the gains from maintaining fishing at the maximum rate in patch 1 are
too great to forego in the source-sink, as the switch time is approximately double
that in the closed system. The reason for this is that patch 1 is contributing biomass
to the other patches independently of the density in the other patches. Therefore,
with everything else being equal, the net flows from patch 1 to patch 2 or 3 are
greater in the source-sink than in the fully-integrated system. This reduces the need
to hold larger populations in the patch. We also find that the moratorium in patch
2 is 26 percent shorter in the source-sink than in the fully-integrated system. The
shorter moratorium is because it no longer pays to delay fishing in patch 2, as it is
not connected to patch 3 in the system.

16.4 Economic costs when not accounting for resource patchiness

What is the cost of ignoring the spatial characteristics of resources, such as habitat
heterogeneity and dispersal processes? To investigate this, we solve for the optimal
controls in the case where all of the heterogeneity is averaged out of the system. This
might be the case, for example, if the resource is considered to be uniformly dis-
tributed throughout a homogenous environment. In particular, we assume that ci = c̄
where c̄ is the average of the cost parameters used in the previous section. The same
rule is applied for the price difference. We also assume that the initial conditions are
equal across the three patches and set to the average of the "true" levels that were em-
ployed above ((X̂1(0), X̂2(0), X̂3(0)) = (.4, .4, .4)). The reduction in the net present
value from applying aspatial policies in a spatial setting is the cost associated with
ignoring the spatial characteristics.

To calculate the costs, we undertake the following steps:

1. We solve for the optimal solution in the averaged system, denoted (x̂1, x̂2, x̂3, Ê1,
Ê2, Ê3) and the optimal switch times (t̂1, t̂2, t̂3).

2. We take (Ê1, Ê2, Ê3) and plug them into equations (16.1), (16.2), and (16.3)
with (X1(0), X2(0), X3(0)) = (.7, .4, .1) and the heterogenous parameters to
generate a path of biomass levels for each patch i, denoted (x̂1, x̂2, x̂3).

3. Using (x̂∗1, x̂
∗
2, x̂

∗
3, Ê1, Ê2, Ê3) and the heterogenous parameters, we evaluate the

objective function (16.4), and we denote the net present value level as N̂PV .
4. We calculate the percent difference in the net present value between NPV ∗ and
N̂PV , whereNPV ∗ is the net present value evaluated at (x∗1, x∗2, x∗3, E∗1, E∗2, E∗3)

Figure 16.3 illustrates the differences in the patch density levels between the spatial
and aspatial policies in the closed, fully-integrated, and source-sink system. That is,
we illustrate both (x∗1, x∗2, x∗3) and (x̂1, x̂2, x̂3). The corresponding differences in the
effort paths can be discerned from the stock dynamics. The single largest difference
comes from the averaging of the different initial conditions, which is a likely outcome
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Figure 16.3 Patch density levels for the closed (panels A-C), fully-integrated system (panels
D-F) and source-sink system with patch 1 as the source patch (panels G-I) in the spatial (solid
line) and aspatial or averaged system (dashed line).The parameters used in the aspatial numer-
ical analysis are: (c1, c2, c3) = (.4, .4, .4), (p1, p2, p3) = (1.01, 1.01, 1.01),(q1, q2, q3) =
(1.5, 1.5, 1.5), (r1, r2, r3) = (.26, .26, .26), dij = b = .0525 for i �= j and dij = 2b for
i = j, and δ = .05.

when stock assessments, for example, mask the underlying spatial heterogeneity. We
also observe variations in the switch times and steady-state levels that reflect the
averaging. Interestingly, the economically sub-optimal case (in the sense that the
"true" system is heterogeneous) results in a longer moratorium in patch 1 that speeds
up the recovery for patch 3 in both the fully-integrated and source-sink setting.

When the solutions from the aspatial case are run through the "true" metapopulation
system, we find more dramatic differences between the spatial and averaged setting.
In Figure 16.4 panels A, D, and G, the stock initially grows as a harvest moratorium
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Figure 16.4 Patch density levels for the closed (panels A-C), fully-integrated system (pan-
els D-F) and source-sink system with patch 1 as the source patch (panels G-I) in the spatial
system (solid line) and when inserting the aspatial or averaged system optimal fishing effort
trajectories into the “true” or spatial configuration (dashed line).

is put in place as opposed to fishing down the stock. We also see much more dramatic
changes in the stock levels.

We also observe that there are potentially significant economic costs. In our exam-
ple, applying the averaged results in a spatially-heterogeneous world results in a 54
percent reduction in the net present value in the closed system, 52 percent reduction
in the fully-integrated, and a 46 percent reduction in the source-sink system.

Given that the averaged policy eliminates the initial economic returns, it is likely that
a higher discount rate would lead to even higher losses in net present value from the
sub-optimal averaging. Indeed this is what we found when we increased the discount
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rate to 7.5 percent from 5 percent. At the higher discount rate, the costs were 63, 62,
and 56 percent for the closed, fully-integrated, and source-sink system, respectively.

For both the 7.5 and 5 percent discount rates, we also investigated the role of the
dispersal rate between the patches (we lowered the common dispersal rate by 50
percent). In each case, the losses in net present value essentially remained the same
for the fully-integrated system but increased slightly in the source-sink system. In
particular, we find that at δ = .075 the losses in the net present value were 59 percent
and at δ = .05 they were 49 percent of optimal. One explanation for the higher
losses is that with a lower dispersal rate, the ability to tailor the policies to optimize
the dispersal flow has greater value in terms of higher economic returns.

Of course, in general the less heterogeneity, in terms of habitat heterogeneity, initial
stock levels, and asymmetrical dispersal processes, the lower we expect the losses
from sub-optimal system averaging to be, everything else being equal. It is also pos-
sible that the implementation of an aspatial policy in a spatial world could lead to
localized or global stock collapse. Such a result seems much more likely when con-
ditions exist that lead to low stock levels even in the optimal spatial setting. For ex-
ample, a combination of very low fishing costs, high prices, and a high discount rate
is one possibility. Investigating the conditions under which this might occur seems
like a worthwhile topic for further research.

16.5 Conclusion

Modern management of fisheries is mostly carried out under a "whole fisheries"
paradigm. Whole fisheries management utilizes uniformly applied instruments over
large regions. Better information on the role of space and spatial processes in ma-
rine systems will be a catalyst for the creation of new institutions to incorporate this
understanding. In particular, it is likely that the future will move toward systems
that are more finely delineated spatially and temporally, in ways that incorporate the
patchy nature of abundance and the processes that connect various metapopulations
(Sanchirico and Wilen 2007).

At this stage of the scientific revolution where spatial characteristics such as disper-
sal are still very difficult to pin down (Shanks et al. 2003), developing models that
can help to predict the value of this new information for management provides a
rich opportunity for future research. During this process, surprises will be found that
challenge our basic intuition on resource management (Sanchirico and Wilen 2007).
For example, we find a discontinuity on the time-varying portion of singular arc that
is a function of having more than two controls that are interdependent along with
the extreme/singular nature of the control paths. This is not a result that emerges in
single or two control problems that are typical in the renewable resource economics
literature and are currently being used to guide the design of policies.

In general, interdependent multiple control systems such as this one are a funda-
mental feature of spatial-dynamic economic-ecological problems, such as invasive
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species, disease, erosion, marine and freshwater pollution, air pollution, and will be a
reoccurring theme as the management of marine systems moves towards ecosystem-
based management (Wilen 2007 and Smith et al. 2009).
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CHAPTER 17

Models of harvesting

Donald B. Olson
University of Miami

Abstract. The explicit dynamics of harvesting either through hunting or fishing or by grow-
ing crops is explored with attention to means of formulation of models for these activities.
In particular carrying capacity is expressed in these models as set by the area of landscape
being used for these activities. In the case of foraging the use of the area involves the en-
counter rate between prey and the forager. In terms of human use of natural resources the
stability of the system involves both the encounter rate and the handling time involved. In
terms of agriculture the system involves both the land area devoted to particular crops and
the use of capital to promote their growth and marketing. In this case it is the capitaliza-
tion that controls the stability of the activity. Ecologically it is interesting to consider the
case where the capitalization can be borrowed so that the capital pool is negative. In ex-
treme states the system allows negative capital and loss of production across an area, i.e.,
bankruptcy. The conclusion is that it is important to explicitly model the human activities
themselves if an understanding of these activities and their stability is going to be gained.

17.1 Introduction

The ecology of humans (Homo sapiens) is a topic that is highly diversified into the
fields of demographics, anthropology, and various social science fields such as eco-
nomics and political science. While there is a large body of mathematical literature
associated with the first of these, the other fields have fallen behind in the realm
of quantitative theory. Here the goal is to treat humans as another element of the
ecosystem and explore their impacts in terms of their use of “natural resources.” This
involves defining ecosystem services or human gain from the global ecosystem in
relationship to the workings of the natural ecosystem or ecosystem function (Ruhl
et al., 2007). While our exploitation of ecosystem services involves a wide range of
actions that impact the ecosystem here the focus is on the direct taking (consump-
tion) of resources through the act of harvesting. The approach is to formulate models
for the act of harvesting in two different ways. The first involves the earliest form
of foraging or hunting as manifest today primarily in large scale forestry and fishing
respectively. The second considers the later advent in human history of actually con-
trolling the ecosystem by husbandry of domesticated plants and animals. This seems

333
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to have first arisen in Asia Minor (Bar-Yosef and Belfer-Cohen, 1989; Bar-Yosef,
1998) but clearly arose separately in southeast Asia and the Americas ( see Mithen,
2003). In both cases the analysis will consider competition between resource ele-
ments and the structure of human society. In the case of the fisheries example this
includes food chain and food web dynamics to which human predation is added. In
the agricultural situation the choice in commodities and their interaction with capital
(monetary) resources is explored as one example of societal structure.

The models suggested here are simple in terms of the overall dynamics behind these
situations. They, however, allow the use of dynamical systems theory to provide a
means of understanding more complete models that defy simple analytical treatment
and therefore enter the realm of complexity of more massive simulation models. In
this sense the models here might be termed intermediate models that stand between
simple linear analyses and larger scale simulations of fisheries and agriculture (Olson
et al., 2005).

In the evolution of human civilization the trend has been in the direction of small
foraging groups that grew into larger aggregated structures (tribes, nations) that con-
trolled larger areas but tended to concentrate living areas into smaller areas such as
villages and eventually cities. This trend has drastically changed our ways of using
resources. To our current understanding this has occurred at least since the end of the
last ice age (Mitthen, 2004). In the last 10,000 years the trend has been for human
civilization to evolve as hunter/gatherer groups form denser populations that become
dependent on modifications of the local environment for their sustenance (Toynbee,
1976, Mithen, 2004).

The early examples of hunters and gatherer groups involve movement across the
landscape and concentration in resource rich areas. While there are some terrestrial
societies that still fall into this mold, the major remaining vestige of this behavior
occurs in the guise of marine fisheries and forestry today. Starting around 8000 years
ago humans began a trend for a more sedentary existence that utilized the ecosystem
by specifically encouraging certain animals and plants to dominate the environment.
At issue here are the factors that underlie this transition and the increase in the den-
sity of human populations, i.e. the growth of the village, town, and city. A hypothesis
(Mithen, 2004) is that the transition from foraging to agriculture involved the climate
(drought) driven decline in small scale resources of grains on the hill sides of mod-
ern Turkey which precipated a shift to the large scale irrigated lands of Mesopotamia.
In a similar manner the culture shifted from hunting of game, primarily gazelles, to
domestication of other species (sheep and goats; Bar-Yosef, 1998). Again these tran-
sitions are not unique in that they also occurred in two locations in Southeast Asia
(India and Indo-China) and in the Americas. In the latter case it may have also in-
volved two locations, one in the Andes and one in the area of southern Mexico (see
Mithen, 2004). In the case of these two areas there is little extant information on
the onset of agriculture or even the plants that led to modern rice and corn. The lo-
cation of the resulting cultures, however, provides a clue to the operant conditions.
One factor in all of these locations is that they appear as ecosystem boundaries and
locations that provide relatively small areas for human occupation. While there may
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be some fundamental flaws in the archeological record, the suggestion is that agri-
culture and domestication occurred in relatively localized areas and then spread out
into surrounding regions. The fact that there are at least three independent locations
involved suggests that the process is a natural emergent process in our species and
its interactions with the environment. In terms of our model formulation it makes it
imperative that space and time be considered in terms of demographic structure.

17.2 Basic model formulation

The mathematical formulation of the problem involves a set of populations Nj that
can be defined in terms of population numbers, density (numbers per area), or in
terms of the probability of finding an individual in an area. Interactions between
populations can take several different forms, Lotka-Volterra (modified logistic) or
Holling dynamics, for example, but will in general involve nonlinear interactions
with products or other functional forms representing the interaction between popu-
lations (see Murray, 1993). Here it is assumed that these populations are dependent
on space and time (x, t). In the case where specific entities are distributed across
space it is useful to associate an area, Aj(x, t), that defines a population carrying
capacity. Here this simply represents the physical space required by the population.
In addition to the population dynamics the problem demands consideration of other
variables, such as physiological status, age, and at longer time scales genetics (see
Olson et al., 2005). The goal here is to provide a model system that can directly
consider biogeography. Therefore it is important to carefully define Aj(x, t) and its
parameterization in the model framework.

For the current discussion Aj(x, t) will be considered to be a logistic variable. The
formulation assumes that the success of populations on an area decline with density
due to decreased births and increased natural loss of population in an area. Interac-
tions with other organisms, such as competition for area, can be parameterized with
the classical addition of a weighted logistic term. Here the equation for a species
density (population per area or probability of encountering the jth species,) Nj , is
given by

DNj/Dt = RNj(1−Nj/Aj − ΣbijNi/Aj)− P. (17.1)

Here the subscript denotes the species with Ni indicating the competition with other
species. The system then involves an equation for each species in the model ecosys-
tem. Here humans can be considered as just another species in the formulation. The
derivative with the capital D/Dt is used to denote all of the variables that structure
a population across space including physical movement such as movement of ani-
mals (walking, swimming), air or current flows (advective drift), and diffusion. Here
diffusion is an analog of molecular diffusion, but involves random movements tied
to animal behavior or in the case of marine or atmospheric transport of insects by
turbulence in these media. The total derivative also includes changes associated with
aging, metabolic factors, or genetics. See Olson (2007) for a detailed discussion of
the total derivative. The rate constant, R, is discussed in more detail below, but as
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the controlling rate constant it will include physiological factors in response to en-
vironmental variations other than forage and in the case of human harvesting capital
(money) available to sustain the harvest. The bij coefficient indicates the interaction
between competing species for the carrying capacity of the system. Again, here we
are considering this to be the ecosystem area used by the species. It is possible to
reconstruct the ratio of bij/Aj to express this as a carrying capacity (area niche) for
the other species, Ai. While the logistic formulation inherently considers losses, in
real systems it is necessary to include a predation term (P ). As discussed below this
adds a considerable amount of complexity.

In terms of hunting or foraging the P term involves the encounter rate (εij) between
species within their respective ecosystems and the time hi it takes for a consumer to
handle or harvest its resource (prey or crop). A fairly general formulation based on
mass action (see Cosner et al. 1999) leads to a P term of the form

P = εijNjNi/(1 + εijhiNj). (17.2)

In most realistic cases harvesting involves collections (village, city, global market)
and large aggregations of the harvested species. In this case harvesting is concen-
trated and the result of the harvest is shared within the community involved. As
derived by Cosner et al. (1999) a Beddington-DeAngelis functional response is used
in such cases which modifies P to the form

P = εijNjNi/(1 + εijhiNj + siNi). (17.3)

Here the additional term basically demands that per capita gain is lower due to shar-
ing of the resource (Cosner et al., 1999).

Before considering the solutions of these systems, it is important to return to rate
function R. The maximum harvesting rate is dependent on a number of variables
that are completely expressed in the above formulation for the target species except
for factors that involve the ability of the harvesters themselves. In general these fac-
tors can be put into the P -term or into the total derivative (DNj/Dt), but to simplify
the system and to provide some further understanding of the harvesting process, it
is useful to consider the factors involved in putting the harvesting into action. Here
the focus is on humans and their use of the ecosystem. The formulation above for
hunting or foraging over an area Aj includes the process of encounter (εij) and pro-
cessing of the resource (hi). While these terms treat the actual return involved with
encounters and the time it takes for each encounter to yield a successful result, the
model does not consider issues that lead to variations in effort. Effort here is defined
in the typical fisheries context as the resource applied to harvesting. In both the ma-
rine and terrestrial context R will involve the important social/economic variables
where Ni is a human economic measure and the rate processes involve harvesting of
the resources.

The rate of utilization of a resource in various systems depends on their organization
and the level at which it is harvested. In ecology there is a considerable discussion
involved with food-chains (linear trophic systems) versus food-webs (Fig. 17.1). In
the figure both systems represent the minimal description of a real system. Math-
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ematically, however, these represent the limit of classical (nonnumerical) analysis.
This means that one can calculate steady states (fixed states) and provide an analysis
of their stability. While some portions of the conclusions depend on the formulations
described above, the major issues involve the formulation of R and its interaction
with the P term. In the context of the current discussion R will be posed as a cata-
lyst term governed by Michaelis-Menten or Holling dynamics. The basic form is then
Xi/(K+Xi), whereXi is a controlling variable. The rate term (R) then can include
explicit influence of the physical climate, T (x, t), or economic variables such as cap-
ital (money, Cj ) and markets (Mj). The subscripts associate the economic variables
with specific populations, but it is assumed that there are transfers between these just
as there are interactions between populations. Furthermore, it is assumed that the cli-
mate variable impacts the rate coefficients in the population equations and changes
in populations invoke variations in capital and respond to market pressure. These
interactions will in general also involve nonlinear functions. While at this point the
intent is to allow the specific formulations to be open, there are some limitations to
the possible forms that can appear. In particular it is assumed that the equations allow
positive equilibrium solutions for the Nj populations, that T (x, t) has a set range of
values, and that market functions are positive. Capital, Cj , deserves some special at-
tention since unlike most problems in ecology it can be of either sign. While there
will be a constraint on the sum, ΣCj > 0, individual capital values can be negative,
i.e., a particular population (commodity sector) can be in debt. The goal here is to
then consider the variations in Aj , Mj , and T (x, t) that lead to positive Cj . The al-
ternative view of the problem is to consider routes to negative Cj and loss of area
under occupation, i.e., failure.

A schematic for the general problem is given in Fig. 17.2. The problem specifically
includes structure in space, time, and in associated variables such as capital, area, and
market. A discussion of the equations for this type of system can be found in Olson
(2007) along with an argument that the only feasible manner of handling these prob-
lems in simulations involves a Lagrangian or particle following system that tracks in-
dividual populations across space and time. Here the focus is on particular behaviors
in these equations across space and time. In particular, the stability of populations
and capital are of interest. Since the analysis is explicitly dependent on space and
time a natural ecosystem based question is the manner in which populations reach
limits in the sense of the determinants of population ranges (biogeography) and the
nature of extinction, i.e., Nj → 0. On the side of economics the corresponding state
in which Cj < 0 and the commodity in question is no longer allowed to occupy
area (Aj = 0), is of interest since this involves the failure of a harvesting endeavor
or in modern terms bankruptcy. The important question to ask is what conditions
lead to disappearance of populations and in the economic state the failure of human
enterprises involving abandonment of sites in early times and demise of markets in
modern times.
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Figure 17.1 A conceptual model including a simple food chain (N1 to N2) and foodweb
structure (interaction between N2 and N3) as well as the impact of fishing (F ) on the system.
The figure is modified from Olson et al. (2005).

17.3 Explicit examples

There are two types of systems to be explored. These include basic hunting or fishing
involving the search for natural populations and their exploitation and the domesti-
cation of animals or plants in what can be called “farming.” There has been a his-
torical progression from the dominance of the former to the dominance of the latter.
This transition has had major influences on the progression of human cultures. Both
the geography and investment (effort or funds) involved in the hunting process have
evolved markedly with technological advances, while the advances in domestication
efforts, again a technological change, have made the more primitive reliance on natu-
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M1 M2

A1 A2

C1 C2

Figure 17.2 A conceptual model of an agricultural activity involves fields of two commodities
with areas A1 and A2. The fields yield produce to two markets (M1 and M2) that in turn return
capital to the farming activity (C1 and C2). This capital then is used to catalyze the farming
activity in these areas. See text for more details.

ral populations less extensive. From the native hunting cultures of the past to modern
times the changes in culture have seen a reduction of “hunting” to fisheries and har-
vesting of old growth forests. There are also some recreational activities that involve
the old style of pursuit and harvest albeit with ever more complex technology. In
order to understand these transitions it is possible to consider the intermediate model
formulation introduced above.

To begin an examination of the interplay between technology and exploited popu-
lation dynamics consider the case of two types of fishing gear in use today (Olson
et al., 2005) applied to an age structured population of tuna. This example, while
related to an existent set of pelagic fisheries, is informative as regards the succes-
sion of exploitation involved with different technologies imposed on harvest of a
common species. The target in this case is yellowfin tuna that is harvested by long-
line fisheries involving arrays of hooks or by purse siene nets that harvest younger
fish. The conclusion of an analysis including the age structure of the tuna population
and the potential fishery yield is that the purse sienes will exclude the less efficient
long-line fleet. This conclusion is basically consistent with the distributions of the
two types of fishing gear in the ocean today. Failure to consider this replacement of
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fishing (hunting) effort in context has led to some rather strange views of the ocean
ecosystem (Worm et al., 2005) where consideration of a single fishery (long lines)
suggests that regions are nonproductive. In actual terms the particular type of fishing
has been replaced economically. Therefore the Worm et al. (2005) conclusion that
particular areas of the tropical oceans are nonproductive is biased by their use of
the Japanese long-line data set. Economically the long-line fisheries have been sub-
planted in the areas of high potential production by the harvesting of younger fish via
the net fisheries that essentially remove the economic viability of the areas involved
for long-lining (see Olson et al., 2005).

The same conditions apply to a terrestrial scenario in terms of hunting. Here the
outcome of hunting depends not only on the applied rate of harvest, but also on the
specific features of the target species (such as age or sex) and the technology em-
ployed in the hunt. This is not generally true of agriculture, however. In agriculture
the area dependence has some fundamental differences from the hunting situation.
Here starting with the women planting grains as the highlands dried, there is a intrin-
sic occupation of space. A field occupies area in a different way than an area that is
foraged or hunted. Active cultivation formally occupies land in a way that hunting
and gathering does not. Planting a field makes explicit use of Ai. It also makes a cer-
tain expenditure of capital that is hard to quantify in terms of hunting and gathering.
In this sense it ties the people to the land. In the same sense it ties wealth, Ci, to a
set space of land, Ai, that determines the output of human endeavors. Historically
the nature of the catalytic term in Ci and the rate constants changes with technology.
In the case of the foraging (fishing) technology and expenditures modify both the
encounter rate and the handling time. Since these two terms establish the bifurcation
parameter, technology and Ci can shift the stability of systems (Martin and Ruan,
2001). Initial explorations of the agricultural model suggest that in the continuous
formulation capital (Ci) can become depleted hence taking the system to the Ci = 0
and Ai = 0 states. In the discrete system or in a system with time lags the solutions
can go past zero to Ci < 0 and Ai = 0 states. These correspond to bankruptcy for
the endeavor.

17.4 Conclusions

In both the case of foraging (hunting and fishing) and in agriculture (growing crops)
the nature of the human activities determines the dynamics of the ecosystem. To
ignore the dynamics of the human agents in these cases obscures the actual reality
and allows consequences of human actions to be mistakenly related to population
dynamics on the part of the harvested quantities. In particular, it is important to con-
sider explicitly the impact of economic factors and technological advances on the
stability of harvesting regimes.
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CHAPTER 18

Spatial optimal control of renewable
resource stocks

Guillermo E. Herrera
Bowdoin College

Suzanne Lenhart
University of Tennessee

Abstract. To understand the impact of habitat heterogeneity and other spatial features on
the management of fisheries and other resource stocks management, we investigate models
which include explicit representations of space. We give the ideas behind some metapop-
ulation models, with interconnected subpopulations in discrete space. These models are
based upon ordinary differential equations. We then discuss some recent work focusing
on partial differential equation models, in which the resource stock moves continuously in
both time and space. The basic underlying ideas of optimal control of partial differential
equations are given and illustrated by a harvesting example.

18.1 Introduction

It is well known that some property rights structures give rise to socially undesir-
able outcomes in the spatially homogeneous case – the marquis example being the
complete erosion of pecuniary net benefits (or “rent dissipation”) in an open-access
fishery; this is Clark’s (1976) bionomic equilibrium. In spatially heterogeneous sys-
tems, decentralized decisions about resource exploitation often fail to account for
spatial variations in the in situ value of the resource.

The spatial structure of a renewable natural resource has potentially important im-
plications for the outcome of management. Improved understanding of spatial dy-
namics can enhance the predictive power of behavioral models, illuminate sources
of inefficiency in decentralized resource use, and suggest qualitatively new means of
addressing these inefficiencies. By contrast, regulations which are naive to the spatial
dynamics of a resource generally produce suboptimal results (Tuck and Possingham
1994, Sanchirico and Wilen 2005).

Spatial heterogeneity and spatial dynamics give rise to variations in in situ economic
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values (or anthropocentric benefits): units of biomass or individual organisms in dif-
ferent locations provide different dynamic contributions to the level of the resource
stock, and to the net benefits emerging from the resource over time. It has long been
recognized (Gordon, 1954) that when harvesters in decentralized systems have in-
complete property rights over these future benefits, they tend to exert not only a
suboptimal amount of aggregate harvest effort per unit time, but also a suboptimal
spatial distribution of effort. That is, due to divergences between private and social
objective functions, the spatial dimension provides another opportunity for harvesters
independently pursuing their own interests to “dissipate rents,” i.e., to decrease net
economic benefits below their potential levels.

Spatial bioeconomic analysis seeks to characterize the outcome of decentralized ex-
ploitation of a resource, to compare this to the efficient spatial-dynamic pattern of use
which would arise under centralized management or sole ownership, and to assess
the relative effectiveness of different regulatory instruments in mitigating spatiotem-
poral inefficiencies. While optimality is often seen as synonymous with dynamic
efficiency, or the maximization of discounted pecuniary net benefits over time, al-
ternative objectives such as equity (the distribution of net benefits across human
stakeholders) and sustainability can be assumed. It is not surprising that spatially
structured regulations outperform their nonspatial analogs; but adding spatial resolu-
tion to regulation is costly, so it is valuable to better understand the contexts in which
such resolution is particularly beneficial (Quinn 2003, Walters and Martell 2004).

To include movement of the species involved or a hetergeneous environment, a rep-
resentation of the spatial dimension is needed (Kareiva et al. 1990). One common
approach is to divide the environment in a collection of patches, frequently called
metapopulation modeling. The patches can also have specific spatial coordinates
with varying movement between them. Including dispersal in a continuous way is
frequently done with partial differential equations (PDEs) with diffusion and ad-
vection terms (Cantrell and Cosner, 2003). We note that spatial spread can also be
represented with dispersal kernels (Lockwood et al. 2002, Kot et al. 1996, Lewis and
Van Kirk 1997).

In the next section, we discuss some bioeconomic results from metapopulation mod-
els, in which the underlying models are systems of ordinary differential equations
(ODEs) and space is included as a discrete feature.

Then the following section gives some background of optimal control results for par-
tial differential equations (PDEs) related to renewable resources. Since the technique
of optimal control of PDEs has some different techniques from optimal control of
ODEs, we also want to illustrate the differences. An explicit example is worked out
in some detail for demonstration of these techniques.

18.2 ODE models with spatial components

The majority of bioeconomic analyses that incorporate spatial dynamics are based
on metapopulation models (see pp. S60-S61 of Gerber et al. 2003). The dynamics
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of these systems are governed by ordinary differential equations, so the dynamic op-
timization of their exploitation yields to conventional optimal control techniques. It
is dynamically efficient to remove those units of biomass, and only those, for which
the current net benefits of extraction meet or exceed the in situ value, represented by
the co-state, or adjoint variable, in the optimality system associated with the Hamil-
tonian.

Sanchirico and Wilen brought the issue of spatial structure in renewable resources
into the bioeconomic mainstream with a series of models assuming logistic growth
within patches and density-dependent dispersal between patches. Their initial con-
tribution (1999) was not optimal control per se, but instead showed that persistent
patterns of spatial exploitation emerge in a spatially heterogeneous system in the
context of open-access, where harvest effort is assumed to increase in all patches
until the point where equilibrium profits are driven to zero.

Maintaining their assumption of rent dissipation in all harvested areas, Sanchirico
and Wilen (2001) showed that a no-take reserve can in some cases increase both
standing stock and the level of harvest (if not profit). They then showed (2002) that
no-take reserves can simultaneously increase biomass and the equilibrium value of
harvest quotas (a proxy for the economic rents emerging from the resource).

Gordon (1954) recognized the potential for misallocation of harvest effort in space
in a simple model of two spatially isolated fishing grounds. One of his conclusions is
that the specification of the spatial distribution of harvest effort may yield significant
benefits. Tuck and Possingham (2000) used coupled difference equations to model
the harvested and closed local populations of a single-species, two-patch metapop-
ulation. They consider the problem of optimally exploiting the single species local
population that is connected by dispersing larvae to an unharvested second local
population. They apply dynamic optimization techniques to derive the optimal equi-
librium escapement for the harvested stock. They also consider how a reserve affects
both yield and spawning stock abundance when compared to policies that ignore the
spatial structure of the metapopulation. Closed areas (reserves) are found to decrease
gross harvest levels only slightly, and to have positive net benefits in terms of both
stock abundance and economic rents.

Brown and Roughgarden (1997) were among the first to explicitly demonstrate that
a closed area can be part of a dynamically efficient solution. They applied optimal
control to a system with larval pool dynamics and space-constrained settlement (re-
cruitment) and found it to be optimal to harvest at only one patch, i.e., to induce
and maintain an equilibrium outcome consisting of a source-sink dynamic. Herrera
(2007) also used a common larval pool model to show that different patterns of clo-
sures (alternating between areas, toggling on and off in one area, etc.) can be efficient
over time, given lower costs of enforcing closures relative to positive harvest quotas.
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18.3 PDE models

The metapopulation formulation is a simplification of spatial structure and dynamics.
While it may be a realistic depiction of some systems - for example reefs separated
by inhospitable habitat - it is generally more realistic to think of a resource stock as
diffusing across a continuous habitat. Such a formulation gives rise to a richer set of
outcomes and potentially regulatory approaches, but such systems require a different
set of optimal control methods.

In contrast to these discrete space models, Neubert (2003) considered a resource
existing in a continuous, finite one-dimensional spatial domain. The resource grows
logistically and diffuses continuously. He solved for the spatial distribution of fishing
effort that maximizes the yield at the steady state in which no reserves are imposed
a priori. After rescaling the variables, the model is:

−uxx = u(1− u)− h(x)u, on 0 < x < l

u(0) = u(l) = 0.
The assumption of equilibrium turns the problem of optimally controlling a PDE
system into one of controlling a coupled ODE system. Using Pontryagin’s Maxi-
mum Principle (Pontryagin et al. 1962) with x as the underlying variable, he showed
that no-take marine reserves are always part of an optimal harvest designed to maxi-
mize yield. Also he found that the size, number, and location of the optimal reserves
depend on a dimensionless length parameter. For small values of this parameter, the
maximum yield is obtained by placing a large reserve in the center of the habitat.
For large values of this parameter, the optimal harvesting strategy is a spatial “chat-
tering control” with infinite sequences of reserves alternating with areas of intense
fishing. Such a chattering strategy would be impossible to actually implement due to
the difficulty of monitoring the reserves. In this model, the population is zero on the
boundary of the region, which means that the boundary is absorbing and individuals
who encounter the boundary die. Such a ‘lethal’ boundary may be due to a hostile
region surrounding the habitat.

Neubert and Herrera (2007) extended Neubert’s (2003) yield maximization frame-
work by including harvest costs. This allowed for a nondegenerate characterization
of the open-access equilibrium (open-access inevitably leads to resource extinction
in the absence of harvest costs), and a comparison of the equilibrium stock and effort
distributions emerging from open-access and optimal spatial regulation. The opti-
mal solution in the positive cost case is qualitatively similar to the zero-cost case
(i.e., reserves play a role, and effort is largely focused near the habitat boundaries),
though the chattering phenomenon vanishes. Another result of this paper is that, un-
der certain circumstances characterized in the paper, spatially optimal exploitation
employs a greater amount of harvest effort in aggregate than is brought to bear under
open-access. Because reduction in industry participation is an important political-
economic impediment to the implementation of fisheries regulations, the existence
of this “employment benefit” is a potentially important result.

When choosing a PDE to model a scenario, one must consider the types of diffusion,
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advection, and growth terms to include. But boundary conditions can have an essen-
tial effect. As mentioned above, those results are for zero boundary conditions (called
Dirichlet conditions). If the individuals encountering the boundary are reflected back
and thus do not leave the domain, then ‘no flux’ boundary conditions, ∂u

∂n = 0 (called
Neumann conditions), would be valid and will give different results. If the flux across
the boundary is proportional to the population at the boundary, then Robin conditions
would be used, ∂u

∂n + bu = 0.

Optimal control techniques for PDEs are just beginning to be applied to resource
problems. There has been some work done on harvesting problems from a math-
ematical viewpoint using PDEs. Leung and Stojanovic (1993) studied the optimal
harvesting control of a biological species, whose growth is governed by the diffu-
sive Volterra-Lotka equation. The species concentration satisfies a steady-state equa-
tion with no-flux (Neumann) boundary condition. The optimal control criterion is to
maximize profit which is the difference between economic revenue and cost. Leung
(1995) also studied the corresponding optimal control problem for steady-state prey-
predator diffusive Volterra-Lotka systems and obtained similar results to the single
species case. Cañada et al. (1998) and Montero (2000) studied an optimal control
problem for a nonlinear elliptic equation of the Lotka-Volterra type with Dirichlet
boundary condition. The conditions for the optimality system and uniqueness of the
optimal control depend on the eigenvalues of the Laplacian operator. These papers
emphasize the mathematical analysis and do not give economic interpretations of the
results nor numerical examples. Existence and characterization results for an optimal
control are given.

Kurata and Shi (2007) studied a reaction-diffusion model with logistic growth, con-
stant effort harvesting (depending only on space and not on time), and Dirichlet
boundary conditions. By minimizing an intrinsic biological energy function, which
is different from the yield, they obtained an optimal spatial harvesting strategy which
would benefit the population the most. They found out a nonharvesting zone should
be designed. On the other hand, in the zone which allows harvesting, the effort should
be put at the maximum value. Their objective function involves the gradient, the
square, and the cube of the population and does not seem to have a biological inter-
pretation.

Ding and Lenhart (2009) extended Neubert’s (2003) work to a multidimensional do-
main, i.e., considering an optimal fishery harvesting problem using a spatially ex-
plicit model with a semilinear elliptic PDE, Dirichlet boundary conditions, and lo-
gistic population growth. They considered two objective functions: maximizing the
yield and minimizing the cost or the variation in the fishing effort (control). Minimiz-
ing variation was considered to avoid the ‘chattering’ effect in Neubert’s results. The
optimal control when minimizing the variation is characterized by a variational in-
equality instead of the usual algebraic characterization, which involves the solutions
of an optimality system of nonlinear elliptic partial differential equations. Some in-
teresting conclusions were found. If one only wants to maximize yield, then a reserve
is part of the optimal harvesting strategy. The problem of maximizing yield only with
Neumann boundary condition gives a simple optimal control, a singular case. When
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considering the problem with cost in the objective function, the optimal benefit in-
creases when domain size increases, but the structure of the reserve was preserved.
There are few very control results known about the effect of changing domain size
(Montero, 2001).

Lenhart and Bhat (1993) considered a harvesting problem in a parabolic PDE with
logistic growth in which the population was considered to be a nuisance population.
The goal was to minimize the damage due to the population and the cost of harvest-
ing. The numerical illustration used 10 years of beaver data from some counties in
New York and showed the optimal harvest level as a function of space and time.

We note that Brock and Xepapadeas (2005) treated an optimal harvesting problem
for a population modeled by a parabolic PDE. The necessary conditions are given
without including bounds on the controls. In the infinite time horizon case, an ap-
proximation with a linear PDE and quadratic objective function is used to show the
existence of a Turing space of diffusive instability, which leads to the emergence of
a spatial pattern in the optimal state.

18.3.1 Techniques for optimal control of PDEs

Note that in the multidimensional PDE case, one cannot use Pontryagin’s Maximum
Principle, thus some further analysis is needed to justify the necessary conditions. J.-
L. Lions (1971) laid the foundation of the basic ideas of optimal control of PDEs in
the 1970’s. There is no complete generalization of Pontryagin’s Maximum Principle
to PDEs, but the book by Li and Yong (1995) deals with corresponding “maximum
principle” type results.

Now we give a brief sketch of the technique of optimal control of PDEs in the
parabolic system case. Choosing the underlying solution space for the states is a cru-
cial feature for optimal control of PDEs. Classical solutions (solutions with all the
derivatives occurring in the PDE being continuous) will not exist for most nonlinear
PDE problems. Deciding in what “weak” sense to solve the PDEs is essential. We
refer to Evans (1998) and Friedman (1982) for the rigorous definitions of Sobolev
spaces and weak derivatives and give only an informal treatment. For most parabolic
PDE control problems, the appropriate solution space is

L2([0, T ];H1
0(Ω)),

where Ω is the spatial domain. The control set frequently consists of the Lebesgue
integrable functions, which have specified upper and lower bounds.

The general idea starts with a PDE with state solution w and control u. Take A to be
a parabolic partial differential operator with appropriate initial conditions (IC) and
boundary conditions (BC),

Aw = f(w, u) in Ω× [0, T ], along with BC, IC, (18.1)

assuming the underlying variables are x for space and t for time. We are treating
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problems with space and time variables, but one could treat steady state problems
with only spatial variables.

The objective function represents the goal of the problem; here we write our function
in an integral form. We seek to find the optimal control u∗ in an appropriate control
set to maximize our goal

J(u∗) = sup
u
J(u), (18.2)

with objective function

J(u) =
∫ T

0

∫
Ω

g(x, y, t, w(x, y, t), u(x, y, t)) dxdy dt. (18.3)

After specifying a control set and a solution space for the states, one can usually
obtain the existence of a state solution given a control. Namely, for a given control
u, there exists a state solution w = w(u), showing the dependence of w on u.

Proving the existence of an optimal control in the PDE case requires a priori esti-
mates of the norms of the states in the solution space to justify convergence. Thus
obtaining the existence results for optimal controls in the PDE case is different than
the ODE case. These estimates give the existence of a minimizing sequence un of
controls where

lim
n→∞ J(un) = sup

u
J(u). (18.4)

In the appropriate weak sense, this usually gives

un ⇀ u∗ in L2(Ω× [0, T ]), wn = w(un) ⇀ w∗ in the solution space,
(18.5)

for some u∗ and w∗. One must show w∗ = w(u∗), which means that w∗ is the state
corresponding to control u∗. We must also show that u∗ is an optimal control, control,
i.e.,

J(u∗) = sup
u
J(u). (18.6)

To derive the necessary conditions, we need to differentiate the objective function
with respect to the control, namely, differentiate the map

u �−→ J(u). (18.7)

Since w = w(u) contributes to J(u), we must also differentiate the map

u �−→ w(u). (18.8)

This step is another main difference in deriving the necessary conditions. Such a step
is not required in applying Pontryagin’s Maximum Principle to a system of ODEs.

The map u �→ w(u) is weakly differentiable in the directional derivative sense
(Gateaux):

lim
ε→0

w(u + εl)− w(u)
ε

= ψ, (18.9)

where l is the variation function. The function ψ is called the sensitivity of the state
with respect to the control.
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We use the operator in the sensitivity PDE to find the operator in the adjoint PDE.
A priori estimates of the difference quotients in the norm of the solution space give
the existence of the limit function ψ and that it solves a PDE, which is a linearized
version of state PDE

Lψ = F (w, l, u) with appropriateBC, IC. (18.10)

Note that the linear operatorL comes from linearizing the state PDE operatorA. The
‘adjoint’ operator (Conway, 1990) of the L operator is used to find the operator to be
used in adjoint PDE.

We use the adjoint λ and the sensitivity ψ PDEs to simplify the derivative of the map
u → J(u) and to obtain the explicit characterization of the optimal control in terms
of the state and the adjoint. We will illustrate how to explicitly find the sensivity and
adjoint PDEs as well as how to derive the characterization of the optimal control in
the example below. The state and adjoint equations together with the control charac-
terization, is called the optimality system. We refer the reader to the book by Lenhart
and Workman (2007) for a discussion of uniqueness of the optimal control and more
detail about numerical solutions of the optimality system.

18.3.2 Illustrative PDE example

In the following example, we will concentrate on the calculations of the sensitivity
equation, adjoint equation, and the characterization of the optimal control. We do not
treat the details of proving existence of the optimal control here. We will also as-
sume the appropriate difference quotients converge to the sensitivity function, which
would need to be proven in a fully justified solution. See Evans (1998) for details
on deriving such needed estimates. We also refer the reader to the references (Fister,
1997, Lenhart and Bhat, 1993, Lenhart et al. 1999) to see examples with such details.

We consider the problem of harvesting in a diffusing population. In Joshi et al.
(2009), a general parabolic equation for the stock density is treated with the justifica-
tion of the corresponding optimal control analysis. Here we illustrate this technique
with an simple equation

wt − (wxx + wyy) = w(1 − w)− uw in Ω× (0, T ),

w(x, y, t) = 0 on ∂Ω× (0, T ) (boundary condition),
w(x, y, 0) = w0(x, y) ≥ 0 on Ω, t = 0 (initial condition ),

where Ω is an open, connected subset of �2 and ∂Ω is the boundary of Ω. The state
w(x, y, t) is the density of the population and the harvesting control is u(x, y, t).
Note the state equation has logistic growth w(1−w). Note that the initial population,
w0(x, y), is not identically zero. The “profit” objective function is

J(u) =
∫ T

0

∫
Ω

e−δt(pu(x, y, t)w(x, y, t) −Bu(x, y, t)2) dxdy dt, (18.11)

which is a discounted “revenue less cost” stream. With p representing the price of
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harvesting population, puw represents the revenue from the harvested amount uw.
We use a quadratic cost for the harvesting effort with a weight coefficientB. At first,
we consider the case of a positive constantB, and then we discuss the case ofB = 0.
In the B = 0 case, the problem is linear in the control and only the yield is being
maximized. The coefficient e−δt is a discount term with 0 ≤ δ < 1. For convenience,
we now take the price to be p = 1.

A main point of interest is if “marine reserves” are part of the optimal solution,
and if so, where they should be placed, that is, the regions of no harvesting, where
u∗(x, y, t) = 0. We seek to find u∗ such that

J(u∗) = max
u

J(u), (18.12)

where the maximization is over all measurable controls with 0 ≤ u(x, y, t) ≤ M <
1. Under this set-up, we note that any state solution will satisfy

w(x, y, t) > 0 on Ω× (0, T ), (18.13)

by the Maximum Principle for parabolic equations (Evans, 1998).

First, we differentiate the u → w map. Given a control u, consider another control
uε = u+εl, where l is a variation function and ε > 0. Letw = w(u) andwε = w(uε)
be the corresponding states. The state PDEs corresponding to controls, u and uε, are

wt − (wxx + wyy) = w(1 − w)− uw
wε

t − (wε
xx − wε

yy) = wε(1 − wε)− uεwε.

We form the difference quotient
wε − w

ε
, (18.14)

and find the corresponding PDE satified by the difference quotients
(

wε −w

ε

)
t
−

(
wε − w

ε

)
xx
−

(
wε − w

ε

)
yy

=
wε − w

ε
(1−u)−

(
(wε)2 − w2

ε

)
− lwε.

(18.15)
A priori estimates of the states and those quotients will justify that as ε→ 0,wε → w
and

wε − w
ε

→ ψ. (18.16)

As for the nonlinear term, note that

(wε)2 − w2

ε
= (wε + w)

wε − w
ε

→ 2wψ. (18.17)

The corresponding derivative quotients will converge and then the resulting PDE for
ψ is

ψt − ψxx − ψyy = ψ − 2wψ − uψ − lw on Ω× (0, T ),

ψ = 0 on ∂Ω× (0, T ),

ψ = 0 on {t = 0}.
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Given an optimal control u∗ and the corresponding statew∗, we rewrite the sensitivity
PDE as

Lψ = −lw∗, where Lψ = ψt − ψxx − ψyy − ψ + 2w∗ψ + u∗ψ.

Now we discuss the process of finding the adjoint equation. The basic idea of the L∗

operator in the adjoint PDE is∫ T

0

∫
Ω

e−δtλLψ dxdy dt =
∫ T

0

∫
Ω

e−δtψ(L∗λ+ δλ) dxdy dt. (18.18)

To see the specific terms of L∗, use integration by parts to see∫ T

0

∫
Ω

e−δtλψt dxdy dt =
∫ T

0

∫
Ω

−e−δt(−δλ+ λt)ψ dxdy dt. (18.19)

The boundary terms on Ω × {T } and Ω× {0} vanish due to λ and ψ being zero on
the top and the bottom of our domain, respectively. The term with δ comes from the
discount term in the objective function. Next notice by integrating by parts twice∫ T

0

∫
Ω

e−δtλψxxdxdy dt =
∫ T

0

∫
Ω

e−δtλxxψ dxdy dt (18.20)

since λ and ψ are zero on ∂Ω× (0, T ). The linear terms of L go directly in L∗ as the
same types of terms. Our operator L∗ and the adjoint PDE are

L∗λ = −λt − λxx − λyy − λ+ 2w∗λ+ u∗λ

adjoint PDE L∗λ+ δλ = u∗ on Ω× (0, T )

λ = 0 on ∂Ω× (0, T )

λ = 0 on Ω× {t = T }.
The nonhomogeneous term u on the right hand side (RHS) in the adjoint PDE comes
from

∂(integrand of J)
∂(state)

=
∂(uw)
∂w

= u (18.21)

where we use the integrand of J without the discount factor e−δt, which came into
play in the integration by parts above.

Next, we use the sensitivity and adjoint functions in the differentiation of the map
u → J(u). At the optimal control u∗, the quotient is nonpositive since J(u∗) is the
maximum value, i.e.,

0 ≥ lim
ε→0+

J(u∗ + εl)− J(u∗)
ε

. (18.22)

Rewriting the adjoint equation as L∗λ+ δλ = u∗, this limit simplifies to

0 ≥ lim
ε→0+

∫ T

0

∫
Ω

e−δt 1
ε
((u∗ + εl)wε − u∗w∗ − (B(u∗ + εl)2 −B(u∗)2)) dxdy dt

=
∫ T

0

∫
Ω

e−δt[u∗ψ + lw∗ − 2Bu∗l] dxdy dt
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=
∫ T

0

∫
Ω

e−δt(ψ(L∗λ+ δλ) + lw∗ − 2Bu∗l) dxdy dt

=
∫ T

0

∫
Ω

e−δt(λLψ + lw∗ − 2Bu∗l) dxdy dt

=
∫ T

0

∫
Ω

e−δt(−λlw∗ + lw∗ − 2Bu∗l) dxdy dt

=
∫ T

0

∫
Ω

e−δtl(w∗(1 − λ)− 2Bu∗) dxdy dt,

using that the RHS of the ψ PDE is −lw∗.
On the set {(x, y, t) : 0 < u∗(x, y, t) < M}, the variation l can have any sign. Thus
on this set, in the case that B �= 0, the rest of the integrand must be zero, so that

u∗ =
w∗(1− λ)

2B
. (18.23)

By taking the upper and lower bounds into account, we obtain

u∗ = min
(
M,max

(
w∗(1− λ)

2B
, 0

))
. (18.24)

This completes the analysis in the case of positive cost constant B.

However, the B = 0 case is also important. In this case, we are maximizing yield
only. When B = 0, the problem is linear in the control u. The argument above goes
through with B = 0 until the end, before we solve for u∗. The quotient calculation
becomes

0 ≥
∫ T

0

∫
Ω

e−δtlw∗(1− λ) dxdy dt.

On the set {(x, y, t) : 0 < u∗(x, y, t) < M}, the variation l can have any sign. Since
eδt and w∗ are positive, the inequality above implies λ = 1 on this set. This case is
called singular because the integrand of the objective function drops out on this set.
Suppose λ = 1 on some set of positive measure. By looking at the adjoint PDE, and
noting the derivatives of λ are 0, we can solve for the state

w∗ =
1− δ

2
. (18.25)

Now use this constant for w in the state equation and solve for the optimal control

u∗ =
1 + δ

2
. (18.26)

On the set {(x, y, t) : u∗(x, y, t) = M}, the variation l must be nonpositive and this
corresponds with

λ(x, y, t) < 1.

By a similar argument, we treat the case of the optimal control at lower bound, and
then we conclude

u∗(x, t) = 0 if λ(x, y, t) > 1
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=
1 + δ

2
if λ(x, y, t) = 1

= M if λ(x, y, t) < 1.

A forward-backward sweep iteration method was used to solve this problem. Each
sweep was done by a finite difference scheme. Note that the state PDE has an initial
condition while the adjoint PDE has a final time condition, so both PDEs cannot be
solved forward in time together. Starting with a guess for the control, the state PDE
is solved forward in time and then these state values are used to solve the adjoint
PDE backward in time. The control is updated using the calculated state and adjoint
values. Then forward and backward sweeps are done again and are followed by a
control update. This method continues until successive iterative values are close.

We illustrate one numerical example of this bang-bang case in Figure 18.1. Note that
M = .9, δ = 0, and initial condition .5sin(πx/4)sin(πy/4) were used in this figure
with space (x, y) and time bounds of 0 and 4. The singular case does not occur in
this numerical example. In this example, plotted at time t = 2, there is a region in the
center of the spatial domain with no harvest, which would be considered a marine
reserve, as in Neubert (2003). We see that the region of no harvest varies in space as
time changes. Joshi et al. (2009) includes the analyses that vary the initial conditions,
the discount rate, and the time horizon. Including an advection term is also treated.
We note that a marine reserve was always present in the optimal solution in their
various scenarios.

We also note that our illustration of optimal control of a PDE is in the case of finite
time horizon. One can also consider the case of infinite time horizon, where the
results could differ from the finite time horizon depending on the particular PDEs
involved.

18.4 Conclusions

Surveying some of the literature shows the transition from metapopulation models
with space as a discrete feature to PDE models with space as a continuous feature.
The results obtained vary with the types of model and the objective function.

In this paper, we illustrated the basic ideas of optimal control applied to PDE bioe-
conomic models and hope that the reader can see possibilities for future work. We
showed a simple PDE example, but these techniques can be extended to more gen-
eral PDEs with other features like advection, variable diffusion coefficients, differ-
ent boundary conditions, and more general growth coefficients. Even terms in the
boundary conditions can be taken as controls (Lenhart et al., 1999). Control theory
for PDEs with age-structure has recently been developed, but the techniques are a
bit different than those given here due to the different solution space and estimates
in the age-structure case (Fister and Lenhart, 2004 and 2006). Optimal harvesting of
resources has also been investigated in integrodifference models by Gaff et al. (2007)
and Joshi et al. (2006 and 2007), which are discrete in time and continuous in space.
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If decisions and policy changes occur only at discrete times, models with a mixture
of discrete and continous features or with discrete time and space would be valuable
to consider.

Optimal control has been applied to a variety of systems with interacting populations,
especially competition, cooperative, and predator-prey models (Lenhart et al. 1997,
Fister 1997). But very little has been done on applications to managing resources
in the system case. Considering the management of multiple resources which may
interact in some way would be interesting.
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