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v

Over the past 30 years numerous provocative studies have provided clues suggest-
ing that vitamin D may play an important role in cancer. In vitro studies have shown 
that cancer cells metabolize vitamin D and that vitamin D compounds can induce 
differentiation, inhibit cellular proliferation, and induce cell death. In addition, 
epidemiologic data suggest that vitamin D compounds may play a role in the pre-
vention of cancer. In the past few years the understanding of the molecular effects 
of vitamin D has expanded substantially and investigators have begun to delineate 
the role of genetic factors that influence the response to vitamin D.

With this considerable history of development of vitamin D and cancer, it is 
timely and appropriate to summarize the current “state of the art” in the study of 
vitamin D and cancer. Scientists who have made many of the seminal contributions 
to this field of study have contributed to this volume. These collected data describe 
the foundation and current state for this important domain of cancer research – a 
domain that the coeditors of this book believe will yield important advances in 
cancer prevention and therapy.

Vitamin D Analogues as Antineoplastics: A Prologue Long 
Overdue?

Numerous investigators have drawn attention to the high prevalence of the vitamin 
D receptor (VDR) in human and murine cancer cells, the frequent evidence of intact 
vitamin D signaling pathways in such cells, and the ability of high concentrations of 
vitamin D analogues to inhibit the replication of cancer cells, induce apoptosis, and 
even inhibit angiogenesis. These data are cited in preceding and following chapters. 
Had such studies been completed with a new molecule – e.g., a new “targeted agent” 
– it is very likely that the following steps would have been undertaken promptly:

 (a) Careful in vivo delineation of schedule and dose dependencies of these antican-
cer activities

 (b) Careful determination of the maximum tolerated dose of analogues and explo-
ration of optimal biologic dose

Preface
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 (c) Direct comparisons of toxicity and antitumor efficacy of analogues and parent 
compound (calcitriol) using the apparently most active drug schedules

Unfortunately, for vitamin D based studies in cancer, very little of this rudimentary 
work has been carried out. Studies with most analogues of vitamin D (paricalcitol, 
seocalcitol, inecalcitol) have employed continuous dosing schedules even though 
practically all in vitro and in vivo studies which have shown anticancer activity of 
vitamin D have exposed cells and tumors to intermittent, high-pulse doses. Many 
have been encouraged by the study of daily dosing of analogues and parent com-
pound (calcitriol) and finding the analogue causes less hypercalcemia. Often and 
not surprisingly, the analogue binds less avidly to VDR. Such studies have led to 
small to medium sized studies using daily dosing algorithms which have shown no 
antitumor effects and been halted without any toxicity remotely resembling those 
defensible in patients with advanced cancer.

Further limiting work with calcitriol has been the absence of a formulation suit-
able for high-dose therapy. This limitation is due primarily to the lack of an eco-
nomic motivation for the development of such formulations.

The following chapters provide excellent and comprehensive discussions of the 
potential role of vitamin D based therapies in breast, colorectal, prostate cancer, and 
leukemia and myelodysplastic syndromes. These chapters also point out that the 
focus on these diseases is largely determined by the interests and expertise of the 
outstanding scientists who have chosen to pursue vitamin D based cancer therapeu-
tics. To our knowledge, every tumor type ever evaluated has shown some biochemi-
cal and antiproliferative response to vitamin D. Similarly, vitamin D analogues, 
especially calcitriol, potentiate almost every cytotoxic agent with which combina-
tion therapies have been tested. In our view the slow and halting development of 
vitamin D based cancer therapeutics could be greatly accelerated by following 
standard principles of anticancer drug development:

 (a) Development of a standardized formula.
 (b) Determination of MTD (current data indicate the MTD of calcitriol on an inter-

mittent [weekly] schedule is ³100 mcg). No reliable oral MTD have ever been 
determined and few data on the optimal biologic dose developed in the labora-
tory, much less in the clinic.

 (c) Conduct of carefully designed clinical trials.

The field of vitamin D based cancer therapeutics has very few such data items avail-
able. Perhaps the extensive preclinical data on the antitumor effectiveness of high-
dose vitamin D analogue therapy are misleading or in fact wrong. But until the 
agent is examined in the fashion one would follow for an antineoplastic – we will 
never know. The following chapters point out what is known and the direction that 
can be followed in clinical development of vitamin D as an anticancer agent.

Buffalo, NY Donald L. Trump
Buffalo, NY Candace S. Johnson
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Abstract Protection from sporadic malignancies by vitamin D can be traced to the 
role of its hormonally active metabolite, 1,25-dihdroxyvitamin D

3
 (1,25-(OH)

2
D

3
) 

which, by binding to the nuclear vitamin D receptor (VDR), can maintain cellular 
homeostasis. Human colonic, prostatic, and breast cells express the CYP27B1-
encoded 25-(OH)D-1a-hydroxylase, the enzyme responsible for conversion of 
25-(OH)D

3
 to 1,25-(OH)

2
D

3
. In vitamin D insufficiency, availability of 25-(OH)

D
3
 is low, so that extrarenal CYP27B1 activity may not be high enough to achieve 

tissue concentrations of 1,25-(OH)
2
D

3
 necessary to control growth and prevent 

neoplastic transformation of colonocytes.
While adequate supply of the vitamin D precursor 25-(OH)D

3
 is essential for 

prevention of tumor progression, activity of the extrarenal synthesizing CYP27B1 
is of paramount importance especially in view of the fact that 1,25-(OH)

2
D

3
 catabo-

lism is progressively elevated during tumor progression. To counteract catabolism, 
enhancement of 1,25-(OH)

2
D

3
 synthesis is discussed. Early during cancer progres-

sion growth factors and sex hormones may elevate CYP27B1 expression and sup-
press that of CYP24A1. Also, genetic variations and epigenetic regulation of 
vitamin D hydroxylases could determine actual accumulation of 1,25-(OH)

2
D

3
 in 

mammary, prostate, and colonic tissue and are considered both for prevention of 
progression as well as for potential therapy.

Primarily in the colon as part of the digestive system, the chemopreventive 
potential of vitamin D can also be augmented by nutrient factors that induce appro-
priate changes in CYP27B1 and/or CYP24A1 expression. Among these factors are 
calcium, the phytoestrogen genistein and potentially also folate. Adequate intake 
levels of these nutrients could augment effectiveness of 1,25-(OH)

2
D

3
 for preven-

tion of cancers in humans. Especially folate, as a methyl donor, could affect epige-
netic regulation of CYP27B1 and of CYP24A1, and could therefore play a central 
role in vitamin D-mediated inhibition of tumor progression.

H.S. Cross (*) 
Department of Pathophysiology, Medical University of Vienna,  
Waehringer Guertel 18–20, A-1090 Vienna, Austria 
e-mail: heide.cross@meduniwien.ac.at

Chapter 1
Vitamin D: Synthesis and Catabolism  
– Considerations for Cancer Causation  
and Therapy

Heide S. Cross 
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Keywords Expression of extrarenal vitamin D hydroxylases • Cancer prevention • 
Regulation of colonic vitamin D synthesis • Calcium • Estrogens

1.1  Introduction

The enzyme 25-hydroxyvitamin D3-1a-hydroxylase (CYP27B1) plays a central 
role in calcium homeostasis [1], but alternative physiological actions have been 
suspected for decades. The enzyme catalyzes the conversion of 25-hydroxyvitamin 
D

3
 (25-(OH)D

3
) to the hormone 1,25-dihydroxyvitamin D

3
 (1a,25-(OH)

2
D

3
) that is 

known to regulate calcium and phosphate transport in intestine, bone, and kidney. 
While initially it was thought that only proximal tubule kidney cells express 
CYP27B1, it became evident in the mid-1980s that extrarenal cells, for instance, 
bone cells, macrophages, and keratinocytes (see, e.g., [2]) could also express 
CYP27B1 enzymatic activity in vitro. Mawer et al. [3] demonstrated that certain 
lung cells had measurable CYP27B1 activity. Apparently, this particular 
25-hydroxyvitamin D3-1a-hydroxylase was not up-regulated by PTH and was not 
down-regulated by plasma calcium, a hallmark of the renal enzyme. In addition, 
while in renal cells sufficiency of serum 1,25-(OH)

2
D

3
 concentration leads to induc-

tion of the vitamin D-inactivating enzyme 1,25-(OH)
2
D

3
–24-hydroxylase 

(CYP24A1) [4], the extrarenal CYP27B1 is not necessarily inversely correlated 
with CYP24A1 expression, a fact that will be enlarged upon later in this chapter.

While extrarenal CYP27B1 activity in macrophages might be the reason for the 
hypercalcemia associated with sarcoidosis and lymphomas, there was also the pos-
sibility that it might be coded by a gene different from the renal one, and this could 
lead to alternative regulatory mechanisms. The renal CYP27B1 is a combination of 
three proteins: a cytochrome P450 as well as two other proteins, ferredoxin and 
ferredoxin reductase. Purified preparations of these proteins possess the CYP27B1 
enzyme activity in vitro [5]. These enzyme complexes were cloned from rodents 
and human renal cells and response elements were found in promoter regions that 
allow up-regulation by PTH. Proof was provided that extrarenal CYP27B1 is a 
product of the same gene as the renal form. However, regulation of the newly dis-
covered CYP27B1 suggested existence of a paracrine loop in extrarenal tissues for 
the modification of cellular proliferation and differentiation, though subsequent 
conversion of the active vitamin D metabolite into a C-24 oxidation product by 
CYP24A1 was similar to renal catabolism [6].

In the last few decades, there has been growing appreciation for the multitude of 
physiological roles that vitamin D has in many body tissues. As early as in 1979, 
Stumpf et al. demonstrated that cells from heart, stomach, pancreas, colon, brain, 
skin, gonads, etc., have the nuclear receptor for 1,25-(OH)

2
D

3
 [7], the so-called 

vitamin D receptor (VDR), and such tissues are potential targets for 1,25-(OH)
2
D

3
 

activity. Many of these VDR-positive tissues are also positive for CYP27B1, i.e., 
the enzyme that can convert 25-(OH)D

3
 to the active metabolite [8], and many of 

these tissues are known to be targets for development of malignancies.
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As mentioned above, regulation of CYP27B1 in these non-renal tissues differs 
from that observed in the kidney and, importantly and in contrast to the renal 
enzyme, may be dependent on substrate concentration for activity. This led to the 
novel concept that maintenance of adequate serum 25-(OH)D

3
 levels would be 

essential for providing the substrate for the synthesis of the active metabolite at 
extrarenal sites, which in turn would have physiological functions apart from those 
involved in bone mineral metabolism. This concept will be enlarged upon in the 
following. Evidence will be provided for the function and regulation of vitamin D 
synthesizing and catabolic hydroxylases, i.e., CYP27B1 and CYP24A1, respec-
tively, in colorectal, prostate, and mammary gland-derived cells that are from 
organs particularly affected by sporadic malignancies during advancing age.

1.1.1  1,25-(OH)
2
D

3
 Synthesis

7-Dehydrocholesterol, the immediate precursor in the cholesterol biosynthetic 
pathway, is produced in rather large quantities in the skin of most vertebrates, also 
humans. Ageing decreases the capacity of skin to produce 7-dehydrocholesterol by 
as much as 75% [9] and this is of particular relevance when considering that spo-
radic cancers occur primarily in the elderly. When exposed to sunlight, skin cells 
absorb UVB radiation with wavelengths of 290–315 nm leading to a rearrangement 
of the molecular structure of 7-dehydrocholesterol to form the more thermody-
namically stable previtamin D

3
. Protection of the skin by topical sunscreens will 

reduce previtamin D
3
 production by almost 100%. Persons that have greater 

amounts of melanin in their epidermis require much higher exposure to sunlight 
than whites to avoid vitamin D deficiency. Living at geographic latitudes above 35o 
will not provide enough UVB photons for sufficient production of vitamin D

3
 in 

skin during winter time (for further reading see, e.g., [10]). Very few foods natu-
rally contain vitamin D. Cod liver oil and oily fish are the best dietary source which, 
in some Scandinavian countries, can provide a positive balance to the lack of der-
mal vitamin D production.

Vitamin D
3
 is first hydroxylated in the liver by CYP27A1, a cytochrome P450 

25-hydroxylase, to the precursor 25-(OH)D
3
. To be fully active, 25-(OH)D

3
 must 

be converted to 1,25-(OH)
2
D

3
 by CYP27B1, a mitochondrial cytochrome P450 

enzyme present primarily in proximal renal tubule cells but also in many extrarenal 
cells [11]. While the hormone regulates calcium and phosphate metabolism in 
intestine, bone, and kidney, at extrarenal sites it has a wide range of biological 
effects that are essentially noncalcemic in nature. The most surprising one is its 
ability to suppress hyperproliferative growth of cells and to support differentiation. 
In 1982, Tanaka et al. [12] provided the first evidence that 1,25-(OH)

2
D

3
 was able 

to promote differentiation of HL-60 leukemia cells. This, and a pronounced antimi-
totic effect, has subsequently been shown for many types of cancer cells in vitro 
(see, e.g., [13–18]), though only at nanomolar concentrations. However, serum 
1,25-(OH)

2
D

3
 never exceeds picomolar concentrations, regardless of whether 
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 sunlight exposure is increased or whether there is increased oral uptake of vitamin 
D [19], since its synthesis in renal cells is tightly regulated by PTH, calcium, and 
phosphate.

As early as 1980, Garland et al. raised the question whether sunlight and vitamin 
D can protect against colon cancer [20]. Strong support for this hypothesis was 
obtained when Garland et al. [21] in 1985 published the results of a 19-year pro-
spective trial, showing that low dietary intakes of vitamin D and of calcium are 
associated with a significant risk of colorectal cancer. In the following decades, a 
compromised vitamin D status as indicated by low 25-(OH)D

3
 serum levels has 

been associated with pathogenesis of diverse types of malignancy (for review see, 
e.g., [22, 23]). This, and the realization that there was vitamin D synthesis at extra-
renal sites potentially enhancing 1,25-(OH)

2
D

3
 concentrations in certain tissues 

without contributing to serum levels of 1,25-(OH)
2
D

3
, suggested a hypothesis on 

how decreased sunlight exposure and low serum 25-(OH)D
3
 could contribute to 

tumor pathogenesis.

1.2  Regulation of 1,25-(OH)2D3 Synthesis in Extrarenal Cells

Regulation of 1,25-(OH)
2
D

3
 production at multiple levels is a crucial determi-

nant of nonclassical aspects of 1,25-(OH)
2
D

3
 function. When we showed that 

normal and neoplastic human colon epithelial cells are endowed with a func-
tional 25-hydroxyvitamin D-1a-hydroxylase and can thus convert 25-(OH)D

3
 

to 1,25-(OH)
2
D

3
 [24–26], we hypothesized that adequate accumulation of the 

active metabolite could slow down or inhibit progression of malignant disease 
by promoting differentiation and apoptosis and by suppressing antimitotic 
activity locally. Renal CYP27B1 activity is tightly regulated by serum Ca++ and 
parathyroid hormone (PTH), as well as by feedback inhibition from 
1,25-(OH)

2
D

3
. In contrast, CYP27B1 expression, at least in colonocytes and 

prostate cells, is relatively insensitive to modulation via the PTH/[Ca++]
o
 axis 

[27, 28]. Intracellular synthesis of 1,25-(OH)
2
D

3
 at extrarenal sites depends 

largely on ambient 25-(OH)D
3
 levels and is not influenced by plasma levels of 

1,25-(OH)
2
D

3
 [29]. This may explain why the incidence of vitamin D-dependent 

cancers, e.g., of the colorectum [30], breast [31], and prostate gland [32], is 
correlated with low serum 25-(OH)D

3
 rather than with serum concentrations of 

1,25-(OH)D
3
. Strong support for the importance of intracellularly produced 

over circulating 1,25-(OH)
2
D

3
 for regulation of cell functions comes from a 

study by Rowling et al. [33] who have shown that in mammary gland cells 
VDR-mediated actions depended more on megalin-mediated endocytosis of 
25-(OH)D

3
 than on ambient 1,25-(OH)

2
D

3
. Also Lechner et al. [34] could 

induce the characteristic antimitogenic effect of 1,25-(OH)
2
D

3
 when human 

colon carcinoma cells were treated with 25-(OH)D
3
, though only when they 

were CYP27B1-positive. Similar observations were made in prostate [35] and 
mammary cells [36].
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However, at low serum levels of 25-(OH)D
3
, CYP27B1 activity in extrarenal 

cells may be not high enough (in normal colonic mucosa without hyperproliferative 
signaling, positivity for CYP27B1 is extremely low [26]) to achieve those steady-
state tissue concentrations of 1,25-(OH)

2
D

3
 necessary to maintain normal cellular 

growth and differentiation during hyperproliferation. In addition, 1,25-(OH)
2
D

3
 

itself is an important regulator of CYP27B1 gene expression. Down-regulation of 
the CYP27B1 gene involves a negative vitamin D response element and cell speci-
ficity for this could be due to differential expression of protein complexes associ-
ated with the CYP27B1 promoter [37, 38].

1.2.1  Expression of CYP27B1 and of VDR During 
Hyperproliferation and Tumor Progression

The relevance of 1,25-(OH)
2
D

3
 to maintain normal epithelial cell turnover in the 

large intestine was demonstrated by studies with mice, which were genetically 
altered to block 1,25-(OH)

2
D

3
/VDR signaling: The colon mucosa of VDR null 

(VDR-/-) mice show a pattern of increased DNA damage and cell division, the for-
mer probably due to formation of reactive oxygen species [39]. Interestingly, the 
large intestine reacts to inflammatory and hyperproliferative conditions with up-
regulation of the VDR and of its ligand-synthesizing enzyme, CYP27B1: Liu et al. 
[40] reported that in a mouse model of ulcerative colitis, a disease considered to be 
a precursor lesion to colorectal cancer, expression of CYP27B1 was increased four-
fold compared with controls. With respect to human colon cancer, we have shown 
that expression of CYP27B1 rises about fourfold in the course of progression from 
adenomas to well and moderately differentiated (G1 and G2) tumors, and then 
substantially declines during further progression [41]. Expression of the VDR 
showed the same dependence on tumor cell differentiation [41, 42]. However, cells 
from poorly differentiated (G3) colonic lesions, are frequently devoid of immuno-
reactivity for VDR and CYP27B1, while, at the same time, epidermal growth factor 
(EGF) receptor mRNA can be detected by in situ hybridization in almost any cancer 
cell [43]. Statistical evaluation actually showed an inverse expression of EGF 
receptor positivity compared to that of VDR. We suggested therefore that the 
1,25-(OH)

2
D

3
/VDR system can be activated in colon epithelial cells in response to 

mitogenic stimulation, e.g., by EGF, respectively, TGF-a [43, 44]. A strong auto-
crine/paracrine antimitogenic action of 1,25-(OH)

2
D

3
 would retard further tumor 

growth as long as cancer cells retain a certain degree of differentiation and high 
levels of CYP27B1 activity and of VDR expression. However, during progression 
to high grade malignancy, signaling from the 1,25-(OH)

2
D

3
/VDR system would be 

too weak to effectively counteract proliferative effects from, e.g., EGF-R activation 
[43]. We confirmed these hypotheses by demonstrating that, in differentiated colon 
cell lines, EGF stimulates expression of VDR and CYP27B1, whereas in a primary 
culture derived from a G2 tumor, expression of VDR and of CYP27B1 was actually 
reduced [45]. Palmer et al. [46] demonstrated that induction of the adhesion protein 
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E-cadherin by vitamin D enhanced differentiation of colon cancer cells. This in turn 
opposed hyperproliferation and thus indicates the importance of vitamin D activity 
for normal maintenance of the wnt pathway. It is significant that repression of 
E-cadherin and of VDR, and parallel enhanced expression of the transcription fac-
tor SNAIL, was found in patients with aggressive tumor characteristics [47].

CYP27B1 and VDR expression is present also in some prostate and mammary 
gland-derived cells, since growth inhibition by 25-(OH)D

3
 occurs with concomi-

tant upregulation of CYP24A1. If mammary cells are negative for CYP27B1, 
there is no mitotic inhibition, and no induction of CYP24A1 expression [48]. 
When the antimitotic potencies of 25-(OH)D

3
 and of 1,25-(OH)

2
D

3
, both in the 

nanomolar range, were studied in prostate cells, they were quite similar as long as 
cells expressed CYP27B1 [49]. However, it was suggested that during tumor pro-
gression, prostate cells no longer express CYP27B1 [35], though the biological 
grade of cells was not established in these studies. Quite similar to colon cells, 
EGF stimulated CYP27B1 promoter activity in prostate cell lines via involvement 
of the MAPK pathway, at least in those cancer cells that are still differentiated 
[50]. In normal human prostatic epithelial cells mitogen-activated protein kinase 
phosphatase 5 was induced by 1,25-(OH)

2
D

3
 leading to deactivation of protein 

kinase p38 [51]. Activation of p38 and downstream production of interleukin-6 
are proinflammatory. Inflammation as well as interleukin-6 overproduction have 
been implicated in initiation and progression of prostate as well as of colon cancer 
[52]. Similar regulatory networks appear to exist in mammary gland cells (for 
review see [53]).

1.2.2  Expression of CYP24A1 During Hyperproliferation  
and Tumor Progression

It must be taken into account that the effective tissue concentration of 1,25-(OH)
2
D

3
 

is determined not only by substrate availability but by additional regulatory factors 
that may govern also renal vitamin D synthesis: (i) in colonocytes, in prostate and 
mammary gland cells, 1,25-(OH)

2
D

3
 downregulates CYP27B1 and the VDR (see, 

e.g., [34]); (ii) 1,25-(OH)
2
D

3
 at the same time induces CYP24A1-encoded 25-(OH)

D
3
-24-hydroxylase, the enzyme that initiates stepwise degradation of the hormone; 

and (iii) at least in colon tumors, expression of CYP24A1 increases dramatically 
during progression to a poorly differentiated state (G3-G4) though CYP27B1 
expression is diminished [54].

Therefore, one major mechanism for vitamin D resistance or reduced sensitivity 
in VDR-positive cancer cells is 1,25-(OH)

2
D

3
 catabolism via the C-24 hydroxyla-

tion pathway. An inverse relation between cellular metabolism of 1,25-(OH)
2
D

3
 via 

24-hydroxylation and growth inhibition of prostate cancer cells by vitamin D has 
been suggested [55]. A 1,25-(OH)

2
D

3
 resistant prostate cell line was growth- 

inhibited when cultured with the active vitamin D metabolite combined with the 
CYP24A1 inhibitor liarozole [56]. Colon cells isolated from well-advanced (G3) 
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tumors express extremely high levels of CYP24A1, and cannot be growth-inhibited 
by 1,25-(OH)

2
D

3
. Actually, when these CYP27B1-negative cells are exposed to 

16.6 nmol 25-(OH)D
3
, they will efficiently use up the precursor within 12 h for 

24,25-(OH)
2
D

3
 production and further degradation [34]. Androgen-independent 

prostate cell lines also tend to express high levels of CYP24A1, whereas CYP27B1 
expression is negligible (see, e.g., [57]). These few examples clearly demonstrate 
an uncoupling of 1,25(OH)

2
D

3
 action from expression of CYP24A1 during advanc-

ing malignancy: whereas, in differentiated colon and prostate cancer cells, 
1,25-(OH)

2
D

3
 will induce CYP24A1 expression, undifferentiated cells express 

basally extremely high levels of CYP24A1 that can no longer be enhanced by treat-
ment with the active metabolite [38, 58]. Therefore, such basally high expression of 
CYP24A1 during advanced malignancy will not permit effective treatment of patients 
with vitamin D or vitamin D analogs that can be degraded via the C-24 pathway. 
However, this also clearly shows that inhibition of CYP24A1 activity in tumor cells 
could be of primary importance for cancer therapy. This aspect will be discussed 
further in the section on epigenetic regulation of CYP24A1 (see section 1.2.5.)

1.2.3  Regulation of CYP27B1 and CYP24A1 Expression  
by Sex Hormones

Although men and women suffer from similar rates of colorectal cancer deaths in 
their lifetime, the age-adjusted risk for colorectal cancer is less for women than for 
men [59]. This strongly indicates a protective role of female sex hormones, particu-
larly of estrogens, against colorectal cancer (see, e.g., [60, 61]). Observational 
studies have further suggested that postmenopausal hormone therapy is associated 
with a lower risk for colorectal cancer and a lower death rate in women [62]. 
A meta-analysis of studies showed a 34% reduction in the incidence of this tumor 
in postmenopausal women receiving hormone replacement therapy [63]. A mecha-
nism of action for estrogens in lowering colon cancer risk is not known yet. Since 
estrogen receptors are present in both normal intestinal epithelium and in colorectal 
cancers, the hormone is probably protective through these receptors and resultant 
post-receptor cellular activities.

While the colon cannot be considered an estrogen-dependent tissue, it must be 
defined as an estrogen-responsive organ. Expression of estrogen receptor (ER) 
subtypes a and b have been detected in cancer cell lines. Whereas human colon 
mucosa expresses primarily the ER-b type regardless of gender [64], ER-a is 
mainly expressed in the breast and the urogenital tract [65]. Both receptors bind 
estrogen, but they activate promoters in different modes. Studies of breast and pros-
tate carcinogenesis suggested opposite roles for ER-a and ER-b in proliferation 
and differentiation [66]. Therefore, the ER-a/ER-b ratio has been suggested as a 
possible determinant of the susceptibility of a tissue to estrogen-induced carcino-
genesis: in some cells, binding of estrogen to ER-a induces cancer-promoting 
effects, whereas binding to ER-b exerts a protective action. With respect to colon 
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cancer, the concept of a protective role of ER-b gained support recently: decreasing 
levels of the receptor were reported during colonic tumorigenesis compared with 
expression in the adjacent normal mucosa from the same patient [67].

Estrogens may indirectly oppose progression of malignancies by changing VDR 
expression or vitamin D metabolism in colonic epithelial cells. As early as in 1986, 
a study on the effect of endogenous estrogen fluctuation with respect to 25-(OH)D

3
 

metabolism was published [68]. This study in healthy premenopausal women sug-
gested that 25-(OH)D

3
 was metabolized predominantly to 24,25-(OH)

2
D

3
 at low 

estrogen, but to 1,25-(OH)
2
D

3
 at higher serum estrogen concentrations. While this, 

in 1986, primarily concerned renal synthesis of vitamin D metabolites, it was the 
first suggestion that estrogen elevates CYP27B1 expression.

Liel et al. [69] reported that estrogen increased VDR activity in epithelial cells 
of the gastrointestinal tract. In the colon adenocarcinoma-derived cell line Caco-2, 
which is ER-b positive but negative for ER-a, we demonstrated an increase of 
CYP27B1 mRNA expression and also of enzymatic activity after treatment with 
17b-estradiol [70]. Based on these findings a clinical pilot trial was designed, in 
which postmenopausal women with a past history of rectal adenomas were given 
17b-estradiol daily for 1 month to reach premenopausal serum levels. Rectal biop-
sies were obtained at the beginning and end of trial. A predominant result was the 
elevation of VDR mRNA [71]. We also observed significant induction of CYP27B1 
mRNA in parallel to a decrease in COX-2 mRNA expression in those patients who 
had particularly high levels of the inflammatory marker at the beginning of the trial 
(Cross HS, The vitamin D system and colorectal cancer prevention. In: Vitamin D, 
3rd edition. D. Feldman ed. Elsevier 2010).

To study modification of vitamin D hydroxylase activity by 17b-estradiol fur-
ther, we used a mouse model to measure actual 1,25-(OH)

2
D

3
 synthesis and accu-

mulation in colonic mucosa. In female compared with male mice, CYP27B1 
mRNA was doubled and 1,25-(OH)

2
D

3
 concentration in the mucosa was increased 

by more than 50%. This occurred in the proximal colon only and suggested that 
there may be site-specific action of 17b-estradiol [127]. In this respect it is signifi-
cant, that the estrogen receptor ESR1 is more methylated (inactivated) in the human 
distal than in the proximal colon [72].

There is equivocal evidence for the role of estrogen receptors (ER)-a and 
(ER)-b, and therefore for estrogenic activity, during mammary tumor progression. 
It has been suggested that higher ER-a expression in normal breast epithelium 
increases breast cancer risk. Since 1,25-(OH)

2
D

3
 synthesis, not only in colonocytes 

but also in mammary cells, may in part be regulated by 17b-estradiol [70], and since 
epidemiological evidence points to a correlation between breast cancer incidence 
and low levels of the precursor 25-(OH)D

3
 [73], evaluation of the vitamin D system 

during progression of mammary carcinogenesis could be important. When normal 
breast tissue was compared with that derived from cancer patients, CYP27B1 
mRNA was found in both tissues. In one study it was claimed, that expression was 
higher during early malignancy similar to colonic tissue [74]. Primary cultures 
established from human mammary tissue expressed CYP27B1 and were growth-
inhibited by physiologically relevant concentrations of 25-(OH)D

3
 [48], while 
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established breast cancer cell lines showed a wide range of vitamin D hydroxylase 
expression. In general, however, CYP27B1 mRNA expression is relatively low and 
that of CYP24A1 is rather high. For example, hydroxylation of 25-(OH)D

3
 in 

MCF-7 cells occurred primarily on the C-24 pathway [38], though we were able to 
demonstrate that 17b-estradiol elevates CYP27B1 mRNA expression and activity 
in these cells as well [70]. Kemmis and Welsh [36] recently showed that oncogenic 
transformation of human mammary epithelial cells was associated with reduced 
1,25-(OH)

2
D

3
 synthesis and decreased sensitivity to its antimitotic action. This sug-

gests enhanced expression of the catabolic CYP24A1 during progression.
Growth and function of the prostate is dependent on androgens. Initial endocrine 

therapy in prostate cancer aims to eliminate androgenic activity from cells. 
However, cells invariably become refractory to this therapy and grow androgen-
independently. During this progression, estrogen influence appears to increase and 
oxidative and reductive 17b-hydroxysteroid dehydrogenase activities are modified 
[75]. In another report, 17b-hydroxysteroid dehydrogenase subtypes 2, 4, and 5 
were up-regulated in prostatic cell lines treated with 1,25-(OH)

2
D

3
 [76]. Interestingly, 

aromatase enzymatic activity was enhanced by 1,25-(OH)
2
D

3
 in prostate cancer cell 

lines suggesting synthesis of estradiol from testosterone, whereas 5a-reductase was 
not modified [77]. On the other hand, 1,25-(OH)

2
D

3
 apparently inhibited androgen 

glucuronidation and thus androgen inactivation [78], while it stimulated androgen 
receptor expression [79]. Quantification of CYP27B1 mRNA [80] and of enzy-
matic activity in prostate cancer compared with normal cells suggested deficiency 
during progression [35], which would result in reduced dependence on 25-(OH)D

3
 

for growth control.

1.2.4  Regulation of CYP27B1 and of CYP24A1 Expression  
by Splicing Mechanisms and Polymorphisms

Alternative gene splicing affects up to 70% of human genes and enhances genetic 
diversity by generating proteins with distinct new functions. In line with many 
cytochrome P450s, CYP27B1 is known to exhibit alternative splicing and, in kid-
ney cells, this led to modified 1,25-(OH)

2
D

3
 synthesis [81]. There have been several 

reports on differential expression of splice variants for CYP27B1 also in cancerous 
cells derived from diverse tissues suggesting a role for gene splicing in tissue-
specific regulation of 1,25-(OH)

2
D

3
 production [82–85]. In MCF-7 mammary cells, 

and several subclones of this cell line, at least six splice variants of CYP27B1 were 
detected resulting in at least six protein variants present in Western blots at varying 
band intensity [85]. It is yet unknown whether some of these splice variants present 
during breast tumor progression lack 1a-hydroxylation activity.

Splice variants of CYP24A1 could lead to abnormal vitamin D catabolism 
respectively reduced or enhanced 1,25-(OH)

2
D

3
 accumulation (see, e.g., [86, 128]). 

In prostate tumor-derived cell lines, constitutive CYP24A1 was expressed as a 
splice variant in some cells, whereas others had CYP24A1 splice variants after 
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treatment with 1,25-(OH)
2
D

3
 only [87]. In colon tumors, a CYP24A1 splice variant 

at 754 bp was much more prominent in differentiated (G1) tumors than in undif-
ferentiated ones [25]. In colon cells derived from a G2 tumor, the normal CYP24A1 
band as well as the variant were present with similar intensity, but the variant was 
not found in differentiated Caco-2 cells. This particular splice variant also disap-
peared after treatment with 1,25-(OH)

2
D

3
 [45].

Studies of genetic polymorphisms with respect to vitamin D hydroxylases are 
rare. In colon cancer patients, genetic variants of several markers, among them 
the VDR, were investigated to explore associations with microsatellite instability 
(MSI) or the CpG Island methylator phenotype (CIMP). Fok1 VDR polymor-
phism was associated with CIMP-positive tumors [88]. When investigating pros-
tate tumors in a group of Caucasian and African American patients, several 
non-coding SNPs were identified in the CYP27B1 gene. However, these SNPs 
probably do not enhance susceptibility to tumors since they were found also in an 
unaffected control group [89]. Novel SNPs were detected in the human CYP24A1 
promoter that did result in reduced expression of CYP24A1. This variant was 
found primarily in the African American population [90]. Since this population 
group is recognized to suffer from vitamin D insufficiency and to present with 
prostate tumors more frequently than Caucasian Americans, a relevance of this 
variant for protection against tumor incidence by the vitamin D system appears 
questionable.

1.2.5  Epigenetic Regulation of CYP27B1 and of CYP24A1 
Expression

DNA methylation of cytosine residues of CpG islands in the promoter region of 
genes is associated with transcriptional silencing of gene expression in mammalian 
cells, while decreased methylation of CpG islands enhances gene activity. The CpG 
island methylator phenotype (CIMP) is a distinct phenotype in sporadic colorectal 
cancer. For instance, a CIMP-high status is significantly associated with tumors of 
the proximal colon. Also relative survival can be associated with methylation status 
[91]. While these studies certainly are not definitive yet, it seems unlikely that 
methylation/demethylation processes in general can be associated with colon tumor 
incidence; though CIMP status coupled with other information such as microsatel-
lite instability could be used as a prognostic factor. However, methylation/demethy-
lation processes concerning promoters of certain genes may predispose to, or 
protect against, sporadic malignancies.

In the normal colon, methylation is age- and also apparently site-related. When 
evaluating the promoter region of the estrogen receptor (ESR1), it was found to be 
more highly methylated (inactivated) in the human distal than in the proximal colon 
[72]. Since estrogen apparently enhances 1,25-(OH)

2
D

3
 synthesis in mucosal cells, 

this suggests that in women the distal colon is less protected by vitamin D against 
tumor incidence (see Sect. 1.2.3.).
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Other genes modified by epigenetic events could be those coding for the vitamin 
D system. Kim et al. [92] demonstrated that the negative response element in the 
CYP27B1 promoter is regulated by the ligand-activated vitamin D receptor through 
recruitment of histone deacetylase, a critical step for chromatin structure remodel-
ing in suppression of the CYP27B1 gene. In addition, this transrepression by VDR 
requires DNA methylation in the CYP27B1 gene promoter. However, this study 
was done in kidney cells and not in tumor-derived cells. Another study highlighted 
the relevance of different microenvironments (tumor versus normal) for the regula-
tion of CYP24A1: CYP24A1 promoter hypermethylation was present in endothe-
lial cells derived from tumors, but not from normal tissue [93].

In a mouse model of chemically induced colon cancer, protection against tumor 
incidence by estrogen was associated with decreased CpG island methylation of the 
VDR promoter and enhanced VDR expression [94]. When we tested colon cancer 
cell lines derived from moderately differentiated G2 tumors (COGA-1 cells) and 
from undifferentiated G3 tumors (COGA-13 cells) for expression of vitamin D 
hydroxylases and compared results with the differentiated colon cancer cell line 
Caco-2, it became evident that Caco-2 cells had high levels of CYP27B1 mRNA, 
while COGA-1 and COGA-13 had low expression or none. In contrast, constitutive 
CYP24A1 expression was extremely high in COGA-13, and not apparent in 
COGA-1 and Caco-2 cells (Fig. 1.1). Addition of the methyltransferase inhibitor 
5-aza-2¢-deoxycytidine induced CYP24A1 mRNA expression significantly in 
Caco-2 and also in COGA-1 cells. In COGA-13 cells, however, the methyltrans-
ferase inhibitor did not further raise the already high basal CYP24A1 expression. 
Interestingly, CYP27B1 appeared to be under epigenetic control as well, since 
COGA-1 and COGA-13 cells showed a distinct elevation of CYP27B1 mRNA after 
treatment with 5-aza-2¢-deoxycytidine (Fig. 1.1) (Khorchide et al., manuscript in 
preparation).

Differences in expression of vitamin D hydroxylases in the course of tumor pro-
gression as observed in colon cancer patients [41, 54] could be caused by epigenetic 
regulation of gene activity via methylation/demethylation processes as well as his-
tone acetylation/deacetylation. In low-grade cancerous lesions, CYP27B1 expres-
sion is exceedingly high compared to normal mucosa in non-cancer patients [26]. 

Fig. 1.1 Evaluation of CYP27B1 and CYP24A1 mRNA expression by RT-PCR in colon cancer 
cells. Cells were treated for 3 days with 2 mM 5-aza-deoxycytidine treatment. Caco-2, differenti-
ated cells; COGA-1, established from a moderately differentiated tumor; COGA-13, established 
from an undifferentiated tumor. Reference mRNA was cytokeratin 8 (CK8)
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Enhanced synthesis and accumulation of 1,25-(OH)
2
D

3
 in the colon mucosa would 

be responsible for up-regulation of transcriptional activity of CYP24A1 [34] and 
also for autocrine/paracrine inhibition of tumor cell growth. We suggest that this 
enhanced expression of CYP27B1 could be due, at least in part, to epigenetic regu-
lation, i.e., demethylation, while raised CYP24A1 expression probably results from 
the normal regulatory loop following accumulation of 1,25-(OH)

2
D

3
 in colonic 

mucosa. However, in highly malignant tumors, an efficient antimitogenic effect by 
1,25-(OH)

2
D

3
 is unlikely, because expression of the catabolic vitamin D hydroxy-

lase by far exceeds that of CYP27B1. Our hypothesis, therefore, is that during 
cancer progression CYP27B1 would be inactivated by epigenetic mechanisms, 
whereas that of CYP24A1 would be activated. To test this, we studied expression 
of vitamin D hydroxylases in 105 colon tumor patients entering a Viennese hospital 
for tumor resection. Uncoupling of CYP24A1 expression from regulation by 
colonic 1,25-(OH)

2
D

3
 would lead to vitamin D hydroxylase expression in opposite 

directions during progression to a highly malignant state. This is actually the case: 
Transition from low- to high-grade cancers is associated with a further highly signifi-
cant rise in CYP24A1 mRNA expression and a simultaneous decline of CYP27B1 
activity (Fig. 1.2). Analysis of a selected (small) number of tumor biopsies  

4659 6410 5910N =

G3+G4G1+G2NM

22

20

18

16

14

12

10

8

6

4

2

0

–2

G
en

e 
ex

pr
es

si
on

[fo
ld

N
M

]

CYP24A1

CYP27B1

CYP24A1 and CYP27B1 mRNA

***

***

*

Fig. 1.2 CYP24A1 and CYP27B1 mRNA expression in 105 colon cancer patients. n = 59 patients 
with G1/G2 (highly to moderately differentiated) tumors; n = 46 patients with G3/G4 (low and 
undifferentiated) tumors. Cancer patient data were compared with those derived from non-cancer 
(NM) patients (tissue from stoma reoperations after diverticulitis surgery) n = 10. Densitometric 
data of tumor patients were expressed in fold increase compared to NM. Significant differences 
are expressed as: *p £ 0.05; ***p £ 0.001
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suggested that in poorly differentiated cancerous lesions, regions of the CYP24A1 
promoter were demethylated and those of CYP27B1 were  methylated (Khorchide 
et al., manuscript in preparation).

In prostate cells, Khorchide et al. [95] demonstrated that human normal prostate 
cells possess CYP27B1 expression, but are devoid of CYP24A1, whereas DU-145 
prostate cancer cells display high CYP24A1 and very low CYP27B1 mRNA 
expression. Treatment with the methylation inhibitor 5-aza-2¢-deoxycytidine 
together with the histone deacetylation (HDAC) inhibitor trichostatin A, elevated 
both CYP27B1 as well as CYP24A1 mRNA expression in the normal cell line. In 
DU-145 cells, 5-aza-2¢-deoxycytidine plus trichostatin A elevated CYP27B1 
mRNA and, importantly, also its activity as measured by HPLC [95]. Another 
HDAC inhibitor, SAHA, induced CYP27B1 mRNA expression in prostate cells as 
well, however at the high dose of 15 mM only [96]. In contrast, Banwell et al. were 
able to demonstrate that vitamin D-insensitive prostate and breast cells when 
treated with 1,25-(OH)

2
D

3
 together with nanomolar doses of HDAC inhibitors, 

were growth-inhibited synergistically. They suggest that insensitivity to vitamin D 
could be due to epigenetic mechanisms involving the VDR [97].

1.3  Regulation of CYP27B1 and of CYP24A1 Expression  
by Nutrition

The colorectum, as part of the digestive system, clearly is particularly affected by 
nutritional components. Therefore, this section will address nutrient regulation of 
vitamin D hydroxylases primarily in colorectal malignancies. However, there is 
some indication that also prostate as well as mammary cancer cells might be 
affected, though mechanistic evidence for this is more difficult to obtain.

It is clear that, for prevention of sporadic malignancies, average 25-(OH)D
3
 

levels at or above at least 40 nM need to be achieved in the general population, 
though there is still some discussion about the exact amount. However, optimiza-
tion of extrarenal production of 1,25-(OH)

2
D

3
 is essential as well. Experimental 

proof is accumulating that nutrient factors such as calcium, phytoestrogens, and 
folate could regulate expression of vitamin D hydroxylases.

1.3.1  Regulation of Vitamin D Metabolism in the Gut  
Mucosa by Calcium

It is intriguing that vitamin D in combination with high intake of calcium from 
dietary sources or supplements, apparently is much more effective in reducing the 
risk of colorectal cancer than when given alone [98–100]. To investigate this 
further, we availed ourselves of a mouse model. Feeding male and female mice 
an AIN76 minimal diet containing 0.04% calcium led to enhanced positivity for 
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PCNA (proliferating cell nuclear antigen) and for cyclin D1, while that for p21, 
a cyclin-dependent kinase inhibitor, was diminished. Mice on a calcium-deficient 
diet also expressed CYP24A1 mRNA at a six- to eightfold higher level than their 
counterparts on a 0.9% calcium diet [27]. Interestingly, CYP27B1 mRNA was 
significantly up-regulated in animals on 0.04% compared to 0.9% calcium as 
well, though in female mice only [129]. Importantly, measurement of 1,25-(OH)
D

3
 concentrations in mucosal homogenates by a newly developed assay [127] 

indicated that up-regulation of CYP27B1 by low calcium is translated into 
increased CYP27B1 protein activity causing accumulation of 1,25-(OH)D

3
 in 

colonic mucosal cells. In parallel, in these cells apoptotic pathways, i.e., expres-
sion of the downstream effector proteases, caspase-3 and of caspase 7, are stimu-
lated. This strongly suggests that enhanced synthesis of 1,25-(OH)D

3
 in females 

overrides the gender-independent stimulatory effect of low calcium on CYP24A1-
mediated vitamin D catabolism, thereby providing protection against incipient 
hyperproliferation induced by inadequate calcium nutrition. This enhanced syn-
thesizing activity occurred in the proximal colon only and suggests that there may 
be site-specific action of 17b-estradiol. As mentioned previously, the estrogen 
receptor ESR1 is more methylated (inactivated) in the human distal than in the 
proximal colon [72] (see also Sect. 1.2.3).

At present it is not clear whether signals from low luminal calcium are trans-
duced by the calcium sensing receptor (CaR). Alternatively, a lack of calcium is 
known to increase concentrations of free bile acids in the gut lumen. Of these, litho-
cholic acid by binding to the VDR can induce expression of CYP24A1 [101]. Our 
results suggest that in humans also calcium supplementation could lower the risk of 
colorectal cancer because high dietary calcium suppresses vitamin D catabolism 
and this would favor accumulation of 1,25-(OH)D

3
 in the colon mucosa. 

Furthermore, 1,25-(OH)D
3
 would increase expression of the CaR by binding to a 

vitamin D responsive element in its promoter region [102].

1.3.2  Regulation of the Vitamin D System by Phytoestrogens

It can be inferred that in human colonocytes, estrogenic compounds have positive 
effects on endogenous synthesis of 1,25-(OH)

2
D

3
 and consequently on VDR-

mediated anti-inflammatory and antimitogenic actions (see Sect. 1.2.3). In this 
context, it is of interest that in East Asian populations the risk of cancers of sex 
hormone-responsive organs, viz., breast and prostate gland, as well as of the col-
orectum is clearly lower than elsewhere. This has been traced to the typical diet in 
this part of the world, which is rich in soy products and therefore contains high 
amounts of phytoestrogens. Of these, genistein induced CYP27B1 and reduced 
CYP24A1 expression and activity in a mouse model and in human colon adenocar-
cinoma-derived cell lines [103], while daidzein, another phytoestrogen prominent 
in soy and, importantly, its metabolite equol, which is strongly active in other bio-
logical systems, did not affect any of the colonic vitamin D hydroxylases [70].
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Genistein could also have anti-inflammatory properties in the colon: When mice 
were fed 0.04% dietary calcium, COX-2 mRNA and protein were increased two-
fold in the female colon mucosa and to a lesser extent in males. Supplementation 
of genistein to the diet lowered COX-2 expression to control levels (0.5% dietary 
calcium) in both genders [104]. This suggests that genistein could have a beneficial 
effect on colonic inflammation similar to that seen with 17b-estradiol in the human 
pilot study described before (Sect. 1.2.3). Since genistein preferentially activates 
ER-b [105, 106], which is equally expressed in the colon of women and men, low 
rates of colorectal cancer incidence in both genders in soy-consuming populations 
could be due to appropriate modulation of the anti-inflammatory and anticancer 
potential of vitamin D by phytoestrogens.

Also the human prostate is frequently affected by inflammatory disease, which 
could predispose to development of malignancies. Since the inflammation-related 
prostaglandin pathway is negatively affected in prostate cancer cells by genistein 
[107], this suggests a potential mechanism of prostate cancer prevention in soy-
consuming countries. Experimental data from Farhan et al. indicated that genistein 
very efficiently reduced the activity of CYP24A1 in human prostate cancer cells 
[57, 108], probably by direct binding to the CYP24A1 protein [58]. In contrast to 
the colon, genistein inhibited CYP27B1 mRNA expression in prostate cells, and 
this may involve histone deacetylation since trichostatin A rescues CYP27B1 from 
transcriptional inactivation [58] (see also [95]). Treatment of prostate cancer cells 
with 1,25-(OH)

2
D

3
 together with genistein potentiated the antimitotic activity of the 

active metabolite. This suggests an increased half-life of 1,25-(OH)
2
D

3
 due to inhi-

bition of CYP24A1 activity [109], as already indicated in previous studies [58].

1.3.3  Effect of Folate on CYP24A1 Expression

Folate, a water-soluble vitamin of the B family, is essential for synthesis, repair, and 
methylation of DNA. As a methyl donor, folate could play an important role in 
epigenetic regulation of gene expression. While folic acid was supplemented to 
foods in the USA in the late 1990s to curb incidence of neural tube defects, and 
blood folate concentrations increased in the survey period shortly thereafter, there 
has been a decline since and its causes are unknown [110].

Sporadic cancers evolve over a lifetime and could therefore be at least equally 
affected by low folic acid intake as neural tube development. Older age and inad-
equate folate intake lead to altered methylation patterns [111]. Evidence is increas-
ing that a low folate status predisposes to development of several common 
malignancies including colorectal cancer [112]. Giovannucci et al. [113] and others 
demonstrated that prolonged intake of folate above currently recommended levels 
significantly reduced the risk of colorectal cancer.

To investigate the relevance of folate for regulation of the vitamin D system, we 
used C57/BL6 mice on the semisynthetic AIN76A diet, which contained, among oth-
ers, 5% fat, 0.025 mg/g vitamin D

3
, 5 mg/g calcium, and 2 mg/g folic acid [114, 115]. 
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When this basal diet was modified to contain high fat, low calcium, low  vitamin D
3
, 

and low folic acid, mice exhibited signs of hyperplasia and hyperproliferation in the 
colon mucosa [115], which were accompanied by a more than 2.5-fold elevated 
CYP24A1 mRNA expression [116]. When calcium and vitamin D

3
 in the diet were 

optimized while fat was still high and folic acid low, CYP24A1 mRNA expression 
fell by 50%, but was still higher than in the colon mucosa of mice fed the basal (con-
trol) diet. Finally, when the diet contained high fat, low calcium, and low vitamin D, 
but folic acid content was optimized, only then any increment in colonic CYP24A1 
due to dietary manipulations was completely abolished [116].

1.4  Can Regulation of Vitamin D Hydroxylases  
Be Implemented for Therapy?

The high levels of 1,25-(OH)
2
D

3
 respectively of its analogs initially used for cancer 

therapy invariably caused hypercalcemia. However, it was observed that doses of 
the active metabolite could be reduced without loss of activity when given as com-
bination therapy.

1,25-(OH)
2
D

3
 and vitamin D analogs can enhance, either synergistically or addi-

tively, the antitumor activities of several classes of antineoplastic agents (see, e.g., 
[117–119]). This has led to several clinical studies with drugs such as docetaxel in 
combination with 1,25-(OH)

2
D

3
 in the treatment of androgen-independent prostate 

cancer, though mechanisms of action are poorly understood yet. It was observed 
that the antimitotic action of 1,25-(OH)

2
D

3
 associated with G0/G1 arrest, enhanced 

apoptosis, and differentiation could be achieved with lower concentrations of vita-
min D substances when they were given to patients in combination therapy with 
cytotoxic agents such as carboplatin and taxanes. Even an intermittent 1,25-(OH)

2
D

3
 

schedule was possible in this treatment regimen. It was also attempted to use keto-
conazole, an unspecific cytochrome P450 inhibitor, for combination treatment. 
Very low doses of 1,25-(OH)

2
D

3
 could be used under such conditions since degra-

dation of vitamin D was attenuated [120]. Recently it was demonstrated that antine-
oplastic agents themselves can target CYP24A1 for degradation by decreasing 
stability of CYP24A1 mRNA. When kidney cells positive for CYP27B1 were 
treated with 25-(OH)D

3
, they synthesized 1,25-(OH)

2
D

3
 as expected. Treatment 

with daunorubicin, etoposide, and vincristine caused enhanced accumulation of 
1,25-(OH)

2
D

3
. While CYP27B1 mRNA expression was not altered by cytotoxic 

drug treatment, that of CYP24A1 was reduced highly significantly [121]. Since 
mitogen-activated protein (MAP) kinases play an important role in mediating the 
stimulatory effect of 1,25-(OH)

2
D

3
 on CYP24A1 expression [122], and antineo-

plastic agents apparently stimulate activity of MAP kinases [123], this seems a 
likely mechanism of action.

Enhancing apoptotic activity of malignant cells could be another approach to 
cancer patient therapy. Pretreatment with a high dose of 1,25-(OH)

2
D

3
 augmented 

the antitumor activity of docetaxel, which manifested itself by an increased 
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 population of apoptotic cells, raised Bax (a pro-apoptotic protein), and also reduced 
expression of a multidrug resistance-associated protein [124]. In an animal model 
for squamous cell carcinoma a combination of only 10 nM 1,25-(OH)

2
D

3
 together 

with cisplatin resulted in greater caspase-3 activation than either substance given 
alone. It was suggested that increased cytotoxicity resulting from a 1,25-(OH)

2
D

3
/

cisplatin treatment could be due to raised 1,25-(OH)
2
D

3
-induced apoptotic signal-

ing through the MEKK-1 pathway [118]. Also the anti-EGFR drug cetuximab 
applied together with 1,25-(OH)

2
D

3
 seems to provide increased cell cycle arrest and 

apoptosis in prostate cancer cell cultures [125].
Another valid approach to cancer therapy with 1,25-(OH)

2
D

3
 would be the use 

of vitamin D analogs to block CYP24A1 activity directly. A 24-phenylsulfone 
analog of vitamin D raised CYP24A1 mRNA expression in colon, prostate, and 
mammary cancer cells, but inhibited its activity very rapidly in a dose-dependent 
manner. This analog apparently binds to the VDR to stimulate transactivation, but 
also directly interacts with and inhibits CYP24A1 protein [126].

These few examples suggest that there are various options for the use of vitamin 
D for patient therapy. Most approaches are concerned with reducing activity of the 
catabolic hydroxylase CYP24A1. This is based on the hypothesis that reduced 
degradation of the active metabolite in combination therapy will allow the use of 
much lower concentrations of 1,25-(OH)

2
D

3.

1.5  Conclusion

It is well-recognized that sporadic malignancies have a multifactorial etiology. 
While there is strong evidence that serum 25-(OH)D

3
 levels are inversely related to 

tumor incidence, there are other factors equally important that will determine the 
optimal concentration of 1,25-(OH)

2
D

3
 synthesized from the precursor in extrarenal 

tissues. A person’s genetic background with respect to VDR, CYP27B1 and 
CYP24A1 expression caused by specific splicing mechanisms and polymorphisms 
will determine production in kidney as well as in extrarenal cells. Growth factors 
and sex hormones regulate expression of vitamin D hydroxylases and of the VDR 
in several tissues known to be affected by sporadic cancers. Hyperproliferative cells 
early during tumor progression may express CYP27B1 strongly as a defense 
against progression, resulting in enhanced apoptosis and reduced mitosis. High 
concentrations of 1,25-(OH)

2
D

3
 in such tissues will invariably result in raised 

expression of the catabolic hydroxylase and this necessitates the use of potent 
CYP24A1 inhibitors to maintain tissue levels of the active metabolite. This high-
lights the need for reliable methods to measure tissue concentrations of 1,25-(OH)

2
D

3
. 

However, functional analysis of vitamin D metabolism in cancer is complicated by 
the heterogeneous composition of tumors, not only with respect to cell types but 
also to biological grade of cells. In at least 50% of G3 undifferentiated colon 
tumors, expression of CYP24A1 mRNA is extremely high whereas that of 
CYP27B1 is very low. This is probably because of epigenetic mechanisms and 
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could be age- and colonic-site-related. Activation of the CYP24A1 gene during 
progression could potentially be halted by a combination of methyltransferase 
inhibitors and histone deacetylase inhibitors.

When considering prevention of cancer by vitamin D, we speculate that 
nutritional folate as a methyl donor for epigenetic control, as well as enhanced 
consumption of calcium and phytoestrogens could optimize expression of 
 vitamin D hydroxylases during the decades that it takes a sporadic tumor to 
develop. Maintaining high extrarenal tissue concentrations of 1,25-(OH)

2
D

3
, 

by whatever means, could prove to be a most effective cancer-preventive 
approach.
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Abstract The development of an understanding of the role the vitamin D receptor 
(VDR) endocrine system plays to regulate serum calcium levels began approxi-
mately three centuries ago with the first formal descriptions of rickets. The parallel 
appreciation of a role for the VDR in cancer biology began approximately 3 decades 
ago and subsequently a remarkable increase has occurred in the understanding of its 
actions in normal and malignant systems.

Principally, much of this understanding has focused on understanding the extent 
and mechanism by which the VDR influences expression of multiple proteins 
whose combined actions are to govern cell cycle progression, induce differentia-
tion, and contribute to the regulation of programmed cell death, perhaps in response 
to loss of genomic integrity. Predominantly, although not exclusively, these 
increases in target proteins reflect the transcriptional control exerted via the VDR. 
Reflecting the expanding understanding of how chromatin architecture is sensed 
and altered by transcription factors, the actions of the VDR have been defined 
through the large transcriptional complexes it is found in. The diversity of these 
complexes is large, and presumably underpins the pleiotropic biological actions 
that the VDR is associated with. The VDR is neither mutated nor deleted in malig-
nancy but instead polymorphic variation distorts its ability to function, as indeed 
does expression of a number of associated cofactors, thereby skewing the ability to 
transactivate target genes.

Exploitation of this understanding into cancer therapeutic settings may occur 
through several routes, but perhaps a more systems orientated approach may yield 
insight by identifying and modeling points where the VDR, and closely related 
nuclear receptors, exert the most dominant control over cellular processes such as 
cell cycle control.
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Abbreviations

AR                          Androgen receptor
bHLH                          Bacis helix loop helix
9 cRA                          9 cis retinoic acid
1a,25(OH)

2
D

3
             1a,25DihydroxyvitaminD

3

DREAM                          Downstream regulatory element antagonist modulator
ER                          Estrogen receptor
FXR                          Farnesoid X-activated receptor
HDAC                          Histone deacetylase
HDACi                          Histone deacetylase inhibitor
HSP                          Heat shock protein
LCOR                          Ligand-dependent nuclear receptor corepressor
LCA                          Lithocholic acid
LXR                          Liver X receptor
NCOR1                          Nuclear receptor corepressor 1
NCOR2/SMRT              Silencing mediator of retinoid and thyroid hormone 

 receptors/Nuclear receptor corepressor 2
NR                          Nuclear receptor
PPAR                          Peroxisome proliferator activated receptor
RAR                          Retinoic acid receptor
RXR                          Retinoid X receptor
SLIRP                          SRA stem loop-interacting RNA-binding protein
SRC                          Steroid receptor coactivator
TRIP2/DRIP205             Thyroid hormone receptor interactor 2
TRIP15/COPS2/Alien     Thyroid hormone receptor interactor 15
VDR                          Vitamin D receptor

2.1  Choreography of VDR Signaling

2.1.1  General Findings for VDR Transcriptional Actions

1a,25(OH)
2
D

3
 and its precursor 25(OH)D

3
, in common with most NR ligands, are 

highly hydrophobic and transported in the aqueous blood stream associated with a 
specific binding protein (DBP) [1–3]. At the cell membrane they are free to diffuse 
across the lipid membrane, although the identification of Megalin as an active trans-
port protein for 25(OH)D

3
 suggests that transport into the cell of vitamin D

3
 

metabolites may be more tightly regulated than merely by passive diffusion alone 
[4]. Once in the cells of the target organ, 1a,25(OH)

2
D

3
 associates with the VDR.

In the absence of ligand, the VDR may be distributed throughout the cell, 
although predominantly located in the nucleus. There is evidence of cytoplasmic 
expression and cell-membrane-associated VDR that may mediate non-genomic 
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signal  transduction responses [5, 6]. This is a feature of several NRs, such as the 
ERa, where the NR is cycled through caveolae at the cell membrane to initiate 
signal transduction pathways [6, 7]. The contribution of these actions to the overall 
functions of 1a,25(OH)

2
D

3
 remains to be clarified fully. Interestingly, there is also 

evidence for the VDR to be actively trafficked into the nucleus upon ligand activa-
tion, in tandem with the heterodimeric partner RXRs [8], each in association with 
specific importins [9].

The majority of findings to date have addressed a nuclear function for the VDR 
associated with transcription. Structurally, the VDR is uncommon, compared to 
other NRs (NRs), as it does not contain an activation domain at its amino terminus 
(AF1). In most other receptors, this is an important domain for activation, for 
example, for autonomous ligand-independent AF function domain. The VDR 
instead relies on a domain in the carboxy terminus (AF-2) for activation and other 
domains for heterodimerization with RXR [10]. The VDR ligand-binding pocket 
contains hydrophobic residues such as His-305 and -397 that are important in the 
binding of 1a,25(OH)

2
D

3
. Ligand binding specifically requires interaction of the 

hydroxyl group of the A ring at carbon 1 of 1a,25(OH)
2
D

3
, which is added by the 

action of the 1a hydroxylase enzyme. The binding of ligand causes an LBD con-
formational change, which allows the C-terminal helix 12 of the AF2 domain to 
reposition into an active conformation, exposing a docking surface for transcrip-
tional co-regulators [11–13]. This switch of conformation of the LBD in the pres-
ence of ligand is a common feature in all ligand-binding NRs, as is the capacity to 
undergo receptor–cofactor interactions. Thus, both the unliganded and liganded 
VDR associates with a large number of different proteins involved with transcrip-
tional suppression and activation, respectively.

When located within the nucleus and in the absence of ligand, the VDR exist in 
an “apo” state associated with RXR and corepressors (e.g., NCOR1 and NCOR2/
SMRT) [14, 15] as part of large complexes (~2.0 MDa) [14, 16] and bound to RE 
sequences. These complexes in turn actively recruit a range of enzymes that post-
translationally modify histone tails, for example, histone deacetylases (HDACs) 
and methyltransferases, and thereby maintain a locally condensed chromatin struc-
ture around response element sequences [17–20]. Ligand binding induces a so-
called holo state, facilitating the association of the VDR-RXR dimer with 
coactivator complexes. A large number of interacting coactivator proteins have 
been described, which can be divided into multiple families including the p160 
family, the non-p160 members, and members of the large “bridging” TRAP/DRIP/
ARC complex, which links the receptor complex to the co-integrators CBP/p300 
and basal transcriptional machinery [21, 22].

The complex choreography of these events has recently emerged from the study of 
the VDR [17, 23–28] and other NRs [29–32], and involves cyclical rounds of 
 promoter-specific complex assembly, gene transactivation, complex disassembly, and 
proteosome-mediated receptor degradation coincident with corepressor binding and 
silencing of transcription. This gives rise to the characteristic periodicity of NR tran-
scriptional activation and pulsatile mRNA and protein accumulation. However, the 
periodicity of VDR-induced mRNA accumulation of target genes is not shared, but 
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rather tends toward patterns that are specific for individual target genes and suggests that 
 promoter-specific complexes combine to determine the precise periodicity [23, 24].

2.1.2  VDR Signal Specificity

Historically, researchers have tended to consider transcription factor actions in a 
somewhat monochrome view, for example, as illustrated for MYC and AP-1. These 
views are currently being revised in the light of surveys of genome binding sites 
and dissection of biological actions in a broader context (for example, reviewed in 
[33, 34]). These findings suggest that the functions of a given transcription factor 
superfamily are distilled through interaction with multiple cellular processes such 
that the normal capacity represents an extremely flexible and integrated signaling 
module. In malignancy, however, these transcriptional choices and phenotypic out-
puts generally become restricted [35].

The diversity of VDR expression sites, being detected in virtually all cells of a 
human, and the disparate phenotypic effects, from regulating calcium transport to 
sensing redox potential and DNA damage, also suggests that the cell specificity of 
actions may be distilled in a cell-type-specific manner. Therefore, the questions 
emerge as to what governs the temporal regulation of VDR-dependent transcrit-
pomes, among different cell types. Recent findings suggest that a high level of 
specificity of the timing and choice of VDR cofactor interactions may provide a 
mechanistic basis for signaling specificity. Combined expression and choice of 
interacting cofactors yield a high degree of NR transcriptional plasticity over 
choice, and timing of gene regulation [32, 36, 37].

Of the principal corepressors, it remains to be established to what extent speci-
ficity and redundancy occur. The expression, localization, and isoforms of NCOR1 
and NCOR2/SMRT corepressors strongly influence the spatio-temporal equilib-
rium between repressing and activating NR complexes and transcriptional outputs 
[38]. The specificity of these corepressor interactions is beginning to emerge. 
Ncor1 and Ncor2/Smrt knockouts are embryonically lethal, whereas stem cell com-
ponents from these mice and conditional approaches are revealing tissue-specific 
interactions [39–41] with distinct interacting domains being used to distinguish NR 
recognition [42]. Equally, the list continues to grow of novel corepressor proteins 
that the VDR interacts with.

Compared to the relatively massive size of the corepressors NCOR1 and 
NCOR2/SMRT, a number of smaller molecules have emerged as showing corepres-
sor function. TRIP15/COPS2/Alien has been demonstrated to interact with the 
VDR and act as a corepressor, in an AF-2 independent manner that may not require 
the same interactions with HDACs that NCOR1 does [43]. Intriguingly, this protein 
contributes to the lid sub-complex of the 26S proteasome and thereby potentially 
links VDR function with the regulation of protein stability [44]. Similarly, SLIRP 
[45] has also emerged as a repressive factor for the VDR, although to date very little 
is known about the specificity, in terms of tissue and target gene.
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Other repressors appear to demonstrate more specific phenotypic specificity. 
Hairless blocks VDR-mediated differentiation of keratinocytes, whereas addition 
of 1a,25(OH)

2
D

3
 displaces Hairless from the promoter of target genes and recruits 

coactivators to promote differentiation [46–48]. Similarly, DREAM (downstream 
regulatory element antagonist modulator) usually binds to direct repeat response 
elements in the promoters of target genes to enhance transcription in VDR and 
RAR target genes, in a calcium-dependent manner, and suggests that specificity 
arises from the interactions of VDR with further tissue-specific cofactors [49].

Finally, the Williams syndrome transcription factor (WSTF), contained within 
WINAC complex, identified by Kato and colleagues, directly interacts with unli-
ganded VDR and mediates binding to promoter sequences and can then bind and 
recruit other co-regulatory proteins. WINAC has ATP-dependent chromatin-remod-
eling activity and contains both SWI/SNF components and DNA replication-related 
factors. WINAC mediates the recruitment of unliganded VDR to its promoter target 
sites, and may organize local nucleosomal positioning to allow promoters access to 
co-regulators. This suggests a novel mechanism in transcriptional regulation, in 
which VDR binds to gene promoters before ligand is present [50, 51].

A similar level of coactivator specificity is also beginning to emerge. Members 
of the TRAP/DRIP complex were identified independently in association with the 
VDR and other NRs including the GR [52, 53] and TR [54–56]. The exact specific-
ity of many of the co-regulatory factors remains to be established fully, although 
there are some suggestions that certain co-activators are VDR-specific, for 
example, NCoA-62 [57]. Similarly, knockout of TRAP220, which has multiple 
NR interacting domains, has begun to reveal distinct interactions, and notably 
disrupts the ability of the VDR to regulate hematopoietic differentiation [58, 59]. 
In keeping with the skin being a critical target for VDR actions, the specificity 
of VDR interactions with cofactor complexes has been dissected in detail by 
Bikle and colleagues who have demonstrated the timing and extent of coactivator 
binding, and established a role for SRC3 during specific stages of keratinocyte 
differentiation [60, 61].

Aside from the established co-regulators, some chaperone proteins have been 
reported to be regulators of VDR-mediated transcription. HSP70 down-regulates 
VDR to repress transcription [62], whereas BAG1L, an HSP70 binding protein, has 
been shown to bind to the VDR, and enhances VDR-mediated transcription [63]. 
Similarly, p23 and HSP90 have been shown to release the VDR/coactivator com-
plex from the promoter of target genes in the presence of 1a,25(OH)

2
D

3
 [64]. The 

association of these HSPs suggests a natural cross-talk with other NRs, such as the 
AR, that associate with these chaperones in the cytoplasm.

Posttranslational modifications (PTM) possibly confer further VDR specificity 
of function. PTMs resulting from signal transduction processes, for example, bring 
about phosphorylation, acetylation, and ubiquitinylation events on the AR [65]. The 
VDR has been less extensively studied, but crucial roles have emerged for the phos-
phorylation of serine and threonine residues [66]. Subsequently, several residues 
have been identified that appear to regulate DNA binding and cofactor recruitment. 
The zinc finger DNA-binding domain is located at the N terminal of the VDR and 
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adjacent to this domain is the Serine 51 residue. This residue appears crucial for 
ligand-induced and phosphorylation-dependent transcriptional activation by the 
VDR. When Ser51 is mutated, phosphorylation of the VDR, by PKC at least, is all 
but completely abolished and its transcriptional activity is markedly reduced [67]. 
It is intriguing that the crucial site of PKC activity is located so close to the DNA-
binding domain, but whether there are allosteric or biochemical changes that alter 
the ability of the VDR to bind DNA remains to be elucidated.

The common NR partner RXR can also be phosphorylated and as a result alters 
recruitment of cofactors to its holo-complexes. Ser260 is located within the ligand-
binding domain of the RXR and appears crucial for mediating cofactor binding and 
ligand-induced transcriptional responses. When phosphorylated, Ser260 allows 
binding between the RXR and VDR, but presumably through allosteric changes to 
the complex, limits the recruitment of cofactors to the complex [68].

The recruitment of cofactors to the VDR holo-complex also appears to be regu-
lated further by the presence of PTMs, for example, kinase CK-II. The phospho-
mimic mutant VDRS208D does not increase or decrease VDR–DNA, VDR–RXR, 
or VDR–SRC interactions but it does increase the levels of VDR–DRIP205 com-
plexes present. CK-II which specifically phosphorylates Ser208 enhances 
1,25(OH)

2
D

3
-induced transactivation of VDR targets [69, 70]. In addition, phos-

phatase inhibitors (okadoic acid) in combination with 1,25(OH)
2
D

3
 shifts the cofac-

tor preference from NCOA2/GRIP-1 to TRIP2/DRIP205 [71]. Taken together, 
these data suggest that the TRIP2/DRIP205 coactivator complex enhances the tran-
scriptional response by VDR and is recruited by CK-II dependent phosphorylation 
of the VDR at Ser208.

2.1.3  Vitamin D Response Elements

A further level of specificity may arise from the specificity of binding sequence 
contained within the REs sequences of genomic targets. Simple REs are formed by 
two recognition motives and their relative distance and orientation contributes to 
receptor-binding specificity. Thus, the first identified VDRE was the DR3 – an 
imperfect hexameric direct repeat sequence AGTTCA with a spacer of three nucle-
otides. In the DR3 configuration, RXR, the heterodimer partner is believed to 
occupy the upstream half-site and VDR the downstream motif with two half-sites 
spaced by three nucleotides. Other types of VDREs have since been identified. One 
such VDRE is a palindromic sequence with a nine base-pair nucleotide spacer 
(IR9). This sequence was identified in the human calbindin D9K gene and like most 
VDREs the VDR/RXR binds this sequence in a 5¢-RXR-VDR-3¢ polarity (reviewed 
in [72]). More recently, a novel everted repeat sequence with a six base-pair nucle-
otide spacer (ER6) has been identified in the gene for CYP3A4 (an enzyme impor-
tant in xenobiotic metabolism) in addition to the DR3 already known to be present 
in this gene [73]. An inverted repeat with no spacer (IR0) has also been identified 
in the SULT2A1 gene [74].
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Similarly, the ability of VDR to display transrepression, that is, ligand- dependent 
transcriptional repression has received significant interest and reflects emerging 
themes for other NRs, for example, PPARs [75, 76], and highlights further the 
hitherto unsuspected flexibility of the VDR to associate with a diverse array of 
protein factors to adapt function [77, 78]. For example, analysis of the avian PTH 
gene has revealed a ligand-dependent repression of this gene by VDR [79]. The 
element mediating this effect was identified as a DR3, and since it resulted in tran-
scriptional repression, the motif was referred to as a negative nVDRE. A similar 
nVDRE has been identified in the human kidney in the CYP27b1 gene [80]. 
Interestingly, the VDR does not bind directly to this sequence; binding has been 
shown to be mediated by an intermediary factor known as a bHLH-type transcrip-
tion factor, VDR interacting repressor (VDIR). It has since been shown that 
liganded VDR binds to the VDIR and indirectly causes repression through HDAC 
mechanisms [77].

More recently, larger and integrated responsive regions have been identified, 
suggesting a yet more intricate control involving integration with other transcrip-
tion factors, for example, p53 and C/EBPa as demonstrated on the promoter/
enhancer regions of CDKN1A and SULT2A1, respectively [23, 81]. Thus, the com-
binatorial actions of the VDR with other TFs most likely go some way toward 
explaining the apparent diversity of VDR biological actions. Again, for other NRs 
(e.g., AR and ERa), more dominant transcription factors, so-called pioneer factors, 
appear to be highly influential in determining choice and magnitude of transcrip-
tional actions [82]. Recently, C/EBP family members have been demonstrated to 
act in a similar cooperative manner with the related PPARg [36] and it remains to 
be established to what extent the VDR interacts similarly with other transcription 
factors. The above findings are suggestive of a similar mechanism.

Efforts to understand VDR function have at their basis the antagonism between 
these apo and holo receptor complexes and the ability of these complexes to sense 
and regulate a diverse range of histone modifications. Histone modifications at the 
level of meta-chromatin architecture appear to form a stable and heritable “histone 
code,” such as in X chromosome inactivation (reviewed in [83]). The extent to 
which similar processes operate to govern the activity of micro-chromatin contexts, 
such as gene promoter regions, is an area of debate [84, 85]. The apo and holo NR 
complexes initiate specific and coordinated histone modifications [86, 87] to gov-
ern transcriptional responsiveness of the promoter. There is good evidence that 
specific histone modifications also determine the assembly of transcription factors 
on the promoter, and control individual promoter transcriptional responsiveness 
[88–90]. It is less clear to what extent complexes containing NRs in general, and 
VDR specifically, recognize basal histone modifications on target gene promoters; 
functional studies of the SANT motif contained in the corepressor NCoR2/SMRT 
support this latter idea [91]. This is a complex and rapidly evolving area and the 
reader is referred to an excellent recent review [75].

Collectively, these findings support the concept that the VDRs transcriptional 
actions reflect a convergence of multiple complexes, the details of which are still 
emerging and reflect the cross-talk, both cooperatively and antagonistically 
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between different cellular-signaling systems. Furthermore, the arena for VDR 
actions and interplay extends beyond the nucleus and integrates levels of cytoplas-
mic signal transduction, genomic and epigenomic regulation. Establishing the 
specificity of function and selectivity of VDR interactions has to an extent been 
limited by technical approaches. Unbiased approaches are now required to dissect 
VDR interactions (in the membrane, cytoplasm, and nucleus) in either individual 
cells or very pure populations, thereby to generate a comprehensive understanding 
of the spatial temporal network of its interactions.

2.2  Integrated VDR Actions

2.2.1  Lessons from Murine Models

The VDR plays a well-established endocrine role in the regulation of calcium 
 homeostasis by regulating calcium absorption in the gut and kidney, and bone min-
eralization. 1a,25(OH)

2
D

3
 status is dependent upon cutaneous synthesis initiated 

by solar radiation and also on dietary intake – a reduction of either one or both 
sources leads to insufficiency, although UV-initiated cutaneous 1a,25(OH)

2
D

3
 syn-

thesis is the principal route in a vitamin D-sufficient individual. The importance of 
the  relationships between solar exposure and the ability to capture UV-mediated 
energy is underscored by the inverse correlation between human skin pigmentation 
and latitude. That is, the individual capacity to generate vitamin D

3
 in response to 

solar UV exposure is intimately associated with forebear environmental adaptation. 
The correct and  sufficient level of solar exposure and serum vitamin D

3
 are matters 

of considerable debate. Current recommendations for daily vitamin D
3
 intake are in 

the range of 400–800 IU/day [92]. More recently, reassessment of the 1a,25(OH)
2
D

3
 

impact on the prevention of osteoporosis has suggested that the correct level may 
be as high as 2–3,000 IU/day, which may reflect more accurately “ancestral” serum 
levels [93].
The importance of the relationship between UV exposure and calcium homeostasis 
has driven the endocrine view of 1a, 25(OH)

2
D

3
 synthesis and signaling. In paral-

lel, local generation of 1a, 25(OH)
2
D

3
 in target tissues has become apparent and 

supported a separate autocrine role to regulate cell proliferation and differentiation, 
and other functions including the modulation of immune responses.

Key insights into these functions have been gained in Vdr-deficient mice 
[94–96]. The Vdr is expressed widely during murine embryonic development in 
tissues involved in calcium homeostasis and bone development. Vdr disruption 
results in a profound phenotype in these models, which is principally observed 
post-weaning and is associated with the alteration of duodenal calcium absorp-
tion and bone mineralization, resulting in hypocalcemia, secondary hyperpara-
thyroidism,  osteomalacia, rickets, impaired bone formation, and elevated serum 
levels of 1a,25(OH)

2
D

3
. In parallel, a range of more subtle effects are seen 

more clearly when the animals are rescued with dietary calcium  supplementation 
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and may represent autocrine and non-calcemic actions. The animals became 
growth-retarded, display alopecia,  uterine hypoplasia, impaired ovarian follicu-
logenesis, reproductive dysfunction, cardiac hypertrophy, and enhanced 
thrombogenicity.

2.2.2  Self-renewing Epithelial Systems

The sporadic, temporal acquisition of a cancer phenotype is compatible with 
models of disruption of the self-renewal of epithelial tissues. It has become 
increasingly clear that breast, colon, and prostate tissues, in common with other 
epithelial tissues and many other cell types in the adult human, are self-renewing 
and contain committed stem cell components [97–102].These stem cells are 
slowly proliferating and are able to undergo asymmetric divisions to give rise 
both to other stem cells and transiently amplifying (TA) populations of progenitor 
cells, that in turn give rise to the differentiated cell types, which typify the func-
tions of these tissues and are subsequently lost through programmed cell death 
processes and replaced by newly differentiated TA cells. The mechanisms that 
control the intricate balance of these processes of division, differentiation, and 
programmed cell death are subjects of significant investigations. These studies 
have revealed common roles for Wnt and hedgehog signaling and the actions of 
other signal transduction processes that govern cell cycle progression, with gene 
targets such as the cyclin-dependent kinase inhibitor CDKN1A (which encodes 
p21(waf1/cip1)) emerging as points of criticality upon which numerous signal path-
ways converge.

Against this backdrop, the Vdr operates in several self-renewing tissues. The 
Vdr is readily detected in keratinocytes and co-treatment of calcium and 
1a,25(OH)

2
D

3
 decreases proliferation and promotes differentiation of cultured 

keratinocytes [103]. The Vdr is also detected in outer root sheath and hair follicle 
bulb, as well as in the sebaceous glands [104] and the Vdr -/- mice develop hair loss 
and ultimately alopecia totalis, associated with large dermal cysts, that is not pre-
vented by the high calcium rescue diet. The alopecia arises due to a complete fail-
ure to initiate anagen, which is the first postnatal hair growth phase. Subsequently, 
the hair follicles convert into epidermal cysts [105]. Hair follicle formation requires 
highly coordinated signaling between different cell types including contributions 
from the stem cells components and therefore the alopecia phenotype has attracted 
significant research interest as it may represent a role for the VDR in stem cell 
maintenance. Subsequent studies have demonstrated that a failure to maintain hair 
follicles in Vdr -/- animals does not actually reflect a loss of follicle stem cells but 
rather an inability of the primitive progenitor cells to migrate along the follicle at 
the onset of anagen [106].

Interestingly, these effects appear independent of ligand binding, in that they 
can be rescued even when Vdr is mutated in the LBD, but not completely if 
the AF2 domain is interrupted, suggesting that the association with cofactors is 
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required [107]. Notably, the corepressor, Hairless plays a clear role in hair 
formation with either knockout or mutation resulting in alopecia strikingly similar 
to that observed in the Vdr null mice [108, 109].

Wnt signaling is one of the major processes regulating postmorphogenic hair 
follicle development. Interestingly, the development of dermal cysts and increase 
in sebaceous glands observed in the Vdr and Hairless -/- mice are also similar to 
mice expressing a keratinocyte-specific disruption to b-catenin [110, 111]. 
These findings have raised the possibility that one function of the Vdr may be to 
co-regulate aspects of Wnt signaling, a concept that is supported further by the 
physical association of VDR in a complex with b-catenin and other Wnt compo-
nents [112].

Another unexpected finding of the Vdr -/- animals was the uterine hypoplasia and 
impaired ovarian function in the females that leads to dramatically reduced fertility. 
Similarly to the hair phenotype, this was not restored by the rescue diet of high 
calcium [94]. Estradiol supplementation, however, of the female mice restored 
uterine function and fertility and suggests the fault lies with an inability to generate 
estrogen. The mammary gland has also been studied extensively, in a comprehen-
sive series of experiments by Welsh and coworkers [113, 114] and represents 
an intriguing tissue where endocrine (calcemic8) and autocrine (antimitotic, 
pro-differentiative, pro-apoptotic) effects of the VDR appear to converge.

These phenotypes underscore the integrated nature of VDR signaling. That is, 
the biology of hair regeneration and mammary gland function reflects the choreo-
graphed actions of VDR, with other NRs, alongside other regulatory processes 
including Wnt signaling. Dysfunction of multiple aspects of this is seen in many 
cancer phenotypes.

2.3  VDR Transcriptional Networks in Malignancy

Defining the mechanisms by which the VDR exerts desirable anticancer effects has 
been an area of significant investigation since the early 1980s. In 1981, 
1a,25(OH)

2
D

3
 was shown to inhibit human melanoma cell proliferation signifi-

cantly in vitro at nanomolar concentrations [115], and was subsequently found to 
induce differentiation in cultured mouse and human myeloid leukemia cells [116, 
117]. Following these studies, anti-proliferative effects have been demonstrated in 
a wide variety of cancer cell lines, including those from prostate, breast, and colon 
[118–125]. To identify critical target genes that mediate these actions, comprehen-
sive genome-wide in silico and transcriptomic screens have analyzed the anti-pro-
liferative VDR transcriptome and revealed broad consensus on certain targets, but 
has also highlighted variability [118, 126–128]. This heterogeneity may in part 
reflect experimental conditions, cell line differences, and genuine tissue-specific 
differences of cofactor expression that alter the amplitude and periodicity of VDR 
transcriptional actions.
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2.3.1  Cell Cycle Arrest

A common anti-proliferative VDR function is associated with arrest at G
0
/G

1
 of the 

cell cycle, coupled with upregulation of a number of cell cycle inhibitors including 
p21(waf1/cip1) and p27(kip1). Promoter characterization studies have demonstrated a 
series of VDREs in the promoter/enhancer region of CDKN1A [23, 129]. By con-
trast, the regulation of the related CDKI p27(kip1) is mechanistically enigmatic, 
reflecting both transcriptional and translational regulation such as enhanced mRNA 
translation, and attenuating degradative mechanisms [130–133].

The up-regulation of p21(waf1/cip1) and p27(kip1) principally mediate G
1
 cell cycle 

arrest, but 1a,25(OH)
2
D

3
 has been shown to mediate a G

2
/M cell cycle arrest in a 

number of cancer cell lines via direct induction of GADD45a [127, 134, 135]. 
Again, this regulation appears to combine direct gene transcription and a range of 
posttranscriptional mechanisms. These studies highlight the difficulty of establish-
ing strict transcriptional effects of the VDR, as a range of posttranscriptional effects 
act in concert to regulate target protein levels. Concomitant with changes in the cell 
cycle there is some evidence that 1a,25(OH)

2
D

3
 also induces differentiation, most 

clearly evidenced in myeloid cell lines, but also supported by other cell types and 
most likely reflects the intimate links that exist between the regulation of the G

1
 

transition, the expression of CDKIs such as p21(waf1/cip1), and the induction of cellular 
differentiation [136].

Historically, hematological malignancies combined an ease of interrogation with 
robust classification of cellular differentiation capacity which was envied by inves-
tigators of solid tumors. It is therefore no coincidence that these cell systems 
yielded many important insights for cancer cell biologists generally, such as chro-
mosomal translocations and instability, and the role of committed adult stem cells.

Indeed, the capacity to readily differentiate in response to external and internal 
signals has fascinated leukemia researchers as they have sought to understand why 
leukemia cells appear to fail at certain stages of differentiation. It is within this 
context that in the 1980s, investigators [137, 138] considered a role for the VDR 
and the related retinoic acid receptor (RAR) to reactivate dormant differentiation 
programs in so-called differentiation therapies. Over the following 2 decades, 
researchers began to reveal how these receptors instill mitotic restraint and facilitate 
differentiation programs and how discord over the control and integration of these 
processes is central to leukemogenesis. Despite these efforts, clinical exploitation 
of these receptors has largely proved to be equivocal. The one exception to this 
translational failure has been the exploitation of RAR signaling in patients with 
acute promyelocytic leukemia. Again, understanding the basic signaling behind this 
application proved significant to the developing understanding of epigenetic regula-
tion of transcription and the promise of HDAC inhibitors [139].

Against this backdrop, various groups, including that of Studzinski, have worked 
consistently exploring mechanisms of resistance to VDR signaling and methods of 
exploitation and recently demonstrated, elegantly, a role for VDR to down-regulate 
miR181a, which when left unchecked degrades p27(kip1). Thus, indirectly VDR 
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activation elevates expression of p27(kip1), initiates cell cycle arrest, and commits 
cells toward differentiation. Transcriptional control of miRNAs and their biological 
effects are clearly a field of rapid expansion, and members of the NR superfamily 
are implicated in their regulation [140, 141]. A role for the VDR to govern the 
expression of this regulatory miRNA and, importantly, place its role in the well-
understood map of differentiation is highly novel.

2.3.2  Sensing DNA Damage

An important and emergent area, both in terms of physiology and therapeutic 
exploitation, is the role the liganded VDR appears to play in maintaining genomic 
integrity and facilitating DNA repair. There appears to be close cooperation 
between VDR actions and the p53 tumor suppressor pathway. The maintenance of 
genomic fidelity against a backdrop of self-renewal is central to the normal devel-
opment and adult function of many tissues including the mammary and prostate 
glands, and the colon. For example, in the mammary gland p53 family members 
play a role in gland development and maintenance. P63 -/- animals have an absence 
of mammary and other epithelial structures, associated with a failure of lineage 
commitment (reviewed in [142]), whereas p53 -/- animals have delayed mammary 
gland involution, reflecting the Vdr -/- animals, and wider tumor susceptibility 
(reviewed in [143]).

The overlap between p53 and VDR appears to extend beyond cellular pheno-
types. The VDR is a common transcriptional target of both p53 and p63 [144, 145] 
and VDR and p53 share a cohort of direct target genes associated with cell cycle 
arrest, signal transduction, and programmed cell death including CDKN1A 
GADD45A, RB1, PCNA, Bax, IGFBP3, TGFB1/2, and EGFR [23, 128, 135, 146–
150]. At the transcriptional level, both VDR heterodimers and p53 tetramers associ-
ate, for example, with chromatin remodeling factors CBP/p300 and the SWI/SNF 
to initiate transactivation [51, 151] By contrast, in the gene repressive state VDR 
and p53 appear to associate with distinct repressor proteins, for example, p53 with 
SnoN [152], and VDR with NCOR1, suggesting the possibly association with dis-
tinct sets of histone deacetylases. Indeed, CDKN1A promoter-dissection studies 
revealed adjacent p53 and VDR-binding sites, suggesting composite responsive 
regions [23]. Together, these findings suggest that 1a,25(OH)

2
D

3
-replete environ-

ments enhance p53 signaling to regulate mitosis negatively.
Similarly the role of 1a,25(OH)

2
D

3
 in the skin is also suggestive of its chemo-

preventive effects. UV light from sun exposure has several effects in the skin; UVA 
light induces DNA damage through increasing the level of reactive oxygen species 
(ROS), but importantly UVB light also catalyzes the conversion of 7-dehydroxyc-
holesterol to 25(OH)-D and induces the expression of VDR.

In addition, antimicrobial and anti-inflammatory genes are another subset of 
VDR targets that are induced by UV radiation. Suppression of the adaptive inflam-
matory response is thought to be protective for several reasons. Inflamed tissues 
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contain more ROS, which in turn can damage DNA and prevent proper function of 
DNA repair machinery. Also the induction of cytokines and growth factors associ-
ated with inflammation act to increase the proliferative potential of the cells. 
NF-kB is a key mediator of inflammation and the VDR attenuates this process by 
negatively regulating NF-kB signaling [153]. This control by VDR is underscored 
by studies showing Vdr-/- mice are more sensitive to chemicals that induce inflam-
mation than their wild-type counterparts [154]. The normally protective effect of 
inflammation that occurs under other conditions is lost through VDR-mediated 
suppression but is compensated for by the induction of a cohort of antimicrobial 
and antifungal genes [155–157]. The induction of antimicrobials not only prevents 
infection in damaged tissue but can be cytotoxic for cells with increased levels of 
anion phospholipids within their membranes, a common feature of transformed 
cells [158]. Finally, and most recently, network strategies have been used in differ-
ent strains of mice with altered sensitivity toward skin cancer. Remarkably, in such 
unbiased screens, the VDR emerges as a key nodal control point in determining 
sensitivity toward skin tumors as it regulates both turnover of self-renewal and 
inflammatory infiltrate [159].

The key question, and central to exploiting any therapeutic potential of this 
receptor, is why should the VDR exert such pleiotropic actions? One possible 
explanation for this pleiotropism is that it represents an adaptation of the skin to UV 
exposure, coupling the paramount importance of initiating 1a,25(OH)

2
D

3
 synthesis 

with protection of cell and tissue integrity. Thus, VDR actions are able to maximize 
UV-initiated synthesis of 1a,25(OH)

2
D

3
 production, whilst controlling the extent of 

local inflammation that can result from sun exposure. To compensate for the poten-
tial loss of protection associated with immunosuppression, the VDR mediates a 
range of antimicrobial actions. Equally, local genomic protection is ensured through 
the upregulation of target genes which induce G

0
/G

1
 arrest, cooperation with p53, 

and the induction of cell differentiation. It remains a tantalizing possibility that the 
functional convergence between p53 family and VDR signaling, which arose in the 
dermis as an evolutionary adaptation to counterbalance the conflicting physiologi-
cal requirements of vitamin D synthesis and genome protection, are sustained in 
epithelial systems, such as the lining of the mammary gland, to protect against 
genotoxic insults derived from either the environment or local inflammation.

2.3.3  Programmed Cell Death

VDR actions, notably in MCF-7 breast cancer cells, are associated with a profound 
and rapid induction of apoptosis, irrespective of p53 content. This may reflect the 
VDR role in the involution of the post-lactating mammary gland. The direct tran-
scriptional targets which regulate these actions remain elusive, although there is 
evidence of an involvement of the BAX family of proteins [160, 161]. Induction of 
programmed cell death following 1a,25(OH)

2
D

3
 treatment is also associated with 

increased ROS generation. 1a,25(OH)
2
D

3
 treatment up-regulates VDUP1 encoding 
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vitamin D up-regulated protein 1, which binds to the disulfide reducing protein 
thioredoxin and inhibits its ability to neutralize ROS, thereby potentiating stress-
induced apoptosis [162, 163]. In other cells, the apoptotic response is delayed and 
not so pronounced, and probably reflecting less direct effects. Taken together, these 
data suggest that extent and timing of apoptotic events depend on the integration of 
VDR actions with other cell signaling systems. This regulation of apoptosis in 
human cancer cell lines reflects, of course, the absence of apoptosis in chondro-
cytes in the Vdr -/- animals [7].

2.4  Mechanisms of Resistance Toward the VDR

A major limitation in the therapeutic exploitation of VDR in cancer therapies is the 
resistance of cancer cells toward 1a,25(OH)

2
D

3
. An understanding of the molecular 

mechanisms of resistance has emerged.

2.4.1  Reduced Local Availability of 1a,25(OH)
2
D

3

Tumors, such as breast cancer appear to distort the VDR signaling axis locally, 
with reduced CYP27b1 mRNA and protein levels, and comparative genome 
hybridization studies have found that CYP24 is amplified in human breast cancer 
[164, 165]. Thus, cancer cells maybe associated with low circulating concentrations 
of 25(OH)D

3
, arising as a result of reduced exposure to sunlight, altered dietary 

patterns, and exacerbated further by impaired local generation of 1a,25(OH)
2
D

3
. 

In support of these in vitro findings, a large number of epidemiological studies have 
identified an association between environments of reduced serum 25(OH)D and 
cancer rates.

2.4.2  Dominant Signal Transduction Events

In terms of distribution, evidence is emerging that the normally dynamic flux of the 
VDR becomes altered in more transformed and aggressive cancer cells, becoming 
restricted to the nucleus [166, 167]. These findings that the normal transport 
rates, such as importin-mediated processes, become distorted in malignancy 
and may result in a reduced ability for the VDR to sample the cytoplasm for 
1a,25(OH)

2
D

3
.

Reflecting the cooperative and integrated nature of the VDR to function as a 
transcription factor, a number of workers have identified mechanisms by which 
more dominant signaling process are able either to ablate or attenuate VDR 
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 signaling. For example, Munoz and coworkers have dissected the interrelationships 
between the VDR, E-cadherin, and the Wnt signaling pathway in colon cancer cell 
lines and primary tumors. In these studies, the induction of CDH1 (encodes 
E-Cadherin) was seen in subpopulations of SW480 colon cancer cells, which 
express the VDR and respond to 1a,25(OH)

2
D

3
. The VDR thereby limits the tran-

scriptional effects of b-catenin by physically and directly binding it in the nucleus, 
and by upregulating E-cadherin to sequestrate b-catenin in the cytoplasm. In malig-
nancy, these actions are corrupted through downregulation of VDR mRNA, which 
appears to be a direct consequence of binding by the transcriptional repressor 
SNAIL; a key regulator of the epithelial-mesenchyme transition, which is overex-
pressed in colon cancer [168–170]. Equally underscoring the central importance of 
b-catenin, it has recently been shown to be posttranslationally modified to act as 
VDR coactivator and supports a model of checks and balances between these two 
signaling processes [168, 171].

2.4.3  Genetic Resistance

In cancer, and outside of the very limited pool of mutations reported in the VDR in 
type II rickets, the receptor, generally, is neither mutated nor does it appear to be 
the subject of cytogenetic abnormalities [172]. By contrast, polymorphic variations 
of the VDR have been widely reported. Thus polymorphisms in the 3¢ and 5¢ regions 
of the gene have been described and variously associated with risk of breast, pros-
tate, and colon cancer, although the functional consequences remain to be estab-
lished clearly. For example, a start codon polymorphism in exon II at the 5¢ end of 
the gene, determined using the fok-I restriction enzyme, results in a truncated pro-
tein. At the 3¢ end of the gene, three polymorphisms have been identified that do 
not lead to any change in either the transcribed mRNA or the translated protein. The 
first two sequences generate BsmI and ApaI restriction sites and are intronic, lying 
between exons 8 and 9. The third polymorphism, which generates a TaqI restriction 
site, lies in exon 9 and leads to a silent codon change (from ATT to ATC) which 
both inserts an isoleucine residue at position 352. These three polymorphisms are 
linked to a further gene variation, a variable length adenosine sequence within the 
3¢ untranslated region (3¢UTR). The poly(A) sequence varies in length and can be 
segregated into two groups; long sequences of 18–24 adenosines or short ones 
[173–176]. The length of the poly(A) tail can determine mRNA stability [177–179] 
so the polymorphisms resulting in long poly(A) tails may increase the local levels 
of the VDR protein.

Multiple studies have addressed the association between VDR genotype and 
cancer risk and progression. In breast cancer, the ApaI polymorphism shows a sig-
nificant association with breast cancer risk, as indeed have BsmI and the “L” 
poly(A) variant. Similarly, the ApaI polymorphism is associated with metastases to 
bone [180, 181]. The functional consequences of the BsmI, ApaI, and TaqI poly-
morphisms are unclear, but because of genetic linkage may act as a marker for the 



40 J. Thorne and M.J. Campbell

poly(A) sequence within the 3¢UTR, which in turn determines transcript stability. 
Interestingly, combined polymorphisms and serum 25OH-D levels have been 
shown to compound breast cancer risk and disease severity further [182].

Earlier studies suggested that polymorphisms in the VDR gene might also be 
associated with risk factor of prostate cancer. Ntais and coworkers performed a 
meta-analysis of 14 published studies with four common gene polymorphisms 
(Taq1, poly A repeat, Bsm1, and Fok1) in individuals of European, Asian, and 
African descent. They concluded that these polymorphisms are unlikely to be major 
determinants of susceptibility to prostate cancer on a wide population basis [183]. 
Equally, studies in colon cancer have yet to reveal conclusive relationships and may 
be dependent upon ethnicity of the population studied.

2.4.4  Epigenetic Resistance

In cancer cells, the lack of an antiproliferative response is reflected by a suppres-
sion of the transcriptional responsiveness of anti-proliferative target genes such 
as CDKN1A CDKNIB, GADD45A and IGFBPs, BRCA1 [120, 135, 184, 185]. 
Paradoxically, VDR transactivation of other targets is sustained or even 
enhanced, as measured by induction of the highly 1a25(OH)

2
D

3
-inducible 

CYP24 gene [186, 187]. Together these data suggest that the lack of functional 
VDR alone cannot explain resistance and instead the VDR transcriptome is 
skewed in cancer cells to disfavor anti-proliferative target genes. It has been 
proposed that this apparent 1a,25(OH)

2
D

3
-insensitivity is the result of epige-

netic events that selectively suppress the ability of the VDR to transactivate 
target genes [188].

The epigenetic basis for such transcriptional discrepancies has been investigated 
intensively in prostate cancer. VDR-resistant prostate cancer cells are associated 
with elevated levels of NCOR2/SMRT [135, 184]; these data indicate that the ratio 
of VDR to corepressor may be critical to determine 1a,25(OH)

2
D

3
 responsiveness 

in cancer cells. An siRNA approach toward NCoR2/SMRT demonstrated a role for 
this corepressor to regulate this response GADD45a in response to 1a,25(OH)

2
D

3
. 

By contrast, knockdown of NCOR1 does not restore anti-proliferative responsive-
ness toward 1a,25(OH)

2
D

3
 but does reactivate transcriptional networks governed 

by PPARs [189]. These data support a central role for elevated NCOR2/SMRT 
levels to suppress the induction of key target genes, resulting in loss of sensitivity 
to the anti-proliferative action of 1a,25(OH)

2
D

3
; other workers have reinforced 

these concepts [190, 191].
Parallel studies have demonstrated a similar spectrum of reduced 1a,25(OH)

2
D

3
-

responsiveness between nonmalignant breast epithelial cells and breast cancer cell 
lines. Again, this was not determined solely by a linear relationship between the 
levels of 1a,25(OH)

2
D

3
 and VDR expression. Rather, elevated corepressor mRNA 

levels, notably of NCoR1, in ERa negative breast cancer cell lines and primary 
cultures, were associated with 1a,25(OH)

2
D

3
 insensitivity [192]. Elevated NCOR1 
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has also been demonstrated to suppress the VDR responsiveness of bladder cancer 
cell lines [166], notably toward the VDR ligand lithocholic acid (LCA) [193], 
 suggesting a role for epigenetic disruption of the capacity of cells to sense and 
metabolize potential genotoxic insults.

The epigenetic lesion rising from elevated NCOR1 can be targeted by co-treat-
ment of either 1a,25(OH)

2
D

3
 or its analogs, plus the HDAC inhibitors such as 

trichostatin A, and can restore the 1a,25(OH)
2
D

3
-responses of androgen-indepen-

dent PC-3 cells to levels indistinguishable from control normal prostate epithelial 
cells. This reversal of 1a,25(OH)

2
D

3
 insensitivity was associated with reexpression 

of gene targets associated with the control of proliferation and induction of apopto-
sis, notably GADD45A [120, 135, 185]. Similarly, targeting in breast cancer cells 
through co-treatments of 1a,25(OH)

2
D

3
 with HDAC inhibitors coordinately regu-

lated VDR targets and restored anti-proliferative responsiveness [192, 194]. 
Similarly, other workers have used combinatorial chemistry to combine aspects of 
the structure of 1a,25(OH)

2
D

3
 and HDAC inhibitors into a single molecule that 

demonstrates very significant potency [195].
Together, these data support the concept that altered patterns of corepressors 

inappropriately sustain histone deacetylation around the VDRE of specific target 
gene promoter/enhancer regions, and shifts the dynamic equilibrium between apo 
and holo receptor conformations, to favor transcriptional repression of key target 
genes. Furthermore, targeting this epigenetic lesion with co-treatments of vitamin 
D

3
 compounds plus HDAC inhibitors generates a temporal window where the equi-

librium point between apo and holo complexes is shifted to sustain a more tran-
scriptionally permissive environment.

These findings compliment a number of parallel studies that have established 
cooperativity between 1a,25(OH)

2
D

3
 and butyrate compounds, such as sodium 

butyrate (NaB) [196–201]. These compounds are short-chain fatty acids produced 
during fermentation by endogenous intestinal bacteria and have the capacity to act 
as HDAC inhibitors. Stein and coworkers have identified the effects in colon cancer 
cells of 1a,25(OH)

2
D

3
 plus NaB co-treatments to include the coordinate regulation 

of the VDR itself. Together these studies underscore further the importance of the 
dietary-derived milieu to regulate epithelial proliferation and differentiation beyond 
sites of action in the gut.

2.5  Toward an Integrated Understanding of the VDR

A highly conserved VDR is found widely throughout metazoans, even in certain 
non-calcified chordates such as the lamprey (reviewed in [202]). Within prokary-
otes there appears to be the capacity to undertake UV-catalyzed metabolism of 
cholesterol compounds and suggests that the evolution of vitamin D biochemistry 
is very ancient. These findings suggest that the VDR system has been adapted to 
regulate calcium function and retains other functions that are calcium-independent 
and include the capacity to sense the local environment.
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Phylogenetic classification has defined seven NR subfamilies, and within these 
the VDR is in the group 1 subfamily, sharing homology with the LXRs and FXR, 
and more distantly the PPARs [203, 204]. The receptors within this subfamily pref-
erentially form homo- or heterodimeric complexes with RXR acting as a common 
central partner for VDR, PPARs, LXRs, and FXR. Thus, the receptors in the group 
appear to be all responsive to either bile acid or xenobiotic receptors and, therefore, 
widely integrated with bile acid homeostasis and detoxification. In keeping with 
this capacity, the bile acid lithocholic acid (LCA) has recently been shown to be a 
potent ligand for the VDR all be it with lower millimolar affinity [193].

VDR biology participates in at least three fundamental areas of biology required 
for human health, and which are disrupted in human disease. It participates in the 
regulation of serum calcium, and by implication the maintenance of bone integrity; 
the control of cell proliferation and differentiation; and by implication the disrup-
tion of these actions in malignancy; and as a modifier of immune responses and by 
implication contributes toward auto-immune diseases [205]. The divergence of 
these actions may make the VDR a particularly challenging receptor to understand 
in terms of biology and to exploit therapeutically.

Specifically dietary-derived fatty acids and bile acids cycle rapidly in response 
to dietary intake and work hormonally to coordinate multiple aspects of tissue func-
tion in response to changing energetic status. Thus, it is unlikely that the VDR 
alone plays a key and dominant role in cell and tissue function by acting singularly, 
but instead is intimately linked to the actions of related NRs (e.g., PPARs, FXR, 
and LXR) and cofactors. In this manner, the actions of the VDR to regulate cell 
growth and differentiation, as part of a network of environmental and dietary sens-
ing receptors, may be the central and common function for the VDR. The differen-
tiated phenotype of these cells then participates in diverse biology that range from 
calcium transport to dermis formation and mammary gland function.

For “next generation” developments to occur it will be necessary to adopt a 
broader view of VDR signaling. Historically, researchers have studied the abilities 
of single NRs such as the VDR to regulate a discrete group of gene targets and 
influence cell function. This has led to substantial knowledge concerning many of 
these receptors, individually. Cell and organism function, however, depends on the 
dynamic interactions of a collection of receptors, through the networks that link 
them, and against the backdrop of intrinsic cellular programs, such as those govern-
ing development and differentiation.

In such a view, it is apparent that NRs act as an adaptive homeostatic network in 
several tissues to sense environmental dietary and xenobiotic lipophilic compounds 
and sustain the cell, for example, through the diurnal patterns of fast and feeding 
(reviewed in [204, 206]). The VDR was originally described for a central endocrine 
role in maintenance of serum calcium levels. Similarly, the FXR and LXRs were 
described for their central role in cholesterol metabolism and bile acid synthesis in 
the enterohepatic system. However, their expression in multiple target tissues such 
a broader role. Examination of the known target genes for VDR, RARs, PPARs, 
FXR, and LXRs reveals that they share in common the regulation of cell cycle, 
programmed cell death, differentiation, and xenobiotic and metabolic clearance.
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The challenge is to model the spatio-temporal actions of the NR network and, in 
particular, the extent to which the VDR exerts critical control over transcription and 
translation. Such an understanding requires a clear awareness of the chromatin 
architecture and context of the promoter regions (e.g., histone modifications, DNA 
methylation), genomic organization, gene regulation hierarchies, and 1a,25(OH)

2
D

3
-

based metabolomic cascades, all within the context of specific cell backgrounds. 
The ultimate research goal will be to translate this understanding to strategies that 
can predict the capacity of subsets of VDR actions to be regulated and targeted in 
distinct cell types and exploited in discrete disease settings.

The current lack of an integral view of how these interactions bring about func-
tion and dysfunction, for example, in the aging human individual, can be attributed 
to the limitations of previously available techniques and tools to undertake such 
studies. The implementation of post-genomic techniques together with bioinfor-
matics and systems biology methodology is expected to generate an integral view, 
thereby revealing and quantifying the mechanisms by which cells, tissues, and 
organisms interact with environmental factors such as diet [207, 208].
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Abstract Calcitriol exerts antiproliferative and pro-differentiating actions in many 
malignant cells and in animal models of cancer and its use as an anticancer agent 
in patients is currently being evaluated. Several molecular pathways are involved in 
the growth inhibitory effects of calcitriol, resulting in cell cycle arrest, induction of 
apoptosis, and the inhibition of invasion, metastasis, and angiogenesis. This chap-
ter describes recent research revealing that anti-inflammatory effects are an addi-
tional anticancer pathway of calcitriol action and some of the molecular pathways 
underlying these effects are discussed. In normal and malignant prostate epithelial 
cells, calcitriol inhibits the synthesis and biological actions of pro-inflammatory 
prostaglandins (PGs) by three actions: (1) the inhibition of the expression of 
cyclooxygenase-2 (COX-2), the enzyme that synthesizes PGs; (2) the upregula-
tion of the expression of 15-prostaglandin dehydrogenase (15-PGDH), the enzyme 
that inactivates PGs; and (3) decreasing the expression of EP and FP PG receptors 
that are essential for PG signaling. The combination of calcitriol and non-steroidal 
anti-inflammatory drugs (NSAIDs) results in a synergistic inhibition of the growth 
of prostate cancer (PCa) cells and offers a potential therapeutic strategy for PCa. 
Calcitriol also increases the expression of mitogen-activated protein kinase phos-
phatase 5 (MKP5) in prostate cells resulting in the subsequent inhibition of p38 
stress kinase signaling and the attenuation of the production of pro-inflammatory 
cytokines. There is also considerable evidence for an anti-inflammatory role for 
calcitriol through the inhibition of nuclear factor kappa B (NFkB) signaling in 
several cancer cells. The discovery of these novel calcitriol-regulated molecular 
pathways reveals that calcitriol has anti-inflammatory actions, which in addition 
to its other anticancer effects may play an important role in cancer prevention and 
treatment.
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3.1  Introduction

Calcitriol (1,25-dihydroxyvitamin D
3
), the biologically most active form of vitamin 

D, exerts antiproliferative and pro-differentiating effects in a number of malignant 
cells raising the possibility of its use as an anticancer agent as described in many 
chapters of this volume. In vivo studies have also demonstrated an anticancer effect 
of calcitriol to retard the development and growth of tumors in animal models. 
Many molecular pathways mediate the anticancer effects of calcitriol [1]. Recent 
research, including observations from our laboratory, suggests that calcitriol exhib-
its anti-inflammatory actions that may contribute to its beneficial effects in several 
cancers, in addition to the other actions described in this book. Inflammation has 
been suggested to contribute to the development and progression of many cancers 
[2] including prostate [3], breast [4], colon [5], lung [6], ovarian [7], liver [8], and 
skin [9] cancers. Inflammatory mediators enhance tumorigenesis through the acti-
vation of multiple signaling pathways. Our observations in prostate cancer (PCa) 
cells reveal that calcitriol exerts important regulatory effects on some of the key 
molecular pathways involved in inflammation. In this chapter, we will discuss the 
role of the anti-inflammatory actions of calcitriol and its potential chemopreventive 
and therapeutic utility in cancer.

3.2  Inflammation and Cancer

Chronic inflammation has been recognized as a risk factor for cancer development 
[10, 11]. Inflammation can be triggered by a variety of stimuli such as injury or 
infection, autoimmune disease, the development of benign or malignant tumors, or 
other pathologies. The responses of the immune system in fighting the development 
of tumors may also fuel the process of tumorigenesis. Cancer-related inflammation 
is characterized by the presence of inflammatory cells at the tumor sites and the 
overexpression of inflammatory mediators such as cytokines, chemokines, prosta-
glandins (PGs), and reactive oxygen and nitrogen species in tumor tissue [10–13]. 
Many of these pro-inflammatory mediators activate angiogenic switches usually 
under the control of vascular endothelial growth factor (VGEF) and thereby promote 
tumor angiogenesis, metastasis, and invasion [2, 14]. Epidemiological studies show 
a decrease in the risk of developing several cancers associated with the intake of 
antioxidants and non-steroidal anti-inflammatory drugs (NSAIDs) [14–16]. Current 
research has begun to unravel several molecular pathways that link inflammation 
and cancer. Our observations in PCa as well as those of others in several cancers 
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have shown that calcitriol exerts regulatory effects on some of these  inflammatory 
networks, revealing important anti-inflammatory actions of calcitriol.

3.3  Anti-inflammatory Effects of Calcitriol

Calcitriol exerts antiproliferative and pro-differentiating effects in many malignant 
cells and retards tumor growth in animal models of cancer [1, 17–29]. Several 
important mechanisms have been implicated in the anticancer effect of calcitriol 
including the induction of cell cycle arrest, stimulation of apoptosis, and inhibition 
of metastasis and angiogenesis [1, 20–32]. We used cDNA microarrays as a means 
to achieve our research goal of gaining a more complete understanding of the 
molecular pathways through which calcitriol mediates its antiproliferative and pro-
differentiation effects in PCa cells [33, 34]. Our results have revealed that calcitriol 
regulates the expression of genes involved in PG metabolism and signaling, thereby 
reducing the levels and biological activity of PGs [35]. PGs are pro-inflammatory 
molecules that promote tumorigenesis and cancer growth [4, 36–39]. We have also 
shown that calcitriol up-regulates the expression of mitogen-activated protein 
kinase phosphatase-5 (MKP5; also known as dual specificity phosphatase-10 
[DUSP10]) and thereby promotes down-stream anti-inflammatory effects, includ-
ing a reduction in the level of expression of pro-inflammatory cytokines [40]. 
Recent research also indicates that calcitriol interferes with the activation and sig-
naling of nuclear factor-kappaB (NFkB), a transcription factor that regulates the 
expression of numerous genes involved in inflammatory and immune responses and 
cellular proliferation [41] and thought to play a key role in the process leading from 
inflammation to carcinogenesis [42]. In the following sections, we will discuss the 
importance of these molecular pathways of inflammation in the development and 
progression of PCa, breast cancer (BCa), and colorectal cancer (CRC) and the 
therapeutic significance of the inhibition of these of pro-inflammatory signals by 
calcitriol.

3.3.1  Regulation of Prostaglandin Metabolism and Signaling

PGs have been shown to play a role in the development and progression of many 
cancers and extensive data support the idea that cyclooxygenase-2 (COX-2), the 
enzyme responsible for PG synthesis, is an important molecular target in cancer 
therapy [4, 36–39]. PGs promote carcinogenesis by stimulating cellular prolifera-
tion, inhibiting apoptosis, promoting angiogenesis, and by activating carcinogens 
[43, 44]. We have recently discovered that calcitriol regulates the expression of 
several key genes involved in the PG pathway causing a decrease in PG synthesis, 
an increase in PG catabolism, and the inhibition of PG signaling through their 
receptors in PCa cells [35].
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3.3.1.1  COX-2

Cyclooxygenase (COX)/prostaglandin endoperoxidase synthase is the rate-limiting 
enzyme that catalyzes the conversion of arachidonic acid to PGs and related 
 eicosanoids. COX exists as two isoforms, COX-1, which is constitutively expressed 
in many tissues and cell types and COX-2, which is inducible by a variety of 
stimuli. COX-2 is regarded as an immediate-early response gene whose expression 
is rapidly induced by mitogens, cytokines, tumor promoters, and growth factors 
[37]. Genetic and clinical studies indicate that increased COX-2 expression is one 
of the key steps in carcinogenesis [45]. Long-term use of NSAIDs or aspirin has 
been shown to be associated with a decrease in death rate from several cancers 
such as colorectal, stomach, breast, lung, prostate, bladder, and ovarian cancers 
[15, 16, 46, 47].

Several studies suggest a causative and/or stimulatory role for COX-2 in prostate 
tumorigenesis and demonstrate its overexpression in prostate adenocarcinoma [48, 49]. 
However, not all PCa are associated with elevated COX-2 expression [50, 51]. Zha 
et al. [51] did not find consistent overexpression of COX-2 in established PCa. 
However, they detected appreciable COX-2 expression in areas of proliferative 
inflammatory atrophy (PIA), lesions that have been implicated in prostate carcino-
genesis. Silencing of COX-2 in metastatic PCa cells induces cell growth arrest and 
causes morphological changes associated with enhanced differentiation, highlight-
ing the role of COX-2 in prostate carcinogenesis [52]. COX-2 protein expression in 
prostate biopsy cores and PCa surgical specimens is inversely correlated with dis-
ease-free survival [53]. A recent analysis of archival radical prostatectomy 
 specimens concluded that COX-2 expression was an independent predictor of 
recurrence [54]. Elevated COX-2 protein levels have been reported in ~40% of 
invasive breast carcinomas [4]. NSAIDs inhibit the development of BCa in a variety 
of animal models (reviewed in [4]). Interestingly, PG signaling stimulates the tran-
scription of the aromatase gene [55] and a positive correlation between COX-2 and 
aromatase expression in human breast carcinomas reflects this causal link [56, 57]. 
COX-2 overexpression in BCa correlates with features of aggressive breast disease 
including larger tumor size, high-grade, increased proliferation, negative hormone 
receptor status, and overexpression of the Her-2/neu oncogene [58–61]. An inverse 
relationship between COX-2 protein levels and disease-free survival in BCa 
patients has also been shown [59, 62]. Epidemiological observations show a signifi-
cant reduction in the incidence of CRC among chronic users of NSAIDs (reviewed 
in [63]). A critical link between COX-2 and colorectal tumorigenesis was demon-
strated when Apc delta716 mutant mice were mated to COX-2 knockout mice and 
a dramatic reduction in the number of intestinal polyps was seen in the doubly null 
progeny compared to COX-2 wild-type mice [64]. COX-2 protein is significantly 
overexpressed in CRC [38, 39, 63] and increased COX-2 expression correlates with 
a larger polyp size and progression to invasive carcinoma [65, 66].

Local production of PGs at the tumor sites by infiltrating inflammatory cells also 
increases the risk of carcinogenesis and/or cancer progression [3, 39, 51, 67, 68]. 
In colon cancer, COX-2 expression has been found in the carcinoma cells as well 
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as infiltrating macrophages within the tumors [69, 70]. In other cancers, COX-2 
expression has been demonstrated in vascular endothelial cells, fibroblasts, and 
smooth muscle cells around the cancer [71, 72]. PGs generated by COX-2 act in an 
autocrine and paracrine manner to stimulate cell growth. At the cellular level both 
arachidonic acid, the substrate for COX, and the product prostaglandin E

2
 (PGE

2
) 

stimulate proliferation by regulating the expression of genes that are involved in 
growth regulation including c-fos [73]. Studies in experimental models of cancer 
have shown that COX-2 enhances tumor development and progression by promot-
ing resistance to apoptosis and stimulating angiogenesis and tumor invasion, and it 
is therefore regarded as an oncogene [14, 39].

3.3.1.2  15-PGDH

15-PGDH is the enzyme that catalyzes the conversion of PGs to their corresponding 
15-keto derivatives, which exhibit greatly reduced biological activity. Therefore, 
15-PGDH can be regarded as a physiological antagonist of COX-2. 15-PGDH has 
been described as an oncogene antagonist in colon cancer by Yan et al. [74]. Their 
studies show that 15-PGDH is universally expressed in normal colon but is rou-
tinely absent or severely reduced in cancer specimens. Most importantly, the stable 
transfection of a 15-PGDH expression vector into colon cancer cells greatly reduces 
the ability of the cells to form tumors and/or slows tumor growth in nude mice 
demonstrating that 15-PGDH functions as a tumor suppressor [74]. Another study 
in mice also demonstrates that 15-PGDH acts in vivo as a highly potent suppressor 
of colon neoplasia development [75]. Low expression of 15-PGDH and methyla-
tion of the 15-PGDH promoter in 30–40% of primary breast tumors has been 
reported by Wolf et al. [76]. Their studies in BCa cells also demonstrated a suppres-
sion of cell proliferation in vitro and decreased tumorigenicity in vivo following the 
overexpression of 15-PGDH, thus supporting a tumor suppressor role for 15-PGDH 
in BCa [76].

3.3.1.3  PG Receptors

PGE and PGF are the major PGs stimulating the proliferation of PCa cells and they 
act by binding to G-protein coupled membrane receptors (prostanoid receptors). 
There are eight members in the prostanoid receptor subfamily and they are distin-
guished by their ligand-binding profile and the signal transduction pathways that 
they activate accounting for some of the diverse and often opposing effects of PGs 
[77]. PGE acts through four different receptor subtypes (EP1-EP4), while PGF 
acts through the FP receptor. PCa cells express both EP and FP receptors [35, 73]. 
PG receptors are also expressed in most endothelial cells, macrophages, and 
stromal cells found in the tumor microenvironment. PG interaction with its recep-
tors can send positive feedback signals to increase COX-2 mRNA levels [73, 78, 79]. 
Therefore, irrespective of the initial trigger of COX-2 expression, PGs could 
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 mediate a wave of COX-2 expression at the tumor sites not only in the cancer cells 
themselves but also in the surrounding stromal cells and infiltrating macrophages 
as well as endothelial cells, thereby promoting tumor progression.

3.3.1.4  Calcitriol Effects on the PG Pathway in Prostate Cells

Our studies demonstrate that calcitriol regulates the expression of PG pathway 
genes in multiple PCa cell lines as well as primary prostatic epithelial cells estab-
lished from surgically removed prostate tissue from PCa patients [35]. We found 
measurable amounts of COX-2 mRNA and protein in various PCa cell lines as well 
as primary prostatic epithelial cells derived from normal and cancerous prostate 
tissue, which were significantly decreased by calcitriol treatment. We also found 
that calcitriol significantly increased the expression of 15-PGDH mRNA and pro-
tein in various PCa cells. We further showed that by inhibiting COX-2 and stimulat-
ing 15-PGDH expression, calcitriol decreased the levels of biologically active PGs 
in PCa cells, thereby reducing the growth stimulation due to PGs. Our data also 
revealed that calcitriol decreased the expression of EP and FP PG receptors. The 
calcitriol-induced decrease in PG receptor levels resulted in the attenuation of 
PG-mediated functional responses even when exogenous PGs were added to the 
cell cultures. Calcitriol suppressed the induction of the immediate-early gene c-fos 
and the growth stimulation seen following the addition of exogenous PGs or the PG 
precursor arachidonic acid to PCa cell cultures [35]. We postulate that the down-
regulation of PG receptors by calcitriol would inhibit the positive feedback exerted 
by PGs on COX-2, thereby limiting the wave of COX-2 expression at the tumor 
sites and slowing down tumor progression. Thus, calcitriol inhibits the PG pathway 
in PCa cells by three separate mechanisms: decreasing COX-2 expression, increas-
ing 15-PGDH expression, and reducing PG receptor levels. We believe that these 
actions contribute to the suppression of the proliferative and angiogeneic stimuli 
provided by PGs in PCa cells. The regulation of PG metabolism and biological 
actions constitutes an important novel pathway of calcitriol action mediating its 
anti-inflammatory effects.

3.3.1.5  Combination of Calcitriol and NSAIDs as a Therapeutic  
Approach in PCa

NSAIDs are a class of drugs that decrease PG synthesis by inhibiting COX-1 and 
COX-2 enzymatic activities. Several NSAIDs nonselectively inhibit both the con-
stitutively expressed COX-1 and the inducible COX-2, while others have been 
shown to be more selective in preferentially inhibiting COX-2 enzymatic activity. 
We tested the effect of combinations of calcitriol and various NSAIDs on PCa cell 
proliferation [35]. These studies were based on our hypothesis that the action of 
calcitriol at the genomic level to reduce COX-2 expression, leading to decreased 
COX-2 protein levels, will allow the use of lower concentrations of NSAIDs to 
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inhibit COX-2 enzyme activity. Further, an increase in the expression of 15-PGDH 
and a decrease in PG receptor levels due to calcitriol actions will lower the concen-
trations and biological activity of PGs, thereby enhancing the NSAID effect. 
Therefore, we hypothesized that the combination of calcitriol and NSAIDs would 
exhibit an additive/synergistic activity to inhibit PCa cell growth. In cell culture 
studies, we examined the growth inhibitory effects of the combinations of calcitriol 
with the COX-2-selective NSAIDs NS398 and SC-58125 and the nonselective 
NSAIDs, naproxen and ibuprofen. The combinations caused a synergistic enhance-
ment of the inhibition of PCa cell proliferation, compared to the individual agents 
[35]. These results led us to further hypothesize that the combination of calcitriol 
and NSAIDs may have clinical utility in PCa therapy [35].

Preclinical [80] and clinical studies [81] on colon and other cancers have suc-
cessfully used the strategy of combining low doses of two active drugs to achieve 
a more effective chemoprevention and therapeutic outcome than those using the 
individual agents [82]. The combination approach would also minimize the toxici-
ties of the individual drugs by allowing them to be used at lower doses while 
achieving a significant therapeutic effect. Based on our preclinical observations, we 
proposed that a combination of calcitriol with a NSAID would be a beneficial 
approach in PCa therapy. The combination strategy allows the use of lower concen-
trations of NSAIDs, thereby minimizing their undesirable side effects. It has 
become clear that the long-term use of COX-2-selective inhibitors such as  rofecoxib 
(Vioxx) causes an increase in cardiovascular complications in patients [83–86]. 
Very recently, even the use of nonselective NSAIDs has been shown to increase 
cardiovascular risk in patients with heart disease [87]. However, in comparison to 
COX-2-selective inhibitors, nonselective NSAIDs such as naproxen may be associ-
ated with fewer cardiovascular adverse effects [87, 88]. Our preclinical data showed 
that the combinations of calcitriol with nonselective or selective NSAIDs were 
equally effective in inducing synergistic growth inhibition [35]. We therefore pro-
posed that the combination of calcitriol with a nonselective NSAID would be a 
useful therapeutic approach in PCa that would allow both drugs to be used at 
reduced dosages leading to increased cardiovascular safety [89].

Calcitriol, in fact, is already being used in combination therapy with other agents 
that may enhance its antiproliferative activity while reducing its tendency to cause 
hypercalcemia [90]. The results of the ASCENT I clinical trial in advanced PCa 
patients who failed other therapies demonstrated that the administration of a very 
high dose (45 mg) of calcitriol (DN101, Novacea, South San Francisco, CA) once 
weekly along with the regimen of the chemotherapy drug docetaxel (taxotere) in 
use at the time of that trial (once weekly) caused a very significant improvement in 
overall survival and time to progression, providing evidence indicating that calcit-
riol could enhance the efficacy of active drugs in cancer treatment [91]. The 
ASCENT I trial did not meet its primary endpoint, i.e., a lowering of serum PSA. 
However, on the basis of promising survival results (16.4 months in the docetaxel 
arm vs. 24.5 months in the docetaxel plus calcitriol arm), a larger, phase III trial 
(ASCENT II) with survival as an endpoint was initiated. A new, improved doc-
etaxel regimen (every 3 week dosing) was used in the control arm of the ASCENT 
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II trial, which was compared to DN101 plus the older docetaxel dosing regimen 
(once a week), resulting in an asymmetric study design. Unfortunately the improved 
survival due to the combination demonstrated in the ASCENT I trial could not be 
confirmed in the ASCENT II trial [92 http://novacea.com/ #85 2008]. In fact, the 
trial was prematurely stopped by the data safety monitoring committee after 900 
patients were enrolled, when an excess number of deaths was noted in the study 
arm (DN101 plus old docetaxel regimen) versus the control arm (new docetaxel 
regimen). Since the trial was stopped, further analysis [93 http://novacea.com/ #129 
2008] suggests that the increased deaths in the treatment arm compared to the con-
trol arm were not due to calcitriol toxicity but due to better survival in the control 
arm that received the new and improved docetaxel regimen.

Based on our preclinical observations in PCa cells, we recently carried out a 
single-arm, open-label phase II study evaluating the combination of the nonselec-
tive NSAID naproxen and calcitriol in patients with early recurrent PCa [94]. 
Patients in our study had no evidence of metastases. All the patients received 45 
micrograms of calcitriol (DN101) orally once a week and 375 mg naproxen twice 
a day for 1 year. The trial was prematurely stopped after 21 patients had been 
enrolled when the FDA put a temporary hold on DN101 based on the data from the 
ASCENT II trial described above. The therapy was well-tolerated by most patients. 
Only four patients showed evidence of progression and were removed from the 
study. We monitored serum PSA levels every 8 weeks. Bone scans were done every 
3 months along with ultrasound of the kidney to assess asymptomatic renal stones. 
Serum testosterone levels were not affected by the therapy and there were no sexual 
side effects. There was mild gastro-intestinal toxicity in three patients presumably 
from the naproxen and one patient had to be removed from the study. One patient 
developed a small asymptomatic renal stone and was removed from the study. He 
required no intervention for his renal stone. Changes in PSA doubling time 
(PSA-DT) postintervention were compared to baseline PSA-DT values. A prolon-
gation of the PSA-DT was achieved in 75% of the patients suggesting a beneficial 
effect of the combination therapy [89, 94].

3.3.2  Induction of MKP5 and Inhibition of Stress-Activated 
Kinase Signaling

Our cDNA microarray analysis in normal human prostate epithelial cells [34] 
revealed another novel calcitriol responsive gene, MKP5, also known as DUSP10. 
Calcitriol upregulates MKP5 expression leading to downstream anti-inflammatory 
responses in cells derived from normal prostatic epithelium and primary, localized 
adenocarcinoma, supporting a role for calcitriol in the prevention and early treat-
ment of PCa [40]. In primary cultures of normal prostatic epithelial cells from the 
peripheral zone, calcitriol increased MKP5 transcription [40]. We identified a 
putative positive vitamin D response element (VDRE) in the MKP5 promoter 
mediating this calcitriol effect [40]. Interestingly, calcitriol upregulation of MKP5 
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was seen only in primary cells derived from normal prostatic epithelium and 
 primary,  localized adenocarcinoma but not in the established PCa cell lines derived 
from PCa metastasis such as LNCaP, PC-3, or DU145. MKP5 is a member of the 
dual specificity MKP family of enzymes that dephosphorylate, and thereby inac-
tivate, mitogen activated protein kinases (MAPKs). MKP5 specifically dephos-
phorylates p38 MAPK and the stress-activated protein kinase Jun-N-terminal 
kinase (JNK), leading to their inactivation. Calcitriol inhibited the phosphoryla-
tion and activation of p38 in normal primary prostate cells in a MKP-5-dependent 
manner as MKP5 siRNA completely abolished p38 inactivation by calcitriol [40]. 
A consequence of p38 stress-induced kinase activation is an increase in the pro-
duction of pro-inflammatory cytokines that sustain and amplify the inflammatory 
response [95]. As interleukin-6 (IL-6) is a p38-regulated pro-inflammatory 
cytokine implicated in PCa progression [96], we investigated the effect of calcit-
riol on IL-6 production. Stimulation of primary prostate cells with the pro-inflam-
matory factor, tumor necrosis factor a (TNFa), increased IL-6 mRNA stability 
and concentrations of IL-6 in the conditioned media. Pretreatment of the cells with 
calcitriol significantly attenuated the increase in IL-6 production following TNFa 
treatment [40].

IL-6 is a major pro-inflammatory cytokine that participates in inflammation-
associated carcinogenesis [97] and has been implicated in the pathogenesis of 
several cancers [96, 98, 99]. Serum IL-6 levels were significantly elevated and posi-
tively correlated to tumor burden in colon cancer patients [100]. Serum IL-6 levels 
were also significantly elevated in BCa patients [101, 102] and in PCa patients, 
where in addition a positive correlation between IL-6 levels and the number of bone 
metastases was also seen [102]. IL-6 is known to be associated with PCa progres-
sion [96]. Our data demonstrate the ability of calcitriol to reduce the production of 
pro-inflammatory cytokines such as IL-6 by inhibiting p38 activation via MKP5 
upregulation as well as to interfere with the signaling of pleitropic inflammatory 
cytokines such as TNFa [40]. These observations provide evidence of significant 
anti-inflammatory effects of calcitriol in cancer cells. Interestingly, established 
metastasis-derived PCa cell lines exhibited low levels of MKP5 and were unable to 
induce MKP5 in response to calcitriol. We therefore speculate that a loss of MKP5 
might occur during PCa progression, as a result of a selective pressure to eliminate 
the tumor suppressor activity of MKP5 and/or calcitriol.

3.3.3  Inhibition of NFkB Activation and Signaling

NFkB comprises a family of inducible transcription factors ubiquitously present in 
all cells. NFkB transcription factors are important regulators of innate immune 
responses and inflammation [103]. In the basal state, most NFkB dimers are bound 
to specific inhibitory proteins called IkB and pro-inflammatory signals activate 
NFkB mainly through IkB kinase (IKK)-dependent phoshorylation and degrada-
tion of the inhibitory IkB proteins [42]. Free NFkB then translocates to the nucleus 
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and activates the transcription of pro-inflammatory cytokines, chemokines, and 
anti-apoptotic factors [104]. In contrast to normal cells many cancer cells have 
elevated levels of active NFkB [105, 106]. Constitutive activation of NFkB has 
been observed in androgen-independent PCa [107–109]. The NFkB protein RelB 
is uniquely expressed at high levels in PCa with high Gleason scores [110]. NFkB 
plays a major role in the control of immune responses and inflammation and pro-
motes malignant behavior by increasing the transcription of the anti-apoptotic gene 
Bcl2 [111], cell cycle progression factors such as c-myc and cyclin D1, proteolytic 
enzymes such as matrix metalloproteinase 9 (MMP-9), urokinase-type plasmino-
gen activator (uPA), and angiogenic factors such as VEGF and interleukin-8 (IL-8) 
[109, 112]. IL-8, an angiogenic factor and a downstream target of NFkB, is also a 
potent chemotactic factor for neutrophils and is associated with the initiation of the 
inflammatory response [113].

Calcitriol is known to directly modulate basal and cytokine-induced NFkB 
activity in many cells including human lymphocytes [114], fibroblasts [115], 
and peripheral blood monocytes [116]. A reduction in the levels of the NFkB 
inhibitory protein IkBa has been reported in mice lacking the VDR [117]. 
IKKb-mediated activation of NFkB contributes to the development of colitis-
associated cancer through the activation of anti-apoptotic genes and the produc-
tion IL-6 [42]. Addition of a VDR antagonist to colon cancer cells upregulates 
NFkB activity by decreasing the levels of IkBa, suggesting that vitamin D 
ligands exert a suppressive effect on NFkB activation [118]. Calcitriol and its 
analogs have been shown to block NFkB activation by increasing the expression 
of IkB in macrophages and peripheral blood mononuclear cells [116, 119, 120]. 
There is considerable evidence for the inhibition of NFkB signaling by calcitriol 
in PCa cells. Calcitriol decreases the levels of the angiogenic and pro-inflamma-
tory cytokine IL-8 in immortalized normal human prostate epithelial cell lines 
(HPr-1 and RWPE-1) and established PCa cell lines (LNCaP, PC-3 and DU145) 
[121]. The suppression of IL-8 by calcitriol appears to be due to the inhibition 
of NFkB signaling. Calcitriol reduces the nuclear translocation of the NFkB 
subunit p65 thereby inhibiting the NFkB complex from binding to its DNA 
response element and consequently suppressing the NFkB stimulation of tran-
scription of downstream targets such as IL-8 [121]. Thus calcitriol could delay 
the progression of PCa by suppressing the expression of angiogenic and pro-
inflammatory factors such as VEGF and IL-8. In addition, calcitriol also indi-
rectly inhibits NFkB signaling by up-regulating the expression of IGFBP-3, 
which has been shown to interfere with NFkB signaling in PCa cells by sup-
pressing p65 NFkB protein levels and the phosphorylation of IkBa [122]. NFkB 
also provides an adaptive response to PCa cells against cytotoxicity induced by 
redox-active therapeutic agents and is implicated in radiation resistance of can-
cers [123, 124]. A recent study shows that calcitriol significantly enhances the 
sensitivity of PCa cells to ionizing radiation by selectively suppressing 
 radiation-mediated RelB activation [125]. Thus calcitriol may serve as an effec-
tive agent for sensitizing PCa cells to radiation therapy via suppression of the 
NFkB pathway.
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3.4  The Role of Anti-inflammatory Effects of Calcitriol  
in Cancer Prevention and Treatment

As already discussed, current perspectives in cancer biology suggest that 
 inflammation plays a role in the development of cancer [67, 126, 127]. De Marzo 
et al. [128] have proposed that the PIA lesions in the prostate, which are associated 
with acute or chronic inflammation, are precursors of prostatic intraepithelial neo-
plasia (PIN) and PCa. The epithelial cells in PIA lesions have been shown to exhibit 
many molecular signs of stress including elevated expression of COX-2 [51, 126]. 
Inflammatory bowel disease is associated with the development of CRC [129–131]. 
Based on the recent research demonstrating anti-inflammatory effects of calcitriol 
(as discussed in the preceding sections) in the malignant cells as well as the infil-
trating cells at the tumor sites, we postulate that calcitriol may play a role in delay-
ing or preventing cancer development and/or progression.

3.4.1  Calcitriol and Prostate Cancer Chemoprevention

PCa generally progresses very slowly, likely for decades, before symptoms 
become obvious and diagnosis is made [132]. Recently, inflammation in the 
prostate has been proposed to be an etiological factor in the development of PCa [67]. 
The observed latency in PCa provides a long window of opportunity for inter-
vention by chemopreventive agents. Dietary supplementation of COX-2 selec-
tive NSAIDs such as celecoxib has been shown to suppress prostate carcinogenesis 
in the Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP) model [133]. 
Our studies on the inhibitory effects of calcitriol on COX-2 expression and the 
PG pathway and MKP5 induction with the resultant stress kinase inactivation 
and inhibition of pro-inflammatory cytokine production as well as published 
observations of calcitriol actions to inhibit NFkB signaling suggest that calcit-
riol exhibits significant anti-inflammatory effects in vitro. Therefore, we 
hypothesize that calcitriol has the potential to be useful as a chemopreventive 
agent in PCa. Recently, Foster and coworkers have demonstrated that adminis-
tration of high dose calcitriol (20 mg/kg), intermittently 3 days/week for up to 
14–30 weeks, suppresses prostate tumor development in TRAMP mice [134, 135]. 
The efficacy of calcitriol as a chemopreventive agent has also been examined in 
Nkx3.1; Pten mutant mice, which recapitulate stages of prostate carcinogenesis 
from PIN lesions to adenocarcinoma [136]. The data reveal that calcitriol 
 significantly reduces the progression of PIN from a lower to a higher grade. 
Calcitriol is more effective when administered before, rather than subsequent to, 
the initial occurrence of PIN. These animal studies as well as our in vitro 
 observations suggest that clinical trials in PCa patients with PIN or early disease 
evaluating calcitriol and its analogs as agents that prevent and/or delay 
 progression, are warranted.
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3.5  Summary and Conclusions

Our recent research has identified several new calcitriol target genes revealing 
novel molecular pathways of calcitriol action in prostate cells. The data suggest that 
calcitriol has anti-inflammatory actions that contribute to its therapeutic and can-
cer-preventive effects in PCa. Calcitriol reduces both PG production (by suppress-
ing COX-2 and increasing 15-PGDH expression) and PG biological actions (by PG 
receptor down-regulation). We propose that calcitriol inhibition of the PG pathway 
contributes significantly to its anti-inflammatory actions. Combinations of calcit-
riol with NSAIDs exhibit synergistic enhancement of growth inhibition in PCa cell 
cultures, suggesting that they may have therapeutic utility in PCa. The results of our 
recent clinical trial in patients with early recurrent PCa indicate that the combina-
tion of a weekly high dose calcitriol with the nonselective NSAID naproxen has 
activity to slow the rate of rise of PSA in most patients. Another novel molecular 
pathway of calcitriol action in prostate cells involves the induction of MKP5 
expression and the subsequent inhibition of p38 stress kinase signaling, resulting in 
the attenuation of the production of pro-inflammatory cytokines. There is also con-
siderable evidence for an anti-inflammatory role for calcitriol in several cancers 
through the inhibition of NFkB signaling in many cancer cells as well as the infil-
trating cells present at the tumor sites. The discovery of these novel calcitriol-
regulated pathways suggest that calcitriol has anti-inflammatory actions, which in 
addition to its other anticancer effects, may play an important role in the prevention 
and/or treatment of cancer. We conclude that calcitriol may have utility as a cancer 
chemopreventive agent. Calcitriol and its analogs may also have therapeutic utility, 
particularly in PCa and should therefore be evaluated in clinical trials in PCa 
patients with early or precancerous disease.
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Abstract Vitamin D status and cancer risk has been investigated in a number of 
epidemiologic studies. The methods to estimate vitamin D status have included 
direct measures of circulating 25(OH)vitamin D (25(OH)D) levels, surrogates or 
determinants of 25(OH)D, including region of residence, intake, and sun exposure 
estimates. For colorectal cancer, the evidence for an inverse association between 
vitamin D status and risk is quite consistent. Evidence for breast cancer is intrigu-
ing, but prospective studies of 25(OH)D are sparse and conflicting. For prostate 
cancer, the data on circulating 25(OH)D have suggested no association or a weak 
inverse association, but studies of sun exposure on prostate cancer risk are more 
suggestive. It is plausible that for prostate cancer, vitamin D level, much longer 
before the time of diagnosis, is the most relevant exposure. Most of the epidemio-
logic studies to date have examined vitamin D status in relation to risk of cancer, 
but emerging evidence suggests that vitamin D may also be an important factor for 
cancer progression and mortality. Further study is needed to establish when in the 
life span and on what stages of carcinogenesis vitamin D is relevant, the precise 
intakes and levels required for benefit, and which cancer sites are most affected.
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Abbreviations

Ca         Calcium
CI         Confidence interval
D2         Ergocalciferol
D3         Cholecalciferol
1,25(OH)

2
D    1,25-Dihydroxyvitamin D

25(OH)D         25-Hydroxyvitamin D
IU         International unit
nmol/L         Nanomoles per liter
ng/mL         Nanograms per milliliter
NHL         Non-Hodgkin lymphoma
RCT         Randomized controlled trial
RR         Relative risk
UV-B         Ultraviolet B light

4.1  Introduction

The hypothesis that vitamin D confers protection against some cancers was first 
based on some epidemiologic observations. As early as 1937, Peller and 
Stephenson hypothesized that sunlight exposure, by inducing skin cancer, could 
induce some degree of immunity against some internal cancers [1]. Then in 1941, 
Apperly demonstrated an association between latitude and cancer mortality, lead-
ing him to hypothesize a direct benefit of sunlight on cancer mortality independent 
of any effect on skin cancer [2]. These observations and hypotheses went largely 
ignored until the early 1980s when Garland and Garland hypothesized that inad-
equate vitamin D status resulting from lower solar UV-B radiation exposure 
accounted for the association between higher latitudes and increased mortality of 
colon cancer [3], breast cancer [4], and ovarian cancer [5]. Thereafter, this pro-
posed anticarcinogenic effect of vitamin D was extended to prostate cancer [6, 7] 
and to other malignancies [8].

These initial observations formed the basis of the vitamin D cancer hypothesis. 
In the past several decades, laboratory studies have discovered numerous anticar-
cinogenic properties of vitamin D, including inducing differentiation and inhibit-
ing proliferation, invasiveness, angiogenesis, and metastatic potential. Over this 
time, a variety of epidemiologic study designs have been utilized to assess expo-
sure to vitamin D at the individual level, and then to examine the estimated vita-
min D level to the risk of a specific cancer or to total cancer. This chapter will 
review the epidemiologic evidence from cohort and case–control studies of the 
association between vitamin D status and cancer risk, including studies directly 
measuring circulating levels of 25(OH)vitamin D (25(OH)D), the presumed rele-
vant metabolite of vitamin D status, and surrogates or determinants of 25(OH)D 
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level. Before the specific studies are reviewed, the major strengths and limitations 
of the various approaches to assess vitamin D status that have been used will be 
summarized.

4.2  Overview of Study Designs

4.2.1  Prospective Studies of Circulating 25(OH) Vitamin D  
and Cancer Risk

Some studies have examined plasma or serum 25(OH) level in relation to cancer 
risk, especially for colorectal cancer and for prostate cancer. There are a few other 
studies for other endpoints, including breast, ovarian, and pancreatic cancers. The 
studies based on circulating 25(OH)D level are arguably the “gold standard” among 
observational studies for testing the vitamin D cancer hypothesis because 25(OH)
D accounts not only for skin exposure to UV-B radiation, but also for factors that 
determine vitamin D status, such as total vitamin D intake and skin pigmentation. 
In addition, 25(OH)D has a relatively long half-life (t

1/2
) in the circulation of about 

2–3 weeks, and thus can provide a fairly good indicator of long-term vitamin D 
status. For example, in one study of middle-aged to elderly men, the correlation of 
two 25(OH)D measures approximately 3 years apart was 0.7 [9]. However, it is not 
clear how the consistency of 25(OH)D over time would be across other 
populations.

In epidemiologic studies, circulating 25(OH)D has typically been based on a 
measure in archived blood samples using a nested case–control study design. 
Because the sample is taken before the diagnosis of cancer, in some cases over a 
decade before, it is unlikely that any association observed is due to reverse causa-
tion, that is, spuriously due to the cancer influencing the blood level. One complexity 
in studies of 25(OH)D is that typically only one measurement is made, and levels 
fluctuate seasonally throughout the year due to variances in sun exposure. Several 
studies have been based on the measurement of 25(OH)D in individuals already 
diagnosed with cancer; these studies need to be interpreted very cautiously because 
of the potential for the phenomenon of reverse causation. For example, during treat-
ment period for cancer, exposure to sunlight is likely to be very skewed due to 
hospitalizations, disability, change in habit, etc. Thus, these types of studies are not 
summarized in detail here.

4.2.2  Studies of Vitamin D Intake

Vitamin D intakes are relatively low in general because of the scarcity of vitamin D 
in natural foods and fortification of this vitamin is limited. For example, a glass 
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of fortified milk (in the USA) contains only 100 IU vitamin D, whereas being 
exposed to enough UV-B radiation to cause a slight pinkness to the skin with most 
of the skin uncovered (one minimal erythemal dose) produces vitamin D equiva-
lent to an oral dose of 20,000 IU vitamin D [10, 11]. In most populations, with 
some exceptions such as in Iceland, much more vitamin D is made from sun 
exposure than is ingested. Nonetheless, vitamin D intake is an important contribu-
tor to 25(OH)D levels, especially in winter months in regions at high latitudes, 
when it may be the sole contributor. Yet, even with added vitamin D from supple-
mentation and fortification, vitamin D intake at typical levels currently do not 
raise 25(OH)D levels substantially, and most variability in populations comes 
from sun exposure. One important consideration of studies of vitamin D intake is 
that, depending on the specific population, intake of vitamin D may be predomi-
nantly from one or a few sources, such as fatty fish, fortified milk, or supple-
ments. Thus, there will tend to be high correlations with other dietary factors 
(e.g., omega-3 fatty acids in fish, calcium in milk, and other vitamins and miner-
als in supplements) increasing the possibility of confounding. One important 
issue is that ergocalciferol (D2) is often used in supplements, and ergocalciferol 
has been estimated to be only one-fourth as potent as cholecalciferol (D3) in rais-
ing 25(OH)D) [12].

4.2.3  Studies of Predicted 25(OH)D Level

A study can use known predictors of 25(OH)D level based on data on the individual 
level to formulate a predicted 25(OH)D score. For example, based on individuals’ 
reported vitamin D intake, region of residence (surrogate of UV-B exposure), out-
door activity level, skin color, and body mass index, a quantitative estimate of the 
expected vitamin D level can be made. The predicted 25(OH)D approach may have 
some advantages and disadvantages compared to the use of a single measurement 
of circulating 25(OH)D in epidemiologic studies. The measurement of 25(OH)D is 
more direct, intuitive, and encompasses some of the sources of variability of 
25(OH)D not taken into account by the score. The most important of these is actual 
sun exposure behaviors, such as type of clothing and use of sunscreen. However, in 
some aspects, the predicted 25(OH)D measure may provide a comparable or supe-
rior estimate of long-term vitamin D status over a single measurement of circulat-
ing 25(OH)D. Most importantly, some factors accounted by the predicted 25(OH)
D score are immutable (e.g., skin color) or relatively stable (region of residence, 
body mass index). In contrast, circulating 25(OH)D level has a half-life of 
2–3 weeks, and thus a substantial proportion of variability picked up by a single 
blood measure would likely be due to relatively recent exposures, which may not 
be representative of long-term exposure. The predicted 25(OH)D approach has 
been rarely used.
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4.2.4  Case–Control and Cohort Studies of Sun Exposure

Self-reported sun exposure or surrogates such as region of residence and number 
of sunburns can be used in epidemiologic studies. A number of ecologic studies 
have examined the vitamin D and cancer hypotheses at the population level, but 
some case–control and cohort studies, which assess exposure and outcome at the 
individual level are now available. In principle, confounding may be better 
 controlled because typically more detailed information can be assessed on other 
covariates in analytic studies. In addition, the study population may be relatively 
homogeneous, which may reduce the potential for residual or uncontrolled 
 confounding. An additional strength of such studies is that exposure is actually 
assessed for the individual, whereas in ecologic studies, exposure is inferred – 
for example, presumably living in sunnier regions may allow for greater oppor-
tunity for sun exposure, but actual exposure will depend on individuals’ 
behaviors.

The sun exposure studies have some strengths and some limitations. They do not 
directly assess vitamin D exposure, and some surrogates that have been used (such 
as sunburns) may represent acute short-term exposures to sun rather than chronic 
exposures, which may be more relevant for vitamin D synthesis. There also may be 
measurement error and perhaps recall bias in case–control studies in assessing past 
exposures. Some objective methods to assess sun exposure, such as the use of 
reflectometry, may be useful. One important advantage of these studies is that most 
blood-based and dietary cohorts are in middle-aged individuals, and the assessment 
of past sun exposures allows the possibility of estimating vitamin D status at points 
earlier in life. For some cancers, it is plausible that these earlier time periods may 
be most relevant.

4.2.5  Randomized Trials

A double-blinded, placebo-controlled, randomized intervention is the “gold stan-
dard” in establishing a causal association because in theory, confounding can be 
largely eliminated as an explanation of a positive result. Because of their expense, 
these studies have been rarely done in the context of vitamin D and cancer. 
In practice, these studies have practical limitations, including selection of the 
effective dose, varying baseline levels of the exposure of interest, poor compli-
ance, contamination by the placebo group adopting the change, and the unknown 
but presumably long induction period for cancer. Thus, when these studies show a 
null association, caution must be given not to overinterpret the results. Besides the 
absence of a true association, one or more of the limitations mentioned above 
could produce a null association. If a significant association is found, such studies 
are the strongest evidence of a causal association.
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4.3  Colorectal Cancer

4.3.1  25(OH)D Level

Colorectal cancer has been the most frequently studied cancer in relation to vitamin D 
status. Prospective studies that have examined circulating 25(OH)D levels in rela-
tion to colorectal cancer risk have tended to support a lower risk of colorectal 
cancer among those with higher circulating 25(OH)D levels [13–21]. This finding 
was demonstrated in a recent meta-analysis of studies of 25(OH)D level and col-
orectal cancer risk, which was based on 535 colorectal cases in total. [22]. In the 
meta-analysis, individuals with serum 25(OH) level ³ 82 nmol/L had a 50% lower 
incidence of colorectal cancer (p < 0.01) when compared to those with levels less 
than 30 nmol/L. The two largest studies included in the meta-analysis were the 
Nurses’ Health Study and the Women’s Health Initiative. In the Nurses’ Health 
Study [15], based on 193 cases of colorectal cancer, the relative risk (RR) decreased 
in a monotonic fashion across increasing quintiles of plasma 25(OH)D level. The 
RR was 0.53 (95% confidence interval (CI) = 0.27–1.04) comparing the top to 
 bottom quintiles after adjusting for age, body mass index, physical activity, smok-
ing, family history, use of hormone replacement therapy, aspirin use, and dietary 
intakes. The observational component of the Women’s Health Initiative (which was 
also a randomized trial (RCT) of calcium and vitamin D), based on 322 total cases 
of colorectal cancer, showed a similar inverse association between baseline 25(OH)D 
level and colorectal cancer risk; however, detailed analyses on potential  confounders 
were not shown. [21].

Since this meta-analysis was reported, three additional studies on 25(OH)D and 
colorectal cancer risk have been published. In the Health Professionals Follow-Up 
Study [23], a nonstatistically significant inverse association between higher plasma 
25(OH)D concentration and risk of colorectal cancer was observed, and a statisti-
cally significant inverse association for colon cancer (highest versus lowest quin-
tile: multivariate RR = 0.46, 95% CI = 0.24 to 0.89; P(trend) =.005). In the Japan 
Public Health Center-based Prospective Study [24], a nested case–control study of 
375 incident cases of colorectal cancer from 38,373 study subjects during 11.5 years 
of follow-up after blood collection, plasma 25(OH)D was not significantly associ-
ated with colorectal cancer. However, the lowest category of plasma 25(OH)D was 
associated with an elevated risk of rectal cancer in both men (RR = 4.6; 95% 
CI = 1.0–20) and women (RR, 2.7, 95% CI, 0.94–7.6), compared with the combined 
category of the other quartiles. This analysis adjusted for multiple factors, including 
sex, age, study area, date of blood draw, and fasting time, smoking, alcohol con-
sumption, body mass index, physical exercise, vitamin supplement use, and family 
history of colorectal cancer. Finally, 25(OH)D levels was examined in relation to 
colorectal cancer mortality risk in the Third National Health and Nutrition 
Examination Survey [25]. That analysis examined 16,818 participants, who were 
followed from 1988–1994 through 2000, over which 66 cases of fatal colorectal 
cancer were identified. The risk of colorectal cancer mortality was inversely related 
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to baseline serum 25(OH)D level, with levels 80 nmol/L or higher associated with 
a 72% risk reduction (95% CI = 32% to 89%) compared with levels <50 nmol/L, 
P(trend) = 0.02.

4.3.2  Predicted 25(OH)D Level

Predicted 25(OH)D was examined in relation to risk of colorectal cancer in the 
Health Professionals Follow-Up Study [26]. This approach required two steps. 
First, plasma 25(OH)D levels were measured in a sample of 1,095 men of this 
cohort. Then, factors hypothesized to influence circulating 25(OH)D levels, includ-
ing geographical region, skin pigmentation, dietary intake, supplement intake, body 
mass index, and leisure-time physical activity (a surrogate of potential exposure to 
sunlight UV-B) were used as the independent variables in multiple linear regression 
model to develop a predicted 25(OH)D score, the dependent variable [26]. 
Secondly, the score, after being validated in an additional sample of men with 
25(OH)D measured, was calculated for each of 47,800 cohort members and exam-
ined in relation to subsequent risk of cancer using Cox proportional hazards regres-
sion. There were 691 cases of colorectal cancer diagnosed from 1986 to 2000 in 
this cohort. The analysis showed that a 25-nmol/L (10 ng/mL) increment in pre-
dicted 25(OH)D was associated with a reduced risk of colorectal cancer (multivari-
ate RR = 0.63; 95% CI 0.48–0.83), an association which persisted after controlling 
for body mass index or physical activity, which are contributors to the 25(OH)D 
score, and known risk factors for colorectal cancer.

4.3.3  Dietary Intake

As discussed above, dietary and supplementary intake of vitamin D are relatively 
moderate predictors of 25(OH)D status, but may be relatively more important in 
winter months in high latitude climates, when sunlight UV-B exposure is low. 
Dietary or supplementary vitamin D has been investigated in relation to colorectal 
cancer risk in cohort studies of men [27, 28] and women [29–31] or both sexes [32, 33], 
as well as in case–control studies [34–41]. The majority of these studies suggested 
inverse associations for colon or rectal cancer, or both endpoints combined [27–30, 
33, 35, 37, 39, 40, 42]. The studies that took into account supplementary vitamin D 
may be more informative as dietary vitamin D intake alone tends to be low in most 
populations. For studies that also assessed supplementary vitamin D, the average 
intake of the top category was approximately 700–800 IU/day, whereas in popula-
tions where vitamin D in supplements are rarely consumed, the highest intake cat-
egory averaged around 200–300 IU/day. An association with vitamin D, if one 
exists, is more likely to be observed in the higher intake populations with supple-
ments assessed. In fact, in these studies, a risk reduction in the top versus bottom 
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category was generally seen (risk reduction of 34% [28], 46% [29], 58% [30], 24% 
[31], 30% [40], 29% male, 0% female [33], 50% males, 40% females [41], and 28% 
male, 11% female [42]). In the other studies, weaker reductions or no reductions 
were seen. These studies tend to support a role of vitamin D, though the high intake 
groups tend to be enriched with multivitamin users and consumers of (fortified) milk 
and fatty fish, which could have an anticancer effect unrelated to vitamin D.

4.3.4  Sun Exposure

Besides ecological studies that examine sun exposure (estimated by region) studies 
can examine sun exposure at the individual level. One such study was a death cer-
tificate-based case–control study, which examined mortality from female breast, 
ovarian, colon, and prostate cancers in relation to residential and occupational 
exposure to sunlight [43]. In this study, the cases consisted of all deaths from these 
cancers between 1984 and 1995 in 24 states of the USA, allowing for a very large 
number of 153,511 deaths from colorectal cancer. The controls in this study were 
age-frequency-matched to a series of cases, and deaths from cancer and certain 
neurological diseases were excluded because of possible relationships with sun 
exposure. Non-melanoma skin cancer served as a positive “control” group, and an 
expected positive association was found between individuals with presumably 
higher opportunity to sun exposure and skin cancer risk. The authors used multi-
variate analyses, which controlled for age, sex, race, and mutual adjustment for 
residence, occupation (outdoor versus indoor), occupational physical activity levels 
and socioeconomic status. For colon cancer, individuals with a high compared to 
low exposure to sun based on residence were at decreased risk (RR = 0.73, 95% CI, 
0.71–0.74), and individuals with outdoor occupations (RR = 0.90; 95% CI, 0.86–
0.94) and occupations that required more physical activity (RR = 0.89; 95% CI, 
0.86–0.92) were at lower risk. The inverse association with outdoor occupation was 
strongest among those living in the highest sunlight region (RR = 0.81; 95% CI, 
0.74–0.90), suggesting that sunlight was a key factor associated with outdoor occu-
pation that reduced the risk.

4.3.5  Vitamin D and Colorectal Adenoma

Adenomas are precursors to the majority of colorectal cancers. Because adenomas 
can be detected decades prior to development of cancer, they can serve as a predic-
tive indicator for cancer [44, 45]. The malignancy transformation rate for adenomas 
ranges from 5% for small adenomas to 50% for villous adenomas over 2 cm in 
diameter [46, 47]. Some studies have examined circulating 25(OH)D or vitamin D 
intake and risk colorectal adenomas. A recent meta-analysis of colorectal adenoma, 
comprised of seven studies on 25(OH)D and 12 on vitamin D intake published 
before December 2007, was performed [48]. The meta-analysis found that circulating 
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25(OH)D was inversely associated with risk of total colorectal adenoma (RR = 0.70 
(95% CI: 0.56–0.87, for high versus low circulating 25(OH)D) and advanced ade-
noma (RR = 0.64, 95% CI: 0.45–0.90). In addition, the highest quintile of vitamin D 
intake was associated with a decreased risk of colorectal adenoma compared to low 
vitamin D intake (RR = 0.89; 95% CI: 0.78–1.02), recurrent adenoma (RR = 0.88; 
95% CI: 0.72–1.07), and advanced adenoma (RR = 0.75, 95% CI: 0.57–0.99). The 
overall results of this meta-analysis indicate that vitamin D status, assessed through 
intake and circulating 25(OH)D, is associated with a decreased risk of colorectal 
adenoma, especially advanced adenoma.

4.3.6  Randomized Controlled Trial

The Women’s Health Initiative was a randomized placebo-controlled trial that 
examined 400 IU vitamin D plus 1,000 mg/day of elemental calcium in 36,282 
postmenopausal women in relation to risk of colorectal cancer (n = 322 cases) and 
other endpoints over 7 years [21]. This study found no suggestion of a benefit of 
the intervention on incidence of colorectal cancer, but this trial had some important 
limitations, which preclude a definitive answer. First, and most importantly, the 
dose of 400 IU/day of vitamin D was likely insufficient to yield a meaningful con-
trast of 25(OH)D between the treated and the control groups. The anticipated 
increase of circulating 25(OH)D level following an increment of 400 IU/day would 
be approximately 7.5 nmol/L, and was likely even less given the suboptimal com-
pliance in this study. In the epidemiologic studies of 25(OH)D, the contrast between 
the high and low quintiles was generally at least 50 nmol/L (20 ng/mL) [22]. 
Second, epidemiologic data, although limited, suggest that any influence of vitamin D 
(and calcium) intakes may require at least 10 years to demonstrate a risk reduction 
for colorectal cancer [30], so possibly the time duration of the trial may not have 
been sufficiently long. Third, the Women’s Health Initiative study had a factorial 
design with hormonal replacement use, and a post hoc analysis suggested an inter-
action whereby women who had not taken hormones may have benefited from the 
vitamin D and calcium intervention, but those on hormones did not [49]. If so, the 
effect of vitamin D may have been diluted in the overall study population.

4.4  Prostate Cancer

4.4.1  25(OH) Vitamin D

Most of the studies of circulating 25(OH)D level and prostate cancer risk have not 
found clear risk reductions for prostate cancer associated with higher 25(OH)D 
 levels, although some of the studies suggested weak inverse  associations [20, 50–54]. 
The only two studies [55, 56] that support an inverse association were conducted in 
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Nordic countries, where the vitamin D levels may be particularly low due to low 
solar UV-B exposure at higher latitudes. However, even these findings were equivo-
cal, because one of these studies also found an increased risk in men with the high-
est 25(OH)D values, which suggested a U-shaped relationship between vitamin D 
and prostate cancer risk [56]. Several studies found supportive [50] or suggestive 
[51] inverse associations for circulating 1,25(OH)

2
D levels and prostate cancer risk, 

especially for aggressive prostate cancer. In the Physicians’ Health Study, the par-
ticipants with both low 25(OH)D and 1,25(OH)

2
D were at about a twofold higher 

risk of aggressive prostate cancer [57]. In the Health Professionals Follow-up 
Study, both lower 25(OH)D and 1,25(OH)

2
D levels were associated with lower 

prostate cancer risk [53], but these were mostly organ-confined prostate cancers 
detected through PSA testing. In fact, although numbers of advanced cases were 
limited (n = 60), there was a suggestive inverse association between 25(OH)D levels 
and risk of advanced prostate cancer [53]. Finally, in the Prostate, Lung, Colorectal, 
and Ovarian Cancer Screening Trial, an analysis based on 749 cases and 781 con-
trols found no association, and, in fact, even a suggestively increased risk of aggres-
sive prostate cancer among men with higher circulating 25(OH)D levels [58]. 
Clearly, studies of circulating 25(OH)D have tended not to support an association 
for prostate cancer, or at best, have yielded equivocal results.

4.4.2  Predicted 25(OH)D Level

Predicted 25(OH)D was examined in relation to advanced stage prostate cancer in 
the Health Professionals Follow-Up Study. The method for this analysis was sum-
marized above (section 4.3.2) [26]. Over follow-up from 1986 to 2002, 461 cases 
of advanced prostate cancer were documented. In the multivariate model, a 
25 nmol/L increment in predicted 25(OH)D level was associated with a modest 
nonsignificant 20% reduction in risk, providing modest support of an association.

4.4.3  Vitamin D Intake

Only four studies were identified in the literature that examined vitamin D intake 
and prostate cancer risk. None of these studies supported an association between 
vitamin D intake and prostate cancer incidence [59–62]. Two of these studies 
[59, 62] assessed supplemental vitamin D in addition to diet.

4.4.4  Sun Exposure

A death-certificate-based case–control study of cancer mortality described 
 previously for colon cancer also examined prostate cancer mortality based on 
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97,873 prostate cancer deaths. In this study, residential exposure to sunlight had an 
inverse association with prostate cancer mortality, though this association was 
rather modest in magnitude (RR = 0.90; 95% CI, 0.86–0.91) [43]. Further, occupa-
tion exposure to sunlight was found not to be associated with fatal prostate cancer 
risk (RR = 1.00; 95% CI, 0.96–1.05). Thus, the evidence for a link between sun 
exposure and prostate cancer mortality was relatively weak, and, of note, the asso-
ciation was weaker than that observed for other cancer sites, including colon can-
cer, breast cancer, ovarian cancer, and non-Hodgkin’s lymphoma using the same 
study design.

In several case–control and cohort studies, surrogates of sun exposure were 
examined in relation to prostate cancer risk. One case–control study of advanced 
prostate cancer is of special interest because it was based on use of a reflectometer 
to measure overall sun exposure [63]. In this method, the difference between facul-
tative skin pigmentation on the forehead (a sun-exposed site) and constitutive pig-
mentation on the upper underarm (a sun-protected site) is used to estimate sun 
exposure. Sun exposure estimated by reflectometry was inversely associated with 
risk of advanced prostate cancer (RR = 0.51; 95% CI, 0.33–0.80). Further, this study 
found that high occupational outdoor activity level was associated with a sugges-
tively reduced risk of advanced prostate cancer relative to low exposure (RR = 0.73; 
95% CI, 0.48–1.11).

A cohort study was based on 5,811 non-Hispanic white men using National 
Health and Nutrition Examination Survey I data; of these men, 151 (102 nonfatal, 
59 fatal) were diagnosed with prostate cancer over follow-up from 1971 to 1992. 
Several measures of presumed sun exposure were associated with significantly 
lower risk of prostate cancer; these were longest residence in regions with high 
solar radiation (RR = 0.66; 95% CI, 0.47–0.93), and high solar radiation in the state 
of birth (RR = 0.49; 95% CI, 0.27–0.90) [64]. The associations were stronger for 
fatal prostate cancer. Frequent recreational sun exposure in adulthood was associ-
ated with a lower risk of fatal prostate cancer only (RR = 0.47; 95% CI, 0.23–0.99). 
On the basis of these findings, the authors hypothesized that both early-life and 
adult exposure to sun are critical for prostate carcinogenesis, although the study did 
not have adequate power to simultaneously adjust for adult and early-life 
residences.

Studies in the UK are of especial interest given the low sun exposure in that region. 
Several case–control studies in the UK reported on factors such as childhood sunburns, 
holidays in a hot climate, and skin type in relation to prostate cancer risk. Rather 
 striking findings were found in subgroups characterized by childhood sunburns, holi-
days in a hot climate, and skin type; specifically, a significant 13-fold higher risk of 
prostate cancer was observed in men with combinations of high sun exposure/light 
skin compared to low sun exposure/darker skin type [65, 66]. Furthermore, self-
reported UV exposure parameters and skin type in 553 men with prostate cancer were 
studied in association with stage, Gleason score, and survival after starting hormone 
manipulation therapy [67]. UV exposures 10, 20, and 30 years before diagnosis were 
inversely associated with stage, and the RR for UV exposure 10 years before diagnosis 
was lowest (RR = 0.69, 95% CI = 0.56–0.86). RRs were lower in men with (lighter) 
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skin types I/II than III/IV. Also, men with skin types I/II experienced longer survival 
after beginning hormone therapy (RR = 0.62, 95% CI = 0.40–0.95). These findings also 
support that vitamin D may influence prostate cancer mortality.

4.5  Breast Cancer

4.5.1  25(OH)D Level

Two large prospective studies have examined circulating 25(OH)D levels in relation 
to breast cancer risk. The first of these was the Nurses’ Health Study, which was 
based on 701 breast cancer cases and 724 controls [68]. The results suggested a 
moderate association; women in the highest quintile of 25(OH)D had an RR of 0.73, 
95% CI = 0.49–1.07 (P trend = 0.06) when compared with women in the lowest quin-
tile of 25(OH)D. In a subgroup analysis, this inverse association was primarily in 
women of ages 60 years and older, suggesting that vitamin D may be more important 
for postmenopausal than for premenopausal breast cancer. Another large prospective 
study of 25(OH)D level and breast cancer risk was based on the Prostate, Lung, 
Colorectal, and Ovarian Cancer Screening Trial study, over which 1,005 incident 
cases of breast cancer were followed from 1993 to 2005, with a mean time between 
blood draw and diagnosis of 3.9 years [69]. In this cohort, women with 25(OH)D 
levels in the highest quintile were not at lower risk for breast cancer when compared 
to women with values in the low quintile (RR = 1.04; 95%CI = 0.75–1.45) nor was 
any trend observed p(trend) = 0.81). Unlike in the Nurses’ Health Study, risk of 
breast cancer was not reduced even in the stratum of older women. The range of 
25(OH)D was comparable to that in the Nurses’ Health Study.

Two other small studies are noteworthy. A small nested case–control study, 
based on only 28 cases, reported a nonsignificant inverse association for breast 
cancer risk [25]. Also, a nested case–control study based on 96 breast cancer cases 
found no association between prediagnostic 1,25(OH)

2
D concentration and risk of 

breast cancer, but circulating 25(OH)D was not examined in this study.

4.5.2  Vitamin D Intake

A number of studies have examined vitamin D intake in relation to breast cancer risk. 
A meta-analysis for studies identified six such studies conducted up to June 2007 
[70]. In the meta-analysis, vitamin D intake was not associated with risk of breast 
cancer (summary RR = 0.98; 95%CI = 0.93–1.03). However, significant heterogeneity 
(p < 0.01) appeared to be due to the level of vitamin D intake. When the studies were 
stratified into those with vitamin D intakes higher than 400 IU or lower than this 
amount, a modest association was observed only in those three studies where intakes 
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were ³ 400 IU (summary RR = 0.92, 95%CI = 0.87–0.97; p(heterogeneity) = 0.14). 
One of the studies with high intakes, the Nurses’ Health Study, is of interest because 
vitamin D intake was updated every 2–4 years, which allowed for an improved esti-
mate of long-term intake [71]. That study, which was based on 3,482 cases of breast 
cancer, found that total vitamin D intake (dietary plus supplementary intake) was 
inversely associated with the risk of incident breast cancer (multivariate RR = 0.72; 
95%CI = 0.55–0.94) for >500 versus £ 150 IU/day of vitamin D. Notably, similar 
inverse associations were observed with other components of dairy foods, including 
lactose and calcium, indicating the difficulty of teasing out the independent effects. 
Nonetheless, total vitamin D intake had a stronger inverse association than did either 
dietary or supplemental vitamin D intake individually, which suggested that vitamin 
D was indeed the relevant causal factor.

4.5.3  Sun Exposure

The death certificate-based case–control study of cancer mortality described above 
found that greater residential exposure to sunlight (RR = 0.74; 95% CI, 0.72–0.76) 
and occupational exposure to sunlight (RR = 0.82, 95% CI, 0.70–0.97) were associ-
ated with reduced mortality from female breast cancer (n = 130,261 cases) [43]. The 
study also found that the magnitude of the association between outdoor employ-
ment and reduced breast cancer mortality was strongest in regions of greatest resi-
dential sunlight (OR = 0.75, 95% CI, 0.55–1.03), suggesting that sun light exposure 
was the primary reason underlying the reduced risk with outdoor employment.

A population-based case–control study of 972 cases and 1,135 controls con-
ducted in Canada, examined self-reported sun exposure behaviors at different age 
periods in relation to risk of breast cancer [72]. The study found a significantly 
reduced risk of breast cancer associated with increasing estimated sun exposure 
from ages 10 to 19 (RR = 0.65; 95% CI, 0.50–0.85 for the highest quartile of out-
door activities versus the lowest; P for trend = 0.0006). Notably, the associations 
from ages 20 to 29 years were weaker, and no evidence was observed for exposures 
for ages 45–54 years. These results suggest that the relevant time for vitamin D 
exposure and reduced breast cancer risk occurs primarily or solely during 
adolescence.

A population-based case–control study was conducted based on 1,788 incident 
cases of advanced breast cancer and 2,129 controls over the years 1995–2003 
among Hispanic, African-American, and non-Hispanic White women from 
California [73]. In this study, among women with light constitutive skin  pigmentation, 
those with high sun exposure index based on reflectometry had a reduced risk of 
advanced breast cancer (RR = 0.53, 95% CI: 0.31, 0.91). However, among women 
with medium or dark pigmentation, high sun exposure index was not associated 
with risk. To explain these discordant findings, the investigators posited that these 
measures based on reflectometry may reflect vitamin D status better in more lightly 
pigmented women than in darker skinned women. Finally, in a relatively small 
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cohort of 5,009 women, among whom 190 women developed incident breast 
 cancer, several measures of sunlight exposure and dietary vitamin D intake showed 
a moderate inverse association with risk of breast cancer [74].

4.6  Pancreatic Cancer

4.6.1  25(OH)D Level

Only one report of circulating 25(OH)D in relation to pancreatic cancer was found 
in the literature. This study was based on the Alpha-Tocopherol, Beta-Carotene 
Cancer Prevention Cohort of male Finnish smokers [75]. The analysis was based 
on 200 cases of pancreatic cancer and 400 matched controls. In this study, men with 
higher vitamin D concentrations were at significantly increased risk for pancreatic 
cancer (highest versus lowest quintile, >65.5 versus <32.0 nmol/L: multivariate RR, 
2.92; 95% CI, 1.56–5.48, P(trend) = 0.001). This finding was unanticipated and 
persisted in detailed multivariate analysis and in a number of sensitivity analyses.

4.6.2  Predicted 25(OH)D

Only one analysis, based on the Health Professionals Follow-up Study, was based 
on predicted 25(OH)D to examine risk of pancreatic cancer (n = 170) [26]. In this 
study, a 25 nmol/L increment in predicted 25(OH)D was associated with a signifi-
cant reduction in pancreatic cancer risk, even after detailed multivariate adjustment 
(multivariate RR = 0.49; 95% CI = 0.28–0.86). These results were confirmed in the 
Nurses’ Health Study [76]. Why this result differs markedly from those based on 
circulating 25(OH)D in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention 
Cohort is unclear, but some differences include that in the Health Professionals 
Study very few men were current smokers (<10%), the method of assessing vitamin 
D status was different, the range of vitamin D was much lower in Finland due to 
lower sun exposure, and the men from the Health Professionals study generally had 
a healthier lifestyle.

4.6.3  Vitamin D Intake

Only one report examining vitamin D intake in relation to pancreatic cancer risk 
was identified. This was a prospective study, which combined data from the Nurses’ 
Health Study and the Health Professionals Follow-Up Study, and assessed total 
vitamin D intake from diet and supplements [77]. The analysis was based on 365 
incident cases of pancreatic cancer over 16 years of follow-up with repeated dietary 
measures generally every 4 years. The analysis showed a significant reduction in 
risk of pancreatic cancer when comparing vitamin D intakes of ³ 600 IU/day to total 
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vitamin D intake <150 IU/day (multivariate RR = 0.59; 95% CI, 0.40–0.88; 
p(trend) = 0.01). Controlling for a number of other dietary and lifestyle factors did 
not alter this inverse association.

4.7  Ovarian Cancer

4.7.1  25(OH)D Level

Only one report of plasma 25(OH)D in relation to risk of epithelial ovarian cancer 
was identified in the literature. This study was conducted using data from three pro-
spective cohorts: the Nurses’ Health Study, the Nurses’ Health Study II, and the 
Women’s Health Study [78]. The analysis was based on 224 cases and 603 controls 
from the combined cohorts. The findings showed no significant association between 
25(OH)D and ovarian cancer risk (top versus bottom quartile: RR = 0.83; 95% CI, 
0.49–1.39; P(trend) = 0.57). However, after the first 2 years of follow-up were 
excluded, an inverse association was suggested (RR = 0.67, 95%CI, 0.43–1.05). This 
finding is noteworthy because ovarian cancer is often diagnosed at advanced stages, 
so reverse causation may obscure the results from the early follow-up period. Another 
finding was that a significant inverse association with 25(OH)D levels was observed 
among overweight and obese women (RR = 0.39; 95% CI, 0.16–0.93; P(trend) = 0.04). 
Finally, women with adequate versus inadequate 25(OH)D levels had a modestly 
decreased risk of the subgroup of serous ovarian cancer (RR, 0.64; 95% CI, 0.39–
1.05). Though these subgroup findings are noteworthy, they require replication.

4.7.2  Sun Exposure

In the death certificate-based case–control study of ovarian cancer mortality 
(n = 39,002 cases) in association with residential and occupational exposure to sun-
light described above (see section 4.3.4) [43], residential (RR = 0.84; 95% CI, 0.81–
0.88) but not occupational exposure to sunlight was inversely associated with ovarian 
cancer mortality. Thus, this evidence is suggestive of a role of sunlight on ovarian 
cancer risk, but of a magnitude weaker than that for colon and breast cancer.

4.8  Esophageal and Gastric Cancers

4.8.1  25(OH)D Level

Cancers of the esophagus and stomach are relatively rare in developed countries, 
such as the USA, but are extremely common in some areas, particularly in Linxian, 
China. One study of vitamin D, nested in a randomized trial of micronutrients [79], 
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was conducted in Linxian, China. The analysis included 545 squamous cell 
 carcinomas of the esophagus, 353 adenocarcinomas of the gastric cardia, and 81 
gastric noncardia adenocarcinomas diagnosed over 5.25 years of follow-up. For 
squamous cell carcinomas of the esophagus, when comparing men in the fourth 
quartile of serum 25(OH)D concentrations to those in the first, a positive associa-
tion was found (RR = 1.77; 95%CI, 1.16–2.70, P trend = 0.0033). In contrast, no 
association was found in women (RR = 1.06 (95% CI = 0.71–1.59), P trend = 0.70), 
or for gastric cardia or noncardia adenocarcinoma. The cut-point for the top quartile 
was only 48.7 nmol/L.

The other study, from Linxian, China, was a cross-sectional analysis of 720 
subjects who underwent endoscopy and biopsy, and were categorized by the pres-
ence or absence of histologic esophageal squamous dysplasia [80]. The mean level 
of 25(OH)D in this population was only 35 nmol/L. In this high-risk area, 230 of 
720 subjects were diagnosed with squamous dysplasia. In multivariate analyses, the 
subjects in the highest compared with the lowest quartile of 25(OH)D were at a 
significantly increased risk of squamous dysplasia (RR = 1.86; 95% CI, 1.35–2.62). 
This association was observed both in men (RR =1.74; 95% CI, 1.08–2.93) and 
women (RR = 1.96; 95% CI, 1.28–3.18).

4.9  Non-Hodgkin Lymphoma

4.9.1  Sun Exposure

The relationship between sun exposure and non-Hodgkin Lymphoma (NHL) is of 
special interest because some studies suggest a positive association between NHL 
and skin cancer, suggesting that sunlight may increase risk of NHL. Partly based on 
this relationship, a number of case–control studies have examined sun exposure and 
risk for NHL. The International Lymphoma Epidemiology Consortium (InterLymph) 
recently presented results summarizing the association between sun exposure and 
NHL risk in a pooled analysis of 10 case–control studies [81]. The studies 
 comprised 8,243 cases and 9,697 controls of European origin and were conducted 
in the USA, Europe, and Australia. Four measures of self-reported personal sun 
exposure were assessed at interview; these included time (1) outdoors and not in 
the shade in warmer months or summer, (2) in the sun in leisure activities, (3) in 
sun light, and (4) sun bathing in summer. The risk of NHL fell significantly with 
the composite measure of increasing recreational sun exposure; the multivariate 
pooled RR (adjusting for smoking and alcohol) = 0.76 (95% CI 0.63–0.91) for the 
highest exposure category, and the trend was significant (p for trend 0.005). For 
increasing total sun exposure, a nonsignificant inverse trend was observed with 
NHL risk (RR = 0.87; 95% CI 0.71–1.05; P = 0.08). Of note, the inverse association 
between recreational sun exposure and NHL risk was statistically significant at 
18–40 years of age and in the 10 years before diagnosis, and statistically significant 
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for B cell lymphomas, but not for T cell lymphomas. However, the numbers for the 
T cell lymphomas were small and thus the results were inconclusive.

A case–control study based on death certificates of residential and occupational 
sun exposure and NHL mortality was conducted, as described above (Sect. 4.3.4) 
[82]. The study, conducted in 24 states in the USA, and based on over 33,000 fatal 
cases of NHL, found a 17% reduction in risk of NHL mortality that the RR for 
those residing in states with the highest sunlight exposure (multivariate RR = 0.83 
(95%CI = 0.81 to 0.86). Intriguingly, the risk reduction was remarkably high for 
those under 45 years of age (RR = 0.44 (95%CI = 0.28–0.67). The risk of NHL 
mortality was also reduced with higher occupational sunlight exposure (RR = 0.88; 
95% CI = 0.81–0.96). Besides its effects on vitamin D levels, chronic UV exposure 
has effects on the immune system [83], and hence sun light exposure could poten-
tially influence neoplasms of the immune system through mechanisms besides 
vitamin D.

4.10  Total Cancer

4.10.1  Circulating 25(OH)D

Three relatively small studies examined circulating 25(OH)D in relation to risk of 
total cancer. One analysis was conducted in the Third National Health and Nutrition 
Examination Survey [25]. In this analysis, there were 16,818 participants who were 
followed from 1988 to 1994 through 2000. Over this follow-up, 536 cancer deaths 
were identified. Baseline vitamin D status was not significantly associated with 
total cancer mortality, although a nonsignificant inverse trend (P = 0.12) was 
observed in women only. There were generally too few specific cancer sites to be 
examined, but colorectal cancer mortality was inversely related to serum 25(OH)D 
level (discussed above), and a nonsignificant inverse association was observed for 
breast cancer.

Two small studies were conducted in specialized populations. In the Ludwigshafen 
Risk and Cardiovascular Health study, 25(OH)D was measured in 3,299 patients 
who provided a blood sample in the morning before coronary angiography [84]. 
These subjects were followed for a median period of about 8 years, over which 95 
cancer deaths were recorded. The multivariate analysis adjusted for age, sex, body 
mass index, smoking, retinol, exercise, alcohol, and diabetes history. Higher 
25(OH)D level at baseline appeared to be associated with a lower risk of total can-
cer (multivariate RR = 0.45; 95%CI = 0.22–0.93) for the fourth quartile versus the 
first quartile of 25(OH)D. The risk decrease was monotonic, and the RR per 
increase of 25 nmol/L in serum 25(OH)D concentrations was 0.66 
(95%CI = 0.49–0.89).

The other study examined pre-transplant 25(OH)D levels in 363 renal transplant 
recipients at Saint-Jacques University Hospital at Besancon, France [85]. Mean 
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25(OH)D was low at pre-transplant (17.6 ng/mL) and further reduced after the 
transplant (post-transplant patients are advised to avoid sun exposure). Thirty-two 
cancers were diagnosed over 5 years of follow-up. 25(OH)D levels were lower in 
patients who developed cancer after transplantation (13.7 ± 6 vs 18.3 ± 17.8 ng/mL, 
P = 0.022). The risk of total cancer increased by 12% for each 1 ng/mL (2.5 nmol/L)
decrement in 25(OH)D (RR = 1.12; 95% CI = 1.04–1.23; P = 0.021).

4.10.2  Predicted 25(OH)D

In the Health Professionals Follow-up Study cohort, predicted 25(OH)D levels 
were examined in relation to risk of total cancer in men. The methods for this analy-
sis were discussed above (Sect. 4.3.2). From 1986 through January 31, 2000, 4,286 
incident cancers (excluding organ-confined prostate cancer and non-melanoma skin 
cancer) and 2,025 cancer deaths from cancer were identified. An increment of 
25 nmol/L in predicted 25(OH)D level was associated with a 17% reduction in total 
cancer incidence (multivariate RR = 0.83, 95%CI = 0.74–0.92) and a 29% reduction 
in total cancer mortality (multivariate RR = 0.71, 95% CI = 0.60–0.83). The reduc-
tion was largely confined to cancers of the digestive tract system, including esopha-
gus, stomach, pancreas, colon, and rectum; as a group, there was a 45% reduction 
in mortality associated with a 25 nmol/L increment in 25(OH)D (multivariate 
RR = 0.55, 95% CI = 0.41–0.74).

4.10.3  Randomized Trials (RCT)

Two RCTs of vitamin D supplementation and total cancer risk were identified. The 
first was an RCT of 2,037 men and 649 women aged 65–85 years living in the 
general community in the UK. The subjects took either 100,000 IU oral vitamin D 
(cholecalciferol) supplementation or placebo every 4 months over 5 years [86]. 
After treatment, the 25(OH)D level was 74.3 nmol/L in the vitamin D group and 
53.4 nmol/L in the placebo group. There were 188 incident cancer cases in the 
vitamin D group and 173 in the placebo group, and no overall reduction was 
observed for cancer risk (RR = 1.09, 95%CI = 86–1.36), although a slight, nonsig-
nificant reduction in risk of cancer mortality was suggested (RR = 0.86; 
95%CI = 0.61–1.20).

The other RCT was a 4-year, community-based, double-blind, placebo-con-
trolled RCT of vitamin D and calcium of 1,179 US women aged >55 years living 
in Nebraska; the primary outcome was fracture incidence and the principal second-
ary outcome was cancer incidence [87]. The subjects were randomly assigned to 
receive daily 1,400–1,500 mg supplemental calcium/d alone (Ca-only), supplemental 
calcium plus 1,100 IU vitamin D (Ca + D), or placebo. The achieved 25(OH)D level 
after treatment was 96 nmol/L in the vitamin D group and 71 in the non-vitamin D 
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groups. A limitation of the study was the relatively small number of total cancers 
of 50 in total and 37 after the first year. Nonetheless, total cancer incidence was 
lower in the Ca + D women than in the placebo-control subjects (P < 0.03), and the 
RR of incident cancer was 0.40 (P = 0.01) in the Ca + D group and 0.53 (P = 0.06) 
in the Ca-only group. In a sub-analysis confined to cancers diagnosed after the first 
year, the RR for the Ca + D group was 0.23 (95% CI = 0.09–0.60; P < 0.005); no 
significant risk reduction was observed for the Ca-only group. In multivariate models, 
both vitamin D treatment and higher 25(OH)D levels were significant, independent 
predictors of reduced cancer incidence.

4.11  Summary

Ecologic studies that compared cancer mortality rates in different regions within 
the USA initiated the hypothesis that high vitamin D levels may lower risk of vari-
ous cancers, a hypothesis that was subsequently supported by biologic evidence. 
Colorectal cancer was the first cancer type hypothesized to be related to vitamin D 
status [3]. Subsequently, although regional UV-B was shown to be associated with 
a number of cancers, the magnitude of the association appeared to be strongest for 
colorectal cancer [8]. This finding for colorectal cancer was confirmed in epidemio-
logic studies of circulating 25(OH)D and colorectal cancer risk, in which individu-
als in the high quartile or quintile of 25(OH)D had a 40–50% risk reduction relative 
to those in the lowest group. Inverse associations have also been observed for pre-
dicted vitamin D, sun light exposure and dietary intake, and for the colorectal 
cancer precursor, the adenoma. The consistency of this association in diverse cir-
cumstances indicates that an uncontrolled or unaccounted confounding factor is 
unlikely to account for these associations.

For breast cancer, for which an inverse correlation has been observed between 
regionally estimated UV-B in ecologic studies, the epidemiologic data are sparser 
and less consistent. The evidence from analytic epidemiologic studies of vitamin D 
and breast cancer are somewhat conflicting. There have been only two adequately 
powered prospective studies of circulating 25(OH)D levels, and these have yielded 
inconsistent results. The studies of vitamin D intake are modestly supportive but 
limited by the generally low intakes of vitamin D. One case–control study provided 
intriguing findings: more sun exposure primarily during ages 10–19, but not at 
other ages, than controls, was inversely associated with risk of breast cancer. 
Because recall bias is a possible explanation, replicating these results in prospective 
settings is important. Interestingly, adolescent exposures have often been found to 
be critical in determining subsequent breast cancer risk, probably because the 
breast tissue are rapidly developing over this time period.

Ecologic studies of regional UV-B and cancer mortality find an inverse associa-
tion with prostate cancer mortality. However, this association appears not as strong 
as that for colorectal or breast cancer [8], and in one study, was limited to counties 
north of 40°N latitude, in the USA [88]. The studies of circulating 25(OH)D have 
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found no or relatively weak nonsignificant associations, and vitamin D intake 
 studies, while sparse, are not supportive of any protection for prostate cancer. In 
contrast to these findings, studies generally support that more sun exposure is asso-
ciated with a lower risk of prostate cancer. Two factors are important to consider 
for prostate cancer. First, most of the evidence to date has focused on incident can-
cer, while for prostate cancer the association with vitamin D may be stronger for 
progression and mortality. Second, it has been observed that prostate cancer cells 
lose 1-alpha-hydroxylase activity early in the carcinogenesis process [89, 90]. This 
fact may suggest that prostate cancers are insensitive to the effects of circulating 
25(OH)D or are only sensitive to it at very early stage decades before the diagnosis. 
Thus, future studies should focus on studying vitamin D level early in life and on 
risk of fatal prostate cancer.

For other cancer sites, the data are generally too sparse to support strong conclu-
sions. Some noteworthy findings bear acknowledgement. A study of predicted 
25(OH)D in men found associations, particularly for mortality, largely with cancers 
along the gastro-intestinal tract. This result is interesting especially given that a 
similar pattern has been observed from some ecologic studies based on region of 
residence. Gastrointestinal cancers account from one-quarter to one-third of all 
cancer deaths across different countries, so confirming or refuting this finding is 
important. In contrast, in some special high-risk populations, circulating 25(OH)D 
was associated with an increased risk of pancreatic, gastric, and esophageal can-
cers. This puzzling finding could relate to different etiologies of cancer across 
populations. In particular, the study of esophageal and gastric cancers was con-
ducted in a very high-risk region in China; no studies have been conducted in 
regions with traditional risk factors for esophageal cancer. Other cancers that 
deserve further study in particular are ovarian cancer and NHL.

Few studies have examined the potential influence of vitamin D on cancer mor-
tality or survival from cancer. Some preliminary evidence has suggested that vita-
min D status (estimated by season of diagnosis [91] or by blood sample directly 
[92, 93] around the time of diagnosis) may influence survival from cancer. Also 
noteworthy is that vitamin D status has been sometimes found to be more strongly 
related to cancer mortality than cancer incidence. These findings suggest that 
 vitamin D may affect progression of cancer, or prognosis, in addition to incidence. 
Intervention studies could relatively feasible test the hypothesis that administering 
vitamin D after diagnosis improves survival.

References

 1. Peller S, Stephenson CS (1937) Skin irritation and cancer in the United States Navy. Am  
J Med Sci 194:326–333

 2. Apperly FL (1941) The relation of solar radiation to cancer mortality in North American. 
Cancer Res 1:191–195

 3. Garland CF, Garland FC (1980) Do sunlight and vitamin D reduce the likelihood of colon 
cancer? Int J Epidemiol 9:227–231



934 The Epidemiology of Vitamin D and Cancer Risk 

 4. Garland FC, Garland CF, Gorham ED, Young JF (1990) Geographic variation in breast cancer 
mortality in the United States: a hypothesis involving exposure to solar radiation. Prev Med 
19:614–622

 5. Lefkowitz ES, Garland CF (1994) Sunlight, vitamin D, and ovarian cancer mortality rates in 
US women. Int J Epidemiol 23:1133–1136

 6. Schwartz GG, Hulka BS (1990) Is vitamin D deficiency a risk factor for prostate cancer? 
(Hypothesis). Anticancer Res 10:1307–1311

 7. Hanchette CL, Schwartz GG (1992) Geographic patterns of prostate cancer mortality. Cancer 
70:2861–2869

 8. Grant WB (2002) An estimate of premature cancer mortality in the US due to inadequate 
doses of solar ultraviolet-B radiation. Cancer 94:1867–1875

 9. Platz EA, Rimm EB, Willett WC, Kantoff PW, Giovannucci E (2000) Racial variation in 
prostate cancer incidence and in hormonal system markers among male health professionals. 
J Natl Cancer Inst 92:2009–2017

 10. Holick MF (2004) Vitamin D: importance in the prevention of cancers, type 1 diabetes, heart 
disease, and osteoporosis. Am J Clin Nutr 79:362–371

 11. Hollis BW (2005) Circulating 25-hydroxyvitamin D levels indicative of vitamin D suffi-
ciency: implications for establishing a new effective dietary intake recommendation for vita-
min D. J Nutr 135:317–322

 12. Vieth R (2005) The pharmacology of vitamin D, including fortification strategies. In: Feldman 
D et al (eds) Vitamin D, 2nd edn. Elsevier Academic Press, Amsterdam, pp 995–1015

 13. Garland CF, Comstock GW, Garland FC, Helsing KJ, Shaw EK, Gorham ED (1989) 
Serum 25-hydroxyvitamin D and colon cancer: eight-year prospective study. Lancet 2: 
1176–1178

 14. Tangrea J, Helzlsouer K, Pietinen P et al (1997) Serum levels of vitamin D metabolites and 
the subsequent risk of colon and rectal cancer in Finnish men. Cancer Causes Control 
8:615–625

 15. Feskanich D, Ma J, Fuchs CS et al (2004) Plasma vitamin D metabolites and risk of colorectal 
cancer in women. Cancer Epidemiol Biomarkers Prev 13:1502–1508

 16. Levine AJ, Harper JM, Ervin CM et al (2001) Serum 25-hydroxyvitamin D, dietary calcium 
intake, and distal colorectal adenoma risk. Nutr Cancer 39:35–41

 17. Peters U, McGlynn KA, Chatterjee N et al (2001) Vitamin D, calcium, and vitamin D recep-
tor polymorphism in colorectal adenomas. Cancer Epidemiol Biomarkers Prev 
10:1267–1274

 18. Platz EA, Hankinson SE, Hollis BW et al (2000) Plasma 1, 25-dihydroxy-and 25-hydroxyvi-
tamin D and adenomatous polyps of the distal colorectum. Cancer Epidemiol Biomarkers 
Prev 9:1059–1065

 19. Grau MV, Baron JA, Sandler RS et al (2003) Vitamin D, calcium supplementation, and 
 colorectal adenomas: results of a randomized trial. J Natl Cancer Inst 95:1765–1771

 20. Braun MM, Helzlsouer KJ, Hollis BW, Comstock GW (1995) Prostate cancer and 
 prediagnostic levels of serum vitamin D metabolites (Maryland, United States). Cancer 
Causes Control 6:235–239

 21. Wactawski-Wende J, Kotchen JM, Anderson GL et al (2006) Calcium plus vitamin D supple-
mentation and the risk of colorectal cancer. N Engl J Med 354:684–696

 22. Gorham ED, Garland CF, Garland FC et al (2007) Optimal vitamin D status for colorectal 
cancer prevention A quantitative meta analysis. Am J Prev Med 32:210–216

 23. Wu K, Feskanich D, Fuchs CS, Willett WC, Hollis BW, Giovannucci EL (2007) A nested 
case–control study of plasma 25-hydroxyvitamin D concentrations and risk of colorectal 
cancer. J Natl Cancer Inst 99:1120–1129

 24. Otani T, Iwasaki M, Sasazuki S, Inoue M, Tsugane S (2007) Plasma vitamin D and risk of 
colorectal cancer: the Japan Public Health Center-Based Prospective Study. Br J Cancer 
97:446–451

 25. Freedman DM, Looker AC, Chang SC, Graubard BI (2007) Prospective study of serum vita-
min D and cancer mortality in the United States. J Natl Cancer Inst 99:1594–1602



94 E. Giovannucci

 26. Giovannucci E, Liu Y, Rimm EB et al (2006) Prospective study of predictors of vitamin D 
status and cancer incidence and mortality in men. J Natl Cancer Inst 98:451–459

 27. Garland C, Shekelle RB, Barrett-Conner E, Criqui MH, Rossof AH, Paul O (1985) Dietary 
vitamin D and calcium and risk of colorectal cancer: A 19-year prospective study in men. 
Lancet 1:307–309

 28. Kearney J, Giovannucci E, Rimm EB et al (1996) Calcium, vitamin D and dairy foods and the 
occurrence of colon cancer in men. Am J Epidemiol 143:907–917

 29. Bostick RM, Potter JD, Sellers TA, McKenszie DR, Kushi H, Folsom AR (1993) Relation of 
calcium, vitamin D, and dairy food intake to incidence of colon cancer in older women. Am 
J Epidemiol 137:1302–1317

 30. Martinez ME, Giovannucci EL, Colditz GA et al (1996) Calcium, vitamin D, and the occur-
rence of colorectal cancer among women. J Natl Cancer Inst 88:1375–1382

 31. Zheng W, Anderson KE, Kushi LH et al (1998) A prospective cohort study of intake of cal-
cium, vitamin D, and other micronutrients in relation to incidence of rectal cancer among 
postmenopausal women. Cancer Epidemiol Biomarkers Prev 7:221–225

 32. Jarvinen R, Knekt P, Hakulinen T, Aromaa A (2001) Prospective study on milk products, 
calcium and cancers of the colon and rectum. Eur J Clin Nutr 55:1000–1007

 33. McCullough ML, Robertson AS, Rodriguez C et al (2003) Calcium, vitamin D, dairy prod-
ucts, and risk of colorectal cancer in the cancer prevention study II nutrition cohort (United 
States). Cancer Causes Control 14:1–12

 34. Heilbrun LK, Nomura A, Hankin JH, Stemmermann GN (1985) Dietary vitamin D and cal-
cium and risk of colorectal cancer (letter). Lancet 1:925

 35. Benito E, Stiggelbout A, Bosch FX et al (1991) Nutritional factors in colorectal cancer risk: 
a case–control study in Majorca. Int J Cancer 49:161–167

 36. Peters RK, Pike MC, Garabrandt D, Mack TM (1992) Diet and colon cancer in Los Angeles 
County, California. Cancer Causes Control 3:457–473

 37. Ferraroni M, La Vecchia C, D’Avanzo B, Negri E, Franceschi S, Decarli A (1994) Selected 
micronutrient intake and the risk of colorectal cancer. Br J Cancer 70:1150–1155

 38. Boutron MC, Faivre J, Marteau P, Couillault C, Senesse P, Quipourt V (1996) Calcium, phos-
phorus, vitamin D, dairy products and colorectal carcinogenesis: a French case-control study. 
Br J Cancer 74:145–151

 39. Pritchard RS, BJ A, Gerhardsson de Verdier M (1996) Dietary calcium, vitamin D, and the 
risk of colorectal cancer in Stockholm, Sweden. Cancer Epidemiol Biomarkers Prev 5: 
897–900

 40. Marcus PM, Newcomb PA (1998) The association of calcium and vitamin D, and colon and 
rectal cancer in Wisconsin women. Int J Epidemiol 27:788–793

 41. Kampman E, Slattery ML, Caan B, Potter JD (2000) Calcium, vitamin D, sunshine exposures, 
dairy products and colon cancer risk (United States). Cancer Causes Control 11:459–466

 42. Park SY, Murphy SP, Wilkens LR, Stram DO, Henderson BE, Kolonel LN (2007) Calcium, 
vitamin D, and dairy product intake and prostate cancer risk: the Multiethnic Cohort Study. 
Am J Epidemiol 166:1259–1269

 43. Freedman DM, Dosemeci M, McGlynn K (2002) Sunlight and mortality from breast, ovarian, 
colon, prostate, and non-melanoma skin cancer: a composite death certificate based case–
control study. Occup Environ Med 59:257–262

 44. Lane N, Fenoglio CM (1976) I. Observations on the adenoma as precursor to ordinary large 
bowel carcinoma. Gastrointest Radiol 1:111–119

 45. Giovannucci E (2001) An updated review of the epidemiological evidence that cigarette 
smoking increases risk of colorectal cancer. Cancer Epidemiol Biomarkers Prev 
10:725–731

 46. Morson B (1976) Polyps and cancer of the large bowel. West J Med 125:93–99
 47. Eide TJ (1986) Risk of colorectal cancer in adenoma-bearing individuals within a defined 

population. Int J Cancer 38:173–176
 48. Wei MY, Garland CF, Gorham ED, Mohr SB, Giovannucci E (2008) Vitamin D and prevention 

of colorectal adenoma: a meta-analysis. Cancer Epidemiol Biomarkers Prev 17:2958–2969



954 The Epidemiology of Vitamin D and Cancer Risk 

 49. Ding EL, Mehta S, Fawzi WW, Giovannucci EL (2008) Interaction of estrogen therapy with 
calcium and vitamin D supplementation on colorectal cancer risk: Reanalysis of Women’s 
Health Initiative randomized trial. Int J Cancer 122:1690–1694

 50. Corder EH, Guess HA, Hulka BS et al (1993) Vitamin D and prostate cancer: a prediagnostic 
study with stored sera. Cancer Epidemiol Biomarkers Prev 2:467–472

 51. Gann PH, Ma J, Hennekens CH, Hollis BW, Haddad JG, Stampfer MJ (1996) Circulating 
vitamin D metabolites in relation to subsequent development of prostate cancer. Cancer 
Epidemiol Biomarkers Prev 5:121–126

 52. Nomura AM, Stemmermann GN, Lee J et al (1998) Serum vitamin D metabolite levels and 
the subsequent development of prostate cancer. Cancer Causes Control 9:425–432

 53. Platz EA, Leitzmann MF, Hollis BW, Willett WC, Giovannucci E (2004) Plasma 1, 25-dihy-
droxy- and 25-hydroxyvitamin D and subsequent risk of prostate cancer. Cancer Causes 
Control 15:255–265

 54. Jacobs ET, Giuliano AR, Martinez ME, Hollis BW, Reid ME, Marshall JR (2004) Plasma 
levels of 25-hydroxyvitamin D, 1, 25-dihydroxyvitamin D and the risk of prostate cancer.  
J Steroid Biochem Mol Biol 89–90:533–537

 55. Ahonen MH, Tenkanen L, Teppo L, Hakama M, Tuohimaa P (2000) Prostate cancer risk and 
prediagnostic serum 25-hydroxyvitamin D levels (Finland). Cancer Causes Control 
11:847–852

 56. Tuohimaa P, Tenkanen L, Ahonen M et al (2004) Both high and low levels of blood vitamin 
D are associated with a higher prostate cancer risk: a longitudinal, nested case-control study 
in the Nordic countries. Int J Cancer 108:104–108

 57. Li H, Stampfer MJ, Hollis BW et al (2007) A prospective study of plasma vitamin D metabo-
lites, vitamin D receptor polymorphisms, and prostate cancer. PLoS Med 4:e103

 58. Ahn J, Peters U, Albanes D et al (2008) Serum vitamin D concentration and prostate cancer 
risk: a nested case-control study. J Natl Cancer Inst 100:796–804

 59. Giovannucci E, Rimm EB, Wolk A et al (1998) Calcium and fructose intake in relation to risk 
of prostate cancer. Cancer Res 58:442–447

 60. Chan JM, Giovannucci E, Andersson SO, Yuen J, Adami HO, Wolk A (1998) Dairy products, 
calcium, phosphorous, vitamin D, and risk of prostate cancer. Cancer Causes Control 
9:559–566

 61. Chan JM, Pietinen P, Virtanen M, Malila N, Tangrea J (2000) Diet and prostate cancer risk in 
a cohort of smokers, with a specific focus on calcium and phosphorus (Finland). Cancer 
Causes Control 11:859–867

 62. Kristal AR, Cohen JH, Qu P, Stanford JL (2002) Associations of energy, fat, calcium, and 
vitamin D with prostate cancer risk. Cancer Epidemiol Biomarkers Prev 11:719–725

 63. John EM, Schwartz GG, Koo J, Van Den Berg D, Ingles SA (2005) Sun exposure, vitamin D 
receptor gene polymorphisms, and risk of advanced prostate cancer. Cancer Res 
65:5470–5479

 64. John EM, Koo J, Schwartz GG (2007) Sun exposure and prostate cancer risk: evidence for a 
protective effect of early-life exposure. Cancer Epidemiol Biomarkers Prev 16:1283–1286

 65. Luscombe CJ, Fryer AA, French ME et al (2001) Exposure to ultraviolet radiation: associa-
tion with susceptibility and age at presentation with prostate cancer. Lancet 358:641–642

 66. Bodiwala D, Luscombe CJ, French ME et al (2003) Associations between prostate cancer 
susceptibility and parameters of exposure to ultraviolet radiation. Cancer Lett 200:141–148

 67. Rukin N, Blagojevic M, Luscombe CJ et al (2007) Associations between timing of exposure 
to ultraviolet radiation, T-stage and survival in prostate cancer. Cancer Detect Prev 
31:443–449

 68. Bertone-Johnson E, Chen WY, Holick MF et al (2005) Plasma 25-hydroxyvitamin D and 1, 
25-dihydroxyvitamin D and risk of breast cancer. Cancer Epidemiol Biomarkers Prev 14: 
1991–1997

 69. Freedman DM, Chang SC, Falk RT et al (2008) Serum levels of vitamin D metabolites and 
breast cancer risk in the prostate, lung, colorectal, and ovarian cancer screening trial. Cancer 
Epidemiol Biomarkers Prev 17:889–894



96 E. Giovannucci

 70. Gissel T, Rejnmark L, Mosekilde L, Vestergaard P (2008) Intake of vitamin D and risk of 
breast cancer: a meta-analysis. J Steroid Biochem Mol Biol 111:195–199

 71. Shin MH, Holmes MD, Hankinson SE, Wu K, Colditz GA, Willett WC (2002) Intake of dairy 
products, calcium, and vitamin D and risk of breast cancer. J Natl Cancer Inst 
94:1301–1310

 72. Knight JA, Lesosky M, Barnett H, Raboud JM, Vieth R (2007) Vitamin D and reduced risk of 
breast cancer: a population-based case-control study. Cancer Epidemiol Biomarkers Prev 
16:422–429

 73. John EM, Schwartz GG, Koo J, Wang W, Ingles SA (2007) Sun exposure, vitamin D receptor 
gene polymorphisms, and breast cancer risk in a multiethnic population. Am J Epidemiol 
166:1409–1419

 74. John EM, Schwartz GG, Dreon DM, Koo J (1999) Vitamin D and breast cancer risk: the 
NHANES I Epidemiologic follow-up study, 1971–1975 to 1992. National Health and 
Nutrition Examination Survey. Cancer Epidemiol Biomarkers Prev 8:399–406

 75. Stolzenberg-Solomon RZ, Vieth R, Azad A et al (2006) A prospective nested case–control 
study of vitamin D status and pancreatic cancer risk in male smokers. Cancer Res 
66:10213–10219

 76. Bao Y, Ng K, Wolpin BM, Michaud DS, Giovannucci E, Fuchs CS (2010) Predicted vitamin 
D status and pancreatic cancer risk in two prospective cohort studies. Br J Cancer 
102:1422–1427

 77. Skinner HG, Michaud DS, Giovannucci E, Willett WC, Colditz GA, Fuchs CS (2006) Vitamin 
D intake and the risk for pancreatic cancer in two cohort studies. Cancer Epidemiol 
Biomarkers Prev 15:1688–1695

 78. Tworoger SS, Lee IM, Buring JE, Rosner B, Hollis BW, Hankinson SE (2007) Plasma 
25-hydroxyvitamin D and 1, 25-dihydroxyvitamin D and risk of incident ovarian cancer. 
Cancer Epidemiol Biomarkers Prev 16:783–788

 79. Chen W, Dawsey SM, Qiao YL et al (2007) Prospective study of serum 25(OH)-vitamin D 
concentration and risk of oesophageal and gastric cancers. Br J Cancer 97:123–128

 80. Abnet CC, Chen W, Dawsey SM et al (2007) Serum 25(OH)-vitamin D concentration and risk 
of esophageal squamous dysplasia. Cancer Epidemiol Biomarkers Prev 16:1889–1893

 81. Kricker A, Armstrong BK, Hughes AM et al (2008) Personal sun exposure and risk of non 
Hodgkin lymphoma: a pooled analysis from the Interlymph Consortium. Int J Cancer 
122:144–154

 82. Freedman DM, Zahm SH, Dosemeci M (1997) Residential and occupational exposure to 
sunlight and mortality from non-Hodgkin’s lymphoma: composite (threefold) case-control 
study. BMJ 314:1451–1455

 83. Norval M, McLoone P, Lesiak A, Narbutt J (2008) The effect of chronic ultraviolet radiation 
on the human immune system. Photochem Photobiol 84:19–28

 84. Pilz S, Dobnig H, Winklhofer-Roob B et al (2008) Low serum levels of 25-hydroxyvitamin D 
predict fatal cancer in patients referred to coronary angiography. Cancer Epidemiol 
Biomarkers Prev 17:1228–1233

 85. Ducloux D, Courivaud C, Bamoulid J, Kazory A, Dumoulin G, Chalopin JM (2008) 
Pretransplant serum vitamin D levels and risk of cancer after renal transplantation. 
Transplantation 85:1755–1759

 86. Trivedi DP, Doll R, Khaw KT (2003) Effect of four monthly oral vitamin D3 (cholecalciferol) 
supplementation on fractures and mortality in men and women living in the community: ran-
domized double blind controlled trial. BMJ 326:469–475

 87. Lappe JM, Travers-Gustafson D, Davies KM, Recker RR, Heaney RP (2007) Vitamin D and 
calcium supplementation reduces cancer risk: results of a randomized trial. Am J Clin Nutr 
85:1586–1591

 88. Schwartz GG, Hanchette CL (2006) UV, latitude, and spatial trends in prostate cancer mortal-
ity: all sunlight is not the same (United States). Cancer Causes Control 17:1091–1101



974 The Epidemiology of Vitamin D and Cancer Risk 

 89. Whitlatch LW, Young MV, Schwartz GG et al (2002) 25-Hydroxyvitamin D-1alpha-
hydroxylase activity is diminished in human prostate cancer cells and is enhanced by gene 
transfer. J Steroid Biochem Mol Biol 81:135–140

 90. Chen TC, Wang L, Whitlatch LW, Flanagan JN, Holick MF (2003) Prostatic 25-hydroxyvita-
min D-1alpha-hydroxylase and its implication in prostate cancer. J Cell Biochem 
88:315–322

 91. Porojnicu A, Robsahm TE, Berg JP, Moan J (2007) Season of diagnosis is a predictor of 
cancer survival Sun-induced vitamin D may be involved: a possible role of sun-induced 
Vitamin D. J Steroid Biochem Mol Biol 103:675–678

 92. Ng K, Meyerhardt JA, Wu K et al (2008) Circulating 25-hydroxyvitamin d levels and survival 
in patients with colorectal cancer. J Clin Oncol 26:2984–1991

 93. Zhou W, Heist RS, Liu G et al (2007) Circulating 25-hydroxyvitamin d levels predict survival 
in early-stage non-small-cell lung cancer patients. J Clin Oncol 25:479–485





99D.L. Trump and C.S. Johnson (eds.), Vitamin D and Cancer, 
DOI 10.1007/978-1-4419-7188-3_5, © Springer Science+Business Media, LLC 2011

C.S. Johnson (*) 
Chair, Pharmacology & Therapeutics,  
Roswell Park Cancer Institute,  
Elm & Carlton Streets, Buffalo, NY 14263, USA 
e-mail: candace.johnson@roswellpark.org

Abstract Angiogenesis is a physiological process involving the formation of new 
blood vessels from existing vessels. It is essential for the growth of primary tumor 
and local tumor invasion and metastasis. This chapter reviews the general angio-
genesis process, the endogenous factors that regulate angiogenesis, and therapeutic 
angiogenesis inhibitors. It also reviews the effect of vitamin D on angiogenesis. 
Vitamin D receptor is detected on endothelial cells and vascular smooth muscle 
cells (VSMCs). 1,25D

3
 has anti-proliferative effects on tumor-derived endothelial 

cells through the induction of cell cycle arrest and apoptosis. Increasing evidence 
supports an anti-angiogenic role of 1,25D

3
 in a number of in vivo tumor model sys-

tems. However, vitamin D promotes angiogenesis in more physiological settings. 
Besides endothelial cells, vitamin D affects the physiological functions and pathol-
ogy of VSMCs, including cell growth, contractility, motility, and the evolution of 
vascular calcification, which are involved in cardiovascular diseases. In summary, 
vitamin D plays important roles in vasculature and angiogenesis. Preclinical studies 
support the anti-angiogenic effect and the use of 1,25D

3
 in cancer therapy.

Keywords 1,25D
3
 (calcitriol) • Angiogenesis • Vasculature • Endothelial cells • Vascular 

smooth muscle cells (VSMCs)
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5.1  Overview of Angiogenesis

5.1.1  Angiogenesis Process

Angiogenesis generally refers to the formation of new capillaries from existing ves-
sels [1]. Angiogenesis is an essential and complex process involved in develop-
ment, reproduction, and wound healing. Pathological angiogenesis can be found in 
many disorders such as cancer, atherosclerosis, autoimmune diseases, and age-
related macular degeneration [1]. Although quiescent in adulthood, endothelial 
cells proliferate rapidly in response to a stimulus such as hypoxia [2]. Folkman first 
proposed the hypothesis that tumor growth is dependent on angiogenesis in 1971 
[3]. This is based on the observation that solid tumors cannot grow beyond a size 
of approximately 2 mm diameter without having their own blood supply to provide 
oxygen and nutrients. In addition to the growth of primary tumor, angiogenesis is 
also essential for local tumor invasion and metastasis.

Angiogenesis occurs in several differentiated steps, including initiation, endothe-
lial cell proliferation and migration, lumen formation, maturation, and remodeling 
[4]. The angiogenesis process begins with vasodilation and increased vascular per-
meability of existing vasculature, which subsequently leads to the extravasation of 
plasma proteins that form scaffold to support the migrating endothelial cells. 
Angiopoietin-2, which inhibits Tie2 signaling, promotes the loosening of the sup-
port cells [5]. It is followed by the degradation of the basement membrane and 
extracellular matrix (ECM) by proteases including matrix metalloproteinase 
(MMP), plasminogen activator, chymase, and heparinase secreted by activated 
endothelial cells [4]. Once the path is cleared, endothelial cells migrate through the 
degraded ECM. A variety of growth factors are released from the ECM and stimu-
late the proliferation of endothelial cells, which results in the formation of solid 
endothelial cell sprouts into the stromal space of previously avascular tissue. Adhesion 
molecules involved in cell–cell and cell–matrix interactions, such as integrin avb3, 
vascular endothelial cadherin, intercellular adhesion molecule-1 (ICAM-1), vascular 
adhesion molecule-1 (VCAM-1), P-selectin, and E-selectin, also contribute to the 
processes of endothelial cell migration, spreading, invasion, and proliferation [6]. 
Adhesion molecules also determine the polarity of the endothelial cells, a necessary 
step for lumen formation in the solid sprouts [6]. Then, capillary loops are formed 
and tubes developed with the formation of tight junctions and deposition of new 
basement membrane. The newly formed capillaries are stabilized by the recruit-
ment of pericytes and smooth muscle cells, which is regulated by platelet-derived 
growth factor (PDGF). Finally, vessel maturation involves remodeling by which the 
initial capillary network is modified by pruning and vessel enlargement.

Besides this sprouting angiogenesis, several other mechanisms for neovascular-
ization in tumors have been discovered, including intussusceptive angiogenesis, 
endothelial progenitor cells recruitment, vasculogenic mimicry, and lymph angio-
genesis [7]. Intussusceptive angiogenesis, also known as splitting angiogenesis, is 
a non-sprouting vessel formation which results in the expansion of capillary plexus. 
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In this process, the capillary wall protrudes into the lumen to split a single vessel in 
two [8]. It is a fast and energy-efficient process since the proliferation of endothelial 
cells is not required. Endothelial cells are rearranged and remodeled instead. Both 
intussusceptive and sprouting angiogenesis occur in the leading edge of the tumor, 
while in the stabilized tumor regions, intussusception mostly leads to network 
remodeling and occlusion of vascular segments [9]. New vessels can also grow by 
the recruitment of circulating endothelial progenitor cells. The contribution of 
endothelial progenitor cells to tumor angiogenesis is controversial. Some studies 
support that the recruitment of endothelial progenitor cells is sufficient for tumor 
angiogenesis [10–12], while others show minimal involvement of endothelial pro-
genitor cells [13, 14]. Transplantation of wild-type bone marrow or vascular 
endothelial growth factor (VEGF)-mobilized stem cells is able to restore tumor 
angiogenesis in the angiogenic-defective, tumor-resistant Id-mutant mice [10]. Low 
levels (4.9%) of endothelial progenitor cells are found in tumor endothelium in 
patients who developed tumors after receiving bone marrow transplantation [12]. A 
study using genetically tagged endothelial cells fails to detect bone-marrow-derived 
cells in newly formed tumor endothelium [14]. Vasculogenic mimicry is a phenom-
enon when highly aggressive tumor cells, such as melanoma, form patterned vas-
cular channels in the absence of endothelial cells, which provides tumors with a 
secondary circulation mechanism [15].

Lymph angiogenesis, the formation of new sprouts on existing lymphatic ves-
sels, is another mechanism for tumor cells to receive better circulation. Tumor cells 
and inflammatory cells produce a variety of lymph angiogenic factors, such as 
VEGF-C, PDGF-BB, and Angiopoietin-2, to stimulate the formation of new lym-
phatic vessels [16].

5.1.2  Endogenous Activators and Inhibitors

Angiogenesis is regulated by a delicate balance of activators and inhibitors. This 
balance is disrupted in favor of angiogenic events during tumor development, 
which is described as the angiogenic switch is turned on. The endogenous angio-
genic factors are released by the tumor cells and degraded extracellular matrix in 
the tumor microenvironment. Angiogenic activators include hypoxia which acti-
vates hypoxia inducible factor a (HIFa) [17], growth factors such as A VEGFA 
(also known as vascular permeability factor, VPF), basic fibroblast growth factor 
(bFGF) [18], PDGF [19], pleiotrophin (PTN) [20], granulocyte colony-stimulating 
factor (G-CSF) [21], hepatocyte growth factor (HGF)/scatter factor (SF) [22], pla-
cental growth factor [23], transforming growth factor-a (TGF-a) [24], and TGF-b 
[25]. VEGFA is the most important molecule that stimulates angiogenesis [26]. It 
not only promotes endothelial cell proliferation and mobility, but also induces vaso-
dilatation of the existing blood vessels and enhances vessel wall permeability. VEGF 
facilitates the degradation of ECM by upregulating the expression of MMPs and 
plasminogen activators. In addition to growth factors, other molecules also stimulate 
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angiogenesis, which include  cytokines and chemokines such as tumor necrosis 
factor-a (TNF- a) [27],  interleukin-8 (IL-8) [28]; oncogenes such as Ras [29]; as 
well as angiogenin [30], angiopoietin-1 [31], prostaglandins E1 and E2 [32, 33].

In 1980, interferon a was reported as the first angiogenesis inhibitor [34–36]. Since 
then, many more endogenous angiogenesis inhibitors have been described, which can 
be divided into two categories: matrix-derived which are fragments of naturally occur-
ring basement membrane and ECM proteins and nonmatrix-derived. Matrix-derived 
inhibitors including endostatin [37], a fragment of collagen XVIII; arresten [38], a 
fragment of the noncollagenous (NC1) domain of the a1 chain of type IV collagen; 
canstatin [39], a fragment of the NC1 domain of the a2 chain of type IV collagen; 
endorepellin [40], a peptide derived from the carboxy terminus of perlecan; fibulins 
[41], fragments released by elastases and cathepsins-mediated digestion of basement 
membrane; thrombospondin-1 [42], an ECM adhesive glycoprotein; and tumstatin 
[43, 44], a peptide derived from the a3 chain of type IV collagen NC1 domain. Non-
matrix-derived inhibitors including angiostatin [45], which is an internal fragment of 
plasminogen; truncated antithrombin III [46]; interferons [36]; interleukin-12 [47]; 
2-methoxyestradiol [48]; pigment epithelial-derived factor (PEDF) [49, 50]; platelet 
factor 4 [51]; prolactin fragment [52]; tissue inhibitors of matrix metalloproteinase-2 
(TIMP-2) [53]; troponin I (Tn 1) [54]; and vasostatin [55].

These inhibitors suppress angiogenesis by inhibiting endothelial cell prolif-
eration, adhesion, migration, and tube formation and promoting apoptosis and 
cell cycle arrest in endothelial cells through common and distinct signaling 
mechanisms. How they function together to inhibit angiogenesis is not fully 
understood.

5.1.3  Therapeutic Angiogenesis Inhibitors

Several angiogenesis inhibitors have been approved for the use in treating cancer 
and many others are currently in clinical trials. Bevacizumab (Avastin), a 
 monoclonal antibody against VEGF, is the first angiogenesis inhibitor approved by 
FDA [56]. It is currently used to treat various cancers, including metastatic colorec-
tal, nonsmall-cell lung, and breast cancer. In addition to VEGF, other targets of 
angiogenesis inhibitors include VEGF receptor (VEGFR), epidermal growth factor 
receptor (EGFR), mammalian target of rapamycin (mTOR), and MMPs. Cetuximab 
(Erbitux) is a chimeric monoclonal antibody directed against EGFR and inhibits 
EGFR signaling, thereby inhibiting angiogenesis and cell proliferation [57]. There 
are several receptor tyrosine kinase inhibitors developed against angiogenesis, 
including sorafenib (Nexavar), a dual-function tyrosine kinase inhibitor of VEGFR 
and Raf kinase that exhibits antiproliferative and anti-angiogenic activities [58]; 
sunitinib (Sutent), an inhibitor of VEGFR and PDGFR [59]; and erlotinib (Tarveca), 
an inhibitor of EGFR [60]. Other inhibitors include temsirolimus (Torisel), a small 
molecule inhibitor of mTOR [61]; bortezomib (Velcade), a proteasome inhibitor 
that inhibits cancer cell survival and angiogenesis [62]; thalidomide (Thalomid), 
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a synthetic glutamic acid derivative that inhibits the expression of VEGF and beta 
fibroblast growth factor and thus suppressing angiogenesis [63].

The standard maximum tolerated dose (MTD) chemotherapy requires long 
 drug-free intervals for bone marrow recovery. In contrast, angiogenesis inhibitors 
are administered with a low-dose metronomic regimen without breaks [1]. 
Chemotherapy usually targets dividing cells and does not differentiate tumor cells 
and normal cells, thereby causing more severe side effects such as bone marrow 
suppression, severe vomiting, and diarrhea. Compared with classic chemotherapeu-
tic drugs, angiogenesis inhibitors have several advantages. They target high levels 
of angiogenesis as found in tumors, and the stable vasculature of the host is spared. 
Therefore, their side effects are usually mild and include thrombotic complications, 
intratumoral bleeding, hypertension, and peripheral neuropathy [1]. They do inter-
fere with fetal development and wound healing since these processes also depend 
on angiogenesis. Tumor resistance to angiogenesis inhibitors is not as common as 
with chemotherapy. Angiogenesis inhibitors have been reported to enhance the 
antitumor activity of some standard chemotherapy agents [56, 64, 65]. Notably, 
every class of chemotherapeutic drugs has been shown to have anti-angiogenic 
effects in either in vitro or in vivo angiogenesis assays [66].

5.2  Vitamin D Effects on Angiogenesis

5.2.1  VDR Expression in Cells of Vasculature

Both endothelial cells [67–69] and vascular smooth muscle cells (VSMCs) [70–74] 
have been demonstrated to express functional vitamin D receptor (VDR). High-
affinity VDR is detected in cultured bovine aortic endothelial cells using  
receptor-binding assays [67]. Immunoblot analysis shows that VDR protein is 
expressed endogenously and readily induced by 1,25D

3
, the active metabolite of 

vitamin D, in endothelial cells isolated from Matrigel plugs or murine squamous 
cell carcinoma (SCC) [69]. Receptor-binding assay and immunoblot analysis reveal 
the expression of VDR in VSMCs [70, 73]. 1a-Hydroxylase (1a-OHase), the enzyme 
that leads to local production of 1,25D

3
 from its precursor 25(OH)D

3
, is expressed 

in endothelial cells isolated from human renal arteries, postcapillary venules from 
lymphoid tissue, and human umbilical vein endothelial cells (HUVEC) [75]. The 
1a-OHase expressed in endothelial cells is enzymatically active since treatment 
with 1,25D

3
 or 25(OH)D

3
 suppresses HUVEC proliferation [75].

5.2.2  Effect on Endothelial Cells

1,25D
3
 suppresses VEGF-induced proliferation of bovine aortic endothelial cells. 

It also reduces VEGF-induced endothelial cell sprouting and elongation in vitro 
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and induces apoptosis in sprouting endothelial cells [76]. 1,25D
3
 prevents retinal 

endothelial cells from forming capillary networks in Matrigel, while cell prolifera-
tion or migration is not affected at similar concentrations of 1,25D

3
 [77]. 1,25D

3
 

and vitamin D analogs 7553, 6760, and EB1089 exert anti-proliferative effects on 
tumor-derived endothelial cells (TDEC) [68]. The TDECs are isolated by enzyme 
digestion from SCC VII/SF tumors in C3H/HeJ mice, and sorted by flow cytom-
etry using antibodies against endothelial cells markers [68]. 1,25D

3
 differentially 

regulates cell growth of Matrigel-derived endothelial cells (MDEC) and TDEC 
isolated from SCC tumors [69]. VDR protein is expressed and its signaling axis 
intact in both MDEC and TDEC. 1,25D

3
 induces G0/G1 cell cycle arrest and 

apoptosis in TDEC, which is accompanied by decreased p21 expression, increased 
p27 expression, and reduced phosphorylation of Akt and ERK1/2. Increased 
cleavage of  pro-caspase 3 and poly (ADP-ribose) polymerase is observed in TDEC 
following 1,25D

3
 treatment. In contrast, these effects are not observed in MDEC 

treated with 1,25D
3
 [69]. The difference in methylation status of the 24-hydroxylase 

(CYP24) promoter may be one of the mechanisms for these observations. 1,25D
3
 

induces CYP24 mRNA and protein expression and enzymatic activity in MDEC 
but not in TDEC [78]. VDR is recruited to the CYP24 promoter in MDEC but not 
TDEC. Further studies show hypermethylation in two CpG islands located at the 
5′ end in TDEC but not in MDEC, indicating methylation silencing of CYP24 
[78]. Knocking down CYP24 by siRNA sensitizes MDEC to 1,25D

3
-mediated 

growth inhibitory effect. On the other hand, when TDEC is treated with DNA 
methyltransferase inhibitor 5-aza-2′-deoxycytidine, 1,25D

3
 induces CYP24 

expression and TDEC loses its sensitivity to 1,25D
3
 [78]. These results indicate 

that the methylation-mediated silencing of CYP24 in TDEC contributes to the 
differential growth inhibitory effects of 1,25D

3
 on endothelial cells isolated from 

different microenvironments.

5.2.3  Effect on Angiogenesis Models

The effect of vitamin D on angiogenesis was first reported in 1990, when 1,25D
3
 

and a synthetic analog 22-oxa-1,25D
3
 were found to inhibit embryonic angiogen-

esis in chorioallantoic membranes in a dose-dependent manner [79].
Growing evidence supports an anti-angiogenic role of vitamin D in vivo in vari-

ous model systems. 1,25D
3
 inhibits the proliferation of TDEC from VDR wild-type 

mice but not from VDR knockout mice [80]. Tumors from VDR knockout mice 
show enlarged blood vessels, increased vascular volume, less pericyte coverage on 
vessels, and higher vascular leakage compared to those from wild-type mice. In 
addition, HIF-1a, VEGF, Ang1, and PDGF-BB expressions are higher in tumors 
from VDR knockout mice [80]. 1,25D

3
 reduces the mean vessel counts in retino-

blastoma in a transgenic murine retinoblastoma model system [81]. In an MCF-7 
tumor xenografts model which overexpress VEGF, treatment with 1,25D

3
 resulted 

in less vascularized tumors compared with vehicle-control-treated tumors [76]. 
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1,25D
3
 or 1(OH)D

3
 inhibits tumor growth and prolongs the survival time in a 

murine renal cell carcinoma model [82]. Angiogenesis is also inhibited by either 
agent as assessed by the blood volumes in the tumors. The number and size of 
pulmonary and hepatic metastatic foci are reduced by either agent [82]. 1,25D

3
 and 

1(OH)D
3
 have also been shown to inhibit the development and angiogenesis in 

azoxymethane-induced colon cancer model in Wistar rats, which is associated with 
reduced VEGF expression in tumors [83]. 1,25D

3
 or 22-oxa-1,25D

3
 inhibits angio-

genesis in a mouse dorsal air sac model and an in vivo chamber angiogenesis 
model, using Lewis lung carcinoma (LLC) tumor cells and bFGF as angiogenesis 
activators, respectively [84]. 1,25D

3
 also shows an anti-angiogenic effect in a 

suture-induced cornea inflammation mouse model [85] and a mouse oxygen-
induced ischemic retinopathy model [77]. 1,25D

3
 and retinoids (all-trans retinoic 

acid, 13-cis retinoic, and 9-cis retinoic acid) synergistically inhibit tumor cell-
induced angiogenesis in vivo in mouse xenograft models [86, 87]. The same group 
also reported that 1,25D

3
 potentiates the anti-angiogenic effects of IL-12 in the 

tumor cell-induced angiogenesis model, which may partially contribute to the anti-
tumor activity of 1,25D

3
 and IL-12 [88].

Interestingly, vitamin D promotes angiogenesis in more physiological settings. 
Vascular invasion of the chondro–osseous junction of growth plate, in which VEGF 
plays an important role, is essential in endochondral bone formation. Mice treated 
with 1,25D

3
 show enhanced vascularization of growth plate cartilage compared with 

vehicle-control-treated mice [89]. 1,25D
3
 enhances VEGF isoforms expression in 

CFK2 chondrogenic cell line in vitro and in growth plate chondrocytes and osteo-
blasts in the tibia and juvenile of mice in vivo [89]. 1,25D

3
 also stimulates osteoclasts 

in tibias to express MMP-9, which activates VEGF stored in the cartilage matrix [89]. 
Vitamin D analog ED-71 promotes blood vessel formation in bone marrow cavity 
following bone marrow ablation in mice, which is associated with enhanced 
VEGF120 expression in bone marrow cells [90]. It is beneficial that 1,25D

3
 differen-

tially regulate angiogenesis in normal and tumor microenvironments.

5.2.4  Potential Mechanisms for the Effects of Vitamin D  
on Angiogenesis

The mechanisms for anti-angiogenic effects of vitamin D remain unclear. 1,25D
3
 or 

22-oxa-1,25D
3
 suppresses the expression of MMP-2, MMP-9 and VEGF in Lewis 

lung carcinoma (LLC) cells, which may partially contribute to the anti-angiogenic 
activity of the two agents in LLC-induced angiogenesis in vivo [84]. One study 
indicates a role of interleukin-8 (IL-8) in the anti-angiogenic effect of vitamin D. 
1,25D

3
 suppresses the secretion of IL-8 and TNF-induced IL-8, which is overex-

pressed in prostate cancer development, in prostate cancer cell lines [91]. 1,25D
3
 also 

reduces the activation of nuclear factor-kB (NF-kB), which is a main regulator of 
IL-8. 1,25D

3
 or IL-8-neutralizaing antibody inhibits prostate cancer cell  conditioned 

media-induced HUVEC tube formation, migration, and MMP-9 expression [91]. 
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These results indicate that 1,25D
3
-mediated interruption of IL-8 signaling may 

 prevent the progression of prostate cancer. Hypoxia is a pathophysiologic condition 
that promotes angiogenesis, and is mediated by transcription factor HIF-1. HIF-1 is 
overexpressed in many cancer cells and is positively related to disease progression 
[92]. 1,25D

3
 suppresses the expression of HIF-1a and VEGF in human prostate and 

colorectal cancer cells [93]. 1,25D
3
 also inhibits HIF-1 transcriptional activity and 

reduces the transcript levels of HIF-1 target genes including VEGF, ET-1, Glut-1. 
1,25D

3
-mediated suppression of hypoxia-induced VEGF expression is HIF-pathway-

dependent as studied in HIF-1a knockout colon cancer cells [93]. HIF-1 pathway 
may also be involved in 1,25D

3
 anti-angiogenic effects.

5.2.5  Effect on VSMC

Endothelial cells alone cannot complete angiogenesis nor maintain the newly 
formed vessels. Peri endothelial cells, including smooth muscle cells and pericytes, 
play an essential role in vessel maturation and stabilization [4].

Vitamin D has a variety of effects on the function and pathology of VSMCs, 
including cell growth, contractility, migration, and the evolution of vascular calcifi-
cations [72, 94–100]. VSMCs have been shown to express an enzymatically active 
1a-hydroxylase, which can be increased by parathyroid hormone (PTH) and native 
and synthetic phytoestrogens [101]. 1,25D

3
 inhibits the DNA synthesis and thus 

proliferation of VSMC, but increases metabolic turnover as assessed by creatine 
kinase activity, suggesting a potential role of the 1,25D

3
 synthesized intracellularly 

in these cells [101, 102]. 1,25D
3
 also inhibits epidermal growth factor (EGF)-

induced VSMC proliferation [102]. In contrast, other studies support a role of 
1,25D

3
 in promoting VSMC proliferation [71, 73] by upregulating VEGF expression 

[73]. VEGF receptor antagonist or VEGF-neutralizing antibody abrogates the effect 
of 1,25D

3
 on VSMC proliferation [73]. In fact, 1,25D

3
 may inhibit or promote the 

growth of VSMC, depending on the underling culture conditions [72]. In nonquies-
cent cells, 1,25D

3
 inhibits thrombin or PDGF-induced VSMC growth, as well as 

thrombin-mediated induction of c-myc RNA. While in quiescent cells, 1,25D
3
 pro-

motes the cell growth and the induction of c-myc RNA by thrombin [72].
The role of vitamin D in vascular calcification and cardiovascular disease is 

controversial. Epidemiological data show that there is correlation between ischemic 
heart disease mortality rate and geographic latitude for several European and 
Western countries [103]. High latitude has been shown to associate with low serum 
vitamin D levels [104]. In addition, an inverse association between coronary heart 
disease mortality rate in males and altitude was observed [105]. It is a fact that the 
intensity of UVB radiation increases exponentially at higher altitude. The mortality 
rate of coronary heart disease also displays seasonal variation. Multiple studies 
show that ischemic heart disease death rate is low in summer and high in winter 
[106–108]. Serum levels of 1,25D

3
 show the opposite pattern with a peak in 

 summer and a nadir in winter [109–111]. These studies suggest that lower level of 
serum vitamin D is associated with higher ischemic heart disease mortality rate.
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Some studies suggest that vitamin D insufficiency may contribute to the 
 pathogenesis of cardiovascular disease. Vascular calcification is a risk factor for 
 cardiovascular mortality. Almost all significant atherosclerotic lesions observed by 
angiography are calcified [112]. In a study with two populations (173 subjects) at 
high and moderate risk for coronary heart disease, serum levels of 1,25D

3
 are 

inversely correlated with the extent of vascular calcification [113]. In contrast, the 
extent of calcification is not correlated with the levels of osteocalcin or parathyroid 
hormone [113]. Another study showed that serum levels of calcitriol are an indepen-
dent negative indicator of coronary calcium mass measured by electron-beam com-
puted tomography [114]. The protective role of 1,25D

3
 in vascular calcification and 

atherosclerosis may be due to following mechanisms (reviewed in [104]). 1,25D
3
 

promotes the synthesis of the matrix Gla protein which inhibits vascular calcification. 
Low serum level of calcitriol leads to increased level of PTH, which may promote 
cardiovascular disease. 1,25D

3
 has been shown to inhibit the proliferation of VSMCs, 

which express VDR. 1,25D
3
 also inhibits the production of the pro-inflammatory 

cytokines TNF and IL-6 in monocytes. In a short-term supplementation study, vita-
min D

3
 and calcium result in increased serum 25(OH)D

3
 level, and reduce systolic 

blood pressure, heart rate, and PTH levels in elderly women [115]. Vitamin D
3
 sup-

plementation reduces TNF serum levels while increases the levels of anti-inflamma-
tory cytokine interleukin 10 in a study on 93 chronic heart failure patients [116].

However, other studies have found 1,25D
3
 may contribute to the pathogenesis of 

atherosclerotic lesions. 1,25D
3
 stimulates calcium influx (94) and VEGF expres-

sion in VSMCs [117]. 1,25D
3
 enhances vascular calcification in a dose-dependent 

manner through increasing the expression of bone matrix protein osteopontin and 
inhibiting the expression and secretion of PTH-related peptide (PTHrP) by VSMCs 
[118]. Additionally, 1,25D

3
 induces VSMC migration in a dose-dependent manner 

[100]. This effect is independent of gene transcription and involves non-genomic 
activation of PI3K pathway [100].

In summary, there is growing evidence that vitamin D has an impact on vascula-
ture and angiogenesis. 1,25D

3
 has growth inhibitory effects in endothelial cells 

through the induction of cell cycle arrest and apoptosis. 1,25D
3
 exerts anti-angiogenic 

effects in a variety of tumor model systems in vivo. These observations provide addi-
tional preclinical rationale for the use of 1,25D

3
 in cancer therapy. 1,25D

3
 also regu-

lates vascular calcification and plays important roles in cardiovascular diseases. 
Further investigations into the mechanisms of vitamin D anti-angiogenic effects will 
be needed to enhance our understanding on its role in vasculature.
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Abstract Opinions about the effect of vitamin D on risk of cardiovascular disease 
have changed substantially over the last half century. During the 1950s and 1970s, 
the dominant view was that vitamin D was a cause of cardiovascular disease. During 
the 1980s and 1990s, an increasing number of studies showed benefits from vitamin 
D, challenging earlier opinions that vitamin D was harmful. During the first decade 
of this century, the weight of scientific opinion has shifted 180° from that of 50 years 
ago, and the prevailing focus of research is on identifying the potential beneficial 
effects of vitamin D against cardiovascular disease. Since 2003, large epidemiological 
studies of hemodialysis patients and general population samples have shown inverse 
associations between vitamin D and cardiovascular disease. A growing body of labo-
ratory and clinical research has identified several possible mechanisms to explain this 
association. These include adverse effects of vitamin D deficiency on immune and 
inflammatory processes, endothelial function, matrix-metalloproteinases and insulin 
resistance, which result in cardiac hypertrophy, thickened arteries, increased plaque 
formation, and rupture and thrombosis. Large randomized trials are required to deter-
mine with certainty whether vitamin D  protects against cardiovascular disease.
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6.1  Introduction

Opinions about the effect of vitamin D on risk of cardiovascular (CV) disease have 
changed substantially over the last half century. From the 1950s to the end of the 
1970s, the dominant viewpoint was that vitamin D was a cause of CV disease. 
During the 1980s and 1990s, an increasing number of studies were published show-
ing benefits from vitamin D, challenging the earlier opinions that vitamin D was 
harmful and resulting in a period of flux where researchers increasingly were open 
to the possibility that vitamin D could protect against CV disease. This coincided 
with a substantial increase in research on vitamin D and cancer, which along with 
the identification of vitamin D receptors in many body tissues, resulted in an 
increased acceptance by vitamin D researchers that the effects of vitamin D were 
not restricted to bone disease, but could affect the health of many organs and body 
systems. During the first decade of this century, the weight of scientific opinion has 
shifted 180° from that of 50 years ago, and the prevailing focus of research is on 
identifying the potential beneficial effects of vitamin D against CV disease. This 
latter period has coincided with a rapid increase in the number of publications on 
vitamin D and CV disease (Fig. 6.1). There are lessons to be learnt from this story, 
and the current generation of researchers needs to be mindful of the possibility that 
opinions may change again in the future.

The purpose of this review is to describe the key developments in research on 
vitamin D and CV disease over the last 50 years, to summarize the findings from 
recent large epidemiological studies which strongly support a beneficial effect from 
vitamin D against CV disease, and to give an overview of the possible mechanisms 
by which vitamin D may protect against CV disease.

6.2  1950s to 1970s: Adverse Vascular Effects from Vitamin D

6.2.1  Vascular Lesions from Vitamin D Intoxication

An epidemic of cases of infantile hypercalcemia occurred in Great Britain during 
1953–1955 which was attributed to vitamin D fortification of commercial milk 
powders and infant cereals, and vitamin D supplements [1]. In response, the British 
government reduced the amount of vitamin D in fortified foods so that by 1957–
1958 daily intake of vitamin D by infants had halved. However, the number of 
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hypercalcemia cases in 1959 remained at the same level as before the reduction in 
vitamin D and did not decrease until 1960–1961 [1]. Thus, a report by the American 
Academy of Pediatrics in 1967 concluded that the hypothesis that vitamin D caused 
infantile hypercalcemia was unproven [1].

Despite this official report, many researchers still held the opinion that vitamin D 
was a cause of infantile hypercalcemia, and went further by linking the condition 
to a rare congenital abnormality in infants characterized by supravalvular aortic 
stenosis, an elfin facies, and severe mental retardation [2–5]. The basis for linking 
the two conditions was the similarity in the vascular lesions between those observed 
in supravalvular aortic stenosis and those produced by vitamin D intoxication [6]. 
Evidence thought confirmatory at the time came from animal studies in which 
pregnant rabbits were given intramuscular vitamin D doses of up to 4.5 million IU/
day, and their offspring 250 IU/day, with the latter at autopsy found to have medial 
degeneration, calcification, and necrosis of the aorta that was similar to the pathol-
ogy of the congenital anomaly in children [2, 7]; while high doses of vitamin D (up 
to 770 IU/g over 10 days) were found to cause both aortic and cardiac lesions in 
young rabbits [8]. In contrast, several case reports of infants with arterial calcifica-
tion concluded it was not caused by vitamin D [9–12], and that high doses of vita-
min D taken during pregnancy did not result in infantile hypercalcemia or arterial 
lesions such as aortic stenosis [13, 14].

However, the prevailing opinion remained that vitamin D was a risk factor for 
vascular damage and CV disease [3, 15, 16]. This was supported by the  development 
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of animal models of arteriosclerosis caused by hypervitaminosis D, using  mega-doses 
of 5,000–10,000 IU/kg/day [17, 18], equivalent to daily doses of 350,000–700,000 IU 
for a 70 kg adult human; and case reports of arterial calcification and hypertension 
in patients taking up to 170,000 IU of vitamin D/day [19–21]. Despite dissenting 
opinion [22] and isolated reports that vitamin D could prevent myocardial calcifica-
tion in rats [23] and assist with the treatment of vascular calcification, heart failure, 
and cardiac arrthymias in humans [24–27], reviews in the 1970s were convinced 
about the causal role of vitamin D in atherosclerosis and coronary heart disease [15, 
16, 28]. The authors of one of these reviews, although writing nearly 4 decades ago, 
could be addressing contemporary concerns by stating:

The tragic “operation over-kill” of adding vitamin D to almost everything excepting cigars 
may well be one of the most important pathogenic factors in human atherosclerosis. People 
in the USA may well be the victims of Madison Avenue advertising tycoons, food 
 manufacturers, unsuspecting dietitians, and indifferent physicians who have probably all 
played a role in adding excessive amounts of vitamin D to many foods [15].

Looking back at these reports raises an obvious question: Why were their opinions so 
different to the results from recent cohort studies (see Sect. 6.4.2.1) which have con-
sistently reported inverse associations between vitamin D status and risk of CV dis-
ease? Two points can be made about the approach to research in the 1960s and 1970s. 
Firstly, there was an overreliance on case reports in determining causation. These case 
reports were limited because they often had very small numbers of selected patients, 
who may not have been representative of all patients with a particular condition, and 
did not include a control group to help decide whether cases had a higher-than-
expected intake of vitamin D. Secondly, there was a lack of appreciation that the 
doses of vitamin D given in the animal models of arteriosclerosis were orders of 
magnitude higher than those normally ingested by the general human population. 
A recent review of the evidence on vitamin D and vascular calcification has con-
cluded that vitamin D exerts a biphasic effect on vascular calcification with adverse 
effects occurring when body vitamin D levels are very low or very high [29].

6.2.2  Early Epidemiological Studies

6.2.2.1  Dietary Vitamin D and Cardiovascular Disease

Epidemiological studies carried out in the 1970s were influenced by the prevailing 
opinion of the time that vitamin D was a cause of CV disease. Positive correlations 
between vitamin D intake measured in national surveys and standardized mortality 
ratios for ischemic heart disease (r = 0.58) and cerebrovascular disease (r = 0.49) 
during 1964–1969 were reported in an ecological study of eight regions within 
England and Wales [30]. A population-based myocardial infarction case–control 
study in Tromso (Norway) reported significantly higher mean daily intake of 
 vitamin D in cases (males 31.28 mg, females 34.05 mg) compared to age- and 
 sex-matched controls (males 22.68 mg, females 20.68 mg) [31]. The limitations of 
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this study include measurement of dietary intake in cases several years after their 
heart attack since these individuals are likely to have changed their dietary patterns 
after such a major medical event, and reliance on dietary vitamin D intake to 
 determine vitamin D status.

6.2.2.2  25-Hydroxyvitamin D and Myocardial Infarction

The small contribution of dietary vitamin D to overall body vitamin D levels was 
revealed by the development in the 1970s of competitive protein-binding assays for 
25-hydroxyvitamin D (25OHD), the main marker of vitamin D status [32]. Diet 
was shown to contribute less than 20% of vitamin D stored in the body, with the 
major component (more than 80%) coming from vitamin D synthesized in the skin 
through sun exposure.[33, 34]

The first epidemiological study of cardiovascular disease to report results with 
this new method of measuring vitamin D status was from Heidelberg, Germany [35]. 
The study recruited only 15 myocardial infarction cases, an unstated time after their 
heart attack, and found that their mean serum 25OHD level (32 nmol/L) was within 
the normal range for other controls at that time of year. The authors concluded, 
somewhat surprisingly at the time, that “nutritional vitamin D status or exposure to 
sunlight cannot account for the development of myocardial infarction.”

The next report came from a case control study in Copenhagen, Denmark [36]. 
The authors of this report, concerned about the possible effect of the acute-phase 
reaction from a myocardial infarction on serum 25OHD levels, first showed in a 
pilot study of 12 patients that 25OHD did not fluctuate in the first 4 days after onset 
of symptoms. They then recruited 128 consecutive patients admitted with chest 
pain (53 who had a myocardial infarction and 75 with angina) and compared them 
with 409 controls, although no details are provided on how the latter were selected. 
Mean serum 25OHD was slightly lower in cases (myocardial infarction 24.0 ng/mL, 
angina 23.5 ng/mL) than in controls (28.8 ng/mL), with case–control  differences 
being statistically significant during May–August (p < 0.05). The authors concurred 
with the conclusion of the earlier German report by stating that the “present results 
do not support the theory that patients with ischaemic heart disease have a higher 
vitamin D intake than the rest of the population.”

The third report came from the Tromso Heart Study, Norway, which had previ-
ously reported higher vitamin D intakes in cases [31]. This was a nested case–
control study which avoided possible bias, from a systematic error caused by the 
effect of the disease on measures of vitamin D status, by measuring 25OHD levels 
in blood samples collected at baseline interviews when participants were enrolled 
into the study [37]. Mean serum 25OHD in 23 patients free of disease at baseline 
who had myocardial infarctions during the 4-year follow-up period was again 
slightly lower than in 46 controls matched for age and time of year (59.0 vs 
63.4 nmol/L); with the case–control difference being significant after correcting for 
vitamin D binding protein (p = 0.024), indicating that cases had a lower concentra-
tion of free-25OHD.
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In summary, the results from these three studies clearly called for a reevaluation of 
the hypothesis that vitamin D was a cause of coronary heart disease. Their overall con-
clusion was that vitamin D levels in patients with coronary heart disease were either the 
same as, or lower than, in healthy controls. The major limitation of these studies is their 
small sample sizes, which is a likely reason for their insufficient statistical power to 
observe consistent significant reductions in serum 25OHD levels among heart disease 
cases, as reported in subsequent larger epidemiological studies (see below).

6.2.2.3  25-Hydroxyvitamin D and Serum Cholesterol

These three early case–control studies of serum 25OHD and coronary heart disease 
also provided important information about the association between vitamin D status 
and serum cholesterol. Animal studies in the 1950s and 1960s had shown previ-
ously that the combination of high dietary intake of vitamin D and cholesterol could 
produce raised blood cholesterol levels and atherosclerotic lesions [38, 39]. An 
experimental study in humans found that daily vitamin D doses of 50,000 or 
1,000 IU for 21 days significantly increased serum cholesterol levels, although the 
study can be criticized because of the lack of a control group [40]. Analyses of 
baseline cross-sectional data from the Tromso Heart Study reported a significant 
positive association (p = 0.0013) between dietary vitamin D intake and serum 
 cholesterol in men aged 20–50 years [41].

However, after the advent of assays for 25OHD, the Danish and Norwegian stud-
ies found no association between serum 25OHD and serum cholesterol [36, 37]. 
This result has been confirmed by subsequent epidemiological studies [42–45]. 
Thus, the overall evidence to date suggests that any association between vitamin D 
and CV disease does not involve serum cholesterol.

6.3  1980s to 1990s: Vitamin D May Protect Against 
Cardiovascular Disease

6.3.1  Hypothesis

The early studies showing that more than 80% of vitamin D comes from sun 
 exposure [33, 34] emphasized the importance of solar ultraviolet (UV) radiation 
in determining vitamin D status, and provided a possible link between vitamin 
D and some of the descriptive epidemiological variations in CV disease rates. 
UV-B  irradiation (wavelengths 280–320 nm), acting on the skin, converts the  precursor 
7-dehydrocholesterol into vitamin D

3
, which comprises most of the  vitamin D in 

humans [46]. The intensity of UV radiation on the surface of the earth varies 
with season being highest in summer and lowest in winter, decreases with 
increasing latitude from the equator, and increases with altitude by up to 18% 
per 1,000 m [47].
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The descriptive epidemiology of CV disease shows that rates are highest in 
winter in both the northern and southern hemispheres, increase with increasing 
 latitude, and decrease with increasing altitude. Drawing this evidence together, the 
author published a hypothesis in 1981 that sunlight and vitamin D may protect 
against CV disease [48]. This hypothesis was also consistent with the increased CV 
disease rates in population groups with lower vitamin D levels due to decreased 
skin synthesis, such as older people and those with increased skin pigmentation 
(e.g., African-Americans) [49, 50]. A more detailed review of the evidence in 
 support of the hypothesis was subsequently published [51].

Recent ecological studies of CV disease have continued to provide support for 
the hypothesis. For example, an inverse association between UV insolation and 
coronary heart disease mortality in men has recently been reported for the countries 
of Western Europe [52]. Seasonal variations in vitamin D status, with low 25OHD 
levels in winter, have been shown in both the northern and southern hemispheres 
[53, 54]. Winter excesses in mortality and incidence have been reported for the full 
spectrum of CV disease, including coronary heart disease [55–57], stroke [57–59], 
heart failure [60, 61], ventricular arrhythmias [62], endocarditis [63], and pulmo-
nary embolism [64].

Importantly, the winter excess in CV disease has been observed in warm cli-
mates, such as Los Angeles [65], and in Hawaii despite a small seasonal variation 
in temperature between 22.8°C and 27.8°C [66]. The winter excess in cardiovascu-
lar disease is attributed frequently to the cold temperatures of winter [67], but it 
does not seem plausible that the mild temperatures experienced by people in the 
above two locations during the winter months is a major factor in their raised CV 
disease rates at that time of year.

The hypothesis that vitamin D protected against CV disease was tested in a 
population-based case–control study of myocardial infarction carried out in New 
Zealand by the author and colleagues in the 1980s and published in 1990 [68]. The 
sample was restricted to incident cases from a register which provided blood 
samples within 12 h of onset of symptoms since a pilot study showed that plasma 
25OHD was unchanged during this period [69]. The unit of measurement for 
25OHD in this study was actually nanograms per milliliter (ng/mL), rather than 
nanomoles per liter (nmol/L) as reported. Mean plasma 25OHD was significantly 
lower in cases (n = 179) than controls selected from the electoral roll who were 
individually matched by age, sex, and date of blood collection (32.0 vs 35.0 ng/
mL; p = 0.017). An inverse association between plasma 25OHD and risk of myo-
cardial infarction, with the odds ratio for those in the highest 25OHD quartile 
being 0.30 (95% confidence interval [CI]: 0.15, 0.61) compared with the lowest 
quartile [68].

6.3.2  Animal Studies

Independently of the above epidemiological studies, research from animal models 
in the 1980s was beginning to better define the effect of vitamin D on CV function 
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when given in physiological doses. This was stimulated by the identification of a 
receptor to 1,25-dihydroxyvitamin D (1,25(OH)

2
D), firstly in cultured rat heart 

identified in 1983 [70, 71], and subsequently confirmed by others [72], which was 
found to be located in the nucleus [73]. Together with the additional finding of a 
vitamin-D-dependent calcium-binding protein in myocardial tissue in 1982 [74], 
these studies supported a role for 1,25(OH)

2
D in regulating CV function.

Further studies were carried out with the aim of elucidating the possible CV 
mechanisms involved with vitamin D. When rats reared deficient in vitamin D were 
compared to those given 30 IU of vitamin D

3
/day (equivalent to about 8,500 IU/day 

for 70 kg human adult), the vitamin-D-deficient rats had increased cardiac contrac-
tion [75], and myocardial hypertrophy due to myocardial collagen deposition and 
myocyte hyperplasia and hypertrophy [76–79]. These effects were independent of 
changes in serum calcium, suggesting a direct effect of vitamin D, since myocardial 
accumulation of calcium after very high vitamin D doses could be blocked by 
 calcium channel blockers [80, 81]; and in contrast with the earlier studies showing 
adverse effects from excessive vitamin D which were secondary to increases in 
serum calcium (Sect. 6.2.1). However, the health implications of these studies were 
unclear as the increased cardiac contractility in vitamin D deficiency could be 
 interpreted as beneficial, while the myocardial hypertrophy could be detrimental.

Evidence was also accumulating of a role for vitamin D in regulating blood 
 pressure. A receptor to 1,25(OH)

2
D was described in smooth muscle tissue [82], 

and also in endothelial cells with early evidence of autocrine synthesis of 
1,25(OH)

2
D that was a function of 25OHD substrate concentration [83]. Alterations 

in vitamin D metabolism were observed in spontaneously hypertensive rats which 
were shown to have decreased plasma levels of 1,25(OH)

2
D [84]; while injection 

of the same metabolite in normotensive rats resulted in a delayed increase in blood 
pressure consistent with a genomic mechanism [85].

6.3.3  Human Studies

6.3.3.1  Blood Pressure

A key stimulus for research on vitamin D and hypertension were the studies in the 
early 1980s showing elevated parathyroid hormone (PTH) levels in hypertension 
cases [86, 87], which was speculated as being a possible response to increased 
urinary calcium loss, along with research showing inverse associations between 
blood levels of both 1,25(OH)

2
D and PTH with renin in hypertension patients [88]. 

Given the well-documented inverse association between PTH and vitamin D status, 
these studies suggested that low vitamin D levels might be a risk factor for hyper-
tension. A US cross-sectional study reported an inverse association between dietary 
vitamin and systolic blood pressure [89]. However, results from studies of the asso-
ciation between blood levels of 25OHD and blood pressure were inconclusive. An 
early Polish study found that plasma levels of 25OHD were lower in hypertension 
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cases compared with controls, which was attributed by the authors to a vitamin D 
lowering effect from thiazide diuretics [90]. A cross-sectional study from New 
Zealand found a weak inverse association between plasma 25OHD and diastolic 
blood pressure which was not significant after adjusting for age and season [42]. 
Small case–control studies (with <30 cases) reported either increased [91] or 
 similar [92] serum 25OHD levels in cases compared with controls. A further nested 
case–control study from New Zealand with a much larger sample (186 cases), 
reported similar 25OHD levels in cases and controls matched by age, sex, ethnicity, 
and season [93].

Inconsistent findings have also been reported in studies of blood levels of the 
active metabolite 1,25(OH)

2
D and blood pressure. A cross-sectional study of 373 

women from Iowa reported a significant positive association between serum 
1,25(OH)

2
D and blood pressure after adjusting for age, BMI, and current thiazide 

use [94]. This finding was confirmed in small case–control studies which reported 
significantly higher levels of both 1,25(OH)

2
D and PTH in cases [91, 92]. However, 

other studies have reported inverse associations between 1,25-dihydroxyvitamin D 
and blood pressure [95–97].

A small number of experimental studies were also carried out during this period. 
The first two in Sweden showed that active vitamin D (alphacalcidol) lowered 
blood pressure in patients with intermittent hypercalcemia or impaired  glucose 
tolerance [98, 99]. Although both of these studies were double-blind with controls, 
in one of them there is a reported high dropout rate, from 86 participants at baseline 
to 25 remaining at follow-up after 6 months treatment, raising the  possibility of a 
withdrawal bias [98]; while in the other, the reduction in blood  pressure was limited 
to those with hypertension (blood pressure ³ 150/90) [99]. A further study by the 
same research group reported a reduction in blood pressure in 14 men with impaired 
glucose tolerance given alphacalcidol over 18 months, but the lack of control group 
negates the findings from this study [100]. In contrast, two studies of participants 
sampled from the community did not show an effect of vitamin D

3
 on blood pres-

sure. One was a US study from Oregon (n = 65) which found that 1,000 IU vitamin 
D

3
/day (with calcium) for 3 years did not show any effect on blood pressure [101], 

despite this dose increasing 25OHD levels by about 30 nmol/L [102]. The other 
study was carried out in the UK (n = 189) and found that a single 100,000 IU dose 
of vitamin D

3
 had no effect on blood pressure after 6 weeks, when compared with 

controls, although the difference in 25OHD at 6 weeks between the groups was 
only 8.6 ug/mL (21.5 nmol/L) [44].

6.3.3.2  Cardiac Function

At this time, isolated case reports started to appear of congestive heart failure with 
vitamin D deficiency and hypocalcemia, in both adults and children, being success-
fully treated by vitamin D (in combination with calcium) [103–105]; while chil-
dren with severe rickets without clinical signs of heart failure were found 
pretreatment to have thickened interventricular septa which returned to normal 
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after treatment [106]. Consistent with these case reports, vitamin D supplementation 
(with 1-a-hydroxyvitamin D) of hemodialysis patients was found to improve left 
ventricular cardiac function, as measured with echocardiography, by increasing 
fractional fiber shortening [107] and decreasing end-systolic and end-diastolic 
diameter [108]; although the results from the latter two studies are not entirely 
consistent with each other, perhaps because of their limited statistical power due to 
very small samples (12 and 5, respectively). Benefits in cardiac function have also 
been reported for 1,25(OH)

2
D. This metabolite reduced end-systolic diameter and 

increased fractional shortening, but only in hemodialysis patients (n = 5) with very 
high PTH levels in a Finnish report [109]; and reduced measures of cardiac size 
(intraventricular wall thickness and left ventricle mass), without any change in 
blood pressure or cardiac output, in 15 hemodialysis patients compared with 10 
control patients from Korea [110]. In a US case series of 101 patients with severe 
congestive heart failure undergoing evaluation for cardiac transplantation, patients 
with more severe disease had significantly lower 25OHD levels, although this 
could have been a consequence from less outdoor sun exposure due to feeling 
unwell from their disease [111].

6.3.3.3  Calcification

Research using very high doses of vitamin D to produce vascular and cardiac 
lesions from calcification continued throughout this period with animal models 
[112–117]. However, human studies reported either inverse associations [118, 119], 
or no association [120], between blood levels of 1,25(OH)

2
D and coronary 

 calcification. Since blood levels of 1,25(OH)
2
D can be influenced by a number of 

variables, including dietary calcium and vitamin D status [121], the significance of 
these findings was unclear in the absence of studies of the relationship of 25OHD 
and calcification.

6.3.4  Summary

Although animal studies of vitamin D toxicity and arteriosclerosis continued during 
the 1980s and 1990s, this period was characterized by a shift in emphasis from 
studies of adverse effects toward those looking at potential beneficial effects of 
vitamin D on CV function. The identification of vitamin D receptors in cardiac and 
smooth muscle was compelling evidence for a role by vitamin D in regulating CV 
function. However, the number of epidemiological studies, which are essential for 
determining etiology, was still limited, with the majority of reports being either 
animal studies or human studies of patients. The latter often had very small num-
bers which limited their statistical power for evaluating vitamin D, or selected 
groups of patients and controls who may have not been representative of the wider 
populations from which they were sampled. These deficiencies in design are 



1256 Vitamin D: Cardiovascular Function and Disease 

a  possible explanation for the inconsistent results reported during this period. Thus, 
by the end of this period, it was still not possible to conclude whether vitamin D in 
physiological doses was beneficial, harmful or irrelevant to CV health.

6.4  2000s: Increasing Evidence of a Beneficial  
Cardiovascular Effect

The number of publications on vitamin D and CV disease has rapidly increased in 
the first decade of the new millennium (Fig. 6.1). This new research has been influ-
enced by reports from large epidemiological studies showing inverse associations 
between vitamin D and CV disease, initially from cohorts of hemodialysis patients, 
but in 2008 from general population cohorts. Coinciding with these new epidemio-
logical findings has been the publications from patient and animal studies providing 
new insights into possible mechanisms linking vitamin D and CV disease.

6.4.1  Studies in Hemodialysis Patients

CV disease is the main cause of death in developed countries. Interest in the benefi-
cial effects from vitamin D against CV disease was stimulated by a landmark pub-
lication by US researchers showing that a cohort of hemodialysis patients on 
paricalcitol had a 16% reduction in all-cause mortality compared with those on 
calcitriol [122]. The authors of this report restricted their comparisons to those on 
either form of activated vitamin D by excluding patients not on any form of vitamin 
D to avoid confounding by indication. Thus, the possibility remained that the 
reduced mortality in those taking paricalcitol was an artifact caused by increased 
mortality in those taking calcitriol. However, the latter possibility was dispelled by 
a Japanese cohort study showing decreased CV mortality in dialysis patients on 
alfacalcidol compared to no vitamin D, the adjusted hazard ratio being 0.38 (95% 
CI: 0.25, 0.58) of CV mortality over 5 years [123].

This finding was confirmed by a further cohort study of 51,000 US hemodialysis 
patients, which found a CV disease incidence rate of 7.6 per 100 person-years in 
the vitamin D-treated group (mainly calcitriol or paricalcitol) compared with 14.6 
per 100 person-years in the nonvitamin D group (p < 0.001), with the relative reduc-
tion in all-cause mortality being 20% [124]. Of interest in relation to the possible 
protective mechanisms associated with vitamin D (see Sect. 6.4.4), this study also 
reported a significant reduction in mortality from an infectious disease among the 
vitamin D-treated group compared with the untreated (1.1 vs 2.8 deaths per 100 
person-years, p < 0.0001). Similar findings were observed in a recent cohort study 
of hemodialysis patients from six Latin American countries, with patients given 
oral active vitamin D having reduced mortality (of about 50%) from all-causes, 
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CV disease and infectious disease, compared to those who did not receive vitamin 
D [125]. Other publications from cohort studies of patients with chronic kidney 
 disease have reported relative reductions in all-cause mortality of about 20% for 
those who received activated vitamin D, regardless of whether patients are on dialy-
sis [126–129] or not [130].

Vitamin D supplementation can remove the association between vitamin D 
 status and mortality in dialysis patients. A cohort study of incident hemodialysis 
patients, using the nested case–control design, observed increased CV mortality 
after 90 days follow-up in those with low baseline 25OHD levels in patients not on 
vitamin D therapy; while no association with baseline 25OHD was observed in 
those on vitamin D [131]. Recently, activated vitamin D has been associated with 
racial differences in survival in US hemodialysis patients, with all-cause mortality 
being 16% lower in treated-black versus treated-white patients, and 35% higher in 
untreated-black versus untreated-white patients [132]. The consistent findings from 
cohort studies of vitamin D treatment and mortality are compelling, but we need 
results from randomized trials before we can be certain that activated vitamin D 
improves survival in hemodialysis patients [133, 134].

6.4.2  Studies in Healthy Populations

6.4.2.1  Cardiovascular Disease

In 2008, a tipping point was reached with the publication of results from four large 
cohort studies showing that low baseline blood levels of 25OHD predict subsequent 
increased risk of CV disease and all-cause mortality. The first study was from the 
Framingham Study Offspring cohort (n = 1,739) which found that participants with 
baseline serum 25OHD levels <10 ng/mL (25 nmol/L) had an adjusted hazard ratio 
of 1.80 (95% CI: 1.05, 3.08) for CV disease during the 5-year follow-up period, 
compared with those >15 ng/mL (37.4 nmol/L) [135]. The effect was evident in 
participants with hypertension (blood pressure ³ 140/90 mmHg), but not in those 
with normal blood pressure, suggesting that hypertension could magnify the benefi-
cial effects of vitamin D on the CV system. The second report was from the US 
Health Professionals Follow-up Study (n = 18,225) which found in a nested case–
control comparison that men with baseline plasma 25OHD levels £ 15 ng/mL 
(37.4 nmol/L) had a relative risk of 2.09 (95% CI: 1.24, 3.54) for myocardial infarc-
tion (fatal plus nonfatal) over 10-year follow-up compared to those with 
25OHD < 30 ng/mL (74.9 nmol/L) adjusting for covariates [136]. The third was 
from the follow-up cohort (n = 13,331) of the Third National Health and Nutrition 
examination Survey (NHANES III), a representative sample of the US population 
surveyed during 1988–1994, which found that participants in the lowest quartile of 
baseline serum 25OHD < 17.8 ng/mL (44.4 nmol/L) had a 26% (95% CI: 8, 46) 
increased risk of all-cause mortality during a median 8.7-year follow-up, compared 
with those in the highest 25OHD quartile [137].
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The fourth study, from Germany on patients (n = 3,258) referred for coronary 
angiography and followed for a median period of 7.7 years, is described here 
because it had a similar design as the above studies [138]. Patients with baseline 
serum 25OHD levels in the bottom quartile had a significantly increased relative 
risk of all-cause mortality (hazard ratio = 2.08; 95% CI: 1.60, 2.70) and CV mortal-
ity (hazard ratio = 2.22; 95% CI: 1.57, 3.13) compared with those in the highest 
baseline 25OHD quartile, after adjusting for the full range of covariates, including 
baseline serum 1,25(OH)

2
D which also was independently and inversely associated 

with follow-up risk of all-cause and CV mortality.
The study designs used in the first three of these studies provide the best-quality 

evidence to date on the association between vitamin D status and risk of CV disease 
in the general population [135–137], aside from the Women’s Health Initiative 
randomized control trial of vitamin D supplementation which has methodological 
weaknesses (see Sect. 6.4.3) [139].

Consistent with the above cohort studies, a 2006 case–control study from 
Cambridge (UK) found that mean Z score of 25OHD for incident stroke cases, 
measured within 30 days of disease onset, was significantly below that expected for 
a sample of healthy controls (−1.4, 95% CI: −1.7, −1.1; p < 0.0001) [140]. In 
 contrast, a hospital-based case–control study of coronary artery disease from India 
reported in 2001 that a significantly (p < 0.001) higher proportion of cases (59.4%) 
than controls (22.1%) had serum 25OHD levels above 222.5 nmol/L [141]. A limi-
tation of this study is that it recruited prevalent cases of coronary artery disease, an 
unknown time after their heart attacks, when their vitamin D status may not have 
reflected that at the time of disease onset.

Further studies have been published on vitamin D and congestive heart failure. 
A case control study from Germany found significantly lower serum 25OHD and 
1,25(OH)

2
D levels in cases and controls [142], while low serum 1,25(OH)

2
D (but 

not 25OHD) predicted increased risk of death or need for heart transplant in 
patients with end-stage congestive heart failure [143]. In contrast, a recent German 
randomized controlled trial of 93 patients with congestive heart failure failed to 
show an effect of vitamin D supplementation on measures of cardiac function with 
echocardiography [144]. Information has recently been reported on vitamin D and 
arterial disease. Analyses of NHANES data (for 2001–2004) found that the preva-
lence ratio of peripheral arterial disease increased by 1.35 (95% CI: 1.15, 1.59) for 
each 10 ng/mL (25 nmol/L) decrease in serum 25OHD [145].

6.4.2.2  Blood Pressure

This decade has also seen the publication of large epidemiological studies of vita-
min D and blood pressure. A large cross-sectional study from Norway (n = 15,596) 
found that dietary vitamin D was unrelated to blood pressure [146]. Results from 
three large US health professional cohorts (total n = 209,313) did not show an asso-
ciation between dietary vitamin D and incident hypertension [147]; although a 
recent US study of female health professionals (n = 28,886) reported that risk of 
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incident hypertension had a weak inverse association with vitamin D but not 
 vitamin D supplements [148]. A possible explanation for the failure of most of 
these studies to find an association is that dietary sources of vitamin D contribute 
only a small proportion of the total vitamin D entering the body each day, which is 
mainly derived from sun exposure [34]. Interestingly, when two of these cohort 
studies were reanalyzed using plasma 25OHD, which measures vitamin D from all 
sources, both measured 25OHD and estimated 25OHD were inversely associated 
with risk of incident hypertension in both men and women [149]. For example, 
participants in the lowest baseline quartile of plasma 25OHD (<15 ng/mL) had a 
3.18 (95% CI: 1.39, 7.29) increased risk of developing hypertension over 4 years 
than those in the highest 25OHD quartile (³30 ng/mL). This finding is supported 
by a recent publication from the cross-sectional NHANES III study (n = 12,644) 
which found that serum 25OHD was inversely associated with both systolic blood 
pressure and pulse pressure [53]. However, another cross-sectional study from the 
Netherlands (n = 1,205) did not observe any association between serum 25OHD and 
blood pressure, possibly because the elderly sample had relatively high vitamin D 
levels, although there was a significant positive association between serum parathy-
roid hormone and blood pressure [150].

Further intervention studies, both from Germany, have also been carried out. 
A randomized clinical trial in elderly women found that 800 IU of vitamin D3/day 
(with 1,200 mg of calcium) after 8 weeks significantly decreased systolic blood 
pressure by 5 mmHg, but not diastolic, compared with placebo [151]. Another 
randomized trial of patients with hypertension found that exposure to UV-B radia-
tion over 6 weeks, which increases vitamin D, lowered blood pressure by 6 mmHg 
compared with the UV-A control group (p < 0.05) [152].

6.4.3  Studies of Vitamin D Supplementation

The Women’s Health Initiative trial is the only randomized trial to date which has 
examined the effect of vitamin D on CV disease in the general population [139]. 
Postmenopausal women aged 50–79 years (n = 36,282) at 40 clinical sites in the 
USA were randomized to take calcium carbonate 500 mg with vitamin D 200 IU 
twice daily or placebo. Both fatal and nonfatal disease events were recorded. After 
7 years of follow-up, the adjusted hazard ratios in the treated group versus control 
were 1.04 (95% CI: 0.92, 1.18) for coronary heart disease and 0.95 (95% CI: 0.82, 
1.10) for stroke. Thus, this study did not detect any effect of vitamin D and calcium 
supplementation on CV disease.

However, this study has some major design limitations which prevent it from 
being a proper test of the hypothesis that vitamin D protects against CV disease 
[139, 153, 154]. Firstly, the dose of vitamin D was only 400 IU/day, which would 
have raised serum 25OHD levels only by about 10 nmol/L [155], way below the 
daily dose of 1,700 IU required to raise 25OHD levels above 80 nmol/L that is 
 currently considered optimum [156]. The actual vitamin D ingested would have 
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been further reduced by poor compliance as only 59% of participants took ³ 80% of 
the study medication. Lastly, the control group was able to continue taking vitamin 
D supplements, resulting in contamination.

Further evidence from randomized trials suggesting a beneficial effect of 
 vitamin D against CV disease comes from a recent meta-analysis of vitamin D 
supplementation and all-cause mortality [157]. The results of this meta-analysis are 
relevant since CV disease is the main cause of mortality in developed countries. It 
summarized 18 randomized clinical trials published from 1992 to 2006, which 
included data from the Women’s Health Initiative trial [158], 15 studies in Europe, 
and two studies from Australia and New Zealand. The meta-analysis found that 
vitamin D supplementation produces a 7% relative reduction in all-cause mortality 
[157]. Most of the prevented deaths in the treated group are likely to have been 
from CV and infectious diseases, since the weighted mean follow-up period was 
5.7 years, too short to detect any benefit in preventing cancer deaths [159]. These 
findings are consistent with the cohort studies of dialysis patients (described above) 
which have reported lower all-cause mortality in patients prescribed active vitamin 
D [122, 124–129, 131, 132].

A 7% relative reduction in all-cause mortality may seem small. However, the 
weighted vitamin D dose of 528 IU/day for all studies combined is likely to have 
only increased blood 25OHD levels by 10–15 nmol/L [155]. As mentioned above, 
this daily vitamin D dose is much lower than that currently recommended to main-
tain serum 25OHD at optimum levels [156]. Thus, the potential beneficial effect of 
vitamin D supplementation on all-cause mortality may be higher than 7% if larger 
vitamin D doses (>2,000 IU/day) are given which increase blood 25OHD levels up 
to 100 nmol/L [160].

6.4.4  Cardiovascular Pathophysiology

Since the start of the millennium, numerous publications from research on animal 
models and from patients with CV disease have greatly increased understanding of 
the mechanisms involved in the possible protective effect of vitamin D against CV 
disease. These mechanisms, reviewed below, involve beneficial changes in inflam-
matory processes, endothelial function, matrix metalloproteinases (MMPs), and the 
renin–angiotensin system (Fig. 6.2).

6.4.4.1  Inflammatory Factors

Until the 1990s, the dominant view held that the major risk factors of CV disease 
were cigarette smoking, hypercholesterolemia, and hypertension (the latter two 
caused by dietary saturated fats and physical inactivity), which exerted their effects 
over many years of exposure [161]. There was no place in this chronic disease 
model for inflammation, despite evidence from many countries showing winter 
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excesses in CV disease that coincided with winter respiratory infections (see 
Sect. 6.3.1). Opinion has changed substantially over the last 10 years, and it is now 
well established that subclinical inflammatory factors mediate the traditional 
chronic risk factors (such as smoking) and are centrally involved in the process of 
atherosclerosis and plaque rupture [162–164]. Blood levels of inflammatory mark-
ers, such as C-reactive protein (CRP) and the cytokine interleukin-6 (IL-6), predict 
subsequent risk of cardiovascular disease [164, 165]. Inflammatory cytokines also 
influence endothelial function [165, 166], which is an independent predictor of CV 
disease [167], and synthesis of MMPs [168] which also have a role in CV disease 
[169, 170]; while positive associations have been reported between IL-6 and insulin 
resistance [171–173] which are consistent with a role for pro-inflammatory factors 
in the etiology of type 2 diabetes [174, 175].

In a recent landmark paper, vitamin D was shown to have an important role in 
the innate immune system by stimulating the synthesis of the antimicrobial peptide 
cathelicidin [176]. This new finding provides a biological explanation for the his-
torical link between sun exposure, vitamin D, and tuberculosis [177], as well as the 
association between rickets and infection which has been known since the 1960s 
[178]. Further, subclinical vitamin D deficiency has been reported in newborns and 
young adults without rickets, suffering from acute respiratory infections [179, 180], 
while women receiving vitamin D supplements in a clinical trial reported fewer 
respiratory symptoms than controls [181].

Laboratory in vitro studies have shown that 1,25(OH)
2
D

3
 decreases production 

of pro-inflammatory cytokines such as IL-6 and tumor necrosis factor a (TNFa) by 
macrophages and lymphocytes[182–184] and up-regulates synthesis of anti- 
inflammatory IL-10 [185]. However, human studies of vitamin D supplementation 
have produced conflicting results perhaps due to varying doses of vitamin D. 
Vitamin D supplementation (2,000 IU/day for 9 months) decreased TNFa and 
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insulin resistance
renin-angiotensin
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coronary heart disease
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Fig. 6.2 Mechanisms by which low vitamin D status may increase the risk of cardiovascular 
disease
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increased IL-10, with no effect on CRP, in German patients with congestive heart 
failure [144]. Calcitriol supplementation decreased blood levels of IL-1 and IL-6 in 
hemodialysis patients [171]. Serum levels of 25OHD were inversely associated 
with CRP and IL-6 in German coronary angiography patients [138]. In contrast, a 
study which gave lower doses of vitamin D (£800 IU/day) did not find any effect 
from it on IL-6 or [186].

6.4.4.2  Cardiovascular Function

Evidence has continued to emerge from animal models that vitamin D deficiency 
results in cardiac hypertrophy and fibrosis [187], possibly involving activation of the 
renin–angiotensin system [188]. MMPs may be involved in this cardiac hypertrophy 
since vitamin D supplementation lowers blood MMP-9 and MMP-2 [189]; and raised 
plasma levels of MMP-9 have been reported in men who had increased left-ventricu-
lar end-diastolic dimensions and wall thickness from the Framingham study [190].

Evidence has continued to emerge indicating that vitamin D deficiency may influ-
ence arterial function. As mentioned above, vitamin D suppresses MMPs which may 
prevent MMP-induced intimal thickening of blood vessels [168], and thereby reduce 
arterial stiffness. This possibility is supported by an earlier study of hypertension 
patients, which found that serum 25OHD levels, after 3 min of arterial occlusion of 
the calf, were associated positively with blood flow (r = 0.72) and negatively with 
vascular resistance (r = −0.78) [191]. Serum 25OHD also was correlated positively 
with brachial artery distensibility and flow-mediated dilatation, after adjustment for 
age and blood pressure, in patients with end-stage renal disease [192]. Carotid artery 
intimal medial thickening is associated inversely with serum 25OHD

3
 in type 2 dia-

betes patients [193]; while vitamin D supplementation increases flow-mediated bra-
chial artery dilatation in type 2 diabetes patients who have 25OHD levels below 
50 nmol/L [194]. The above studies provide an explanation for an inverse association 
between serum 25OHD and microvascular complications observed in Japanese 
patients with type 2 diabetes [195]. The inverse associations between serum 25OHD 
and flow-mediated dilatation suggest vitamin D may improve impaired endothelial 
function arising from reduced nitric oxide synthesis by the endothelium [196] and 
thereby reduce risk of coronary heart disease [197, 198].

These changes in endothelial function may also reduce blood pressure since serum 
25OHD levels are inversely associated both with pulse pressure, a marker of vascular 
resistance, and with systolic blood pressure [53]. Alternatively, vitamin D may lower 
blood pressure by downregulating the renin–angiotensin system [88, 199].

6.4.5  Summary

The past decade has seen a dramatic increase in the number of publications on 
vitamin D and CV disease. The critical development has been the publication in 
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2008 of results from three cohort studies showing that blood levels of 25OHD 
predict risk of CV disease and total mortality in the general population (see 
Sect. 6.4.2). These findings are strengthened further by a meta-analysis showing 
that vitamin D reduces total mortality [157] and results from cohort studies of 
dialysis patients showing that active vitamin D reduces total mortality and CV 
disease (see Sect. 6.4.1). This rush of publications stands in stark contrast with 
the dearth of large-scale epidemiological studies published during the previous 
half-century.

When this recent evidence is looked at in its totality, it meets many of the criteria 
for causation proposed originally for epidemiological studies by Bradford-Hill 
[200]. These include the temporality requirement of evidence from cohort studies 
that exposure (low vitamin D status) precedes the onset of the disease, evidence of 
reversibility from clinical trials that vitamin D supplementation reduces total mor-
tality (most probably through preventing CV disease), consistency of evidence as 
shown by the agreement in the findings from cohorts studies in the general popula-
tion and dialysis patients, and evidence of a moderately strong association with a 
doubling in the risk of CV disease between highest and lowest quantiles of 25OHD. 
Lastly, evidence of biological plausibility has come from recent animal and clinical 
studies identifying a number of mechanisms to explain the possible link between 
vitamin D and CV disease. These include effects of vitamin D on immune and 
inflammatory processes, endothelial function, the rennin–angiotensin system, 
MMPs and insulin resistance.

The evidence from recent cohort studies is now so compelling that large-scale 
clinical trials are required to determine, once and for all, whether vitamin D 
 supplementation prevents CV disease, both in the general population and in patient 
populations [133–135, 137, 157]. As the great British epidemiologist Sir Richard 
Doll, who changed his view from opposing to supporting the beneficial effects of 
vitamin D and sun exposure before he died, said “This isn’t difficult science. We 
should have answers” [201]. Neither is it expensive science since vitamin D is very 
cheap compared with most other treatments for CV disease. If clinical trials were 
to confirm that vitamin D prevents CV disease, the potential benefits would be 
substantial.
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Abstract Current understanding of the vitamin D-induced differentiation of neoplastic 
cells, which results in the generation of cells that acquire near-normal, mature 
phenotype is summarized here. The criteria by which differentiation is recognized in 
each cell type are provided, and only those effects of 1a,25-dihydroxyvitamin D

3
 

(1,25D) on cell proliferation and survival which are associated with the differentia-
tion process are emphasized. The existing knowledge of the signaling pathways that 
lead to vitamin-D-induced differentiation of colon, breast, prostate, squamous cell 
carcinoma (SCC), osteosarcoma, and myeloid leukemia cancer cells is outlined. 
Where known, the distinctions between the different mechanisms of 1,25D-induced 
differentiation which are cell-type-specific and cell-context-specific are pointed 
out. A considerable body of evidence suggests that several types of human cancer 
cells can be suitable candidates for chemoprevention or differentiation therapy with 
vitamin D. However, further studies of the underlying mechanisms are needed to 
gain further insights on how to improve the therapeutic approaches that incorporate 
vitamin D derivatives.
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Sp-1  Specificity protein 1
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VDR  Vitamin D receptor
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3
 response element

7.1  Introduction

In general, differentiation is a term that signifies the structural and functional 
changes that lead to maturation of cells during development of various lineages. 
Cancer cells are unable, in varying degrees, to achieve such maturation, and thus 
malignant neoplastic cells show a lack of, or only partial, evidence of differentia-
tion, known as anaplasia. Since the basic underlying cause for the failure to dif-
ferentiate can be attributed to structural changes in the cell’s DNA, i.e., mutations, 
which are essentially irreversible, it is remarkable that some compounds can induce 
several types of malignant cells to undergo differentiation toward the more mature 
phenotypes. The physiological form of vitamin D, 1a,25-dihydroxyvitamin D

3
 (1,25D), 

is one such compound, and the importance of this finding is that it offers the poten-
tial to be an alternative to, or to provide an adjunctive intervention to the therapy, 
as well as the prevention of neoplastic diseases.

The feasibility of differentiation therapy of cancer is supported by the early 
observations that some cases of neuroblastoma, a childhood malignancy, can spon-
taneously differentiate into tumors that are composed of normal-appearing neuronal 
cells, and the child’s life is spared [1, 2]. The reasons for this conversion have not 
been elucidated, but it seems reasonable to assume that as the child matures, the 
endocrine and the immune systems become more efficient, and one or more of such 
factors are able to induce differentiation of neural precursor cells to the more 
mature, noninvasive forms.

An example of an already successful interventional approach to differentiation 
therapy of a neoplastic disease is the use of all-trans retinoic acid (ATRA) for the 
treatment of acute promyelocytic leukemia (APL) and perhaps other leukemias 
[3–5]. Additionally, a synthetic analog of ATRA, Fenretinide, can potentially serve 
as an agent which can prevent breast cancer in women [6], illustrating the fact that 
a demonstration of a clear clinical therapeutic effect of a differentiation agent opens 
up the possibility that it may also serve as a cancer chemopreventive compound.

While the role of 1,25D in cancer chemotherapy and cancer chemoprevention is 
only beginning to be established, there are several reasons to believe that its promise 
will be fulfilled. These reasons include the fact that 1,25D is a naturally occurring 
physiological substance, and thus unlikely to cause the adverse reactions which occur 
when xenobiotics are administered to patients, unless given in very high concentrations. 
Second, the issue of hypercalcemia, which occurs when the concentrations of 1,25D 
greatly exceed the physiological range, and has previously limited its clinical appli-
cations [7, 8], can be addressed by the dual strategy of developing analogs of 1,25D 
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with reduced calcium-mobilizing properties [9–12], and combining these with other 
compounds which enhance the differentiation-inducing actions of 1,25D or its analogs 
[13–15]. Also, progress is being made in understanding the mechanisms responsible 
for 1,25D-induced differentiation, summarized later in this review, and although 
this understanding is by no means complete, it is likely that insights will be obtained 
that can be translated to clinical applications.

Differentiation of neoplastic cells induced by 1,25D and other agents rarely, if 
ever, results in the generation of completely normal, functioning cells. Indeed, the 
appearance of cells resulting from induced progenitors has been aptly described as 
resembling “caricatures” rather than normal cells. Such cells may exhibit, and are 
recognized by, some features of the normal, mature cells of the particular develop-
mental lineage, but seldom function like the mature normal cells. However, this is 
not the major objective of differentiation therapy of neoplastic diseases; the real 
benefits are due to the cessation of the proliferation of these cells, which is a con-
sequence of cell cycle arrest associated with differentiation [16–19], and in some 
cases to the reduced survival of the differentiated cells. For instance, 1,25D-induced 
monocytic differentiation of myeloid leukemia cells can result in the G1 phase cell 
cycle block, resulting in cessation of cell proliferation [19], while 1,25D treatment 
of breast or prostate cancer cells can induce cell death by apoptosis as well as dif-
ferentiation [20–22].

An important consideration in the area of 1,25D-induced differentiation is cell-
type and cell-context specificity. For instance, in contrast to breast and prostate cancer 
cells which are induced to undergo apoptosis, in myeloid leukemia cells 1,25D-induced 
differentiation is accompanied by increased cell survival [23, 24]. The pathways 
which are known to signal 1,25D-induced differentiation and the associated cell cycle 
and survival effects also differ, though they may overlap, in different cell types. This 
may further be complicated by the type of mutations that are responsible for the block 
of differentiation, and the resulting uncontrolled proliferation of the neoplastic cells. 
We therefore discuss separately the principal cancer cell types known to be candidates 
for differentiation therapy or chemoprevention by 1,25D.

7.2  Solid Tumors

7.2.1  Colon Cancer

It is well established that colon cancer cells in culture can undergo differentiation to 
a more mature phenotype, and the inducing agents include the short-chain fatty acid 
butyrate and 1,25D. The evidence for differentiation has traditionally been the 
expression of the hydrolytic enzyme alkaline phosphatase (Alk Pase), which can be 
demonstrated on the microvilli and tubulovacuolar system of the surface “principal 
cells” of the colon mucosa [25, 26], but is poorly expressed in proliferating colon cancer 
cells [27]. More recently, other markers of colonic epithelial cell differentiation 
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have been identified, and these include changes in “transepithelial electrical resistance” 
and ubiquitin, as based on matrix-assisted laser desorption/ionization time-of-flight 
mass spectrometry (MALDI-TOFMS). The latter procedure generates specific mass 
spectral fingerprints characteristics of cell differentiation, and it was suggested that 
ubiquitin can be a marker of differentiation of the T84 human colon carcinoma cell 
line [28]. In another colon cancer cell line, SW80, 1,25D was shown to induce easily 
recognizable morphological changes indicative of differentiated epithelial-like phe-
notype [29]. These morphological changes include consequences of the adherence 
to the culture substratum, which make the cells look flat and polygonal, and it was 
demonstrated that these cells have reduced tumorigenicity when implanted into 
athymic mice. Thus, the epidemiological data which indicate that 1,25D has a nega-
tive effect on the incidence of human colorectal cancer [30, 31] are well supported 
by the in vitro studies of 1,25D-induced differentiation of colon carcinoma cell lines.

How 1,25D signals differentiation of colon cancer cells is not entirely clear, but 
several groups of key molecules have been identified that appear to govern this 
process, and an outline of their postulated interactions is integrated in Fig. 7.1. 
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One mechanism that can explain the reduced cell proliferation which accompanies 
differentiation is the marked inhibitory effect of 1,25D on the expression of epidermal 
growth factor receptor (EGFR), apparent at both mRNA and protein levels in 
CaCo-2 cells [32]. The accumulated data also suggest that the central role in 
1,25D-induced differentiation is played by the vitamin D receptor (VDR). An early 
study demonstrated that 1,25D has a protective effect on chemically induced rat 
colon carcinogenesis [33], and others showed that VDR can be a marker for colon 
cancer cell differentiation [34, 35]. This was followed up by Cross and colleagues 
in a series of experiments which showed that VDR levels increased in early stages 
of carcinogenesis, or in human colonic mucosa during early tumor development, 
but that VDR levels were low in poorly differentiated late-stage carcinomas 
[36, 37]. This suggested that VDR levels have a restraining effect on the growth of 
colon cells. A mechanism that can explain the increased levels of VDR in differen-
tiated colon cells was provided by the Brasitus group, indicating that in CaCo-2 
cells 1,25D causes an increased activity of the AP-1 transcription factor [27], which 
is downstream from the mitogen-activated protein kinases (MAPK) pathways and 
can transactivate VDR gene expression [38]. The consequent up-regulation of VDR 
may further be increased in the presence of 1,25D by stabilization of the VDR 
protein [39], but the nature of the initial activation of MAPK pathways in colon 
cancer cells is not entirely clear. The suggested calcium-induced activation of 
protein kinase C alpha (PKC a) as an upstream event in MAPK activation [27, 40] 
appears to be feasible, as an influx of calcium into the cells is known to occur after 
1,25D exposure of many types of cells including colon cancer [41], but this path-
way remains to be further investigated. Nonetheless, the importance of VDR in 
colon cancer cell differentiation is further underscored by the suggestion that 
butyrate-induced differentiation of CaCo-2 cells is mediated by VDR [42], and by 
the recent report that decreased recruitment of VDR to the vitamin D response ele-
ments (VDRE) contributes to the reduced transcriptional responsiveness of prolif-
erating CaCo-2 cells to 1,25D [43].

An emerging role for VDR, other than its function as a transcription factor that 
binds to VDRE in the promoter regions of 1,25D-responsive genes, is exemplified 
by the finding that VDR can interact with b-catenin, and thereby repress in colon 
cells the oncogenic gene-regulatory activity of b-catenin [29]. The transrepression 
of b-catenin signaling is not limited to an interaction with VDR, as such interactions 
can take place with other nuclear receptors, such as the retinoic acid receptor (RAR) 
and the androgen receptor (AR) [29, 44]. This interaction has been shown to involve 
also the coactivator p300, a histone acetyl transferase [45]. The recently reported 
repression of the VDR gene by the transcription factor SNAIL [46], and the repression 
by 1,25D of the Wingless-related MMTV integration site (Wnt) antagonist 
DICKOPF-4 [47] may also be important for the inhibition of Wnt/b-catenin signaling 
by 1,25D, and for its induction of differentiation in colon cancer cells.

Signaling by b-catenin can also be repressed by the 1,25D-induced up-regulation 
of the expression of E-cadherin [29], a transmembrane protein that plays a major 
role in the maintenance of the adhesive and polarized phenotype of epithelial cells 
[48]. The presence of E- cadherin can promote nuclear export of b-catenin, and this 
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may be augmented by direct VDR/b-catenin interaction [48]. Since b-catenin/T-cell 
transcription factor 4 (TCF-4) complex is the nuclear effector of the Wnt growth-
signaling pathway, responsible for the expression of c-myc and other growth pro-
moting genes [49], the repressive effects of 1,25D on the growth of colon cancer 
cells may be explained by the ability of 1,25D to regulate the expression of VDR, 
E-cadherin, and the activity of the b-catenin/TCF pathway, as illustrated in 
Fig. 7.1.

In addition to protein–protein complex formation with b-catenin, VDR has also 
been reported to interact with the transcription factor – Specificity protein 1 (Sp1) in 
SW 620 human cancer cells, and thus induce the expression of p27/Kip1 inhibitor of 
the cell cycle [50]. However, it is not clear precisely how this is achieved, given the 
ubiquitous nature of Sp1 binding sites in gene promoters. Nonetheless, the direct 
binding of VDR to other proteins, which may be ligand-independent, is an area that 
deserves further study, and has been reported to occur in cell types other than colon 
carcinoma, such as osteoblastic cells and myeloid leukemia, as discussed later.

7.2.2  Breast Cancer

The induction of differentiation of breast cancer cell lines by 1,25D and the role of 
1,25D in normal development of rodent mammary tissue are well established. For 
instance, studies of VDR knockout mice in the Welsh laboratory have shown that 
1,25D participates in the growth inhibition of the normal mammary gland [51]. 
Further, the disruption of 1,25D/VDR signaling leads to distorted morphology of 
murine mammary gland with duct abnormalities and increased numbers of preneo-
plastic lesions, suggesting that 1,25D-liganded VDR serves to maintain differentiation 
of normal mammary epithelium [52].

Induction of differentiation of breast cancer cells by 1,25D can be demonstrated 
by b-casein production [53], or by a change in overall cell size and shape, associated 
with changed cytoarchitecture of actin filaments and microtubules in MDA-MB-453 
cells [54]. Treatment of these cells with 1,25D resulted in accumulation of integrins, 
paxillin, and focal adhesion kinase, as well as their phosphorylation. In contrast, the 
mesenchymal marker N-cadherin and the myoepithelial marker P-cadherin were 
down-regulated, suggesting that 1,25D reverses the myoepithelial features associ-
ated with the aggressive forms of human breast cancer. However, it is to be noted 
that not all breast cancer cell lines respond to 1,25D. In many cases this can be 
attributed to the lack of or low VDR expression or function [55, 56], but it may also 
be due to alterations in 1,25D-metabolizing enzymes which can reduce the levels 
of 1,25D below its effective concentration [57].

Among the breast cancer cell lines that do respond to 1,25D a range of phenotype 
alterations has been reported [58], emphasizing that the mechanistic basis for the 
differentiating effects of 1,25D in the breast cancer cell system will be very complex. 
Together with the uncertainty about whether induced differentiation of breast cancer 
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cells, per se, has potential clinical significance, mechanistic studies in this system 
have been largely directed to the antiproliferative effects of 1,25D on breast cancer 
cells. These studies revealed that induction of apoptosis and G1 cell cycle arrest 
result in inhibition of tumor cell growth in several types of breast cancer cells [20, 57, 59], 
but the relationship of these biological effects to differentiation is not obvious. 
Nonetheless, some hints did result from those studies, as exemplified below.

An interesting set of candidate 1,25D-target proteins was identified by pro-
teomic screening of a breast cancer cell line sensitive to 1,25D (MCF-7) and from 
a subclone of these cells derived by resistance to 1,25D (MCF-7/DRES) [60], and 
some of these proteins can be related to differentiation and associated phenotypic 
cellular changes. Examples are Rho-GDI and Rock-DI, known to participate in the 
formation of focal adhesions and stress fibers which contribute to the adhesive 
epithelial phenotype and changes in cell shape [60]. Proteins previously linked to 
pathways involved in 1,25D-induced differentiation such as phospho-p38, MEK2, 
RAS-GAP were also noted in this screen [52]. In a tissue culture study, the JNK 
pathway, also known to contribute to 1,25D-induced differentiation of colon and 
myeloid cells [61], was shown to cooperate with the p38 pathway to transactivate 
VDR in breast cancer cells, but this was proposed to contribute to the anti-prolifer-
ative rather than the differentiation-inducing effects of 1,25D in these cells [38]. 
The antiproliferative effects of 1,25D can also be explained by the reduction in 
EGFR mRNA and protein, but this is seen in only some, but not all, breast cancer 
cell lines [62, 63].

Another suggested link to differentiation in 1,25D-treated breast cancer cells is 
that VDR and estrogen receptor (ER) pathways converge to regulate BRCA-1, thus 
controlling the balance between signaling of differentiation and proliferation [64]. 
Since ER is important for mammary gland differentiation, studies that pursue this 
concept would be very valuable, and it already appears that the overexpression of 
ER and VDR is not sufficient to make ER-negative breast cancer cells responsive 
to 1a,hydroxy-vitamin D

5
, a vitamin D analog known to mediate differentiation in 

a manner similar to 1,25D [65, 66].

7.2.3  Prostate Cancer

Similar to breast cancer cells, prostate cancer originates in hormone-dependent 
epithelial cells, and, as in breast cancer cell lines, 1,25D has anti-proliferative 
effects in some, but not all, established prostate cancer cell lines. The anti-proliferative 
action of 1,25D is, to a variable degree, due to the induction of cell death by apop-
tosis [67] and to cell cycle arrest [68], but to what extent these are associated with 
differentiation is uncertain.

The evidence of prostate cancer cell differentiation includes the release of pros-
tate specific antigen (PSA) from cells treated with a differentiating agent such as 
1,25D [69–71]. This can be useful in cultured cells, but in patients the increasing 
PSA levels suggest progressive disease, making it difficult to acquire data on the 
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role of differentiation in clinical trials [72]. A study of the role of 1,25D in the 
differentiation of the normal rat prostate gland was based on morphological 
characteristics, which included an increased abundance of cytoplasmic secretory 
vesicles [73]. This characteristic has been used as a differentiation marker, along 
with the expression of keratins 8, 17, and 18 in human prostate cancer PC-3 cells 
[74]. In other studies [75, 76], the increased expression of E-cadherin was used as 
a maker of differentiation. However, although many reports on the effects of 1,25D 
on prostate cancer cells include the word “differentiation,” the documentation most 
often focuses on the anti-proliferative effects of 1,25D exposure, which may, or 
may not be associated with phenotypic differentiation.

In a recent microarray analysis of 1,25D regulation of gene expression in 
LNCaP cells, Krishman et al. [77] reported several findings that appear relevant to 
1,25D-induced differentiation. In addition to the major upregulation of the expres-
sion of the insulin-like growth factor binding protein-3 (IGFBP-3), which functions 
to inhibit cell proliferation by upregulating p21/Cip1 [78], it was noted that among 
about a dozen genes upregulated by 1,25D was the “prostate differentiation factor,” 
a member of the bone morphogenetic protein (BMP) family, which is generally 
involved in growth and differentiation of both embryonic and adult tissues [79]. 
Also interesting was the finding that in these cells 1,25D regulates those genes 
which are androgen-responsive, and the genes which encode the enzymes involved 
in androgen catabolism. Further, Feldman and colleagues showed that 1,25D up-
regulates the expression and activity of the androgen receptor (AR) [80, 81], raising 
the possibility that the differentiation effects of 1,25D on prostate cells are not 
direct, but are due to modifications of the level or the activity of AR. Interestingly, 
it has also been suggested that androgens upregulate the expression of VDR [82]; 
thus, a positive feedback loop that includes 1,25D activation of VDR could be a 
factor in inducing differentiation of cancer cells derived from the hormonally regu-
lated tissues (Fig. 7.2), while in normal cells the sex hormone (androgen or estro-
gen) is sufficient to promote differentiation. Since 1,25D has an established 
anticancer activity in prostate cells, it can be assumed that in this scenario VDR 
selectively enhances the AR-mediated androgenic pro-differentiation, but not the 
proliferation-enhancing activity (Fig. 7.2). In addition, it is likely that nuclear 
receptors for retinoids, glucocorticoids, and PPAR affect the signaling pathways, 
directly or indirectly. Whether the demonstrated 1,25D-induced decrease in the 
expression of COX-2 and an increase in 15-PGDH in prostate cancer cells [77, 83] 
have any relationship to cell differentiation, remains to be established.

Prostate cancer cells are also known to undergo “trans-differentiation” to a 
 neuroendocrine phenotype, and when this phenotype is found in human tumors it 
may indicate an aggressive form of the disease [84]. Although currently 1,25D has 
no known role in this form of differentiation, this may be a promising area of future 
research, since recent studies point to a key role of NFkB, as well as IL-6 in this 
process [85, 86]. This suggestion is based on the finding that in some cells 1,25D 
upregulates the expression of C/EBP b [87], which cooperates with NFkB in 
 regulation of the secretion of the cytokine IL-6 in neuroendocrine human prostate 
cancer cells [85].



152 E. Gocek and G.P. Studzinski

7.2.4  Keratinocytes and Squamous Cell Carcinoma Cells

While there is extensive evidence of 1,25D-induced differentiation in normal kera-
tinocytes, the studies of the induction of differentiation in squamous cell carcino-
mas (SCC), composed essentially of neoplastic keratinocytes, are less conclusive. 
Differentiation can be detected by the presence of various components of the kera-
tinizing cells, such as cytokeratins K1 and K10, cornifin beta, involucrin, and 
transglutaminase, considered to be a late marker of squamous cell differentiation to 
normal epidermal keratinocytes [88]. The expression of target genes of 1,25D and 
analogs can also be taken as evidence that SCC cell lines can be driven to differen-
tiation by these compounds [89]. Such genes include N-cadherin, which when 
overexpressed restores the epithelial phenotype also in prostate cancer cells [90], 
cystatin M, protease M, type XIII collagen, and desmoglein 3 [89]. Bikle and col-
leagues have presented persuasive models for induction of keratinocyte differentia-
tion by increased calcium levels and by calcium-1,25D interactions [91, 92]. The key 
features of calcium-induced human keratinocyte differentiation appear to include the 
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recruitment of phosphatidylinositol 3-kinase (PI3K) to a complex at the cell plasma 
membrane consisting of E-cadherin, b-catenin, and p120-catenin. This complex is 
postulated to activate PI3K leading to the accumulation of phosphatidylinositol 
3,4,5-triphosphate (PIP

3
), which binds to and activates phospholipase C gamma-1 

(PLC-g1) [93, 94]. The activated phospholipase generates inositol triphosphate 
(IP

3
) which stimulates the release of calcium from the intracellular stores in the 

endoplasmic reticulum, and diacylglycerol, which together with increased intracel-
lular calcium activates PKC. PKC, and perhaps calcium activation of other 
enzymes, then initiate signaling cascades that impinge on nuclear transcription 
factors such as AP-1, which lead to differentiation [95].

How much of this description applies to the 1,25D-induced differentiation is 
less clear, but Bikle et al. [91] presented a plausible model in which 1,25D inter-
acts with calcium to induce keratinocyte differentiation. This model also includes 
a G-protein-coupled calcium-sensing surface receptor (CaR), which when acti-
vated by 1,25D leads to the activation of PKC, with consequences described 
above. The associated influx of calcium, which occurs in human keratinocytes 
after exposure to 1,25D has been recently shown to be mediated, at least in part, 
by the calcium-selective channel TRPV6 upregulated at the mRNA and protein 
levels by 1,25D [96]. A cohesive picture of 1,25D-induced keratinocyte differen-
tiation is quite well, but perhaps not completely developed. For instance, regula-
tion of AP-1 activity in cultured human keratinocytes by 1,25D was reported to 
be independent of PKC [97], in contrast to the model presented by Bikle et al. 
[91]. Takahashi et al. [98] reported that treatment of normal human keratinocytes 
with 1,25D increases the expression of cystatin A, a cysteine protease inhibitor 
which is a component of the cornified envelope, and that it is the suppression of 
the Raf-1/MEK-1/ERK signaling pathway which is responsible for this effect. 
However, cystatin A expression is stimulated by the Ras/MEKK-/MKK7/JNK 
pathway [99], consistent with the schematic model of Bikle et al. [91], and 
explaining why PKC activation may not be essential for AP-1 activation in this 
cell system. An enigmatic role of caspase-14 in keratinocyte differentiation 
induced by 1,25D has been reported [100], and it was suggested that the absence 
of caspase-14 contributes to the psoriatic phenotype. Since caspase-14 is a non-
apoptotic protein, it is unclear if this is related to the report that 1,25D protects 
keratinocytes from apoptosis [101]. On the other hand, the identification of Kruppel-
like factor 4 (KLF-4) and c-fos as 1,25D-responsive genes in gene expression 
profiling of 1,25D-treated keratinocytes [102] fits in well with the existing 
knowledge of differentiation signaling, as c-fos is a component of the AP-1 tran-
scription factor, and KLF-4 is a transcription factor with a major role in cell fate 
decisions [103–105]. Recently, it was reported that yet another transcription factor, 
PPAR gamma, also has a major role in 1,25D-induced differentiation of keratino-
cytes [106]. In these studies, dominant negative (dn) PPAR gamma inhibited the 
expression of involucrin (a differentiation marker), suppressed AP-1 binding to 
DNA, and prevented the 1,25D-induced phosphorylation of p38. Thus, the kera-
tinocyte system provided a wealth of interesting information on 1,25D as a 
differentiation-promoting and survival-regulating agent.
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Transformed keratinocytes which give rise to SCC tend to be resistant to the 
differentiation-inducing action of 1,25D [107, 108], even though apoptosis and cell 
cycle arrest induced by 1,25D have been demonstrated in models of SCC [109, 110]. 
While VDR expression is required for 1,25D-induced differentiation, the resistance 
of SCCs to 1,25D is not due to the lack of functional VDR [111]. The possible 
explanations for the 1,25D resistance include the finding that the VDRE in the 
human PLCg-1 gene is not functional [111]. Another explanation for the resistance 
is that increased serine phosphorylation of retinoid X receptor alpha (RXRa) by the 
Ras/MAPK pathway leads to its degradation, and thus VDR loses its heterodimeric 
partner for gene transactivation [112]. Yet another possibility is that VDR coactiva-
tors in SCCs are not appropriate for transactivation of differentiation-inducing genes 
[95]. Specifically, it was suggested that the expression of differentiation markers 
required a complex of VDR with the Src family of coactivators [113], but in SCC 
the DRIP coactivator complex is overexpressed, and there is a failure of SCCs to 
switch from DRIP to Src, resulting in the inability to express genes required for dif-
ferentiation. It would be interesting to learn if this model has a wider applicability.

7.2.5  Osteosarcoma and Osteoblasts

Differentiation, as well as growth inhibition, has been documented in 1,25D-treated 
human and rat osteosarcoma cells [114, 115]. The differentiation was recognized by a 
morphological change to the chondrocyte phenotype, and by increased Alk Pase stain-
ing. The presence of Alk Pase or osteocalcin could also be detected at the mRNA 
level [115]. In human fetal osteoblastic cell line responsive to 1,25D, mineralized 
nodules were detected [116], demonstrating that an advanced degree of differentia-
tion can be achieved in this cell system. Interestingly, 1,25D-induced differentiation 
in osteoblasts and osteocytes is accompanied by an increase in the potential for cell 
survival through enhanced anti-apoptotic signaling [117]. It is possible that this is 
mediated by EGFR-relayed signals, as in contrast to other cell types [32, 62, 118], 
1,25D-treated osteoblastic cells show increased levels of EGFR mRNA [119].

Recent studies suggest that the anti-apoptotic effects of 1, 25D on osteoblasts and 
osteocytes are mediated by Src, PI3K, and JNK kinases [117]. The suggested 
mechanisms include an association of Src with VDR, though transcriptional mecha-
nisms were required, as shown by an inhibition of the biological effect by exposure 
to actinomycin D or cycloheximide. The association of VDR with other proteins may 
be particularly important in osteoblast cells induced to differentiate by 1,25D, as another 
group reported that IGF-binding protein-5 (IBP-5) interacts with VDR, and blocks 
the RXR/VDR heterodimerization in the nuclei of MG-63 and U2-OS cells, thus 
attenuating the expression of bone differentiation markers [120]. Also, in ROS 17/28 
cells the NFkB p65 subunit integrates into the VDR transcription complex and dis-
rupts VDR binding to its coactivator Src-1 [121]. Although protein–protein binding 
between VDR and p65 has not been demonstrated, this remains a possibility, further 
highlighting the importance of this mode of control of VDR activity.



1557 Induction of Differentiation in Cancer Cells by Vitamin D

7.3  Leukemias

Hematological malignances are a diverse group of diseases, but can be divided into 
two major groups, the lymphocytic and myeloid leukemias. Although normal acti-
vated B and T lymphocytes express VDR, and 1,25D has antiproliferative effects 
on these cell types (e.g., [122, 123]), this does not appear to alter their differentia-
tion state, and lymphocytic leukemia cells do not respond to 1,25D. In contrast, 
1,25D has been known since 1981 to induce maturation of mouse myeloid leukemia 
cells [124], and this can also take place in a wide variety of human myeloid leukemia 
cell lines, with the exception of the lines derived from the most immature acute 
myeloid leukemia (AML) blast cells (e.g., [125–127]).

Differentiation induced by 1,25D usually results in a monocyte-like phenotype, 
but prolonged exposure to 1,25D confers cell surface changes that result in adher-
ence to the substratum, making the differentiated cells macrophage-like [124, 128]. 
The monocyte characteristics are recognized by changes related to phagocytosis, 
such as the ability to break down esters, assayed by the “non-specific esterase” 
(NSE) cytochemical reaction, also known as “monocyte-specific esterase” (MSE) 
since in the hematopoietic cells this esterase is specific for monocytes and mac-
rophages [129]. Also related to phagocytosis is the ability to generate reactive oxygen 
species (ROS) including superoxide, usually recognized by the nitroblue tetrazolium 
(NBT) or cytochrome reduction [130, 131]. The availability of Flow Cytometry (FC) 
for the recognition of surface proteins has made the study of the differentiating 
effects of 1,25D on myeloid leukemia cells quite simple, using CD14, a receptor for 
complexes of lipopolysaccharides (LPS) and LPS-binding protein [132], a near-
definitive marker of the monocytic phenotype. This is usually supplemented by the 
FC determination of CD11b, or another subunit of the human neutrophil surface 
protein that mediates cellular adherence [133]. In contrast to myeloid cells induced 
to differentiate by the phorbol ester TPA, in 1,25D-treated cells the ability to adhere 
develops more slowly than the ability to phagocytose. Consequently, 1,25D treat-
ment results in an earlier appearance of the CD14 antigen, usually accompanied in 
parallel by MSE positivity, than the appearance of CD11b and NBT positivity 
[134, 135]. Generally, at least two of the above parameters are measured to demon-
strate monocytic differentiation, and FC methods require the use of paired isotypic 
IgG controls for each test sample to avoid obtaining false-positive data. Exposure of 
AML cells to 1,25D also results in G1 phase cell cycle arrest, which follows, rather 
than precedes, the phenotypic differentiation [134], and is often taken as the confir-
matory evidence that differentiation has taken place. However, in contrast to cells 
from most solid tumors, monocytic differentiation of AML cells is accompanied by 
increased expression of anti-apoptotic proteins, and consequently 1,25D-treated 
myeloid cells have an increased cell survival potential [136–140].

The topic of 1,25D-induced leukemia cell differentiation has been extensively 
studied in many laboratories. These include several groups in Japan [141–145], and 
a group in Birmingham, England [146, 147], who made many valuable contribu-
tions to the field. Notably, combined basic and clinical studies of 1,25D-induced 
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leukemia cell differentiation were very comprehensively developed by Koeffler and 
his various collaborators [148–151]. Their impressive achievements are described 
in the preceding chapter in this volume. Accordingly, what follows in the remainder 
of this section is an outline of the signaling mechanisms of AML cells that have 
occupied the attention of the corresponding author’s laboratory.

In these studies, the laboratory has focused on HL60 cells, a widely available 
cell line derived from a patient with promyeloblastic leukemia, with the objective 
of achieving with the currently available tools as clear a picture as possible of the 
signaling of monocytic differentiation. In this model, outlined in Figs. 7.3 and 7.4, 
a plausible sequence of events is presented, but it is likely that other pathways are 
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Fig. 7.3 Suggested signaling of the early stages of 1,25D-induced monocytic differentiation. 
Binding of 1,25D to vitamin D receptor (VDR) stimulates its translocation to the cell nucleus, 
where it heterodimerizes with retinoid X receptor (RXR) and in myeloid precursor cells transacti-
vates genes containing vitamin D

3
 response element (VDREs) in their promoter regions. These 

include genes which encode proteins involved in calcium homeostasis and bone integrity, such as 
osteocalcin (hOC), osteopontin (hOP), and the 1,25D-catabolic enzyme 24-hydroxylase 
(24OHase). It is postulated that the regulators of signaling pathways, e.g., KSR-1, are also 
upregulated in myeloid cells and alter Ras signaling from the cell membrane, so that signaling by 
Mitogen activated protein kinases (MAPKs) (MEKs, ERKs, and JNKs) increases the AP-1 activity. 
This can have a positive feedback effect on differentiation by increasing VDR abundance. It is also 
suggested that a potential negative feedback mechanism is provided by p38 MAPK, as inhibition 
of its signaling by SB203580 enhances 1,25D-induced monocytic differentiation
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also operative, but remain to be convincingly demonstrated. The details of the scheme 
are described below.

7.3.1  Signaling of Monocytic Differentiation by MAPK 
and Parallel Pathways

Early in our investigations we recognized that 1,25D-induced monocytic differen-
tiation is not a single continuous process, but a series of events that can be divided 
into at least two overlapping phases. In the first phase, which lasts 24–48 h, the cells 
continue in the normal cell cycle while expressing markers of monocytic pheno-
type, such as CD14 and NSE. In the next phase, the G1 to S phase cell cycle block 
becomes apparent, and the expression of CD11b is also prominent, indicating a 
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Fig. 7.4 Later stages of 1,25D-induced differentiation. This figure illustrates that the transcrip-
tion factor Egr-1, known to be upregulated by 1,25D (189), can increase the expression of p35/
Nck5a (p35) activator of Cdk5. Cdk5 activated by p35 then can phosphorylate MEK on Thr286, 
a site which inactivates it [200], as shown by the Q symbol. This diminishes ERK1/2 activity, 
downstream from MEK (not shown here), but Raf-1 can activate p90RSK directly, which in turn 
activates the transcription factor C/EBP b, perhaps bound to pRb, and increases the expression of 
CD14, as part of monocytic differentiation. The activation of p90RSK may also be increased by 
the Jun N-terminal kinase (JNK) pathway, which also activates AP-1, and may lead to VDR 
expression. The interplay between the signaling by 1,25D, growth factor, and stress add to the 
overall complexity of the induction of the monocytic phenotype
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beginning of the transition to the macrophage phenotype. The first phase is 
characterized by high levels of ERKs activated by phosphorylation, and these levels 
decrease as the cells enter the second phase, while the levels of the cell cycle inhibitor 
p27KIp1 increase at that time. Serum-starved HL60 cells or cells treated with the 
MAPK inhibitor PD 98059 have reduced growth rate and a slower rate of differen-
tiation, but the G1 block under these conditions also coincides with decreased levels 
of activated ERK1/2 [152]. Our data suggested that the MEK/ERK pathway main-
tains cell proliferation during the early stages of differentiation, and the consequent 
G1 block leads to “terminal” differentiation. Using a different experimental design 
similar results were obtained by Marcinkowska [153].

We also demonstrated that the JNK pathway, as shown by the increased phos-
phorylation of c-jun, plays a role in the induction of differentiation of HL60 cells 
by 1,25D. The data showed that 1,25D-induced differentiation of a stable clone of 
U937 cells transfected with a dominant negative construct of JNK-1 was reduced, 
as compared to cells transfected with a control construct [154], and potentiation of 
1,25D-induced differentiation by the plant antioxidants curcumin and silibinin 
increased the phosphorylation of c-jun [155]. This suggested that the JNK-jun 
pathway is involved in 1,25D-induced differentiation, and was further established 
in experiments which showed that the AP-1 transcription factor complex is required 
for this process, since c-jun, together with ATF-2, is the principal component of this 
complex [140]. This appears to be of wider significance, as c-jun expression was 
also reported to enhance macrophage differentiation of U937 cells [156].

However, it seems clear that the ERK and JNK MAPK pathways are not the 
only ones involved in signaling of 1,25D-induced differentiation. For instance, 
compounds SB203580 and SB2902190, reported to be specific inhibitors of the 
signaling protein p38 MAP kinase [157], were found to markedly accelerate 
monocytic differentiation of HL60 cells induced by low concentrations of 1,25D 
[158]. Paradoxically, these compounds also induced a sustained enhancement of 
p38 phosphorylation and of its activity in cell extracts in the absence of added 
inhibitor, which raised the possibility of a lack of specificity of SB compounds in 
this cell system, or of an up-regulation of the upstream components of the p38 
pathway. In addition, SB 203580 or SB 202190 treatment of HL60 cells resulted 
in a prolonged activation of the JNK and the ERK MAPK pathways [158]. Honma 
and colleagues also found that SB203580 treatment of HL60, HT93 and ML-1 
human myeloid leukemia cell lines increased cellular ERK activity [159]. These 
data are consistent with the hypothesis that in HL60 cells an interruption of a nega-
tive feedback loop from a p38 target activates a common regulator of multiple 
MAPK pathways, but it is also possible that SB203580 has an additional, 
unknown, action.

Another signaling cascade known to be activated by 1,25D in human AML cells 
is the PI3K-AKT pathway, which is often envisaged to signal from the cell mem-
brane to the intracellular regulators in parallel with the MAPK pathways, e.g., 
[160]. As first noted by Reiner and colleagues [161], monocytic leukemia cells 
THP-1 exposed to 1,25D in serum-free medium show a rapid and transient increase 
in PI3K activity, which was attributed to the formation of a VDR-PI3K protein 
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complex. However, it is not clear if the lack of growth factors normally provided by 
the serum contributes to the observed effects. The role of the PI3K pathway in 
1,25-induced differentiation was further studied by Marcinkowska and colleagues 
[162–164], who showed that the activation of PI3K by 1,25D can also be demon-
strated in HL60 cells, and that the signal is transmitted to AKT. This function of 
AKT may contribute to the differentiation-related increase in 1,25D-induced cell 
survival [139]. An additional role of PI3K, as well as of the Ras/Raf/ERK, pathway 
in human leukemia cells is the stimulation of steroid sulfatase activity, an enzyme 
that converts inactive estrogen and androgen precursors to the active sex hormones 
[147]. If this is also operative in breast and/or prostate tissues, it could offer an 
explanation for the mutual activation of VDR and the estrogen and androgen 
nuclear receptors, as shown in Fig. 7.2.

The mechanisms of the upregulation of MAPK pathways in the initial phase of 
1,25D action on leukemia cells are still unclear. The very rapid effects of 1,25D on 
the MAPK pathway in intestinal cells that result in rapid calcium transport (“tran-
scaltachia”) have been attributed to a cell membrane receptor (“mVDR”) [165–167], 
but whether direct, non-genomic action of such mVDR can initiate or enhance 
MAPK pathways activity in leukemia cells has not been well documented. In non-
starved leukemia cells, 1,25D elicits less rapid (hours rather than minutes) activa-
tion of the MAPKs. One possibility is that this is achieved by the transcriptional 
upregulation of Kinase Suppressor of Ras-1 (KSR-1), a membrane-associated kinase/
molecular scaffold, also known as ceramide-activated protein kinase [168, 169]. 
Although a kinase activity associated with KSR-1 has been reported [170–172], the 
best established function of KSR-1 is to provide a platform for Raf-1 kinase to 
phosphorylate and thus activate its downstream targets in the MAPK pathways 
[173, 174]. Thus, since KSR-1 has been shown to have a functional DNA element 
regulated by VDR (VDRE) [175], the activation of the MAPKs may be a direct, 
“genomic” action of 1,25D, as depicted in Fig. 7.3, rather than signaling initiating 
at the membrane and “non-genomic.”

Our studies [169, 176] combined with those of Marcinkowska and colleagues 
[164, 177] suggest that leukemia cell differentiation is initiated when 1,25D promotes 
nuclear translocation of liganded VDR, which dimerizes with RXR and transacti-
vates several VDRE-regulated genes, including KSR-1 and KSR-2. The latter 
appears to have a role in increasing the survival potential of differentiating mono-
cytic cells [24], while KSR-1 acts as a scaffold, which by simultaneously binding 
to Ras and Raf-1 (and perhaps other proteins) facilitates or redirects the signaling 
cascade, at least initially, to MEK/ERK, and thus amplifies the signal that initiates 
monocytic differentiation (Fig. 7.3).

Raf-1 participation has been shown to be required for the later stages of differ-
entiation, when animpairment in cell cycle progression becomes apparent, and at 
this more advanced point of the differentiation process MEK/ERK signaling does 
not appear to be involved [178, 179]. While this requires further study, the current 
model, also supported by observations in other differentiation signaling systems 
[180–182], suggests that Raf-1 can signal p90RSK activation independently of 
MEK and ERK, as outlined in Fig. 7.4.
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A rather speculative mechanism describing how MEK/ERK signaling is diminished 
in the later stages of differentiation, when cell proliferation becomes arrested, is 
presented below.

7.3.2  p35/Cdk5, a Protein Kinase System That May Interface 
Differentiation Processes with Cell Cycle Arrest

After 24–48 h of exposure of myeloid leukemia cells to moderate concentrations of 
1,25D (1–10 nM), cell cycle progression becomes progressively arrested, princi-
pally due to a G1 to S phase block, though a G2 phase block can also be observed 
[183]. Several mechanisms could explain these cell cycle effects, and these include 
activation of cyclin-dependent kinase 5 (Cdk5).

Cdk5 is a proline-directed serine-threonine kinase with sequence homology to 
the cyclin-activated kinases which regulate cell cycle progression, but its best 
known function is participation in differentiation of neuronal cells [184]. When 
combined with a “cyclin-like” neuronal Cdk5 activator (Nck5a) 35 kDa protein 
(p35/Nck5a, or p35), the p35/Cdk5 complex functions in monocytic cells and has 
an important role in the normal, and possibly abnormal development of this 
hematopoietic lineage. Our initial observations were that in HL60 cells treated with 
1,25D the monocytic phenotype and expression of Cdk5 appear in parallel. Both 
active and inactive Cdk5 was associated with cyclin D1 protein, and the inhibition 
of Cdk5 expression by an antisense oligonucleotide construct reduced the intensity 
of 1,25D-induced expression of the monocytic marker CD14 [185]. This finding 
demonstrated a novel (other than neuronal) cellular type for Cdk5 activity, and a 
concomitant enhancement of monocytic differentiation.

The above study showed that protein levels and kinase activity of Cdk5 increase 
in HL60 cells induced to monocytic differentiation by 1,25D, but did not establish 
the specificity of the association of Cdk5 with the monocytic phenotype. Therefore, 
we showed in a subsequent study that the upregulation of Cdk5 does not occur in 
granulocytic differentiation, whereas an inhibition of Cdk5 activity by the pharma-
cological inhibitor olomoucine, or of its expression by a plasmid construct expressing 
antisense Cdk5, switches the 1,25D-induced monocytic phenotype (a combination 
of the positive NSE reaction, the expression of the CD14 marker, and morphology) 
to a general myeloid phenotype (a positive NBT reaction, the CD11b marker, and 
morphology) [186]. These findings showed that in human myeloid cells the up-
regulation of Cdk5 is specifically associated with the monocytic phenotype.

The Nck5a 35 kDa protein has hitherto been considered to be exclusively 
expressed in neuronal cells, as its name implies [187]. However, since we had clear 
evidence that Cdk5 is an active kinase in human leukemia cells HL60 and U937 
induced to differentiate with 1,25D, and since the “classical” cyclins (e.g., cyclin 
D1, cyclin E) are not known to activate Cdk5, we investigated whether p35 can be 
detected in cells with active Cdk5. Indeed, we demonstrated that p35 is expressed 
in normal human monocytes and in leukemic cells induced to differentiate toward 
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the monocytic lineage, but not in lymphocytes, or cells induced to granulocytic 
differentiation by retinoic acid. The activator p35 is present in a complex with Cdk5 
that has protein kinase activity, and when ectopically expressed together with Cdk5 
in undifferentiated HL60 cells it induces the expression of CD14 and NSE markers 
of the monocytic phenotype [188]. These observations not only indicate a func-
tional relationship between Cdk5 and p35, but also support a role for this complex 
in monocytic differentiation.

A likely link to the diminution of ERK MAPK pathway activity at the onset of 
phase 2 of 1,25D-induced differentiation is provided by the EGR-1 → p35/Cdk5 
---|  MEK 1/2 pathway, that was elucidated in leukemia cells by this laboratory 
[189]. The schematic representation is shown in Fig. 7.4, and the supporting data 
can be summarized as follows.

7.3.2.1  Control of p35 Expression by the EGR-1 Transcription Factor

The evidence that supports a role of EGR-1 in regulating the expression of p35 
includes the coordinate expression of EGR-1 along with Cdk5, and the co-inhibition 
of the 1,25D-induced upregulation of these proteins by PD 98059, an inhibitor of the 
MEK/ERK1/2 pathway [171, 190]. Further, the promoter region of human p35 has 
an EGR-1 binding site that overlaps with an Sp1 site, and a gel shift assay showed 
that a double-stranded oligonucleotide that contained this sequence bound proteins 
in nuclear extracts from 1,25D-treated HL60 cells. The EGR-1-site binding proteins 
were competed most efficiently by an anti-EGR-1 antibody, though some competi-
tion was also observed with an anti-Sp1 antibody, but no competition was observed 
with an irrelevant antibody, e.g., anti-VDR. The data suggested that EGR-1, and 
perhaps Sp1 proteins, regulate the expression of p35 and contribute to induction of 
the monocytic phenotype. A “decoy” EGR-1 response element oligonucleotide inhib-
ited both 1,25D-induced p35 expression and monocytic differentiation [189].

7.3.2.2  The Cdk5/p35 Complex Phosphorylates MEK

We also found that the Cdk5/p35 can phosphorylate MEK in cell extracts [189]. If 
this can be demonstrated to occur in leukemia cells, it will provide a potential 
mechanism for the inhibition of the MAPK/ERK pathway seen in the later stages of 
differentiation (48 h after the addition of 1,25D to the cultures), since phosphoryla-
tion of MEK by p35/Cdk5 inhibits its kinase activity. Intriguingly, upregulation of 
p35 (which activates Cdk5) is observed pari passu as ERK 1/2 phosphorylation is 
waning, consistent with a cause–effect relationship. We have thus proposed a 
mechanism that can shut down cell proliferation, possibly by allowing p27Kip1 to 
accumulate in the cell nucleus due to a decline in ERK 1/2 activity, since it has been 
reported that the ERK pathway can increase nuclear export of p27 [191].
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7.3.2.3  C/EBP B Transcription Factor as an Effector of Monocytic 
Differentiation

One of the downstream targets of the MAPK-RSK pathway is a nuclear transcription 
factor, the CAAT and Enhancer Binding Protein b (C/EBP b). This transcription factor 
has been reported to be activated by phosphorylation both by ERK [192] and by RSK 
[193], and can interact directly with the promoter of CD14, one of the principal markers 
of monocytic differentiation [194], as illustrated in Fig. 7.4. We showed that the expres-
sion of C/EBP b is increased by 1,25D in parallel with markers of differentiation; 
conversely, the knockdown of its expression by antisense oligonucleotides, or of its 
transcriptional activity by “decoy” promoter competition, inhibited 1,25D-induced 
differentiation [195]. In an additional study, the data suggested that 1,25D induced 
phosphorylation of C/EBP b isoforms on Thr235, and that the C/EBP b-2 isoform is 
one of the principal differentiation-related transcription factors in this system [87].

These findings suggest that 1,25D can induce leukemic progenitor cells, which 
have the potential to differentiate into several hematopoietic lineages, to become 
nonproliferating monocyte-like cells by changing the ratio of nuclear transcription 
factors in a manner that permits this form of differentiation [196]. In this scenario, 
the event that initiates leukemic transformation, such as a mutation, alters the 
proper balance of transcription factor activity necessary for normal granulocytic 
cell differentiation. However, 1,25D-induced expression of C/EBP b then allows 
the cells to bypass this block to granulocytic differentiation by becoming mono-
cyte-like cells instead (Fig. 7.5).
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Fig. 7.5 The suggested role of CAAT/enhancer binding protein b in 1,25D-induced bypass of the 
differentiation block in leukemia cells. In this scenario, C/EBP a is indispensable for normal 
granulopoiesis, while C/EBP b regulates monocytic differentiation. When C/EBP a is mutated or 
inactivated and granulopoiesis is blocked, immature myeloid cells accumulate in the bone marrow 
and appear in the peripheral blood resulting in acute myeloid leukemia (AML). 1,25D-induced 
expression of C/EBP b may allow the cells to bypass this block to granulocytic differentiation by 
switching the lineage of cell differentiation from granulocytes to monocytes
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Interestingly, 1,25D has also been reported to have a negative effect on 
 differentiation, as it inhibits IL-4/GM-CSF-induced differentiation of human mono-
cytes into dendritic cells, and this contributes to 1,25D immunosuppressive activity 
[197, 198]. The data also suggested that 1,25D specifically downregulates the 
expression of CSF-1, and promoted spontaneous apoptosis of mature dendritic cells, 
further demonstrating the pleiotropic effects of 1,25D and the cell type-specificity of 
the outcomes.

7.4  Conclusion

The signaling pathways presented here are shown to control the activity of several 
transcription factors, such as the ubiquitous AP-1 complex, the nuclear receptor 
VDR, and the lineage-determining C/EBP family of transcription factors. While 
these clearly play a role in 1,25D-induced differentiation of HL60 cells, there may 
be redundancy of important cellular regulators, and other pathways and transcription 
factors are likely to be involved. The initial steps that activate the differentiation-
inducing actions of 1,25D are not entirely clear, and while cell membrane-associated 
events have a role, these events are not necessarily rapid but are sustained. It is likely 
that microRNAs will be found to further control or modulate 1,25D signaling, as 
retinoic acid-induced differentiation of NB4 AML cells has been shown to be asso-
ciated with the upregulation of a number of microRNAs, and the downregulation of 
microRNA 181b [199]. Thus, extensive additional investigations are warranted to 
provide a basis for the design of improved therapies of leukemia and solid tumors.
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Abstract Epidemiological evidence suggests that there is an inverse relationship 
between vitamin D and cancer. To investigate this relationship, a number of preclin-
ical studies have been conducted focusing on the chemopreventive nature of dietary 
intake of vitamin D

3
 and the administration of the active metabolite of vitamin D

3
 

(1,25(OH)2 D
3
) and analogs of various forms of D

3
. In addition, clinical studies 

have also have begun to assess the role of vitamin D in cancer prevention focusing 
on the administration of vitamin D

3
. For colorectal and breast cancers, preclinical 

studies in a number of animal models suggest that diets containing sufficient levels 
of vitamin D

3
 and calcium may slow tumor progression. Additionally, studies in 

examining the use of 1,25(OH)2 D
3
 and/or analogs of vitamin D in animal models 

of colorectal, prostate, lung, and breast cancers further support the chemopreven-
tive potential for vitamin D in these cancers, when administered during early stage 
disease. Overall the preclinical studies support the chemopreventive role of vitamin 
D in cancer, however further studies are required to understand how to effectively 
utilize vitamin D in the clinic. Clinical studies have not strongly supported the use 
of vitamin D as a chemopreventive agent potentially due to study design. However, 
new trails are currently on-going to further assess the clinical benefits of vitamin D 
in reducing cancer incidence and mortality.
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8.1  Introduction

Current epidemiological data suggest that Vitamin D may act as a chemopreventive 
agent to reduce cancer incidence and mortality. The hypothesis that there is an 
inverse relationship between sunlight, vitamin D and cancer was first noted in 1937 
by Peller, who proposed that those exposed to more sunlight had fewer internal 
cancers [1]. Following Nixon’s declaration of war on cancer in 1970, maps were 
created to examine the geographical distribution of cancer mortality. It was these 
maps that lead the Garlands’ to publish a study in 1980, proposing that vitamin D 
and calcium protected against colon cancer [2]. This study caught the attention of 
many, leading to further research into the potential preventive nature of vitamin D 
against cancer.

It has been proposed that the serum 25(OH)D
3
 levels needed to obtain a pre-

ventive effect is in the range of 30–60 ng/mL. However, a large percentage of 
individuals have serum 25(OH)D

3
 levels far below that level and are thought to 

be vitamin D deficient. Vitamin D deficiencies are associated with lifestyle and 
environmental factors that result in inadequate sun exposure and dietary intake of 
vitamin D. The amount of vitamin D that is able to be synthesized in the skin by 
UV-B exposure is determined by a number of variables including: geographic 
latitude, weather, time of day, pollution and use of sun protection lotions or 
sprays [3, 7]. In addition, campaigns to control sun exposure due to its association 
with skin cancer may also play a role in the growing number of individuals with 
low vitamin D levels [4]. In the US, dietary vitamin D is responsible for only a 
small percent of serum 25(OH)D

3
 levels, as the American diet does not include 

many foods that are naturally high in vitamin D. Although many foods in the 
American diet are supplemented with vitamin D, such as milk, yogurt, select 
juices and bread products, the contributions are less than that of multi-vitamins 
[5]. Currently the majority of multi-vitamins only contain 400 international units 
(IU) of Vitamin D

3
. This is based on the 1997 recommendations of the Food and 

Nutrition Board (FNB) at the Institute of Medicine of The National Academies 
for adequate vitamin D

3
 intake [6]. However, due to changes in lifestyle that have 

resulted in reduced sun exposure it is now being suggested that daily intake rec-
ommendations be increased to ³1,000 IU [8]. Increasing the recommended daily 
vitamin D intake particularly during the winter months may reduce the number of 
people deficient in vitamin D [4].

Current epidemiological studies have examined the relationship between serum 
25(OH)D

3
 levels and both incidence and mortality rates in cancers of the colon, 

breast, prostate, ovarian, renal and lung. A recent review by Garland et al. stated 
that raising serum 25(OH)D

3
 levels to 40–60 ng/mL may prevent 58,000 new cases 

of breast cancer and 49,000 new cases of colorectal cancer, in addition to poten-
tially reducing the mortality rates of individuals with colon, breast and prostate 
cancer by as much as 50% [8]. An inverse relationship between sunlight exposure 
and lung cancer incidence has been proposed by Mohr et al. after examining data 
from patients in 111 countries [9].
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In addition to the large body of epidemiological evidence that supports the use 
of vitamin D as a chemopreventive agent for cancer, in vitro tissue culture studies 
have elucidated many of the mechanisms by which vitamin D and its active metab-
olites act to inhibit the growth of malignant cells [10–13]. These studies have set 
the foundation for in vivo preclinical and clinical studies. As the epidemiological 
and molecular mechanisms of vitamin D have previously been discussed, this chap-
ter will focus on the preclinical and clinical evidence that support the use of vitamin 
D as a chemopreventive agent across different cancer subtypes.

8.2  Pre-clinical Studies

Pre-clinical studies evaluating the chemopreventive effects of vitamin D are essen-
tial for establishing the rational for designing clinical trials. Here we summarize the 
pre-clinical studies that have been conducted in animal models of colon, prostate, 
breast, and lung and briefly discuss other tumor subtypes that are currently under 
investigation. These studies have examined not only differences in tumor growth 
associated with changes in dietary vitamin D levels but also through administration 
of the active metabolite of vitamin D (1,25(OH)

2
D

3
) or vitamin D analogs. In vitro 

assays of 1,25(OH)
2
D

3
 have demonstrated that 1,25(OH)

2
D

3
 is responsible for the 

most potent anticancer effects as measured by proliferation, apoptosis, differentia-
tion and cell cycle arrest [10–13]. However, administration of 1,25(OH)

2
D

3
 can 

cause hypercalcemia and associated toxicities; therefore analogs of 1,25(OH)
2
D

3
 

are also being examined in efforts to maintain anticancer responses while lowering 
toxicity [14].

8.2.1  Colorectal Cancer

Studies by Lipkin et al. and Newmark et al. examined the effects of a diet high in 
fat and low in vitamin D and calcium (Western-style diet) on the induction of neo-
plasms in the colons of C57Bl/6 mice with and without the adenomatous polyposis 
coli (APC) gene mutations [15–17]. Comparisons are made between mice fed the 
Western-style diet containing 20% fat (corn oil)/g, 0.5 mg calcium (Ca)/g and 
0.11 IU vitamin D

3
/g/diet and the AIN-76A diet containing 5% fat/g, 5 mg Ca/g 

and 1 IU vitamin D
3
/g/diet for various amounts of time ranging from several weeks 

to 2 years. These studies demonstrated that the C57Bl/6 mice on a Western diet 
developed hyperproliferative colon crypt hyperplasia while APC mice on a 
Western diet had an increased incidence of carcinoma with more invasive disease. 
However, mice that were fed diets high in vitamin D

3
 and calcium did not develop 

lesions.
Tangpricha et al. performed additional studies that further examined the effect 

of low vitamin D
3
 and calcium in the diet [18, 19]. In these studies, two cohorts of 
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MC-26 tumor bearing mice were used to examine the chemopreventive effects of 
dietary vitamin D

3
 through the administration 0 IU (vitamin D deficient cohort) or 

50,000 IU of vitamin D
3
 (vitamin D

3
 sufficient cohort) in the diet. When mice on 

the vitamin D
3
 deficient diet had a mean serum 25(OH)D

3
 level of £ 5 ng/mL, all mice 

in both cohorts received 10,000 MC-26 cells subcutaneously. The vitamin D suffi-
cient cohort maintained a mean 25(OH)D

3
 serum level of 26 ng/mL. This study also 

demonstrated that a diet deficient in vitamin D results in larger tumor volumes as 
compared to a vitamin D sufficient diet.

In addition to examining the effects of dietary intake of vitamin D
3
, studies have 

been performed to examine the chemopreventive effects of the active metabolite of 
vitamin D, 1,25(OH)

2
D

3
 on the formation and the progression of colorectal cancers. 

Fichera et al. examined the chemopreventive effect of a 1,25(OH)
2
D

3
 analog 

(1a,25-dihydroxy-16,23(Z)-diene-26,27-hexafluoro-19-nor-cholecalciferol) 
(Ro26–2198) on colon carcinogenesis in A/J mice treated with the carcinogens 
azoxymethane (AOM) and Dextran sulfate sodium (DSS) [20]. The AOM/DSS 
carcinogen-induced mouse model recapitulates many aspects of human colon can-
cer via the induction of colitis that progresses into carcinoma. The AOM/DSS mice 
received Ro26–2198 (0.01 mg/kg body weight/day × 28 days) or vehicle by mini-
osmotic pump 1 week prior to treatment with carcinogen. Subsequently, AOM/SDS 
mice are treated with a single dose of 5 mg/kg AOM and receive 3% DSS in their 
water for 7 days at the beginning of week 3. Mice receiving Ro26–2198 treatment 
had a delayed onset of colitis and those not treated with Ro26–2198 had several 
dysplastic foci. These results support a chemopreventive effect of vitamin D in 
colorectal cancer.

To further support that vitamin D has chemopreventive properties, Kallay et al. 
compared hyperproliferation and oxidative damage in mice with wild-type vita-
min D receptor (VDR) (VDR+/+), heterozygote VDR (VDR+/−) and knock out of 
the VDR (VDR−/−) mice [21]. An inverse relationship was found between VDR 
expression and proliferation in the colon, with the VDR −/− mice having a higher 
rate of proliferation. These studies demonstrate a significant role for vitamin D in 
modulating proliferation. Additionally it was demonstrated that there was an 
increase in the expression of 8-hydroxy-20-deoxyguanosine (8-OHdG), a marker 
of oxidative stress in the VDR−/− mice resulting in the VDR−/− mice having a 
higher amount of oxidative damage. Over all this study demonstrated that the 
genomic action of 1,25(OH)

2
D

3
 that is modulated by VDR expression is required 

to protect against the nutritional linked hyperproliferation and oxidative 
damage.

By and large, the preclinical studies examining the effect of vitamin D
3
 in the 

diet and/or administration of the active metabolite or its analogs support the notion 
that there is chemopreventive potential for vitamin D in colorectal cancers. The 
rationale that vitamin D has chemopreventive potential is further reinforced by the 
demonstration that there is a relationship between VDR status and proliferation. 
More studies may be required to further elucidate the impact of dose and timing for 
clinical studies; however, it is plausible that vitamin D can alter the course of pro-
gression of colorectal cancers.
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8.2.2  Prostate Cancer

In a study by Banach-Petrosky et al. the chemopreventive activity of 1,25(OH)
2
D

3
 

was investigated in the Nkx3.1;Pten mutant model of prostate cancer [18]. This 
model has a loss of function of Nkx3.1 and the tumor suppressor Pten. With time, 
Nkx3.1;Pten mutant mice develop progressive prostate cancer with histopathology 
ranging from intraepithelial neoplasia (PIN) to adenocarcinoma. In this study, wild-
type litter mates (Nkx3.1+/+;Pten+/+) were compared with mutant mice 
(Nkx3.1−/−;Pten+/−). An osmotic pump was used to give a continuous dose of 
1,25(OH)

2
D

3
 to the animals at a rate of 0.25 mL/h for a dose of 46 ng/kg/day. 

Treatment was initiated prior to the formation of cancerous lesions or after cancer 
had been established. Disease status was evaluated by histological evaluation. 
Treatment with 1,25(OH)

2
D

3
 had no effect on the wild-type litter mates. However, 

mutant mice displayed a reduction in high-grade PIN lesions when treatment was 
administered prior to the onset of cancer. In the precancerous cohort treated with 
vehicle alone 0/8 animals had low-grade PIN and 8/8 had high-grade PIN with inva-
sion compared with the 1,25(OH)

2
D

3
 treatment cohort that had 10/12 with low-

grade PIN and 2/12 with high-grade PIN. In contrast when 1,25(OH)
2
D

3
 was 

administered to animals with established disease no preventive effect was observed. 
This study demonstrated a clear preventive effect of 1,25(OH)

2
D

3
 when treatment 

was administered in the precancerous stage.
Perez-Stable et al. used the Gg/T-15 model of prostate cancer to examine the 

chemopreventive activity of the 1,25(OH)2D
3
 analog EB1089 [22]. The Gg/T-15 

model is a transgenic mouse model that uses the human fetal the globin promoter 
to express SV40 T antigen. These mice rapidly develop prostate cancer with 
expression of the transgene detectable by 11 weeks of age and tumors present by 
16 weeks of age. The transgene is expressed in the cells in the basal layer of the 
prostate. The tumors that develop are refractory to androgens and have a more 
neuroendocrine phenotype. Mice were administered EB1089 by IP injection three 
times a week at 0.5, 2, 3, 5, or 10 mg/kg starting at 14 weeks of age, 0.5, 2, 3, or 
4 mg/kg at 12 weeks of age and 2 mg/kg at 9 weeks of age. Animals were palpated 
for tumors 3× week and tissues collected 21 days post detection of a palpable tumor 
or at 24 weeks of age. Prostatic tissues were collected and evaluated for the pres-
ence of tumors. In this model, no difference in the tumor incidence was observed 
at any treatment dose or timing of initiation of treatment. However, tumor size was 
decreased in animals treated with higher doses of EB1089 (>4 mg/kg) and the num-
ber of metastatic lesions was decreased in animals receiving the 10 mg/kg dose. The 
authors demonstrate that EB1089 inhibits growth in BPH-1 cells expressing SV40 
T antigen. Thus, the expression of the transgene does not render the cells unrespon-
sive to EB1089. The authors contend that the target cells in the model may be 
insensitive to vitamin D. This is supported by the low level of VDR expression in 
target cells that undergo carcinogenesis in this model. It should be noted that the 
most effective doses at inhibiting tumor size were not administered at the early time 
point (9 weeks of age). The doses given at the earliest time point were not effective 
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at inhibiting tumor growth and may have been too low to be effective. So while this 
study does not demonstrate a chemopreventive effect of the vitamin D analog, there 
are several factors that may contribute to the lack of response.

The studies in the Nkx3.1;Pten model indicate that vitamin D may elicit differ-
ent responses when administered in early versus late stage disease, with the pre-
ventive benefits being greatest when 1,25(OH)

2
D

3
 is administered prior to 

established disease. Elevated 1,25(OH)
2
D

3
 levels prevented/reduced disease pro-

gression when administered early, while 1,25(OH)
2
D

3
 had an antiproliferative 

effect on established disease. This study supports the use of vitamin D for the 
prevention of early stage prostate cancer. The studies using the Gg/T-15 model did 
not demonstrate a preventive effect of the vitamin D analog, but did demonstrate 
an antiproliferative response for the primary tumor and the metastatic lesions. The 
lack of a preventive effect in the Gg/T-15 model compared to Nkx3.1;Pten model 
could be due to several compounding factors. The target cells may not be able to 
respond to VDR as suggested by the lack of VDR; the dose of vitamin D used at 
the early stage disease was much lower than that used in the Nkx3.1;Pten model 
and was a dose that was not sufficient to reduce proliferation in the model; and the 
phenotype of the disease was different. The Nkx3.1;Pten model develops adeno-
carcinoma which retains androgen responsiveness while the Gg/T-15 model devel-
ops prostate cancer from the basal cells that is hormone refractory and has a more 
neuroendocrine phenotype. These studies suggest that vitamin D may be more 
effective as a chemopreventive agent against adenocarcinoma and less effective 
against hormone refractory disease. However, both studies support a role for vita-
min D to prevent/limit the growth of prostate cancer at both early and late stage 
disease.

8.2.3  Breast Cancer

To examine the chemopreventive effects of vitamin D in breast cancer similar meth-
ods seen in the examination of colorectal cancer were employed. Jacobson et al. 
used a carcinogen-induced rat model of breast cancer to examine the effects of a 
high fat combined with low vitamin D and low calcium diet on formation of tumors 
compared to a low fat and calcium and vitamin D sufficient diet [23]. The rat model 
utilized in this study was a female Sprague-Dawley rat treated with dimethylbenz(a)
anthracene (DMBA). At 43 days of age the rats received a starter diet consisting of 
7% sunflower seed oil (SF)/kcal, 1.5 mg calcium (Ca)/kcal, and 0.5 IU vitamin D

3
 

(D)/kcal. Subsequently, the rats were treated with 2.5 mg DMBA via gastric gavage 
and maintained on the starter diet for a second week. The rats were then split into 
six cohorts receiving: (I) 38.5% SF/kcal, 1.5 mg Ca/kcal and 0.5 IU D/kcal per diet; 
(II) 38.5% SF/kcal, 0.25 mg Ca/kcal and 0.05 IU D/kcal per diet; (III) 38.5% 
SF/kcal, 0.1 mg Ca/kcal & 0.05 IU D/kcal per diet; (IV) 7% SF/kcal, 1.5 mg Ca/kcal 
and 0.5 IU D/kcal per diet; (V) 7% SF/kcal, 0.25 mg Ca/kcal and 0.05 IU D/kcal 
per diet; and (VI) 7% SF/kcal, 0.1 mg Ca/kcal and 0.05 IU D/kcal per diet. The rats 
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were maintained on these diets for 24 weeks. At the end of 24 weeks the cohorts 
that were fed a high fat and low calcium and low vitamin D diet (Cohorts II and III) 
had a greater number of mammary lesions and tumors as compared to the low fat 
groups (Cohorts IV, V, VI). There were more tumors in the low fat, low vitamin D, 
low calcium cohort (Cohort VI) compared to the other low fat diet cohorts (Cohorts 
IV, V). Thus, suggesting that the combination of low vitamin D and low calcium 
results in enhanced mammary tumorigenesis, especially when combined with a 
high fat diet.

Similar to Jacobson’s study, Xue et al. examined the effects of low vitamin D 
and low calcium in combination with high fat diets on the number of terminal ducts 
in mouse mammary glands (NTDMG) in C57BL/6 J mice [24]. Terminal ducts are 
the cancer prone region in the mammary tissue of both mice and humans. An 
increase in the NTDMG increases the risk of developing mammary tumors; there-
fore this study used NTDMG to evaluate the effects of low vitamin D and low 
calcium in a high fat diet. Mice were split in to two cohorts, one received standard 
AIN-76A diet containing 12% Fat/kcal, 1.4 mg calcium (Ca)/kcal and 0.3 IU vita-
min D

3
 (D)/kcal/diet the other cohort received a high fat diet containing 40% Fat/

kcal, 0.11 mg Ca/kcal and 0.05 IU D/kcal per diet. The NTDMG were determined 
at 8, 14 and 20 weeks of diet administration. The authors further demonstrated that 
a diet high in fat and low in both vitamin D and calcium resulted in an increased 
risk for tumorigenesis as demonstrated by the increased NTFMG in mice on the 
high fat diet for 14 and 20 week. Furthermore, the increased NTFMG was also 
associated with increased proliferation in animals on high fat and low vitamin D 
and low calcium diets.

In addition to examining the effects of vitamin D
3
, Anzano et al. examined the 

chemopreventive nature of the 1,25(OH)
2
D

3
 analog,

,
 la,25-dihydroxy-16-ene-23-

yne-26,27-hexafluorocholecalciferol (Ro24–5531) in a carcinogen-induced rat 
model [14]. The carcinogen-induced N-nitroso-N-methyl urea (NMU) rat model 
used in this study forms invasive mammary adenocarcinoma in rats treated with a 
single intervenous injection of 15 mg/kg NMU [25]. The rats in this study were 
treated with NMU and a week following were put on a diet with either 0, 2.5, or 
1.25 nmol Ro24–5531/kg. The rats were followed for 6 months and palpable 
tumors were measured. The rats on the both Ro24–5531 supplemented diets had 
similar effect, in that there was ~24% reduction in tumor incidence compared to the 
diet with no Ro24–5531. Thus, these studies demonstrate a chemopreventive effect 
of Ro24–5531 against breast cancer in this model.

Murillo et al. also examined the chemopreventive effects associated with a dif-
ferent vitamin D analog, 1a (OH)D

5
 [26]. The authors sought to not only examine 

overall changes in incidence and multiplicity, but also examined stage specific 
effects of treating animals with 1a (OH)D

5
. To examine tumor incidence and mul-

tiplicity Sprauge–Dawley rats were treated with an intervenous injection of 50 mg/kg 
of the carcinogen, N-methyl-N-nitrosourea (MNU) to induce mammary tumors. 
The stage specific studies were conducted in Sprauge–Dawley rats that were treated 
with 15 mg of dimethylbenz(a)anthracene (DMBA) in 1 mL of corn oil intragastri-
cally. In the tumor incidence and multiplicity studies, the rats were given diets 
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containing either 0, 25, or 50 mg/kg 1a (OH)D
5
/diet beginning 2 weeks prior to 

MNU injections and followed for an additional 120 days. These studies  demonstrated 
that 1a (OH)D

5
 reduced both tumor incidence by 26.7% and 33.4% and tumor 

multiplicity by 25% and 50% in the 25 and 50 mg/kg 1a (OH)D
5
/diet groups 

respectively as compared to the untreated group. To examine the stage specific 
effects, three treatment cohorts were created all of which received 40 mg/kg 1a 
(OH)D

5
 in the diet beginning at the following times: I. prior to initiation/promotion 

at 2 weeks prior to DMBA treatment; II. during initiation at the time of DMBA; or 
III. during promotion at 1 week post DMBA treatment. A fourth group was treated 
with rat chow containing no 1a (OH)D

5
. The results of this study demonstrated no 

significant effects of 1a (OH)D
5
 in the diet during the initiation phase; however, 

tumor incidence was reduced by 37.5% in rats receiving 1a (OH)D
5
 during the 

promotional stage.
To further investigate vitamin D’s chemopreventive effect, Zinser et al. con-

ducted a study to examine the role of 1,25(OH)
2
D

3
 on mammary gland development 

during puberty [27]. After demonstrating that VDR was present in a number of 
mouse mammary cell lines the authors compared the mammary development in 
VDR−/− mice on a high calcium diet to VDRwt/wt mice. The study showed that the 
mammary glands in the VDR−/− mice were heavier, had enhance ductal growth and 
increased secondary branch points and had an increased number of terminal end 
buds compared to the VDRwt/wt mice.

Overall the examination of vitamin D
3
 in the diet and the administration of 

1,25(OH)
2
D

3
 or its analogs demonstrated a reduction in tumor incidence in a num-

ber of animal models. Additionally, the illustration that 1,25(OH)
2
D

3
 is involved in 

the control of mammary gland growth and development furthers the rationale that 
vitamin D

3
 may be useful in altering the course of mammary tumorigenesis. 

Together these studies provide rationale for continued exploration into the clinical 
application for vitamin D

3
 as a chemopreventive agent to potentially reduce the 

incidence and mortality of breast cancer.

8.2.4  Lung Cancer

There are currently no published studies examining the preventive effects of dietary 
vitamin D

3
 in lung cancer animal models. However, Mernitz et al. examined the 

active metabolite, 1,25(OH)
2
D

3
 for its potential to inhibit lung carcinogenesis in the 

4-(methynitrosamino)-1-(3-pyridyl)-1-butanone (NNK) carcinogen-induced animal 
model [28]. The mice in this study were fed a diet with 2.5, or 5 mg 1,25(OH)

2
D

3
/kg 

diet (0.5 and 1.0 mg 1,25(OH)
2
D

3
/kg body weight/day) for 20 weeks. A single 

administration of 100 mg/kg body weight of NNK was injected 3 weeks from the 
start of the 1,25(OH)

2
D

3
 diet. Following 20 weeks on the diet, the lungs of treated 

animals were analyzed and lung lesions were quantified to determine the incidence 
and multiplicity of pulmonary surface tumors. Lung tumor incidence was reduced 
by 36% in the mice treated with 2.5 mg/kg diet of 1,25(OH)

2
D

3
 and by 82% in those 
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treated with 5 mg/kg diet of 1,25(OH)
2
D

3
. The tumor multiplicity was reduced by 

85% in the 2.5 mg/kg diet of 1,25(OH)
2
D

3
 cohort and by 98% in the 5 mg/kg diet of 

1,25(OH)
2
D

3
 cohort. Although there was a reduction in both the tumor incidence 

and multiplicity, both groups had toxicities associated with treatment including 
weight loss and kidney calcium deposits. However, the authors demonstrated that 
the toxicities were ameliorated when 9-cis retinoic acid (15 mg/kg diet) was added 
to the diet.

In addition to examining how vitamin D effects tumor progression, Nakagawa 
et al. published a study examining 1,25(OH)

2
D

3
’s ability to prevent metastasis [29]. 

The ability of Lewis lung carcinoma (LCC) cells to metastasize to the lungs follow-
ing intravenous injection were evaluated in syngenic vitamin D receptor (VDR) 
null mutant (VDR−/−) mice and VDR wild-type (VDR+/+) mice. VDR−/− mice on a 
normal diet (1.2% calcium, 0.6% phosphorus and 108 IU vitamin D

3
/100 g diet) 

exhibit hypocalcemia and had extremely high serum levels of 1,25(OH)
2
D

3
. The 

authors hypothesized that the high serum levels would inhibit metastatic growth of 
the LCC cells. To test this hypothesis the hypocalcemia, and/or hypervitaminosis D 
were corrected in the VDR−/− mice using dietary manipulations. The results demon-
strated that the metastatic growth of LCC cells was greatly reduced in the VDR−/− in 
response to the high serum levels of 1,25(OH)

2
D

3
, suggesting high serum levels of 

1,25(OH)
2
D

3
 may act to prevent lung metastasis. Although these studies do demon-

strate that vitamin D has the potential to act as a chemopreventive agent in lung 
cancer, further studies are required to elucidate optimal formulation, dosing and 
administration methods to translate its usefulness in the clinic. In addition, more 
information about how vitamin D deficient versus sufficient diets effect the pro-
gression of lung cancer will also aid in elucidating the chemopreventive nature of 
vitamin D.

8.2.5  All Other Cancers

The chemopreventive nature of vitamin D is starting to be investigated in a number 
of other cancer subtypes that are less commonly studied, however few published 
studies exist to date. This section will summarize the one or two published studies 
that are available for melanoma, and retinoblastoma.

There is strong evidence that UV-B radiation that results in the synthesis of 
vitamin D in the skin also contributes to the development of melanoma [30]. 
Although UV-B exposure is a major contributor to vitamin D status, supplementa-
tion with dietary vitamin D is being suggested as a safer approach for populations 
at risk of melanoma. However, more recently studies are being conducted to exam-
ine if vitamin D may play a role in reducing some of the damaging effects associ-
ated with UV-B exposure, for example a study by Dixon et al. examined the use of 
a topical treatment of 0.33 mM 1,25(OH)

2
D

3
 in Skh:HR1 mice [31]. The Skh:HR1 

mice are hairless mice that form skin cancer following UV-B radiation. Mice were 
either untreated, treated with 1,25(OH)

2
D

3
 pre and post UV-B exposure or treated 
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with 1,25(OH)
2
D

3
 post UV-B exposure only. The treatment of 1,25(OH)

2
D

3
 pre and 

post UV-B exposure appeared to reduce the amount of DNA damage as measured 
by the number of cyclobutane pyrimidine dimers (CPDs) formed. Further examina-
tion into the efficacy of vitamin D as a preventive agent is required, however the 
current study begins to shed a positive light for a preventive mechanism for 
melanoma.

Retinoblastoma is common in children that has relatively high cure rates [32]. 
However, although treatments are successful they are often destructive and may 
cause visual impairment, thus finding methods to prevent progression may reduce 
the impairments associated with treatment. A study by Albert et al. examines the 
potential for the use of 1,25(OH)

2
D

3
 in the prevention of retinoblastoma in a trans-

genic mouse model of retinoblastoma [33]. The retinoblastoma transgenic mice 
express SV40 T antigen in the retina, which inactivates the p 105Rb protein resulting 
in the formation of ocular tumors beginning at 14 weeks of age [34]. 8–10 week old 
mice were treated with either 0.05 mg or 0.025 mg of 1,25(OH)

2
D

3
 five times a 

week for 5 weeks then sacrificed at 5 months age. In mice treated with high dose 
1,25(OH)

2
D

3
, 20% had no evidence of disease while the remaining had organ con-

fined disease. In the mice treated with low dose 1,25(OH)
2
D

3
, 13% had no evidence 

of disease. In contrast, all untreated mice formed bilateral disease that involved 
large invading tumors. This model clearly demonstrates that 1,25(OH)

2
D

3
 inhibits 

the growth and local extension of retinoblastoma, suggesting a potential preventive 
role for vitamin D for retinoblastoma.

8.2.6  Summary

Overall the preclinical studies support a chemopreventive role for vitamin D in 
cancer. More studies are needed to understand the impact of vitamin D deficiency 
on cancer initiation and progression. Likewise, more information is needed to 
define sufficient levels of vitamin D necessary to achieve an anticancer benefit as 
well as defining the optimal levels for achieving the greatest anticancer benefit. 
A greater understanding of the molecular mechanism by which vitamin D exerts its 
chemopreventive effects and defining the molecular phenotype of the target cells 
that respond to vitamin chemoprevention therapy will enhance our ability to effec-
tively utilize vitamin D and its analogs to reduce the incidence and impact of can-
cers in the clinic.

8.3  Clinical Prevention Trials

While the epidemiology of vitamin D status has been associated with lower cancer 
rates, supported by preclinical research, there have been only a few clinical preven-
tion trials in humans that appear in the literature. These trials are included in the 
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following discussion. While the doses have varied, all use the vitamin D in the form 
of vitamin D

3
 (cholecalciferol)

.

8.3.1  Results from the Women’s Health Initiative

The Women’s Health Initiative (WHI) CaD trial was a double-blind, placebo 
control factorial trial of 36,282 postmenopausal women treated with 1,000 mg/
day of calcium and 400 IU/day of vitamin D, in the form of vitamin D

3
 [35–37]. 

The primary endpoint for this trial was hip fracture with colon cancer as an estab-
lished secondary endpoint. Women were excluded from the trial if they had a 
predicted survival of less than 3 years, current use of corticosteroids, a history of 
renal stones, and regular intake of vitamin D supplements of 600 IU/day. 
Adherence between the treatment groups was comparable as was the frequency 
of sigmoidoscopy.

Colorectal Cancer (CRC) Endpoint: After an average of 7 years of follow-up, 
168 were diagnosed with colon cancer in the treatment group and 154 were diag-
nosed in the placebo group. These results showed a non-significant difference in the 
rates of colorectal cancer, with a hazard ratio (HR) of 1.08 (95% confidence inter-
val (CI) 0.86–1.34). The association between the treatments and colorectal cancer 
did not change when women with prior CRC were excluded.

Breast Cancer (BC) Endpoint: The hazard ratio (HR) for invasive breast cancer 
was 0.96 (95% CI = 0.85–1.09) between the treatment group (n = 528) and the 
placebo group (n = 546), after an average of 7 years of follow-up. No significant 
interactions were noted with physical activity or BMI, both independent risk 
 factors for breast cancer. Breast cancer histology and stage were not significant 
factors in breast cancer rates between the two treatment groups, however the 
tumors found in the treated patients were significantly smaller, with a p = .05. 
Mortality endpoint: another secondary endpoint evaluated in the WHI Calcium-
Vitamin D trial was total mortality. A total of 744 deaths were reported in the 
treatment group versus 807 in the placebo group. The HR for total mortality was 
0.91 (95% CI = 0.83–1.01). Additional HRs calculated for stroke and cancer were 
consistently non-significant. Age and seasonality did not show significant interac-
tions with the mortality outcome.

Toxicity and Safety of the Interventions: As reported in 2006, there was no 
significant association with the treatment groups and death (HR = 0.91, 95% 
CI = 0.83–1.01), total cancer risk (HR = 0.98, 95% CI = 0.91–1.05), cancer death or 
colorectal polyps (HR = 0.94, 95% CI = 0.83–1.01). The major toxicity of vitamin 
D supplementation is related to increased serum calcium and renal stones. There 
was a significant increase in the reports of kidney stones in women in the treatment 
versus placebo groups (HR = 1.17, 95% CI = 1.02–1.34, p = .02). While there were 
no obvious benefits of supplementation with calcium and vitamin D

3
, there was an 

increase in reported toxicities, even at a dose that is now considered low by current 
supplementation levels.
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There are limitations to this trial. The dose of vitamin D
3
 may not have been 

large enough to substantively change vitamin D status, to the range seen in epide-
miologic studies. Since the start of the WHI, other supplementation studies have 
used doses more in the range of 800–2,000 IU vitamin D/day. This is compounded 
by compliance issues. Particularly in the colorectal analysis, the authors suggest 
that since participants were not discouraged from taking additional calcium and 
vitamin D supplements and reported an increased in supplementation that was 
greater than the national average, the drop-in to the treatment would make differ-
ences in CRC between treatment groups more difficult to detect. Finally, the length 
of follow-up was in the range of 7 years. It may be that the length of treatment to 
change to course of CRC progression may be more in the range of 10–20 years. 
Designing a chemoprevention trial with treatment phases of 1–2 decades is not 
feasible. To continue to investigate vitamin D and calcium for CRC prevention, 
alternative designs could include forms of these agents that have greater expected 
effect sizes or the use of intermediate biomarkers as endpoints, such as colorectal 
adenomas or genetic changes, may be employed.

8.3.2  Colon Cancer Prevention

A study by Lappe et al. was a 4-year double-blind, placebo-controlled randomized 
trial of 1,179 postmenopausal women from rural Nebraska [38]. These women were 
randomized to either 1,400–1,500 mg/day of calcium alone, calcium plus 1,100 IU of 
vitamin D

3
, or matched placebo. Subjects were 55 years or older, no history of cancer 

and capable of 4 years of participation. Mean age was 66.7 years, mean body mass 
index was 29 (±5.7) nmol/L and baseline 25(OH)D

3
 was 71.8 (±20.3) nmol/L. The 

primary outcome was fracture but colon cancer was a formal secondary endpoint. The 
vitamin D intervention was sufficient to raise the serum 25(OH)D

3
 to >80 nmol/L. 

Overall, both the calcium alone and calcium with vitamin D groups showed a signifi-
cant difference (Chi-square = 7.3; p value < 0.03) and the calcium plus vitamin D 
group showed a relative risk (RR) of 0.40 (95% CI = 0.20–0.82; p = 0.013). When 
participants with cancers that developed within the first year were excluded, the cal-
cium plus vitamin D group showed a relative risk (RR) of 0.23 (95% CI = 0.09–0.60; 
p = 0.013). This restriction of cases had no effect on the risk estimates for the calcium 
alone group, suggesting that the benefit of the vitamin D supplements on new cancers 
was attenuated by cancers that were most likely preclinical at the time of 
randomization.

Serious adverse events and toxicities: No serious adverse events were reported. 
There was no difference in the reports of renal calculi between treatment groups.

A study by Fedirko et al. reported a pilot, randomized, double-blind trial with a 
factorial design to evaluate the effects of vitamin D

3
 (800 IU/day) and calcium (2 g/day) 

on biomarkers in the normal colorectal mucosa [39, 40]. Ninety-two women and men 
were recruited and treated for a period of 6 months. Several markers, including p21, 
MIB-1, hTERT, Bcl-2 and Bax were evaluated in the colonic crypts. Results showed 
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that p21 significantly increased by 242% in the vitamin D alone and calcium alone 
groups. The combined treatment group showed a non-significant increase of 25%. 
There were no significant changes in MIB-1 or hTERT markers. Bax increased signifi-
cantly by 56% along the full length of the crypts (p = 0.02) in the vitamin D alone group 
and not significantly in the other two intervention groups. The changes in Bax expres-
sion were seen predominantly in the differentiation zone of the crypts while Bcl-2 did 
not change throughout treatment.

8.3.3  On-going Clinical Trials

Three additional studies, supported by NIH funding are currently underway. The 
VITAL trial (PI: JE Manson) will enroll 20,000 men and women and is designed to 
test in a randomized, factorial study the independent and combined effects of vita-
min D (1,600 IU/D) and omega-3 fatty acids (1 g/D) on cancer and cardiovascular 
endpoints. Another study, which is using oral calcitriol (1,25 dihydroxycholecalcif-
erol) to prevent the recurrence and progression of premalignant bronchoepithelial 
lesions in high risk lung cancer patients (PI: ME Reid). Finally, topical vitamin D 
is being tested for the prevention of basal cell carcinoma (BCC) in a pilot study of 
high risk skin cancer patients.
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Abstract It is well known that UV exposure is essential for subcutaneous vitamin D 
synthesis, which is important in maintaining mineral and bone homeostasis. In this 
chapter, we discuss findings in recent epidemiologic, in vitro and in vivo studies that 
suggest vitamin D has an additional role, skin cancer prevention. With accumulating 
evidence on the neoplastic effects of vitamin D, studies on vitamin D analogs have 
shown promising results. Thus we are currently faced with the dilemma in seeking a 
fine balance between the amount of sun exposure needed to produce sufficient vita-
min D to maintain its function in bone health and possible anticancer effects, while 
avoiding excessive exposure that can increase the risk of skin cancer development. 
This is further complicated by the fact that the amount of vitamin D synthesized from 
UV exposure is influenced by age, culture, and existing medical conditions of the 
individual. The designing of vitamin D analogs and appropriate recommendations on 
sun exposure requires further understanding of the vitamin D pathway and its actions, 
as well as any genetic factors that may influence the therapeutic outcome.

Keywords Skin cancer • Solar UV radiation • Vitamin D • Epidemiology • Prevention 
• Vitamin D receptor • 1,25-dihydroxyvitamin D • Keratinocytes • Differentiation  
• Photoprotection • Vitamin D analogs
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3

OPG Osteoprotegrin
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PIP
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 Phosphatidylinositol 4,5-bisphosphate

PKA Protein kinase A
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Pol Polymerase
RANKL Receptor activator of NF-kB ligand
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SMRT Silencing mediator for retinoid and thyroid hormone receptors
SRC Steroid receptor co-activators
TD Thymine dimmers
TF2B Transcription factor 2B
TRPV Transient receptor potential vanilliod
UVA Ultraviolet A
UVB Ultraviolet B
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UVC Ultraviolet C
UVR UV radiation
VDIR VDR-interacting repressor
VDR Vitamin D receptor
VDRE Vitamin D response element

9.1  Introduction

Incidence and mortality rates of skin cancer in most developed countries have expe-
rienced a steady increase over the past 25 years [57]. In the past few decades, the 
5 year survival has improved to over 90% in some developed countries including 
the United States, Sweden and Australia [57], but survival rates in many nations 
remain low [36]. Therefore, it is important to understand the cellular and molecular 
events involved in skin cancer pathogenesis to provide new approaches to reduce 
the incidence and mortality of skin cancer.

It is long known that ultraviolet B (UVB) (280–315 nm) irradiation is a major 
cause of skin cancer. Cyclobutane pyrimidine dimers (CPDs) constitute the major 
DNA photoproducts upon exposure to UVB light [140]. If not repaired, these can 
become initiating mutations in skin cancer [140] or if the DNA damage is irrepa-
rable, the cell may undergo apoptosis [144]. Skin chronically exposed to UV radia-
tion (UVR) may also suffer irreversible suppression of cell-mediated immunity 
promoting skin cancer outgrowth [45].

UVR is also essential in the synthesis of pre-vitamin D from 7-dehydrocholes-
terol (7-DHC) in the skin. Pre-vitamin D

3
 then undergoes further hydroxylation 

reactions in the liver and kidneys to form 25-hydroxyvitamin D
3
 (25OHD

3
) and 

1,25-dihydroxyvitamin D
3
 (1,25(OH)

2
D

3
) respectively [69]. The 1,25(OH)

2
D

3
 

formed from the kidney is essential in maintaining mineral and bone homeostasis 
(Fig. 9.1a). Vitamin D deficiency can arise in older individuals as a result of age 
related factors including reduced capacity to produce vitamin D, reduced sunlight 
exposure, lower vitamin D intake and decline in renal function [116].

Interestingly, epidemiologic studies have shown seasonal melanoma fatality pat-
terns, with fatality rates lower during summer than in winter [17]. In addition, fatal-
ity from melanoma is lower in people with a history of higher sun exposure than in 
people with low sun exposure [9]. Together with the knowledge that UV exposure 
is important for vitamin D synthesis, this raised the idea of a possible relationship 
between melanoma and vitamin D. The effect of sun exposure on vitamin D status 
appears to be important in protecting against a number of non-cutaneous cancers, 
including cancers of the breast, colon and prostate and non-Hodgkin lymphoma 
[17, 55, 56, 87, 101].

Much of the knowledge of the connection between vitamin D and the epidemio-
logical data on cancer have been contributed by investigations into the role of 
vitamin D in extra-renal tissues, initiated by the discovery of the vitamin D receptor 
(VDR) in breast cancer cells [44]. Other experiments have also demonstrated the 
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presence of VDR in various cancer cell lines [51]. More importantly, growth inhibitory 
effects of 1,25(OH)

2
D

3
 have been demonstrated in breast cancer [28], prostate [106, 

121], colon [31, 141] and melanoma cell lines in culture [29]. There is also accu-
mulating evidence on 1,25(OH)

2
D

3
 having anti-proliferative, pro-differentiation 

and photoprotective properties in keratinocytes which makes it potentially very 
attractive as an anti-cancer agent [38].

Therefore, UVR has a dual effect on skin cancer development and vitamin D 
synthesis that is important in maintaining the health of the body as well as prevent-
ing cancer development. Considering that solar dependant vitamin D synthesis 
contributes to 90% of the body’s vitamin D requirement [133], when determining 
vitamin D recommendation levels, we face the dilemma in seeking a fine balance 
between the amount of sun exposure to produce sufficient vitamin D while avoiding 
excessive exposure that can increase the risk of skin cancer development.

UVR
Skin

UVR

7-DHC Previtamin D3 Vitamin D3

Dietary Vitamin D2 and D3

Kidney

Liver

25(OH)D3

Extra-renal tissues
a

1,25(OH)2D3 1,25(OH)2D3

Autocrine or paracrine
regulation of cell growth

b

Gene transcription
for mineral and

bone homeostasis

Fig. 9.1 Vitamin D synthesis in the skin and its actions. Ultraviolet light aids in the conversion 
of 7-DHC to previtamin D

3
 which thermically isomerizes to vitamin D

3
. Both synthesized and 

ingested vitamin D are hydroxylated in the liver to form 25(OH)D
3
 and the kidneys (a) or extra 

renal tissues (b) to form 1,25(OH)
2
D

3
 which acts on target cells to elicit a biological response
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9.2  The Induction of Skin Cancer by UV Radiation

Solar UV spectrum is composed of ultraviolet A (UVA) (315–400 nm), UVB 
(280–315 nm) and ultraviolet C (UVC) (<280 nm). The harmful short wavelength 
UVC and most of the UVB (up to 310 nm) is absorbed by the ozone layer and is 
therefore not physiologically significant. On the other hand, UVA reaches the 
earth’s surface and up to 50% of UVA energy penetrates to the dermis. The effects 
of UVA include DNA oxidative damage, solar elastosis and skin ageing [130]. The 
remaining UVB is the most energetic component of the solar UV spectrum and is 
almost completely absorbed by the outer layer of the skin, the epidermis [130].

DNA is the predominant chromophore in the epidermis and absorbs most 
strongly at 260 nm with decreasing absorption from the UVB to UVA spectra. The 
major type of damage to DNA upon UVB absorption is the cycloaddition of the 
C5–C6 double bonds of adjacent pyrimidines to cause the formation of cyclobutane 
pyrimidine dimmers (CPD), e.g., thymine dimers (TD) [26, 32, 132]. If not 
repaired, these can become initiating mutations in skin cancer [140] or if the DNA 
damage is irreparable, the cell may undergo apoptosis [144] which is the situation 
with sun burn cells. If the DNA damage escapes the gene repair system and is in a 
gene involved in DNA repair, apoptosis, proliferation or cell cycle control, tumor 
growth can arise [130]. In fact, in squamous cell carcinoma (SCC) and basal cell 
carcinoma (BCC), the p53 gene, an essential transcription factor regulating cell 
cycle control and apoptosis, bears point mutations with the features of UVB-
induced point mutations. These UVB signature mutations are C to T or CC to TT 
transitions that are associated with di-pyrimidinic sites [19]. In addition, skin cells 
chronically exposed to UVR may also suffer irreversible cell-mediated immunity 
suppression [45], which may generate immune tolerance against immunogenic skin 
tumors and exacerbate cancer outgrowth.

9.3  The Vitamin D3 Metabolic Pathway and Its Actions 

9.3.1  UV Radiation Induced Vitamin D
3
 Synthesis in the Skin

Apart from the genotoxic effect of UVR, UVR also plays an important role in the 
synthesis of vitamin D. The term vitamin D generally refers to two molecules, vita-
min D

2
 and D

3
. Vitamin D is obtained through two sources. A small proportion of 

vitamin D
2
 and D

3
 can be obtained from the diet (Fig. 9.1). Vitamin D

3
 can be 

obtained from fatty fish or fish liver oil [70] while vitamin D
2
 (ergocalciferol), is the 

form of vitamin D produced by plants through the irradiation of the plant steroid, 
ergosterol [116]. Majority of the vitamin D

3
 required is synthesized subcutaneously. 

The synthesis of vitamin D
3
 in human and animals begins via a photolysis reaction in 

which ultraviolet light converts 7-dehydrocholesterol (7-DHC) to previtamin D
3
, 

which then isomerizes to vitamin D
3
 (cholecalciferol). Both vitamin D

2
 and vitamin 
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D
3
, either ingested or synthesized enter the liver where they are metabolized by liver 

mitochondrial and microsomal 25-hydroxylase (25-OHase), the gene product of 
CYP27A1, to 25OHD

3
. This is the main circulating form of vitamin D

3
 [116]. Further 

hydroxylations occur in the proximal tubules of the kidneys where 1,25(OH)
2
D

3
 (cal-

citriol) is produced via kidney 1a-hydroxylase (1a-OHase), the gene product of 
CYP27B1 (Fig. 9.1a). It has been also shown that the entire pathway to forming 
1,25(OH)

2
D

3
 from 7-dehydrocholesterol can occur in the human skin [93, 104], dem-

onstrating the importance of the human skin in the  synthesis of vitamin D.
The 1,25(OH)

2
D

3
 produced in the kidney is then transported in the blood and is 

mostly bound to the vitamin D binding protein with only a very small amount of its 
free form being able to elicit a biological response [116].

Serum level of 1,25(OH)
2
D

3
 is regulated by 25-hydrodxyvitamin D 24-hydroxylase 

(24-OHase) which is encoded by the CYP24A1 gene. The CYP24A1 gene is strongly 
induced by 1,25(OH)

2
D

3
 [118]. With adequate levels of 1,25(OH)

2
D

3,
 the 24-OHase 

acts on 25OHD
3
 and 1,25(OH)

2
D

3
 to form the inactive metabolites 24,25(OH)

2
D

3
 and 

1a,24,25(OH)
2
D

3
. The expression of CYP27B1 is also down regulated by its own 

gene product 1,25(OH)
2
D

3
 [109]. Thus by inducing CYP24A1 and down regulating 

CYP27B1, 1,25(OH)
2
D

3
 possesses its own feedback regulation via these two genes.

9.3.2  Genomic Actions of 1,25-Dihydroxyvitamin D
3

The genomic actions of 1,25(OH)
2
D

3
 is depicted in Fig. 9.2. This is initiated by the 

uptake of free 1,25(OH)
2
D

3
 into the target cells. In the cell, 1,25(OH)

2
D

3
 can bind 

to the vitamin D receptor (VDR). The VDR belongs to the nuclear hormone recep-
tor superfamily and is a ligand activated transcription factor that recognize and 
binds to distinctive sequences, known as vitamin D response elements (VDRE), 
located in the promoter of vitamin D responsive genes [38]. VDREs typically con-
tain two hexanucleotide repeats separated by varying number of nucleotides of any 
base, for example GGTTCA-NNN-GGTTCA [154]. The binding of 1,25(OH)

2
D

3
 

with VDR induces a significant conformation change that is essential for a number 
of downstream events including phosphorylation, dimerisation with the retinoid X 
receptor (RXR) and most importantly, the recruitment of co-activators and tran-
scription machinery to the promoter, reviewed in [38].

In the absence of a ligand, the VDR is only loosely bound to the RXR. Binding 
of the 1,25(OH)

2
D

3
 to VDR induces conformation changes to expose the surfaces for 

co- activating factor binding and high affinity dimerization with the RXR [63]. The 
heterodimerisation with the RXR allows the VDR to bind with higher affinity to the 
promoter of target genes. This high affinity interaction is achieved by binding of the 
VDR and the RXR to the 3¢ and 5¢ strand of the VDRE sequence respectively [89].

DNA in the non-active state is coiled tightly around the histones to form nucleosomes. 
The initiation of replication and transcription requires the acetylation of lysines in the 
N-terminal tails of histone by histone acetyltransferases (HATs) to “loosen” the 
nucleosome core to allow access of DNA binding sites to proteins mediating  transcrip-
tion. This acetylation can be reversed by the removal of acetyl groups by histone 
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deacetylases (HDACs) [95]. To initiate gene expression, the induced conformational 
change of VDR by 1,25(OH)

2
D

3
 binding aids in the disassociation of co-repressors such 

as nuclear receptor co-repressor (NCoR) and silencing mediator for retinoid and thyroid 
hormone receptors (SMRT) [152]. SMRT brings deacetylation activities to the site by 
binding to a repressive complex containing histone binding proteins and HDACs [95]. 
This de-repression of the DNA allows the recruitment of co-activators.

1,25(OH)2D3

PKA pathway

PI3K pathway
Raf-MEK-MAPK-ERK cascade

Non-genomic

Secondary
messengers

VDR

VDRmem or
MARRS
protein

PKC pathway

Genomic

1,25(OH)2D3 1,25(OH)2D3

p

RXR Cross-talk

HDAC
complex

Nucleus

SMRTNCoRMethylation SRC

CBP/300 NCoA62-SKIP

1,25(OH)2D3

VDR

RXR

5’
3’

1,25(OH)2D3 RXR

VDR VDIR

Plasma
membrane

X

NCoA62-SKIP

RNA
Pol II TFIIB

DRIPs

Gene repression Gene expression

VDRE pnVDREp

Fig. 9.2 Genomic and non-genomic actions of 1,25(OH)
2
D

3
. Gene expression by 1,25(OH)

2
D

3
 via 

the genomic pathway is mediated by the uptake of 1,25(OH)
2
D

3
 into the target cell and binding to 

vitamin D receptor (VDR). The 1,25(OH)
2
D

3
-VDR complex dimerizes with the retinoid X receptor 

(RXR) to bind onto the VDRE with RXR and VDR on the 5¢and 3¢ half site of the vitamin D response 
element (VDRE) respectively. Upon 1,25(OH)

2
D

3
 binding, conformation changes of the VDR allows 

the VDR to bind co-activators such as SRC, NCoA62-SKIP and CBP/300 which relax and de-repress 
the chromatin. The vitamin D receptor-interacting protein (DRIPs) complex is then recruited to aid 
the entry of the transcription machinery TFIIB and RNA Pol II. Gene repression by 1,25(OH)

2
D

3
 

involves the binding of VDR and the RXR to the 5¢and 3¢ site of the nVDRE respectively. The asso-
ciation of VDIR with the VDR recruits the SMRT-HDAC complex and NCoR, together with methy-
lation activity, keeps the chromatin in a repressed state. The non-genomic pathway is characterized by 
1,25(OH)

2
D

3
 binding to a membrane receptor possibly the VDR

mem
 or MARRS protein which acti-

vates secondary messengers that in turn can activate the PKA, PI3K and the protein kinase C (PKC) 
pathway to ultimately lead to the activation of extracellular signal-regulated kinase (ERK) in the Raf-
MEK-MAPK-ERK cascade. Both PKC and ERK modulate the transcriptional activity VDR through 
phosphorylation, providing cross-talk between the genomic and non-genomic pathways
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The AF-2 domain of the VDR becomes exposed upon 1,25(OH)
2
D

3
 binding and 

serves as a binding platform for transcriptional activators [110]. Kim et al. investigated 
the recruitment of co-factors in 1,25(OH)

2
D

3
 induced gene expression. These co-factors 

possessing HAT activity and include members of the p160 co-activators (steroid recep-
tor co-activators (SRC)-1, SRC-2 and SRC-3), CREB binding protein (CBP)/p300 co-
activators [83] and nuclear co-activator 62 kDa-SKI-interacting protein (NCoA62-SKIP) 
[7]. After the chromatin is relaxed by acetylation, the vitamin D receptor interacting 
proteins (DRIPs) complex at the AF-2 region facilitates the entry of transcription 
machinery proteins, such as RNA polymerase (Pol) II [52] and transcription factor 2B 
(TF2B) [94]. Different nuclear hormone  receptors may direct tissue specific gene regu-
lation by recruiting various members of the HAT proteins/co-activators [148].

On the other hand, 1,25(OH)
2
D

3
 can also repress gene expression. The repres-

sion is mediated by the binding of 1,25(OH)
2
D

3
 to VDR to induce the interaction 

of the VDR to VDR-interacting repressor (VDIR) which can bind to a negative 
VDRE (nVDRE). Binding of VDIR to this motif leads to the replacement of HAT 
with HDAC [108]. It has recently been found that this VDIR-VDR co-repressor 
complex together with HDAC recruits the DNA methyltransferase which methy-
lates CpG sites [82]. At this stage MeCP2 can bind to the methylated CpG 
sequences and repress transcription by interacting with the HDAC complex [95]. 
Therefore, the HDAC and methylation activities work in parallel to mediate 
1,25(OH)

2
D

3
 induced trans-repression of VDR target genes.

9.3.3  Non-genomic Actions of 1,25-Dihydroxyvitamin D
3

In 1,25(OH)
2
D

3
, the single bond between the A ring and the fused C-D rings allows 

rotation of the A ring around the C-D fused rings. This flexibility creates the forma-
tion of trans and cis conformations of the molecule that dictates the type of 
response elicited by the molecule [113, 114]. Apart from the genomic effect 
described earlier, in the mid-1980s, a rapid, nongenomic response was recognized 
and is mediated by the cis-1,25(OH)

2
D

3
 [112]. This molecule has the ability to 

activate multiple cell-signalling cascades and bring about a broad range of effects 
in cell survival and proliferation [115].

Non-genomic actions of 1,25(OH)
2
D

3
 involves the binding of 1,25(OH)

2
D

3
 to a 

cell surface membrane receptor. It has been well documented that non genomic 
pathway involves the activation of the Raf-mitogen-activated protein kinase extra-
cellular signal-regulated kinase kinase (MEK)-mitogen-activated protein kinase 
(MAPK)-extracellular signal-regulated kinase (ERK) cascade. However, the recep-
tor and the exact pathways that lead to the activation of Raf are still to be confirmed. 
Candidates for this putative surface membrane receptor include the classical cyto-
solic VDR (called VDR

mem
) [75, 84] and the 1,25(OH)

2
D

3
-membrane associated 

rapid response steroid-binding (1,25(OH)
2
D

3
–MARRS) protein [111].

It has been proposed that the binding of 1,25(OH)
2
D

3
 to G protein coupled recep-

tors or protein-tyrosine kinase receptors [100] is an essential part of the  non-genomic 
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action of this molecule. The stimulation of phospholipase C (PLC) b and PLCg by 
G proteins and protein-tyrosine kinase receptors respectively, leads to the hydrolysis 
of phosphatidylinositol 4,5-bisphosphate (PIP

2
) in the inner layer of the plasma 

membrane to form the second messengers diacylglycerol (DAG) and inositol 1,4,5-
triphosphate (IP

3
). DAG remains at the plasma membrane and activates kinases in 

the protein kinase C (PKC) family. On the other hand, IP
3
 is release to the cytoplasm 

to stimulate the release of Ca2+ from intracellular stores to increase cytosolic calcium 
(Ca2+) levels. The Ca2+ released can either act on protein kinases (some members of 
the PKC need both DAG and Ca2+ to be activated) or cause the opening of calcium 
channels in the plasma membrane to allow the influx of extracellular Ca2+ for a more 
sustained response. PIP

2
 can also initiate another second messenger signaling path-

way when it is phosphorylated by phosphatidylinositide 3-kinase (PI3K) to produce 
PIP

3
. PIP

3
 acts to recruit the protein kinases Akt and PDK1 to the plasma membrane. 

Akt is subsequently phosphorylated and activated to phosphorylate downstream 
targets such as regulators proteins for cell survival, transcription factors and other 
protein kinases. Additionally, activation of the G protein can also stimulate adenylyl 
cyclase (AC) activity. AC synthesizes cyclic AMP (cAMP) from ATP. cAMP then 
binds to the regulatory subunits of protein kinase A (PKA) to release the catalytic 
subunits which are now able to phosphorylate their target proteins [30].

Activation of the PKC and PKA in the non-genomic pathway can phosphorylate 
the VDR involved in the genomic pathway to modulate its activity (Fig. 9.2) [38]. 
This suggests that kinase activation on the non-genomic pathway may have a role 
in determining the functional outcome of the VDR in the genomic pathway.

In addition to the VDR, target proteins of PKC, PI3K and PKA pathways also 
include proteins involved in the Raf-MEK-MAPK-ERK pathway (Fig. 9.2). This is 
initiated by the activation of Ras which in turn activates the Raf protein serine/
threonine kinase and subsequently the MEK-MAPK-ERK cascade. This ultimately 
allows ERK to phosphorylate a range of targets such as other protein kinases and 
transcription factors. Thus, the PKA, PKC and ERK signaling pathway intersects 
with the classical genomic pathway to provide “cross-talk” between the non-classical 
membrane receptor pathway and the classical genomic pathway (Fig. 9.2). This 
allows a complex fine tune regulatory mechanism to action of 1,25(OH)

2
D

3
 in regu-

lating mineral and bone homeostasis, cellular proliferation and differentiation, that 
are important in healthy and diseased states.

9.3.4  Classical Roles of 1,25-Dihydroxyvitamin D
3

The most well known and classical role of 1,25(OH)
2
D

3
 is its function in calcium 

and phosphate homeostasis and bone mineral metabolism [67]. The vitamin D 
endocrine system maintains mineral homeostasis and bone metabolism by the 
appropriate transcriptional activation of genes or repression of target genes in cells 
that are involved in these processes [98]. The importance of this role is shown in 
studies using 1a-hydroxylase, vitamin D receptor and a combination of 
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 1a-hydroxylase  and VDR knock out mice [120]. These experiments showed that 
1,25(OH)

2
D

3
 and VDR are both crucial for calcium absorption, longitudinal bone 

growth and normal bone remodeling. Cloning of the CYP27B1 gene [54], showed 
that patients with vitamin D-dependant rickets type I had defects in the CYP27B1 
gene and are unable to convert 25OHD

3
 to 1,25(OH)

2
D

3.
 On the other hand, patients 

with vitamin D-dependant rickets type II (hereditary vitamin D resistant rickets) do 
not have a functioning VDR [49].

The formation of 1,25(OH)
2
D

3
 from the hydroxylation of 25OHD

3
 by 

1a- hydroxylase in the kidneys is regulated by parathyroid hormone (PTH) which in 
turn is regulated by Ca2+ levels. The Ca2+ sensing receptor in the parathyroid cell 
regulates the secretion of PTH. Secreted PTH then binds to the PTH membrane 
receptor of the renal proximal tubular cell to induce cAMP and PIP

2
 signaling path-

ways (described in Sect. 9.3.3), which leads to the transcriptional activation and 
upregulation of CYP27B1 [3]. In addition, the enhanced expression of CYP27B1 can 
also be mediated by Ca2+ independent of the PTH pathway but the mechanism 
involved in this process is still not well understood [63]. Upregulation of CYP27B1 
causes the increased synthesis of the 1a-hydroxylase enzyme which acts on the 
intestinal cell through the genomic pathway (described in Sect. 9.3.2) to upregulate 
the expression of transient receptor potential vanilliod (TRPV) 5, TRPV 6, calbin-
dins, Ca2+ pump and the Na+/Ca2+ exchanger (Table 9.1). These proteins all take part 
in the transcellular pathway in the uptake of Ca2+ from diet [122]. TRPV5 and 
TRPV6 (more abundant in the intestinal cell) are Ca2+ channel proteins on the apical 
surface of the intestine that mediate the entry of Ca2+ [156]. Upon entry of the Ca2+, 

Table 9.1 The effects of 1,25(OH)
2
D

3
 in various tissues

Tissue Protein Gene regulation Effect

Small intestine TRPV 5 Upregulation Entry of Ca2+ into 
the intestinal cellTRPV 6 Upregulation

Calbindins Upregulation Ca2+ transport 
from entry size 
to basolateral 
membrane

Ca2+ pump Upregulation Ca2+ exit from 
intestinal cellNa+/Ca2+ exchanger Upregulation

Bone RANKL Upregulation Osteoclastogenesis
OPA Downregualtion Bone cell 

differentiation
Skin Involucrin Upregulation Keratinocyte 

differentiationTransglutaminase K Upregulation
Loricrin Upregulation
filaggrin Upregulation
CaR Upregulation
PLCg Upregulation

Others (immune 
system, prostate, 
breast, colon)

– – Regulation of 
proliferation and 
differentiation
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calbindin carries Ca2+ from the entry side to the basolateral membrane of the 
 intestinal cell where it exits to the lamina propria via the plasma membrane Ca2+ 
pump and the Na+/Ca2+ exchanger. Apart from this mechanism, 1,25(OH)

2
D

3
 can 

also cause rapid absorption of calcium (called transcaltachia) via binding of a mem-
brane receptor to activate the rapid non genomic pathway [113], also described 
earlier in Sect. 9.3.3. A negative feedback loop exists through high levels of calcium 
and 1,25(OH)

2
D

3
 levels to regulate and decrease the level of PTH [98].

Calcium homeostasis is also important in maintaining bone health. The normal 
bone remodeling cycle begins with the resorption of existing bone by osteoclasts 
followed by the synthesis of unmineralized bone by osteoblasts (osteoid). With 
adequate levels of 1,25(OH)

2
D

3
 and mineral, the osteoblast mineralizes the osteoid 

[116]. The differentiation, development, activation and survival of the osteoclast 
depend on the binding of the receptor activator of NF-kB ligand (RANKL) on 
the surface of preosteoblastic cells to RANK on the osteoclastic precursor cells. On 
the other hand, this process can be blocked by the binding of osteoprotegrin (OPG) 
to RANK to inhibit its binding to RANKL [18]. 1,25(OH)

2
D

3
 plays a role in osteo-

clastogenesis by upregulating and repressing of RANKL and OPG expression 
respectively [147] (Table 9.1). PTH also increases RANKL and decreases OPG 
production [92], thus, 1,25(OH)

2
D

3
 may also indirectly enhance osteoclastogenesis 

by its influence on PTH levels. Therefore, PTH can enhance osteoclastogenesis to 
release bone minerals into the circulation to maintain calcium homeostasis. During 
times of adequate/high calcium in the circulation, PTH decreases and bone miner-
alization occurs by utilizing the mineral in the circulation. Thus PTH and 
1,25(OH)

2
D

3
 co-operate to coordinately regulate bone remodeling and calcium 

homeostasis. Vitamin D is well known for its role in mineral and bone homeostasis; 
however, epidemiological studies seem to suggest another role for this hormone.

9.4  Epidemiological Evidence on the Relationship  
of Sun exposure and Cancer

9.4.1  Epidemiologic Evidence on the Role 
of 1,25-Dihydroxyvitamin D

3
 in Skin Cancer

The three common types of skin cancers include melanoma and two nonmelano-
cytic skin cancers, squamous cell carcinoma (SCC) and basal cell carcinoma 
(BCC). It is clear that UVR produces harmful photoproducts in DNA (Sect. 9.2) 
and increase in sun exposure leading to increase in skin cancer risk has been sup-
ported by many studies [4, 119]. Migrant studies have examined the effect of 
migration from an area of low ambient solar UV radiation to one of high ambient 
solar radiation. The risk of each type of skin cancer was greater for native-born 
Australians than for migrants [47, 86]. The rates were similar in people who 
migrated in Australia (a high ambient solar radiation area) before 10 years of age 
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compared to those who were born in Australia, whereas migration after the age of 
10 had a quarter of the rate of native-born Australians [71]. Risk for all three types 
of skin cancer also showed a positive correlation with ambient solar radiation and 
increasing average annual hours of bright sunlight though the extent of this correla-
tion seems to vary depending on the type of skin cancer [4]. The frequencies of all 
three cancers were generally the greatest on high sun-exposed body sites such as 
the face, ears and neck and low on the rarely exposed sites [5, 59]. Interestingy, the 
densities for melanoma and BCC are higher on the more intermittently exposed 
shoulders and back while SCC has a lower density on these sites and is higher on 
the back of the hands. This association is consistent with results of the study on the 
relationship of personal sun exposure with skin cancer risk. SCC is strongly related 
to total sun exposure and occupational sun exposure (continuous pattern of expo-
sure), while melanoma and to a lesser extent, BCC, show significant associations 
with non-occupational/recreational (intermittent) exposure and sunburn (intense 
intermittent exposure) [46]. Thus, with the evidence that SCC, BCC and melanoma 
is caused by sun exposure, it is of no surprise that a latitude gradient of skin cancer 
exists, with increasing incidence and mortality rates corresponding with increasing 
proximity to the equator [25, 91]. The magnitude of the latitude gradient was 
approximately 65% and 50% greater in incidence and mortality of melanoma 
respectively, for body areas most intermittently exposed compared with those with 
a least intermittent pattern of exposure [24].

Although there is a vast amount of persuasive evidence that support the classical 
belief that sun exposure causes skin cancer, a recent study by [17] provided a new 
school of thought on the relationship of sun exposure and skin cancer development. 
A number of previous studies have shown that that the incidence of cutaneous 
melanoma varies by season with a peak in summer [16, 20, 126, 136, 137]. It has 
been hypothesized that if the higher incidence in summer is due to increased aware-
ness and detection of lesions on exposed skin, thinner lesions will be seen; whereas 
a late stage promotion effect from the summer sun will yield thick lesions with 
worse prognosis independent of Breslow thickness. Although increased thinner and 
less aggressive lesions were indeed found in younger women during summer which 
seems to correlate increased incidence with awareness, there was still a significant 
increase of 18% in incidence for the constantly exposed head and neck. Thus, the 
data do not exclude the possibility of greater awareness in summer or a late-stage 
promotional effect of sun exposure (consistent with the classical belief). Interestingly, 
the same study also found a significant 20% of reduced fatality for melanomas 
diagnosed in summer to those diagnosed in winter. These rates were independent 
of seasonal thickness variation, age, sex, anatomical site and histologic type of the 
melanoma [17]. Therefore, these results are suggestive of a more complex pathway 
in the development or progression of melanoma that is not restricted to the classical 
effects of direct sun exposure [17].

Consistent with the results obtained by Boniol et al. were the results found by 
[9] who conducted a study to investigate the effect of sun exposure on melanoma 
fatality. This study showed that solar elastosis, sunburns and intermitted sun expo-
sure were inversely associated with melanoma fatality. This finding was also 
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independent from confounding factors including sex, age, Breslow thickness, 
 anatomic site, social class, skin awareness, skin self examination and physician 
examination [9]

Thus, such epidemiological studies yield interesting results that imply a complex 
process in the development of melanoma. Knowing that vitamin D synthesis is 
dependant on UV exposure, the effect of sun exposure with increased melanoma 
survival raised the possibility of a link between vitamin D and skin cancer.

9.4.2  Polymorphisms of the Vitamin D Receptor

The involvement of 1,25(OH)
2
D

3
 in skin cancer is also supported by genetic 

 evidence. As the 1,25(OH)
2
D

3
 must act via the VDR to elicit the genomic effect and 

a possible VDR
mem

 to elicit the non-genomic pathway, it is expected that any 
changes in the genetic sequence and expression of VDR will have an effect in 
1,25(OH)

2
D

3
 action, and in turn on skin cancer outcome.

The most well known polymorphisms in the VDR include the polymorphism 
at the 5¢FokI restriction site in exon 2; an alteration in intron 8 to generate the 
BsmI and ApaI restriction sites; a synonymous polymorphism in exon 9, generat-
ing a TaqI (t) restriction site and a poly-A microsatellite in the 3¢untranslated 
region [8]. The 5¢ FokI restriction site does not seem to show any linkage to the 
other polymorphisms, whereas the latter four polymorphisms are in strong link-
age disequilibrium [48]. Thus, in the studies of [76, 97], the analysis of the TaqI 
was assumed to represent the 3¢ cluster of polymorphisms. The 5¢FokI polymor-
phism involves a T to C transition at the ATG start site, producing two variants 
of the protein, a shorter protein (F) of 424 amino acids (aa) and a longer protein 
of 427aa (f) [8]. In one study [76], it was found that a significant reduction in 
risk of malignant melanoma (MM) was associated with the FF phenotype. It has 
previously been reported that the F allele with the shorter protein of 424 aa had 
higher transcriptional activation activity and FokI polymorphism has a func-
tional significance [76]. This was consistent with the finding that the f being a 
risk allele [97]. The same study found that the t allele was protective against 
melanoma with a tt genotype reducing the risk by 29%. Interestingly, [76] did 
not find a significant association with melanoma risk but showed the genotype 
combination ttff was significantly associated with tumors of increased Breslow 
thickness and which raised the idea that genetic variants of VDR can be a deter-
minant of melanoma outcome. The role of VDR polymorphisms have also been 
studied in other cancers such as the breast and colon, however, the results were 
not always consistent [77, 79, 153]. These controversies may be due to differ-
ences in vitamin D serum levels and sample variations [97]. It is also thought 
that polymorphisms in the 3¢UTR may have cell type specific effect that can play 
a role in altered VDR transcription [155]. Furthermore, the possible interactions 
of VDR polymorphism haplotypes with other known risk factors can have an 
impact on melanoma risk [96].
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Understanding the functional effects of the VDR variants can aid us in 
understanding  the action of vitamin D in the presence of a particular VDR variant. 
Genotyping patients for the VDR gene can help us predict the action of vitamin D for 
each individual. This in turn may be useful in advising high risk individuals to take 
precautions for preventing skin cancer development. Furthermore, patients carrying 
different VDR variants may also cause them to respond differently to therapies and 
knowledge on the functional effects of VDR variants should allow the development 
of drugs that will act most efficiently on the patient with minimal side effects.

Taken together, the epidemiological data from these studies show that there is a 
link between sun exposure and skin cancer. More importantly, these evidences sug-
gest a possible link between the role of vitamin D and skin cancer.

9.5  Vitamin D and Skin Cancer

9.5.1  The Role and Expression of 1,25-Dihydroxyvitamin D
3
  

in Extra Renal Sites

Apart from the classical role of 1,25(OH)
2
D

3
 in maintaining mineral homeostasis via 

the intestine, parathyroid, bone and kidney. 1,25(OH)
2
D

3
 also has non classical func-

tions in extra-renal tissues. The idea of extra-renal synthesis of 1,25(OH)
2
D

3
 started 

when it was observed that the administration of vitamin D in anephric patients led 
to an significant increase of serum 1,25(OH)

2
D

3
 levels compared to controls and this 

increase of 1,25(OH)
2
D had significant correlation with the precursor 25OHD levels 

[90]. This observation was confirmed in another study by the oral administration of 
25OHD to uremic mongrel dogs and anephric patients which also found a similar 
significant correlation between serum levels of 25OHD and 1,25(OH)

2
D

3
 [42]. The 

enzyme expressed in extra-renal tissues acts locally in an autocrine/paracrine man-
ner (Fig. 9.1b) which serves to complement the endocrine circulating 1,25(OH)

2
D

3
 

produced by the kidneys [80]. This locally elevated concentration of 1,25(OH)
2
D

3
 

can alter gene expression in a tissue specific manner that eventually limit prolifera-
tion and induces differentiation. These effects of proliferation and differentiation 
regulation by 1,25(OH)

2
D

3
 has been described in various tissues including the cells 

of the immune system [53, 65], prostate, breast [160], colon, bone as well as the skin 
[124] (Table 9.1). In fact, the CYP27B1 gene has recently been expressed in the 
transgenic mouse and it has been shown that the 5¢ flanking region itself provides 
sufficient information for directing cell and tissue specific expression [2]. This is in 
agreement with the idea mentioned earlier in Sect. 9.3.2, that the presence of differ-
ent transcription factors in different tissues and cell differentiation state allows 
nuclear receptors to regulate gene transcription in a tissue and time specific manner. 
These exciting findings of tissue specific proliferation and differentiation regulation 
by 1,25(OH)

2
D

3
 in extra-renal sites provide an important and direct link on the 

actions of 1,25(OH)
2
D

3
 in various cancers including skin cancer.
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9.5.2  The Role of 1,25-Dihydroxyvitamin D
3
 in Normal Skin

Before investigating the role of 1,25(OH)
2
D

3
 in the skin in healthy and diseased state, it 

is important to know the process of keratinocyte differentiation in the epidermis. The 
epidermis is composed of four layers. Directly on top of the basal lamina, the basal layer 
of the epidermis is the stratum basale, followed by the stratum spinosum, then the stra-
tum granulosum and finally the most superficial layer, the stratum corneum [134]. As 
the cells differentiate, they gradually migrate up from the base layer, stratum basale, to 
the stratum spinosum then granulosum to finally become completely differentiated 
keratinocytes in the stratum corneum. Proliferating keratinocytes found in the stratum 
basale express keratin 5 and 14. Upon entering the stratum spinosum, the cell expresses 
keratin 1 and 10 instead of 5 and 14 and the synthesis of involucrin and transglutami-
nase-K, an enzyme cross linking the involucrin with other substrates for the formation 
of the cornified envelope is now evident. By the time the cells reach the stratum granu-
losum, granules containing loricrin and the keratin filaments bundling protein precursor, 
profilaggrin are present. Lamella bodies in this layer, which secretes fatty acid, cer-
amide, and cholesterol, fill the intercorneocyte space to bind the corneocytes together 
in the stratum corneum providing the skin its elasticity and barrier function [10].

The fact that keratinocytes are the only cells that supports the complete vitamin D 
metabolic pathway from 7-DHC to 1,25(OH)

2
D

3
 [93, 104] and the observation of 

1,25(OH)
2
D

3
 induces keratinocyte differentiation [73] together with the fact that the 

expression and levels of VDR and 1,25(OH)
2
D

3
 vary with differentiation [72] 

strongly suggest that 1,25(OH)
2
D

3
 is an autocrine/paracrine factor for keratinocyte 

differentiation [12]. In experiments with 1aOHase knockout mice [11], it was 
observed that there were no gross epidermal phenotype differences between the 
knockout and their wild type littermates, however, there is a reduction of the dif-
ferentiation markers involucrin, filaggrin and loricrin. It was also found that 
1,25(OH)

2
D

3
 and calcium act together in a synergistic manner to elicit prodifferen-

tiation effects including the activation of involucrin and transglutaminase gene 
expression (Table 9.1) [150]. A plausible explanation of the observed synergistic 
effect of 1,25(OH)

2
D

3
 and calcium arises from the close proximity of the calcium 

and VDR elements in the promoter of the involucrin gene although the mechanism 
of this synergistic effect is still unknown for the transglutaminase gene [13].

The calcium signaling pathway for keratinocyte differentiation is very similar to the 
rapid non genomic/surface membrane pathway of 1,25(OH)

2
D

3
 signaling (described in 

detail in Sect. 9.3.3). The binding of extracellular calcium to the calcium receptor 
(CaR) activates the receptor to stimulate PLC activity which leads to the formation of 
DAG and IP

3
 that eventually causes the release of intracellular calcium stores from the 

endoplasmic reticulum and the golgi. This initial and sustained increase of IP
3
 through 

PLCb and g respectively allows the sustained increase of intacellular calcium to induce 
genes necessary for differentiation [78, 165]. During the differentiation process, apart 
from inducing the expression of involucrin and transglutaminase, 1,25(OH)

2
D

3
 also 

induces CaR [131] and PLCg expression [164] (Table 9.1). Thus, the requirement for 
1,25(OH)

2
D

3
 to induce the proteins needed for differentiation is consistent with 
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in vitro findings that the stratum basale with the least differentiated keratinocytes have 
the highest levels of CYP27B1 and VDR [149, 166]. Therefore, disturbance to the 
process of 1,25(OH)

2
D

3
 mediated expression of these essential proteins for differentia-

tion can lead to diseases of the skin including cancer.

9.5.3  The Role of Vitamin D in Regulating Proliferation 
and Differentiation in Skin Cancer

Transformed keratinocytes in squamous cell carcinomas (SCC) are not responsive 
to the differentiation and proliferation effects of 1,25(OH)

2
D

3
 [138]. The vitamin D 

receptor interacting protein (DRIP) (DRIP205 is the major subunit for anchoring 
the complex to the VDR) and steroid receptor co-activators (SRC) including SRC 
2 and 3 are the two main co-activator complexes that interact with the VDR in 
keratinocytes to initiate the transcription of the differentiation markers [43]. 
A model was initially proposed that DRIP205 complex dominates in binding with 
the VDR during the proliferation/early differentiation stages and SRC complex is 
the one dominating in late differentiation stages [117]. It was also found that SCC 
overexpresses DRIP205 and hence it was thought that this elevation of DRIP205 
levels inhibited the switch to SRC maintaining these transformed cells in a prolif-
eration state [15]. However, a follow up study [64] proved that this proposed model 
of switching from DRIP205 to SRC is inadequate. The results from the follow up 
study suggested that knock down of VDR, DRIP205 and SRC significantly 
decreased the early marker keratin 1 and late markers loricrin and filaggrin. 
However, only the knock down DRIP205 significantly reduced the early marker 
keratin 10 and the intermediate marker involucrin. Thus, this latest study show that 
VDR, DRIP and SRC are all required for induction of both early and late differen-
tiation markers. Also, the recruitment of the appropriate co-activator by the 
1,25(OH)

2
D

3
-VDR complex is gene specific and not differentiation stage specific. 

Further investigations are required to fully elucidate the keratinocyte differentiation 
process in order to suggest targets for drug treatments.

It is known that activated Ras oncogenes can contribute to the development of 
SCC and basal cell carcinoma (BCC) [41, 146, 157]. An immortalized squamous 
cell line with activated Ras oncogene, HPK1A Ras, was compared to the original 
immortalized squamous cell line (HPK1A) to investigate how keratinocytes can 
exhibit 1,25(OH)

2
D

3
 resistance in growth with respect to the Ras oncogene [58]. 

It was found that the ability of 1,25(OH)
2
D

3
 to induce trans-activation for growth 

inhibition was significantly decrease in HPK1A Ras compared to HPK1A cells. 
The growth inhibition by 1,25(OH)

2
D

3
 on HPK1A Ras cells was restored by the 

addition of a MAPK kinase inhibitor. These results were reproducible when tested 
with a reporter gene containing an upstream VDRE. An antibody to the binding 
domain for the RXR yield a super shift only in HPK1A cells and follow up experi-
ments using anti-phosphothreonine and anti-phosphoserine antibody demonstrated 
serine phosphorylation of RXR only in HPK1A Ras cells. In addition, serine 
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 phosphorylation with control HPK1A cells was detected with over expression of 
active MAPK kinase and these cells failed to drive reporter activity. The reverse 
was then tested by using the 1,25(OH)

2
D

3
 resistant HPK1A Ras cells expressing a 

mutant RXR of serine to alanine at the relevant position. Indeed the restoration of 
reporter activity and the detection of serine phosphorylation confirmed that an acti-
vated Ras/MAPK signaling pathway in tumor cells can cause the phosphorylation 
of the RXR, which in turn may interfere with 1,25(OH)

2
D

3
 transactivation mediated 

growth inhibition. Further understanding of the exact mechanism of how RXR 
phosphorylation can lead to the disturbance of its interaction with proteins required 
for 1,25(OH)

2
D

3
 transactivation, which could yield important ideas for chemopre-

vention therapies.

9.5.4  The Role of Vitamin D in Photoprotection

The most well known consequence of UVB radiation is the appearance of apop-
totic or sunburn cells [88]. Cellular stresses including UV irradiation activates 
c-Jun NH2-terminal kinase (JNK) [74] and there is evidence that upregulation of 
stress activated protein kinases (SAPKs) promotes apoptosis [158, 163]. The 
tumor suppressor gene, p53, can either induce cell cycle arrest by upregulating 
cyclin dependant kinase inhibitor P21 [144] or inducing apoptosis if the damage 
is extensive and cannot be repaired [37]. The interaction between JNK and p53, 
and the precise pathway of JNK mediated apoptosis and carcinogenesis is not yet 
fully elucidated. The interaction of p53 with JNK could conceivably prevent the 
interaction of p53 to the p21 promoter to inhibit cell cycle arrest and thus favors 
apoptosis [142]. It has been demonstrated that JNK2 knockout mice have a lower 
number of papillomas and malignant tumors induced by 12-O-tetradecanoylphor-
bol-13-acetate compared to wild type mice, suggesting that JNK2 is critical in 
tumor promotion [27].

De Haes et al. found that pretreating keratinocytes for 24 h prior to UVB radia-
tion with pharmacological dose of 1,25(OH)

2
D

3
 (1 mM) reduced apoptosis by 

55–70%. Moreover, a reduction of UVB stimulated JNK activation of more than 
30% was also found together with a 90% inhibition of mitochondrial cytochrome c 
release [33]. This can possibly be explained by the recent finding of the ability of 
p53 to protect cells against UV induced apoptosis via the binding and inactivation 
of JNK pathway, which is responsible for the induction of mitochondrial death 
signaling [99].

It has also been noted [33] that the culture conditions in terms of dose and pre-
incubation time of 1,25(OH)

2
D

3
 were very similar to those used to conduct growth 

inhibition experiments on proliferating keratinocytes [14, 139]. It is hypothesized 
that the observed accumulation of keratinocytes in the G

1
 phase of these experi-

ments may have protected the DNA from the genotoxic effects of UVB, as the 
unfolded structure of DNA in the S phase will render it more susceptible to UVB 
induced DNA damage [123]. This hypothesis is in agreement with the findings of 
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p53 having a dual role of JNK inactivation while in the same time activate cell cycle 
arrest related genes to protect cells from apoptosis upon UVB irradiation [99].

If 1,25(OH)
2
D

3
 could prevent the apoptosis of UVB irradiated cells, the next concern 

is the danger of allowing cells with increased DNA damage to survive [61]. Gupta et al. 
tested whether 1,25(OH)

2
D

3
 enhanced cell survival would lead to an accumulation  of 

UV induced DNA damage. Cells treated at physiological dose of 1,25(OH)
2
D

3
 (10−9 M) 

24 h prior to irradiation not only showed significant dose dependant increase of cell 
survival, but a dose dependant decrease in TD was also observed. Such effects can be 
reproduced by treating cells with 1,25(OH)

2
D

3
 immediately after irradiation. More 

importantly, there was a corresponding increase in p53 with decreasing TD. As it is 
known that UV induced increases in nitric oxide (NO) products [22] can enhance DNA 
damage by UVR [151] and inhibit CPD repair [6], the levels of nitrite were also mea-
sured and a significant reduction of nitrite in 1,25(OH)

2
D

3
 treated cells was found. 

Therefore these experiments [61] suggest that the reduction of TD or DNA damage by 
1,25(OH)

2
D

3
, is due to the increase of p53 along with a decrease of NO products that 

results in increased DNA repair. Taken together, the effect of 1,25(OH)
2
D

3
 on UV irra-

diated cells is to reduce the number of apoptotic cells and enhance cell survival by 
improving UVB induced DNA damage repair. The protection of 1,25(OH)

2
D

3
 against 

the formation of CPD was also supported by another study [34], however, these effects 
were only seen using pharmacological doses and a suppression in p53 was obtained. It 
is argued that the suppression of CPD formation by 1,25(OH)

2
D

3
 may have prevented 

the need for p53 accumulation for DNA repair. However, such discrepancies may also 
be due to the difference in cell culture and irradiation conditions.

The fact that the photoprotective effects of adding 1,25(OH)
2
D

3
 immediately 

after irradiation was comparable to those with 24 h 1,25(OH)
2
D

3
 pretreatment, 

prompted studies to investigate the mechanism of 1,25(OH)
2
D

3
 in producing such 

effects. A series of elegant studies [39, 40, 162] found that the photoprotective 
effects of 1,25(OH)

2
D

3
 described above can be reproduced by three low- calcemic 

analogs of vitamin D both in vitro and in vivo. It was described in Chapter 2 
(Sect. 2.2) that the existence of trans and cis isomers allows 1,25(OH)

2
D

3
 to medi-

ate genomic as well as rapid, non genomic responses. Rapid response signaling is 
mediated by the cis conformers. These experiments showed that cis-locked, low 
calcemic rapid response agonists, 1,25(OH)

2
lumisterol

3
 (JN) and 1,25(OH)

2
–7-

dehydrocholesterol (JM) added immediately after irradiation, displayed similar 
protective effects to that of 1,25(OH)

2
D

3
 at physiological doses. A rapid response 

antagonist (HL) completely blocked the photoprotective effects [162] while a 
genomic response antagonist (TEI-9647) had no effect [40]. In fact, the protective 
effects of the low calcemic rapid response agonist, JN, has been confirmed recently 
in vivo [39]. Furthermore, the low calcemic homo hybrid analog (QW) with some 
transcriptional capacity, was also able to reduce pyrimidine dimmers as well as 
immunosuppression in the same level of effectiveness as 1,25(OH)

2
D

3
 when topi-

cally applied to the epidermis of irradiated hairless Skh:HR1 mice [40]. These 
results show QW to be a potential candidate in skin cancer prevention (see 
Sect. 9.5.5). Therefore, the data from these studies provide strong evidence for 
vitamin D photoprotection via the rapid response pathway.
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9.5.5  Vitamin D Analogs as Potential Agent for Skin Cancer 
Prevention

Accumulating evidence of the pro differentiating, anti proliferating and photo-
protective effects of 1,25(OH)

2
D

3
 from in vitro, in vivo and epidemiologic 

 studies have raised a growing interest in the possibility of making vitamin D 
a therapeutic agent [21, 107]. Most clinical trials are impeded by the severe 
hypercalcemia effect of 1,25(OH)

2
D

3
 and the problem of 24-OHase degradation. 

This raises the idea that the development of vitamin D analogs with more spe-
cific actions to minimize current side effects will have a much greater clinical 
potential [62, 103].

The hypercalcemic vitamin D analog QW was described earlier in Sect. 9.5.4 in 
respect to its photoprotective effects in reducing CPDs [40]. In fact, QW has under-
gone some intense pre-clinical trials and its therapeutic effects was compared to 
1,25(OH)

2
D

3
 as well as Paricalcitol, another hypercalcemic vitamin D analog. It 

was found that QW was 80–100 times less calciuric than the classical 1,25(OH)
2
D

3
 

[127]. Both QW and Paricalcitol were tested in SCC models and the molecular 
mechanism were shown to involve a number of pathways, such as those induced in 
growth cycle arrest, DNA synthesis inhibition, as well as apoptosis promotion and 
pro survival actions. To elicit their anti-tumor effects, both QW and Paricalcitol 
decreased the positive cell cycle regulator cyclin dependant kinase 2 and inhibited 
the pro-survival/pro-growth pathway mediators such as phospho-Akt, phospho-
MEK and phospho-ERK. More importantly, apart from its low calcemic properties, 
the ability of QW to induce the cell cycle inhibitor p27 and inhibit phospho-ERK 
was not seen in 1,25(OH)

2
D

3
. In summary, QW was proved to be a more potent 

compound in SCC inhibition [1] and test results for QW and Paricalcitol to date are 
very promising. Testing of other low calcemic vitamin D analogs such as TX527 
and TX522 of its photoprotective effects against UV irradiation are also underway. 
With a potency of 100 times more than 1,25(OH)

2
D

3
 the results demonstrated that 

1,25(OH)
2
D

3
 analogs have great promise in chemoprevention therapies for UVB 

induced skin cancer [35].

9.6  Future Perspectives: Current Controversies on Sun 
Exposure and Vitamin D Recommendations

Given the detrimental role of UVR in the development of skin cancer, during the last 
decades, health campaigns and prevention programs have recommended the use of 
sunscreens, protective clothing and the avoidance of sunlight [133]. However, there 
is also accumulating evidence from epidemiological, in vitro and in vivo studies on 
the benefits of vitamin D. Thus, scientists face the dilemma of how much UVR is 
needed to produce an adequate amount of vitamin D to maintain everyday functions, 
and more interestingly, anticancer effects (summarized in Table 9.1), while 
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 preventing the development of skin cancer due to the over exposure of UVR [68]. 
This urges careful evaluation of these current recommendations to the public.

Some parts of the population with medical conditions such as patients with 
xeroderma pigmentosum who are defective in DNA repair [85] and patients receiv-
ing organ transplants that are on immunosuppressive drugs are extremely sensitive 
to UVR induced skin cancer [23], and are already taking these  precautions. With 
the avoidance of sun exposure, it was found that patients in these two groups had 
significantly lower 25(OH)D

3
 serum levels compared to controls [128, 129]. Also, 

it was found that over 80% of veiled women had significantly low blood 25(OH)D
3
 

levels [60]. This problem of insufficient or even deficient in vitamin D levels were 
more apparent when studies in the southern states in Australia which has relatively 
low levels of sunlight, revealed that 42% of women were vitamn D insufficient and 
8% of 20–59 year old women were vitamin D deficient in vitctoria. In addition, in 
Hobart, up tp 10% of healthy 8 year old children were insufficient in vitamin D 
[81]. Thus, inadequate vitamin D levels are a problem in all age groups.

Vitamin D status is characterized by bone health and PTH levels. This is because 
increased PTH induces the expression of CYP27B1 to maintain vitamin D and in 
turn Ca2+ concentrations in the blood to ensure sufficient levels are available for 
bone mineralization. Vitamin D sufficiency is defined by the absence of bone dis-
ease with a PTH level of less than 65 pg/mL and a serum 25(OH)D

3
 concentration 

of equal to or above 50 nmol/L. Vitamin insufficiency is accompanied with normal 
but high bone turnover and is characterized by PTH levels less than 65 pg/mL but 
can be reduced by vitamin D supplementation. Vitamin D insufficiency occurs 
when serum 25(OH)D

3
 concentration is between 25 and 50 nmol/L. People with 

vitamin deficiency have a PTH level of more than 65 pg/mL and a serum 25(OH)
D

3
 concentration of less than 25 nmol/L [116, 161]. These patients have a high bone 

turnover, and in more severe cases with serum 25(OH)D
3
 concentration less than 

12.5 nmol/L, osteomalacia results, where newly formed bone cannot be mineral-
ized. Osteomalacia may be asymptomatic, but the patient may also experience a 
diffuse bone and muscle pain, and skeletal weakness [125]. These vitamin D status 
and characteristics are summarized in Table 9.2.

Table 9.2 Indicators of vitamin D status

Vitamin D status
Serum PTH 
concentrations (pg/mL)

Serum 25(OH)D
3
 

concentration 
(nmol/L) Characteristics

Sufficiency <65 >50 No bone disease
Insufficiency <65 but can be reduced 

by vitamin D 
supplementation

25–50 High but normal bone 
turnover

Deficiency >65 12.5–25 (moderate) High bone turnover, 
rickets or 
osteomalacia

<12.5 (severe)
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Knowing the consequences of vitamin D inadequacy, key parties in Australia 
involved in skin cancer control have decided to provide more updated guidelines to 
the puiblic regarding the importance of UVR in vitamin D synthesis [143]. Apart 
from reminding people of the harmful effects of UVR on skin cancer, the new mes-
sage to the public stepped away from the idea of needing protection against the sun 
at all times and stressed the importance of maintaining adequate vitamin D levels by 
encouraging outdoor activities (Cancer Council Australia, 2007). However, appro-
priate precautions needs to be taken during outdoor activities For incidental sun 
exposure of less than 10 min, the application of sunscreen may not be necessary, but 
sunscreen application is recommended if periods of sun exposure sufficient to pro-
duce erythema (redness) are intended [116]. Although it has been found that the use 
of sunscreen can have a negative effect on vitamin D synthesis [105], other clinical 
studies on long term use of sunscreens showed that normal vitamin D levels can still 
be maintained [102, 145]. The use of sunscreen is also encouraged by the fact that 
once previtamin and vitamin D

3
 has been formed, further exposure to sunlight will 

cause their degradation into inert over irradiation products [66] and this further UVR 
 exposure will only lead to increases in DNA damage. Based on this, it has been 
pragmatically decided that exposure of hands, face and arms to a third to a half of a 
minimum erythemal dose for 5–15 min four to six times a week with the dark 
skinned and elderly population needing the greatest exposure of these  recommended 
values [68, 116]. However, if sun exposure is limited by medical or cultural reasons, 
a tailored vitamin D supplementation plan may be necessary [143].

Currently, there are still no recommended dietary intake levels in place in 
Australia but the daily vitamin D intake recommended by the Food and Nutrition 
Board of the US Institute are 200 IU, 400 IU and 600–800 IU for ages 0–50 years, 
51–70 years and 71+ years respectively [50]. Yet, these recommended values have 
been challenged by the findings that 200 IU/day has no effect on bone status and 
the recommendation of 1,000 IU has been suggested to adequately prevent bone 
disease, fractures and possibly protect against some cancers [159]. Moreover, it has 
even been reported that 800 IU/day supplemented vitamin D did not reduce osteo-
porotic fractures in some vitamin D replete individuals [135].

In conclusion, much research is needed to further understand the health benefits 
that accompanying sun exposure. More importantly, it is essential to further eluci-
date the molecular mechanisms underlying the actions of vitamin D in preventing 
classical diseases relating to bone health as well as non classical diseases such as 
cancer. Such investigations should take into consideration not only different age 
and racial groups, but also their health status including genetical variations in key 
vitamin D metabolizing genes (Fig. 9.3). The findings in these future studies will 
yield invaluable knowledge to aid appropriate recommendations for sun exposure 
and vitamin D intake. These sun exposure levels will also have to take into account 
of keeping the fine balance between UV exposure derived health benefits and pre-
venting skin cancer. Ultimately, this knowledge can be translated into the develop-
ment of improved vitamin D analogs to efficiently treat vitamin D related diseases 
with minimal side effects.
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Abstract Following epidemiological observations that suggested links between 
low vitamin D exposure and increased risk of prostate cancer, interest in clarify-
ing a potential role of this steroid hormone in prostate cancer has grown. While 
the results have been mixed, epidemiologic studies have suggested that severe 
vitamin D deficiency may increase the risk of clinically important prostate cancer. 
Laboratory investigation provides clear evidence of the potential of vitamin D 
receptor (VDR) ligands to induce growth arrest and promote apoptosis in a variety 
of cancer models. Because there are hundreds of vitamin D responsive genes, mul-
tiple mechanisms for these observations have been proposed.

Prompted by clear evidence of dose-dependent antitumor effects, efforts to har-
ness this knowledge to improve patient outcomes has focused primarily on the 
development of high dose calcitriol, often in combination with other anti-neoplastic 
agents. After encouraging phase II results, the phase III effort failed when excess 
deaths were reported in the experimental arm of a trial that compared calcitriol with 
docetaxel to prednisone with docetaxel. In addition to targeting the vitamin D 
receptor, the two arms of this study differed with respect to the dose, schedule, and 
dose intensity of the chemotherapy agent and steroids, making definitive conclu-
sions about the potential of vitamin D receptor targeted therapy difficult. No pro-
spective randomized studies aimed at prostate cancer prevention have been 
reported.

Continued efforts to target vitamin D signaling for prostate cancer prevention 
and treatment are needed in light of the strong preclinical evidence supporting the 
importance of this signaling pathway. Better understanding of the human prostate 
cancer’s biologic heterogeneity in vitamin D sensitivity may allow for more robust 
identification of ways in which vitamin D can be harnessed to help men who suffer 
from this disease.
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Abbreviations

AIPC Androgen independent prostate cancer
ASCENT AIPC Study of Calcitriol Enhancing Taxotere
AUC Area under the concentration curve
C

max
 Peak blood calcitriol concentrations

EGFR Epidermal growth factor receptors
NMU N-nitroso-N-methylurea
NSAIDS Non-steroidal anti-inflammatory agents
RXR Retinoid-X receptor
VDR Vitamin D receptors
VDRE Vitamin D response element

10.1  Introduction

Stimulated by epidemiological observations that suggest links between low vitamin 
D exposure and increased risk of prostate cancer [1, 2], a number of investigators 
have sought to examine the hypothesis that vitamin D receptor (VDR) signaling 
may impact prostate cancer risk, progression, outcomes, and treatment. This work 
continues to this day and has yielded encouraging but also conflicting results.

10.2  Vitamin D Physiology

Vitamin D is an important regulatory hormone in the human body that belongs to 
the steroid receptor superfamily. Its calcium regulatory activity is well known, but 
additional roles for vitamin D are being increasingly recognized. The principal 
hormonally active form of vitamin D, 1,25-OH

2
 vitamin D, is synthesized through 

a number of steps starting with conversion of 7-deoxycholesterol to pre-vitamin D 
catalyzed by UV-B sunlight. Pre-vitamin D is then converted to 25-OH vitamin D in 
the liver by the enzyme 25-hydroxylase. The enzyme 1-alpha-hydroxylase is 
needed for the final conversion of 25-OH vitamin D to 1,25-OH

2
 vitamin D. 
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This endocrine enzyme is located predominately in the kidney, but has also been 
found in other  tissues such as the colon and the prostate [3–7]. The circulating 
levels of 1,25-OH

2
 vitamin D are tightly regulated by calcium levels and parathy-

roid hormone. Renal 1-alpha-hydroxylase activity is enhanced by hypocalcemia 
through transcriptional regulation. The expression of the CYP27B1 gene, which 
encodes 1-alpha-hydroxylase, is upregulated by parathyroid hormone [8]. 1,25-
OH

2
 vitamin D in turn inhibits transcription of 1-alpha-hydroxylase creating a 

regulatory feedback loop [9, 10]. In contrast, non-renal 1-alpha-hydroxylase, that 
is responsible for autocrine and paracrine, but not endocrine vitamin D activation, 
is thought to be constitutively active [7, 11]. Unlike its renal counterpart, extra-
renal 1-alpha-hydroxylase is not down-regulated by its downstream product, 1,25-
OH

2
 vitamin D [12]. Thus, tissues that express 1-alpha-hydroxylase, including 

potentially certain tumors, may experience tissue 1,25-OH
2
 vitamin D levels that 

reflect circulating levels of the substrate (25-OH vitamin D). 1,25-OH
2
 vitamin D 

also induces the CYP27A1 gene that encodes 24-hydroxylase. This enzyme 
catalyses 24-hydroxylation of 25-OH vitamin D, creating, 24,25-OH

2
 vitamin D, a 

hormonally inactive alternative to 1,25-OH
2
 vitamin D [9, 11, 13]. Local activity 

of the competing 24-hydroxylase in some cancer tissues, may also impact on tissue  
1,25-OH

2
  vitamin D concentrations by diverting the substrate [11, 14].

Prostate carcinoma cell lines express vitamin D receptors (VDR) [15–17]. VDR 
expression in human prostate cancer specimens has also been reported [18]. 
Interestingly, prostate cell lines also express 1-alpha-hydroxylase [3, 5]. However, 
it has been shown in cell culture that prostate cancer cells have reduced 
1- alpha-hydroxylase activity when compared to normal prostate epithelial cells, 
[3, 19]. As a consequence, prostate cancer cells may lose the ability to convert 
25-OH vitamin D to 1,25-OH

2
 vitamin D. Loss of the ability to locally produce 

activated vitamin D may result in the loss of an important break on cancer cell 
proliferation. This hypothesis has led to the suggestion that 1-alpha-hydroxylase 
may act as a tumor suppressor gene [20]. Because VDR exerts predominantly 
growth inhibitory effects on prostate cancer cell lines, it is plausible that loss of the 
autocrine vitamin D loop with reduced 1-alpha-hydroxylase activity contributes to 
the progression of prostate cancer [21]. Also, VDR activity has been shown to be 
altered in prostate cancer cells, with decreased ligand-inducible DNA binding 
activity, altered recruitment of coregulators SRC-1 and CBP, and increased recruit-
ment of SMRT corepressor [22]. These alterations may further exacerbate the 
effects of a relative deficiency of 1,25-OH

2
 vitamin D concentrations in prostate 

cancer.

10.3  The Biologic Activity of Vitamin D in Prostate Cancer

Vitamin D activity involves both rapid induction of cell signaling pathways, 
and genomic receptor-mediated pathways. The vitamin D receptor is an intrac-
ellular steroid receptor that acts as a ligand activated transcription factor [23]. 
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When VDR is activated it binds to the promoter regions of specific genes and 
regulates the transcription of mRNA of these genes. The VDR (once activated 
by vitamin D) forms a heterodimer with the retinoid-X receptor (RXR) and 
then binds to the regulatory region of the gene in the presence of a coactivator 
and corepressor complex. Many genes involving calcium and bone metabolism 
including osteoclastin [24] and osteopontin [25] are regulated this way. In addi-
tion, other genes regulating the cell cycle, apoptosis, and cell proliferation have 
been found to have a vitamin D response element (VDRE) and are induced or 
down-regulated by vitamin D. Some genes with vitamin D response elements 
that are activated by vitamin D include p21 [26] and GADD45 [27], which play 
an important role in cell cycle regulation, and CYP2A1, [11, 28] which encodes 
24-hydroxylase. Notable genes down-regulated by vitamin D include PTH [29] 
and CYP2B1 [8], which regulate 1-alpha-hydroxylase production. Also, vita-
min D has been shown to down-regulate insulin-like growth factor [30] and 
Bcl-2 [31]. Through the regulation of these genes as well many others, vitamin 
D can shift the balance of cell survival signals in favor of apoptosis and growth 
arrest. There are many other vitamin D-regulated genes and a partial list of 
these is provided in Table 10.1. Notably, many of these genes are important 
regulators of cell growth and apoptosis.

In addition to VDR-mediated activities of vitamin D, there are rapid non-
genomic signals induced by vitamin D. Examples include rapid intestinal absorption 
of calcium induced by vitamin D [32] as well as the induction of signaling cascades 
such as Raf-MEK-MAPK-ERK signaling pathway [11, 33–35] and protein kinase 
C [36] among others. These rapid signals may be mediated by translocation of the 
VDR to the plasma membrane [11, 37] (Table 10.2).

Because the VDR regulates so many genes including those effecting cell growth 
and cancer development, many recent studies have been devoted to looking at dif-
ferent genetic variants of the VDR and their relation to prostate cancer risk. Most 
of these studies have been focused on five VDR gene polymorphisms, the poly-A 
microsatellite, and four restriction sites: FokI, BsmI, ApaI, and TaqI. Much like 
epidemiologic studies with serum levels of vitamin D, some studies involving these 
polymorphisms have shown strong associations with increased prostate cancer risk, 
but overall results between different studies are inconclusive [13, 38–42].

10.4  Mechanisms of Anti-neoplastic Activity

Because there are so many different genes affected by vitamin D, different 
 anti-neoplastic activity mechanisms predominate under different experimental con-
ditions, and in different tumor models. Nevertheless, vitamin D activity against 
prostate cancer is seen across a range of tumor models.

Not surprisingly, given that multiple cell cycle regulatory genes are regulated by 
vitamin D, a number of investigators have demonstrated vitamin D-induced growth 
arrest in G1 [11, 26, 43–46]. This has been attributed, at least in part, to transcriptional 
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activation of cyclin-dependent kinase inhibitors p21 (directly) and p27 (indirectly) 
[26, 45]. While vitamin D regulates the transcription of these cell cycle regulators, it 
also inhibits some mitosis signaling pathways. These include, but are not limited to, 
epidermal growth factor receptors (EGFR), [47] c-myc, [48, 49] and ERK/MAPK 
[35, 50, 51] (see Table 10.1).

Table 10.1 Selected genes found to have a functional VDRE

Calcium/bone metabolism:
Osteoclastin [24]
Osteopopontin [25]
Bone sialoprotein [155]
PTH (repression) [29]
PTHrp [156]
Calcium binding proteins (calbindin, D28-k, dak) [157]
RANKL [158]
Cell cycle regulators:
p21 [26]
GADd45 [27]
IGFBP3 [159, 160]
Cell adhesion:
Fibronectin [161]
Beta-3 integrin [162]
Involucrin [163]
Cell signaling:
cfos [164]
Phospholipase C [165]
EGFR [166]
TNF-alpha [65]
Vitamin D metabolism and others:
Runx2/Cbfa1 [167]
Insulin receptor [30]
Carbonic anhydrase II [168]
Human growth hormone [169]
Fructose 1,6 bisphosphatase [170]
CYP2A1 [11, 28, 171]
CYP2B1 (repression) [8]
25(OH)D3 24-hydroxylase [172]

Table 10.2 Non-genomic signals regulated by vitamin D

Protein kinase C [33, 36]
Raf-MEK-MAPK-ERK pathway [33–35]
Protein lipase A [173]
Protein kinase A [174]
Phosphatidyl inositol 3-kinase/Akt [11, 32]
Rapid intestinal calcium absorption [11, 32]
Bcl-2 downregulation [31]
Interruption of IL-8 [63]
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Specific to prostate cancer, multiple studies have shown the antiproliferative 
effects of vitamin D on prostate cancer cells in cell lines, [17] human primary 
 culture, [52] and in rodent models [53].

While normal prostate cells express 1-alpha-hydroxylase, this activity can be 
lost when prostate cancer develops, [3, 19, 54] perhaps reducing the cell’s ability to 
produce 1,25-OH

2
 vitamin D from its circulating precursor, 25-OH vitamin D. Loss 

of local 1-alpha-hydroxylase activity may render cancer cells dependent on circu-
lating 1,25-OH

2
 vitamin D for growth suppression activity. Indeed, restoring 

LNCaP cells 1-alpha-hydroxylase activity with gene transfer [3, 54] has been 
shown to restore effect of 25-OH vitamin D on cell proliferation. Interestingly, 
colon cancer cells rarely lose 1-alpha-hydroxylase activity and sometimes even 
have increased activity, [4] perhaps making colon cancer more responsive to the 
effects of circulating 25-OH vitamin D than prostate cancer [21]. These biologic 
differences may have significant clinical implications. Because circulating 1,25-
OH

2
 vitamin D levels are tightly regulated and remain relatively stable during mild 

deficiency states, tissues that rely on renally activated vitamin D for VDR signaling 
would remain relatively unaffected by vitamin D deficiency until it is severe. In 
contrast, tissues with significant local production of 1,25-OH

2
 vitamin D would see 

differences in VDR signaling with changes in circulating 25-OH vitamin D levels, 
which more closely mirror the overall vitamin D status.

In animal models of cancer, the antineoplastic activity of vitamin D has been shown 
to translate into a reduction in metastatic potential. In rodent models, there has been 
demonstration of reduction in metastases with vitamin D therapy [55–57] and slowed 
growth of the prostate cancer [58, 59]. Reduced prostate cancer cell invasiveness with 
vitamin D therapy has been demonstrated in vitro by several investigators [37, 60–62]. 
1,25 Vitamin D also decreases IL-8 signaling in prostate cancer, thus inhibiting 
endothelial migration and therefore inhibiting growth and invasion of the cancer [63].

In addition to growth inhibition, vitamin D induced apoptosis has been shown in 
several prostate cancer cell culture models. To explain this, vitamin D has been shown 
to down-regulate Bc1–2, [31] an important protein in anti-apoptotic pathways in 
prostate cancer cells, and other cancer cell lines. Vitamin D also upregulates expres-
sion of pro-apoptotic proteins BAK and BAX [64]. Down-regulation of insulin-like 
growth factor receptor in response to vitamin D has also been shown, [30] along with 
up-regulation of TNF-alpha, [65] all important in apoptotic pathways.

10.5  Epidemiology

10.5.1  UV Exposure and Prostate Cancer Risk

The hypothesis that vitamin D plays a role in prostate cancer biology was formulated 
after geographic studies showed that prostate cancer-related mortality was geo-
graphically dependent, with the greatest mortality in northern regions [66]. This 
geographic distribution is consistent with an inverse relationship between prostate 
cancer risk and UV exposure, and presumably, vitamin D levels [67]. After the  initial 
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study by Hanchette, et al. other studies have also shown the correlation between 
 living in areas characterized by low UV exposure and increased risk of prostate 
cancer diagnosis and death due to prostate cancer [68, 69]. One study measured 
exposure to UV radiation, a sunbathing score, and correlated low exposure to an 
increased risk of prostate cancer with an OR 3.03 for men with the lowest quartile 
of UV exposure [69]. Two recent studies have supported the hypothesis for a protec-
tive effect of sunlight [70, 71]. Two other studies done recently in Norway interest-
ingly did not find a geographic or latitude dependent increased risk of prostate 
cancer mortality [72, 73] after correcting for season of diagnosis. Notably, these 
studies examined a limited range of latitudes as they considered only the Norwegian 
population (Table 10.3).

One possible explanation for the incomplete concordance among these studies 
may be rooted in the populations that were examined. If prostate cancer indeed relies 
on circulating 1,25-OH

2
 vitamin D levels for VDR signaling, these would only be 

altered in states of relatively severe vitamin D deficiency. Normal homeostatic regula-
tory mechanisms maintain 1,25-OH

2
 vitamin D levels across a fairly broad range of 

25-OH vitamin D concentrations. Luscombe’s study was done in the UK where there 
is a high prevalence of vitamin D deficiency and therefore changes in 25-OH vitamin 
D levels would have the most effect on tissue 1,25-OH

2
 vitamin D levels. Another 

possible confounder in analyses of UV exposure is the seasonal nature of UV avail-
ability. Interestingly, several recent studies have linked the season of diagnosis and 
cancer mortality [72–74]. Patients diagnosed in the summer and fall had greater sur-
vival than patients diagnosed in the winter. Zhou et al. found that patients diagnosed 
and undergoing surgery for early stage lung cancer in the summer had a longer 
relapse-free survival than those that were diagnosed and underwent surgery in the 
winter (HR 0.33). Robsahm et al. found similar results for prostate cancer with a 
summer diagnosis of prostate cancer conferring a 20–30% reduction in risk of death 
when compared to other seasons of diagnosis. Recently, Lagunova et al. showed that 
patients diagnosed with prostate cancer in the summer and autumn had a better prog-
nosis than those patients diagnosed in winter or spring with a relative risk of death of 
0.8. This study was done in Norway where there is a relatively high prevalence of 
vitamin D deficiency and the seasonal variation in UV exposure is extreme. While the 
prostate cancer studies did not include measurement of vitamin D levels in the 
patients, a follow-up of the Harvard School of Public Health lung cancer study did. 
They reported that patients with early stage lung cancer whose vitamin D blood levels 
and vitamin D intake was above the median had a significantly lower risk of recur-
rence and death when compared to patients below the median for both of these 
 measures (HR 0.67 and 0.64, respectively) [75].

10.5.2  Dietary Vitamin D and Calcium Intake  
and Prostate Cancer Risk

Relevant studies of diet and prostate cancer risk have focused not only on 
dietary intake of vitamin D, but also on calcium intake. High dietary calcium 
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would be expected to reduce renal 1-alpha hydroxylation of 25-OH vitamin D 
[76, 77]. One limitation of these dietary studies is the lack of consistent concur-
rent measurement of blood calcium or vitamin D levels. A recent study, [78] 
however, did measure serum calcium levels and found that with serum calcium 
greater than 10.2 mg/dL there was an increased risk of mortality from prostate 
cancer. This was only statistically significant in sub-groups with high BMI and 
when separated out for race. Along these same lines, a 2004 meta-analysis 
reported an increased risk of prostate cancer with high milk consumption with 
an odds ratio of 1.68 [79]. Other studies have supported the association between 
high calcium intake and increased prostate cancer risk [77, 80, 81]. Consistent 
with these findings, some studies have shown that high milk consumption is 
associated with a reduction in circulating 1,25 vitamin D levels [76, 77]. 
However, these findings have not been either universal or completely consistent. 
There have been multiple studies that do not show an increased risk of prostate 
cancer with increased calcium intake [82–86]. Interestingly, a recent study cor-
related dietary, but not supplemental calcium intake to an increase in prostate 
cancer risk [87].

Overall, dietary studies that evaluate vitamin D intake have not shown a 
 consistent protective effect for prostate cancer, [76, 80, 84, 88] as has been dem-
onstrated for colon cancer. This observation is consistent with the hypothesis that 
loss of 1-alpha-hydroxylase activity in prostate cancer renders the tumor less sus-
ceptible to modest fluctuations of serum 25-OH vitamin D that occurs with varia-
tions in dietary intake. To the extent that circulating 1,25-OH

2
 vitamin D may be 

important in prostate cancer, only severe vitamin D deficiency states where renal 
1-alpha-hydroxylation is reduced would be expected to result in adverse cancer 
outcomes.

10.5.3  Vitamin D Blood Levels and the Risk of Prostate Cancer

There are only a handful of epidemiologic studies that have measured vitamin D 
levels and examined the association with risk of prostate cancer. These results 
have been mixed but, in general, studies done in areas with a high prevalence 
of vitamin D deficiency have shown an association between low levels of vita-
min D and subsequent development of prostate cancer. There have been 11 
case–control studies that measured vitamin D and examined prostate cancer 
risk (see Table 10.4).

Overall, four of the studies showed an association between decreased vitamin D 
levels and increased prostate cancer risk [89–92]. Three of these studies included 
subjects with a high (>50%) prevalence of vitamin D deficiency (defined as 25-OH 
vitamin D < 20 ng/mL). In contrast, all of the studies that showed no association 
between vitamin D blood levels and prostate cancer risk examined populations with 
a much lower prevalence of vitamin D deficiency, mostly less than 20% [93–98] 
and even one at zero [99].
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There were important differences between the four positive studies. Two of the 
positive studies showed that higher 1,25-OH

2
 vitamin D levels were associated with 

a protective effect against prostate cancer [90, 91]. Corder et al. had a large number 
of vitamin D deficient subjects (approximately 50%). In Li, et al. the protective 
effect of the higher 1,25-OH

2
 vitamin D levels was a reduction in the risk of aggres-

sive prostate cancers. Two other studies showed a link between low 25-OH vitamin 
D levels and increased risk of prostate cancer [89, 92]. Tuohimaa et al. showed an 
increased risk of prostate cancer with extreme 25-OH vitamin D deficiency 
(<7.6 ng/mL) but also showed an increased risk of prostate cancer with highest 
25-OH vitamin D levels suggesting a U-shaped relationship between vitamin D 
status and prostate cancer risk [92].

This suggestion of an increased risk of prostate cancer at higher 25-OH vitamin 
D levels was reproduced in one recent study [93]. Ahn et al. found a statistically 
significant increase in risk of aggressive prostate cancers (Gleason > 7) with higher 
25-OH vitamin D levels. This possible increased risk at higher vitamin D levels has 
not been fully explained and requires further investigation.

In the aforementioned 2007 study by Li et al., there was an increased risk of 
aggressive prostate cancer when both 1,25-OH

2
 vitamin D and 25-OH vitamin D 

levels were low, but not solely with low 25-OH levels. This additive effect of low 
levels of both forms of vitamin D was also shown by Corder et al. Three of the 
studies that had positive results, demonstrating increased risk of aggressive pros-
tate cancer, but not necessarily an increased risk of lower grade cancers [89, 91, 
93]. Of the studies that had null results, two did not analyze risk based on aggres-
siveness [94, 99] and three had relatively small numbers of aggressive cases [95, 
96, 98]. This may support a hypothesis that vitamin D deficient states will 
increase the risk of aggressive prostate cancers, rather than all grades of prostate 
cancers.

Thus, epidemiologic evidence is mixed, but generally consistent with the hypoth-
esis that circulating 1,25-OH

2
 vitamin D levels, and factors that influence them (i.e., 

oral calcium intake, severe vitamin D deficiency) play a role in prostate cancer 
development and its course [100]. There are multiple preclinical observations 
involving vitamin D and prostate cancer risk and mortality that still need further 
investigation with humans. In addition to the ongoing trials with vitamin D analogs 
in treating prostate cancer, the observation that 1-alpha-hydroxylase is reduced or 
lost in prostate cancer tissue needs further confirmation and study in humans.

10.6  Therapeutic Applications of Vitamin D

10.6.1  Vitamin D in Combination with Other Antineoplastic 
Agents in Preclinical Models

Experiments in preclinical models suggest that VDR ligands enhance the activity 
of a broad range of antineoplastic agents.
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10.6.1.1  Steroids

In preclinical models, the steroid, dexamethasone, enhances the antineoplastic 
activity of vitamin D [101, 102]. It has been shown to increase vitamin D 
induced cell cycle arrest and apoptosis and increase vitamin D-mediated sup-
pression of phospho-Erk 1/2, phospho-Akt levels and tumor derived endothelial 
cell growth [101–104]. Dexamethasone has also been shown to directly increase 
VDR protein levels and ligand binding in the squamous cell carcinoma model 
SCC [102].

10.6.1.2  Cytotoxic Chemotherapy

Combining of VDR ligands with several classes of chemotherapy drugs has 
shown to result in additive and supra-additive activity in several preclinical 
models of cancer. Specifically, docetaxel [105], paclitaxel, [106] platinum com-
pounds [107], and mitoxantrone [108] have been rendered more active by com-
binations with vitamin D in preclinical in vitro models of prostate cancer. 
Confirmation in in vivo models has been reported for paclitaxel and mitoxan-
trone [106, 108]. Studies in models of other neoplasms yield similar observa-
tions [109–112], but further study is required to fully clarify the mechanisms of 
these interactions.

10.6.1.3  Retinoid Receptor Ligands

As previously mentioned, after ligand binding, VDR forms heterodimers with the 
retinoid X receptor (RXR), thus interactions between these two receptor systems 
would be expected [113, 114]. Both apoptosis [114] and angiogenesis inhibition is 
synergistically enhanced when VDR and RXR ligands are co-administered in pre-
clinical models [114]. Several overlapping mechanisms of anticancer activity, 
including modulation of IGFBP-3 expression, [115] inhibition of telomerase 
reverse transcriptase in prostate cancer cells [116] as well as induction of cell cycle 
checkpoint proteins like p21 may explain these observations.

10.6.1.4  Tamoxifen

A study in Sprague-Dawley rats reports that there was a significant increase in the 
inhibition of N-nitroso-N-methylurea (NMU) induced mammary carcinogenesis 
when VDR ligands are co-administered with tamoxifen [117]. Enhanced apoptosis 
was seen in MCF-7 cells in vitro and in vitro when this combination was evaluated 
[118, 119]. It maybe that MCF-7 cells are inversely sensitive to vitamin D and 
antiestrogens [120]. While these findings originate from breast cancer models, they 
may have relevance to prostate cancer biology as well.
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10.6.1.5  Non-steroidal Anti-inflammatory Agents (NSAIDS)

In LNCaP cells, VDR ligands and ibuprofen acted synergistically to inhibit growth 
[121]. Both decreased G1-S transition and enhanced apoptosis were noted when the 
two agents were used together [122]. Expression of prostaglandin synthesizing 
COX-2 gene was decreased by calcitriol in LNCaP cells. At the same time, the pros-
taglandin inactivating 15-prostaglandin dehydrogenase gene was upregulated [121].

10.6.1.6  Radiation

Radiation sensitivity is enhanced by p21 expression, which in turn is a known VDR 
target [123]. In several tumor models, radiation induced apoptosis was also 
enhanced with VDR ligands [124, 125]. One explanation for this interaction maybe 
increased ceramide generation [126].

Thus, in addition to single agent activity, VDR ligands appear to enhance the 
activity of a broad collection of antineoplastic agents. These pre-clinical data have 
served as the basis for the examination of clinical activity of VDR ligands. 
Calcitriol, the natural VDR ligand, has been most extensively studied.

10.6.2  Clinical Trials of Calcitriol in Prostate Cancer

Calcitriol (1,25-dihydroxycholecalciferol, 1,25-OH
2
 vitamin D) is approved for the 

treatment of kidney failure patients where it serves as a replacement for the inability 
to activate vitamin D. Nearly all pre-clinical studies suggest that the antineoplastic 
activity of VDR ligands, and calcitriol specifically, is dose dependent and most 
pronounced at supraphysiologic concentrations (typically at or above 1 nM). 
Consequently, studies in cancer have generally sought to examine higher doses than 
those required for replacement in patients with end-stage renal disease.

10.6.2.1  Phase I Studies of Single Agent Calcitriol

Daily Administration

Initial studies of calcitriol in prostate cancer patients sought to increase the dose 
administered on the standard daily replacement schedule. Osborn, et al. used 
daily administration and examined doses that ranged from 0.5 to 1.5 mg daily in 
11 hormone-refractory prostate cancer patients. No PSA responses were seen in 
this study [127]. A similar approach was taken in a pilot study carried out in 7 
hormone-naïve patients who had a rising serum PSA without metastases [128]. 
While there were no PSA responses, the PSA doubling time appeared to be 
lengthened compared to the pre-treatment PSA doubling time. Subsequent studies 
with other agents have clearly demonstrated variability in PSA kinetics in this 
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clinical setting, and therefore  illustrate the need for a control arm to interpret 
these results, nevertheless the observation is suggestive of a treatment effect. 
Dose escalation was not carried out in the Gross et al. study beyond doses of 
2.5 mg/day due to concern about hypercalciuria.

Every Other Day Subcutaneous Administration

The hypotheses that an alternative route of administration and dosing schedule may 
allow greater dose escalation by reducing the calcemic toxicity of calcitriol was 
examined in a clinical trial of subcutaneous administration every other day. 
Significant escalation was indeed possible with doses of 10 mg reached and peak 
calcitriol concentrations of approximately 0.7 nM at the 8 mg dose. Hypercalcemia 
precluded further dose escalation [129].

Weekly Oral Dosing

In the initial phase I study, weekly oral dosing demonstrated both significant potential 
with regard to dose escalation and revealed a formulation-specific absorption ceiling. 
Doses as high as 2.8 mg/kg were examined. In this study, peak blood calcitriol con-
centrations (C

max
) of 3.7–6.0 nM were observed without dose limiting toxicity, but 

above 0.48 mg/kg, C
max

 and the area under the concentration curve (AUC) did not 
increase linearly [130]. Mundi et al. later confirmed that the commercially available 
formulation of calcitriol had non-linear pharmacokinetics [131] and later showed a 
similar pattern with a liquid calcitriol formulation [132].

A new formulation of calcitriol has been developed to overcome the limitation 
of the pharmacokinetics and the large quantity of pills required for treatment 
 (calcitriol is only commercially available as 0.25 and 0.5 mg capsules). DN-101 
(Novacea, Inc. South San Francisco), given as a single dose capsule, demonstrated 
dose-proportional increases in both C

max
 and AUC when studied over a range of 

doses (15–165 mg). Peak calcitriol concentrations (14.9 nM at the 165 mg dose) 
were higher than any previously reported [133]. While single dose administration 
was free from dose-limiting toxicity, grade 2 hypercalcemia was seen with repeat 
weekly dosing in the 60 mg group [134]. It is likely that a higher weekly dose would 
have been achievable if a more conventional grade 3 toxicity criterion were utilized 
or if DN-101 had been co-administered with agent(s) that have potential to reduce 
hypercalcemia (i.e., bisphosphonates or steroids).

10.6.2.2  Early Stage Studies of Calcitriol in Combination  
with Other Agents

Daily Administration

One study examined daily calcitriol, dosed at 0.5 mg daily with daily dexamethasone 
and weekly carboplatin in 34 patients with androgen independent prostate cancer 
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(AIPC) [135]. PSA response was noted in 38% of patients. The interpretation of this 
result is challenging because both dexamethasone and carboplatin have some activ-
ity in prostate cancer. Nonetheless, the response rate is respectable.

Dosing 3 of Every 7 Days

Dosing calcitriol for 3 consecutive days, every 7 days was evaluated in two studies 
in combination with other drugs. The first trial was a phase I combination with 
paclitaxel, with daily doses up to 38 mg on three consecutive days. C

max
 ranges of 

1.4–3.5 nM at the highest doses did not produce dose limiting toxicity [131]. The 
second study was in combination with zoledronate with dexamethasone added upon 
progression [136]. Calcitriol was administered on the same schedule as it was on 
the previous study at doses of 30 mg. While there were not dose limiting toxicities, 
three patients did have dose reductions due to laboratory abnormalities. The only 
patient responses to this regimen were observed when dexamethasone was added 
upon patient progression.

Intravenous Calcitriol

Having observed an absorption-related pharmacokinetic ceiling, the Roswell Park 
group examined weekly intravenous calcitriol in a phase I study that included 
patients with a range of solid tumors [137]. In this study, gefitinib was given as the 
partner drug. Dose limiting hypercalcemia was reached in two patients who were 
receiving 96 mg of calcitriol/week (Table 10.5).

In a series of studies, intermittent dosing has been shown to result in significant 
dose escalation. A novel formulation, DN-101 circumvented the previously 
described non-linear pharmacokinetics, and in doing so provided evidence that the 
phenomenon is likely to be related to the formulation rather than the parent com-
pound. DN-101 also allowed for much more convenient dosing that required one or 
several capsules instead of dozens if not more than 100. As a result, the develop-
ment of DN-101 allowed large scale trials of high dose calcitriol.

10.6.2.3  Phase II Studies

Weekly Dosing

Patients who had a biochemical progression after prostatectomy or radiation 
 therapy were enrolled in a non-randomized study of weekly calcitriol of 0.5 mg/kg 
[138]. Patients were treated for a median of 10 months demonstrating the long-term 
safety of this approach. Lengthening of the PSA doubling time when compared to 
pre-treatment and a handful of minor PSA reductions with treatment were seen. 
Absent a control arm, it would be difficult to be certain whether these observations 
indicate true anti-tumor activity.
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Building on the pre-clinical evidence of synergy with taxanes, the next effort 
involved combining weekly calcitriol with docetaxel. Chemotherapy-naïve 
 metastatic androgen-independent prostate cancer patients received oral calcitriol 
0.5 mg/kg on day 1, followed by docetaxel 36 mg/m2 intravenously on day 2 weekly 
for 6 consecutive weeks, repeated every 8 weeks in a phase II single institution 
clinical trial [139]. Of the 37 patients, 81% had a confirmed PSA response, while 
toxicity was similar to what would be expected with docetaxel alone. RECIST 
criteria for response was met in 53% of the 15 patients with measurable disease. 
The median overall survival was 19.5 months. These results were quite encouraging 
when contrasted with contemporary results seen with docetaxel alone and stimu-
lated the development of a larger effort.

ASCENT (AIPC Study of Calcitriol Enhancing Taxotere) was launched to more 
robustly examine the possibility that weekly calcitriol enhances the activity of 
weekly docetaxel. This placebo-controlled international multi-institutional random-
ized study that compared weekly DN-101 + docetaxel to placebo + docetaxel in 250 
patients with chemotherapy-naïve AIPC enrolled at 48 sites in the US and Canada. 
For 3 consecutive weeks out of 4, 45 mg of DN-101 was given 24 hours before 
docetaxel 36 mg/m2. Although the study did not meet its primary endpoint of PSA 
response rate improvement, the observed trend favored the experimental arm with 
an overall PSA response rate of 63% compared to 52%, p = 0.07. Overall survival, 
a secondary endpoint, was better in the experimental arm than in the docetaxel arm 
(HR 0.67, p = 0.035). Interestingly, calcitriol did not appear to add toxicity to doc-
etaxel and exploratory analyses suggested a lower incidence of thrombotic and 
gastrointestinal toxicity in the experimental arm. The overall results of ASCENT 
were thought to be sufficiently encouraging to warrant a phase III program [140].

The 3 days out of 7 schedule was also examined further in a phase II study with 
dexamethasone [141]. In this study, calcitriol was given at 8–12 mg/day for 3 con-
secutive days repeated every week. Four milligrams of dexamethasone was given 
for 4 of every 7 days. Nineteen percent of the 37 patients enrolled had a PSA 
response and treatment was well tolerated. While encouraging, this response rate is 
difficult to interpret with confidence because the activity of this dose and schedule 
of dexamethasone is not known (Table 10.6).

Less Frequent Dosing

A dose de-escalation study of 60 mg of calcitriol was administered to AIPC patients 
every 3 weeks 24 hours before chemotherapy with docetaxel and estramustine 
[142]. Although this study was not designed to test efficacy, responses were seen in 
55% of chemotherapy naïve patients and 9% of patients previously treated with 
docetaxel-containing chemotherapy, while at the same time showing that 60 mg of 
calcitriol can be safely administered.

Calcitriol 0.5 mg/kg dosed every 4 weeks was evaluated in combination with 
carboplatin dosed at AUC of 7 (6 in patients with prior radiation) in a small phase 
II study of patients with AIPC [143]. Seventeen patients had a response rate of less 
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than 10% with unremarkable toxicity. It is unclear if the infrequent dosing or the 
platinum resistance of prostate cancer had an impact on these results.

Nineteen patients with metastatic AIPC received DN-101 180 mg p.o. on day 1 
and mitoxantrone 12 mg/m2 i.v. on day 2 every 21 days with continuous daily 
prednisone 10 mg p.o. for a maximum of 12 cycles. This trial examined the high-
est dose of calcitriol evaluated in a phase II study, but used an infrequent dosing 
schedule. Five of 19 patients (26%; 95 CI 9%–51%) achieved a PSA decline and 
47% (95% CI 21%–73%) achieved an analgesic response (BJU International, in 
press).

Overall, the phase II studies of infrequently given high dose calcitriol, even 
using very high doses, did not produce remarkable results, suggesting that weekly 
dosing maybe a more promising strategy.

10.6.2.4  Phase III Studies

With encouraging results from the ASCENT study in hand, Novacea, Inc.  pursued 
phase III development of DN-101. The ASCENT-2 study sought to determine if 
the addition of DN-101 to docetaxel improved overall survival. The design of this 
study faced several important challenges. While much of the high dose calcitriol 
program, and the encouraging results from the ASCENT study were derived from 
a program of weekly administration of high dose calcitriol along with weekly 
chemotherapy, a 3-weekly regimen of docetaxel and prednisone had become the 
standard of care. Tannock et al. reported that docetaxel 75 mg/m2 with low dose 
daily prednisone improve the overall survival of AIPC patients over the prior 
standard of mitoxantrone and prednisone. At the same time, a weekly regimen of 
30 mg/m2 administered for 5 of every 6 weeks, designed to be equal in dose 
intensity to the 3-weekly arm, but distinct from all previously studies weekly 
regimens of docetaxel in prostate cancer, did not produce a survival 
improvement.

The phase III program, with the primary endpoint of survival, compared the 
winning arm of ASCENT that consisted of 45 mg of DN-101 + docetaxel at 
36 mg/m2 weekly for 3 of every 4 weeks to the FDA approved standard of doc-
etaxel 75 mg/m2 with daily prednisone. This large study was halted early due to 
excess deaths in the experimental arm. Recently, the Food and Drug Administration 
lifted the resulting hold on studies of DN-101. This disappointing result is diffi-
cult to interpret due to the multiple differences between the two arms of the study. 
In addition to the presence or absence of high dose calcitriol, the two arms differ 
with respect to: (1) the dose and schedule of docetaxel, (2) the dose intensity of 
docetaxel, (3) the use of prednisone, and (4) the dose and schedule of dexametha-
sone. Thus, this unblinded study did not directly examine the contribution of high 
dose calcitriol to the safety and efficacy of chemotherapy. Rather, it was designed 
to meet the regulatory requirements for drug approval. The failure of this study 
leaves us uncertain about the potential of high dose calcitriol as a useful cancer 
treatment.
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10.6.3  Clinical Trials of Calcitriol Analogs in Prostate Cancer

An alternative to calcitriol, calcitriol analogs have been developed in the hope of 
overcoming calcemic toxicity, while maintaining antineoplastic activity. Many 
compounds have been chemically synthesized, primarily with side chain modifica-
tions. It is hoped that reduced calcemic toxicity may be a result of differences in 
protein binding, VDR affinity, and drug metabolism [144–146].

After phase I studies in pancreatic and hepatocellular carcinoma, [147] 
Seocalcitol (EB 1089, Leo Pharmaceuticals, Ballerup, Denmark) 10 mg entered 
phase II studies. Results in unresectable hepatocellular carcinoma show that 2 of 
33 evaluable patients had a complete remission enduring beyond 29 months (last 
point of analysis), [148] while no responses were seen in pancreatic cancer 
[149]. Another analog, topical calcipotriol, had observed responses in 3 of 14 
patients with locally advanced or cutaneous metastatic adenocarcinoma of the 
breast [150].

In a phase I study of 1-alpha-hydroxyvitamin D
2
 [151] 12.5 mg was identified as 

the safe dose due to dose limiting hypercalcemia and renal insufficiency. Two of 25 
androgen independent prostate cancer patients had objective responses, which lead 
to the development of a phase II study. In this follow-up study, 26 patients were 
enrolled to evaluate progression free survival. One patient had stable disease for 
more than 2 years, while the median time to progression was 12 weeks (mean 
19 weeks). In a randomized phase II study, 70 chemotherapy-naïve men with AIPC 
were treated with weekly docetaxel with or without 1-alpha-hydroxyvitamin D

2
 

given at a dose of 10 mg/day. The response rates, time to disease progression, and 
toxicity were similar in both arms of the study [152].

Another analog, ILX23–7553, was evaluated in a phase I clinical trial. It was 
found that doses up to 45 mg/m2/day for 5 consecutive days repeated every 14 days 
was safe, but the number of capsules required prompted early closure. The authors 
conclude that a reformulation at a higher dose may be a more feasible study in the 
future [153].

19-Nor-1alpha-25-dihydroxyvitamin D2 (paricalcitol) was examined in a phase I 
study in 18 patients with androgen-independent prostate cancer. Paricalcitol was 
given i.v. three times per week with doses between 5 and 25 mg tested [154]. While 
some PSA declines were seen, no patient had a sustained PSA response. One epi-
sode of hypercalcemia was noted at the highest dose tested. Interestingly, serum 
parathyroid hormone levels, elevated at study entry in 41% of patients, were 
reduced with therapy.

Vitamin D remains an exciting area of investigation in prostate cancer epidemi-
ology, prevention, and therapy. Despite compelling biology and supportive epide-
miology, to date, definitive results have not been reported. There are sufficient data 
to expect that with further work, a role for vitamin D in reducing the risk of prostate 
cancer diagnosis and death, as well as improved outcomes in prostate cancer treat-
ment will be identified. It is tempting to consider that human biologic heterogeneity 
in vitamin D sensitivity has not been fully considered in the studies conducted to 
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date. Increased attention to the underlying molecular defects in individual prostate 
cancer may allow for more robust identification of ways in which vitamin D can be 
harnessed to help men who suffer from this disease.
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Abstract The biologically active form of vitamin D, 1,25-dihydroxyvitamin D
3
 

[1,25(OH)
2
D

3
], has multiple anticancer activities including growth arrest, induction 

of apoptosis, and differentiation. Here, the actions of vitamin D compounds are 
addressed from normal to malignant hematopoietic cells. The effects are driven by 
binding of vitamin D to vitamin D receptor in either genomic and/or nongenomic 
fashions. However, its application as a therapeutic agent is limited by its side 
effect, hypercalcemia. 1,25(OH)

2
D

3
 analogs have been synthesized to obtain anti-

tumor activity with less calcemic toxicity. Limited clinical studies using vitamin 
D compounds have had only minor clinical success for patients with leukemia or 
myelodysplasia syndrome. Nevertheless, preclinical studies suggest that the combi-
nation of vitamin D compounds with other agents can have additive or synergistic 
anticancer activities, renewing hope for future clinical studies.

Keywords Hematopoiesis • Vitamin D • Vitamin D receptor • Leukemia  
• Molecular mechanisms • Vitamin D analogs • Combination therapy

11.1  Overview of Hematopoiesis

Hematopoiesis is the process that leads to the formation of the highly specialized 
circulating blood cells from pluripotent hematopoietic stem cells (HSCs) in the bone 
marrow. The HSCs are the most primitive blood cells, and they have the  ability for 
both self-renewal and pluripotency. They differentiate to more mature “committed” 
cells including the common lymphoid progenitor (CLP) and the  common myeloid 
progenitor (CMP); and the latter differentiates to  megakaryocyte-erythroid  progenitors 
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(MEP) and granulocyte-macrophage progenitors (GMP). The MEP eventually 
 differentiates into functional red blood cells and platelets. The GMP gives rise to 
mature mast cells, eosinophils, neutrophils, and monocytes/macrophages. The CLP 
population produces either mature T or B lymphocytes (Fig. 11.1).

The differentiation and proliferation of hematopoietic stem cells, as well as, their 
more mature precursor cells are highly controlled by stimulation of cytokines from 
the extracellular environment. Each of these stem cells has cell surface  receptors for 
specific cytokines. Binding of cytokines to these receptors stimulates secondary 
intracellular signals that deliver a message to the nucleus to enhance proliferation, 
differentiation, and/or activation. The growth factors acting primarily on the 
 granulocyte-macrophage pathway are granulocyte-macrophage colony-stimulating 
factor (GM-CSF), granulocyte colony-stimulating factor (G-CSF), and macrophage 
colony-stimulating factor (M-CSF). The GM-CSF also stimulates eosinophils, 
enhances megakaryocytic colony formation, and increases erythroid colony 
 formation in the presence of erythropoietin (Epo). In vivo, the cytokine causes an 
increase in granulocytes, monocytes, and eosinophils. The GM-CSF can activate the 
monocytes and granulocytes to kill efficiently invading microbes. The G-CSF stimu-
lates the formation of granulocyte colonies in vitro. It is able to act synergistically 

MEP

RCP Red blood cell

MeP Megakaryocyte/
Platelet

CMP MCP Mast cell

GMP

EoP

NeP

Eosinophil

Neutrophil
HSC

MoP Monocyte /
Macrophage

PreT T lymphocyte

CLP

PreB B lymphocyte

Fig. 11.1 Scheme of hematopoiesis. HSC hematopoietic stem cell, CMP common myeloid 
 progenitor, CLP common lymphoid progenitor, MEP megakaryocyte-erythroid progenitor, GMP 
granulocyte-macrophage progenitor, RCP red blood cell precursor, MeP megakaryocyte precur-
sor, MCP mast cell precursor, EoP eosinophil precursor, NeP neutrophil precursor, MoP mono-
cyte-macrophage precursor, PreT precursor of T lymphocyte, PreB precursor of B lymphocyte
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with interleukin (IL)-3, GM-CSF, and M-CSF. This cytokine is active in vivo, 
stimulating an increase of peripheral blood granulocytes. The M-CSF stimulates the 
formation of macrophage colonies in vitro. It maintains the survival of differentiated 
macrophages and increases their antitumor activities and secretion of oxygen reduc-
tion products as well as plasminogen activators. This cytokine binds to a receptor 
that is the product of the protooncogene c-fms. IL-3 has multilineage stimulating 
activity and acts directly on the granulocyte-macrophage pathway, but also enhances 
the development of erythroid, megakaryocytic, and mast cells, and possibly  
T lymphocytes. In synergy with Epo, IL-3 stimulates the formation of early eryth-
roid stem cells, promoting the formation of colonies of red cells in soft gel culture 
known as BFU-E. In addition, it supports the formation of early multilineage cells 
in vitro. IL-3 also induces early progenitor cells to enter the cell cycle, and in 
combination with other growth factors, stimulates the production of all the myeloid 
cells in vivo. Stem cell factor (SCF) promotes survival, proliferation and differentia-
tion of hematopoietic progenitor cells. It synergizes with other growth factors 
such as IL-3, GM-CSF, G-CSF and Epo to support the clonogenic growth in vitro. 
SCF is a ligand for the c-kit receptor, a tyrosine kinase receptor that is expressed in 
hematopoietic progenitor cells. The growth factor Epo stimulates the formation of 
erythroid colonies (CFU-E) in vitro and is the primary hormone of erythropoiesis in 
animals and humans. It binds to a specific receptor (Epo-R). Production of 
 erythroblasts is regulated by Epo which is modulated by the amount of tissue 
 oxygenation of Epo-producing cells in the kidney. Oxygen-carrying hemoglobin in 
the red blood cells is the physiologic rheostat determining the amounts of circulating 
Epo. Anemia causes tissue hypoxia, resulting in an increase of serum Epo levels.

11.2  Vitamin D Receptors in Blood Cells

The genomic actions of 1,25(OH)
2
D

3
 are mediated by the intracellular vitamin 

D receptor (VDR), which belongs to a large family of nuclear receptors [1]. VDR 
forms a heterodimer with the retinoid X receptor (RXR); this complex regulates 
expression of target genes by binding to vitamin D responsive elements (VDREs) in 
the promoter regions of their target genes [2]. Patients with hereditary vitamin 
D-resistant rickets type II (HVDRR) have various mutations of the VDR resulting in 
prominent skeletal abnormalities and hematopoietic abnormalities [3, 4]. Expression 
of VDR has been detected in bone marrow-derived stromal cells, as well as various 
normal and leukemic hematopoietic cells [5, 6].

11.2.1  Vitamin D Receptors in Myeloid Cells

VDR is expressed constitutively in monocytes, neutrophils and antigen-presenting 
cells such as macrophages and dendritic cells [5, 7–9]. Circulating monocytes have 
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higher levels of VDR than tissue macrophages [10]. VDR protein levels of 
 peripheral blood monocytes have been reported to be two-fold higher in patients 
with idiopathic hypercalciuria with normal serum 1,25(OH)

2
D

3
 levels compared to 

monocytes from normal individuals [11]. On the other hand, fewer receptors have 
been detected in the peripheral blood mononuclear cells of patients with X-linked 
hypophosphatemic rickets [12]. These individuals have a significant positive 
 correlation between VDR concentration in their mononuclear cells and their serum 
phosphate levels (p < 0.05).

Examination of a large number of myeloid leukemia cell lines blocked at various 
stages of maturation showed that they all expressed VDR, albeit at different levels 
[5]. Treatment of HL-60 myeloblastic leukemia cells with 1,25(OH)

2
D

3
 (10–7 M) 

decreases their VDR protein levels by 50% at 24 h and levels return to normal after 
72 h. No change of VDR mRNA expression occurred in the cells [5, 13], suggesting 
that one of the major sites of regulation of expression of VDR occurs at the post 
transcriptional level. Exposure to 1,25(OH)

2
D

3
 induces the VDR to move from the 

cytoplasm to the nucleus, and this translocation is prevented by treatment with 
inhibitors of the PI3-K (LY294002) and the MAPK (PD98059) pathways [14]. 
Their monocyte-like differentiation of HL-60 cells treated with 1,25(OH)

2
D

3
 may 

require functional activator protein-l (AP-1) complexes which bind to the TRE of 
the promoter region in human VDR [15] (Sect. 11.4.2.1).

11.2.2  Vitamin D Receptors in Lymphoid Cells

Subsets of thymocytes, resting T lymphocytes especially those expressing either 
CD8+ or CD4+ and activated T lymphocytes express VDR [5, 16, 17]. VDR 
mRNA expression increases when these cells are stimulated to proliferate, for 
example after their exposure to phytohemagglutinin-A (PHA) for 24 h in vitro. 
Another major site of regulation of VDR expression in these cells is at the tran-
scriptional level [5, 16]. No VDR mRNA or protein was detected in resting B 
lymphocytes, but VDR was up-regulated via cellular activation in vitro and in vivo, 
for example in normal human B cells from tonsils [16, 18]. 1,25(OH)

2
D

3
 inhibits 

the synthesis of immunoglobulins (Ig) synthesized by B lymphocytes in vitro [19]. 
Their inhibition may be mediated through activation of VDR/RXR in these cells, 
and/or through the inhibition of T-helper activity [20]. Production of lymphokines, 
including IL-2, is markedly decreased by 1,25(OH)

2
D

3
 in activated T lymphocytes, 

and this could cause the suppression of Ig synthesis [21–24]. The effects of vita-
min D on the immune system are discussed in Chapter 6.

Levels of VDR mRNA in leukocytes from healthy individuals after an oral 
administration of 1,25(OH)

2
D

3
 increased an average of 1.2 to 11.1-fold [25]. The 

maximum increase of VDR mRNA levels occur over 1 and 5 h, with a mean of 
3.6 h. Expression of VDR is induced in the lymphocytes of patients with rheuma-
toid arthritis and in pulmonary lymphocytes of patients with tuberculosis and 
 sarcoidosis [26–28]. Moreover, low levels of VDR expression were detected in 
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 low-grade, non-Hodgkin’s lymphoma (NHL) and in the follicular lymphoma B-cell 
lines SU-DHL4 and SU-DHL5 [29].

11.2.3  Hematopoiesis in VDR Knockout Mice

Studies by us using VDR knockout (KO) mice indicated that expression of VDR is 
dispensable for normal hematopoiesis [30]. No difference in the numbers and 
 percentages of red and white blood cells were found between VDR KO and wild-type 
(WT) mice. Committed myeloid stem cells from the bone marrow cultured in meth-
ylcellulose formed similar numbers of colonies when grown in the presence of vari-
ous cytokines including GM-CSF, G-CSF, M-CSF either alone or in combination 
with IL-3. Furthermore, bone marrow progenitor cells from VDR KO and WT mice 
formed a similar number and percentage of granulocyte, macrophage and granulo-
cyte/macrophage mixed colonies when cultured in methylcellulose with GM-CSF 
and IL-3. Under these conditions, treatment with 1,25(OH)

2
D

3
 dramatically 

increased the percentage of macrophage colonies derived from WT but not VDR 
KO bone marrow cultures. This observation demonstrates the requirement of VDR 
expression for 1,25(OH)

2
D

3
 -induction of bone marrow progenitors into monocytes/

macrophages. The proportions of T- and B-cells were normal in the VDR KO mice. 
However, the antigen-stimulated spleen cells from VDR KO mice produced less 
IFNg and more IL-4 than those from WT mice, indicating impaired Th1 differentia-
tion. Additionally, IL-12 stimulation induced a weaker proliferative response in 
VDR KO splenocytes as compared to those in WT mice, and expression of STAT4 
was reduced. These results suggest that VDR plays an important role in the Thl-
type immune response but not T cell development. Interestingly, another report 
using VDR KO mice showed that VDR is required for normal development and 
function of Val4 invariant natural killer T (iNKT) cells which are involved in 
immune regulation, host defense against pathogens and tumor surveillance [31].

11.3  Effects of Vitamin D Compounds on Normal 
Hematopoiesis

1,25(OH)
2
D

3
 modulates the differentiation of normal hematopoietic progenitors. 

Normal human bone marrow committed stem cells cultured in either soft agar or 
liquid culture with 1,25(OH)

2
D

3
 differentiate into macrophages. Likewise, mono-

cytes cultured in serum-free medium with 1,25(OH)
2
D

3
 become macrophages 

within 7 days [32–37]. These macrophages are functionally competent [35]. 
Concentrations of 1,25(OH)

2
D

3
 causing this differentiation ranges between 10–10 M 

(slightly higher than physiological serum level) to 10–7 M. On the other hand, 
1,25(OH)

2
D

3
 (10–9 to 10–7 M) can inhibit the differentiation into CDla + dendritic 

cells [38].
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As mentioned earlier, 1,25(OH)
2
D

3
 is able to inhibit both the synthesis of IL-2 

and the proliferation of peripheral blood lymphocytes [20–23]. Indeed, 1,25(OH)
2
D

3
 

can regulate the expression of many lymphokines, such as GM-CSF, IFN-g and 
IL-12 [20, 39, 40]. For example, Tobler et al. showed that expression of the 
 lymphokine GM-CSF is regulated by 1,25(OH)

2
D

3
 through VDR by a process 

independent of IL-2 production. In particular, 1,25(OH)
2
D

3
 was able to inhibit both 

mRNA and protein expression of GM-CSF in PHA-activated normal human 
peripheral blood lymphocytes (PBL). The former occurred at least in part by 
 destabilizing and shortening the half-life of the GM-CSF mRNA [39]. The down-
regulation of GM-CSF was obtained at concentrations similar to those reached 
in vivo, with a 50% reduction of GM-CSF activity occurring at 10–10 M of 
1,25(OH)

2
D

3
. In addition, IL-2 did not affect the modulation of GM-CSF produc-

tion by PBL which were  co-cultured with 1,25(OH)
2
D

3
 (10–10 to 10–7 M).

11.4  Effects of Vitamin D Compounds on Leukemic Cells

The 1,25(OH)
2
D

3
 was first noted to induce leukemia cell differentiation in the M1 

murine myeloid cell line [41]. Moreover, 1,25(OH)
2
D

3
 extended the survival of 

mice inoculated with the M1 leukemia cells [42]. In spite of the promising data 
obtained from in vitro and animal studies, results of clinical trials of 1,25(OH)

2
D

3
 

in leukemia are limited in scope and thus far have exhibited only mediocre results. 
A disease that can evolve in leukemia is myelodysplastic syndrome (MDS). It is a 
clonal hematopoietic stem cell disorder; these individuals often have anemia, 
thrombocytopenia, and/or leukopenia as well as an increased number of myeloid 
progenitor cells in their bone marrow. 1,25(OH)

2
D

3
 has had less than spectacular 

results as a therapy for MDS (Table 11.1) [43]. Furthermore, vitamin D
3
 analogs 

[19-nor-1,25(OH)
2
D

3
 (Paricalcitol) or 1(OH)D

2
 (Doxercalciferol)] have had minor 

responses at best [44, 45].

11.4.1  Cellular Effects of Vitamin D Compounds  
on Leukemic Cells

A number of human AML cell lines can be inhibited in their proliferation and/or 
induced to undergo differentiation by 1,25(OH)

2
D

3
, including HL-60, U937, THP-1, 

HEL and to a lesser extent NB4 cells [46, 47]. In contrast, many immature myeloid 
leukemia cell lines such as HL-60 blasts, KG 1, KGla and K562 are not responsive 
to vitamin D compounds.

Vitamin D analogs inhibit leukemic cell growth by inducing cell cycle arrest. 
The cells accumulate in the G0/G1 and G2/M phase of the cell cycle, with a con-
comitant decrease in the proportion of cells in S-phase [48–50].
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HL-60 myeloblastic cell line cultured with 1,25(OH)
2
D

3
 (l0–10–10–7 M, for 

7 days) morphologically and functionally differentiate toward macrophages, 
becoming adherent to charged surfaces, developing pseudopodia, staining posi-
tively for nonspecific esterase (NSE), reducing nitroblue tetrazolium (NBT), and 
acquiring the ability to phagocytose yeast [36, 51, 52]. In addition, these cells have 
the ability to degrade bone marrow matrix in vitro, raising the possibility that the 
cells may have acquired some osteoclast-like characteristics. Leukemic cells from 
AML patients respond to vitamin D compounds when cultured in vitro; however, 
they are often less sensitive to this seco-steroid than are the HL-60 cell lines. They 
frequently undergo partial monocytic differentiation as assessed by NBT reduction, 
morphology, and phagocytic ability. Furthermore, their clonal growth is often 
inhibited [36, 53].

11.4.2  Molecular Mechanisms of Action of Vitamin D 
Compounds Against Leukemic Cells

Vitamin D compounds can exert their biological effects by genomic (Sect. 11.4.2.1) 
and/or nongenomic (Sect. 11.4.2.2) pathways. Both pathways require ligand bind-
ing to the VDR. The former pathway relies on a 1,25(OH)

2
D

3
 activated VDR/RXR 

complex binding to VDREs in order to modulate the transcription of various target 
genes. The latter increases rapid intracellular Ca2+ influxes resulting in activation of 
kinases within seconds to minutes [54]. It is still unknown whether the nongenomic 
actions are mediated through the classical nuclear VDR, a membrane-associated 
VDR or other proteins. Exposure of hematopoietic cells to 1,25(OH)

2
D

3
 controls 

myriad of genes, including those responsible for the regulation of cellular prolifera-
tion, differentiation, apoptosis and angiogenesis. Modulation of these genes by 
1,25(OH)

2
D

3
 may not always be a direct effect on transcription of target genes, but 

can reflect the entire process of differentiation associated with a series of interact-
ing transcription factors. Nonetheless, 1,25(OH)

2
D

3
-activated intracellular signal-

ing pathways require the presence of VDR to stimulate monocyte/macrophage 
differentiation, as demonstrated by studies on bone marrow cells from VDR KO 
mice [30] and cells from patients with vitamin D-dependent rickets type II [55, 56]. 
The rapid, nongenomic activities of vitamin D are described in detail in Chapter xx. 
The molecular targets of vitamin D compounds in leukemic cells are summarized 
in Table 11.2.

11.4.2.1  Molecular Mechanisms of Genomic Action of 1,25(OH)2D3  
in Leukemic Cells

Myeloid leukemic cell lines cultured with 1,25(OH)
2
D

3
 undergo an initial prolifera-

tive burst, which is followed by growth inhibition, terminal differentiation and 
subsequent apoptosis [57, 58]. Levels of cyclin A, D1 and E increase in the U937 
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myelomonoblastic leukemia cells within 24 h of 1,25(OH)
2
D

3
 -treatment and then 

expression decreases after 48 h [57]. The cyclin-dependent kinase (CDK) inhibitors 
CDKN1A (p21) and CDKN1B (p27) are important regulators of the cell cycle which 
are elevated during periods of both proliferation and growth inhibition. Expression 
of these proteins, as well as CDKN2A (p16-INK4A), CDKN2B (p15-INK4B) and 
CDKN2C (p18-INK4C) CDK inhibitors are increased in a time-dependent manner 
after exposure to 1,25(OH)

2
D

3
 [59].

A strong correlation exists between early induction of p21 and the beginning of 
the differentiation program. The up-regulation of p21 mRNA occurred within 4 h 
of the exposure to 1,25(OH)

2
D

3
 independent of de novo protein synthesis, suggest-

ing a direct transcriptional activation by VDR [59]. Indeed, the p21 promoter con-
tains a vitamin D response element, and induction requires the presence of VDR. 
Nevertheless, some data suggested that the marked increase of p21 protein expres-
sion in response to 1,25(OH)

2
D

3
 may also be due to enhanced posttranscriptional 

stabilization of p21 mRNA [60]. The transcription factor p53 is a strong inducer of 
p21; but 1,25(OH)

2
D

3
 can elevate p21 levels independently of p53 activity.

A strong up-regulation of p27 protein expression was evident after 72 h of expo-
sure to the compound, and levels of the protein were dependent on the concentra-
tion of 1,25(OH)

2
D

3
 [61]. This up-regulation was also associated with increased 

levels of Cyclins D1 and E, coinciding with a G1 arrest. These results suggested a 
prominent role of p27 in mediating the antiproliferative activity of 1,25(OH)

2
D

3
 in 

this cell line. The 1,25(OH)
2
D

3
 has a protective effect against apoptosis in HL-60 

cells [62, 63]. In other cell types, inhibition of apoptosis correlates with elevated 

Table 11.2 Molecular effects of vitamin D compounds in leukemic cellsa

Cell cycle/apoptosis Oncogenes Transcription factors
Cyclin A ↑ c-myc ↓ C/EBP b ↑
Cyclin D1 ↑ Dek ↓ PU.l ↑
Cyclin E ↑ Fli ↓ IRF8 b ↑
CDKN1A (p21) ↑ Protooncogenes HoxA10 ↑
CDKN1B (p27) ↑ c-fms ↓ HoxB4 ↑
CDKN2A (p16-INK4A) ↑ Tumor Suppressors AP-l b ↑
CDKN2B (p15-INK4B) ↑ PTEN ↑ junD binding activity ↑
CDKN2C (p18-INK4C) ↑ BTG ↑ TRAP ↑
Bcl-2 ↓ Kinases TEL2 ↓
Differentiation Markers PKC levels ↑ Feedback Control
CD11b ↑ PI3-K activity ↑ Cyp24 ↑
CD14 ↑ AKT activity ↑ Immunity
Protein synthesis and transport MAPK activity ↑ CAMP ↑
eIF-2 ↓ ERK 1/2 activity ↑
Importins ↓ KSR-1,-2 activity ↑
Exportins -1,-5,-7, -t ↓
aRegulation of expression or activity may occur either directly or as a consequence of 
 differentiation. See text for details
bPutative components of AP-1 complex are c-jun, ATF-2, jun-B and fos-B
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levels of Bcl-2, but this may not be the case with myeloid cells. A down-regulation 
of Bcl-2 was observed both at the mRNA and protein levels after HL-60 cells were 
exposed to 1,25(OH)

2
D

3
 [62].

Activation of the proto-oncogene c-myc is a typical feature of human leukemias. 
The HL-60 leukemia cell line is characterized by high levels of expression of c-myc 
due to gene amplification [64, 65]. Treatment of this cell line with 1,25(OH)

2
D

3
 

results in a down-regulation of expression of this oncogene associated with cell 
differentiation [66]. Suppression of c-myc by 1,25(OH)

2
D

3
 and its non-calcemic 

analogs occurs at the transcriptional level in HL-60 cells [67, 68]. Exposure of 
HL-60 cells to 1,25(OH)

2
D

3
 induces the expression of the proto-oncogene c-fms, 

which encodes the receptor for M-CSF. It occurs in parallel with the induction of 
CD14 expression and a block of the cell cycle in the G

0
/G

1
 phase [69].

1,25(OH)
2
D

3
 up-regulates the protein coding for the homeobox gene, HOXB4, 

that binds to the first exon/intron border of MYC to prevent transcriptional elonga-
tion, a process dependent on activation of PKC-b [70, 71]. Another homeobox 
gene, HOXA10, was found by differential display to be a gene transcriptionally 
induced by 1,25(OH)

2
D

3
 through binding to the VDRE in the promoter during dif-

ferentiation of U937 cells [72, 73].
Besides MYC and HOX genes, 1,25(OH)

2
D

3
 can induce other transcription fac-

tors and coactivators to regulate gene expression. For example, exposure of U937 
cells to 1,25(OH)

2
D

3
 induced the expression of PU.l, IRF8 and C/EBPb [74]. In 

contrast, exposure of U937 cells to 1,25(OH)
2
D

3
 (10–8 M) down-regulated the 

expression of TEL2, which is a member of the ETS family [75]. Interestingly, 
forced overexpression of TEL2 inhibited 1,25(OH)

2
D

3
 -induced differentiation.

The ligand-activated VDR can bind to the AP-l complex. Exposure of the 
chronic myelogenous leukemia (CML) cell line RWLeu-4 to 1,25(OH)

2
D

3
 inhibited 

their proliferation and enhanced the binding activity of the proto-oncogene junD to 
VDRE. This binding activity decreased in a 1,25(OH)

2
D

3
-resistant variant JMRD

3
 

cells. Although these cells exhibit no detectable differences in the VDR, alterations 
in the interaction with the VDRE were important [76]. Exposure of HL-60 cells to 
1,25(OH)

2
D

3
, up-regulated expression of genes that code for the AP-l complex 

including c-jun, ATF-2, jun-B and fos-B [15, 77]. Moreover, 1,25(OH)
2
D

3
 (l0–7 M) 

was also able to induce expression of the subunits of the transcriptional coactivator, 
Thyroid hormone Receptor-Associated Polypeptide (TRAP, also called DRIP) as 
early as 6 h in the HL-60 cells [78]. The TRAP complex plays a role in direct 
 communication between the nuclear receptors and the general transcriptional 
machinery through direct interaction with RNA polymerase II [79]. The murine 
Trap220(-/-) yolk sac hematopoietic progenitor cells, as well as, TRAP knockdown 
HL-60 cells are resistant to induction of differentiation by 1,25(OH)

2
D

3
.

Fusion proteins involving the retinoic acid receptor alpha (RARa) with either the 
PML or PLZF nuclear proteins are the genetic markers of acute promyelocytic leuke-
mias (APLs). APL cells expressing PML-RARa are sensitive to retinoid induced dif-
ferentiation to granulocytes in the presence of retinoic acid. In contrast, forced 
expression of either PML-RARa or PLZF-RARa in either U937 or HL-60 cells blocks 
their terminal differentiation after exposure to 1,25(OH)

2
D

3
 [80]. Both  PML-RARa 
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and PLZF-RARa can bind to VDR in U937 cells and sequester VDR away from 
 activation of its normal DNA targets localization [81]. Overexpression of VDR over-
comes the block in 1,25(OH)

2
D

3
-stimulated differentiation caused by the fusion pro-

teins. Of note, PLZF itself can interact directly with VDR, and overexpression of PLZF 
can inhibit the 1,25(OH)

2
D

3
 -induced differentiation of U937 cells [82].

The HL-60 and U937 cell lines have been used to attempt to identify early 
response genes directly regulated by VDR. Expression of fructose 1,6-biphos-
phatase is up-regulated by 1,25(OH)

2
D

3
 in HL-60 cells and peripheral blood mono-

cytes [83]. cDNA microarray analysis showed that at early times, the putative 
oncogenes Dek and Fli-1 were down-regulated and the antiproliferative gene, 
BTG1 was up-regulated [84]. After exposure of HL-60 to 1,25(OH)

2
D

3
, similar 

experiments were also noted with the importin and exportin family members which 
were down-regulated; these proteins mediate transportation between the nucleus 
and the cytoplasm [85]. Also, 1,25(OH)

2
D

3
 suppressed the expression of eIF-2 in 

HL-60; this protein is involved in the regulation of protein synthesis [86].
About 160 years ago, sunlight or cod liver oil (both abundant source of vitamin 

D) was used as treatment of tuberculosis [87, 88]. In vitro studies suggested that 
1,25(OH)

2
D

3
 can have a role in activating human macrophages in host defenses 

against mycobacterium tuberculosis (MTB) [89]. Moreover, screening of the 
human genome for VDREs showed that the human cathelicidin antimicrobial pep-
tide (CAMP) gene has a VDRE in its promoter; and exposure of myeloid cells to 
1,25(OH)

2
D

3
 and its analogs induced expression of CAMP [90–92]. Induction of 

CAMP by 1,25(OH)
2
D

3
 has been described in hematopoietic cell lines including 

myeloid leukemias (U937, HL60, NB4, K562, KG-1 and THP-1) and primary 
hematopoietic cells including leukocytes (monocytes, neutrophils and mac-
rophages) and bone marrow cells of both normal and leukemic individuals [93]. 
Interestingly, the VDRE for CAMP only appears in a transposable short-inter-
spersed nuclear element (SINE), and these sequences occur only in primates [91]. 
Induction of this antimicrobial agent by 1,25(OH)

2
D

3
 may provide significant pro-

tection against various microbes.

11.4.2.2  Molecular Mechanisms of Kinase Activities of 1,25(OH)2D3  
in Leukemic Cells

Data suggest that both the antiproliferative and differentiation-inducing effects of 
vitamin D compounds require the modulation of the intracellular kinase pathways, 
including PKC, PI3-K, AKT, p38 MAPK and ERK. This modulation probably 
occurs too quickly to be attributed to the genomic actions of vitamin D. Activation 
of PKC by the phorbol diesters such as TPA, promotes monocyte differentiation of 
leukemic cell lines [94, 95]. Differentiation of HL-60 cells in response to 
1,25(OH)

2
D

3
 is accompanied by increased levels of PKC-b; and this differentiation 

can be inhibited by a specific PKC inhibitor, chelerythrine chloride [96]. Other 
vitamin D analogs have been shown to stimulate expression and translocation of 
PKC-a and -d during NB4 monocytic differentiation [97].
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1,25(OH)
2
D

3
 probably activates the PI3-K/AKT pathway in both a nongenomic 

and genomic fashions. Activation of PI3-K may be required for the 1,25(OH)
2
D

3
 - 

stimulated myeloid differentiation, as monitored by induction of CD14 expression 
[98]. For example, PI3-K was activated by 1,25(OH)

2
D

3
 in THP-1 cells within 20 

min. Pre-treatment with the PI3-K inhibitors, LY 294004 or wortmanin, inhibited 
monocytic differentiation in response to 1,25(OH)

2
D

3
 in HL-60 and THP-1 cells, as 

well as peripheral blood monocytes [98, 99]. Antisense oligonucleotides against 
PI3-K blocked induction of CD14 expression in THP-1 and HL-60 cells. Expression 
of the VDR was required for activation of PI3-K; and interestingly, VDR was found 
to be associated with the active form of the kinase. PI3-K activates (phosphorylates) 
AKT, as well as of its downstream targets, were activated within 6–48 h of exposure 
to 1,25(OH)

2
D

3
 in HL-60 cells [100]. PI3-K inhibitors synergized with 1,25(OH)

2
D

3
 

to induce cell cycle arrest of HL-60 cells, associated with a synergistic up-regula-
tion of p27. On the other hand, treatment with 1,25(OH)

2
D

3
 for 4 days induced the 

expression of PTEN, which could block the PI3-K/AKT pathway, resulting in dif-
ferentiation, cell death or inhibition of growth of HL-60 cells [50].

The MAPK pathway can also be activated by 1,25(OH)
2
D

3
, and this also prob-

ably involves genomic and nongenomic mechanisms. Exposure of either HL-60 or 
NB4 cells to differentiation-inducing concentrations of vitamin D compounds 
cause activation and nuclear translocation of MAPK [101–103]. Rapid changes of 
MAPK phosphorylation occurred within 30 s of exposure to 1,25(OH)

2
D

3
 in NB4 

cells [102]. In addition, the vitamin D
3
 analog EB1089 was demonstrated to 

induced apoptosis of B-cell chronic lymphocytic leukemia cells from patients, an 
event preceded by stimulation of p38 MAPK and suppression of ERK activity 
[104]. 1,25(OH)

2
D

3
 stimulated the transient (24–48 h) phosphorylation of ERK1/2 

in HL-60 cells. After 24 h, the level of phosphorylated ERK decreased to basal 
levels, while differentiation continued over an additional 48 h [105]. Furthermore, 
PD98059, an ERK1/2 inhibitor, blocked the 1,25(OH)

2
D

3
 -stimulated differentia-

tion of HL-60 cells [106]. Kinase Suppressor of Ras-1 and -2 (KSR-1, -2) which 
phosphorylate Raf-l and act as scaffolds increases the efficiency of signaling by 
Raf-l [107, 108]. These two genes have an upstream promoter containing a func-
tional VDRE motif. Knocked-down of KSR-2 blocked 1,25(OH)

2
D

3
 induced 

myeloid differentiation. Signaling by Raf-1 is required for the later stage of 
1,25(OH)

2
D

3
 -induced differentiation and requires p90 RSK which is either directly 

or indirectly phosphorylated by Raf-1 [109].

11.4.3  Vitamin D Compounds in Combination with Other Agents

Because of the potential toxicity of 1,25(OH)
2
D

3
 and its analogs at the 

 concentrations required in vivo to inhibit proliferation and/or induce differentia-
tion of leukemia cells. Various attempts have been made to use them with other 
compounds that might act synergistically and that have an acceptable toxicity. The 
mechanism of action and toxicity (hypercalcemia) of vitamin D compounds differ 
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from  chemotherapeutic agents. A variety of agents, including ATRA, arsenic 
trioxide(As

2
O

3
), Non-steroidal anti-inflammatory drugs (NSAIDs), carnosic acid, 

MAPK inhibitor, cisplatin, taxol, paclitacel, doxorubicin, a HIV-protease inhibitor 
as well as a demethylating agent have been combined with vitamin D compounds 
in a variety of cancers including leukemia.

Our group and others have shown that the combination of a vitamin D compound 
and either all-trans-retinoic acid (ATRA) or 9-cis-retinoic acid (9-cis-RA) can 
potentiate the terminal monocytic differentiation of HL-60, NB4 and U937 cells 
[110–113]. These combinations included ATRA (10–9 M) and either 1,25(OH)

2
–

16-ene-23-yne D
3
, 1,25(OH)

2
–23-yne D

3
 (10–9 to 10–10 M), or 9-cis-RA and 

KH1060 (a 20-epi-vitamin D
3
 analog) [47, 114–117]. These cells often  differentiate 

atypically, having a neutrophilic morphology, but acquiring other properties typi-
cal of monocytes (e.g., CD14 expression); ability to bind to  bacterial LPS, and 
express lineage specific enzymes like nonspecific acid esterase [112, 113]. The 
combination enhanced the decrease expression of c-myc. Interestingly, U937 
cells exposed to a moderate thermal stress responded with increased differentia-
tion after the addition of 1,25(OH)

2
D

3
 and ATRA suggesting that induction of 

heat-shock protein may be sequestering a protein that may favors proliferation or 
differentiation [118].

19-nor-1,25-dihydroxyvitamin D
2
 (paricalcitol) and As

2
O

3
 are both approved 

Food and Drug Administration drugs. Their combination resulted in a strong anti-
proliferative effect on HL-60, NB4 and PML-RARa over-expressing U937 cells 
[119]. As

2
O

3
 decreased the levels of both the repressive PML-RARa fusion protein 

and the vitamin D metabolizing protein, which had been increased by paricalcitol. 
This combination may be effective for ATRA-resistant APL patients, as well as 
those with other types of AML.

NSAIDs enhance the differentiation of HL-60 cells in response to 1,25(OH)
2
D

3
 

and its analogs [120, 121]. This effect may occur because of a block of NF-kB 
activation. Bhatia et al. showed that the combination of 1,25(OH)

2
D

3
 and TPA with 

M-CSF resulted in a synergistic response in NB4 cells, causing a complete differ-
entiation to fully functional adherent macrophages with a rapid arrest of cell growth 
in the first 24 h [122].

Vitamin D compounds have also been combined successfully with naturally 
occurring plant products. One of these is carnosic acid, a plant-derived polyphenol 
antioxidant which can potentiate the pro-differentiative effects of 1,25(OH)

2
D

3
 

[123–125]. Differentiation was correlated with antioxidant activity, and was associ-
ated with activation of the Raf-ERK pathway and increased binding of the AP-l 
transcription factor to the promoter of VDR. A p38 MAPK inhibitor (SB202190) 
enhanced the ability of 1,25(OH)

2
D

3
 to induce differentiation of HL-60 cells [126]. 

In addition, the combination of the three agents (SB202190, carnosic acid and 
1,25(OH)

2
D

3
) further potentiated the antileukemic activity against HL-60 cells and 

primary AML blasts [127]. This augmented potency was associated with increased 
activation of the JNK-MAP kinase pathway.

Combining vitamin D compounds with traditional chemotherapy agents such as 
cisplatin, etoposide and doxorubicin reduces the concentration of chemotherapy 
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required for their antileukemic effects. Also, studies have suggested that the 
sequential order that the compounds are given, may be important [128, 129].

For example, pretreatment with etoposide enhanced the subsequent action of 
1,25(OH)

2
D

3
, but pretreatment with 1,25(OH)

2
D

3
 had little effect on the activity of 

etoposide. The explanation for this observation is unclear now.
One of the human immunodeficiency virus type I protease inhibitors, ritonavir 

can enhance the antileukemic potency of 1,25(OH)
2
D

3
 [130]. Ritonavir inhibits 

Cyp24 expression. This enzyme normally metabolizes 1,25(OH)
2
D

3
 resulting in 

decreased levels of the active seco-steroid. By blocking this enzyme, ritonavir 
increases the amount of active, intracellular 1,25(OH)

2
D

3
.

The combination of a demethylating agent with a vitamin D compound can have 
enhanced activity [74]. For example, when the demethylating agent, decitabine was 
combined with 1,25(OH)

2
D

3
, they synergistically induced monocytic differentia-

tion of U937 cells and primary patient AML blast cells in vitro.
Valproic acid (VPA) is an inhibitor of histone deacetylase which can also change 

the epigenetic landscape by acetylating histones and other proteins. This compound 
can induce myeloid differentiation [131]. In one clinical study of 19 MDS patients 
treated with the combination of VPA, 9-cis-RA and 1,25(OH)

2
D

3
, 3 patients (16%) 

responded to treatment. A cautionary note, eight patients (42%) had suffered toxic-
ity from the combination [132]. The investigators did not find any correlation 
between histone acetylation and clinical response. Clearly, further studies are 
required using less toxic histone deacetylating agents.

In summary, treatment of leukemia or MDS with vitamin D compound is 
unlikely, by itself, to be successful; but when given either in the maintenance phase 
of therapy after the leukemic patient is placed into remission or combined with 
other agents, these agents may be useful therapeutically. Furthermore, 1,25(OH)

2
D

3
 

can induce the expression of the antimicrobial peptide, CAMP (in Sect. 11.4.2.1), 
which may afford the cancer patient some protection from life-threatening infec-
tions while receiving aggressive chemotherapy.

11.5  Vitamin D Analogs Effective against Leukemic Cells

A major drawback in using 1,25(OH)
2
D

3
 is its calcemic effect, which prevents 

pharmacological doses of the compound from being given. Vitamin D analogs have 
been synthesized that have enhanced potency to inhibit proliferation and promote 
differentiation of cancer cells, with less calcemic activity as compared with 
1,25(OH)

2
D

3
 (see Chapter 1). Many of these analogs in vitro are between 10- and 

1,000-fold more active than the parental 1,25(OH)
2
D

3
 in their growth suppressive 

activity. These novel analogs can provide a larger therapeutic window for the treat-
ment of hematologic malignancies. A comparison of the relative antileukemic 
potencies of some of these vitamin D compounds is provided in Table 11.3.

The first attempts using analogs focused on 1a-hydroxyvitamin D
3
 (1aOHD

3
), 

a vitamin D
3
 analog that is efficiently converted to 1,25(OH)

2
D

3
 in vivo by 
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 D
3
–25-hydroxylase. This compound was administered to mice previously inocu-

lated with the M1 leukemia cell line, and it showed greater activity than 1,25(OH)
2
D

3
 

[42]. Its conversion to the active form resulted in a more prolonged elevation of 
plasma levels of 1,25(OH)

2
D

3
, and the dose (25 pmol, every other day) produced 

only a slight elevation of the serum calcium. In addition, survival of the leukemic 
mice was increased by 50–60%; nevertheless, the more effective doses did cause 
hypercalcemia. Also, the administration of 1a(OH)D

3
 produced tumor regression 

in follicular NHLs in rats, but hypercalcemia was the dose-limiting factor [29]. In 
one study, six patients with MDS were treated with 1a(OH)D

3
 at 1 mg/day for a 

minimum of 3 months, but neither a good clinical response nor toxicity was 
observed in these individuals [133]. In another clinical study, 30 MDS patients 
were divided into two different groups: one group received la(OH)D

3
 at 4–6 mg/

day and the other group received placebo; the patients were treated for a median of 
17 weeks [134]. An improvement of hematologic parameters was detected in only 
one patient, and the investigators believed that the treated group had a greater pro-
portion of patients who did not progress to leukemia as compared to the control 

Table 11.3 Effect of vitamin D compounds on clonal proliferation of HL-60 cells in soft agar and 
calcium levels in mice

Compound ED
50

a (x 10–9 mol/1) MTDb (mg) Reference

1,25(OH)
2
D

3
4–900 0.0625 [141–149]

1,25(OH)
2
–16-ene-D

3
0.015 0.125 [141]

1,25(OH)
2
–16-ene-23-yne-D

3
3 2 [141, 143]

1,25(OH)
2
–16-ene-5,6-trans-D

3
0.03 4 [142]

1,25(OH)
2
–16-ene-24-oxo-D

3
0.2 NDc [147]

1,25(OH)
2
–16-ene-19-nor-D

3
0.8 0.5 [147]

1,25(OH)
2
–16-ene-24-oxo-19-nor-D

3
0.1 6 [146]

1,25(OH)
2
–20-epi-D

3
0.006 0.00125 [143, 148, 149]

1,25(OH)
2
–20-epi-22-oxa-24,26,27-

trishomo-D
3
d

0.001 0.0125 [148]

1,25(OH)
2
-diene-24,26,27-trihomo-D

3
e 0.23 0.25 [148]

19-nor-1,25(OH)
2
D

2
f 2.4 0.1 [49]

1,25(OH)
2
–21-(3-methyl-3-hydroxy-

butyl)-19-nor D
3
g

0.17 NDc [50]

1,25(OH)2–20 S-21(3-methyl-3-hydroxy-
butyl)-23-yne-26,27-hexafluoro-D

3
h

4 0.0625i [155]

aED
50

 represents the effective dose achieving 50% growth inhibition of HL-60 cells
bMTD Maximally tolerated dose; highest dose reported that did not produce hypercalcemia or 
other noticeable toxicities in mice when injected intraperitoneally, three times per week
cND not done
dLeo Pharmaceutical code name is KH 1060
eLeo Pharmaceutical code name is EB 1089
fAbbott Laboratories code name is Paricalcitol
gGemini-19-nor D

3
hGemini-23-yne-26,27-hexafluoro-D

3
iAt least mice that received the 0.0625 mg/mouse of Gemini-23-yne-26,27-hexafluoro-D

3
 had 

normal serum calcium levels
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group. 1a(OH)D
2
 doxercalciferol is in clinical use for the treatment of secondary 

 hyperparathyroidism for reduction of elevated parathyroid hormone levels with 
acceptable mild hypercalcemia and hyperphosphatemia [135]. Recently, a phase II 
trial of doxercalciferol was conducted in 15 patients with MDS [45]. Each received 
12.5 mg/day of 1a(OH)D

2
 for 12 weeks; the individuals did not develop hypercal-

cemia, but they also did not obtain a clinical response.
A case has been reported of an individual with chronic myelomonocytic leuke-

mia (subtype of MDS) who achieved complete remission with 25-hydroxyvitamin 
D

3
 [25(OH)D

3
] for 15 months; and remission continued for 15 months after the end 

of the treatment [136]. These results are surprising because 25(OH)D
3
 has low 

activity by itself and in vitro has little antileukemic activity.
Calcipotriol (MC903) has a cyclopropyl group at the end of the side chain 

formed by the fusion of C-26 and C-27, a hydroxyl group at C-24, and a double 
bond at C-22. This compound is equipotent to 1,25(OH)

2
D

3
 in inhibiting the prolif-

eration and inducing the differentiation of the monoblastic cell line U937 [110, 137]. 
In bone marrow cultures, the analog promotes the formation of multi-nucleated 
osteoclast-like cells, a vitamin D function. The effects of this compound on the 
immune system are very similar to those produced by 1,25(OH)

2
D

3.
 By interfering 

with T-helper cell activity, calcipotriol reduces immunoglobulin production and 
blocks the proliferation of thymocytes induced by IL-l [138, 139]. Exposure of the 
follicular NHL B-cell lines SU-DUL4 and SU-DUL5, carrying the t(14;18) trans-
location characteristic of the disease, to calcipotriol inhibited their proliferation, but 
only at high concentrations of the compound (10–7 M) [29]. At the same time, cal-
cipotriol was 100-fold less active than 1,25(OH)

2
D

3
 in inducing hypercalcemia and 

mobilizing bone calcium in rats [140]. However, the analog is rapidly inactivated 
in the intact animal, and therefore has been developed as a topical agent for skin 
diseases like psoriasis.

Introduction of a double bond at carbon 16 (C-16 ene) has proved to be an effec-
tive modification, particularly when combined with other motifs to generate a series 
of analogs with potent antiproliferative and pro-differentiation promoting activities, 
with decreased calcemic effects. Prior studies by us have shown that vitamin D

3
 

analogs having the C-16-ene motif were almost 100-fold more potent than 
1,25(OH)

2
D

3
 at inhibiting growth of HL-60 leukemia cells, but the calcemic activ-

ity was the same or markedly less than 1,25(OH)
2
D

3
 [141, 142]. Combination of the 

C-16-double bond and the C-23-triple bond (C-23-yne) [1,25(OH)
2
–16-ene-23-

yne-D
3
] produces a compound that is a more potent inducer of growth inhibition 

and differentiation of HL-60 cells than 1,25(OH)
2
D

3
, and is 15-fold less hypercal-

cemic in mice. This analog has potent antiproliferative and pro-differentiating 
effects on leukemic cells in vitro [143]. In blocking HL-60 clonal growth, 
1,25(OH)

2
–16-ene-23-yne D

3
 has a potency of about four times higher than 

1,25(OH)
2
D

3
. This compound administered to vitamin D-deficient chicks is about 

30 times less effective than 1,25(OH)
2
D

3
 in stimulating intestinal calcium absorp-

tion and about 50 times less effective in inducing bone calcium mobilization [144]. 
Further experiments have demonstrated the therapeutic potential of 1,25(OH)

2
–16-

ene-23-yne D
3
 by its ability to prolong markedly the survival of mice that had been 
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inoculated with the myeloid leukemic cell line WEHI 3BD+ and treated with a high 
dose (1.6 mg every other day) of the compound [145]. The 1,25(OH)

2
–16-ene-19-

nor-24-oxo-D
3
 was synthesized as a result of previous studies that isolated 24-oxo 

metabolites of potent vitamin D
3
 analogs, which were formed in a rat kidney perfu-

sion system [146]. We found that these 24-oxo-metabolites had markedly reduced 
calcemic activity, but possessed at least an equal ability as the unmetabolized 
 analogs to inhibit the clonal growth of breast and prostate cancer cells and myeloid 
leukemia cells in vitro. Taken together, these findings prompted the chemical syn-
thesis of a series of vitamin D

3
 analogs with 1,25(OH)

2
–16-ene-19-nor-24-oxo-D

3
 

being one of the more exciting compounds, having the ability to inhibit acute 
myeloid leukemia cells in the range of 10–10 M [147]. Remarkably, this compound 
had very little calcemic activity even when 6 mg was administered intraperitoneally 
to the mice, three times a week.

The compound 1,25(OH)
2
–20-epi D

3
 is characterized by an inverted stoichiom-

etry at C-20 of the side chain. The monoblastic cell line U937 cultured with this 
compound showed a strong induction of differentiation [148]. It was also a potent 
modulator of cytokine-mediated T lymphocyte activation and exerted calcemic 
effects comparable to 1,25(OH)

2
D

3
 in rats. A study by ourselves suggested that 

1,25(OH)
2
–20-epi D

3
 is a potent vitamin D

3
 compound at inhibiting the clonal 

growth of HL-60 cells and at inducing cell differentiation. In fact, it is about 2,600-
fold more potent than 1,25(OH)

2
D

3
 in inhibiting the clonal growth of HL-60 cells 

and about 5,000-fold more effective in preventing clonal proliferation of fresh 
human leukemic myeloid cells [149]. 1,25(OH)

2
–20-epi D

3
 exerts its effects by 

binding directly to VDR as shown by a T lymphocytic cell line established from a 
patient with HVDRR. These cells with a dysfunctional VDR no longer were able 
to have a biologic effect. KH1060 is a potent vitamin D

3
 20-epi analog with an 

oxygen in place of C-22 and three additional carbons in the side chain. It is about 
14,000-fold more potent than 1,25(OH)

2
D

3
 in inhibiting the clonal growth of the 

monoblastic cell line U937 [148]. It also has a powerful effect on other leukemic 
cells [113, 149]. However, it has the same hypercalcemic activity and the same 
receptor binding affinity as 1,25(OH)

2
D

3
.

Paricalcitol (19-nor-1,25-dihydroxyvitamin D
2
) has been approved by the Food 

and Drug Administration for the clinical treatment of secondary hyperparathyroid-
ism. Clinical trials have demonstrated that it possesses very low calcemic activity 
[150, 151]. Studies by us and another group have demonstrated that paricalcitol has 
antiproliferative, pro-differentiation activities against myeloid leukemia and 
myeloma cell lines at a clinically achievable concentration [49, 152, 153]. 
Paricalcitol activity was dependent on the presence of VDR, as it was unable to 
induce differentiation of mononuclear bone marrow cells from VDR knockout 
mice, whereas cells from WT mice were differentiated toward monocytes/mac-
rophages [49]. Furthermore, paricalcitol was able to inhibit tumor growth without 
causing hypercalcemia in immunodeficient mice. These observations prompted us 
to begin a clinical trial to treat patients with MDS. A clinical trial of oral paricalci-
tol was conducted on 12 MDS patients. Although paricalcitol was well-tolerated in 
all patients, it had only minimal activity against MDS [44].
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We have found that 1a,25-dihydroxy-2 l-(3-hydroxy-3-methylbutyl)vitamin D
3
 

(Gemini) compounds having two side chains attached to carbon-20, increases the 
antitumor activities against HL-60 and NB4 compared to 1,25(OH)

2
D

3
 [50, 154]. 

Gemini-19-nor stimulated expression of the potential tumor suppressor, PTEN 
[50]. Gemini-23-yne-26, 27-hexafluoro-D

3
 was approximately 225-fold more 

potent than 1,25(OH)
2
D

3
 in inhibiting the clonal growth of HL-60 [155]. This com-

pound produces hypercalcemia at the same concentrations as 1,25(OH)
2
D

3
 in mice 

with a maximal tolerated dose (MTD) of 0.0625 mg per mouse (intraperitoneally 
injections, three times per week) which is the same MTD as 1,25(OH)

2
D

3
. 

Therefore, the Gemini compounds possess greater antiproliferative activity than 
1,25(OH)

2
D

3
, but produce a similar amount of hypercalcemic resulting in a larger 

therapeutic window.
Potential mechanisms by which vitamin D analogs have increased biological 

activity compared to 1,25(OH)
2
D

3
 include: reduced affinity to the serum vitamin 

D binding protein; decreased catabolism by 24-hydroxylase; retention of biologi-
cal activities by metabolic products of vitamin D analogs; increased stability of 
the ligand-VDR complex; increased dimerization with RXR associated with 
increased affinity for its VDRE in the region of target genes; and enhanced 
recruitment of the DRIP coactivator complex. These topics are covered in detail 
in Chapter 9.

In conclusion, new vitamin D analogs have enhanced antileukemic activity and 
decreased hypercalcemic effects compared to 1,25(OH)

2
D

3
, and should be consid-

ered for the selected trials in hematologic malignancies either alone or in combina-
tion with other therapies.

11.6  Summary and Conclusions

The hormone 1,25(OH)
2
D

3
 plays a role in normal hematopoiesis, enhancing the 

activity of monocytes-macrophages and inhibiting cytokine production by T lym-
phocytes. It can also inhibit proliferation and induce differentiation of various 
myeloid leukemia cell lines. Its activity occurs through both genomic and nonge-
nomic pathway(s); the former action is mediated by activation of vitamin D recep-
tors that modulates the transcription of various target genes; and the latter activity 
is probably mediated by rapid intracellular Ca2+ influxes resulting in activation of 
kinases within seconds to minutes. The antiproliferative effects of 1,25(OH)

2
D

3
 

in vivo require supraphysiological levels of the seco-steroid which causes hypercal-
cemia. Limited clinical trials have been performed for the treatment of preleukemia 
myelodysplastic syndrome with 1,25(OH)

2
D

3
, but the in vitro effective dose caused 

hypercalcemia in vivo. Since the mid-1980s, many vitamin D analogs have been 
synthesized that possess reduced hypercalcemic activity and increased ability to 
induce cell differentiation and to inhibit proliferation of leukemic cells. Further 
studies have been performed in vitro and in vivo using these analogs with other 
differentiating and/or antiproliferative agents in the hopes that their combination, 
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working through different pathways, could lead to synergistic activity. Proof of 
principle that 1,25(OH)

2
D

3
 and its analogs are beneficial in cancer has been vali-

dated in experiments conducted in vitro and in laboratory animals. However, to date 
their therapeutic value in patients is unproven.
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Abstract Epidemiologic data have demonstrated that breast cancer incidence 
is inversely correlated with indices of vitamin D status, including UV exposure, 
which enhances epidermal vitamin D synthesis. The vitamin D receptor (VDR) 
is expressed in mammary epithelial cells, suggesting that vitamin D may directly 
influence sensitivity of the gland to transformation. Consistent with this concept, 
in vitro studies have demonstrated that the VDR ligand, 1,25-dihydroxyvitamin 
D (1,25D), exerts negative growth regulatory effects on mammary epithelial cells 
that contribute to maintain the differentiated phenotype and protection of the 
genome. Mammary cells also have the ability to internalize the major circulat-
ing vitamin D metabolite, 25-hydroxyvitamin D (25D), and convert it to 1,25D. 
Furthermore, deletion of the VDR gene in mice alters the balance between 
proliferation and apoptosis in the mammary gland which ultimately enhances 
its susceptibility to carcinogenesis. Dietary supplementation with vitamin D, or 
chronic treatment with synthetic VDR agonists, reduces the incidence of carcin-
ogen-induced mammary tumors in rodents. Collectively, these observations have 
reinforced the need to further define the human requirement for vitamin D and 
the molecular actions of the VDR in relation to prevention of breast cancer.
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Abbreviations

1,25D 1,25 Dihydroxyvitamin D
DBP D binding protein
DMBA Dimethylbenzanthracene
EGF Epidermal growth factor
HME Human mammary epithelial
25D 25 Hydroxyvitamin D
IGF-1 Insulin like growth factor 1
KGF Keratinocyte growth factor
SV40 Simian virus 40
TGFb Transforming growth factor beta
UV Ultraviolet
VDR Vitamin D receptor
WT Wild type

12.1  Introduction to Vitamin D and Breast Cancer

Although originally identified based on its ability to prevent the bone disease 
 rickets, it is now recognized that 1a,25 dihydroxyvitamin D

3
 (1,25D), the bio-

logically active form of vitamin D
3
, is a global regulator of gene expression and 

signal transduction in virtually every tissue. In breast cells, the vitamin D recep-
tor (VDR) and its ligand 1,25D contribute to maintenance of the quiescent, dif-
ferentiated phenotype, providing defense against cancer development. The 
presence of functional VDR in the majority of human breast tumors (initially 
discovered over 25 years ago) suggested that this receptor might represent a 
target for breast cancer therapy. Since that time, multiple studies have confirmed 
the antiproliferative effects of vitamin D on breast cancer cells in vitro and 
rodent tumors in vivo. Dozens of synthetic vitamin D structural analogs have 
been tested for efficacy and side effects in animal models of cancer, individually 
and in combination with standard therapies such as anti-estrogens, chemothera-
peutic drugs and radiation. While these studies have generally been supportive 
of targeting the vitamin D pathway in breast cancer therapy, issues of dosing, 
toxicity and efficacy (particularly against various tumor sub-types) remain to be 
resolved.

More recently, studies have focused on characterization of the expression and 
function of the vitamin D pathway in normal mammary tissue and the possible role 
of the vitamin D pathway in breast cancer prevention. In particular, data from the 
VDR knockout mouse model have indicated that complete abrogation of vitamin D 
signaling alters glandular morphology and susceptibility to cancer development. In 
this review, we will summarize the currently available data generated from both 
in vitro and in vivo studies, with an emphasis on the cellular and molecular mecha-
nisms by which vitamin D may contribute to breast cancer prevention.
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12.2  Vitamin D and Breast Cancer Links in Populations

12.2.1  Diet, Sunlight Exposure and Breast Cancer Risk

Population studies on vitamin D in relation to chronic diseases such as breast can-
cer are complicated by difficulties in accurately assessing dietary sources (con-
founders include natural foods versus fortified foods, supplement use, intake of D

2
 

versus D
3
, and calcium status) and estimating the amount of vitamin D generated 

through sunlight exposure (confounders include lifestyle, latitude, pollution, sun-
screen, skin pigmentation and age). Despite this caveat, the cumulative population 
data support an inverse correlation between vitamin D sources (diet or sunlight 
exposure) and relative risk of breast cancer. Due to space constraints, only a few of 
these studies are highlighted here. An evaluation of the Nurse’s Health Study found 
that intakes of dairy products, dairy calcium and vitamin D were inversely associ-
ated with breast cancer risk in premenopausal, but not postmenopausal, women [1]. 
Similarly, a prospective analysis of breast cancer incidence in relation to vitamin D 
intake for over 30,000 participants in the Women’s Health Study indicated that 
higher intake of vitamin D was moderately associated with a lower risk of pre- but 
not post- menopausal breast cancer [2]. These data are consistent with reports of 
inverse associations between vitamin D status and mammographic density in pre-
menopausal women [3, 4]. In addition to dietary vitamin D, [5] demonstrated that 
sunlight exposure was associated with reduced risk of breast cancer, and that this 
association was dependent on region of residence. A recent follow-up analysis 
indicated that the beneficial effect of sunlight exposure on risk was dependent on 
skin pigmentation, with significant correlations demonstrated only in women with 
fair skin [6]. In larger international studies, a significant inverse correlation between 
incident solar radiation and breast cancer rates was confirmed [7–9].

12.2.2  Serum 25-Hydroxyvitamin D and Breast Cancer Risk

Studies which have assessed serum parameters as indicators of vitamin D status in 
relation to breast cancer risk have been more consistent. Although confounders 
remain (dietary calcium, serum PTH, seasonal influences and assay methodology), 
multiple studies have reported significant inverse relationships between relative risk 
of breast cancer and serum 25D, the most accurate indicator of vitamin D status 
[10–12]. A pooled analysis of data on serum 25D in relation to breast cancer 
 demonstrated that the highest quintile of serum 25D was associated with a 50% 
reduction in breast cancer risk [13]. These data suggested that serum 25D 
 concentrations above 100 nM may be required to optimize vitamin D signaling in 
mammary tissue. This serum 25D concentration is considerably higher than that 
necessary for prevention of rickets (approximately 50 nM), suggesting that 
 prolonged sub-optimal vitamin D status (rather than overt deficiency) is associated 
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with increased risk for breast cancer. Similar data generated on serum 25D in 
 relation to other chronic diseases support the concept that a healthy 25D range for 
adults is between 100 and 150 nM, which is well below the toxic range associated 
with calcemic overload (above 250 nM). A summary of the proposed relationship 
between serum 25D, health and disease is provided in Fig. 12.1.

12.2.3  Prevalence of Vitamin D Insufficiency

Unfortunately, it is difficult for most people to maintain serum 25D in the proposed 
healthy range (100–150 nM) from dietary sources alone due to the low amounts of 
vitamin D in natural foods [14]. Particularly relevant to the possible relationship 
between vitamin D and breast cancer, vitamin D deficiency has been reported in a 
high percentage of women, including during adolescence, pregnancy/lactation and 
after menopause, even in sunny climates [15–17]. The amount of vitamin D usually 
present in over the counter supplements (400 IU) is too low to significantly elevate 
serum 25D [18]. Supplementation studies suggest that 2,000 IU/day (and possibly 

Fig. 12.1 Proposed stages of vitamin D deficiency and sufficiency according to serum 
25-hydroxyvitamin D. Vitamin D deficiency leading to rickets in children and osteomalacia in 
adults is associated with circulating concentrations of 25-hydroxyvitamin D (25D) below 50 nM. 
In contrast, data from epidemiological studies suggest that serum 25D concentrations between 50 
and 100 nM are associated with an increased risk of chronic diseases, including cancer. Toxicity, 
which is associated with soft tissue calcification and renal stones, occurs when 25D increases 
above 250 nM. Thus, the preferred range of 25D for optimal health is likely between 100 and 
150 nM, which may not be attainable without dietary supplementation (2,000 IU/day or higher in 
individuals with limited sun exposure)
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up to 4,000 IU/day for individuals with limited sun exposure) is needed to maintain 
serum 25D at 100 nM, but further research is needed on vitamin D supplementation 
in relation to chronic disease. One small, double blinded intervention study of 
healthy post-menopausal women indicated that daily supplementation with 
1,100 IU vitamin D

3
 reduced cancer risk at all sites [19]. Collectively, these 

 observations provide initial evidence that vitamin D may reduce breast cancer 
 incidence, and emphasize the need for re-evaluation of public health recommenda-
tions regarding sun exposure, vitamin D intake, food fortification and supplement 
use in relation to vitamin D status and breast cancer.

12.3  Mechanistic Links Between Vitamin D and Breast Cancer

12.3.1  General Effects of VDR Agonists in Breast Cancer Cells

In response to the initial identification of VDR in cancer cells, numerous studies 
examined the effects of 1,25D on breast cancer cells. Furthermore, a large number of 
structural analogs of vitamin D, developed by pharmaceutical companies and aca-
demic researchers, have been used to probe the mechanisms of vitamin D mediated 
growth inhibition. In general, the effects of VDR agonists on breast cancer cells are 
similar to those reported in other cancer cell types: modulation of key cell cycle regu-
lators to arrest the cycle at either G0/G1 or G2/M (depending on cell type), induction 
of differentiation markers, and/or activation of cell death (via apoptosis or autophagy). 
Mechanisms have recently been reviewed in detail [20, 21], and thus are briefly 
discussed here. Notably, studies with cells derived from VDR null mice has  definitely 
established that the VDR is required for the antiproliferative and  proapoptotic effects 
of 1,25D in transformed mammary cells in vitro [22, 23].

12.3.2  Cellular and Molecular Targets of VDR  
in Breast Cancer Cells

Screening for molecular changes induced by 1,25D or vitamin D analogs in various 
breast cancer cells has identified scores of VDR regulated genes and proteins in 
diverse pathways, indicating a broad range of downstream targets [24–26]. The 
induction of cell cycle arrest in both estrogen receptor positive and negative breast 
cancer cells by 1,25D results from alterations in key cell cycle regulators including 
cyclin D1, the cyclin dependent kinase inhibitors p21 and/or p27 and the retinoblas-
toma protein. 1,25D also blocks mitogenic signaling, including that of estrogen, 
EGF, IGF-1 and KGF and up-regulates negative growth factors such as TGFb 
[27–29]. In many breast cancer cell lines, 1,25D mediated growth arrest is associated 
with the induction of differentiation markers such as casein, lipid droplets, and adhe-
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sion proteins [30, 31]. In some transformed breast cells, 1,25D induces apoptotic 
cell death via generation of reactive oxygen species, dissipation of the mitochondrial 
membrane potential and cytochrome c release in association with down regulation 
of bcl-2 and activation of bax [32, 33]. The role of proteases in 1,25D mediated cell 
death appears to be cell type dependent, with caspases, cathepsins and calpains 
being activated under different contexts [22, 34]. Notably, 1,25D exerts additive or 
synergistic effects in combination with other triggers of apoptosis, such as ionizing 
radiation and chemotherapeutic agents [35–37]. Collectively, these studies indicate 
that a wide variety of different signaling  pathways, cell cycle and apoptotic regula-
tory proteins and proteases may contribute to the antiproliferative, prodifferentiating 
and apoptotic effects of 1,25D depending on the specific cell type and/or context.

12.3.3  Emerging Role of Vitamin D in Cellular Stress Responses

Normal cells continuously sense and respond to a variety of stresses, including DNA 
damage, oxidative stress, endoplasmic reticulum overload, unfolded proteins and 
others. One of the major sensors of cellular stress is the tumor suppressor  protein 
p53, a transcription factor that integrates the response to DNA damage. Germline 
mutations in p53 that disable its transcriptional activity strongly  predispose to the 
breast to cancer [38]. It has recently been demonstrated that p53 transcriptionally 
up-regulates the human VDR via direct binding to conserved intronic p53 response 
elements [39]. Other studies have implicated the p53-related family members p63 
and p73 in regulation of the VDR gene [40]. Exposure of cells to DNA damaging 
agents such as doxorubicin, etoposide or ionizing radiation resulted in up-regulation 
of VDR expression [39, 41, 77]. Notably, VDR and p53 mediate  similar biological 
effects (growth arrest, apoptosis, DNA repair) via common target genes (p21, bax, 
GADD45). On the p21 promoter, both  independent and overlapping VDR and p53 
binding sites have been characterized [42]. These studies suggest that VDR regu-
lated pathways may contribute to the tumor suppressive effects of the p53 family, 
particularly those involved in cellular stress response. Other studies have implicated 
c-jun in the control of VDR expression and activity in response to arsenic stress, 
suggesting that VDR signaling may also protect against nongenotoxic cellular dam-
age via p53 independent pathways [43]. Further studies to clarify how p53, c-jun and 
other stress responsive pathways regulate VDR signaling, and how VDR activation 
in turn modulates cellular responses, are needed.

12.3.4  Preclinical Studies of VDR Agonists in Animal Models  
of Breast Cancer

Although therapeutic use of 1,25D is precluded by dose-limiting calcemic toxicity, 
synthetic analogs of 1,25D with low calcemic potency have provided proof of prin-
ciple that VDR agonists can inhibit growth and induce regression of mammary 
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tumors in animal models [44, 45]. The effects of vitamin D analogs were comparable 
to standard anti-estrogen therapies such as tamoxifen, and additive effects were 
observed in combination studies (with tamoxifen, ionizing radiation, and chemothera-
peutic drugs). Vitamin D analog therapy was effective in both estrogen receptor posi-
tive and estrogen receptor negative xenografts [45–47]. Under the conditions utilized 
in these in vivo studies, the vitamin D analogs did not cause weight loss or hypercal-
cemia, but the therapeutic window for most of these compounds is narrow. Of particu-
lar interest, studies on xenografts derived from WT and VDR null cells indicated that 
expression of functional VDR in tumor epithelial cells (rather than in accessory cells 
such as fibroblasts, immune cells or endothelial cells) is necessary for the antitumor 
effects of the vitamin D analog EB1089 and UV generated vitamin D in vivo [48].

12.4  Evidence for Breast Cancer Prevention by Vitamin D

12.4.1  VDR Expression in Normal Mammary Cells

The link between vitamin D and breast cancer prevention is based on the concept 
that the 1,25D-VDR complex promotes or maintains the differentiated phenotype in 
normal mammary cells. Consistent with this concept, the VDR is expressed in nor-
mal mammary epithelial tissue in vivo and in nontransformed human mammary 
epithelial (HME) cells in vitro [49–51]. In mouse mammary gland, VDR is localized 
predominantly in differentiated epithelial cells, and its expression increases 100-fold 
during the course of pregnancy and lactation [51, 52]. The mammary epithelial cells 
are organized in ducts which are contained within an extensive adipose rich stromal 
compartment (the mammary fat pad) which includes fibroblasts, adipocytes, 
endothelial cells, immune cells, and extracellular matrix proteins. VDR is also 
expressed in the stromal fibroblasts, the mammary adipocytes, and the infiltrating 
immune cells, indicating potential cross-talk between compartments. A potential 
role of vitamin D signaling in the mammary adipocytes is supported by the demon-
stration that lipophilic vitamin D steroids are stored in fat [53] and by the presence 
of both VDR and Cyp27B1 expression and activity in human adipocytes (Zinser, 
unpublished). A working model for the cross-talk between cells in the epithelial, 
stromal and adipose compartments of the breast is provided in Fig. 12.2.

12.4.2  Vitamin D Metabolites Mediate Growth Inhibition  
in Normal Mammary Cells

The function of the vitamin D pathway in nontransformed HME cells has recently 
been evaluated. The effects of 1,25D on HME cells include growth arrest and 
induction of differentiation markers such as E-cadherin, but apoptosis has not been 
observed [50]. Notably, mammary cells express Cyp27B1, can generate 1,25D 
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from 25D, and are growth inhibited by physiological concentrations of 25D [50, 
54]. These data suggest that 25D may be the most biologically relevant metabolite 
in the mammary gland, but one caveat to these studies is that the mechanisms by 
which 25D is taken up by mammary cells have yet to be identified. It is well known 
that circulating 25D is bound to serum DBP, therefore it is likely that 25D is deliv-
ered to the mammary gland in complex with DBP. However, whether 25D dissoci-
ates from the 25D-DBP complex or whether the 25-DBP complex is internalized 
intact by mammary cells is unclear. Recent studies have demonstrated that both 
murine and human mammary cells express megalin and cubilin, proteins required 
for the endocytic uptake of DBP in kidney. Furthermore, uptake of DBP occurred 
in mammary cells in vitro and was correlated with 25D mediated transactivation of 
VDR [55], however, further studies are necessary to determine whether endocytosis 
of the 25D-DBP complex occurs in mammary tissue in vivo.

12.4.3  Prevention of Mammary Carcinogenesis  
by VDR Agonists in Animal Models

Animal studies also support the concept that vitamin D signalling reduces 
breast cancer development. Rodents fed western style diets (low in vitamin D 

Fig. 12.2 (a) Cellular organization in mammary gland. Glands are composed of epithelial cells 
arranged in ducts around a central lumen, which are embedded in an adipocyte rich mammary fat 
pad/stroma containing fibroblasts, immune cells, endothelial cells and extracellular matrix pro-
teins. (b) Model for cell type specific vitamin D activation and function in mammary gland. 
In mouse mammary gland, the three major cell types (epithelial cells, fibroblasts and adipocytes) 
express VDR and have the ability to respond to 1,25D. Mammary epithelial cells and adipocytes 
express CYP27B1 and can generate 1,25D from 25D. We propose that like adipose tissue else-
where in the body, the mammary fat pad acts as a storage depot for 25D. This model predicts that 
optimal vitamin D signaling in the epithelial, stromal and adipose compartments is required for 
maintenance of differentiation, genomic stability and protection against breast cancer
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and  calcium, high in saturated fat) exhibited hyperproliferation in the mammary 
gland and  developed significantly more mammary tumors when treated with 
7,12-dimethylbenzanthracence (DMBA) compared to rats fed adequate calcium 
and vitamin D (reviewed by [56]). In mouse mammary gland organ culture, 
1,25D and the  synthetic analog 1a(OH)D

5
 reduced the incidence of preneoplas-

tic lesions in response to DMBA during both the initiation and the promotion 
stages, demonstrating that vitamin D compounds exert direct antineoplastic 
effects on mammary gland at multiple steps [57]. Prevention of N-methyl-N-
nitrosourea-induced mammary tumors with vitamin D analogs, including 
Ro24–5531 (1,25-dihydroxy-16-ene-23-yne-26–27-hexafluorocholecalciferol) 
and 1a(OH)D

5
 provided further support that the vitamin D pathway may protect 

against breast cancer in vivo [58, 59].

12.5  Mammary Gland Development and Carcinogenesis  
in VDR Null Mice

Mice lacking the VDR demonstrate excess proliferation and branching as well 
as impaired apoptosis during the reproductive cycle compared to their normal 
counterparts [51, 52]. Organ culture experiments indicated that 1,25D blocked 
the growth stimulatory effects of estrogen and progesterone in glands from 
wild-type mice but was without effect in glands from VDR null mice, indicat-
ing that the VDR acts in a ligand dependent manner to mediate negative 
growth signaling directly in mammary tissue. Comparison of gene expression 
in normal and VDR null mice has identified cyclin D1, p21, clusterin, 
b-catenin and TGFb1 as potential VDR target genes in the mammary gland 
in vivo (Zinser, Matthews and Welsh, unpublished data). Demonstration that 
VDR ablation alters growth regulatory pathways in mammary gland raised the 
possibility that VDR null mice might display enhanced risk for cancer devel-
opment in this tissue. Indeed, the incidence of mammary hyperplasias and 
development of ER negative tumors in response to the carcinogen DMBA was 
higher in VDR null mice than their WT counterparts [60]. Furthermore, on the 
MMTV-neu transgenic background (a model of her2 positive human breast 
cancer), VDR heterozygote mice demonstrated higher incidence of mammary 
tumors than did WT mice [61]. Notably, differences in cancer susceptibility 
were not limited to the mammary gland, as VDR null mice displayed increased 
sensitivity to tumors in the lymph nodes and skin in response to DMBA com-
pared to WT mice [60, 62]. These in vivo studies have provided the most direct 
evidence that VDR signaling can protect against cancer development. 
Collectively, these and other animal studies have confirmed that the effects of 
vitamin D signalling observed in vivo translate to effects on cell proliferation, 
differentiation and apoptosis in vivo that are of sufficient magnitude to impact 
on the carcinogenic process.
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12.6  Vitamin D Resistance Pathways

Some transformed breast cells display reduced sensitivity to 1,25D, suggesting that 
the vitamin D pathway may become deregulated during cancer development. 
Multiple mechanisms have been identified that contribute to 1,25D resistance, 
 including loss of VDR expression, alterations in transcriptional co-regulators and 
overexpression of Cyp24, the enzyme that catabolizes 1,25D. Stable expression of 
the antiapoptotic protein bcl-2 rendered cancer cells resistant to 1,25D mediated 
 apoptosis, and  expression of certain oncogenes (including ras and SV40 large T 
antigen) abrogated VDR signaling [32, 63, 64]. Amplification of the Cyp24 gene 
was reported in human breast tumors, and higher Cyp24 expression was detected in 
tumors compared to adjacent normal tissue [54, 65]. De-sensitization of breast 
cancer cells to growth inhibition by VDR ligands has also been associated with 
changes in nuclear receptor co-repressors via epigenetic mechanisms, which are 
potentially reversible [66–68]. Sub-clones of the MCF-7 breast cancer cell line 
selected for resistance to 1,25D in vitro have been independently developed and 
characterized [69, 70]. These cell lines retain low level expression of transcription-
ally active VDR but exhibit changes in protein expression that alter redox status, 
favor autonomous growth signaling, and down-regulate the apoptotic pathway 
[24, 26, 71]. One of these 1,25D resistant MCF-7 cell lines was tested in a xeno-
graft model and retained resistance to the antitumor effects of the vitamin D analog 
EB1089, providing an in vivo model for the study of vitamin D resistance [45]. 
Notably, despite deregulation of multiple signaling pathways, the MCF-7 cells 
selected for 1,25D resistance are cross-resistant to structurally related vitamin D 
analogs but retain sensitivity to other growth inhibitory agents, including retinoids 
and anti-estrogens. Uncovering the molecular basis for selective vitamin D resis-
tance will be critical in design and implementation of new vitamin D analogs for 
clinical use.

Kemmis and Welsh [72] used a series of isogenic, progressively transformed HME cell 
lines [73] to study the effects of transformation per se on the vitamin D pathway. In this 
model, HME cells transduced with SV40 large T antigen and oncogenic ras undergo the 
epithelial-mesenchymal transition (loss of E-cadherin) and acquire tumorigenic potential. 
VDR expression in HME cells expressing SV40 or ras was reduced more than 70% com-
pared to the nontransformed HME cells from which they were derived. Loss of VDR may 
be associated with up-regulation of transformation-associated corepressor proteins such as 
slug or snail, which have been shown to directly repress the human VDR promoter in 
breast and colon cancer cells [74, 75]. In the HME series, oncogenic transformation was 
also associated with reduced Cyp27B1 expression and activity (as measured by 125D 
synthesis), but the underlying molecular mechanisms for this change remain unknown. 
The reductions in VDR and Cyp27B1 in the oncogene-transformed HME cells were of 
sufficient magnitude to reduce cellular sensitivity to growth inhibition by both 1,25D and 
25D approximately 100-fold. These studies provide evidence that disruption of the vita-
min D signaling pathway may occur early in the cancer development process, and that 
cancer cells employ multiple mechanisms to evade the negative growth regulatory effects 
of the vitamin D signaling pathway.



28912 The Vitamin D Signaling Pathway in Mammary Gland and Breast Cancer

12.7  Conclusions and Directions for Future Research

In summary, the VDR is expressed in normal mammary epithelial cells, where it 
regulates proliferation, apoptosis & differentiation via distinct targets at different 
stages of development. In mice, deficiency of the VDR alters glandular growth 
 during puberty, pregnancy and aging, and enhances risk for mammary gland 
 transformation. 1,25D and numerous synthetic vitamin D analogs effectively 
inhibit growth and induce apoptosis in breast cancer cells & tumors, and these 
effects require the VDR. VDR agonists also inhibit growth of normal human 
 mammary epithelial cells, and evidence suggests that autocrine bio-activation of 
vitamin D precursors can occur within mammary cells. Thus, data from both human 
tissues and animal models support the concept that the VDR and its ligand induce 
a program of gene expression that contributes to maintenance of the differentiated 
phenotype in breast cells, a concept which is consistent with a role for vitamin D 
in both prevention and treatment of breast cancer. However, the specific mecha-
nisms by which the 1,25D-VDR complex elicits such diverse changes in cell behav-
ior, in particular the relative importance of genomic versus nongenomic mechanisms 
(Fig. 12.3), have yet to be fully elucidated. Since emerging evidence indicates that 
aggressive cancer cells can develop deregulation of VDR and Cyp27B1, clarifying 
the pathways by which vitamin D signaling contributes to breast cancer prevention 
is of critical importance.

Although a tentative relationship between serum 25D and health outcomes was 
proposed in Fig. 12.1, the amount of vitamin D (either from diet or endogenous 
synthesis) needed to optimize growth inhibitory signaling through the VDR in vivo 

Fig. 12.3 Potential pathways for vitamin D action in mammary cells. The vitamin D receptor 
(VDR) is required for the antitumor effects of 1,25D, but the intracellular mechanisms may 
include nongenomic actions at the membrane or the cytosol (i.e., via interactions with signal 
transduction pathways) and/or genomic actions via heterodimerization with RXR on well charac-
terized vitamin D response elements known to be involved in calcium metabolism (i.e., direct 
repeat 3 (DR3) sites) or novel elements in association with other transcription factors
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is currently undefined, and further studies are needed before guidelines or require-
ments for human populations can be established. Collectively, studies to date have 
confirmed that multiple components of the vitamin D signaling system are present 
in normal mammary epithelial cells, but have also emphasized the need for addi-
tional research on regulation and function of these proteins in intact mammary tissue 
in vivo, particularly in relation to maintenance of the differentiated phenotype.

In addition to gaps in knowledge of vitamin D signaling in mammary epithelial 
cells, little is known about the in vivo compartmentalization of the metabolic 
enzymes, transport proteins and receptor for vitamin D in the gland. Still unre-
solved as well are the molecular mechanisms for cellular uptake, storage and intra-
cellular transport of the various vitamin D metabolites in mammary tissue. Use of 
targeted mouse models with cell type specific ablation of VDR, Cyp27B1 and other 
candidate genes involved in vitamin D signaling should be highly informative in 
clarifying some of the relationships postulated in our working model.
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Abstract An inverse association between sunlight exposure and colon cancer 
mortality has been previously described. This protective effect has been attributed 
to increased vitamin D synthesis. Indeed, vitamin D deficiency has been repeatedly 
associated with an increased risk of adenomatous polyp recurrence and increased 
colorectal cancer incidence in case–control studies, supporting a direct role for this 
vitamin against colorectal carcinogenesis. Despite the supporting epidemiological 
evidence, the Women Health Initiative (WHI) prevention trial failed to demonstrate 
any reduction in colorectal cancer with 400 IU/day of vitamin D.

We show that dosing at or in excess of 2,000 IU/day of vitamin D3 may be 
required to achieve optimal serum levels. Prospective studies of such doses need to 
be investigated to adequately test vitamin D in colorectal cancer prevention. We 
also review the status of vitamin D in patients with metastatic disease where we 
demonstrate severe insufficiency and decreased response to vitamin D supplemen-
tation, supporting the need of a more aggressive approach in this population.

Keywords Vitamin D • Colorectal cancer • Polyps • Prevention • Chemotherapy

13.1  Epidemiology of Vitamin D and Colorectal Cancer

13.1.1  Sunlight and Colorectal Cancer

An inverse association between sunlight exposure and the risk of certain cancers has 
long been recognized. One of the first reports to indirectly suggest the association 
between sunlight and a decreased incidence of non-skin cancer was in 1936 when 
Peller reported an inverse association between a higher incidence of skin cancer and 
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decreased mortality from other cancers [1]. Peller attributed this reverse association 
to a protective effect of skin cancer against the development of other cancers rather 
than on the protective effects of sunlight [1]. In an attempt to confirm the correlation 
between skin cancer and protection against non-skin cancers, Apperly studied skin 
cancer mortality between 1934 and 1938 in the USA [2]. He noted a decreased risk 
of skin cancer in States with mean annual temperatures < 42°F. His subsequent inves-
tigations confirmed an inverse association between solar radiation and general 
 cancer rates. Apperly attributed the solar protective effects to the induction of anti-
cancer immunity [2]. It was in 1980 that Garland and Garland first reported the link 
between vitamin D deficiency, as a result of limited sun exposure, and an increased 
risk of colorectal cancer [3]. Garland noted an increased rate of colorectal cancer in 
states with low levels of solar radiation as well as in large cities where population 
life style limits sunlight exposure [3]. Garland pointed to a parallel increase in the 
risk of rickets and low vitamin D levels in low solar exposure areas and drew atten-
tion to a potential association between vitamin D levels and risk of colorectal cancer 
[3]. Other supporting data for the protective role of sunlight come from Grant’s 
ecological study on ultra violet (UV-B) light exposure and risk of cancer between 
1950 and 1994 [4]. Higher exposure to UV-B protected against colorectal cancer in 
both White and African Americans [4]. Grant estimated that more than 10% of the 
deaths from colorectal cancer were premature and related to inadequate UV-B expo-
sure [4]. Case–control studies also strongly support an inverse association between 
solar radiation and colon cancer. Freedman et al. conducted a death certificate based 
case–control study of five different types of cancers including colon cancer [5]. 
Cases were identified as cancer deaths in 24 states in the USA between 1984 and 
1995. Controls were frequency matched by 5-year age groups and excluded death 
from cancer and other neurological illnesses linked with residential sunlight expo-
sure. The risk of colorectal cancer in the highest residential exposure areas was 0.73 
(95% CI 0.71–0.74) suggesting a protective effect of sunlight exposure against 
 colorectal cancer mortality [5].

13.1.2  Vitamin D Status and Risk of Colorectal Neoplasia

13.1.2.1  Vitamin D Metabolism

The two universally accepted prerequisites for eliciting vitamin D
3
 antitumor 

effects are the tissue expression of the vitamin D receptor (VDR) and adequate 
supply of vitamin D

3
. Current data suggest that response to vitamin D

3
 therapy is 

highly dose dependent and exhibits substantial inter-patient variability. Furthermore, 
the physiological range of serum vitamin D

3
 metabolite levels required for healthy 

bones may be different from that required for cell growth inhibition, differentiation 
and programmed cell death.

The biological basis for the variable vitamin D
3
 status in cancer patients could 

stem from an inadequate supply of vitamin D
3
 precursors and inter-patient 



29713 Vitamin D and Colorectal Cancer

 differences in vitamin D
3
 gastrointestinal absorption and/or metabolism. With the 

exception of fish, eggs and vitamin D fortified foods, the human diet is not an vital 
source of vitamin D

3
 [6, 7]. Because more than 90% of vitamin D

3
 is produced by 

exposure of the skin to sunlight, inadequate exposure to sunlight is the leading 
cause of vitamin D

3
 deficiency in humans [6–9]. In humans, ultraviolet light cata-

lyzes the conversion of 7-dehydroxycholesterol to cholecalciferol (vitamin D
3
). 

Vitamin D
3
 is then sequentially metabolized in the liver by a number cytochrome 

P450 enzymes (cyp27A1, cyp 2J3, cyp 2R1 and cyp3A4) to 25-hydroxyvitamin D
3
 

(25-D
3
) and by 1a-hydroxylase (cyp 27B1) in the kidney to form calcitriol, the 

biologically most active form of vitamin D
3
. Renal 24-hydroxylase (24-OHase, cyp 

24A 1), is the major vitamin D
3
 inactivating enzyme [10–13]. Simplified vitamin 

D
3
 activation and inactivation oxidative metabolism pathways are shown in 

Fig. 13.1 These vitamin D
3
 activating and inactivating cytochrome P450 enzymes 

show wider tissue distribution than previously reported. In addition to the classical 
tissues (gastrointestinal mucosa, liver and kidney), substantial variations in vitamin 
D

3
 activating and inactivating cytochrome P450 enzymes have been reported in a 

variety of human lung, colon, breast and prostate cancer cell lines and in tissue 
samples derived from healthy volunteers and cancer patients [14–17]. Recent 
reports have also identified other non classical vitamin D

3
 metabolizing cytochrome 

P450 enzymes that contribute to the 1a-hydroxylation and 24-hydroxylation of 
vitamin D

3
 hydroxylation [18–20].

The contribution of imbalances in cytochrome P450 enzyme activities that acti-
vate and inactivate vitamin D

3
 in the pathogenesis of vitamin D

3
 deficiency and the 

responses to vitamin D
3
-based therapies in cancer patients has not been fully 

investigated.

13.1.2.2  Assessment of Vitamin D3 Status

The serum 25-Hydroxy D
3
 (25-D

3
) level is the generally accepted and the best 

indicator of vitamin D
3
 status in humans [21, 22]. The utility of 25-D

3
 level in 

assessing vitamin D
3
 status is based on its long serum half life (ranging from 2 to 

6 weeks), because its synthesis is unregulated, and that serum 25-D
3
 levels reflect 

the overall supply of vitamin D
3
 metabolic precursors [23]. There is no universally 

accepted optimal serum 25-D
3
 level. The most widely accepted classification 

of vitamin D status based on serum 25-D
3
 measurement in humans consists of 

six categories [24]: (i) vitamin D
3
 deficiency (serum 25-D

3
 levels <20 ng/mL), 

(ii) vitamin D
3
 insufficiency (serum 25-D

3
 20–32 ng/mL), (iii) vitamin D

3
 suffi-

ciency ³ 32–100 ng/mL, (iv) vitamin D
3
 excess >100 ng/mL, and (v) vitamin D

3
 

intoxication (serum 25-D
3
 >150 ng/mL). High performance liquid chromatography 

(HPLC) with UV detection method is accepted as the gold standard for measuring 
serum 25-D

3
 levels [25–27]. The HPLC assay is, however, time consuming, often 

requires large sample volumes and is not free of inaccuracies in serum 25-D
3
 quan-

titation. The three FDA approved and most commonly used analytical assays for 
measuring serum 25-D

3
 levels are: Nichols Diagnostics fully automated 
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 chemoluminescence ADVANTAGE 25(OH)-D assay system, the DiaSorin 
LIAISON 25(OH)-D radio immuno assay (RIA) and the immunodiagnostic sys-
tems (IDS). The specificity, precision, limitations as well as accuracy of these 
assays have been extensively documented [28–31]. These assays tend to overesti-
mate the basal levels and greatly underestimate the exogenously added 25- D

3
 

 levels [32]. Serum 25-D
3
 measurements are more reliable when performed in 

Fig. 13.1 Simplified vitamin D
3
 activation and inactivation oxidative metabolism pathways
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 laboratories experienced and dedicated to performing these assays when compared 
to results obtained from standard hospital clinical chemistry laboratories. A number 
of RIA are also available for serum 1, 25-D

3
 measurements and have extensive utili-

ties in the management of patients with chronic renal diseases and more recently in 
cancer patients on calcitriol Phase I/II clinical trials.

More comprehensive and simultaneous analysis of the various serum vitamin D3 
metabolites profiles will be needed as our knowledge of the impact of vitamin D3 
status on a number of important chronic human diseases expands. The use of new 
analytical technologies such as atmospheric pressure chemical ionization (APCI) 
with positive ion mode LC/MS/MS method is likely to improve the specificity and 
accuracy of the analysis of the serum vitamin D

3
 metabolites. At the same time, this 

new technology can provide comprehensive serum vitamin D
3
 metabolites profiles 

including serum 24,25-D
3
 levels that have not been reported in cancer. Our study 

which utilizes APCI with positive ion mode LC/MS/MS and DiaSorin RIA to mea-
sure serum 25-D

3
 levels in colorectal patients receiving 400 and 2,000 IU of oral 

cholecalciferol daily have confirmed the dose dependency and biphasic character-
istics of the serum 25-D

3
 pharmacokinetics. The initial phase of increase in serum 

25-D
3
 levels is approximately 2 months long while the second phase is character-

ized by the attainment of a steady state (plateau) serum 25-D
3
 levels that lasts as 

long as cholecalciferol therapy is continued (Fig. 13.2, Panel A). These results also 
show that plateau serum 25-D

3
 levels of >32 ng/mL are attained in patients receiv-

ing 2,000 IU of cholecalciferol but not in patients receiving 400 IU. Correlation of 
serum 25-D

3
 levels measured by both LC/MS/MS and RIA in these samples is 

shown in Fig. 13.2, Panel B. The results show that serum 25-D
3
 levels measured by 

RIA are higher than those measured by LC/MS/MS. The RIA overestimation of 
serum 25-D

3
 levels could be attributed to the cross- reaction with other hydroxy-

lated vitamin D metabolites including 25-D
2
 and 24,25-D

3
. Vitamin D3 dose effect 
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(RIA) and atmospheric pressure chemical ionization (APCI) in positive ion mode LC/MS/MS 
assay (panel B)
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and time course of the changes in serum 24, 25-D
3
 in this cohort of colorectal can-

cer patients is shown in Fig. 13.3. These results suggest that comprehensive profiles 
of serum vitamin D

3
 metabolite in cancer patients are now achievable.

13.1.2.3  Vitamin D Status and Adenomatous Polyps

Several studies suggest a correlation between vitamin D intake or 25-hydroxy vita-
min D (25-D

3
) status and the risk of adenomatous polyps (Table 13.1). Levine et al. 

conducted a case–control study where 473 patients with a finding of at least one 
adenoma on initial sigmoidoscopy were compared to controls without any polyps 
on sigmoidoscopy or without any prior history of adenoma [33]. Plasma 25-D

3
 was 

assayed by a competitive binding assay. Increasing plasma levels of 25-D
3
 was 

associated with a decreased risk of adenoma (OR = 0.74 for the highest quartile 
compared to lowest; CI 0.49–1.09). The benefit from higher serum 25-D

3
 was more 

pronounced in the population with lower calcium intake. In another case–control 
study, 222 patients with newly diagnosed adenomas on colonoscopy were com-
pared to 479 controls who had adenoma-free colonoscopies [34]. One hundred and 
eleven cases and 238 controls had available serum for 25-D

3
 assay by enzyme 

immunoassay. A significant association was present between the highest tertile of 
25-D

3
 and a lower risk of adenoma in comparison to the lowest tertile (OR 0.51; CI 

0.27–0.98). Contrary to the findings by Levine, the benefit noted on this study 
seemed more pronounced in the population with a higher calcium intake. In the 
third study, 239 patients with colonic adenomas diagnosed by sigmoidoscopy were 
compared to 228 controls with an adenoma-free sigmoidoscopy [35]. 25-D

3
, 

assayed by RIA, was found protective against adenoma formation, with a risk 
reduction by 26% for each 10 ng/mL increase in serum levels. Only one study 
failed to show a clear association between 25-D

3
 and polyps [36]. In this study, 

cases and controls were drawn from the Nurse’s Health Study. Cases were 
 diagnosed to have at least one adenoma by endoscopy and were compared with 
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adenoma-free controls. Blood samples, in contrast to the other three trials, were 
collected several years after the endoscopic procedure. No difference in the median 
levels of 25-D

3
 by RIA were seen between cases and controls. However, in subjects 

with a consistent vitamin D intake across the years, an inverse association between 
25-D

3
 and risk of adenomatous polyps was noted (OR of 0.64, 0.41, and 0.34 for 

2nd, 3rd, and 4th quartiles when compared to the 1st quartile).
These case–control studies suggest a potential protective effect of higher levels 

of plasma 25-D
3
 against polyp formation. These findings are supported further by 

several other epidemiological studies associating an increased dietary vitamin D 
with a lower risk of colorectal adenomas [35–39].

13.1.2.4  Vitamin D Status and Colorectal Cancer

Vitamin D insufficiency, assessed by 25-D
3
 serum levels, has been associated with 

an increased risk of colorectal cancer in several case-control studies (Table 13.2). 
Garland et al. performed a case–control study based on a volunteer population with 
donated blood samples in 1974 who were subsequently followed for eight years 
[40]. Thirty-four colorectal cancer cases were matched to 67 controls by age, race, 
sex, and month of blood draw. 25-D

3
 serum levels were assayed by HPLC. The risk 

of colorectal cancer was reduced by 75% in the third quintile and by 80% in the 
fourth quintiles of serum 25-D

3
. The odds of getting colorectal cancer was 70% less 

for patients with 25-D
3
 levels ³ 20 ng/mL compared to <20 ng/mL. These results 

were not confirmed in another case–control study from the same base population 
[41]. A Finnish case–control study matched 146 newly diagnosed colon cancer cases 
to 292 non-cancer controls by clinic, age, and date of blood draw. Participants were 
selected from the Alpha-Tocopherol, Beta-carotene Cancer Prevention Study (ATBC 
Study) [42]. Pre-diagnosis 25-D

3
 serum levels were determined by RIA. Increasing 

levels of 25-D
3
 were associated with a reduction in the risk of colorectal cancer. The 

highest risk reduction was seen in the highest quartile, with more than 40% risk 
reduction encountered in this group. A nested case-control study of 25-D

3
 and risk 

of colorectal cancer was conducted within the Health Professionals Follow-up Study 

Table 13.1 Case–control studies (2000–2007): vitamin D status and adenomatous polyps

Year Author Population OR (CI)

2000 Platz [36] Nurses Health Study 0.34 (0.16–0.75) (1st vs 4 
quintile)

2001 Peters [35] Nat Naval Med Center 0.74 (0.60–0.92) (10 ng/mL inc)
2001 Levine [33] 0.74 (0.49–1.09)
2003 Lieberman [39] 13 VA 0.94 (0.90–0.99)
2004 Hartman [38] Polyp Prevention trial 0.82 (0.68–0.99) (supplemental 

Vit D)
2007 Oh [37] Nurses Health Study 0.79 (0.63–0.99)
2007 Miller [34] Diet and Health Study III 0.51 (0.27–0.98)
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(HPFS) [43]. One hundred and seventy-nine of the patients enrolled on the HPFS 
study were diagnosed with colorectal cancer between 1993 and 2002. These cases 
were matched to 356 controls by age and by month and year of blood collection. 
Blood was collected between 1993 and 1995 pre-diagnosis. Serum 25-D

3
 was 

assayed by RIA. An inverse association between higher levels of 25-D
3
 and risk of 

colorectal cancer was noted in the case-control population but did not reach statisti-
cal significance. However, the association was highly significant when the analysis 
was limited to colon cancer (OR 0.46; CI 0.24–0.89). A nested case-control study 
was also performed in the Nurse’s Health Study (NHS) [44]. One-hundred and 
ninety-three cases of colorectal cancer were identified within 11 years of their initial 
blood draw. Three-hundred and fifty-six controls were selected in a 2:1 ratio from 
the same cohort as the case. Controls had to be cancer free at the time of diagnosis 
and were matched to cases by age and month of blood draw. 25-D

3
 was assayed by 

RIA. A significant inverse association was noted between 25-D
3
 and risk of colorec-

tal cancer (p = 0.02). The risk reduction in colorectal cancer for the highest 25-D
3
 

quintile when compared to the lowest quintile was 47%, close to statistical signifi-
cance (OR = 0.53; CI 0.27–1.04). Another nested case-control study, from the 
Women’s Health Initiative (WHI), matched 317 women with colorectal cancer to 
317 non-cancer controls by age, center, race or ethnic group, and date of blood sam-
pling [45]. 25-D

3
 was assayed using chemiluminescent RIA. A significant inverse 

association between 25-D
3
 and risk of colorectal cancer was confirmed (p = 0.02). 

The risk of colorectal cancer among the lowest quartile of 25-D
3
 was 2.53-fold 

higher than the highest quartile (CI 1.49–4.32). A recent Japanese case-control study 
from two large male and female cohorts failed to support the above findings [46]. 
Three-hundred and seventy-five colorectal cancer cases were identified within 
11.5 years from blood collection. Two controls were matched to each case by age, 
sex, study area, date of blood draw, and fasting time. 25-D

3
 was assayed by a com-

petitive protein-binding assay. Although no association was found between 25-D
3
 

levels and risk of colorectal cancer, low 25-D
3
 levels were associated with a statisti-

cally significant increased risk of rectal cancer in both males and females.

Table 13.2 Case–control studies (1989–2007): vitamin D status and colorectal 
cancer

Year Author Population Risk reduction

1989 Garland [40] Men in Maryland ~80%
1995 Braun [41] ATBC Study ~40%
1997 Tangrea [42] Finnish Study 40%
2004 Feskanich [44] NHS 47%
2006 WaktawskiWende [45] WHI 60%
2007 Wu [43] HPHS plus NHS 34%
2007 Otani [46] JPHC Neg

ATBC Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study, JPHC 
Japan Public Health Centre-base Prospective Study, WHI Women’s Health 
Initiative, NHS Nurses Health Study, HPHS Health Professionals Health 
Study
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In summary, most case-control studies support an inverse association between 
25-D

3
 levels and colorectal cancer. Indeed, a combined analysis of five of the stud-

ies listed above shows a strong statistically significant inverse correlation between 
25-D

3
 and risk of colorectal cancer [40–42, 44, 45, 47]. The odds ratio for colorec-

tal cancer was 1, 0.82, 0.66, and 0.46 (p
trend

 < 0.0001) from the lowest to the highest 
quartiles of 25-D

3.
. Individuals in the highest quartile had less than half the risk of 

colorectal cancer of those in the lowest quartile. The combined analysis projected 
a 50% reduction in risk of colorectal cancer with levels of 34 ng/mL and higher. 
This is consistent with recent data from the National Health and Nutrition 
Examination Survey (NHANES) that support an association between a replete 
vitamin D status and colorectal cancer mortality [48]. Between 1988 and 1994, the 
NHANES enrolled US individuals aged 17 years and older and included non-
Hispanic whites, non-Hispanic blacks, and Mexican Americans with oversampling 
from the latter two. Among all enrolled patients, 16,818 (95%) had a baseline 25-D

3
 

level by RIA and a known mortality status. Follow-up of this cohort continued until 
the last day of the year 2000. Sixty-six patients died of colorectal cancer during the 
follow-up period. An inverse association was present between 25-D

3
 levels and 

colorectal cancer mortality (p = 0.02). Patients with 25-D
3
 levels exceeding 32 ng/

mL had a lower risk of colorectal cancer mortality compared to patients with levels 
lower than 20 ng/mL (risk ratio = 0.28, 95% CI 0.11–0.68) [48].

13.1.2.5  Vitamin D Intake and the Risk of Colorectal Cancer

Several case–control and cohort studies have evaluated the effect of dietary vitamin D 
on the risk of colorectal polyps or cancer. Garland first evaluated vitamin D intake 
and risk of subsequent colorectal cancer incidence based on 28 day dietary intake 
diaries completed between 1957 and 1959 in 1954 men [49]. The incidence of 
colorectal cancer decreased from the lowest to the highest quartiles of vitamin D 
intake [49]. Another analysis of 35,216 women on the Iowa Women’s Health Study 
investigated the association between baseline dietary questionnaires and the risk of 
subsequent colorectal cancer [50]. Females with the highest quintile of vitamin D 
intake had a 32% lower risk of colorectal cancer compared to the lowest quintile; 
this did not reach statistical significance [50]. The Health Professionals Follow-up 
Study consisted of 51,529 male professionals who had provided baseline informa-
tion about dietary habits. Six year follow-up to assess colorectal cancer incidence 
and death was obtained by mail (response rate 94%) [51]. A higher intake of vita-
min D was associated with a slight decrease in the risk of colorectal cancer (relative 
risk [RR] = 0.88; CI: 0.54–1.42) on multivariate analysis [51]. A larger cohort was 
evaluated from the Nurses’ Health Study [52]. Among study participants, 89,448 
respondents to dietary questionnaires and who were free of cancer were followed 
for colorectal cancer incidence. An inverse association between dietary vitamin D 
intake and risk of colorectal cancer was noted. The relative risk (RR) for colorectal 
cancer was 0.84 for the highest quintile of vitamin D when compared to the lowest 
quintile (CI: 0.63–1.13). The relative risk reduction was more pronounced when 
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females with subsequent variations in milk intake were excluded (RR = 0.59; 
CI: 0.3–1.16) [52]. Several other studies confirmed similar findings of inverse 
association between vitamin D intake and colorectal cancer [53–62]. Indeed, in an 
analysis of 14 observational studies that investigated oral intake of vitamin D and 
subsequent incidence of colorectal cancer, Gorham et al. identified the median 
Effective Dose in preventing 50% of the colorectal cancer cases (ED

50
) to be 

1,000 IU/day when compared to a reference of 100 IU/day [63].

13.1.2.6  Vitamin D Receptor Polymorphism and Colorectal Cancer

There is ample and well documented evidence suggesting that low serum 25-D
3
 

level is associated with an increased risk of developing colorectal cancer. The anti 
carcinogenesis effects of vitamin D

3
 is generally thought to be mediated via 

1,25-hydroxyvitamin D
3
, the most biologically active form of vitamin D

3,
 which 

interacts with VDR to activate key antiproliferative, pro-apoptotic, pro-differentiat-
ing and anti-angiogenesis genes in the colorectal mucosa. Down regulation of VDR 
expression and increased cyp24A1 expression in neoplastic colorectal epithelial 
cells (when compared to normal colonic epithelial cells) could potentially augment 
dysregulation of vitamin D

3
 homeostasis at the target tissue and thus perpetuate 

colorectal carcinogenesis.
There are conflicting reports on the association of genetic polymorphisms in 

VDR gene and the risk of developing colorectal adenoma and cancers in humans. 
Several studies suggest an association between certain VDR polymorphisms and 
risk for colorectal adenomas and cancer. A study of 26 patient colorectal cancer 
patients and 52 controls found the VDR TtFf or TTFf genotypes to be protective 
against colorectal carcinogenesis [64]. Another study of 373 colorectal adenoma 
patients and 394 controls demonstrated that VDR Fok1 genotype was associated 
with large adenomas in patients on low dietary calcium and vitamin D

3
 intake [65]. 

However, another study of 239 colorectal adenoma cases and 228 controls reported 
that VDR Fok1 polymorphism was not significantly associated with colorectal 
adenoma and did not modify the effect of either calcium or vitamin D3 [35]. VDR 
Taq1 genotype has similarly not been associated with increased risk of developing 
colorectal adenomas [66].

A more recent study of 170 colorectal cancer patients and 122 healthy controls 
reported significant down regulation of VDR expression on colonic cancer tissue 
compared to normal mucosa. However, this study found no differences in VDR 
Bsm1 genotypes in colonic tumor tissues and normal colonic mucosa [67]. Similarly 
genotyping studies of VDR Cdx2, Fok1, Bsm1, Apa1 and Taq1 polymorphisms in 
546 patients with colorectal adenomas showed that these VDR polymorphisms had 
no direct effect on the colorectal adenoma recurrence risk [68]. In summary, current 
literature show no clear cut association between VDR polymorphisms and the risk 
of developing colorectal adenoma and adenocarcinoma. These reports suggest that 
the role of VDR polymorphism on colorectal carcinogenesis may be dependent on 
other factors including the dietary vitamin D

3
 and calcium intake.
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13.2  Colorectal Cancer Prevention with Vitamin D 
Supplementation

13.2.1  Pathological Basis for Vitamin D Supplementation

Colonic normal, pre-cancerous, and cancerous epithelium may be targets to vitamin 
D through a direct effect on vitamin D receptors (VDR) [69–73]. VDR expression 
increases in the progression from normal mucosa to pre-malignant or malignant tis-
sue (aberrant crypt foci [ACF], polyps, and differentiated adenocarcinoma) [71, 73, 
74]. Vitamin D 1a-hydroxylase, the enzyme responsible for the transformation of 
25-D

3
 to the active form 1, 25-D

3
, is expressed in colon tissue. The expression appears 

equally prominent in normal, ACF, polyps, and differentiated colonic adenocarcino-
mas [73]. Recent reports, however, suggest that high grade tumors lose VDR and 
vitamin D 1a-hydroxylase suggesting the importance of VDR and its activation in 
maintaining normal tissue differentiation [75, 76]. While this may lessen the enthusi-
asm to investigate vitamin D compounds as antitumor agents in advanced colon 
cancer, it suggests a window of potential opportunity for vitamin D compounds from 
the early pre-ACF stage to the development of colon cancer (Fig. 13.4).

Fig. 13.4 Nuclear VDR staining for (a) Invasive cancer (b) Normal crypt (c) Tubular adenoma and 
(d) Aberrant crypt foci
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The importance of VDR activation in the prevention of colorectal carcinogenesis 
has been demonstrated in several pre-clinical models. An inverse association 
between cellular proliferation and VDR expression was demonstrated in mice colon 
[75]. Furthermore, complete loss of VDR (knockout) was associated with an 
increased proliferation and increased oxidative DNA stress, which may promote 
carcinogenesis [75, 77]. Vitamin D antitumor activity was also documented in an 
APCmin mouse model [78]. Vitamin D may also induce detoxification through 
VDR-induced expression of cyp3A, a cytochrome P450 enzyme that detoxifies the 
secondary bile acid, lithocolic acid [79].

An association between vitamin D levels and supplementation and intestinal 
mucosal proliferation has also been proposed. Holt et al. have shown an inverse 
association between colonic epithelial proliferation and increasing levels of 25-D

3
 

[80]. In a subsequent study of daily 400 IU of cholecalciferol and three-times daily 
1,500 mg of calcium carbonate, the same investigator showed a decrease in prolif-
eration in both normal and polyp tissue after 6 months of replacement [81].

13.2.2  Clinical Studies with Vitamin D Supplementation

Only one large randomized study evaluated and reported on the effect of vita-
min D supplementation on the risk of colorectal cancer [45]. Participants on the 
Women’s Health Initiative (WHI) study were randomized to receive daily vita-
min D (400 IU) and elemental calcium (1,000 mg) or placebo. Study partici-
pated were post-menopausal females with an age ranging between 50 and 
79 years. Among WHI participants, 18,176 were randomized to receive vitamin 
D plus calcium and 18,106 were randomized to the placebo arm. The study 
population was followed for outcome after an average of 7 years of treatment. 
The incidence of colorectal cancer did not differ significantly between the vita-
min D and placebo arms (168 cases in the vitamin D arm vs 154 in the placebo; 
HR = 1.08 (95% CI: 0.86–1.34)) [45]. While the study shows no beneficial 
effect of low dose vitamin D on the risk of colorectal cancer, several consider-
ations should be kept in mind regarding this study design and its limitations. 
First, the dose of vitamin D used on this study was likely inadequate to test for 
a protective role for vitamin D against colorectal cancer. Most epidemiological 
studies suggest that if a benefit is derived with higher 25-D

3
 levels, this benefit 

is typically limited to the highest quartile or quintiles of the population. This 
suggests that to derive a benefit from vitamin D supplementation, we would 
need to aim for 25-D

3
 concentration considerably in excess of 30 ng/mL. The 

median 25-D
3
 levels from a nested case-control from the WHI study was noted 

to be 17 ng/mL. Since, 400 IU/day of vitamin D is expected to raise 25-D
3
 lev-

els by only 3–4 ng/mL, it would be unlikely that the dose selected for this study 
would have resulted in any significant shift in 25-D

3
 levels towards the favor-

able protective range. Second, the follow-up period on this study may have 
been insufficient. The carcinogenesis process for colorectal cancer may span a 
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course of decades. As such, a 7 year treatment period may be insufficient to 
detect a protective effect for vitamin D, especially if vitamin D effects are 
 limited to the earlier steps in the carcinogenesis process. Finally, there was no 
limitation or control process on the population enlisted on the WHI study in 
regards to their vitamin D intake. Indeed, the average vitamin D intake in this 
population was estimated at 367 IU/day at the time of enrollment and rose 
 further during the conduct of the study. Vitamin D intake on the WHI study was 
estimated as double the national average [45]. It is possible that the increased 
baseline vitamin D intake on the WHI study washed out any potential protective 
effects of the study supplementation.

It is fair to conclude from the WHI study that a low dose of vitamin D supple-
mentation is not effective in preventing colorectal cancer. However, the effective-
ness of higher doses of vitamin D in preventing colorectal cancer is still an open 
question. Based on our studies and those of others in the literature, a dose of 
2,000 IU/day or higher may be needed to adequately investigate a role for vitamin D 
protection in colorectal cancer (see below).

13.3  Vitamin D Status in Advanced Colorectal Cancer

Little is known about vitamin D status in patients with advanced colorectal cancer. 
One study has assessed 25-D

3
 levels across a small number of patients with stages 

I-IV colon cancer who had not received any chemotherapy treatment. No signifi-
cant difference was noted in 25-D

3
 levels across different stages [82]. We have 

evaluated 25-D
3
 levels in more than 300 patients with colorectal cancer with stage 

II-IV disease and in various stages of treatment. Patients were stratified according 
to age, body mass index (BMI), season of blood draw, location of their primary 
tumor, stage of disease (I-III vs. IV), and chemotherapy status (no chemotherapy, 
or chemotherapy within 3 months from 25-D

3
 level draw) [83]. Vitamin D defi-

ciency was common among patients with colorectal cancer with a median 25-D
3
 

level of 21.3 ng/mL. On multivariate analysis, only primary site of disease and 
chemotherapy status were associated with very low 25-D

3
 levels (£15 ng/mL). 

Chemotherapy was associated with a fourfold increase in risk of severe vitamin D 
deficiency while a rectal primary was associated with a 2.6-fold increase. This 
 suggests that chemotherapy may increase the risk of vitamin D deficiency in 
patients with colorectal cancer. The etiology of the increased 25-D

3
 deficiency with 

chemotherapy is under current investigation. Possible etiologies include decreased 
vitamin D absorption secondary to chemotherapy-induced gastrointestinal toxicity 
or modulation of 25-D

3
 hydroxylation. These retrospective findings, if validated in 

prospective settings, suggest that patients with colorectal cancer may require more 
aggressive vitamin D supplementation in the setting of chemotherapy in compari-
son to a prevention setting. This may be particularly important given recent sugges-
tions that vitamin D status impacts the overall survival of patients with established 
colorectal cancer [84, 85].
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13.4  Vitamin D Status and Colorectal Cancer Outcome

At least two reports have recently associated vitamin D status and patient outcome 
after a diagnosis of colorectal cancer. The first study is an ecological study from 
Norway [84]. Norway was divided into three geographical regions based on solar 
exposure and vitamin D intake based on regional differences in fish consumption. 
Diagnosis of colorectal cancer was stratified per season (Winter: December–
February; Spring: March–May; Summer: June–August; Autumn: September–
November). Collected samples from various outpatient clinics on more than 14,000 
individuals showed that 25-D

3
 levels were lowest in winter and spring. Data regard-

ing colorectal cancer diagnosis and mortality were obtained from the cancer regis-
try for the period of 1964–1992. Data on 12,823 men and 14,922 women with 
colorectal cancer were analyzed. Colorectal cancer mortality was higher when the 
diagnosis of colon cancer was made during winter or spring (low 25-D

3
) compared 

to summer and autumn (higher 25-D
3
) [84].

The second study analyzed the outcome of colorectal cancer patients who had a 
baseline vitamin D level (RIA) at least 2 years prior to cancer diagnosis through a 
retrospective analysis of the NHS and HPFS studies [85]. Three hundred and four 
colorectal cancer cases were identified. Stages I–IV of colorectal cancer were 
equally distributed among all four quartiles of 25-D

3
. Yet, the mortality rate was the 

lowest in the highest quartile of 25-D
3
. Compared to the lowest quartile, the highest 

quartile had an adjusted HR for overall mortality of 0.52 (95% CI: 0.29–0.94). The 
HR for colorectal cancer mortality was 0.61 (95% CI: 0.31–1.19) for the highest 
25-D

3
 quartile compared to the lowest [85]. This study strongly suggests a correla-

tion between vitamin D status and the risk of death from colorectal cancer. Whether 
this association is a cause – effect association or signifies a common association 
between a more replete vitamin D status and other factors that positively impact 
colorectal cancer outcome remains to be determined.

13.5  Vitamin D Replacement Strategies and Recommended 
Dosing in Colorectal Cancer

The recommended daily dose of cholecalciferol in the general population is a  subject 
of debate, as is the dosing for the purpose of colorectal cancer prevention. The 
Institute of Medicine recommends 400 IU of cholecalciferol/day for the population 
older than 50 years [86]. However, this dose has been regarded by many experts in 
this field to be inadequate, especially in a vitamin D insufficient population. Indeed, 
a dose of 400 IU of cholecalciferol/day is estimated to raise 25-D

3
 levels by a modest 

2.8 ng/mL [87]. It is thus no surprise that clinical trials evaluating doses of 400 IU 
of cholecalciferol/day failed to show any benefit against osteoporotic fractures while 
higher doses did [88]. In a review of randomized studies of cholecalciferol vs. 
 placebo and fracture prevention, only the study treatment arms achieving a 25-D

3
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mean concentrations of 30 ng/mL or higher resulted in a  reduction in parathyroid 
hormone levels (PTH) and in the risk of fractures [89]. Similarly, no reduction in 
colorectal cancer has been noted with 400 IU of cholecalciferol and calcium supple-
mentation [45]. However, a combined analysis of five case–control studies supports 
a 50% risk reduction in patients with 25-D

3
 levels exceeding 34 ng/mL [47]. 

Furthermore, colorectal cancer related mortality has been shown to be inversely 
associated with 25-D

3
 levels with significant benefits noted in the population with 

levels exceeding 32 ng/mL compared to those <20 ng/mL [48].
These data strongly suggest that if a protective effect for vitamin D supplemen-

tation exists, it would likely be achieved with a cholecalciferol dose resulting in 
25-D

3
 levels in excess of 30 ng/mL. Given that the majority of the US population 

has 25-D
3
 concentrations below 30 ng/mL and that up to 36% of normal healthy 

population has concentrations below 20 ng/mL [90], it becomes evident that chole-
calciferol supplementation doses considerably higher than 400 IU/day would be 
needed for prevention purposes. Data from healthy volunteers receiving cholecal-
ciferol at 1,000–10,000 IU/day suggest that a dose of 1,700 IU/day is required to 
achieve the optimal 32 ng/mL concentration [87]. Other data suggest the need for 
a cholecalciferol dose of 4,000 IU/day to achieve an average steady state concentra-
tion of 38 ng/mL [91]. Therefore, a conservative dose of cholecalciferol of 
2,000 IU/day is suggested for the goal of achieving the optimal 25-D

3
 concentra-

tions exceeding 30 ng/mL.
It is important to point that the current epidemiological and prospective data 

support an association between low levels of 25-D
3
 and increased incidence of 

colorectal cancer and increased colorectal mortality. This does not necessitate a 
cause effect relationship between vitamin D deficiency and colorectal cancer. It is 
possible that other biological factors or life style practices predispose subjects to 
both colorectal cancer and vitamin D deficiency. It is therefore essential that pro-
spective randomized clinical trials with higher doses of cholecalciferol vs. placebo 
are conducted to determine if vitamin D status plays a significant role in colorectal 
carcinogenesis and mortality.
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Abstract An inadequate vitamin D supply per se does not fully explain the role 
of vitamin D in the prevention of cancer. The paradigm for the vitamin D sys-
tem differs from the rest of endocrinology because the enzymes that metabolize 
25-hydroxyvitamin D [25(OH)D] behave according to first-order reaction kinetics in 
vivo. Perpetually fluctuating 25(OH)D in the circulation forces perpetually adaptive 
adjustments to the enzymes, CYP27B1 and CYP24, that respectively synthesize and 
catabolize 1,25-dihydroxyvitamin D [1,25(OH)2D] in various tissues. Low levels 
of 1,25(OH)2D within tissues such as breast and prostate are thought to increase 
propensity toward cancer. This chapter details the hypothesis that during the times 
when 25(OH)D levels are declining, such as during fall and winter, concentrations of 
1,25(OH)2D within tissues cannot be maintained at any cellular set point for optimal 
cellular biology. If higher latitude increases the risk of cancer, then vitamin D supple-
mentation will raise and stabilize serum 25(OH)D concentrations, and this will lessen 
the adverse effects of seasonal fluctuations in serum 25(OH)D.

Keywords Latitude • Seasonality • Enzyme kinetics • Pharmacokinetics  
• Feedback control • Regulation • Dosage interval • Cholecalciferol • Paracrine

14.1  Introduction

Although environmental ultraviolet light (UVB) is associated with fewer internal 
cancers, there is no direct experimental evidence that exposure of a person or an 
animal to light prevents or moderates an internal cancer. The vitamin D system is 
regarded as one mechanism by which lower latitude and/or higher UVB exposure 
lower cancer risk or improve prognosis. But aside from colorectal cancer, 
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case-control studies have generally failed to demonstrate that a higher prediagnostic 
serum 25(OH)D level lowers risk of cancer. The vitamin D relationship with cancer 
is not a simple one, where more is better. As latitude increases, so does the seasonal 
variability in UVB exposure and serum 25(OH)D of populations. Humans are a 
tropical species for whom large seasonal fluctuations in serum 25(OH)D may not be 
something for which their biology has been adapted. Metabolism within tissues 
responsive to the paracrine synthesis of 1,25(OH)

2
D needs to adapt to prevailing 

25(OH)D levels, through adjustments to the CYP27B1 and CYP24 that  respectively 
synthesize and catabolize 1,25(OH)

2
D. These enzymes are unique in endocrinology, 

because their activity in vivo is a first-order relationship with substrate. Consequently, 
so long as serum 25(OH)D levels are in a phase of decline, as they are during win-
ters, there will be a relative excess in tissue catabolism of 1,25(OH)

2
D, lowering 

tissue 1,25(OH)
2
D levels, and potentially affecting cancer risk and prognosis.

14.1.1  Relationship Between Vitamin D and Prostate Cancer

Increased exposure to UVB light is associated with lower risk of internal cancers [1–3], 
but those benefits are at the cost of higher risk of skin cancer [4, 5]. The benefits of a 
high-UV environment are widely attributed to the vitamin D produced as a result of UVB 
light. But for prostate cancer as well as cancer of the pancreas, there is much controversy 
about whether higher vitamin D status (measured as serum 25-hydroxyvitamin D 
[25(OH)D]) is beneficial or harmful [6–8]. One alternative to the vitamin D hypothesis 
is that melatonin or lighting cycles themselves can moderate cellular biology to prevent 
cancer [9, 10]; however, this speculation is not supported by direct evidence.

As an example, prostate cancer cells possess both of the enzymes needed to convert 
vitamin D into the active paracrine hormone, 1,25-dihydroxyvitamin D3 (1,25(OH)

2
D; 

calcitriol) [11]. In cultured prostate epithelial cells, a physiological level of vitamin D
3
 

(the simple product of UV-exposed skin) inhibits growth, induces differentiation, and 
up-regulates VDR, RXRs, and androgen receptors, suggesting that the observed 
effects are receptor-mediated [11]. The vitamin D system targets many genes that can 
play a cancer-preventive role, including genes involved in protection from oxidative 
stress, and cell–cell and cell–matrix interactions [12, 13]. Anti-inflammatory effects 
include the inhibition of tumor angiogenesis, invasion, and metastasis [14]. Calcitriol 
inhibits stromal invasion of prostate cancer cells by modulation of protease activity 
[15]. In xenograft mouse models, calcitriol and its analogs suppress the nuclear prolif-
eration marker MIB-1 (or Ki-67) in ovarian [16] and breast cancers [17]. Prostate 
cancer LNCaP cells respond to calcitriol and its analogs with decreased MIB-1 expres-
sion [13, 18, 19] and when implanted into in vivo mouse models, they respond to 
calcitriol with greatly diminished growth [20, 21]. In a mouse cancer model, the cal-
citriol precursor, calcidiol, slowed tumor growth and improved differentiation of ras-
transformed keratinocytes, confirming that in vivo, extrarenal 1-hydroxylase plays an 
important role in paracrine/autocrine control of growth and differentiation [22].

The cellular mechanisms that explain why and how vitamin D can affect prostate 
cancer have been studied thoroughly, but the practical question of whether vitamin 
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D supplementation or a UV-light environment can do anything to prevent an inter-
nal cancer or to improve prognosis has never been addressed with an in vivo experi-
mental model. Furthermore, an incomplete understanding of the relationships 
between vitamin D and cancer has impeded any substantial adjustment in policy to 
take advantage the potential role for vitamin D. The World Health Organization, 
through its International Agency for Research in Cancer (IARC) published a major 
review of cancer and vitamin D [7]. The authors of the IARC report found no com-
pelling reason to change existing public advice about vitamin D. However, the 
IARC has joined the National Institutes of Health in calling for randomized clinical 
trials to address vitamin D treatment and cancer prevention [7, 23].

There are many arguments against the “vitamin D hypothesis” and cancer. 
Serum 25(OH)D levels are similar or even higher in northern Europeans than they 
are in the south [7, 24]. An inadequate vitamin D supply per se does not explain for 
the positive latitudinal correlation with prostate cancer incidence. Table 14.1 lists 
some difficulties that need to be resolved before the vitamin D hypothesis for 
 cancer prevention can be more widely accepted. The rest of this paper describes 
how an understanding of the enzymology of the vitamin D system may help to 
resolve the apparently contradictory issues surrounding the roles of vitamin D, 
 latitude, and ultraviolet light in the context of certain cancers.

14.2  Vitamin D Hydroxylase Enzyme Kinetics

There are several reasons why the paradigm for the vitamin D system is very different 
from the rest of endocrinology (Table 14.2). Metabolism in the vitamin D system 
behaves according to enzyme-kinetic principles that are very different from those 
underlying other hormone control systems. The hydroxylase enzymes that  metabolize 
25(OH)D in vivo behave according to first-order reaction kinetics. In essence, a dou-
bling in availability of substrate to the enzyme results in a transient doubling in the 
rate of product (i.e. 1,25(OH)

2
D) synthesis. After a time, an increase in 25(OH)D 

Table 14.1 Conceptual issues complicating the vitamin D hypothesis for cancer prevention

• How can latitude and environmental ultraviolet light be associated with increased risk of 
prostate cancer [3, 25, 26], and pancreatic cancer [27], yet not be a significant contributor 
to the lower average 25(OH)D concentrations theorized to be the key component of the 
mechanism that relates latitude to cancer risk [7]?

• Except for gastrointestinal cancer [28], efforts to relate serum 25(OH)D to cancer risk 
prospectively have not been prospectively associated with cancer risk

• A U-shaped risk curve has been reported for prostate cancer in relation to serum 25(OH)D 
concentrations, suggesting that higher serum 25(OH)D is not necessarily a good thing [29, 30]

• The rate of rise in prostate-specific antigen (PSA) slower in summer than in other seasons 
[31] and vitamin D supplementation appears to slow the rate of rise in PSA [32], yet in 
epidemiological studies, serum 25(OH)D levels are not related to lower cancer risk

• In regions of the United States where environmental UVB is low, is there a positive 
association between pancreatic cancer versus serum 25(OH)D, but in regions where UVB is 
high (presumably providing even higher serum 25(OH)D levels), is there no relationship with 
25(OH)D [33]
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produces an increase in the rate of catabolism, by inducing 1,25(OH)
2
D-24- 

hydroxylase (CYP24). Tissue levels of both 1-hydroxylase [CYP27B1] and 24- 
hydroxylase need to be balanced according to the prevailing supply of 25(OH)D. The 
inverse relationship between these enzymes has been shown in vivo in rats [34].

14.2.1  Vitamin D Metabolism and Points of Regulation

The metabolism of vitamin D behaves in a manner consistent with the model 
 illustrated in Fig. 14.1, in which a molecule of vitamin D can flow through a series 
of virtual compartments as represented for each metabolite. Flow is regulated at sev-
eral steps in the system. At the level of 25-hydroxylase in the liver, metabolism of the 
vitamin D substrate is relatively automatic and unregulated. Passage of 25(OH)D at 
the kidney into the hormone, 1,25(OH)

2
D, is regulated tightly, depending on the need 

for calcium. At peripheral tissues where its role in the prevention of cancer becomes 

Table 14.2 Similarities and Differences between the vitamin D system and the classic hormone 
systems

Similarities to conventional 
hormones

Differences from the rest of the 
endocrine system

Signalling 
molecule

Endocrine 1,25(OH)
2
D, 

which is released into 
circulation

Paracrine 1,25(OH)
2
D, which is not 

normally released into circulation

Site of synthesis 
of signaling 
molecule

Endocrine gland for the vitamin 
D system is the kidney

Breast, prostate, many cell types

What is regulated Calcium absorption at the 
intestine

Cell cycle, proliferation, differentiation, 
many genes affected.

Feedback via Serum calcium and parathyroid 
hormone, respectively 
suppressing and stimulating 
secretion of 1,25(OH)

2
D

Autocatabolism by CYP24 
(24-hydroxylase) induced by both 
the substrate 25(OH)D and the 
product, 1,25(OH)

2
D.

Substrate 
availability

(for hormones in general, 
substrate supply is not 
rate limiting in the context 
of ability to produce a 
hormone)

Supply of vitamin D and 25(OH)D 
depend on UV light or food sources 
that were once in UV light, and 
can range from deficiency to over 
200 nmol/L (80 ng/mL) without 
supplements

Enzyme kinetics (for hormones in general, 
substrate supply is abundant 
and not rate limiting)

For CYP27B1 and CYP24, substrate 
concentrations are below the Km 
of the enzyme. Hence the enzyme 
activity is in a first-order relationship 
with the substrates, 25(OH)D and 
1,25(OH)

2
D

Effect of season (for hormones in general, 
there is no seasonality in 
substrate supply)

For most who live at temperate latitudes, 
there is seasonality in substrate 
supply to produce 1,25(OH)

2
D
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relevant, the regulation of 1,25(OH)
2
D production is poorly understood. The 

1,25(OH)
2
D generated in peripheral tissues is not normally released into the circula-

tion, and tissue levels of 1,25(OH)
2
D are very difficult to measure. In Fig. 14.1, the 

valves represent the stages at which hydroxylases of the vitamin D system need to be 
regulated. In both the circulation and peripheral tissues, the concentration of 
1,25(OH)

2
D needs to be regulated according to serum 25(OH)D concentration. At the 

endocrine kidney, there are multiple regulatory mechanisms to moderate circulating 
1,25(OH)

2
D quickly. In comparison peripheral tissues represent a black box in terms 

of regulating 1,25(OH)
2
D locally. The control of 1,25(OH)

2
D is a classic engineering 

problem of feedback control. A basic  concern for systems is the time it takes for a 
system to sense a change in input, to initiate the appropriate response, and for the 
response mechanism to fully complete the necessary correction.
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Fig. 14.1 Conceptual model of vitamin D metabolism and its points of regulation. The vessels 
represent virtual body compartments for vitamin D and its major metabolites. The height of mate-
rial in the shaded portion of each vessel represents the relative concentration of metabolite. Open 
passages represent stages at which the pertinent enzymes are relatively unregulated. Valves repre-
sent stages at which there is regulation of flow at the enzyme level. A higher supply of 25(OH)D 
leads to down-regulation of CYP27B1 and an up-regulation of CYP24. The net effect of this 
model is to maintain tissue 1,25(OH)

2
D at the set-point level indicated by the block arrows
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14.2.2  Vitamin D Cellular Adaptation

In the fields of biochemistry and cellular biology, the time required for an enzyme 
to respond to a change in environment (e.g. a change in vitamin D supply) has been 
assumed to be so fast that the duration of disequilibrium insignificant. Few publica-
tions have addressed the rate of adaptation of the vitamin D hydroxylases to 
changes in vitamin D supply [34–37]. What we know is that endocrine adjustments 
to 1,25(OH)

2
D in response to calcium or to changes in 25(OH)D take about 3 days 

[34, 35, 37]. However, the endocrine secretion of 1,25(OH)
2
D (i.e. what we mea-

sure in serum or plasma) is regulated at the kidney by at least three mechanisms: 
by plasma calcium, parathyroid hormone [PTH], and through direct feedback by 
the product, 1,25(OH)

2
D. In contrast, regulation of paracrine, non-renal 1,25(OH)

2
D 

production is poorly understood. Outside the kidney, there is no regulation of 
1,25(OH)

2
D production by calcium or PTH [38]. Because they lack the multiple 

systems to regulate CYP27B1 and CYP24, the prostate and pancreas probably do 
take longer than the kidney to adapt to altered vitamin D supply.

14.2.3  Vitamin D Modulation of Hydroxylases

If the concentration of 1,25(OH)
2
D within cells beyond the kidneys is mediated 

by the ratio between 25(OH)D-1-hydroxylase and 1,25(OH)
2
D-24-hydroxylase 

(CYP27B1/CYP24 ratio), then the negative impact of higher CYP24 could be 
described as the product of an “oncogene” [39–41]. A relative excess of CYP24 
lowers the tissue concentration of 1,25(OH)

2
D that promotes cellular differentia-

tion and reduces replication [42, 43]. Conversely, CYP27B1 could be described 
as “a tumor suppressor” [44]. Prostate cancer cells, both primary cultured cells 
and cell lines, possess lower CYP27B1 activity than normal cells from the pros-
tate, making them partly resistant to the tumor suppressor activity of circulating 
25(OH)D [45–47]. If CYP27B1 and CYP24 need to be maintained in a ratio that 
compensates for changes in circulating 25(OH)D levels, then the reportedly 
lower cellular CYP27B1 within prostate cancer cell lines suggests that those 
cells have lost some of their ability to adapt to low 25(OH)D concentrations 
(Fig. 14.2).

14.3  Vitamin D and Cancer Risk: Sun Exposure  
and Levels of 25(OH)D

If prostate and pancreas are particularly slow to adapt to declining 25(OH)D con-
centrations, then rates of these types of cancer could increase with latitude despite 
average 25(OH)D concentrations that may not necessarily trend downwards with 
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latitude. At latitudes distant from the equator, persons who exhibit the highest 
serum 25(OH)D concentrations during the summer should as a consequence suffer 
the largest absolute and relative declines in 25(OH)D through the “vitamin D win-
ter,” when at high latitudes, the sun does not reach high enough in the sky to 
deliver vitamin D-forming UVB to the earth’s surface [48, 49]. Those who avoid 
exposing skin to summer sunlight will exhibit the smallest amplitude fluctuations 
in serum 25(OH)D. In other words, at the level of tissues like the prostate, serum 
25(OH)D levels that are actively declining may be just as bad as very low levels 
of 25(OH)D, because the tissue level of the catabolic enzyme, 1,25(OH)

2
D-24-

Ohase are relatively excessive during declining phases in serum 25(OH)D. Near 
the equator there seasonal variability in UVB radiation is minimal, but with 
increasing latitude, the variability in environmental UVB increases dramatically 
[50]. Serum 25(OH)D concentrations cycle in a pattern and amplitude that lags by 
about 3 months the fluctuations in UVB light throughout the seasons. We humans 
are the hairless  primates, with a biology suited for an environment where the der-
mal vitamin D factory is exposed throughout the year. We have been designed 
through evolution to be optimized for tropical latitudes where serum 25(OH)D 
concentrations do remain high and stable all year. Consequently, it is reasonable 
to infer that perpetually fluctuating inputs of vitamin D may pose a risk to certain 
aspects of our biology.
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Fig. 14.2 Long-term patterns of 25(OH)D levels in modern populations, showing two patterns for 
modern humans that would have been unlikely to have existed during our evolution. Populations 
at temperate latitudes who avoid exposing skin to sunshine exhibit perpetually low serum 25(OH)
D concentrations. Populations that sunbathe during summer will exhibit annual cycles of rising 
and falling serum 25(OH)D concentrations. The prevalent view is that low 25(OH)D may not be 
ideal, but cyclic patterns in serum 25(OH)D may also have adverse consequences even though 
average levels may appear to be comparatively high. Cycles of rising and falling 25(OH)D would 
force the system of enzymes represented in Fig. 14.1 to adapt, and during the declining phase 
CYP24 would be in relative excess, causing insufficient tissue levels of 1,25(OH)

2
D
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14.3.1  Adaptation of Vitamin D Hydroxylases and Cancer Risk

What needs to be established is whether a slow rate of adaptation of the vitamin D 
hydroxylases can be enough of a problem to affect cancer risk. It has recently been 
shown that risk of pancreatic cancer in the US north increases with rising 25(OH)
D levels measured in summer, but in the US south, there is no such relationship 
[33]. This would be expected based on the hypothesis proposed here. The present 
hypothesis is also logically consistent with the evidence that some antineoplastic 
drugs suppress expression of CYP24 [51].

Not all vitamin D-responsive tissues are likely to behave in the manner proposed here 
for the prostate. Colon cancer has been well validated epidemiologically as being pro-
tected against by higher 25(OH)D concentrations [2, 7, 52]. However, the epidemiology 
of prostate [6, 29] and pancreatic cancers [8, 33] suggests that these tissues are inefficient 
at adapting to seasonal UV light and the seasonal cycles in serum 25(OH)D.

So long as serum 25(OH)D concentrations are in a phase of decline, there can 
be no full achievement of tissue 1,25(OH)

2
D to match its ideal set-point concentra-

tion. No matter how small the true increment below the set-point may prove to be, 
it is by definition, a sub-optimal concentration. This may not be harmful as a single 
event in an individual, but over many lifetimes, annual cycles of below set-point 
phases in tissue 1,25(OH)

2
D will have an adverse effect on the risk of promotion or 

progression of certain types of cancer.

14.4  Vitamin D Hypothesis for Cancer Prevention

The hypothesis presented here integrates with the vitamin D hypothesis for cancer 
prevention in a manner that accounts for the apparent contradictions outlined in 
Table 14.1. This hypothesis is based on the unusual, first-order in vivo enzyme 
kinetics of the vitamin D system. The key prediction based on this hypothesis was 
published in 2004 was in relation to prostate cancer [30], and has been confirmed 
subsequently at least once, in the context of cancer of the pancreas as shown in 
Fig. 14.1 [33]. The hypothesis is testable in experimental models, such as the 
TRAMP mouse model of prostate cancer, as well as with epidemiologic data. The 
prediction is not tenable as a primary study outcome for human clinical trials, 
because it predicts an increased risk of cancer of prostate and pancreas in individu-
als given large doses of vitamin D at dosing intervals of more than 2 months.

14.4.1  Implications of the Model

A major problem for clinical research is poor adherence to medication, which results 
in negative findings [53, 54]. One way to improve adherence is to give vitamin D 
less frequently, but at larger doses [55, 56]. A general guideline for a dosing interval 
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for a drug is an interval at about the half-life of the drug [57]. For vitamin D, the 
effective half-life for the decline in 25(OH)D after a dose of vitamin D

3
 is approxi-

mately 2 months [58]. However, during the first month after a dose of vitamin D, 
serum 25(OH)D concentrations are relatively stable [37, 59]. In contrast, with vita-
min D the total serum 25(OH)D concentration after the subsequent month ends up 
even lower than the baseline level before the first dose was given [59]. The phenom-
enon of a total serum 25(OH)D falling to below its initial level a month after a dose 
of vitamin D

2
 is clinical support for the present contention that the rate of adaptation 

of metabolic clearance is too slow to respond to fluctuations in vitamin D supply. A 
key implication of the theory described here is that clinical trials using vitamin D at 
intermittent doses should avoid vitamin D

2
 and they should avoid dosing intervals of 

any form of vitamin D that go beyond 1 or 2 months. Vitamin D
3
 given on a once 

weekly or once monthly may be an optimal, because less frequent dosing improves 
adherence compared to daily dosing [60, 61] while minimizing fluctuations in serum 
25(OH)D concentration that would occur with semi-annual or annual doses.

An inherent benefit to moderately higher 25(OH)D concentrations makes a lot 
of sense in many respects [62–64], but it has not been the purpose of this chapter 
to deal with those aspects. The perspective presented here provides an explanation 
that can account for many of the things that led to the reservations IARC has 
expressed against broad advice to increase vitamin D as a way to prevent cancer [7]. 
The present perspective helps to justify vitamin D supplementation for situations in 
which latitude appears to increase the risk of cancer even if the population 25(OH)
D concentrations might average higher than for populations at lower latitudes. 
Supplementation raises overall serum 25(OH)D concentrations, and it will lessen 
the role of seasonal fluctuations in serum 25(OH)D.
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Abstract The field of Vitamin D assay technology has progressed significantly over 
the past 4 decades. Further, the clinical utility of these measurements has moved 
from esoteric into mainstream clinical diagnosis. This movement has been fueled 
by the realization that Vitamin D is involved in bodily systems beyond skeletal 
integrity. The clinical assay techniques for circulating 25(OH)D and 1,25(OH)

2
D 

have progressed away from competitive protein-binding assay (CPBAs) that utilize 
tritium reporters to radioimmunoassay (RIAs) that utilize both I125 and chemilu-
minescent reporters. These advances have allowed direct serum analysis of 25(OH)
D in an automated format that provides a huge sample throughput. Detection of 
circulating 25(OH)D can also be achieved utilizing direct high-performance liquid 
chromatographic (HPLC) or liquid chromatography coupled with mass spectrom-
etry (LC-MS) techniques. These methods are accurate, however, they require 
expensive equipment and restrict sample throughput in the large clinical labora-
tory. Direct serum detection of 1,25(OH)

2
D is unlikely to occur for many reasons 

as a sample pre-purification will always be required. However, a semi-automated 
chemiluminescent detection system with automated sample preparation is in final 
development for the determination of circulating 1,25(OH)

2
D. These advances will 

allow both 25(OH)D and 1,25(OH)
2
D to be detected in an accurate, rapid fashion 

to meet the clinical demands we see emerging.
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15.1  Introduction

In 1971, Haddad and Chyu published a seminal paper in The Journal of Clinical 
Endocrinology and Metabolism that described a competitive protein-binding assay 
(CPBA) for the determination of circulating 25-hydroxycalfierol [25(OH)D] in 
human subjects [1]. In this paper they also presented limited patient data for defini-
tion of “normal” circulating 25(OH)D levels in humans (Table 15.1). Their “nor-
mal” subjects were basically asymptomatic for rickets or osteomalacia and thus 
were considered “normal” for 25(OH)D status. Their study also presented a group 
of lifeguards that had circulating 25(OH)D levels 2.5 times that of “normals.” 
Countless similar studies have been performed in the ensuing decades, reiterating 
the same conclusion. I, however, interpret the original Haddad differently; I suggest 
that the 25(OH)D levels in the lifeguards are normal and the Haddad “normals” 
were actually vitamin D deficient. Fortunately, many others now agree with this 
idea and as a result “normal” circulating 25(OH)D levels, from a clinical stand-
point, are 30–100 ng/mL [2]. Because of this newly defined “normal” range a great 
many patients are deficient in circulating 25(OH)D when tested by their physician. 
As a result, clinical testing of circulating 25(OH)D has literally exploded in the past 
5 years and almost every clinical laboratory wants to perform the test as it is very 
profitable to do so. I will review the methods currently utilized to perform this test-
ing as well as those for 1,25(OH)

2
D testing.

15.2  Vitamin D Structure and Chemistry

Vitamin D is a 9,10-seco steroid and exists in two distinct forms: vitamin D
2
 and 

vitamin D
3
. Vitamin D

2
 is a 28-carbon molecule derived from the plant sterol ergos-

terol, while vitamin D
3
 is a 27-carbon derivative of cholesterol. Vitamin D

2
 differs 

from vitamin D
3
 in that it contains an extra methyl group and a double bond 

between carbons 22 and 23.
The most important aspect of vitamin D chemistry centers on its cis-triene struc-

ture. This unique structure makes vitamin D and related metabolites susceptible to 
oxidation, ultraviolet (UV) light-induced conformational changes, heat-induced 
conformational changes, and attacks by free radicals. Most of these transformation 

Table 15.1 Original assessment of nutritional vitamin D status circa 1971 (From [1])

Age
Weekly consumption  
of vitamin D

Weekly exposure  
to sunlight

Plasma  
25(OH)D

Group n year IU h nmol

Normal volunteers 40 30.2 ± 12.9 2,230 ± 1,041 8.8 ± 6.1 68.3 ± 29.5
Biliary cirrhosis 4 1.5–55 2,500 (est.) – 16 ± 6.5*
Lifeguards 8 18.5 ± 2.0 2,895 ± 677 53.0 ± 10.3 161 ± 21.8*

Values are means ± SD
*P < 0.001
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products have less biological activity than vitamin D. Research has now demonstrated 
that vitamin D

2
 is much less bioactive than vitamin D

3
 in humans [3, 4] although a 

recent study disputes this finding [5]. The parent compounds, vitamins D
2
 and D

3
 

are sometimes referred to as calciferol.
Hydroxylation reactions at both carbon 25 of the side chain and, subse-

quently, carbon 1 of the A ring result in metabolic activation of vitamin D. 
Metabolic inactivation of vitamin D takes place primarily through a series of 
oxidative reactions at carbons 23, 24, and 26 of the molecule’s side chain. This 
metabolic activation and inactivation are well characterized and result in a 
plethora of vitamin D metabolites [6]. Of these metabolites, only 25(OH)D and 
1,25-dihydroxyvitamin D provide any clinically relevant information. 25(OH)D

2
 

and 25(OH)D
3
 are commonly known as calcifediol and the 1,25(OH)

2
D metabo-

lites as calcitriol. The assay of these vitamin D metabolites will be discussed in 
this chapter.

15.3  Methods of 25(OH)D Quantitation

The assessment of circulating 25(OH)D started its journey approximately 4 decades 
ago with the advent of the competitive protein-binding assay (CPBA) [1]. From that 
early time to the present we have progressed to radioimmunoassay (RIA), high-
performance liquid chromatography (HPLC) and liquid chromatography coupled 
with mass spectrometry (LC/MS). A detailed procedural description of these meth-
ods can be reviewed in a recent publication [7]. I will provide a brief description of 
each technique in this text.

15.3.1  Competitive Protein-Binding Assay

A major factor responsible for the explosion of information on vitamin D 
metabolism and its relation to clinical disease was the introduction of a CPBA 
for 25(OH)D. John Haddad, Jr., introduced this CPBA almost 4 decades ago 
[1]. The assay assessed circulating 25(OH)D concentrations using the vitamin 
D-binding protein (DBP) as a primary binding agent and 3H-25(OH)D

3
 as a 

reporter. Although this CPBA was valid, it was also relatively cumbersome. 
Technicians had to extract the sample with organic solvent, dry it under nitro-
gen, and purify it using column chromatography. This assay was suitable for the 
research laboratory but did not meet the requirements of a high-throughput 
clinical laboratory.

The major difficulty in measuring 25(OH)D is attributable to the molecule itself. 
25(OH)D is probably the most hydrophobic compound measured by protein-binding 
assay (PBA), which constitutes either CPBA or radioimmunoassay (RIA). The fact 
that the molecule exists in two forms, 25(OH)D

2
 and 25(OH)D

3
, compounds the 

difficulties with its quantitation by PBA. 25(OH)D’s lipophilic nature renders it 
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especially vulnerable to the matrix effects of any PBA. Anything present in the 
sample assay vessel that is not present in the calibrator assay vessel can cause matrix 
effects. These matrix effect substances are usually lipid but in the newer direct 
assays, they could be anything contained in the serum or plasma sample. These 
matrix factors change the ability of the binding agent, antibody or binding protein to 
associate with 25(OH)D in the sample or standard in an equal fashion. When this 
occurs, it markedly diminishes the assay’s validity. Experience has demonstrated 
that the DBP is more susceptible to these matrix effects than antibodies [8]. The 
original Haddad procedure overcame the matrix problem by using chromatographic 
sample purification before CPBA [1].

Researchers had a strong desire to simplify this cumbersome CPBA for 25(OH)
D, so Belsey and colleagues developed a streamlined CPBA in 1974 [9]. The goal 
of this second-generation CPBA was to eliminate chromatographic sample purifi-
cation as well as individual sample recovery using 3H-25(OH)D

3
. However, after 

several years of trying, researchers were unable to validate the Belsey assay due to 
matrix problems originating from ethanolic sample extraction [10].

The 25(OH)D CPBA’s did have the advantage of being co-specific for 25(OH)
D

2
 and 25(OH)D

3
 and thus provided a “total” 25(OH)D value if the assay was 

valid. The DBP’s binding co-specificity for 25(OH)D
2
 and 25(OH)D

3
, as well as 

its stability, made it an attractive candidate for incorporation into automated 
direct chemiluminescent assays. In fact, Nichols Institute Diagnostics used this 
approach when its researchers developed the Advantage® 25(OH)D Assay. The 
U.S. Food and Drug Administration (FDA) approved this assay for clinical use 
but Nichols ultimately withdrew it from the market place due to its propensity 
to overestimate total circulating 25(OH)D concentrations and its surprising 
inability to detect circulating 25(OH)D

2
 [11, 12]. Although never described, 

these problems were probably linked to the DBP’s inability to resolve the matrix 
problems associated with direct sample assay. Currently, the CPBA for 25(OH)
D is rarely used. Also, one cannot accurately compare most CPBA results for 
circulating 25(OH)D concentrations from the past with values from current 
methods because many of the matrix interferences were not linear in the old 
CPBA’s.

15.3.2  Radioimmunoassay

In the early 1980s, my group decided that a non-chromatographic RIA for circulat-
ing 25(OH)D would be the best approach to measuring the substance. We therefore 
designed an antigen that would generate an antibody that was co-specific for 
25(OH)D

2
 and 25(OH)D

3
 [13]. In addition, we designed a simple extraction method 

that allowed simple non-chromatographic quantification of circulating 25(OH)D. 
In 1985 Immunonuclear Corp., now known as DiaSorin, introduced this 3H-based 
RIA as a kit on a commercial basis. This RIA was further modified in 1993 to 
incorporate a 125I-labeled reporter and calibrators (standards) in a serum matrix [14]. 
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This modification finally made mass assessment of circulating 25(OH)D possible. 
In that same year this assay became the first FDA-approved device for the clinical 
diagnosis of nutritional vitamin D deficiency. Further, during these past 23 years, 
these DiaSorin tests have been utilized in the vast majority of large clinical studies 
worldwide to define “normal” circulating 25(OH)D levels in a variety of disease 
states. This test still remains today the only RIA-based assay that provides a “total” 
25(OH)D value.

15.3.3  Random-Access Automated Instrumentation

DiaSorin Corporation, Roche Diagnostics, and the now defunct Nichols Institute 
Diagnostics all introduced methods for the direct (no extraction) quantitative deter-
mination of 25(OH)D in serum or plasma using competitive protein assay chemilu-
minescence technology [15]. These assays appear quite similar on the surface but 
they are not.

In 2001, Nichols Diagnostics introduced the fully automated chemilumines-
cence Advantage® 25(OH)D assay system. In this assay system, non-extracted 
serum or plasma was added directly into a mixture containing human DBP, acridin-
ium-ester labeled anti-DBP, and 25(OH)D

3
-coated magnetic particles. Note that the 

primary binding agent was human DBP. Thus, this assay was a CPBA, much like 
the manual procedure introduced in 1974 by Belsey et al. [9]. The major difference 
between these procedures was that Belsey depotenized the sample with ethanol 
before assaying it. The calibrators for the Belsey assay were in ethanol. In the 
Advantage assay, the calibrators were in a serum-based matrix, and its developers 
assumed that this matrix would replicate the serum or plasma sample introduced 
directly into the assay system. In the end, the 1974 Belsey assay never worked and 
neither did the Advantage 25(OH)D Assay. The company removed the assay from 
the market in 2006.

In 2004, the DiaSorin Corporation introduced the fully automated chemilumi-
nescence Liaison® 25(OH)D Assay System [15]. This assay is very similar to the 
late Advantage assay, with one major difference – the Liaison assay uses an anti-
body as a primary binding agent as opposed to the human DBP in the Advantage 
system. Thus, the Liaison is a true RIA method. Details on this procedure are avail-
able elsewhere [15]. The Liaison 25(OH)D assay is co-specific for 25(OH)D

2
 and 

25(OH)D
3
, so it reports a “total” 25(OH)D concentration. DiaSorin recently intro-

duced a second-generation Liaison 25(OH)D assay. This new version has increased 
functional sensitivity and much improved assay precision. The Liaison 25(OH)D 
assay is the single most widely used 25(OH)D assay in the world for clinical 
diagnosis.

The most recent addition to the automated 25(OH)D assay platforms is from 
Roche Diagnostics. Their test is an RIA called vitamin D

3
(25-OH) and it can be 

performed on their Elecsys and Cobas systems. Roche only released this assay in 
2007, so very little information on it is available. However, the assay can only 
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detect 25(OH)D
3
, so it will not be a viable product in countries in which vitamin D

2
 

is used clinically, including the United States.

15.3.4  Direct Physical Detection Methods

Direct detection methodologies for determining circulating 25(OH)D include both 
HPLC and LC/MS procedures [16–20]. The HPLC methods separate and quantitate 
circulating 25(OH)D

2
 and 25(OH)D

3
 individually. HPLC followed by UV detection 

is highly repeatable and, in general, most people consider it the gold standard method. 
However, these methods are cumbersome and require a relatively large sample as 
well as an internal standard. Sample throughout is slow and is not suited to a high 
demand clinical laboratory processing up to 10,000 25(OH)D assays per day.

Researchers have recently revitalized LC/MS as a viable method to assess 
 circulating 25(OH)D [17–20]. As with HPLC, LC/MS quantitates 25(OH)D

2
 and 

25(OH)D
3
 separately. When performed properly, LC/MS is a very accurate testing 

method. However, the equipment is very expensive and its overall sample through-
put when performed properly and ease of operation cannot match that of the auto-
mated instrumentation format. As a methodology, LC/MS can compare favorable 
with RIA techniques [18, 19]. One unique problem with LC/MS is its relative 
inability to discriminate between 25(OH)D

3
 and its inactive isomer 3-epi-25(OH)

D
3
. This problem has been especially noticeable in the circulation of newborn 

infants [17]. Next to the DiaSorin assays, LC/MS is the next most utilized  procedure 
for the clinical assessment of circulating 25(OH)D.

15.4  Clinical Reporting of Circulating 25(OH)D 
Concentrations

As highlighted earlier, all DiaSorin 25(OH)D assays are approved by the FDA for 
clinical utility. Thus, the diagnostic 25(OH)D tests sold by DiaSorin and IDS 
Diagnostics (Fountain Hills, AZ) are under strict FDA control and monitoring for 
assay performance and reliability. In what I consider a distributing trend, many 
clinical reference laboratories are replacing these FDA-approved test with “home-
brew” LC/MS methods that are diverse and not under FDA scrutiny. The reasons 
for this switch in utilization are the “perceived” advantages of LC/MS technology 
being more accurate, precise, specific, cost effective, and providing the separate 
determination of 25(OH)D

2
 and 25(OH)D

3
. First, with respect to accuracy and 

precision, the DiaSorin and IDS RIA methods perform at least as well as LC/MS 
methods according to the Vitamin D External Quality Assessment Scheme 
(DEQAS) operated out of London, UK. As far as specificity goes, the DiaSorin 
tests appear more specific than LC/MS methodology in that the DiaSorin assays 
do not detect the inactive 3-epimer of 25(OH)D

3
 [17]. Finally, LC/MS assays are 
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marketed on their ability to separately measure 25(OH)D
2
 and 25(OH)D

3
 in a blood 

sample. Clinically, however, there is no advantage to this separate measurement 
claim. Not a single scientific publication exists that demonstrates separate 25(OH)
D

2
 and 25(OH)D

3
 measurements are superior to a “total” 25(OH)D value as 

supplied by the DiaSorin tests. In fact, this separate reporting has been shown to 
confuse the clinician [21]. The truth is, LC/MS laboratories report separate values 
because that is how LC/MS technology has to report the data [17–20] and is not a 
reason to “spin” it into a clinical advantage. The fact is, this individual quantitation 
has been going on for the past 3 decades utilizing HPLC detection and no one 
claimed it to be clinically advantageous. Some LC/MS laboratories have actually 
billed inappropriate CPT codes to enhance return for these separate reported values. 
I consider this practice to be abusive and fraudulent and feel it must end. Further, 
99% of all patient samples assayed will not contain any 25(OH)D

2.

Replacement of FDA-controlled devices such as the DiaSorin and IDS assays 
with “home-brew” LC/MS assays from a clinical diagnostic standpoint is, again, 
disturbing. It is disturbing because the DiaSorin assays have and continue to be the 
standard of clinical 25(OH)D assessment. I can say this because the “normal” 
range of circulating 25(OH)D is almost entirely based on clinical studies using the 
DiaSorin tests. In fact, Labcorp (Burlington, NC) uses a publication by Hollis [2] 
on which to base their clinical range of 25(OH)D levels. In turn, this publication 
is based on DiaSorin assay-based clinical studies so unless a given LC/MS method 
is calibrated against the DiaSorin methods, this reference range should not be 
reported against.

Many years and clinical studies have gone into establishing the DiaSorin reference 
range and as we stated earlier, this consists of thousands of scientific publications. To 
prove my point we have selected some large significant clinical studies on which the 
“normal” circulating level of 25(OH)D is based, most of which utilized DiaSorin and 
some IDS assays as their method of analysis. I have not included any LC/MS clinical 
studies because basically none exist, which is my point exactly.

The DiaSorin RIA has been used to generate all of the 25(OH)D data from the third 
National Health and Nutrition Examination Survey (NHANES III). I have included 
selected references on this topic to validate my claim [22–51]. Many more studies 
from NHANES exist with respect to vitamin D and all use the DiaSorin RIA. Studies 
from the huge NIH sponsored Women’s Health Initiative (WHI) used the DiaSorin 
LIAISON assay for the first two major publications [49, 50] with others to follow.

The Harvard-based studies, the Health Professionals’ Follow-up Study (HPFS) 
and the Nurses’ Health Study (NHS) have been used to establish much of the infor-
mation in the last decade with regard to the relationship of circulating 25(OH)D 
levels and various disease states such as cancer, autoimmune, cardiovascular and 
renal. All of these studies again utilized DiaSorin-based assays [29–48]. Of course, 
we cannot forget the relationship of vitamin D status, PTH and skeletal integrity. 
Hundreds of papers have been published on this topic; most using DiaSorin assays 
none using LC/MS testing.

What then should LC/MS laboratories do? If they are going to use the current 
DiaSorin-based reference range [2] they had better target their values to that of the 
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DiaSorin test. In fact, this is basically how the FDA approves new devices for 25(OH)
D assessment through the 510 K process since the DiaSorin RIA was the first device 
approved in 1993. The alternative is that each LC/MS site establish their own refer-
ence range which will take years of clinical study since a normal Gaussian distribu-
tion is useless in establishing a normative 25(OH)D range. In fact, this “normalization” 
of values is quite common between other 25(OH)D assays and DiaSorin testing as 
recent articles demonstrate [51]. For instance, if a recently published LC/MS article 
was used for diagnosis, the levels reported would have to be increased by 13% if the 
DiaSorin reference range is to be used for clinical diagnosis [19].

Finally, clinical reference laboratories should simply use a single reference 
range to report circulating 25(OH)D levels as does Labcorp, 32–100 ng/mL. 
Compare this to the Mayo Clinic which reports four different “classes” of 25(OH)
D status. This type of reporting is confusing and should be discontinued.

15.5  Methods of 1,25(OH)2D Quantitation

Of all the steroid hormones, 1,25(OH)
2
D represented the most difficult challenge 

to the analytical biochemist with respect to quantitation. 1,25(OH)
2
D circulates 

at picomole (pmol) levels. The development of a simple, rapid assay for this 
compound has proven to be a daunting task.

15.5.1  Radioreceptor Assay

The first radioreceptor assay (RRA) for 1,25(OH)
2
D was introduced in 1974 [52]. 

Although this initial assay was extremely cumbersome, it did provide invaluable 
information with respect to Vitamin D homeostasis. This initial RRA required a 
20 mL serum sample, which was extracted using Bligh-Dyer organics. The extract 
had to be purified by three successive chromatographic systems, and chickens had 
to be sacrificed and Vitamin D receptor (VDR) harvested from their intestines. By 
1977, the volume requirement for this RRA had been reduced to a 5 mL sample and 
sample pre-purification had been modified to include HPLC [53]. However, the 
sample still had to be extracted using a modified Bligh-Dyer procedure and then 
pre-purified on Sephadex LH-20. Chicken intestinal VDR was still utilized as a 
binding agent.

A major advancement occurred in 1984 with the introduction of a radically new 
concept for the RRA determination of circulating 1,25(OH)

2
D [54]. This new RRA 

utilized solid phase extraction of 1,25(OH)
2
D from serum along with silica car-

tridge purification of 1,25(OH)
2
D. As a result, the need for HPLC sample pre-

purification was eliminated. Also, this assay utilized VDR isolated from calf 
thymus, which proved to be quite stable and thus had to be prepared only periodi-
cally. Further, the volume requirement was reduced to 1 mL of serum or plasma. 
This assay opened the way for any laboratory to measure circulating 1,25(OH)

2
D. 

This procedure also resulted in the production of the first commercial kit for 
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1,25(OH)
2
D measurement. This RRA was further simplified in 1986 by decreasing 

the required chromatographic purification steps [55]. This major improvement has 
recently become a citation classic [56].

As good as the calf thymus RRA for 1,25(OH)
2
D was, it still possessed two 

 serious shortcomings. First, VDR had to be isolated from thymus glands. Second, 
because the VDR is so specific for its ligand, only 3H-1,25(OH)

2
D

3
 could be used 

as a reporter, eliminating the use of a 125I or chemiluminescent reporter. This was a 
major handicap, especially for the commercial laboratory.

15.5.2  Radioimmunoassay

In 1978, the first RIA for 1,25(OH)
2
D was introduced [57]. Although it was an 

advantage not to have to isolate the VDR as a binding agent, this RIA was relatively 
nonspecific, so the cumbersome sample preparative steps were still required. Over 
the next 18 years all RIAs developed for 1,25(OH)

2
D suffered from the same short-

comings. In 1996, we developed the first significant advance in 1,25(OH)
2
D quanti-

fication in a decade [58]. This RIA incorporated and 125I-reporter, as well as standards 
in an equivalent serum matrix, so individual sample recoveries were no longer 
required. The sample purification procedure is the same one previously used for the 
rapid RRA procedure [55]. The assay has 100% cross-reactivity between 1,25(OH)

2
D

2
 

and 1,25(OH)
2
D

3
 and is FDA-approved for clinical diagnosis in humans.

Another 125I-based RIA for 1,25(OH)
2
D is also commercially available from IDS 

Ltd. The basis of this kit is a selective immunoextraction of 1,25(OH)
2
D from serum 

or plasma with a specific monoclonal antibody bound to a solid support. This antibody 
is directed toward the 1a-hydroxylated A ring of 1,25(OH)

2
D [59]. This assay 

 procedure has never been published in detail so critical evaluation is difficult. I concluded 
that this immunoextraction procedure was highly specific for the 1-hydroxylated forms 
of Vitamin D. However, I also believe that this procedure overestimates circulating 
1,25(OH)

2
D levels. Evidence of this overestimation is evident in a recent publication 

which shows a correlation of circulating 25(OH)D and 1,25(OH)
2
D at physiologic 

levels [60] indicating that 25(OH)D may be interfering with the assay.
ELISAs for circulating 1,25(OH)

2
D determinations do exist commercially from 

Immunodiagnostik and IDS. However, their performance has never been published 
in detail. Further, no automated platforms or LC/MS methods yet exist for the assay 
of circulating 1,25(OH)

2
D.
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