


Genomics and Proteomics in Nutrition 



NUTRITION IN HEALTH AND DISEASE 

Editorial Advisory Board 
CAROLYN D.BERDANIER, PH.D.  

University of Georgia, Athens, Georgia, U.S.A. 
FRANK GREENWAY, M.D.  

Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, 
Louisiana, U.S.A. 

MULCHAND S.PATEL, PH.D.  
The University at Buffalo, The State University of New York, Buffalo, New York, 

U.S.A. 
KATHLEEN M.RASMUSSEN, PH.D.  

Cornell University, Ithaca, New York, U.S.A. 

1. Genomics and Proteomics in Nutrition, edited by Carolyn D.Berdanier and Naima 
Moustaid-Moussa 

Additional Volumes in Preparation 

Perinatal Nutrition, edited by Jatinder Bhatia 

Related Volumes 

Introduction to Clinical Nutrition: Second Edition, Revised and Expanded, by V.Sardesai 

Pediatric Gastroenterology and Nutrition in Clinical Practice, edited by Carlos Lifschitz 

Nutrients and Cell Signaling, edited by Janos Zempleni and K. Dakshinamurti 

Mitochondria in Health and Disease, edited by Carolyn D.Berdanier 

Thiamine, edited by Frank Jordan and Mulchand Patel 

Phytochemicals in Health and Disease, edited by Yongping Bao and Roger Fenwick 

Handbook of Obesity: Etiology and Pathophysiology, Second Edition, edited by George 
Bray and Claude Bouchard 

Handbook of Obesity: Clinical Applications, Second Edition, edited by George Bray and 
Claude Bouchard 



Genomics and Proteomics in 
Nutrition 

edited by 

Carolyn D.Berdanier  
The University of Georgia  
Athens, Georgia, U.S.A. 

Naima Moustaid-Moussa  
The University of Tennessee  
Knoxville, Tennessee, U.S.A. 

 

MARCEL DEKKER, INC. NEW YORK 



This edition published in the Taylor & Francis e-Library, 2005. 
 “ To purchase your own copy of this or any of Taylor & Francis or  Routledge’s collection of 

thousands of eBooks please go to http://www.ebookstore.tandf.co.uk/.” 

Although great care has been taken to provide accurate and current information, neither  the 
author(s) nor the publisher, nor anyone else associated with this publication, shall  be liable for any 

loss, damage, or liability directly or indirectly caused or alleged to be  caused by this book. The 
material contained herein is not intended to provide specific  advice or recommendations for any 

specific situation. 
Trademark notice: Product or corporate names may be trademarks or registered  trademarks and are 

used only for identification and explanation without intent to  infringe. 

Library of Congress Cataloging-in-Publication Data  A catalog record for this book is available 
from the Library of Congress. 

ISBN 0-203-02592-X Master e-book ISBN 

ISBN: 0-8247-5430-1 (Print Edition) 

Headquarters  Marcel Dekker, Inc., 270 Madison Avenue, New York, NY 10016, U.S.A.  tel: 
212–696–9000; fax: 212–685–4540 

Distribution and Customer Service  Marcel Dekker, Inc., Cimarron Road, Monticello, New York 
12701, U.S.A.  tel: 800–228–1160; fax: 845–796–1772 

Eastern Hemisphere Distribution  Marcel Dekker AG, Hutgasse 4, Postfach 812, CH-4001 Basel, 
Switzerland  tel: 41–61–260–6300; fax: 41–61–260–6333 

World Wide Web  http://www.dekker.com/ 

The publisher offers discounts on this book when ordered in bulk quantities. For more  information, 
write to Special Sales/Professional Marketing at the headquarters address  above. 

Copyright © 2004 by Marcel Dekker, Inc. All Rights Reserved. 

Neither this book nor any part may be reproduced or transmitted in any form or by any  means, 
electronic or mechanical, including photocopying, microfilming, and recording,  or by any 
information storage and retrieval system, without permission in writing from  the publisher. 



Preface 

Over the last century nutrition science has evolved from an initial inquiry into the life 
essences to a sophisticated inquiry into how cells and cell systems work. Initially, 
nutrition scientists wanted to identify those nutrients essential to life. To that end they 
conducted many feeding studies using purified diets. They studied many species. Over 
the years they became aware of the tremendous variability between species and within 
species. One animal might require twice as much of a specific vitamin as another animal 
of the same age and gender. Nutrition scientists attributed this variability to genetics. 
Once the essential nutrients were identified, nutrition scientists wanted to know how they 
functioned as single nutrients. Metabolic pathways were uncovered and the detailed role 
of each nutrient in metabolism was gradually discovered. One of the more puzzling 
aspects of nutrition was the reconciliation of the metabolic function of the nutrient with 
the signs and symptoms of its deficiency disease. The feature of skin lesions, for 
example, in pellegra did not relate (at first) to the role of niacin in the coenzyme, NAD. It 
was only after the discovery of DNA and its role in cell replication that it was realized 
that niacin (as NAD or NADP) was essential to the synthesis of the purine and 
pyrimidine bases that are the backbone of DNA. Because skin cells have a very short 
half-life, niacin-deficiency-induced skin lesions really reflected the unmet need for niacin 
to support the DNA/RNA-dictated cell replication. 

Using the techniques of genetics, nutrition scientists soon learned how to define in 
great detail the mechanism involved in nutrient-dictated gene expression. Further, 
nutrition scientists were able to identify metabolic processes and disease processes that 
were nutritionally responsive from the genetic point of view. The drive to understand 
basic biological mechanisms of nutrient gene interactions has led to two distinct, yet 
related, approaches in the study of molecular biology: genomics and proteomics. A third 
approach, metabolomics, links the first two with changes in intracellular metabolites. 

Three earlier books on nutrition and gene expression (Nutrition and Gene Expression, 
edited by C.D.Berdanier and J.L.Hargrove (CRC Press, 1993); Nutrients and Gene 
Expression: Clinical Aspects, edited by C.D.Berdanier (CRC Press. 1996); and Nutrient-
Gene Interactions in Health and Disease, edited by N.Moustaid-Moussa and 
C.D.Berdanier (CRC Press, 2001) addressed questions of how specific nutrients affected 
the expression of the genetic material DNA. The present book takes the reader one step 
further. It explores the question of how genetic expression affects the production of gene 
products. The many authors of this book have each addressed this issue from very 
specific points of view. Whether the gene product is a known protein or one that has yet 
to be identified, the authors have used the techniques of biotechnology to provide new 
insights into nutrition and metabolism. We the editors thank these authors for their 
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conscientious, careful review of the literature in their particular writing assignment. We 
hope that you, the reader, will appreciate the progress that has been made relating 
nutrition, gene expression, and tissue/organ and cell function. 

Carolyn D.Berdanier  
Naima Moustaid-Moussa  
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Genetic Modifiers in Rodent Models of 

Obesity 
Yun Wang, Patsy M.Nishina, and Jürgen K.Naggert  

The Jackson Laboratory, Bar Harbor, Maine, U.S.A. 

ABSTRACT 
The identification of single gene mutations leading to obesity in the 
mouse has greatly enhanced our understanding of the regulation of 
bodyweight and energy metabolism. Indeed, the discovery of the 
influence of the leptin/melanocortin pathway on body weight was solely 
the result of identifying the genetic defects in the mutants, diabetes 
(db/db), obese (ob/ob), and agouti yellow (Ay). In addition, from such 
studies it is clear that obesity mutations must reside in a permissive 
genetic backgound in order to manifest an obese or obese/diabetic 
phenotype. Such background genes can also modify age of onset, rate of 
disease progression, or severity of the obesity phenotypes. Background 
genes that interact with mutant genes are responsible for alterations of 
specific phenotypes and are called genetic modifier loci. Identification of 
these modifiers may provide a powerful tool for defining biological 
pathways that lead from the primary genetic defect to the disease 
phenotype. Those modifiers that suppress weight gain or progression to 
non-insulin-dependent diabetes may lead to new therapeutic targets. These 
targets may be more amenable to manipulation by small molecule drugs 
than the primary mutant gene product. 

1. INTRODUCTION 

Individuals affected with the same genetic disorder often differ in their clinical 
presentation. This effect is evident in the intrafamilial variability observed in weight gain 
and glycemic status in syndromic diseases such as Bardet-Biedl and Alström syndromes, 
in which all affected family members carry the same mutation (1, 2). Intrafamilial 
variability in disease phenotypes may be due to environmental influences, genetic 
modifier loci, or a combination of these factors. In addition, interfamilial variability may 
be due to allelic differences at specific loci. 

Whereas much work has been done on the environmental influences, e.g., diet or 
exercise on development of obesity and type II diabetes, the role of genetic modifiers is 
gaining prominence. The phenotypic effects of modifier genes on the manifestation of a 
primary disease mutation can arise from the modifier’s action in the same or in a parallel 
biological pathway as a disease gene. The effect can be enhancing, causing a more severe 



mutant phenotype, or suppressive, reducing the mutant phenotype even to the extent of 
completely restoring the wild-type condition. Modifier genes can also alter the pleiotropy 
of a given disease, resulting in different combinations of traits. In addition, for any given 
genetic disorder, alleles of multiple modifier genes may act in combination to create a 
final, cumulative effect on the observed phenotype. The latter situation may be especially 
true for complex disease traits such as obesity and type II diabetes, for which it has been 
extremely difficult to identify underlying genes in the human population. 

Studying and identifying genetic modifier loci can yield new insights into the 
biological pathways in which Mendelian disease genes act and through which they cause 
disease phenotypes. For example, knowing the molecular basis of a genetic modifier may 
improve diagnosis and treatment of disease, perhaps by defining a particular subgroup 
within the disease population. In addition, the identification of modifier genes may lead 
to new treatments either by providing additional information about the genetic 
contributions to the phenotype for which treatment may already be available or by 
pointing to additional steps in a biological pathway that may be more amenable to 
treatment. 

In obesity, environmental influences have typically been emphasized over genetic 
causes for the phenotype. Examples of modifier genes in human studies are not abundant; 
their existence can, however, be inferred by the finding of association of obesity 
subphenotypes with particular alleles of genes that have been implicated in obesity. In 
animal models of obesity caused by a mutation in a single gene, it can be shown that 
modifier genes influence phenotypic expression. The fact that most obese individuals do 
not develop non-insulin-dependent diabetes mellitus (NIDDM), whereas most patients 
afflicted with NIDDM are obese, can be interpreted to mean that obesity (and obesity 
genes) are necessary but not sufficient for the development of NIDDM and that NIDDM 
susceptibility genes may act as modifiers of obesity genes. Better known are the effects 
of modifier genes in causing non-insulin-dependent type II diabetes in obesity models. In 
mouse models, such as C57BLKS-Lepob/Lepob, the obesity mutation is necessary but not 
sufficient for the development of diabetes. In this review we will focus on the role of 
genetic modifiers in rodent models of obesity and diabetes and provide some examples of 
reported modifier gene action. 

2. GENE/GENE INTERACTIONS 

The earliest documented gene/gene interaction in an obesity pathway was found between 
the mouse mutations obese (ob) (3) and diabetes (db) (4). C57BL/6-ob/ob and C57BL/6-
db/db mice are hyperphagic, hypometabolic, and massively obese. Because of the 
phenotypic resemblance of the two mouse strains, Coleman and Hummel undertook a 
series of parabiosis experiments. Connecting the blood supplies of ob/ob mice with those 
of wild-type mice caused the ob/ob mice to loose weight. Parabiosis of db/db mice to 
wild-type mice led to starvation and weight loss in the wild-type mice, while the db/db 
mice maintained their body weight. And finally, parabiosis of ob/ob and db/db mice led 
to weight loss in the obese ob/ob mice. Apparently, ob/ob mice were lacking a blood-
borne factor that prevented obesity that wild-type mice possessed, and db/db mice could 
not respond to that factor and overproduced it. From these results, Coleman concluded 
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that the ob locus might encode a satiety hormone and the db locus, its receptor. This 
prediction was proven correct by the identification of the obese gene as Lep, the 
adipocyte-secreted hormone, leptin (5), and diabetes as the leptin receptor (Lepr) gene, 
acting primarily in the hypothalamus (6, 7). 

The example of the interaction between Lepob and Leprdb is unusual in that it was not 
demonstrated by genetic means. More typically, gene/gene interactions are discovered by 
observing the suppression of a phenotype in double-mutant mice or by the appearance of 
a phenotype in compound heterozygous animals. 

An example for the former is the discovery of an interaction between the coat color 
mutations yellow (Ay) at the agouti locus on chromosome (Chr) 2 and the nonallelic 
mahogany (Atrnmg) and mahoganoid (Mgrn1md) loci on Chrs 2 and 16, respectively. In 
addition to a yellow coat color, yellow mice develop obesity due to the ectopic 
expression in the hypothalamus of agouti signal protein (ASP), a melanocortin receptor 
antagonist normally expressed only in the skin (8,9). In order to determine where 
mahogany and mahoganoid lie with respect to agouti signaling in a genetic pathway, 
Miller and colleagues created double-mutant animals (10). They found that homozygosity 
for either the mahogany or the mahoganoid mutation suppressed the effects of Ay on coat 
color as well as on obesity, suggesting that mg and md act downstream of agouti to 
interfere with agouti signaling. Both mutant genes have been identified by positional 
cloning. The mahogany gene codes for the membrane protein, attractin (11,12), which 
may act as a low-affinity receptor for the agouti protein (13). Mahoganoid codes for a 
novel RING-containing protein with E3 ubiquitin ligase activity, which may function in 
protein turnover (14,15). 

In some cases, enough is known about a molecular pathway to test directly for 
interactions between genes by creating double-mutant mice. Neuropeptide Y (NPY) is an 
orexigenic peptide that stimulates feeding when injected into the third ventricle of the 
hypothalamus (16). Administration of leptin suppresses hypothalamic expression and 
release of NPY; NPY is elevated in leptin-deficient mice (17,18). Mice deficient in NPY, 
however, show no abnormality in feeding behavior (19) and only a slight increase in 
body weight (20), suggesting the existence of additional pathways controlling feeding in 
mice. By generating mice that were deficient for both leptin and NPY, Erickson and 
coworkers showed that the lack of NPY in these animals attenuated the obesity normally 
observed in Lepob/Lepob mice by reducing their food intake and increasing their energy 
expenditure (21). This indicated that NPY is a major effector in leptin signaling. 

The last example shows, in particular, that a candidate gene approach to gene/gene 
interactions can provide important confirmation of hypotheses regarding biological 
pathways. With our rapidly increasing knowledge about gene function, this approach will 
gain more importance in the future. 

3. HUNTING FOR MODIFIER GENES 

As seen earlier, the identification of modifier genes can be an important component of 
understanding biological pathways that lead from a primary mutation to a disease 
phenotype. Whereas a candidate gene approach is limited by our knowledge of gene 
function, a reverse genetic approach—going from a phenotype to the causative 
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underlying gene—does not require prior knowledge about the interacting genes, and 
could be a powerful method for identifying novel pathways. A major stumbling block for 
the identification of genetic modifiers of obesity and type II diabetes in humans will be 
the difficulty of mapping these loci in the face of the huge genetic heterogeneity in the 
human population. And whereas chromosomal localization of modifier loci in large 
human families segregating for monogenic diseases that cause obesity and type II 
diabetes may be feasible, a real problem will be moving from a general map position to a 
narrow enough region that fine physical mapping and gene identification can commence. 

Here again, we may be able to use the available monogenic mouse obesity models to 
gain insight into the pathways that influence obesity and hyperglycemia. The most 
straightforward approach to mapping modifier genes in the mouse is to carry out crosses 
between inbred strains that carry the disease-causing mutation and in which a difference 
in phenotype is observed. A schematic for this approach is shown in Fig. 1, in which the 
obesity phenotype of mice deficient in leptin (homozygous Lepob/Lepob mice) is modified 
by the C57BL/6J (B6) and BALB/cJ genetic backgrounds (22). B6-Lepob/Lepob mice 
develop an early onset, severe obesity, whereas BALB/cJ-Lepob/Lepob mice are reported 
to be obese but lighter than B6-Lepob/Lepob. This suggests the presence of genes in the 
BALB/cJ background that moderate weight gain. When F1 offspring from a mating 
between B6-Lepob/Lepob and BALB/cJ-+/+ are intercrossed, the modifier genes should 
segregate in the F2 population. Because a modifier gene itself does not in most cases 
produce a phenotype, only F2 animals that are homozygous for the primary disease-
causing mutation (in the case of a recessively inherited disease) will show phenotypic 
variation and thus be informative for the analysis. In those F2 animals, standard 
quantitative trait locus (QTL) analysis methods can be used to map the modifier loci (23). 
In order not to confuse background QTLs with modifier genes, the F2 animals that do not 
carry the disease mutation should be examined for variation in the trait of interest. If there 
is variation, then the background QTLs should also be mapped to distinguish the loci that 
affect the trait independent of the disease mutation from the true modifier loci. It should 
be pointed out that the primary mutation does not necessarily have to lead to phenotypic 
differences in the two parental strains used in the modifier cross. Occasionally, modifier 
genes are unmasked only by the interaction of the two genetic backgrounds in the 
segregating F2 population (24). This is the case, for example, for the fat mutation: 
Although the body weights of C57BLKS-Cpefat/Cpefat mice do not differ much from those 
of HRS-Cpefat/Cpefat, in the F2-Cpefat/ Cpefat population from a (C57BLKS×HRS) F1-
Cpefat/+ intercross, body weights vary from normal to severely obese (25). 

Although less difficult in the mouse, identification of genetic modifiers of obesity-
related traits for which the chromosomal locations have been mapped may still be 
challenging, especially if more than one gene is contributing to the modification of the 
phenotype. If a major modifying locus is found (explaining >40% of the phenotypic 
variance), then conventional  
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FIGURE 1 Breeding scheme to carry 
out a modifier screen. 

fine-structure mapping in a large F2 intercross combined with progeny testing can be 
used to narrow the genetic interval sufficiently to proceed with positional cloning (26). In 
cases where multiple loci contribute to the phenotypic variance, it may be necessary to 
construct congenic lines to isolate individual modifier loci (23,27). If the phenotypic 
effect of the modifier locus in the congenic line is greater than that of the nongenetic 
variation, then the line can be used in crosses for fine-resolution mapping, as in the case 
of the major modifier. Once a high-resolution map has been obtained, conventional 
positional cloning techniques may be applied (26). Currently available methods such as 
gene expression microarray analysis may be combined with the use of congenic lines to 
directly identify a misregulated modifier allele, or to point to the misregulation of a 
pathway in which the modifier gene plays a role (28). 
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4. OBESITY MODELS SHOWING PHENOTYPIC 
MODIFICATION 

The first recognition of modifier genes in obesity research dates back to the study of the 
Lepob and Leprdb mutations on different genetic backgrounds. Coleman and his coworkers 
noted that B6-ob/ob and B6-db/db mice became obese but remained diabetes-free. 
However, when placed on the related C57BLKS (BKS) inbred strain background, both 
mutations led to severe diabetes (29,30). This indicates that the BKS genetic background 
is diabetogenic, i.e., BKS carries alleles of diabetes susceptibility genes that are necessary 
but not sufficient for the development of overt diabetes. These diabetes susceptibility 
alleles have to interact with obesity mutations such as Lepob and Leprdb to cause 
hyperglycemia. Although the major diabetes modifiers in BKS have yet to be mapped 
(31), modifiers of leptin action have been reported in other mouse and rat strains. In 
addition, obesity and diabetes modifiers have been reported for different obesity 
mutations. 

4.1. Lep and Lepr Mutations 

Although the existence of genetic background modifiers affecting glycemic status in the 
context of leptin receptor mutations was first recognized in mice, the first published 
mapping studies were carried out in the rat model. The Zucker fatty rat carries a 
Gln269Pro mutation in the leptin receptor that leads to obesity, hyperinsulinemia, and 
glucose intolerance. The animals, however, are, normoglycemic (32). In contrast, the 
same mutation when transferred onto the WKY strain background causes obesity, 
hyperinsulinemia, and hyperglycemia (33). Chung and colleagues used this strain 
difference to map NIDDM susceptibility loci in an F2 intercross between animals of the 
WKY and 13M strains homozygous for the Leprfa mutation (34). Significant 
genotype/phenotype associations were found on rat Chr 1 for pancreatic morphology, on 
Chr 12 for body weight, and on Chr 16 for plasma glucose levels. It is interesting to note 
that a number of obesity/diabetes related traits have been mapped to the same region of 
Chr 1 in other rat models (35) and in the homologous region on mouse Chr 19 (36,37). 
Whether these loci represent variations in the same gene remains an open question until 
the genes are cloned. The identification of these loci, however, promises new insights 
into the reasons for pancreatic failure in type II diabetes. 

Similar to the findings for Lepr mutations, phenotypes of leptin mutations can also be 
modified by strain background. Apart from the original observation of hyperglycemia in 
BKS-Lepob/Lepob mice versus normoglycemia in B6-Lepob/Lepob [30], modifications of 
body weight, insulin levels, and glucose levels have been reported in the BALB/cJ (22) 
and the BTBR strain backgrounds (36). In Lepob/Lepob F2 offspring from an intercross of 
(B6×BTBR) F1-Lepob/+ mice, Stoehr et al. were able to map three loci controlling insulin 
and glucose levels on Chrs 2, 16, and 19 (36). Interestingly, it is the B6 allele on Chr 19 
that contributes to increased plasma glucose levels, yet B6-Lepob/Lepob mice are protected 
from diabetes. Susceptibility contributions from an overall resistant background are not 
uncommon (24), and in this case the resistance of B6 to overt diabetes can be attributed 
to an interaction between the loci on Chrs 19 and 16. BTBR alleles on Chr 16 are 
necessary to unmask the deleterious effects of the B6 allele on Chr 19 (36). 

Genomics and proteomics in nutrition     6



4.2. Tub Mutation 

Mice homozygous for the tubby mutation (tub) are a model for sensory loss/obesity 
syndromes such as Alström syndrome (25,38). Tubby mice develop late onset obesity 
with insulin resistance, early onset retinal degeneration, and neural hearing loss [39–41]. 
The tubby phenotype is due to a loss-of-function mutation in the novel Tub gene, a 
member of the small gene family encoding tubby-related proteins (TULPs) [42–44]. The 
biochemical function of theTULPs is not fully understood. Roles as transcription factors 
(45), as intermediates in insulin signaling (46), and in intracellular transport [47–49] have 
been proposed. Identification of genetic modifiers of the different phenotypes observed in 
tubby mice could provide additional clues to the pathways involved, and so may lead to 
further insights intoTUB function. 

The first modifier of a tubby phenotype to be identified was moth1, the modifier of 
tubby hearing 1. In an F1 intercross following a cross between B6-tub/tub and AKR/J, it 
was observed that F2 offspring homozygous for the tub mutation varied widely in their 
hearing ability from normal hearing to profound deafness. Hearing was quantified 
electrophysiologically by measuring auditory brainstem response in the F2-tub/tub 
population, and a major QTL, moth1,was mapped to Chr 2 (50). In the absence of the tub 
mutation, i.e., in the wild-type B6 strain, this locus has no effect on hearing. Standard 
positional cloning techniques were used to identify moth1 as an allele of the gene-
encoding microtubule-associated protein 1A (Map1a) (26). The B6 Map1a allele, 
associated with hearing loss, carries 12 amino acid alterations and an Ala-Pro repeat 
length polymorphism compared to the protective AKR allele. It was shown that these 
polymorphisms lead to a weaker binding of the B6 MAP1A protein than of the AKR 
variant to the postsynaptic density protein PSD95. That Map1a is indeed moth1 was 
confirmed by a transgenic rescue experiment showing that B6-tub/tub mice carrying a 
protective 129P2/OlaHsd allele of Map1a have nearly normal hearing. MAP1A has been 
shown to be important in trafficking of vesicles and organelles, and PSD95 is a major 
component of the synaptic cytoarchitecture. The identification of the moth1 modifier has, 
therefore, genetically established that synaptic architecture and intracellular transport are 
relevant toTUB function. 

Although moth1 has provided more functional information, the findings are 
compatible with both the transcription factor and the transport hypotheses of TUB 
function. There are still additional modifiers to be identified that may yield further insight 
into TUB function. Apart from hearing ability and vision loss, adiposity and plasma 
levels of glucose, insulin and lipids also show variation in F2 progeny of crosses between 
B6-tub/tub and AKR (25,51), (A.Ikeda, personal communication, 2002). A genome-wide 
scan using 57 microsatellite markers distributed at about 30-cM intervals was performed 
on 43 female and 37 male F2-tub/tub mice. Several statistically significant and suggestive 
QTLs have been found for body and fat pad weights as well as for plasma insulin levels 
on Chr.6 (p<4.5×10−6, p<2.6×10−6, p<2.6×10−6 respectively), for plasma cholesterol on 
Chr.8(p<2.6×10−6),and for plasma glucoselevelsonChr.4(p< 3×10−4). 

4.3. Cpefat Mutation 

The mouse fat mutation is a complex model for obesity and type II diabetes (38). The 
underlying defect is a mutation in the carboxypeptidase E (Cpe) gene (52), which codes 
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for an enzyme responsible for the final proteolytic processing step of prohormone 
intermediates, such as those for insulin and proopiomelanocortin (53). Because a large 
number of neuro/endocrine peptides are affected by the Cpefat mutation, the etiology of 
obesity and diabetes in the mutant mice is not clear. The identification of modifier genes 
in this case should point to pathways that are critical for the expression of a particular 
phenotype. 

Cpefat is a typical disease gene, i.e., it is necessary but not sufficient for the 
development of obesity, type II diabetes, and related metabolic disorders. On the HRS/J 
(HRS) inbred strain background, Cpefat/Cpefat mice exhibit early onset hyperinsulinemia 
followed by postpubertal obesity without hyperglycemia. In contrast, on the C57BLKS/J 
(BKS) genetic background, Cpefat/Cpefat mice become hyperglycemic as well as obese 
and hyperinsuli-nemic. In order to map the susceptibility loci responsible for modifying 
obesity and diabetes associated traits, Cpefat/Cpefat male progeny from a large F2 
intercross between BKS.HRS-Cpefat/Cpefat and HRS-+/+ mice were characterized both 
genetically and phenotypically. All traits measured—body weight, adiposity, fat pad 
weights, plasma glucose, insulin, triglycerides, and HDL and non-HDL levels—showed a 
large variance in the F2 population, indicating the action of modifier loci (24). A 
genomewide scan was carried out on 282 male Cpefat/Cpefat F2 progeny, and four major 
modifier QTLs for Cpefat were detected. Three loci for hyperglycemia (find2, find1, 
findc) were mapped on Chrs 5, 19, and 2, and one locus for adiposity (fina1) on Chr 11 
(54). Interestingly, at find1 it is the HRS allele that contributes to hyperglycemia, 
indicating that there must be another, as yet unidentified, HRS locus that counteracts 
diabetes development to maintain normoglycemia in HRS-Cpefat/Cpefat mice. 

5. MODIFICATION IN DIABETES MODELS 

Although obesity appears to be a prerequisite for the common forms of human NIDDM, 
mutations in genes that are more directly associated with diabetes can also be used to 
further define the pathways that lead to NIDDM. 

Mutations in the insulin receptor can be used to model insulin resistance. Kido et al. 
showed that the effect of reduced insulin receptor activity in animals heterozygous for an 
Insr-targeted allele are dependent on the genetic background (55). Male 129S6/SvEvTac-
/Insrtm1Dac/+ are hyperinsu-linemic and have slightly elevated plasma glucose levels 
compared to B6-Insrtm1Dac/+ mice. Two loci controlling plasma insulin levels were found 
on Chrs 2 and 10, and both susceptibility alleles are contributions from the resistant B6 
strain. 

The genetic complexity of type II diabetes comes to light when a compound 
heterozygous mouse model is created by adding a defect in insulin receptor substrate 1, 
Irs1, to the defect in the insulin receptor in the model described earlier. In this case, it is 
the doubly mutant B6 mouse that is hyperinsulinemic and diabetic, whereas the same 
mutations on a 129 strain background cause only a mild elevation in insulin and no 
hyperglycemia (56). It is possible that the Irs1 defect unmasks the effects of B6 
susceptibility alleles, but in addition to those described in the previous example, other 
loci are at play. In F2 double-heterozygous mice from a (B6×129) F1-Insrtm1Dac/+ 
intercross, Almind et al. mapped one significant and one suggestive locus associated with 
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hyperinsulinemia to Chrs 14 and 12, respectively, and one locus for hyperleptinemia to 
Chr 7 (57). The last locus acts synergistically with that on Chr 14 to increase 
hyperinsulinemia and with the Chr 12 locus to increase hyperglycemia.  

6. SUMMARY 

From the examples given, it is clear that genetic modifiers play a role in the phenotypic 
variation observed in obesity and type II diabetes. Modifiers have been shown to affect 
the age of onset, severity, rate of disease progression, and presence or absence of a 
particular disease phenotype. 

Whereas some modifier effects have been localized to a chromosomal region, many 
have yet to be mapped, and cloning of modifier genes is still a difficult task. In humans, 
this is in part due to genetic heterogeneity, in terms of both the large number of obesity 
genes that may exist and the high levels of variation among the genetic backgrounds upon 
which obesity mutations reside. In addition, modifier effects may occur as a result of 
several genes modulating a disease phenotype, and unless there is a significant 
contribution from one locus, they may be difficult to isolate. It can be argued that the 
approach of studying obesity modifier loci in the mouse and then determining whether 
those genes play a similar role in humans may be the most efficient means of identifying 
genetic modifiers. The availability of the complete human and mouse genome sequences 
is aiding greatly in this quest. Advances in determining the expression patterns of all 
genes in the genome help to prioritize candidates in the vicinity of mapped modifier 
genes. Large-scale gene expression analysis using microarrays may identify genes that 
are coregulated by the modifiers and possibly define novel pathways. Consequently, the 
rate at which modifiers are identified will increase in the near future. 

Although few modifier genes have been identified to date, these have yielded 
additional information about the pathways in which the primary mutation acts, and have 
provided new experimental avenues toward understanding the pathological effects of the 
primary disease genes. Finally, the elucidation of modifier genes associated with 
attenuation of obesity and prevention of progression to type II diabetes may lead to 
exploration of new therapeutics aimed at increasing the activity of modifiers in affected 
patients. 
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ABSTRACT 
Obesity and type II diabetes are two of the most common complex 
diseases in humans that are influenced by both genetic factors and the 
environment. These complex diseases are polygenic, implying that 
multiple genes referred to as susceptibility genes are involved in the onset 
of these diseases additively or interactively. One approach to dissect the 
genetic complexity is genome-wide quantitative linkage analysis (or 
genome-wide scan) using rodent models followed by fine mapping and 
positional cloning. A genome-wide scan, unlike a candidate gene 
approach, does not require any previous knowledge about gene functions 
and can identify chromosomal regions accounting for a quantitatively 
assessed trait, called quantitative trait loci (QTLs). Various polygenic 
rodent models mimicking human obesity and type II diabetes have been 
developed, and these models provide valuable resources to search for 
genetic factors underlying these metabolic disorders.  

1. INTRODUCTION 

Obesity and type II diabetes, which often coexist, are very cotnmon diseases in humans. 
An estimated 65 or 31 % of U.S. adults are overweight or clinically obese, defined as a 
body mass index greater than 25 or 30 kg/m2, respectively (1). In addition, about 90–95% 
of diabetes patients suffer type II diabetes (2,3), and currently this accounts for 
approximately 16 million patients in the United States. 
(http://www.diabetes.org/main/type2/info/default.jsp.) 

The genetic contribution to human obesity and type II diabetes has been revealed 
through twin, adoption, and family studies, demonstrating that an individual with obese 
and/or diabetic relatives has a higher risk for being affected by these diseases [4–8]. 

There are some rare forms of obesity and type II diabetes that are caused by a single 
gene mutation, and these include mutations of Ay (agouti), Cpe (carboxypeptidase E), Lep 
(leptin), Lepr (leptin receptor), and Tub (tubby) and the maturity-onset diabetes of the 
young (MODY) [9–11]. To date, six MODYs, MODY1, 2, 3, 4, 5, and 6 have been 
reported in humans and the responsible genes are hepatocyte nuclear factor (HNF)-4α, 
glucokinase, HNF-1α, insulin promoter factor-1/pancreas duodenum homeobox-1/islet 



duodenum homeobox-1, HNF-1β, and NeuroD/BETA2, respectively (11). Mutation in 
the insulin 2 gene (Ins2) has been also reported for one murine MODY in the Akita 
mouse model (12). 

Most common forms of obesity and type II diabetes in humans, however, follow 
polygenic inheritances: i.e., multiple genes are involved in the development of these 
diseases (13,14). These multiple genes are referred to as susceptibility genes, reflecting 
the concept that these genes confer an increased susceptibility to a disease rather than the 
certainty of developing the disease (14,15). 

Animal models including rats and mice have long been an adjunct to human studies, 
minimizing many difficulties encountered in carrying out genetic studies of obesity and 
type II diabetes in human populations (16). For example, the capability of genetic and 
environmental controls, the availability of inbred strains and the ability to generate large 
experimental cohorts, and the short generation cycle can simplify and facilitate genetic 
studies. Furthermore, as rodents and humans share basic biological and physiological 
characteristics, and gene order over large distances has been conserved through 
evolution, candidate genes or pathways found in rodents can readily be tested in humans 
(17,18). Indeed, obesity genes known in humans, such as Lep and Lepr, were discovered 
in mice first (19,20). This review will discuss common strategies for dissecting genetic 
factors underlying obesity and type II diabetes using polygenic rodent models and the 
related genetic studies.  

2. STRATEGY TO DEFINE QTLs FOR OBESITY AND TYPE II 
DIABETES IN RODENTS 

2.1. Complex Traits and QTLs 

When a one-to-one association between genotype and phenotype does not exist for 
certain traits, these traits are called complex traits as opposed to simple mendelian traits 
(21,22). This inconsistency between genotype and phenotype, despite an evidence of 
strong heredity for the traits, results from the fact that complex traits, unlike single 
mendelian traits, are determined by multiple factors including genes and environments. 
Complexity is created by the presence of multiple genes contributing in different degrees 
to the trait, possible interactions among those genes, and interactions between genes and 
environments in the determination of the traits (15,23). The list of complex traits can 
include natural traits such as skin color, wavy hair, height, and behavioral characteristics 
as well as disease traits [called complex diseases) such as hypertension, obesity, diabetes, 
alcoholism, and cancer (23–25). 

Because of the involvement of multiple genes in controlling the traits, complex traits 
are also referred as polygenic traits. These traits are usually quantitative or assessed 
quantitatively, and thus the trait controlling genes (or loci) are called QTLs (21). A 
review of terminology frequently used in genetics is available (26). 
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2.2. Dissecting Genetic Factors for Complex Disease Using Polygenic 
Animal Models 

2.2.1. Sources of Polygenic Models 

Selected Strains. An often-used approach to create animal models harboring genetic 
variation is long-term breeding with phenotypic selection (27,28). When individuals in a 
population differentially express a trait that is heritable (often found in heterogeneous 
outbred populations), breeding individuals ranking at phenotypic extremes (i.e., heaviest 
or lightest) can produce offspring that also rank at the extremes (28). Repeating this 
selective breeding (usually followed by inbreeding) over several generations can fix 
genetic variants that contribute to the selected trait, creating new lines that possess the 
extreme phenotypes (9,28). 

Standard Inbred Strains. Inbred strains are defined to be homozygous for each gene 
throughout the genome, and numerous inbred strains, especially for mice, are currently 
available (25,29,30) (http://www.informatics.jax.org/external/festing/search_form.cgi). 
Because standard inbred strains are generated via repeated brother-sister mating at 
random over at least 20 generations, these phenotypic variations among the strains result 
from naturally occurring gene combinations (28). Indeed, many phenotypic variations 
including adiposity and glucose metabolism have been reported among existing inbred 
strains (27) (http://aretha.jax.org/pub-cgi/phenome/mpdcgi?rtn=docs/home). With the 
currently growing database for standard inbred strains regarding genetic maps 
(http://www-genome.wi.mit.edu/cgi-bin/rat/gmap_search; http://www-
genome.wi.mit.edu/cgi-bin/mouse/index) and phenotypic characterizations (31), these 
can serve as very valuable resources for biomedical science including complex disease 
field of obesity and diabetes. 

2.3. Mapping of a QTL 

Mapping, i.e., identifying the chromosomal location, is the first step to dissect the genetic 
factors contributing to a trait. Genome-wide QTL linkage analysis (or genome-wide scan) 
has been a powerful way for comprehensively mapping genetic factors underlying 
complex diseases (23). Because this approach does not require any molecular knowledge 
of the traits of interest, it has the potential of discovering new genes or pathways not 
previously known. 

The approach consists of studying whether there is an association (cosegregation) 
between the genotype at a marker locus and the trait values, and if there is, then this 
indicates that the marker locus is close by (or linked) to the putative disease QTL (14,26). 

2.3.1. Genetic Crosses to Create Segregating Populations 

Commonly, QTL mapping is initiated by crossing two different inbred strains that show 
contrasting phenotype and genotypic variation (9,27). The resultant F1 mice are then 
intercrossed (sib mating) or backcrossed to one of the parental strains. This will generate 
F2 or backcross (BC) progeny in which both phenotypes and genotypes segregate unlike 
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in the grandparental and parental generations. The origin of this segregation is the 
recombination of the DNA segments between the homologous chromosome pairs 
occurring during meiosis in the production of germ cells from the F1 parent. The 
recombination events are random and, consequently, individual F2 or BC mice possess a 
unique combination of progenitor alleles, which gives rise to segregation of genotypes 
and concurrently phenotypes. Phenotypes can, however, be influenced by environmental 
factors, such as high and low fat diets (25). An example of a genetic cross is depicted in 
Fig. 1. 

The choice of methods for genetic crosses is reviewed in detail in elsewhere (21,32). 
In addition to F2 or BC mice, recombinant inbred (RI) strains, which have a fixed 
genotype, have been used for QTL mapping, and the usage of RI strains is thoroughly 
reviewed elsewhere (33,34).  

 

FIGURE 1 Genome-wide scan to 
identify QTLs controlling plasma 
glucose levels in the diabetic TallyHo 
mice. Backcross (BC) mice (shown as 
A–D) were collected from a cross 
between F1 (C57BL/6J×TallyHo) and 
TallyHo mice, genotyped with markers 
(shown as M1 and M2) throughout the 
genome, and phenotyped for plasma 
glucose levels. DNA from the BC mice 
were PCR amplified with markers 
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(bottom left), run on the agarose gel, 
and visualized with ethidiumbromide 
(bottom right). Between M1 and M2, 
for example, M2 is likely linked to a 
QTL controlling plasma glucose 
levels. M1=marker1; M2=marker2; 
F=forward primer for PCR; R=reverse 
primer for PCR; B6=C57BL/6J; 
TH=TallyHo. 

2.3.2. Genotyping and Phenotyping of Segregating Populations for 
Linkage Analysis 

A segregating population as described in the preceding paragraphs is then genotyped 
throughout the entire genome using a series of genetic markers that are polymorphic, i.e., 
they differ between the two parental strains. Using inbred strains provides a great 
advantage in that only two alleles of genetic factors originating from each of the 
crossbred strains segregate in the population, and this makes all polymorphic markers 
informative for the genotype at all loci (32). 

The most commonly used genetic markers are microsatellite repeats, also known as 
simple sequence repeats, that are present throughout all mammalian genomes examined 
and found to be highly polymorphic (there is variation in the number of repeats rather 
than in the sequence) (35,36). Microsatellite loci do not appear to have any functionality 
(36). The most frequently found microsatellites contain a (CA)n multimer, often referred 
to as a CA repeat. Microsatellite loci can be easily typed by polymerase chain reaction 
(PCR) amplification with primers designed from unique flanking sequences on each side 
of the repeats (36,37). Variations in the length of the PCR products can be detected by 
separation on agarose gels or poly-acrylamide gels or by automated system using 
fluorescent-labeled primers (38,39) (Fig.1). 

Single nucleotide polymorphisms (SNPs) can also be employed as genetic markers 
(40). SNPs are single-base variations in DNA sequences which are present throughout the 
mammalian genomes examined so far and which occur with an average frequency of 1 
per 1000 base pairs (in humans), thus is overly superior to the microsatellite frequency 
(41). Currently, high-density SNP maps are produced in the human genome as well as in 
mouse genome (42,43), and SNPs will be more commonly used for linkage analysis 
when more cost-efficient high-throughput technology of SNP genotyping is available. 

Individual F2 or BC animals are also scored for the trait of interest, such as body 
weight, plasma glucose and insulin levels, or core temperature. Subsequently, using 
statistical methods, the individual phenotypic scores are examined for correlation with the 
genotypes of the polymorphic markers (44) (Fig. 2). Regardless of the statistical methods 
applied, the basic tenet is that markers that are significantly associated with the trait lie 
close to (are linked to) QTLs that are responsible for variation in the trait of interest. This 
is based on the assumption that the recombination during meiosis less likely occurs 
between closely linked loci on the same chromosome, resulting in cotransmission of 
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these closely linked loci (15). With known map positions of genetic markers, the genomic 
locations of QTLs on the chromosomes can be estimated statistically. 

Further details about statistical analysis for QTL mapping including methods, number 
of markers and animals required, and software available are very well reviewed 
elsewhere [44–48]. One statistical model for data analysis derived from a cross between 
outbred strains has been discussed by Nagamine and Haley (49). 

2.4. Fine Mapping of a QTL 

Once the map position has been determined for a certain disease/trait gene, narrowing the 
genomic interval (fine mapping) is essential to identifying the actual allelic variants 
(molecular basis) by positional cloning.  

 

FIGURE 2 Plot of one-dimensional 
genome-wide scan on 19 autosomes 
for plasma glucose levels in BC 
progeny from (B6×TallyHo) F1 and 
TallyHo mice using the pseudomarker 
method. The LOD score is plotted as a 
function of genome location. The 
dashed lines represent critical values 
from permutation tests at the 99, 95, 
and 90% significance levels.Two 
QTLs on chromosomes 13 and 19 were 
significantly linked to the plasma 
glucose levels and designated Tanidd1 
and Tanidd2 (TallyHo-associated non-
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insulin-dependent diabetes), 
respectively. (Method from Ref. 162; 
Figure adapted from Ref. 95). 

Conventionally, for monogenic traits, this can be done by increasing the number of 
meioses to collect more crossovers within the previously mapped genomic region. 
Practically, all animals from an expanded mapping cross are genotyped for markers 
flanking the locus, and only animals that carry a crossover between the flanking markers 
are retained and phenotyped. Testing more markers within this genomic interval will then 
more precisely localize the disease gene. The size of a genetic region determines the 
amount of time and resources needed for a positional cloning effort, and a smaller critical 
region greatly simplifies the process. 

In the initial mapping, a QTL is usually located within a large interval on the 
chromosome. Unlike for monogenic traits, fine mapping of a QTL for complex traits is 
not straightforward because the phenotypes of individual animal are influenced by 
additional unlinked loci or environmental noise, resulting in difficulties in assigning 
carrier status in animals carrying recombinations within the QTL interval (22). 

Several methods exist that can help to construct a fine map to conduct a practical 
search for the molecular basis of a specific QTL (21). Among those, the most commonly 
used strategy of isolating a QTL in the form of a congenic strain will be discussed in this 
review. 

2.4.1. Fine Mapping Using Congenic Strains 

In the case of animal models, a polygenic trait can be reduced to a simpler monogenic 
form through the development of congenic strains in which the individual QTL is 
separated as a new inbred strain on a common genetic background.Thus, the effects of 
each gene can then be studied. In this simpler system, conventional genetic mapping and 
positional cloning methods can be applied for identification of each QTL. This strategy 
has proven to be highly successful in fine mapping the type I diabetes susceptibility 
genes, Idd3 and Idd10 (50, 51). 

Congenic strains are constructed by transferring (introgressing) a gene of interest from 
one inbred (donor) strain to another inbred (recipient) strain (52). Briefly, the two strains 
are crossed, and the F1 heterozygotes are backcrossed to the recipient strain (Fig. 3). 
Heterozygotes for the gene of interest (i.e., a QTL) are selected using flanking markers 
and backcrossed again to the recipient strain. This procedure is repeated for at least ten 
cycles of backcrossing at which point two heterozygotes are intercrossed to yield 
offspring that are homozygous for the donor allele. At each backcross, 50% of unlinked 
loci will become fixed for recipient alleles at random. Consequently, the genetic 
background becomes progressively enriched with the recipient genome and the donor 
gene will be “hauled” along with the markers in this procedure. The name of the congenic 
strain is designated using the format: Recipient. Donor-Introgressed regiondifferential allele 
(53). For example, when a congenic rat is constructed by transferring the Nidd-11/of QTL 
from the OLETF rat to the F344 rat background strain, the congenic rat is designated 
F344. OLETF-Nidd1–11/of. 
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2.4.2. Positional Cloning of a QTL 

Once the position of a QTL has been refined to a small candidate region, a contig of 
clones from large insert genomic libraries across the minimal region of the QTL needs to 
be assembled. This can be followed by identification of transcripts within the physical 
contig, testing for mutations within transcripts that may account for the disease, and 
verification that a sequence change is not simply a polymorphism and that the mutation 
identified is indeed the cause of the disease. Technical details including contig-building 
methods are very well reviewed elsewhere (32,54,55). However, contig assembly may 
not be necessary anymore with the current availability of high-density sequence 
databases, and this whole process can be expedited.  

2.4.3. Possible Complementary Strategies to Positional Cloning of a QTL 

Evaluating known candidate genes within the minimal region, called the positional 
candidate gene test, by sequence comparison between the disease-susceptible strain and 
normal inbred strains is usually used as a first step in positional cloning (56). 

Large-scale gene expression microarray analysis using RNA isolated from likely 
target tissues for the disease (i.e., liver, adipose tissue, skeletal muscle, pancreas, and 
brain for obesity and diabetes) can be used to identify genes and pathways involved in the 
disease (28,57,58). An important question in QTL analysis is how many genes control the 
trait of interest. Large-scale gene expression microarray analysis will identify all genes 
that are differentially expressed in the disease state compared to the normal state. The 
majority of these genes are likely to be secondary targets, i.e., required for the phenotype 
but not responsible for its development. However, if one or more of the genetic 
alterations causing the disease also causes disregulation of gene expression, this too 
should be detectable by microarray analysis. This approach has proven quite useful in the 
recent identification of a QTL for hypertension (59). 
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FIGURE 3 Construction of congenic 
mouse strain carrying diabetes QTL 
derived from TallyHo (TH) mice in 
C57BL/6J (B6) background, B6.TH-
QTL, by marker-assisted backcrossing. 
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Diabetic TH mouse is crossed to 
normal B6 mouse, and the resultant F1 
mice are backcrossed to B6. 
Heterozygotes for the QTL are selected 
using flanking markers (shown as M3 
and M4) and backcrossed again to B6. 
This procedure is repeated for ten 
cycles of backcrossing at which point 
two heterozygotes are inter-crossed to 
yield offspring that are homozygous 
for the QTL. 

3. RODENT MODELS FOR POLYGENIC OBESITY AND TYPE II 
DIABETES AND THEIR GENETIC DISSECTION 

3.1. Rats 

3.1.1. The Goto-Kakizaki Rat 

The Goto-Kakizaki (GK) rat strain is a model for type II diabetes without obesity. These 
rats were established by selective breeding for glucose intolerance from natural variations 
present in an outbred stock of Wistar rats (60). 

In genetic crosses of diabetic GK and normoglycemic Brown-Norway (BN) or Fischer 
rats, several major and minor QTLs, depending on the amount of genetic variance 
explained by those loci, for non-insulin-dependent diabetes mellitus (NIDDM)-like 
phenotypes have been identified (61,62). Several lines of congenic rats for the major 
QTL, Niddm1, on rat chromosome (Chr) 1 have been constructed by transfer of the GK 
allele onto the F344 rat strain (62). The congenic strains displayed postprandial 
hyperglycemia, reduced insulin action in adipocytes, and insulin secretory defects (60). 
Using these congenic strains, Fakhrai-Rad et al. (63) were able to fine map Niddm1 and 
identify a candidate gene, insulin-degrading enzyme (Ide). A functional defect in the IDE 
protein has been confirmed by an in vitro assay demonstrating that cells transfected with 
the GK allele of Ide, coding for two amino acid substitutions, exhibited a reduction in 
insulin-degrading activity by 31%. Further evidence that this reduced enzyme activity is 
indeed underlying the QTL comes from gene targeting experiments in mice which 
showed that mice homozygous for an Ide null allele are hyperinsulinemic and glucose 
intolerant (64). 

3.1.2. The Otsuka Long-Evans Tokushima Fatty Rat 

The Otsuka Long-Evans Tokushima Fatty (OLETF) rat strain was established by 
selective inbreeding for glucose intolerance from several rats spontaneously exhibiting 
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polyuria, polydipsia, and mild obesity that were observed in an outbred colony of Long-
Evans rats (65). A nondiabetic strain of Long-Evans Tokushima Otsuka (LETO) rats was 
also established from different mating from the same colony of Long-Evans rats. 

The OLETF rat strain is characterized by mild obesity, gender- (mostly in males) and 
age-dependent diabetes, and diabetic nephropathy [66–69]. Diet restriction was effective 
to prevent or improve diabetes and nephropathy in OLETF rats (68). 

Initially, a diabetogenic QTL was mapped on Chr X by analyzing F2 progeny of 
OLETF and either LETO or F344 rats (70). Subsequently, several genome-wide scan 
studies were conducted using F2 progeny from intercrosses between OLETF and BN rats 
or between OLETF and F344 rats as well as BC progeny from a cross between 
(OLETFxBN) F1 and OLETF rats [71–76]. Through these studies, several QTLs, 
including Dmo1 and Nidd1-11/of, linked to NIDDM related phenotypes, obesity, and 
dyslipidemia were detected. 

Watanabe et al. (77) and Okuno et al. (78,79) generated congenic rats carrying alleles 
of Dmo1 (rat Chr 1) derived from either the BN or the F344 strain in the OLETF 
background, replacing the susceptibility allele in the OLETF strain with the normal allele. 
Even though the backcrossing was done only for four generations, a substantial 
attenuation in the development of obesity, dyslipidemia, and glucose intolerance was 
observed in these congenic rats confirming the diabetogenic and obesigenic effect of 
Dom1 (77,79). 

Kose et al. (80) generated 11 lines of congenic rats, F344.OLETF-Nidd1-11/of, in the 
F344 background carrying the OLETF alleles of 11 QTLs (Nidd1-11 /of) that were 
identified in a study using F2 progeny of OLETF and F344 rats (72). After five 
generations of backcrossing to the F344 strain, six lines of the congenic rats containing 
Niddl, 2, 3, 4, 7, and 10/of QTLs, respectively, showed glucose intolerance while five 
other lines did not (80). 

3.1.3. The Spontaneously Diabetic Torii Rat 

The Spontaneously Diabetic Torii (SDT) rat strain is the most recently (in 1997) 
established rat model for type II diabetes without obesity. In 1988, five male rats were 
found to be polyuric and glucosuric in an outbred colony of the Crj:CD(SD) stock 
(Charles River Japan, Inc., Kanagawa, Japan) of Sprague-Dawley rats, and these affected 
rats were kept in the Research Laboratories of Torii Pharmaceutical Co., Ltd., Chiba, 
Japan (81). For 20 generations these rats were brother-sister mated, and the diabetic strain 
named SDT was established. Like the OLETF rats, the SDT rats exhibit age dependence 
and gender dimorphism in the development of diabetes, exhibiting 100% incidence in 
males vs. 33.3% in females at 40 weeks of age (81). The survival rates were, however, 
almost comparable between males and females. Male SDT rats are characterized by 
hyperglycemia, hypoinsulinemia, and hypertiglyceridemia, with absence of obesity (81). 

Genetic analysis for diabetes QTLs has been performed using BC male progeny 
obtained from a cross between (BN×SDT) F1 and SDT rats, and three major QTLs, 
Gisdt1-3, linked to glucose intolerance were identified on rat Chrs 1, 2, and X, 
respectively (82). 
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3.2. Mice 

3.2.1. The Kasukabe Habitat/K Group Mouse 

The Kasukabe habitat/K group (KK) mouse strain was one of the inbred strains 
established from Japanese native mice in 1957 (83). Several years after establishing the 
strain, the KK mice were found to have diabetes characteristics of glucose intolerance, 
insulin resistance, hypertrophy and degranulation of pancreatic islets, and nephropathy 
with moderate obesity (83). The KK mouse strain was also susceptible to diet- or 
chemical- and genetically (by introducing the Ay allele) induced obesity, which was 
highly correlated with the severity and incidence of diabetes in this strain (83,84). The 
KK-Ay/a strain (also called the yellow KK mouse) is a congenic mouse in which the Ay 
allele at the agouti locus had been introgressed from the B6-Ay strain (85). 

A genome-wide search using the 14% phenotypic extremes for adiposity of an F2 
progeny obtained from a cross between (KK/H1Lt× C57BL6/J) F1 mice revealed two 
significant QTLs affecting adiposity, Obq (obesity QTL) 5 and 6 on Chrs 9 and X, 
respectively, and two suggestive QTLs on Chrs 18 and 7 (86). 

A major QTL linked to fasting glucose levels, Fgq1,was mapped on Chr 6 in F2 
progeny (a/a genotype) from a cross between F1s of KK-Ay/a and B6-a/a mice (87). In F2 
progeny with Ay/a genotype from the same cross, no significant linkage was shown, but 
some suggestive loci that were not detected in F2-a/a mice accounted for glucose 
intolerance. These loci, so-called genetic modifiers, possibly interact with Ay. Genetic 
modifiers are discussed in the chapter by Wang et al. in this volume.  

In male BC progeny from a cross between (BALB/c×KK/Ta) F1 and KK/Ta mice, a 
genome-wide scan analysis identified one major QTL contributing to glucose intolerance, 
Igt-1 (impaired glucose tolerance-1), on Chr 6 and two major QTLs accounting for 
fasting blood glucose levels, Fbg-1 and Fbg-2 (fasting blood glucose level-1 and -2), on 
Chrs 12 and 15, respectively (88). Two additional significant QTLs linked to serum 
triglyceride levels were detected on Chrs 4 and 8, respectively. 

3.2.2. The Nagoya-Shibata-Yasuda Mouse 

The Nagoya-Shibata-Yasuda (NSY) mouse strain is a type II diabetes model with 
moderate obesity, established by selective inbreeding for glucose intolerance in the 
descendants of streptozotocin-induced diabetic mice from a outbred stock of Jc1:ICR 
mice (89). Briefly, diabetes was induced in the adult ICR mice by treatment with 
streptozotocin, and the diabetic mice were then mated. Glucose tolerance was tested in 
the resultant F1 mice, and the F1 mice with impaired glucose tolerance were selected and 
mated with siblings. This selection was repeated over several generations. The incidence 
of diabetes in the NSYmice was age-dependent and significantly higher in males than 
females (98 vs. 31%) (90). Neither severe obesity nor extreme hyperinsulinemia was 
observed in these mice, but glucose-stimulated insulin secretion was markedly 
diminished (90,91). 
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Three QTLs linked to glucose intolerance, Nidd1nsy, Nidd2nsy, and Nidd3nsy, were 
localized on Chrs 11, 14, and 6, respectively, in F2 progeny from a cross between F1s of 
NSY and C3H/He mice (92). 

3.2.3. The Tsumura, Suzuki, Obese Diabetes Mouse 

The Tsumura, Suzuki, Obese Diabetes (TSOD) mouse strain is an inbred strain 
originating from six obese male mice with urinary glucose found in a ddYcolony (93). 
The obese male mice were mated with normal females and the resultant offspring were 
inbred with selection for increased body weight and urinary glucose to establish the obese 
diabetic strain of TSOD mice (93). From the same pool of initial breeders, a nonobese, 
nonglycosuric line was also established and named TSNO (Tsumura, Suzuki, Non 
Obesity) mice (93). Male TSOD mice are characterized by obesity, urinary glucose with 
hyperphasia and polydipsia, hyperinsulinemia, hyperglycemia, and dyslipidemia as well 
as hypertrophy of the pancreatic islets (93). 

By QTL mapping using F2 progeny from a (TSOD×BALB/cA) F1 intercross, a QTL 
affecting blood glucose levels during an intraperitoneal glucose tolerance test (IPGTT), 
Nidd4, was localized on Chr 11, and two other QTLs accounting for body weight, Nidd5 
and Nidd6, were mapped on Chrs 1 and 2, respectively. Nidd5 was also linked to blood 
insulin levels during the IPGTT (94).  

3.2.4. The TallyHo Mouse 

The TallyHo mouse strain was established from several male mice found to be polyuric, 
glucosuric, hyperglycemic, and hyperinsulinemic in an outbred colony of Theiler 
Original mice (95). These progenitors were brother-sister mated over several generations 
with selection for plasma glucose levels >300 mg/dL (nonfasting) in males. The TallyHo 
mice are characterized by moderate obesity, hyperinsulinemia, hyperlipidemia, and male-
biased hyperglycemia. 

A genome-wide scan using BC progeny from a cross between F1(B6×TallyHo) and 
TallyHo mice revealed two significant QTLs linked to hyperglycemia, Tanidd1 and 
Tanidd2 (TallyHo-associated non-insulin-dependent diabetes), on Chrs 19 and 13, 
respectively (95). The Tanidd1 QTL was also detected in BC progeny from a separate 
cross between F1(CAST/Ei×TallyHo) and TallyHo mice. The third QTL linked to 
hyperglycemia, Tanidd3, was also detected in this CAST cross on Chr 16. Two obesity-
related QTLs, Tabw (TallyHo-associated body weight) and Tafat (TallyHo-associated 
fat), were identified on Chrs 7 and 4, respectively. 

3.2.5. The New Zealand Obese Mouse 

The New Zealand Obese (NZO) mouse strain is an inbred strain developed from a mixed 
genetic background colony with selection for obesity (96). The NZO mice are 
characterized by hyperphasia, insulin resistance, hyperinsulinemia, hyperglycemia 
(mostly in males), hypertension, hypercholesterolemia, and leptin resistance [16,97–99]. 

Genetic dissections for the polygenic obesity syndrome in NZO mice were conducted 
using a BC population obtained from a cross between NZO and (NZO×SJL) F1 mice. 

Genomics and proteomics in nutrition     26



Two obesity/hyperinsulinemia linked QTLs, Nob1 and Nob2 (New Zealand obesel and 
2), on Chrs 5 and 19, respectively (100), and a diabetes QTL, Nidd/SJL, on Chr 4 (101) 
were detected in the BC progeny. Interestingly, there seems to be an interaction between 
Nidd/SJL and Nob1 accounting for 90% of the variance in plasma glucose levels 
observed in the BC population, and this interaction was enhanced by a high-fat diet (102). 
Also, a susceptibility QTL for hypercholesterolemia, Chol1/NZO, was mapped to Chr 5 
(103). 

Multiple obesity QTLs affecting adiposity, Obq7–15, have been localized in an F2 
population from an intercross of F1s of NZO and SM (small) mice (104). 

During genetic analysis using male F2 intercross progeny from NZO/H1Lt and 
NON/Lt mice, three QTLs affecting nonfasting glucose and plasma insulin levels, Nidd1, 
Nidd2 and Nidd3, were mapped on Chrs 4, 11, and 18, respectively (105). Interestingly, 
F1 males in this cross have shown a more severe type II diabetes syndrome than the 
parental strain of NZO mice (105). In a subsequent study, a backcross strategy with the 
same parental strains was adapted, and several other QTLs affecting obesity, plasma 
glucose levels, and the diabetes subphenotypes were detected (106). These included 
QTLs on Chrs 1 (obesity and diabetes), 12 (obesity), and 5 (obesity) that exhibited 
complex epistatic interactions among themselves or with other genomic regions 
increasing the severity of the diabesity syndrome. 

In an attempt to dissect these genetic complexities, Reifsnyder et al. (107) generated 
ten lines of interval-directed recombinant congenic (RC) strains in the NON/Lt 
background (http://www.jax.org/staff/leiter/labsite/type2-genomics.html) based on QTL 
data from their previous two studies (105,106). All ten RC lines were significantly 
heavier than the NON parental strain, but not as heavy as the diabetes-prone NZO 
parental strain. Incidences of diabetes in these RC lines differed among the lines, ranging 
from 0 to l00%. 

The protocol for construction of an RC strain is different in some ways from that for 
traditional congenic strains described earlier, including the number of backcrosses. 
Briefly, RC strains are derived by inbreeding after conducting several independent 
backcrosses (2–3 times) from a donor to a host (recipient) strain, which results in 6.25–
12.5% random contribution of the donor genome in each RC strain (108). Phenotypic 
characterization is followed for the relevant traits in the set of RC strains, and RC strains 
exhibiting phenotypic differences compared to the host strain are implicated as carrying 
QTLs originating from the donor strain. Rather than for fine mapping, RC strains can be 
more useful for the phenotype study of gene/gene interactions (109). 

3.2.6. The High and Low Heat Loss Mice 

The High (MH) and Low (ML) lines of mice are noninbred lines selectively bred for high 
heat loss and low heat loss, respectively, from four outbred strains of mice including NIH 
and ICR (Harlan Sprague-Dawley) and CF-1 and CFW (Charles River) (110,111). Along 
with this selection, an MC line of unselected controls was also established. Heat loss 
(kcal/day) measured by individual animal direct calorimetry differed by 37% of the mean 
between MH and ML mice (112). The MH mice consumed more energy than the ML and 
the MH mice were leaner than the ML (112). When compared with three common inbred 
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mouse strains, B6, DBA/J, and SWR/J, MH mice exhibited higher heat loss than B6 mice 
by 26.3% (112). This difference was exaggerated with high-fat diet feeding (112). 

Genetic analysis using F2 progeny from an intercross of F1s of MH and B6 mice 
detected four QTLs controlling heat loss on Chrs 1, 2, 3, and 7, respectively, and the QTL 
on Chr 1 was confirmed in an F2 population from a separate cross between MH and ML 
mice (113). A QTL linked to fat pad weight, Fatq1, was found on Chr 1, and QTLs 
linked to body weight were also identified on Chrs 1 (Wt3q1–2:3 wk, Wt6q1–2:6wk, 
Wt10q1:10wk), 3 (Wt10q2) 11 (Wt6q3, Wtl0q3), and 17 (Wt3q3) (113). 

3.2.7. The M16 Mouse 

The M16 mouse strain is an inbred strain established by selection from ICR mice for 
rapid postweaning (3–6 week) weight gain (114). Compared to unselected controls, the 
M16 mice exhibited greater body weight gain and hyperphagia (115) as well as greater 
fat pads as a percentage of body weight (116). The adipose cellularity of M16 mice was 
characterized by both hypertrophy and hyperplasia (115,117). 

By genetic analysis using BC progeny from a cross between M16 and CAST/Ei mice, 
six QTLs controlling fatness, Pfat1–6,were mapped (27). 

3.2.8. The DU6 Mouse 

The DU6 line of mice was selected for high body weight at six weeks of age from 
outbred Fzt: DU mice through a systematic crossbreeding scheme with four inbred 
(CBA/Bln, AB/B1n, C57BL/Bln, and XVII/B1n) strains and four outbred (NMRI orig., 
Han:NMRI, CFW, and CF1) stocks of mice (118,119). An unselected line of the DUKs 
was also established from the same base population, and both the DU6 and the DUK 
mice have been maintained as outbred lines. The DU6 mice have twice the body weight 
(58 vs. 28 g at 42 days) and three times the fat content of the DUKs mice (120). The DU6 
mice were also characterized by hyperleptinemia, hyperinsulinemia, and elevated insulin-
like growth factor I (IGF-1) (121). 

Nine QTLs for body weight, with the biggest effect of Bw4 on Chr 11, and eight QTLs 
for fat accumulation were detected using F2 progeny from an intercross of F1s of the 
DU6 and the DUKs mice (122). 

Recently, a DU6 line has been inbred for four generations generating a partially inbred 
line of DU6i mice (123). The DU6i mice were crossed to DBA/2 mice to produce F2 
progeny and genome-wide QTL mapping was conducted (123). Using this genetic cross, 
body weight QTLs on Chrs 1, 5, and 7, muscle weight QTLs on Chrs 7,11, and 12, and 
abdominal fat weight QTLs on Chrs 4, 5, 7, 11, 12, and 13 were detected, with the largest 
effects being by Bwl4 on body weight, Mwq1 on muscle weight, and Afw9 on abdominal 
fat weight. These three QTLs were located on Chr 7. 

3.2.9. The Large Mouse 

The large (LG/J) mouse strain is an inbred strain developed with long-term selection for 
large body size (124,125). The LG/J mice (albino) are characterized by rapid growth 
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early in life, longer tails, and higher body, liver, and fat pad weights when compared to 
the SM/J inbred strain (126). 

By genetic analysis using F2 progeny of the LG/J and the SM/J mice, Cheverud et al. 
(127) detected eight QTLs (Adip1–8) for adiposity, seven QTLs (Skl1–7) for tail length, 
and four QTLs (Wt1–4) for adult body weight. 

3.2.10. The Small Mouse 

The small (SM/J) mouse strain (white-bellied agouti or black) is an inbred strain 
established by crossing seven stocks including DBA with selection for small body size at 
60 days (128). Although the names sound related, the SM/J and the existing LG/J mice 
were derived from a separate experiment. 

Due to their small body size, the SM/J mouse has been utilized for several genetic 
studies of obesity. In an intercross population from the SM/J mice and a normal inbred 
strain of A/J mice, two significant QTLs, Bwq3 and Bwq4, linked to body weight, were 
detected on Chrs 8 and 18, respectively, as well as five suggestive QTLs (129). The SM/J 
alleles of both Bwq3 and Bwq4 were associated with increase in body weight although the 
parental SM/J mouse was smaller than the A/J mouse. Exhaustive discussion about 
parental origins of susceptibility alleles for individual QTL has been avoided in this 
review. But, oftentimes, one finds that susceptibility alleles of certain QTLs originate 
from the “low-value” strain (i.e., a small-size animal) rather than from the “high-value” 
strain (i.e., a large-size animal). This suggests that new combinations of genetic factors in 
segregating populations, such as F2 or BC populations, can expose susceptibility alleles 
that were quiescent in parental strains. 

3.2.11. The Edinburgh Fat and Lean Mice 

The Edinburgh Fat (EF or F) and Edinburgh Lean (EL or L) lines originated from a three-
way cross base (two inbred [CBA and JU] and one outbred line [CFLP]) with divergent 
selection for high and low fat content (130). Initially, the selection index for the first 20 
generations was the ratio of gonadal fat pad weight to body weight of 10-week-old males, 
and subsequently, the index was changed to dry matter content, known to be highly 
correlated with fat content, of 14-week-old males. Selection was carried out for over 60 
generations (131) and the lines are maintained outbred. Average fat contents of EF and 
EL males were about 21 and 4%, respectively, and EF males were about 11 g heavier at 
14 weeks of age than EL males (130). 

By genetic analysis using F2 progeny from an intercross of F1s of the EF and the EL 
mice, Horvat et al. (132) detected four QTLs accounting for fat %, Fob1–4 (F-line 
obesity QTL 1–4) on Chrs 2, 12, 15, and X, respectively.  

Quantitative trait loci for obesity and type II diabetes in rodents     29



TABLE 1 Polygenic Rodent Models for Obesity 
and Type II Diabetes and the Related QTLs 

Model Selection Obesity Diabetes Genetic 
cross 

QTLs Congenics Gene Ref. 

Rat   

GK IGT — × F2 F344 Niddm1–3 F344.GK Ide (60–
63) 

          BN Nidd/gk1–6 Niddm1     

OLETF IGT × × F2 LETO Odb1–2 OLETF.BN — (64–
80) 

          BN Dmo1–3 Dmo1     

          F344 Obs1–6 OLETF.F344     

            Nidd1–
11/of 

Dmo1     

        BC BN Dmo1–12 F344.OLETF     

              Nidd1–11/of     

SDT — — × BC BN Gisdt1–3 — — (81, 
82) 

Mouse   

KK — Mild × F2 B6 Obq5–6 — — (83–
88) 

            Fgq1       

        BC BALB lgt-1       

            Fbg-1–2       

NSY IGT Mild × F2 C3H Nidd1–
3nsy 

— — (89–
92) 

TSOD BW&UG × × F2 BALB Nidd4–6 — — (93, 
94) 

TallyHo HG × × BC B6 Tanidd1–3 — — (95) 

          CAST Tabw       

            Tafat       

NZO Obesity × × BC SJL Nob1–2 RC 
ofNON.NZO 

— (96–
109) 

            Nidd/SJL       

            Chol1/NZO       

        F2 SM Obq7–15       
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          NON Nidd1–3       

        BC NON Chrs1, 12, 
5 

      

MH HHL × — F2 B6 Fatq1 — — (110–
113) 

          ML Wt3q1–3       

            Wt6q1–3       

            Wt10q1–3       

M16 WG × — BC CAST Pfat1–6 — — (114–
117, 27) 

DU6 HBW × — F2 DUK Bw4 — — (118–
123) 

DU6i       F2 DBA Bw14       

            Mwq1       

            Afw9       

LG HBW × — F2 SM Adip1–8 — — (124–
127) 

            Wt1–4       

F HFC × — F2 EL Fob1–4 — — (130, 
132) 

EPH HBW × — F2 EPL Chr X EPL.EPH-Chr — (130, 
133–135) 

              X QTL     

B6×SPRET — × — BC   Mob-1–4 — — (136, 
137) 

NZB×SM — × — F2   Mob-5 — — (138–
141) 

EL×129 — × — F2   Obq1–2 — — (143) 

AKR×C57L — × — F2   Obq3–4 — — (144, 
145) 

B6×C3H — — × F2/F3   Chrs 2 & 
13 

— — (146) 

            IGT       

BTBR×B6 — — × F2   T2dm1–3 — — (147–
149) 

Diet induced                   

AKR×SWR — × — F2   Do1–3 — — (156–
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158) 

B6×CAST — × — F2   Do3 B6.CAST-
Do3 

— (159–
161) 

            Mob-5–8       

IGT=impaired glucose tolerance; BW=body weight; UG=urinary glucose; HG=hyperglycemia; 
HHL = high heat loss; WG = rapid post-weaning weight gain; HBW=high body weight; HFC=high 
fat content; Gisdt1–3=glucose intolerance SDT1–3; Obq5–6=obesity QTL5–6; Fgq1=fasting 
glucose QTL1; Igt–1=impaired glucose tolerance-1; Fbg-1–2=fasting blood glucose-1–2; Tanidd1–
3=TallyHo-associated non-insulin-dependent diabetes1–3; Tabw=TallyHo-associated body weight; 
Tafat=TallyHo-associated fat; Nob1–2=New Zealand obese1–2; Chol1/NZO=Cholesterol1/ NZO; 
RC=recombinant congenic mice; Bw4=body weight 4; Mwq1=muscle weight QTL1; 
Afw9=abdominal fat weight 9; Adip1–8=adipocity1–8; Wt1–4 = weight1–4; Fob1–4=F-line obesity 
QTL1–4; Mob-1–4=multigenic obesity-1–4; T2dm1–3=type II diabetes mellitus1–3; Do7–
3=dietary obese 1–3. 

3.2.12. The Edinburgh High and Low Mice 

The Edinburgh High (EPH) and Edinburgh Low (EPL) lines are divergently selected 
lines for high and low body weights, respectively, from the same base population as the 
lines EF and EL described in the preceding paragraph (130). The selection index for the 
first 20 generations was lean mass in males, and in subsequent generations the index was 
changed to body weight in both sexes at 10 weeks of age. 

Hastings and Veerkamp (133) reported a large additive sex-linked effect (25%) in the 
body weight divergence between the EPH and the EPL lines. In a follow-up study, a QTL 
with a significant LOD score was localized to the proximal region of Chr X using F2 
progeny from a cross between F1s of the outbred EPH and the inbred EPL mice (134). 
This QTL was confirmed in a congenic line generated by transfer of the Chr X QTL from 
the EPH mice into the inbred EPL background (134) and was further fine mapped to the 
2cM region (135). 

3.2.13. Cross C57BL/6J vs. SPRET Mice 

During the genetic studies of atherosclerosis, Fisler et al. (136) noticed varying degrees 
of obesity among BC animals from a cross between F1 (B6×SPRET) and B6 mice, called 
BSB, although neither parental inbred strain was obese. The parental strains, however, 
differed somewhat in carcass lipid %:7.5 (B6) vs. 2.2 (SPRET) at 3–4 months. BSB 
progeny exhibited carcass lipid ranging from 0.2 to 49%, body weight from 13 to 49 g, 
and omental fat pad weight from 0.01 to 2 g in males at 3 months, and similar trends were 
observed in females. 

In the BSB progeny, four QTLs linked to % body fat or fat pad weights, Mob-1–4 
(multigenic obesity-1–4), were detected on Chrs 7, 6, 12, and 15, respectively (137). 
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3.2.14. Cross New Zealand Black/Bielschowsky NJ vs. SM/J Mice 

The New Zealand Black (NZB)/Bielschowsky (B1) strain was separated and inbred for 
black coat color from an early generation of the NZO/Bl strain (96). Because of the 
remarkable difference in plasma lipoprotein concentration between the NZB and the SM 
strains, these strains are commonly used for studying genetic factors affecting plasma 
lipid profile and atherosclerosis [138–140]. 

Multigenic obesity was also observed in F2 progeny from an intercross of F1s of the 
NZB/BINJ and the SM/J mice, and a QTL linked to body fat, fat mass, and body weight, 
Mob-5, was detected on Chr 2 in these F2 animals (141).  

3.2.15. Cross EL/Suz vs. 129/Sv Mice 

The EL mouse strain (different from the lean line of EL described above) is an inbred 
strain originating from the Japanese ddY noninbred stock of “Swiss” origin and is known 
as a model for epilepsy (142). In a preliminary study for epilepsy, apparent segregation 
for obesity was noticed in an F2 population from an intercross of Fls of EL/Suz and 
129/Sv mice, and Taylor and Phillips (143) followed up with genetic analysis for the 
obesity. By analysis of the leanest 15% and the fattest 15% based on adiposity of the F2 
progeny, two major QTLs, Obq1 and 2,were detected on Chrs 1 and 7, respectively. 

3.2.16. Cross AKR/J vs. C57L/J Mice 

During construction of AKXL RI strains from a cross between the AKR/J and the C57L/J 
inbred strains, obesity was noticed in mice from several of the partially inbred lines 
(144). 

By genetic analysis using F2 progeny of the AKR/J and the C57L/J mice, two QTLs 
affecting adiposity, Obq3 and 4, were detected on Chrs 2 and 17, respectively (145). 

3.2.17. Cross C57BL/6J vs. C3H/He Mice 

When compared to the C3H/He (C3H) inbred mice, B6 mice exhibit impaired glucose 
tolerance and lower insulin secretion during intraperitoneal glucose tolerance tests 
(IPGTT) (146). Genome-wide QTL analysis using 30 F2 and F3 progeny of the B6 and 
the C3H mice with the highest and lowest 30-minute blood glucose levels during IPGTT, 
respectively, revealed two QTLs linked to poor glucose tolerance on Chrs 2 and 13, 
respectively (146). 

3.2.18. Cross BTBR vs. C57BL/6J Mice 

The BTBR inbred mouse strain has long been used for chemical mutagenesis rather than 
metabolic studies (147). However, Fl male offspring from BTBR and B6 mice exhibit 
elevated fasting insulin levels and profound insulin resistance although neither parental 
strain showed these metabolic alterations (147). 
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In an attempt to locate diabetes susceptibility loci, the ob obesity allele of the Leptin 
gene (148) was introduced into the F2 progeny from a (BTBR×B6) F1 intercross by 
mating BTBR-+/+ mice with B6-ob/+ mice, followed by intercrossing the resultant F1-
ob/+ mice (149). Genome-wide QTL mapping analysis using these F2-ob/ob progeny 
with the segregating genetic backgrounds of BTBR and B6 permitted detection of two 
QTLs modifying diabetes severity, t2dm1 and t2dm2 (type II diabetes mellitus 1 and 2), 
on Chrs 16 and 19, respectively, and of one locus determining fasting plasma insulin 
levels, t2dm3, on Chr 2 (149). 

4. THE QTL FOR DIET-INDUCED OBESITY AND TYPE II 
DIABETES 

The incidence of obesity has increased worldwide in parallel with industrialization (150). 
This epidemic cannot be solely attributed to genetics, because mutations in our genes 
would not have spread that rapidly (151). However, a significant change has occurred in 
our diets and life styles. Constantly available, fatty/energy-enriched foods have 
accompanied industrialization and may now interact with existing genetic susceptibility 
factors in predisposed individuals, making them more vulnerable to obesity now than in 
previous times (152–154). 

The prevalence of type II diabetes is also growing worldwide, and 29 million people 
are predicted to be diagnosed with diabetes in the United States alone by year 2050 (3). 
This increase in prevalence of diabetes may reflect the current obesity epidemics (3). 

It has been emphasized that susceptibility genes to common disease, indeed, may play 
a role as responding factors to environments rather than as etiological factors (155). To 
be relevant to this multifactorial nature, polygenic animal models for dietary obesity have 
been developed. 

4.1. Mice 

4.1.1. Cross AKR/J vs. SWR/J Mice 

Among nine inbred mouse strains evaluated, the AKR/J and the SWR/J were the two 
strains exhibiting the most and the least weight gain, respectively, in response to high-fat 
diet feeding (156). 

Male F2 progeny of the AKR/J and the SWR/J mice were fed with high-fat diets (a 
high-fat, condensed milk diet, 32% of kilocalories as fat), and linkage analysis with 
polymorphic markers mapping near known obesity genes, ob (Lep), db (Lepr), tub, and 
fat (Cpe), was conducted for adiposity (157). Significant linkage was found only distal to 
the db locus on Chr 4, and the putative gene was designated as Do1 (dietary obese 1). In a 
separate experiment, a genome-wide scan using male F2 animals derived from the same 
parental strains revealed two major QTLs for adiposity, Do2 and Do3, on Chrs 9 and 15, 
respectively (157). By genetic analysis using the F2 animals from the 10% tails of the 
frequency distribution for adiposity, a QTL was also detected on Chr X for body weight 
and adiposity (158).  
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4.1.2. Cross CAST/Ei vs. C57BL/6J Mice 

When compared to the CAST/Ei (CAST) mice, B6 mice markedly accumulated body fat 
in response to high-fat diets (159,160). 

In an F2 population of male mice from CAST and B6 mice, dietary obesity 
segregated, and one major QTL (putatively Do3) on Chr 15 and two suggestive QTLs on 
Chrs 2 and 7 for adiposity were detected (159). Congenic mice carrying the Chr 7 QTL 
derived from CASTmice on the B6 background exhibited 50% lower adiposity than the 
host (B6) strain when fed with the high-fat diets (161). 

Mehrabian et al. (160) also analyzed F2 progeny from an intercross of F1s of CAST 
and B6 mice fed high fat diets, and three QTLs linked to body fat, Mob-5, 6, and 7, were 
detected on one chromosome, Chr 2. The fourth QTL for body fat, Mob-8, was detected 
on Chr 9. 

5. CONCLUSION 

Genome-wide scans using polygenic rodent models has been a powerful strategy to map 
susceptibility QTLs associated with obesity and type II diabetes. Although, to date, few 
susceptibility genes have been cloned from these QTLs, the current availability of 
comprehensive genome sequences and high-throughput functional genomic tools will 
speed up the search for candidate genes and will lead to the identification of genes 
underlying QTLs. Fundamental understanding of the gene variants and how they 
contribute to the susceptibility for obesity and type II diabetes could not be achieved by a 
single advanced technology or statistical method. A multi-displinary approach merging 
genetics, genomics, bioinformatics, cell biology, biochemistry, physiology, and nutrition 
will ultimately lead us to acheive this goal.  
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ABSTRACT 
People who have a persistent desire to eat sweets are said to have a “sweet 
tooth”. The term sweet tooth has several meanings in the experimental 
literature, and the types of behavior purported to represent measures of the 
human sweet tooth are described and evaluated. The determinants of 
individual differences among humans in their behavior toward sweetness 
are largely unknown, but extrapolating from studies in mice and from 
human families, we predict that these differences may be partially genetic 
in origin. There is an assumption that preferring sweet foods compared 
with other types of foods leads to excessive sweet consumption and to 
obesity, but few studies test this hypothesis directly. Recent advances in 
our understanding of the molecular biology of sweet sensory systems and 
metabolism may explain individual differences in the human behavior 
toward sweetness and provide new avenues for the treatment of nutritional 
disorders.  

1. INTRODUCTION 

The term “sweet tooth” has been used widely in both popular culture and in the scientific 
literature. But what is meant by the term sweet tooth and how do we measure it? When 
we say that a person has a sweet tooth, we may be thinking of a person who usually 
prefers to eat a sweet food or beverage rather than one that is savory or salty. Or we 
might assume that the sweeter a food or beverage is, the more someone with a sweet 
tooth will prefer it. Because to like sweet foods is seen as a prerequisite to eating too 
much, the study of the human sweet tooth has usually been undertaken with the goal of 
understanding how the perception of or preference for sweet foods contributes to 
overeating and obesity. But the underlying assumptions of this hypothesis—that 
increased perception of and preference and desire for sugar leads to increased intake of 
sweet food and drinks—is rarely directly tested. 

This review is divided into two sections. In the first section, we assess the ways in 
which human behavior toward sweets is measured, and the factors that influence it. In the 
second section, we examine the relationship between the preference for sweet foods, their 
intake, and the effect on obesity. 



2. SWEET TOOTH: MEASUREMENT AND INFLUENCES 

2.1. Sensation, Behavior, or Desire? 

Sweet is one of the five primary taste qualities, and there are several measures of human 
perception of sweetness. The lowest concentration at which someone can detect sugar or 
recognize its sweet quality can be measured. The terms for these measures are detection 
and recognition thresholds; the detection threshold usually occurs at lower concentrations 
than recognition because subjects can tell that there is something in a solution before they 
can identify its quality (1). A second measure of sweetness is how intense above-
threshold concentrations of sweetness are perceived to be. For instance, some people may 
find the sweetness of a commercially available carbonated beverage to be “very strong” 
but another person might find it to be “weak”. This concept is referred to as perceived 
intensity. The next measure is “liking”—defined as the degree to which the person 
perceives it as acceptable and desirable when presented with a single stimulus. This 
measure is sometimes also referred to as “acceptability” Sometimes people have a choice 
among stimuli and choose the one that is the most acceptable or desirable. These types of 
measures are referred to as “preference”. When the degree of the desire to eat a sweet 
food or drink is measured, this is referred to as craving. A final and important measure of 
human behavior toward sweetness is the amount of sugar someone eats when offered a 
choice of foods or drinks, either in the laboratory or in their daily lives. 

There is no agreement within the experimental literature upon a definition of sweet 
tooth. Sometimes it is assessed using measures of liking or preference (2–9), sometimes 
by measures of food intake or food selection, and sometimes by measures of the 
motivation to eat sweet foods (10, 11). Most laboratory measures designed to assess 
sweet tooth use preference measures rather than measures of food intake or desire and 
motivation. Food intake and food selection outside of the laboratory are hard to measure 
accurately because of the disinclination of subjects to correctly report the food they eat. 
Therefore, proxy indices of sugar intake—such as the number of dental caries or the 
amount of oral bacteria per subject—are sometimes substituted as measures to 
circumvent report bias (12). Also, asking specific questions about sugar usage, for 
instance on cereal or in coffee, may elicit accurate responses regarding sugar intake and 
preference (4, 13). 

Perhaps one reason that preference is most often measured in human studies is because 
these methods detect reliable individual differences among subjects (14). Preference 
measures are also desirable because people can be classified into categories. For instance, 
some investigators have identified two different response patterns to sucrose solutions, a 
type I response whereby subjects increase in the liking for sucrose up to a middle range 
of concentration, followed by a breakpoint after which preference decreases with 
increasing concentration. This pattern is referred to as an inverted-U shape. The type II 
response is characterized by increased liking as the concentration increases, but levels off 
(15). Other investigators have reported similar patterns among subjects (5). 

Although laboratory measures of sweet preference are commonly used, they may not 
predict the preference for other sweeteners (16) or the preference for sweet foods or 
beverages. Investigators have tried to bridge the gap between preference measures for 
laboratory stimuli and preference measures for real-world foods and drinks by using 
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mixtures of sugar and milk (17, 18) or by adding sugar to simple beverages or foods (9). 
Finally, some investigators have compared sweet preference measures inside the 
laboratory to self-reported behaviors outside of the laboratory (8, 13). 

Human behavior toward sweet may be affected by the degree to which the subjects 
can perceive the stimuli. There are individual differences in the detection or recognition 
thresholds for sweetness (19, 20), and although rare, there are people who do not perceive 
a sweet taste from sucrose (21). Therefore, when measuring preference for sucrose at low 
concentrations, it is important to consider that some people will not be able to perceive 
the stimulus as well as other people. Thus far in human studies, sweet detection threshold 
does not predict either how intense higher concentrations are perceived or how much they 
are liked (22–25). Although in mice there is a relationship between peripheral sensitivity 
and intake of sweeteners (26), this relationship in humans is unclear, and more focused 
study is needed. 

2.2. Stable and Variable Aspects of Sweet Taste Perception 

Individual differences in the response to sweet are present at birth, with some infants 
responding more positively than others to the taste of sucrose (27), and these individual 
differences persist as children become young adults (14). However, the same people 
measured on two occasions, weeks or months apart, have similar but not identical sweet 
preference, suggesting that sweet preference changes over the short term (3, 7, 28). 

There are effects of race and sex on sweet preference. Americans of African descent 
prefer higher concentrations and Pima Indians prefer lower concentrations of sugar 
compared with those of European ancestry (7, 13, 29–33). However, race differences in 
sweet preference may be specific to types of foods. For instance,Taiwanese students rate 
sucrose solutions as more pleasant but sweetened cookies as less pleasant compared with 
students of European descent (34). Studies of sex differences suggest that male and 
female infants do not differ in sweet preference (29) but that older boys and men prefer 
higher concentrations of sweets compared with women (7, 11, 31, 35, 36). Although men 
prefer high concentrations of sweet in their food and drink, studies of food craving in 
men show they experience less desire to eat sweet foods compared with women (37, 38). 
Sex differences in food craving may be population-specific, however, since women in 
Egypt did not show elevations in sweet food craving compared with men (38). Week-to-
week variations in sex hormone concentrations in women predict changes in sucrose 
threshold (39) but with equivocal effects on sucrose preference (40, 41), and it is not 
clear to what extent sex hormones account for sex differences in human behavior toward 
sweet. 

In addition to race and sex, age is also a reliable predictor of sweet preference. 
Children prefer more highly sweetened solutions compared with adults (31, 35, 42) but 
see (36). Children may also have lower detection thresholds (23) and lower perceived 
intensity at high-sucrose concentrations (43) compared with adults, but not all studies 
agree (35, 36, 44). Younger people also eat more sugar than do older people (45). Dietary 
experience alters sweet preference in children; for instance, children fed sweet water like 
it more than children not fed sweet water (29). Children are less afraid of sugar than other 
nutrients and even neophobic children will accept sweets (46). Sweet craving changes 
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over the life span, and older women report less craving for sweet food compared with 
younger women (47).  

An immediate but short-lived reduction in the preference for sweet-tasting solutions 
can be produced by ingesting a sweet solution (48). The reduction of sugar preference 
immediately after the ingestion of sweet solutions may extrapolate to situations outside 
the laboratory, such as after a meal. This effect, when measured in the laboratory, is more 
pronounced in people who are chronic dieters (49, 50), is not observed in obese subjects 
(51), and is influenced by the menstrual cycle (52, 53). 

2.3. Genes and Genetics 

Because family and twin studies have shown modest heritability for sweet intake, sweet 
perception or preference may be partially due to genetic variation (54). Most studies of 
sweet preference use sugar or carbohydrate intake as a measure of preference and as 
measures of food intake collected through diaries. Family and twin studies using other 
measures of sweet perception and preference are needed to assess more specifically the 
degree to which these phenotypes are heritable. In considering how and where genetic 
differences may influence the human behavior toward sweetness, we now discuss recent 
advances in our understanding of sweet taste biology. 

The initial events in the perception of sweet taste occur in taste receptor cells in the 
tongue, which are found clustered in taste buds in taste papillae. The perception of 
sweetness intensity is related to the number of papillae (55). The number of taste papillae 
and taste buds varies widely in humans, and these differences among people may be due 
to alleles in genes that develop and maintain sensory cells. For at least one genetic 
disorder (familial dysautonomia), mutations in a single gene (IKBKAP) (56, 57) are 
associated with few or no taste papillae and taste buds (58). It is possible that less 
harmful alleles of this gene may influence the density of taste buds in otherwise healthy 
people. 

Inside the taste papillae, taste receptor cells produce proteins that participate in sweet 
taste transduction, and some of these proteins are inserted into the cell membrane to form 
taste receptors. Two proteins twist together to create a sweet receptor (Fig. 1) (59, 60). 
The names of these proteins are T1R2 and T1R3, for taste receptor family 1, proteins 2 
and 3, and the names of the associated genes for these proteins are Tas1r2 and Tas1r3. If 
T1R3 pairs with the first member of this family,T1R1, the receptor is sensitive to umami, 
the taste quality of monosodium glutamate and an important flavor principle of Asian 
cooking. 

These sweet and umami receptor genes were discovered through mapping experiments 
in mice. Inbred mouse strains differ in their intake of saccharin, and the results of 
breeding experiments suggested that an allele of a single gene was partially responsible 
for these differences (61). Through  
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FIGURE 1 Representation of a human 
taste bud and taste receptors cells. 
T1R2 and T1R3 co-localize (and 
probably dimerize) to create a receptor 
for sweet stimuli. The receptors are 
embedded in the apical membrane of 
the taste receptor cell and stimulate G 
proteins to initiate a transduction 
signal inside the cell. Genetic variation 
in theTas1r3 gene (which codes for 
T1R3 protein) accounts for differences 
in sweet intake of mice. 

positional cloning approaches, this gene was identified and found to be the gene Tas1r3 
(60, 62–66). An important advance in our understanding of the behavior of animals 
toward sweetness was the observation that small changes in the DNA sequence of the 
mouse Tas1r3 gene lead to large differences in the consumption of sweetener (67). This 
reduction of sweetener preference by mice with certain Tas1r3 alleles is probably due to 
their reduced ability to perceive the intensity of the sweeteners. Recordings of their 
peripheral taste nerves suggest that mice with the low-preference Tas1r3 alleles exhibit 
lower nerve firing in response to saccharin (26). Furthermore, when the Tas1r3 gene is 
eliminated by genetic engineering in mice, the peripheral nerve firing is reduced in 
response to sweeteners (68). 
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The pairing of T1R2 and T1R3 does not constitute the only receptor for all sweeteners, 
however. When the Tas1r3 gene is knocked out in mice, their ability to detect glucose 
and maltose is unaffected compared with mice with a normal Tas1r3 gene (68). 
Furthermore, the ability to detect other sugars and high-intensity sweeteners is reduced in 
Tas1r3 knockout mice, but not absent.Therefore, other receptors or mechanisms exist that 
signal sweetness in mice, for instance, the remaining partner (T1R2) could act as a taste 
receptor by itself (69).  

If DNA sequence variants have a large effect on the intake of saccharin and other 
sweeteners in mice, then this may also be true in humans. There is a human counterpart to 
each of the mouse sweet receptor genes (TAS1R1, TAS1R2, and TAS1R3*) (70). Because 
the peripheral neural responses of humans to sugars predict their verbal reports about the 
taste of sugars (71), peripheral differences in taste sensitivity may be an important 
component of the human behavior toward sweetness. There is more variation than 
appreciated in human perception of sweeteners, and one investigator has even suggested 
that there is a “different receptor site for each subject” (72) or, in other words, each 
person may perceive sugars slightly differently. Although the differences in the ability to 
perceive sweet stimuli has been thought to be of little consequence in human sweet intake 
and preference, the relationship in mice may stimulate further study of this topic. 

Sweet preference may be influenced by genetic variants in the sensory system in 
humans as it is in mice. However, the appreciation of sweet and the pleasure that it brings 
to some people may be due to differences in the degree to which they have learned about 
its rewarding properties. The genes and genetics involved in the perception of the 
pleasure associated with sugar are not known, but several observations provide clues 
about which mechanisms may be involved. Sweet preference is increased in opioid 
addicts compared with healthy subjects (73), and the opioid antagonist naloxone reduces 
the pleasantness of sucrose (74). Studies suggest that the rewarding aspects of alcohol 
and sweeteners may also share brain pathways, because alcoholic subjects and their 
family members may prefer sweeter solutions compared with nonalcoholic subjects (6, 
75). Therefore, the investigation of genes that participate in the shared brain pathways 
responsible for the pleasurable effects of drugs and sweeteners is warranted. 

3. OBESITY AND SWEET TOOTH 

People assume that because increases in sugar consumption in the human diet are 
associated with a proportional rise in obesity, eating sugar and foods that are sweet is the 
cause. More specifically, people often hypothesize that if someone has a sweet tooth, it 
will cause the person to eat sweet food in excess of his or her caloric needs and 
consequently gain weight. In other words, the sweet tooth is the cause and obesity is the 
effect. However, an alternative hypothesis is that obesity, per se, may change sweet 
preference  

* The protein name for each of the three receptors has the same name in mice and humans (T1R1, 
T1R2, and T1R3). However, the gene names in the mice (Taslr1, Taslr2, and Taslr3) are lowercase 
and italic whereas the human gene symbols are in uppercase and italic: TAS1R1, TAS1R2, TAS1R3. 
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and that metabolism and taste may participate in a feedback loop. Pathways that could 
influence sweet preferences and contribute to these loops are shown in Fig. 2. 

3.1. Do Obese People Have Different Behavior Toward Sweet Food 
than Lean People? 

Most studies have compared lean and obese subjects for the preference or liking of sweet 
stimuli, usually sucrose solutions, or have compared lean and obese subjects for their 
intake of sweet foods in the laboratory. These studies have produced mixed results: In 
some studies, lean people prefer sweet food or drinks more than do obese people (76–80), 
and in one study the reverse was observed (36). However, the most common observation 
is that there is no difference in sweet preference between lean and obese people (2, 31, 
81– 87). Outside of the laboratory, when food intake is measured in situations where 
people choose their own meals, most studies demonstrate that lean subjects eat more of 
their calories as sugar compared with obese subjects (88). 

Based upon these data, it would appear that there is little evidence that obese people 
prefer sweets or eat more sweet food and drink compared with lean people. However, 
there are three points that are important to consider before drawing this conclusion. First, 
because subjects can and do restrain their intake of foods, especially sweets, when they 
are dieting or trying to avoid gaining weight, food intake outside the laboratory may not 
correspond with sweet preference (i.e., subjects may choose to not eat their most 
preferred foods.) Second, food intake as reported by subjects can be biased, and when 
proxy measures of sweet intake such as oral bacteria associated with sucrose 
consumption are measured, obese women have higher indices of sweet consumption 
compared with lean women (89). Third, none of these studies measures people before 
they become obese and therefore does not directly test the hypothesis that a subject’s 
behavior toward sweet food and drink is a factor in the development of obesity. 

Once someone becomes obese, the preference for sweet may change because of a shift 
in the homeostatic mechanisms and feedback loops that regulate hunger and satiety (Fig. 
2). To try to understand the behavior of the obese subject in the absence of obesity, 
investigators have studied formerly obese people who have reduced their weight and are 
no longer obese. These subjects demonstrate a heightened preference for sugar when it is 
mixed with high concentrations of fat (18). In another study, diabetic patients measured 
during weight loss preferred lower concentrations of sweetness compared to the 
preferences before weight loss (90). It is unclear what effect weight loss alone has on 
sweet preference, and whether changes in preference after weight loss reflect the 
preferences subjects had prior to  
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FIGURE 2 Diagram of the 
relationship among pathways that 
influence sweet preference. Boxes 
shaded in light gray contain the sweet-
taste transduction pathway. Boxes 
shaded in black contain the pathway 
involved in the metabolic control of 
satiety and energy balance. 

becoming obese. Lean people, who restrict their food intake, however, such as ballerinas 
and patients with anorexia nervosa, vary in their sweet preference (91–93). There is no 
consistent change in sweet preference when people restrict their food intake, regardless of 
their starting weight. 

3.2. Metabolic Effects of Sugar 

For diets with the same caloric content, the macronutrient composition affects the balance 
of nutrients stored or burned for energy.When excess calories are eaten as sugar, then 
insulin secretion and other endocrine changes convert the excess calories to glycogen and 
the body may also increase its overall metabolism temporarily to burn the excess calories. 
This process of glycogen storage and increased carbohydrate oxidation avoids the 
comparatively costly conversion of carbohydrate to stored lipids. Excess dietary fat, 
however, is stored as triglyceride in adipose tissue and is less readily oxidized compared 
with glycogen (94). 

Extrapolating from this observation, humans who consume calories from sugar should 
be leaner than those who consume an equivalent number of calories from dietary fat (88). 
In fact, in a rodent study, substituting sucrose for other macronutrients led to a higher rate 
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of metabolism, a lower overall caloric intake, and less body fat compared with a 
comparable diet without sugar (95). Consistent with this hypothesis, human patients who 
ate a higher proportion of their calories as sugar lost more weight after gastric surgery 
compared with those who ate less sugar (96). However, when subjects are asked to add 
sugared drinks to their diet, they gain weight (97). In other words, when liquid sugar is 
added to the diet, there is poor caloric compensation and subjects gain weight, but when 
sugar is added as a solid food (jelly beans), then subjects appear to compensate for the 
added calories and do not gain weight (98). The metabolic consequences of eating sugar 
would encourage leanness rather than obesity if sugar is replacing calories from other 
sources, but not if sugar is added to an already adequate diet. The composition of the 
calories (liquid or solid) from sugar might be important in determining whether subjects 
will reduce their calories from other sources. 

3.3. The Pleasure of Sweet 

Sugar is a fuel that provides calories, but it is also a pleasure that is rewarding in the 
absence of any other benefit. The pleasure of sweetness soothes crying infants (99–104). 
The effects of sugar are partially due to its taste because, although oral sucrose reduces 
pain in babies, sugar placed directly into the stomach does not (105). Sugar is soothing to 
adults as well as babies. Investigators examined the intake of sweet foods in women and 
noted a higher intake of sweets both during the menstrual cycle and in those with more 
incidences of psychiatric problems (12). Sweets may alleviate depression and 
premenstrual symptoms, and provide relief from the cravings for other drugs because 
sweet taste releases opiates into the blood, at least in rodents (106). Human babies 
exposed to the distress of cocaine withdrawal suck sweet pacifiers more than do babies 
without prior cocaine exposure (107). In addition to the release of opiates, the ability of 
sugar to bring pleasure is caused by changes in the neural circuits in specific brain areas 
(108, 109). People may differ in their ability to perceive pleasure from sucrose because of 
individual differences in these neural circuits. People who derive a greater than average 
pleasure from sucrose and who have a greater than average amount of distress may gain 
weight if they eat sugar to soothe themselves and do not reduce calories from other 
sources. 

3.4. Insulin and Leptin 

Sweetness in food and drink provides a signal of the number of calories available in the 
form of readily digested sugar. Therefore we might expect that sweet taste sensitivity 
would change in the face of the metabolic need for glucose. This has proved to be the 
case. When metabolic changes occur that reduce glucose availability, such as increases in 
plasma insulin concentration, then sweet preference increases (110–112). A similar 
response is seen in diabetic animals with high levels of plasma glucose but limited ability 
to utilize it because of insulin resistance. This effect, however, may only occur during 
dire metabolic states, because moderate levels of hunger (and the concomitant metabolic 
consequences of normal food deprivation) do not influence the preference for sweet 
solutions (113). 
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In addition to hormones such as insulin that regulate immediate glucose availability, 
other hormones regulate long-term energy stores. Investigators have proposed that the 
body has a regulatory mechanism that maintains weight at or near a set point, and that 
obesity ensues either because people have a high set point or because the set point is 
overridden by increased caloric consumption (114, 115). A fall below set point increases 
appetite and may increase the preference for energy-dense foods such as sweets and fats 
(116, 117). One hormone proposed to provide this signal of long-term energy stores is 
leptin. Leptin is secreted by adipose tissue and acts as a signal to the brain to indicate 
high or low energy reserves. Receptors for leptin are located in the brain as well as in 
other peripheral tissues (118). 

Mice with mutations of the leptin receptor have a higher behavioral and neural 
response to sugars compared with littermates without mutations, which suggests that 
leptin might suppress the peripheral sweet taste system (119). Evidence in support of this 
hypothesis comes from the observation that leptin receptors are present on taste receptor 
cells in mice, and the administration of exogenous leptin acts directly to suppress the 
neuronal activation to sweet—but not salty, sour, or bitter—stimuli (120). Obese mice 
that lack a functional leptin receptor (db/db) do not reduce their consumption of sweet 
solutions after leptin administration, but their lean littermates, which have normal leptin 
receptors, do reduce their consumption (121). 

Although exogenous administration of leptin reduces the neural response to sweet in 
mice with a functioning leptin receptor, insulin resistance, inability to utilize plasma 
glucose, and leptin resistance induced by prolonged obesity or diabetes may override the 
normal ability of leptin to reduce the cellular response to sweet taste (122). In obese and 
diabetic animals, the increase in plasma leptin concentration does not appear to have an 
effect on the neural response to sweet. 

To extrapolate from these studies in rodents to human behavior should be approached 
cautiously. The only study performed on humans to date found that the plasma leptin 
concentration of obese women was not correlated with sucrose preference (123). 
However, as demonstrated earlier, in humans, indices of the perceived intensity of a 
sucrose concentration do not necessarily correspond to how much that sweet 
concentration will be liked. Thus, future studies in humans may examine how the 
perceived intensity of a sucrose solution correlates with plasma leptin concentration, and 
if leptin is shown to have a direct effect on human taste receptor cell function, then 
manipulation of plasma leptin concentrations and the measure of sucrose perception 
would be a logical next step for human studies. 

3.5. Digestion 

Some people are born with an impaired ability to digest specific sugars, such as lactose or 
fructose. As a consequence of their inability to digest the sugar, they often do not wish to 
eat it and find it repugnant (124, 125). Similarly, there may be cases in which sugar is 
more easily digested than other nutrients and therefore is more desired. One such 
example of this situation is the high sugar intake of patients with Crohn’s disease (126). 
One hypothesis is that sweet preferences and aversions may be learned responses that 
depend upon the punishing or rewarding properties of sugar ingestion. In healthy people, 
the ability to digest sugars varies from person to person, and this normal variation may 
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affect sweet preference through learning. Differences in the degree of digestive tolerance 
for sugars are correlated with geography and genotype. For instance, there are 
geographical differences in the ability to digest lactose that reflect the degree of dairy 
farming in a region. Therefore, differences in the efficacy of digestive enzymes by 
geography and traditional diet may partially account for racial differences in the 
preference for sugar (127). Studies designed to assay differences in the digestion of sugar 
and its impact on the human sweet tooth in otherwise healthy subjects might prove 
useful. 

4. CONCLUSIONS 

Understanding human behavior toward sweetness and its influence on body weight 
requires further study. Longitudinal studies of people before they become obese are 
needed to assess the effects of sweet preference on body weight. Experimental results in 
mice have taught us two things: Sweet tooth is partially explained by differences in the 
DNA sequence of taste receptor genes, and the hormone leptin has a direct effect on taste 
receptor cells. Changes in sweet preference may be part of the homeostatic mechanism 
that regulates body weight in humans and is worthy of further study. 
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1. INTRODUCTION 

Decades of study describe the importance of the renin-angiotensin system (RAS) in 
pressure and volume homeostasis and its role in cardiovascular disease. In recent years, 
the emphasis has gradually turned to paracrine actions of angiotensin II (Ang II) due to 
the discovery of local RAS within such diverse organs as kidney, brain, heart, and ovary. 
As a result, many additional physiological roles that lie outside hemodynamic regulation 
have been attributed to Ang II. One of the many surprising tissues discovered to contain a 
local RAS is adipose tissue. In this review we will discuss the discovery and regulation of 
RAS in adipose tissue and summarize the evidence to date demonstrating its role in 
regulation of adipogenesis, adipocyte metabolism, and (possibly) obesity-related 
hypertension. 

2. COMPONENTS OF RAS IN ADIPOSE TISSUE 

The existence of the RAS in adipose tissue was first discovered in 1987 when 
angiotensinogen (AGT) mRNA was detected in periaortal brown adipose tissue (BAT) 



and in cells found within the rat aorta wall (1, 2). These findings led to the subsequent 
detection of AGTmRNA and AGTsecretion in several rat adipose tissue depots and 
isolated adipocytes from rat arterial vessel walls, atria, and mesentery (3,4). More 
recently, adipose tissue and adipocyte cell lines from rats, mice, and humans have been 
shown to both express components of the RAS and synthesize and secrete Ang II (5–11). 
Although synthesis and secretion of Ang II from adipose tissue has been established, 
some controversy remains regarding the cell types (preadipocytes vs. mature adipocytes) 
and the enzymes involved, particularly in humans. Mature adipocytes are the primary 
source of AGT in adipose tissue, although low levels of expression have been reported in 
human preadipocytes (9). With respect to biochemical pathways of Ang II formation in 
adipocytes, the role of renin is particularly controversial. Sharma et al. (12) described 
expression of renin and other RAS components in adipocytes obtained from 
subcutaneous adipose depots of both lean and obese patients. However, Faloia et al. (13) 
found no evidence for renin by RT-PCR or western blotting in adipose tissue of either 
lean or obese normotensive individuals. In rats, Pinterova et al. (11) found renin and 
other RAS components in mature adipocytes, but angiotensin-convert enzyme (ACE) was 
found only in the stromal-vascular fraction, consisting of blood vessels and 
preadipocytes. However, another group was unable to detect renin despite confirming 
angiotensin I (AngI) generating activity, although it may have been due to use of only 
Northern blot analysis instead of the more sensitive RT-PCR (14). Some of the 
controversy in both humans and rodents may be due to the fact that enzymes other than 
renin and ACE can form Ang II from AGT. Both cathepsin G, which can cleave Ang II 
directly from AGT, and cathepsin D, which has ACE-like activity, are expressed in 
human adipose tissue and thus may play a role in Ang II synthesis (8). 

3. ANGIOTENSIIMOGEN EXPRESSION AND REGULATION IN 
ADIPOSE TISSUE 

Levels of AGT protein are directly controlled by AGT mRNA levels, as no 
posttranscriptional or posttranslational mechanisms of AGT regulation have been 
identified. Levels of AGT in circulation (0.3–1.0 µM) are in the range of the Km for renin 
(0.9–1.2 µM), indicating that AGT availability is the rate-limiting factor for Ang II 
synthesis under most physiological conditions (15). In murine adipocyte cell lines (3T3-
L1, 3T3-F442A, Obl771), AGT mRNA levels are very low in preadipocytes but are 
upregulated dramatically during the course of differentiation into mature adipocytes (16–
18). Like many genes necessary for lipogenesis, AGT is considered a late marker for 
adipocyte differentiation, with maximal levels of synthesis and secretion reached at 10–
12 days after the onset of differentiation (19). Increased AGT expression occurs 
regardless of whether differentiation occurs with hormonal stimulation (i.e., insulin, 
dexamethasone, and isobutyl-methyl-xanthine) or spontaneously, indicating that it is part 
of the normal cellular conversion and not dependent on exogenous factors. Upregulation 
of AGT during adipogenesis can be explained at the molecular level by the presence of a 
differentiation-specific element (DSE) in the AGT promoter that is required for both 
sustained transcriptional expression of AGT and, along with its corresponding binding 
protein (DSEB), for hormonal differentiation of 3T3-L1 adipocytes (20, 21). Peroxisome 
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proliferator-activated receptors (PPARs) and their associated response elements may also 
contribute to differentiation-dependent expression of AGT. Both long-chain natural and 
nonmetabolized fatty acids as well as peroxisome proliferators induced AGT expression 
in preadipocytes with kinetics that closely resembled their effects on known fatty acid-
responsive genes (19). To date, however, no known PPAR response element has been 
identified in the AGT gene. Furthermore, the PPARγ activator rosiglitazone had no effect 
on AGT expression in primary cultures of mature human adipocytes (22). 

Although AGTupregulation is not dependent upon a specific diiferentiation protocol, 
dexamethasone and insulin, two common components of the differentiation cocktail, have 
been shown to regulate and enhance AGT expression. Dexamethasone increased AGT 
expression in Obl771 adipocytes (23). Insulin effects, however, may depend on the cell 
line: increased AGT was reported in 3T3-L1 adipocytes (7), whereas low concentrations 
of insulin were shown to decrease AGT expression in 3T3-F442A and Ob 1771 
adipocytes (24). In vivo, insulin deficiency induced by streptozotocin significantly 
reduced AGT levels in Sprague-Dawley rats; insulin administration reversed this effect 
(25). Very recently, the study from Harte et al. has demonstrated that insulin increased 
AGT protein expression of isolated human abdominal subcutaneous adipocytes in a dose-
dependent manner (26). Triiodothyronine, estrogens, and Ang II, well-known regulators 
of hepatic AGT expression, were shown to have no effect on AGT levels in adipocytes 
(23). 

Angiotensinogen shares nutritional control with many genes involved in lipogenesis, 
implicating the adipose RAS in metabolic regulation. Frederich et al. (27) reported that 
fasting decreased adipose but not liver AGT expression in rats, and that mRNA levels 
were restored by refeeding. Plasma glucose concentration may in part explain the effects 
of fasting/ refeeding on adipose AGT levels. Hyperglycemia in the presence of an insulin 
clamp (euinsulinemia) increased adipose AGT expression by threefold in both lean and 
obese rats. Interestingly, however, hyperinsulinemia/ euglycemia significantly decreased 
adipose and hepatic AGT expression, but only in lean, insulin-sensitive animals (28). 
Collectively, these results suggest that insulin and glucose independently regulate AGT 
expression in adipose tissue. Blood pressure paralleled the changes in adipose RAS 
activity, suggesting that adipose tissue may contribute to blood pressure regulation by 
supplying Ang II. 

Both bilateral nephrectomy and ACE inhibition with enalapril increased AGT 
expression in adipose tissue of Sprague Dawley rats (3), but sodium restriction had no 
effect (29). Adipose AGT expression in male rats is sensitive to testosterone levels, as 
castration results in a 50% reduction in AGT expression levels that are restored by 
testosterone administration. Increased testosterone levels are commonly observed in 
patients with android or upper-body obesity, and a concomitant increase in adipose Ang 
II production may contribute to the increased incidence of hypertension in these patients 
(30, 31). Aging may also contribute to changes in the activity of the adipose RAS. 
Angiotensinogen content was shown to be to be threefold higher in adipocytes from 8-
week-old vs. 26-week-old Wistar rats (14, 32), although no age-related differences were 
reported in obese Zucker rats (33). The effects of various factors on adipocyte AGT 
levels are summarized in Tables 1 and 2. 
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4. ANGIOTENSIN II RECEPTORS IN ADIPOSE TISSUE 

The presence of both angiotensin II receptor (AT1 and AT2) subtypes has been 
demonstrated using molecular (Northern and western blots),  

TABLE 1 Effects of Various Treatments on AGT 
Levels in Adipocytes in Vitro 

Model Treatment Effect on AGT Reference 

3T3-L1, Ob1771, 3T3-F442A preadipocytes Differentiation Increased 16–18 

Ob1771 preadipocytes Natural and  
non-metabolizable  
long-chain fatty acids

Increased 19 

Human primary adipocytes Rosiglitazone  
(PPARγ agonist) 

No effect 22 

Ob1771 adipocytes Dexamethasone Increased 23 

3T3-L1 adipocytes,  
human primary adipocytes 

Insulin Increased 7, 26 

3T3-F442A,  
Ob1771 adipocytes 

Insulin Decreased 24 

Ob1771 adipocytes Triiodothyronine No effect 23 

Ob1771 adipocytes Estrogen No effect 23 

Ob1771 adipocytes Ang II No effect 23 

Ob1771 adipocytes Growth hormone No effect 23 

functional (binding assays), and pharmacological (receptor antagonists) tests. However, 
the identity of the predominant receptor subtype in mature adipose cells has not been 
established due to variable findings across models and species. The AT1 receptors were 
first identified in rat epididymal adipocyte membranes in 1993 (34), and the majority of 
subsequent studies  

TABLE 2 Effects of Various Treatments on AGT 
Levels in Adipose Tissue In Vivo 

Rat model Treatment Effect on AGTmRNA Reference 

Sprague-Dawley Insulin deficiency Reduced 25 

  (streptozotocin)     

Sprague-Dawley Insulin replacement Restored 25 

Sprague-Dawley Bilateral nephrectomy Increased 3 

Sprague-Dawley ACE inhibition (enalapril) Increased 3 
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Sprague-Dawley Sodium restriction No effect 29 

Sprague-Dawley Castration Reduced 31 

Sprague-Dawley Testosterone replacement Restored 31 

Wistar Aging Reduced 14, 32 

Zucker obese Aging No effect 33 

in rats point to AT1 as the primary receptor (11, 35, 36). However, both subtypes have 
been found in human preadipocytes and mature adipocytes, with AT2 being the primary 
type found in mature cells (37). The subtype AT2 has also been shown to predominate in 
adipocyte cell lines of murine origin, and Ang II functions in mice are prevented by AT2 
antagonism. 

5. ANGIOTENSIN II AND ADIPOCYTE GROWTH, 
DIFFERENTIATION, AND METABOLISM 

Clinical and rodent studies in which both humans and rats lost weight in response to ACE 
inhibitors first suggested a possible effect of Ang II on body weight (38, 39). Angiotensin 
II was discovered to exert trophic effects in a variety of tissues and cells (40, 41), and 
subsequent studies have focused on a similar role in adipose tissue (42–44). One study 
reported that the cell cycle was accelerated by Ang II in human preadipocytes in vitro in 
parallel with upregulation of the cell cycle regulator cyclin D1 (44), suggesting that Ang 
II may increase the number of preadipocytes available for differentiation into mature, 
lipid-storing cells. Nonetheless, the primary mechanisms through which Ang II has been 
demonstrated to directly increase adipose mass include the stimulation of adipocyte 
differentiation and the induction of hypertrophy of existing adipocytes (42, 45). 

Several studies demonstrate that prostacyclin (PGI2)—a metabolite of arachidonic acid 
and potent effector of preadipocyte differentiation—serves as the second messenger that 
links Ang II to adipocyte differentiation (46–48). PGI2 was shown to induce 
differentiation of Obl771 preadipocytes (47). Independent studies demonstrated that Ang 
II increased PGI2 production in both adipocytes in vitro (48) and adipose tissue in situ 
(49). Darimont combined these concepts using a coculture system and demonstrated that 
treatment of mature adipocytes with Ang II elicited PGI2 release, which in turn induced 
differentiation of cocultured preadipocytes (42). This response was blocked by 
simultaneous treatment with PD123177, an AT1 receptor antagonist, but not by AT2 
blockade. Angiotensin II effects were also inhibited by aspirin, which inhibits the 
cyclooxygenase enzymes necessary for arachidonic acid conversion to PGI2, and by 
antibodies against PGI2 (42). 

In further support of a link between PGI2, Ang II, and adipocyte differentiation, 
(carba) prostacyclin—a stable analogue of PGI2—was shown to upregulate the 
transcription rate of numerous adipogenic genes, including Agt (18). Finally, exposure of 
rat epididymal fat pads in vivo and ex vivo to Ang II increased the formation of fat cells 
as indexed by an increase in glycerol-3-phosphate dehydrogenase (GPDH) expression 
(50). Explants of epididymal fat were incubated with Ang II in the presence or absence of 
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aspirin, which is a cyclooxygenase inhibitor, thus decreasing PGI2 production. Stromal-
vascular cells (containing the preadipocyte fraction) were then isolated, cultured for two 
days, and examined for spontaneous differentiation. Treatment with Ang II enhanced the 
appearance of cells positive for GPDH, a marker of adipocyte differentiation. This 
response was attenuated by the addition of aspirin or PD123177 but not by losartan, again 
indicating involvement of the AT2 receptor (50). 

These findings markedly differ from the reported effects of Ang II on human 
preadipocyte differentiation. Schling and Loffler demonstrated that Ang II led to a 
distinct reduction in insulin-induced differentiation of primary human preadipocytes (51). 
Interestingly, the attenuation by Ang II was only marginal when cells were induced to 
differentiate with a cocktail of insulin, cortisol, and isobutyl methyl xanthine. In addition, 
pharmacological blockade of the AT1 receptor in the absence of exogenous Ang II 
significantly enhanced adipogenesis. Moreover, mature adipocytes inhibited the 
differentiation of cocultured preadipocytes, and this inhibition was released by addition 
of losartan to the media (52). On the basis of these results, it was proposed that Ang II 
could act as a protective factor against uncontrolled adipose expansion (51), and that 
blockade of the RAS could prevent diabetes by promoting adipocyte formation in adipose 
tissue that would counteract ectopic deposition of lipids in other tissues such as muscle, 
liver, and pancreas (53). Additional experiments will be necessary to validate these 
hypotheses. 

The basis for such marked differences in the consequences of Ang II between rodents 
and humans is unclear. It is important to point out that the rodent studies investigated the 
effects of Ang II on spontaneous differentiation, presumably mediated through PGI2 
release by mature adipocytes, whereas the human experiments examined interactions of 
Ang II with hormonally induced differentiation. It is not known if PGI2 affects 
conversion of human preadipocytes as it does in rodents. However, studies from our 
laboratory have shown that Ang II increases both PGI2 and prostacyclin endoperoxide 
(PGE2) levels in primary cultures of human adipocytes (54). Collectively, the data 
suggest that Ang II interacts differently with multiple signaling pathways that lead to 
adipocyte differentiation; species-specific differences in these interactions cannot be 
ruled out at this time. It is also important to note that in addition to Ang II differentially 
impacting differentiation in human vs. rodent cells, similar effects on lipogenesis and 
adipocyte hypertrophy have been demonstrated in both murine and human adipocytes. 
Figure 1 represents a schematic view of the physiological actions of adipocyte Ang II on 
adipocytes, preadipocytes, and extra-adipose tissues.  
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FIGURE 1 Endocrine and paracrine 
effects of angiotensin II in adipocytes. 
Adipocyte-derived angiotensin II (Ang 
II) regulates adipocyte metabolism, 
including increasing leptin secretion, 
gene expression, and lipogenesis. 
These effects are mediated via 
angiotensin II receptors (ATR). Within 
adipose tissue, adipocyte Ang II also 
increases prostaglandin secretion 
(PGI2), which then promotes 
differentiation of the preadipocytes. 
Adipocyte Ang II, when secreted, 
exerts endocrine effects such as 
increasing blood pressure (as 
demonstrated in transgenic mice 
studies in Fig. 2) as well as other 
potential actions to be determined. 

In adult humans and animals, adipose expansion occurs primarily through hypertrophy of 
existing adipocytes to accommodate increases in cellular lipid storage (55). Although 
insulin is the most well-documented stimulator of fatty acid synthesis and triglyceride 
storage in adipocytes, Ang II exerts similar effects in vitro and in vivo. Physiological 
concentrations of Ang II significantly increase fatty acid synthase and GPDH activities 
and gene expression, and also cellular triglyceride content, in both 3T3-L1 adipocytes 
and primary human adipocytes. This response is attenuated by AT2 but not AT1 receptor 
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antagonists, indicating that Ang II acts through the type II receptor in these adipocyte 
models. Transcription rates of both fatty acid synthase (Fasn) and leptin (Lep) genes were 
also upregulated in parallel with increased fat storage in human primary adipocytes and 
in the 3T3-L1 cell line; this response was shown to be independent of Ang II increases in 
PGI2 secretion, suggesting that Ang II acts through multiple second messenger pathways 
in adipose cells (45, 54). Dissection of the Fasn promoter in reporter gene assays 
identified the E box at the proximal Fasn promoter as critical for this gene’s regulation 
by Ang II. This region overlaps with a previously identified insulin response element, 
suggesting that Ang II and insulin share molecular mechanisms of regulation in 
adipocytes (56). 

Potential actions of Ang II on lipolysis have been studied in humans and rats, but with 
conflicting results. Infusion of a pressor dose of Ang II in Sprague-Dawley rats led to a 
significant loss of body weight over the course of one week, and renin-AT1 (AT1R) 
blockade with losartan prevented this response. However, these animals were pair-fed, 
and the majority of the weight loss was attributed to a reduction in food intake rather than 
a specific effect of Ang II on lipolysis (57). In a similar study, infusion with increasing 
pressor doses of Ang II for seven days resulted in a significantly reduced body weight 
compared to vehicle-infused controls at all Ang II doses (58). Fat pad weights were not 
reduced in Ang II-treated animals, except for a modest reduction in retroperitoneal fat 
pad weights in mice receiving the highest Ang II dosage (59). These authors reported an 
elevation in abdominal surface temperature with Ang II treatment and were unable to rule 
out a role for sympathetic activation of metabolism as the basis for the weight loss. In 
humans, neither subpressor nor pressor doses of infused Ang II nor ACE inhibition with 
enalapril impacted whole-body lipolytic rates (59). However, in a separate study 
microdialysis of subcutaneous adipose tissue with increasing doses of Ang II induced a 
dose-dependent decrease in blood flow, lipolysis, and glucose uptake that was more 
pronounced in the femoral than in the abdominal region (60). It was not determined 
whether these responses were due to direct actions of Ang II or were secondary to an 
accumulation of free fatty acids or a reduction in pH, both of which would result from 
reduced blood flow that in turn would inhibit lipolysis. In a subsequent study this group 
examined the specific effects of Ang II applied to the interstitial space of human adipose 
tissue and found a dose-dependent increase in lipolysis, in spite of a minimal effect on 
local blood flow (61). The latter findings suggest that the actions of Ang II on adipocyte 
metabolism are not exclusively due to changes in local blood flow but rather include 
direct effects of the hormone on adipocyte metabolism. 

6. REGULATION OF ADIPOSE TISSUE RAS IN OBESITY AND 
HYPERTENSION 

The discovery that Ang II increases adipocyte lipogenesis prompted several studies of the 
link between obesity and regulation of the adipose RAS. Variable results have been 
reported in rodents and in humans. Angiotensinogen expression was decreased in adipose 
tissue of obese Zucker rats and viable yellow (Avy) mice when compared by Northern blot 
analysis on the basis of equivalent amounts of total RNA (7). By contrast, expression 
levels in ob/ob and db/db mice were higher than in lean controls (27). Recently, Hainault 
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et al. (33) examined AGT expression in isolated adipocytes from Zucker obese (fa/fa) rats 
during the onset of obesity and found that AGT protein content and secretion when 
expressed per cell were significantly elevated in adipocytes from obese vs. lean animals. 
Elevated rates of AGTsecretion were not simply due to the increased adipocyte size, as 
this effect was still present when adipocytes were fractionated by size and comparisons 
were made between similar subpopulations. In fact, normalization by size enhanced the 
effect, with AGT secretion fivefold greater in adipocytes from obese vs. lean rats. 

Altered distribution of cholesterol in adipocyte membranes is a typical characteristic 
of hypertrophied adipocytes and may provide a mechanistic link to changes in AGT 
expression in obese adipocytes, although at least part of the increased secretion in fa/fa 
rats is cell size-independent. Le Lay et al. reported that treating adipocytes in vitro with 
either methyl-β-cyclodextrin or mevastatin mimicked the membrane cholesterol reduction 
of hypertrophied adipocytes. Expression levels of many adipocyte genes were impacted 
by this treatment, the most significant of which was a ninefold increase in AGT 
expression (62). 

Much of the interest in the adipose RAS lies in its potential role in blood pressure 
regulation, particularly in obesity-associated hypertension. In obese individuals, adipose 
tissue is potentially the most significant source of Ang II in the body. Although the 
specific contribution of adipose-derived Ang II to blood pressure control is certain to 
vary among individuals, its potential impact should not be ignored clinically. Several 
studies in humans suggest a positive relationship between adipose AGT levels and fat 
mass, although controversy remains due in part to the various study protocols that have 
been implemented. Van Harmelen et al. (63) measured AGT levels in subcutaneous and 
omental adipose depots of 20 obese men undergoing weight reduction and found that in 
both depots the AGT levels correlated positively with waist-to-hip-ratio, an index of 
central obesity. Another study found that AGT mRNA in visceral but not subcutaneous 
adipose tissue correlated positively and significantly with body mass index (BMI) in both 
lean and obese individuals (64). By contrast, Sharma et al. (12) looked only at adipocytes 
from subcutaneous depots of both obese normo- and hyper-tensive subjects and reported 
significantly lower AGT mRNA levels in adipocytes from obese compared to lean 
patients regardless of blood pressure. Interestingly, they also reported that Ren, ACE, and 
AGTR1 genes were upregulated in cells from obese individuals that were also 
hypertensive. One consistent finding in both human and rodent studies is that RAS 
components, particularly AGT, are present at much higher levels in visceral vs. 
subcutaneous adipose tissue. Indeed, depot-specific regulation of synthesis of several 
bioactive molecules has been reported for human adipose tissue (65). Clearly, 
interpretation of the link between obesity and the adipose RAS is much more complex in 
humans than in inbred strains of rodents, largely due to heterogenous genetic background. 
Heritability of AGTmRNA levels is very high (estimated at 90%), and several authors 
have reported that AGT expression in adipose tissue varies widely from patient to patient 
in ways that cannot be correlated to known patient characteristics (age, gender, etc.) 
(7,62). Several genetic polymorphisms at the AGT locus have been positively associated 
with plasma AGT levels and risk for hypertension (66,67). One such polymorphism in 
the gene’s promoter region, designated-20A→C, has recently been shown to be an 
important modifier of the relationship between body size and blood pressure in a 
population of African origin (68). Another promoter variant consisting of an A/G 
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polymorphism at −217 has been shown to be much more prevalent among African-
American hypertensives compared to normotensives. Interestingly, this region of the 
promoter binds the CAAT/enhancer-binding protein (C/EBP) family of transcription 
factors, which play an important role in adipocyte gene expression. Moreover, reporter 
constructs containing the human AGT gene promoter with nucleoside A at position −217 
increased basal transcription activity when transiently transfected into HepG2 cells 
compared to constructs with nucleoside G at the same position (69). The DD allele of the 
ACE gene was also recently associated with significant increases in incidence of 
overweight and abdominal adiposity and elevated diastolic blood pressure, particularly 
with aging (70). It is therefore likely that regulation of AGT in human adipose tissue 
results from a complex interplay of genetic, environmental, and physiological factors that 
are only beginning to be unraveled. Studies suggesting a relationship between the adipose 
RAS, obesity, and control of blood pressure in humans are summarized in Table 3. 

7. KNOCKOUT AND TRANSGENIC MOUSE MODELS OF RAS 

Several transgenic mouse models have underscored the importance of AGT levels in 
control of blood pressure. Kim and Smithies introduced 1–4 copies of the Agt gene into 
mice and demonstrated that blood pressure was directly proportional to plasma AGT 
levels and number of Agt gene copies (71).  

TABLE 3 Evidence for an Association Between 
the Adipose RAS, Obesity and Hypertension in 
Humans 

Model Association Depot(s) Reference 

Obese males Positive correlation between waist-to-hip ratio 
and AGT levels 

Subcutaneous 
and omental 

63 

Lean and obese Positive correlation between AGT levels and 
BMI* 

Visceral but not 
subcutaneous 

64 

Normo-and 
hypertensive 
lean and obese 

Lower adipocyte AGT levels in obese vs. lean; 
increased renin, ACE and AT1R expression in 
obese hypertensives 

Subcutaneous 12 

Lean and obese 
males 

ACE I/D polymorphism a significant predictor of 
overweight and abdominal adiposity in men; 
homozygosity of the D allele associated with 
enhanced age-related increase in body weight and 
blood pressure and with higher incidence of 
overweight. 

N/A 70 

Normo-and 
hypertensive 

Individuals homozygous for the 20A→C 
polymorphism in the AGT promoter displayed 
positive correlatlon between BMI and systolic 
blood pressure 

N/A 68 

* BMI=body mass index. 
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Merrill et al. introduced both the human AGT and human Ren genes into mice and also 
found a direct effect on blood pressure (72). Transgenic models also provide the most 
convincing evidence that AGTplays an important role in regulation of adiposity. The 
most convincing evidence for a role for the adipose RAS in control of adiposity comes 
from recent studies with Agt knockout (Agt-ko) and transgenic mice. The knockout 
animals exhibited hypotrophy of adipocytes, decreased lipogenesis and increased 
locomotor activity (73–75). Body weight was significantly reduced in Agt-ko mice 
compared to wild-type littermates, an effect that was not due to decreased body length or 
fat-free mass but rather to reduced adipose mass. Epididymal fat pad weights were 
reduced by twofold compared to wild type controls, an effect that was surprisingly not 
observed in other Ang II-responsive organs (heart, kidney, etc.). Investigation of adipose 
cellularity revealed that the reduction in fat pad weight was due to adipocyte hypotrophy 
that was accompanied by a twofold reduction in fatty acid synthase activity, which is 
consistent with previously described effects of Ang II on lipogenesis in adipocytes in 
vitro (45). Interestingly, a high-fat diet did not induce significant weight gain in Agt-ko 
animals. Moreover, a high-fat diet failed to suppress FAS activity in Agt-ko but not in 
wild-type mice, suggesting that Ang II is involved in the feedback loop between dietary 
fat intake and control of adipocyte FAS activity. These findings were further supported 
by the subsequent creation of transgenic mice that overexpress Agt specifically in 
adipocytes by placing the Agt gene under control of the aP2 promoter (74). 
Overexpression of Agt in adipose tissue increased plasma AGT levels by 22%, and 
systolic blood pressure by 16%, supporting a potential role for the adipose RAS in 
hypertension. These animals also exhibited dramatic increases in fat mass that were due 
to adipocyte hypertrophy. Interestingly, total fat cell number was lower in transgenic 
animals compared to wild-type controls. There was no difference in the weight of brown 
adipose tissue and surprisingly no difference in circulating leptin levels in aP2-Agt and 
wild-type mice, despite increased fat mass. Mean 23-hour metabolic rates were also 
similar across all genotypes. These transgenic mice were also bred with Agt-ko mice to 
examine the specific contribution of the adipose RAS to circulating Ang II and whole-
body function. Total fat mass, epididymal fat pad weight, and adiposity, all of which 
were significantly reduced in Agt-ko mice, were restored to wild-type levels in aP2-Agt-
ko animals, in which Agt expression was reintroduced specifically in adipose tissue (73–
75). The effects of Agt deletion, and replacement and overexpression in adipose tissue, 
are summarized in Fig. 2. 

Whereas other components of the RAS have been genetically manipulated in mice, the 
only other report of an effect on body weight was in animals homozygously null for both 
the AT1A and AT1B receptors. These mice, but not mice homozygous null for either 
subtype alone, displayed reduced overall body weight compared to wild-type mice (76). 
However, organ weights were also reduced by a comparable magnitude, leading to the 
conclusion that deletion of both forms of the AT1 receptor impacted overall animal 
growth in a general manner. Clearly, adipose tissue-specific, targeted deletions of other 
RAS components would provide additional insight into the mechanisms through which 
the adipose RAS regulates fat mass and exerts its endocrine effects.  
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FIGURE 2 Endocrine and paracrine 
effects of targeted expression of 
angiotensinogen in adipose tissue. This 
figure summarizes the phenotypes of 
the angiotensinogen (Agt) knockout 
mouse (ko), the ko mouse that 
reexpresses AGT in adipose tissue (Tg-
ko) and the wild-type (WT) mouse 
overexpressing AGT in adipose tissue 
(Tg-wt). 

8. CONCLUSIONS 

Angiotensin II is one of many factors secreted by adipose cells, recently found to 
function as endocrine cells. The discovery of a local RAS in adipose tissue laid the 
foundation for postulating a role of this local RAS in obesity-associated hypertension. 
The studies discussed in this review demonstrate both paracrine and an endocrine roles 
for adipose angiotensin in the regulation of adipocyte metabolism and gene expression, 
and for the regulation of kidney homeostasis and blood pressure, respectively. The recent 
studies on mice specifically overexpressing angiotensinogen in adipose tissue were 
especially crucial in demonstrating the latter role. Many questions, however, require 
further studies. For example, it is not known whether specific inactivation of 
angiotensinogen in adipose tissue would reduce blood pressure and alter adipocyte 
metabolism as might be inferred from adipose tissue-specific overexpression of AGT. 
Further, no studies have addressed signaling mechanisms of Ang II in adipocytes and 
only limited studies have addressed dietary modulation of adipocyte RAS. Such studies 
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are only a few of those needed to further our understanding of the function and regulation 
of Ang II in adipose tissue and further clarify the role of this system in obesity-related 
hypertension. 
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1. INTRODUCTION 

Adipocytes are highly specialized cells that play a crucial role in the energy balance of 
most vertebrates. Adipocytes convert excess energy to triacylglycerol and deposit it 
during feeding in preparation for periods of food deprivation when energy intake is low. 
Adipocytes may become enlarged by increased fat storage. Moreover, precursor cells 
present in the stromal vascular fraction of adipose tissue can differentiate into adipocytes 
even in mature animals.These two processes, fat synthesis and adipogenesis, are under 
tight hormonal and nutritional control. In this review, we have summarized our work on 
the regulation of fat synthesis. We have focused specifically on the transcriptional 
activation of the fatty acid synthase (FAS) gene and on the inhibitory role of two 
secretory factors, preadipocyte-specific preadipocyte factor-1 (Pref-1) and adipose tissue-
specific adipocyte differentiation-specific factor (ADSF), in adipose differentiation.  

2. TRANSCRIPTIONAL REGULATION OF GENES ENCODING 
LIPOGENIC ENZYMES 

2.1. Nutritional and Hormonal Regulation of Lipogenic Enzymes 

Fatty acid and triacylglycerol synthesis is regulated in response to the 
nutritional/hormonal state in animals. Subjecting rodents to fasting causes a decrease in 
lipogenesis; when fasted animals are subsequently refed a diet high in carbohydrate and 
low in fat, there is a prompt and drastic rise in the production of fatty acids and 
triacylglycerol to levels well above those observed in normally fed rats. Under lipogenic 
conditions, excess glucose is converted to acetyl-CoA, which is used for the synthesis of 
long-chain fatty acids. By the action of its seven active sites, fatty and synthase (FAS) 
catalyzes all of the reaction steps in the conversion of acetyl-CoA and malonyl-CoA to 
palmitate. The fatty acids produced are then used for esterification of glycerol-3-
phosphate to generate triacylglycerol. Mitochondrial glycerol-3-phosphate 
acyltransferase (GPAT) catalyzes the first committed step in glycerophospholipid 
biosynthesis by catalyzing acylation of glycerol-3-phosphate using fatty acyl-CoA to 
generate l-acylglycerol-3-phosphate. The concentrations of many of the key enzymes in 
this pathway, including FAS and mitochondrial GPAT, are decreased during fasting and 



subsequently “superinduced” during the refeeding period. Induction of these enzymes is 
highly coordinated and these inducible genes may be regulated via common mechanisms 
(1). 

It is generally accepted that insulin in the circulation, along with glucose, is elevated 
during feeding of a high carbohydrate diet and induces enzymes involved in fatty acid 
and triacylglycerol synthesis. Glucagon, on the other hand, is elevated during starvation 
and suppresses activities of enzymes in fatty acid and fat synthesis by increasing 
intracellular cyclic adenosine monophosphate (cAMP). In our early studies, we showed 
that transcription of the FAS and mitochondrial GPAT genes increased when previously 
fasted mice were refed a high carbohydrate diet (2, 3). There was no detectable 
transcription of FAS or mitochondrial GPAT genes in fasted or fasted-refed 
streptozotocin-diabetic mice, indicating that insulin is required for transcriptional 
induction by fasting/refeeding. Administration of cAMP at the start of feeding in normal 
mice prevented an increase in the transcription of these genes by feeding. Furthermore, 
there was a rapid and marked increase in the transcription rates of the FAS and GPAT 
genes when insulin was given to diabetic mice (2, 3). Overall, these genes are regulated at 
the transcriptional level by nutritional and hormonal stimuli. The molecular mechanisms 
underlying transcriptional regulation of these genes need to be elucidated.  

2.2. Regulation of Fatty Acid Synthase Gene Transcription 

To study the molecular mechanisms by which lipogenic enzymes such as FAS and 
GPATare regulated, we employed 3T3-L1 adipocytes in culture. These cells provide a 
good model system for studying lipogenic gene transcription since these genes are highly 
induced during the differentiation process and are sensitive to hormones. In these cells 
the regulation of FAS and GPAT mimics regulation in vivo (2). We identified an E-box 
motif (5′-CATGTG-3′) at position-65 that is a binding site for upstream stimulating factor 
(USF) (4), a ubiquitous member of the bHLH leucine zipper family of transcription 
factors implicated in glucose control of L-type pyruvate kinase gene transcription (5). 
Both USF-1 and USF-2 occupy the-65 complex (4); dominant negative mutants of USF-1 
and USF-2 inhibited insulin stimulation of the FAS promoter (6), demonstrating that 
these proteins are required for insulin stimulation of FAS gene transcription. We also 
found that insulin regulation of the FAS promoter occurs via the PI3-kinase/Akt pathway 
(7). 

Another transcription factor found to play a key role in FAS gene transcription is 
sterol regulatory element binding protein-1 (SREBP-1). This protein recognizes a sterol 
regulatory element (SRE) (5′-TCACNCCAC-3′) sequence (8–12), but can also bind to E-
boxes due to the presence of an atypical tyrosine residue in the DNA-binding domain 
(13). A major role for SREBP in transcriptional regulation of FAS was first suggested 
when Goldstein and Brown demonstrated that overexpression of the truncated active 
form of SREBP-1 in liver causes a large accumulation of triacylglycerol and the 
induction of a battery of lipogenic genes including FAS and mitochondrial GPAT (14). 
Others have shown that induction of FAS and other lipogenic enzymes by 
fasting/refeeding is severely impaired in SREBP-1 knockout mice (15). It has also been 
shown that SREBP-1c, one of two isoforms of SREBP-1, is highly induced by refeeding 
a carbohydrate-enriched diet and that SREBP can transactivate the FAS promoter by 
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binding to the -65 E-box (16). However, as described earlier, our in vitro data strongly 
indicated to us that the critical factor functioning through the-65 E-box was USF, not 
SREBP (Fig. 1A). In addition, we identified a canonical SRE, at150 (5′-ATCACCCCAC-
3′) in the FAS promoter suggesting a potential role of SREBP in regulation of the FAS 
gene (17). To determine whether SREBP functions through this site, we cotransfected a 
truncated active form of SREBP-1a into 3T3-L1 cells along with various FAS-LUC 
reporter plasmids (17)FAS-luciferase(FAS-
LUC).InductionoftheFASreportergenebySREBP in vitro was reduced when sequences 
between −136 and −19 were deleted (not shown), suggesting the presence of a binding 
site for SREBP in this region, probably the −65 E-Box. However, when binding of 
SREBP to the −65 E-box was prevented by mutation, deletion of sequences between 
−184 and −136 abolished transactivation by SREBP-1 (Fig. 1B), indicating the presence 
of an SREBP-responsive element in this region. In vitro, SREBP may activate and 
increase FAS promoter activity if any single putative SREBP binding site is present, 
regardless of its true physiological relevance. In support of this, only when both the −150 
SRE and −65 E-box were mutated was trans-activation of the FAS promoter prevented by 
SREBP in vitro (Fig. 1C). 
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FIGURE 1 Constructs of FAS 
promoter and localization of the FAS 
promoter region mediating FAS 
transactivation by SREBP-1a. (A) 
Schematic of putative USF and 
SREBP binding site in the FAS 
promoter. The diagram represents the 
proximal 444 bp of the FAS promoter. 
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(B) Localization of the FAS promoter 
region mediating FAS transactivation 
by SREBP-1a. Five micrgrams of 
−2100, −2100 (−65), −444 (−65), − 
184, and −136 (−65) FAS-LUC 
plasmids were cotransfected with 25 
ng of an expression vector for SREBP-
1a into 3T3-L1 fibroblasts. The values 
represent the mean± standard 
deviation. (C) Role of the −150 SRE in 
activation of the FAS promoter by 
SREBP Five micrograms of each of 
the indicated constructs containing 
−444 bp of the 5′-flanking sequence of 
the FAS gene bearing mutations at the 
indicated positions were cotransfected 
with 25 ng of an expression vector for 
SREBP-1a into 3T3-L1 fibroblasts.The 
values represent the mean ± standard 
deviation. 

To examine regulation of the FAS promoter in a physiological context in vivo, we 
generated transgenic mice carrying the 2.1-kb 5′-flanking promoter region of the rat FAS 
gene fused to the chloramphenicol acetyltransferase (CAT) reporter gene (18). The 
transgene was expressed strongly only in lipo-genic tissues, liver, and white adipose 
tissue, and was drastically induced by feeding and insulin. Overall, the studies from these 
transgenic mice demonstrated that the first 2.1-kb 5′-flanking sequence of the FAS gene 
is sufficient for tissue-specific and hormonal/nutritional regulation. To further define the 
FAS promoter sequences required for transcriptional activation by nutrients and 
hormones in vivo, we generated several additional lines of transgenic mice (19), each 
carrying different 5′-deletion constructs: −644, −444, −278, and −131 FAS-CAT (Fig. 
2A). As shown in Fig. 2B, both the −644 and −444 constructs behaved in a manner 
similar to that in the −2.1 kb transgenic mice, indicating that the region between −444 
and −2.1 kb does not contain any sequences necessary for activation of FAS by fasting/ 
refeeding. However, when the same experiment was conducted on −278 FAS-CAT 
transgenic mice, the induction of CAT, although detectable, was severely decreased. This 
indicates that the region between −444 and −278 contains one or more elements required 
for transcriptional activation of FAS. Furthermore, no CAT expression was detectable in 
fasted/refed −131 FAS-CAT transgenic mice, indicating that the region between −278 
and −131 contains additional element(s) required for basal transcription of FAS. Similar 
results were obtained upon insulin administration to streptozotocin diabetic transgenic 
mice. We concluded that two major regions of the FAS promoter are required for 
transcriptional activation by refeeding/insulin: one between −278 and −131, which we 
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showed to be required for low-level activation of the promoter, and a second region 
between −278 and −444, required for maximal “superinduction” of the gene. We also 
showed through gel shift assays that a second E-box present at position −332 is a binding 
site for USF-1 in vitro, and that this site may play an important role for the high-level 
induction of FAS that is observed with feeding/insulin (19). 

To determine the regions in the FAS promoter through which SREBP-1 functions in 
vivo, we employed mice transgenic for the truncated, nuclear-active form of human 
SREBP-1a (amino acids 1–460) under the control of the PEPCK promoter (14, 17). In 
these mice, the transgenic SREBP-1a is induced by fasting and repressed by refeeding, 
whereas endogenous  

 

FIGURE 2 Localization of regions in 
the FAS promoter required for 
induction by fasting/refeeding and 
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SREBP-1a in vivo. (A) Constructs 
used in generating the FAS promoter-
CAT transgenic mice. The upper panel 
shows the restriction fragments 
inserted into pBLCATS to generate the 
various FAS promoter-CAT fusion 
genes indicated in the lower panel. (B) 
Regulation by fasting/refeeding of 
CAT mRNA expression driven by the 
various FAS promoter regions in the 
indicated FAS-CAT single transgenic 
and FAS-CAT/PEPCK-SERBP-1a 
double transgenic mice. Transgenic 
mice were either fasted for 24 h or 
fasted for 24 h and then refed a high-
carbohydrate, fat-free diet for 16h. 
Total RNA isolated from liver or 
adipose tissue was subjected to RNase 
protection assay to determine CAT, 
FAS, and actin mRNA levels. 
*Represents an autoradiogram on 
BioMax film (Kodak) exposed for 3 
days, and F and F-R indicate fasted 
and fasted refed states, respectively. 
Essentially the same results were 
obtained from three independent 
experiments. 

SREBP-1c is absent in the fasted state but induced by refeeding (17). The level of hepatic 
FAS mRNA was found to be high whether these animals were fasted or refed (Fig. 2B). 
We mated our five 5′-deletion FAS-CAT transgenic mice to SREBP transgenic mice and 
subjected them to fasting/refeeding. As with the single FAS-CAT transgenic mice 
described earlier, the −644 and −444 kb double transgenic mice both showed high CAT 
expression in the refed state (Fig. 2B). Notably, CAT expression was also high in the 
fasted state in all three constructs, indicating that the region between −2100 and −444 
does not contain the putative site(s) for binding and function of SREBP-1. However, in 
the −278 FAS-CAT transgenic mice, CAT induction was reduced whether the animals 
were fasted or refed, and was completely absent in the −131 FAS-CAT double transgenic 
mice, suggesting that the region between −131 and −278 contains at least one element 
responsible for induction of FAS by SREBP. An increase in SREBP and its binding to the 
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− 150 SRE may be the major limiting mechanism for activation of FAS gene 
transcription by fasting/refeeding in vivo. 

2.3. Fatty Acid Synthase Promoter Occupancy and Function of USF 
and SREBP In Vivo 

Our in vitro experiments clearly established the importance of the cis-acting elements in 
the proximal FAS promoter required for insulin regulation in vitro. A critical remaining 
question was whether the −150 SRE and −65 E-box each were required elements in vivo; 
in our in vitro experiments, mutation of the −65 E-box in the context of the largest 
−2.1kb promoter prevented induction by insulin (6), but had no effect on activation by 
cotransfected SREBP-1 (17). To address these questions, we introduced mutations into 
the −150 SRE and −65 E-box in the context of the −444 FAS-CAT transgenic construct 
(20). We chose the −444 promoter fragment for these experiments as it was the shortest 
5′-deletion construct that conferred maximal expression of CAT. As shown in Fig. 3A, no 
expression of CAT was detected in three transgenic lines carrying a mutation at the −150 
SRE, indicating that this element indeed is required for induction in vivo. Similar results 
were obtained when the −444 (−65 mut) mice were fasted and refed: no significant 
expression of CAT was detected, whereas the control −444 FAS-CAT mice showed a 
strong induction by refeeding, and endogenous FAS expression was high in all mice (Fig. 
3B). Moreover, CAT expression was still not detected when −444 (−150 mut) FAS-
CAT/PEPCK-SREBP-1 double transgenic mice were fasted or refed, strongly suggesting 
that SREBP-1 functions directly through the −150 SRE in vivo. We concluded that both 
the −150 SRE and −65 E-boxes are required for induction by fasting/refeeding.  

 

FIGURE 3 Requirement of the −150 
SRE and −65 E-Box for nutritional 
regulation of FAS in vivo. (A) RNase 
protection assay was performed on 
mRNA extracted from the livers of 
fasted and refed −444 (−150m) FAS-
CAT transgenic mice to determine the 
mRNA levels for endogenous FAS and 
the reporter CAT genes. ß-Actin 
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mRNA levels are shown as controls. 
A, B, and C designate the three 
transgenic lines used in the 
experiment. (B) RPA was performed 
with mRNA extracted from the livers 
of fasted and refed −444 (−65m) FAS-
CAT transgenic mice to determine the 
mRNA levels for endogenous FAS and 
the reporter CAT genes. ß-Actin 
mRNA levels are shown as controls. 
Three transgenic lines were also used 
in this experiment. 

To directly examine the occupancy of the FAS promoter by USF and SREBP in vivo, we 
utilized the chromatin immunoprecipitation (ChIP) technique (20). Livers from mice that 
were fasted or fasted/refed were chemically cross-linked and then sonicated to shear the 
DNA. DNA fragments that were cross-linked to USF or SREBP were then 
immunoprecipitated from the chromatin using polyclonal anti-USF and anti-SREBP 
antibodies. Captured DNA fragments were analyzed by PCR using primers 
complementary to the CAT transgene, as well as to endogenous FAS and low density 
lipoprotein receptor (LDLR) promoters used as internal controls. We found that USF 
binding to the endogenous promoter is unchanged by fasting/refeeding, but a clear and 
strong induction of SREBP-1 binding in the refed state was detected (Fig. 4A). The 
patterns of USF and SREBP binding to the endogenous FAS promoter and −444 FAS-
CAT transgene were indistinguishable, indicating that the proximal −444 region contains 
binding sites for both proteins. 

A significantly different result was obtained when we performed ChIP on chromatin 
from fasted/refed −131 FAS-CAT transgenic mice: we consistently observed binding of 
USF, but not SREBP, signifying that the 65 E-box is not occupied by SREBP in vivo. 
The −278 construct, however, was bound by both USF and SREBP, supporting our 
hypothesis that the binding  
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FIGURE 4 Binding of USF and 
SREBP to the endogenous FAS 
promoter and FAS-CAT transgenes in 
vivo. (A) Cross-linked chromatin 
samples from −444 FAS-CAT mice 
fasted or refed were 
immunoprecipitated with anti-USF and 
anti-SREBP antibodies, and the DNA 
was analyzed by PCR using the 
appropriate primers. The sizes of the 
PCR-generated fragments were 269 bp 
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for endogenous FAS, 230 bp for FAS-
CAT, and 242 bp for LDL receptor 
(LDLR). Controls included a 
precipitation lacking antibody (no Ab) 
and chromatin (mock), and 
immunoprecipitation with an unrelated 
antibody (unrelated). (B) ChIP was 
performed on cross-linked chromatin 
of livers from fasted and refed 
−444(−150m) FAS-CAT transgenic 
mice immunoprecipitated with 
antibodies against USF and SREBP 
DNA was analyzed by PCR with the 
appropriate primers. LDL receptor 
(LDLR) promoter is shown as a 
control. (C) ChIP was performed on 
cross-linked chromatin of livers from 
fasted and refed −444(−150m) FAS-
CAT transgenic mice 
immunoprecipitated with antibodies 
against USF and SREBP. DNA was 
analyzed by PCR with the appropriate 
primers. LDL receptor (LDLR) 
promoter is shown as a control. The 
results shown are representative of a 
minimum of three independent 
experiments for at least two of the 
founder lines. 

site for SREBP in vivo is the −150 SRE. Moreover, binding of SREBP to the promoter 
showed a steady increase during the first 4–12 hours after the start of refeeding, whereas 
binding of USF appeared to be constant. Taken together, these results support a model in 
which induction of SREBP protein and its binding to the −150 SRE is a major-rate 
limiting step in transcriptional stimulation by glucose/insulin. On the other hand, the level 
of USF-1 protein does not change with nutritional status, which is consistent with our 
results; nevertheless, we cannot rule out posttranslational modifications (i.e., 
phosphorylation) that might change its transcriptional activity and/or interaction with 
other transcription factors, components of the general transcriptional machinery, or both. 

When we performed ChIP analysis on livers from the −444 (−150 mut) mice, no 
binding of SREBP to the transgene promoter was observed (Fig. 4B), even when SREBP-
1a was overexpressed, providing the first direct evidence that the −150 SRE is the 
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element through which SREBP functions in vivo. Similarly, when we performed ChIP on 
livers from the −444 (−65 mut) mice, we consistently observed only USF, but not 
SREBP, binding (Fig. 4C). This was a surprising result, especially in light of our 
evidence that SREBP functions through the −150 element.The strong USF signal 
obtained from −444 (−65mut) FAS-CAT mice can easily be explained by binding of USF 
to the upstream −332 E-Box. Since there is no binding of SREBP to the transgene 
promoter in the −131 FAS-CAT transgenic mice, the lack of SREBP binding to the −150 
SRE when the −65 E-box is mutated could only be explained by a functional and/or 
cooperative interaction between USF and SREBP. The lack of SREBP binding in both 
cases correlates well with the lack of CAT expression in mice transgenic for these 
constructs. Our results suggest that SREBP is the key transcription factor for regulation 
of FAS by fasting/refeeding and that USF probably functions as an important coregulator 
of SREBP binding and function. We are currently studying whether USF and SREBP 
form a common protein complex on the DNA, and whether these two factors directly 
work together to mediate transcriptional activation of FAS. Overall, our studies have 
clearly shown the importance of the −65 E-Box and −150 SRE for transcriptional 
regulation of FAS in vivo and establish a critical role of both USF and SREBP for this 
regulation. 

3. REGULATION OF ADIPOSE DIFFERENTIATION 

Gene expression studies during adipocyte differentiation have firmly established that 
peroxisome proliferator-activated receptor γ (PPARγ) and the CCAAT enhancer-binding 
protein (C/EBP) family of transcription factors play central roles in adipocyte 
differentiation (21, 22). However, various factors in cell-cell and cell-matrix 
communications govern expression of these transcription factors and thereby regulate 
conversion of preadipocytes to adipocytes (23). Although adipose tissue serves as the 
major energy reservoir in higher eukaryotes, the role of adipose tissue as a secretory 
organ has emerged through the discovery of leptin (24, 25). In addition to leptin, other 
factors including adiponectin and TNF-α are also secreted from adipose tissue. These 
factors are involved in regulating a variety of physiological functions including satiety 
and energy metabolism. For example, leptin levels are known to reflect adipose tissue 
mass and may act as a satiety signal to control food intake as well as intermediary 
metabolism. In addition, some of these factors may regulate adipocyte differentiation for 
feedforward or feedback regulation of adipogenesis. In an attempt to understand 
molecules that play critical roles in the conversion of preadipocytes to adipocytes, we 
identified two secretory factors, preadipocyte-specific Pref-1 and adipocyte-specific 
ADSF. 

3.1. Preadipocyte Factor-1, an Epidermal Growth Factor-Repeat-
Containing Protein 
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3.1.1. Alternative Splicing and Generation of Functionally Active Soluble 
Form of Pref-1 

Preadipocyte factor-1 (pref-1) encodes a protein of 358 amino acids that contains two 
hydrophobic stretches: one located within the first 20 N-terminal residues that has the 
characteristics of a signal sequence and the other, spanning amino acids 300–322, 
functioning as a single membrane-spanning domain with six tandem EGF repeats in the 
extracellular domain (26). Sequence analysis shows that Pref-1 shares structural 
homology with the notch/delta/serrate family of signaling proteins that are involved in 
cell fate determination. However, due to the lack of a DSL domain which is conserved in 
all notch ligands, Pref-1 is unlikely to be a notch ligand. 

The Pref-1 is found in the preadipocyte cell membrane with molecular mass ranging 
from 50 to 60 kDa due to alternate splicing and glycosylation (26). In addition to the full-
length form, three major short forms of Pref-1 each containing in-frame deletions in the 
extracellular juxtamembrane region are generated by alternative splicing (Fig. 5A). 
Moreover, the Pref-1 protein contains two proteolytic cleavage sites at the extracellular 
domain; one is located near the fourth EGF repeat and the other in the juxtamembrane 
domain. The full-length transmembrane form of Pref-1 undergoes cleavage at those sites 
to release soluble forms of 24–25 kDa and 50 kDa, respectively (27). In addition to the 
longest alternative spliced form of Pref-1, named Pref-1A, three other shorter forms 
(Pref-1B, Pref-1C, and Pref-1D) containing in-frame deletions in the juxtamembrane 
domain and the EGF6 repeat are found to be abundant in Pref-1-expressing cells. Of the 
four major alternatively spliced products of Pref-1, only Pref-1A and Pref-1B can 
generate both large and small soluble forms. On the contrary, Pref-1C and Pref-1D 
generate only the small soluble form. This could be due to the membrane proximal 
cleavage site within a 22-amino acid juxtamembrane sequence. 

3.1.2. Inhibition of Adipocyte Differentiation by Pref-1 

Upon treatment with the dexamethasone/methyisobutylxanthine (Dex/MIX), 3T3-L1 
preadipocytes fully differentiate into adipocytes in a period of 5–7 days. The Pref-1 is 
highly expressed in 3T3-L1 preadipocytes at confluence and its expression is abolished in 
fully differentiated adipocytes. The decrease in Pref-1 mRNA is one of the earliest 
responses of 3T3-L1 preadipocytes known to date upon treatment with the differentiation 
inducing agents, Dex/MIX (26). 

To demonstrate the role of Pref-1, a pref-1 antisense construct was stably transfected 
into 3T3-L1 cells. In the presence of MIX but in the absence of Dex, antisense 3T3-L1 
cells can undergo a low but spontaneous differentiation into adipocytes, whereas control 
cells showed no sign of  
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FIGURE 5 Pref-1 constructs and 
inhibition of adipocyte differentiation 
by soluble pref-1. (A) Pref-1A has a 
secretary signal sequence (S), six EGF 
repeats (boxes labeled l–6), a 
juxtamembrane region (dotted box), a 
transmembrane domain (black box), 
and a cytoplasmic domain (hatched 
box). Pref-1A has proximal (P) and 
distal (D) proteolytic processing sites, 
as indicated. The major alternatively 
spliced forms, Pref-1B- Pref-1D, have 
an in-frame deletion at the 
juxtamembrane region and EGF repeat 
6. Pref-1∆21 is an artificial Pref-1 with 
a 21-amino acid deletion 
corresponding to the processing site 
proximal to the transmembrane region 
(P-site). Pref-IEC includes only the 
extracellular domain of Pref-1, 
representing the large soluble form. 
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HA-HA epitope. 3T3-Ll cells were 
differentiated in conditioned media 
from COS cells transfected with 
pcDNA3.1 control, Pref-1A, Pref-1EC, 
or Pref-1∆21 expression vectors. (B) 
Western blot analysis of Pref-1 
expression in transfected COS cell 
lysates and conditioned media. Left-
hand and middle panels: COS cells 
were cultured in serum-free DMEM. 
Right-hand panel, COS cells were 
cultured in DMEM with 10% FBS. 
The arrows indicate Pref-1 in cell 
lysate and the larger soluble fragment 
in the conditioned media. The asterisk 
indicates the smaller soluble fragments 
in conditioned media. (C) Oil Red 0 
staining of 3T3-Ll cells differentiated 
in the conditioned media with 10% 
FBS. (D) Northern blot analysis for 
adipocyte marker expression in 
differentiated cells. PPARγ-
peroxisome prolifera-toractivated 
receptor γ. (E) The top-left two panels 
show immunoblot analysis for Pref-1 
expression in cell lysates and serum-
free conditioned media from COS cells 
transfected with Pref-1A, Pref-1D, or 
empty vector. The top-right panel 
shows the phosphorylated secreted 
Pref-1 in conditioned media from COS 
cells transfected with the P-tagged 
expression vector for Pref-1A and 
Pref-1D, as described in the text. The 
arrows indicate Pref-1 in cell lysates 
and the larger soluble fragment in the 
conditioned media. The asterisk 
indicates the smaller soluble fragments 
in the conditioned media. Lower left 
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panel: Oil Red O staining of 3T3-Ll 
cells differentiated in serum-containing 
conditioned media from COS cells 
transfected with Pref-1A, Pref-1D, or 
empty vector. Lower right panel: 
Northern blot analysis of adipocyte-
marker expression after differentiation.  

adipocyte conversion. Furthermore, preadipocytes stably transfected with pref-1 lack the 
capability to differentiate or to acquire the characteristics of mature adipocytes, such as 
lipid accumulation and expression of genes involved in lipid metabolism. These studies 
convincingly demonstrate that pref-1 expression inhibits adipose conversion of 3T3-L1 
cells, and also that pref-1 downregulation is a necessary step in adipocyte differentiation 
(26). The molecular mechanism of Pref-1 function in adipocyte differentiation remains 
unknown. However, the presence of EGF-like repeats in the protein and the demonstrated 
role of this motif in other molecules suggest that Pref-1 may function via interaction of its 
EGF-like repeats with its putative receptor, thereby maintaining a preadipocyte 
morphology. 

The Pref-1 presents a complex expression pattern with multiples trans-membrane and 
soluble forms. We found that the membrane form of Pref-1 is proteolytically processed at 
two sites in the extracellular domain, resulting in the larger (50 kDa) and smaller (25 
kDa) soluble forms. Using conditioned media from COS cells transfected with various 
forms of Pref-1 (Pref-1A-, Pref-1D, and Pref-1∆21), we demonstrated that only the large 
soluble form (50 kDa), corresponding to the full ectodomain, inhibits 3T3-L1 adipocyte 
differentiation, by preventing lipid accumulation and expression of different adipocyte 
markers such as FAS, stearyl-CoA desaturase-1 (SCD-1), and PPARγ. On the other hand, 
the artificial membrane form of Pref-1 without the juxtamembrane cleavage site (Pref-
l∆21) was not effective in inhibiting adipocyte differentiation. Prevention by Pref-1 of 
adipocyte transcription factor PPARγ expression suggests that Pref-1 acts early during 
the differentiation process in inhibiting adipogenesis (Fig. 5B-E). Of the four alternative-
splicing products, Pref-1A and Pref-1B, which generate both large and small soluble 
forms, inhibit adipocyte differentiation, whereas Pref-1C, Pref-1D, and Pref-1∆21, which 
lack the processing site proximal to the membrane and therefore generate only the 
smaller soluble form, did not show any effect. Thus, the 24–25 kDa form could be 
considered as a product originated by proteolysis at the membrane-distal cleavage site of 
the large soluble form. One can speculate that cleavage of the large soluble form may 
serve as a mechanism to inactivate or modulate its activity. 

3.1.3. Studies of Pref-1 Knockout and Pref-1 Overexpressing Mice 

In the embryonic stage of mice, Pref-1 is expressed in multiple tissues, such as liver, 
lung, tongue, pituitary, and developing vertabrae (26). Also, Pref-1 is found in mouse 
placenta, and detectable amounts of circulating Pref-1 are found in maternal serum in 
concentrations that correlates with the litter size (28). The increased Pref-1 concentration 
in maternal serum may be caused by the abundant synthesis and secretion of the protein 
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by fetuses. However, expression of Pref-1 after birth is rapidly abolished in most tissues 
and becomes restricted to certain cellular types such as preadipocytes (26), pancreatic 
islets cells (29), thymic stromal cells (30), and adrenal gland cells (31). This expression 
pattern suggests that, besides its role in adipocyte differentiation, pref-1 could also be 
involved in embryonic development. In order to define the in vivo role of Pref-1, we have 
recently generated a pref-1 knockout mouse by targeted deletion (32). The genomic pref-
1 allele was disrupted by insertion of a neomycin-resistance cassette in place of exon 2 
and 3. At weaning age, both male and female pref-1 null mice had approximately 14% 
lower body weight than wild-type mice. However, pref-1 null mice rapidly started 
gaining more weight afterward than wild type, and no differences in body weight could 
be found at around 10 weeks of age (Fig. 6A). Organ analysis showed that several organs, 
including lungs and kidney, remained significantly smaller in null mice. In contrast, the 
weight of major  

 

FIGURE 6 Pref-1 knockout mice 
exhibit accelerated adiposity. (A) 
Female Pref-1 null (filled 
circles)(Null) and wild type (open 
circles) (WT) mice were fed high-fat 
(45 kcal%) diet ad libitum from 21 
days of age and were weighed at 4-day 
intervals. Statistics were performed 
with a two-tailed t test. For female 
mice, from day 21 to day 68, P<0.01, 
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and from day 72 and day 76, P<0.05. 
Pref-1 null mice also display 
accelerated adiposity. (B) Percentage 
of fat pad and organ weight relative to 
body weight. Fat depots and organs 
were dissected from 16-week-old WT 
and Pref-1 Null mice fed a high-fat diet 
(n=7 to 10 per group). Ing-inguinal fat 
pad; Retro-retroperitoneal fat pad; Epi-
epididymal fat pad; BAT-brown 
adipose tissue. All values are means ± 
SEM. *-P<0.05; **-P<0.01. (C) 
Expression of adipocyte marker genes 
in adipose tissues (Ing-inguinal fat pad. 
Total RNA was extracted from adipose 
tissue of 16-week-old wild type (W) 
and Pref-1 null (N) mice fed a high-fat 
diet. (D) Paraffin section of inguinal 
fat pad from 16-week-old female 
mouse. The scale bar represents 50 
µm. 

fat depots (inguinal, retroperitoneal, and epididymal) was higher in null mice than in wild 
type, indicating that accelerated body weight gain in pref-1 knockout mice was due to an 
increase in adipose tissue mass (Fig. 6B). The mRNA levels of different markers of 
adipocyte differentiation, such as FAS and SCD-1, were increased in adipose tissue of 
null mice (Fig. 6C), and also adipose cell size was increased (Fig. 6D). No changes in 
total DNA content between fat pads of null and wild-type mice were found, indicating 
that acceleration of adipose tissue in pref-1 null mice was due to enhanced adipogenesis, 
not to increased total cell numbers. These data support the proposed role of pref-1 as a 
negative regulator of the adipogenesis. 

To further understand the physiological function of Pref-1, soluble Pref-1 fused to 
human Fc protein to improve its dimerization and bioactivity was overexpressed in either 
adipose tissue or liver in mice under the control  
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FIGURE 7 Transgenic mice 
overexpressing soluble Pref-1 in 
adipose tissue exhibit sub-stantial 
decrease in body weight and total fat 
pad weight with reduced expression of 
adipocyte markers and adipocyte-
secreted factors. (A) Growth curve for 
male wild type (open circles) (WT) 
and transgenic mice (filled circles) 
(TG) fed a chow diet. Body weight of 
mice measured at 5-day intervals is 
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shown; each point represents mean & 
SEM for 6 to 13 mice. Body weight of 
Pref-1 /hFc transgenic mice was 
significantly lower (P<0.01) than that 
of wild type mice at all ages. (B) Fat 
depot weights from IO-week-old mice 
are presented (n=6 per group). BAT-
brown adipose tissue; Ret, 
retroperitoneal fat pad; Ing, inguinal 
fat pad; Epi, epididymal fat pad. 
Statistically signif-icant differences 
between the groups are indicated as 
*P<0.05 and **P<0.01. (C) Northern 
blot analysis of adipocyte marker 
expression in white adipose tissue of 
WT and Pref-1 /hFcTG mice.TotaI 
RNAfrom three different fat pads was 
probed with cDNA probes for different 
adipocyte markers. (D) Paraffin-
embedded sections of renal white 
adipose tissue from 10-week-old male 
mice were stained with hematoxylin 
and eosin. Scale bar-50 pm. 

of the adipocyte fatty acid-binding protein (aP2/aFABP) or albumin promoter, 
respectively (33). The aP2-pref-l/hFc transgenic mice showed lower body weight than 
their wild-type littermates with a substantial decrease in total fad pad weight (Fig. 7A, B). 
Moreover, adipose tissue from transgenic mice showed reduced expression of adipocyte 
markers and adipocytesecreted factors, including aFABP, FAS, SCD-1, C/EBPα, 
adiponectin, leptin, and ADSF (Fig. 7C) as well as reduced adipose cell size (Fig. 7D). 
This suggests that the decrease in fat mass in transgenic mice reflects an impairment of 
adipocyte differentiation of all adipose depots. The study clearly demonstrates that the 
soluble Pref-1 is sufficient to inhibit adipocyte differentiation in vivo. Furthermore, the 
aP2-pref-l/hFc transgenic mice exhibit hypertriglyceridemia, impaired glucose tolerance, 
and decreased insulin sensitivity. Mice expressing the pref-1/hFc transgene in liver also 
showed a decrease in adipose mass and adipocyte marker expression, suggesting an 
endocrine mode of Pref-1. 

We also examined the role of pref-1 in embryonic development. Our pref-1 gene 
ablation in mice leads to embryonic and postnatal death. We found that the average litter 
size in null mice crossings was 36% lower than those of the wild types. The null newborn 
mice had significantly smaller body size than wild-type newborns, and approximately 
50% died within two days after birth. These unexpected results indicate that lack of Pref-
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1 reduces embryonic survival, and that pref-1 expression is also important for perinatal 
growth and survival. Moreover, the surviving pref-1 null adult mice exhibited 
developmental abnormalities. These alterations included fusion between ribs, 
asymmetrical fusion of ribs to the sternum, and blepharophimosis. The exact cause of 
pref-1 knockout embryonic and newborn death and malformations are still unknown. 
However, the wide expression pattern of pref-1 in embryos and its nearly total extinction 
in adult mice support the crucial role of pref-1 during mouse development. Recently, due 
to differential methylation, pref-1 has been reported to be an imprinted gene expressed 
from the paternal allele, but not the maternal allele (34–36). In our pref-1 knockout 
mouse model, heterozygotes with maternal or paternal inheritance of the pref-1 knockout 
allele showed both an expression pattern of pref-1 and a phenotypic profile similar to 
those of wild-type or null mice. This clearly demonstrates expression of pref-1 only from 
paternal allele. In mice, the pref-1 gene is located on chromosome 12 in a region 
containing a cluster of imprinted genes that, in addition to pref-1, include dat, gtl2, 
peg11, antipeg 11, and meg8 (37). Maternal uniparental disomy in chromosome 12 
(mUPD12) embryos are smaller than wild-type embryos, and also present diverse skeletal 
abnormalities (38). Furthermore, in humans, mUPD14 patients and patients with a 
deletion at region 14q32 encompassing the human PREF-1/DLK1 locus show growth 
retardation, scoliosis, blepharophimosis, early puberty, and mild obesity (39, 40). In 
addition, our pref-1 /hFc transgenic mouse model exhibits a partially overlapping 
phenotype with mouse pUPD12. Similar to pref-1 null mouse embryos, pref-1/hFc 
transgenic embryos showed growth retardation and skeletal abnormalities, primarily in 
the distal vertebra. The exact imprinted gene or genes responsible of this wide array of 
alterations is still unknown. However, based on the study in the pref-1 knockout mouse 
model, and pref-1 transgenic mice, we propose that characteristics of UPDs are, at least 
in part, due to the alteration of pref-1 expression. 

Overall, our studies on Pref-1 function have demonstrated that Pref-1 is a secreted 
factor that plays an important role in the regulation of adipose tissue development. 
Although the mechanisms and pathways through which it exerts its function still remain 
unknown, the secreted soluble form of Pref-1 inhibits adipocyte differentiation in an 
endocrine manner. Moreover, our in vivo studies using a murine model in which Pref-1 
expression has been abolished or overexpressed reveal that Pref-1 is critical for normal 
growth and development of the organism and its perinatal survival. Our in vivo study also 
links Pref-1 expression with some of the pathologies associated with genetic disorders of 
UPDs or chromosomal deletions spanning the pref-1/dlk1 locus. 

3.2. ADSF/Resistin: a Cysteine-Rich Adipose Tissue Specific 
Secretory Factor 

We identified ADSF as a cysteine-rich protein expressed and secreted by mature 
adipocytes by microarray analysis (41). This factor is synthesized as a 114-amino acid-
long polypeptide containing a 20-amino acid signal peptide at the N-terminus. Two other 
groups have also identified ADSF independently. Holcomb et al. identified this factor as 
FIZZ3 (found in inflammatory zone 3), a member of protein family FIZZ by an expressed 
sequence tag (EST) database screen against FIZZ1, which is induced during lung 
inflammation (42). By subtractive cloning, Steppan et al. also identified this factor as a 
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TZD-regulated adipocyte-derived hormone that causes insulin resistance and termed it 
resistin (43). ADSF/FIZZ/resistin belongs to a gene family that also includes 
FIZZ1/RELMα, which is highly expressed in the stromal vascular fraction of adipose 
tissue, heart, lung, tongue, and intestine in mouse sharing 44% amino acid homology 
with predicted mouse ADSF/resistin/FIZZ3 protein (44). Another member of this family 
is FIZZ2/RELMβ which is highly expressed in colon and intestine in mouse sharing 56% 
amino acid homology with predicted mouse ADSF/ resistin/FIZZ3 protein (44). Recently, 
another member of FIZZ/RELM family, RELMγ, has been identified in mice and rats, 
which is highly expressed in hematopoietic tissues sharing 58% amino acid homology 
with predicted mouse ADSF/resistin/FIZZ3 (45). Henceforth, we refer to 
ADSF/resistin/FIZZ3 as ADSF in this review. 

The ADSF forms a homodimer via disulfide bonding at Cys11(46). FIZZ2/RELMβ 
also forms a homodimer, mediated by a cysteine residue that corresponds to Cys11 of 
ADSF. On the other hand, FIZZ1/RELMα which lacks this cysteine residue was reported 
to exist as a monomer (46). However, FIZZ1 /RELMα has also been reported to form 
homooligomers despite the absence of Cys11 (47). Recent studies also demonstrated a 
possibility that ADSF not only forms a dimer but also forms multimeric complexes with 
other FIZZ/RELMs (47, 48). It is likely that the presence of multiple cysteine residues in 
ADSF implies that intramolecular and/or intermolecular disulfide bonds might be 
involved in the maintenance of structural integrity of these secreted proteins. Possible 
heterooligomeric complex formation among FIZZ/RELM family members presents 
functional implication also. 

The ADSF mRNA is exclusively expressed in adipose tissues including brown 
adipose tissue (BAT) and inguinal, epididymal, and retroperitoneal fat pad tissues (41). 
ADSF mRNA is not found in preadipocytes but ADSF mRNA is markedly increased at 
the later stage of 3T3-L1 preadipocyte differentiation into adipocytes in vitro (Fig. 8A) 
(41, 49). Interestingly, although circulating level is controversial, ADSF mRNA 
expression was found to be lower in adipose tissue of obesity mouse models including 
ob/ob mice as compared to wild-type mice (Fig. 8B). ADSF mRNA expression may be 
correlated with obesity status. The human homologue of murine ADSF, having 60% 
amino acid identity, has been shown to be expressed in  
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FIGURE 8 ADSF mRNA expression 
during adipocyte differentiation and 
conditioned media from COS cells 
transfected with HA-tagged ADSF 
expression vector inhibits 3T3-L1 
adipocyte differentiation. (A) Five µg 
of RNA prepared from 3T3-L1 cells at 
the indicated time points of day 0 (at 
confluence) and days 1–6 were 
subjected to Northern blot analysis for 
ADSF, aFABP, SCD-1, and PPARγ. 
(B) Northern blot analysis of white 
adipose tissue (WAT) ADSF 
expression in male obese ob/ob and 
their wild type (WT) lean counterparts. 
3T3-L1 cells were differentiated in 
conditioned medium from COS cells 
transfected with pcDNA3.1 control 
vector and expression vector 
containing HA-tagged mouse ADSF 
cDNA sequence. (C) 3T3-L1 cells 
differentiated in serum-containing 
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conditioned medium from COS cells 
transfected with empty vector (EV) or 
HA-tagged expression vector (ADSF-
HA) were analyzed by RT-PCR 
analysis for adipocyte markers 
(PPARγ, FAS, aFABP, and actin) after 
differentiation and (D) stained by oil 
red O. 

abdominal adipose tissue (42, 44, 50, 51). However, the correlation between ADSF gene 
expression and both insulin resistance and body mass index is controversial in humans 
(52). 

The physiological function of ADSF remains to be determined. However, its potential 
role as an endocrine factor in both adipogenesis and insulin action has been implicated 
(43, 53). Given that it is expressed only in adipose tissue and is highly induced during 
adipocyte differentiation, we predicted that ADSF might promote adipocyte conversion 
of preadipocytes. We originally thought that ADSF might be a signal to generate 
adipocytes for the increased capacity to store excess energy. Unexpectedly, by using 
conditioned media from COS cells transfected with mouse ADSF expression vector, we 
observed that the treatment of differentiating 3T3-L1 cells with ADSF inhibits adipocyte 
differentiation. Cells treated with ADSF showed a decrease in expression of adipocyte 
markers, PPARγ, aFABP, and FAS (Fig. 8C), as well as lipid staining (Fig. 8D), by 
approximately 70% as compared to control cells. These results clearly demonstrate an 
inhibition of adipocyte differentiation by ADSF. Since ADSF expression is induced by 
feeding/insulin and ADSF expression is found to be low in obesity models, we speculate 
that ADSF may serve as a feedback signal to restrict adipose tissue formation. 

The inhibitory function of ADSF in adipocyte differentiation is likely to be mediated 
by its increased gene expression resulting from nutritional and hormonal changes (41). 
For example, ADSF mRNA level was barely detectable during fasting and dramatically 
increased when fasted mice were refed a high carbohydrate diet. The ADSF mRNA level 
was also very low in adipose tissue of streptozotocin-induced diabetic mice and highly 
increased upon insulin administration (Fig. 9). Although ADSF was originally identified 
as a TZD-downregulated gene, TZD regulation of ADSF is controversial. Another study 
also showed that ADSF mRNA levels are increased by TZD in adipose tissue in mice 
(54–56). Regulation of ADSF by TZDs in humans has not yet been examined. 

Steppan et al. demonstrated that ADSF might play an important role in the regulation 
of insulin action (43). Administration of recombinant ADSF  
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FIGURE 9 Nutritional and hormonal 
regulation of ADSF mRNA expression 
in mice. Total RNA prepared from 
adipose tissue of mice fasted for 48 hr 
or refed a high-carbohydrate diet was 
used for Northern blot analysis.Total 
RNA also isolated from the white 
adipose tissue of streptozotocin-
diabetic mice and of streptozotocin-
diabetic mice treated with insulin was 
used for Northern blot analysis for 
ADSF, FAS, and actin mRNAs. 28S 
and 18S ribosomal RNA from 
ethidium bromide-stained gels are 
shown. 

impaired insulin action in mice and in 3T3-L1 adipocytes; immunoneutralization of 
ADSF in serum in obese mice with the ADSF antibody revealed improved insulin 
sensitivity. Recently, by use of pancreatic insulin clamp techniques, Rajala et al. reported 
that acute administration of recombinant ADSF to rats caused impairment of insulin 
sensitivity. They pointed out that this effect was completely accounted for by a marked 
increase in the rate of glucose production by the liver (53). In addition, they also showed 
that RELMβ exhibited a similar effect on insulin sensitivity. Interestingly, a recent study 
demonstrated that RELMα is expressed in stromal vascular fraction of adipose tissue, and 
in several other tissues it can also inhibit 3T3-L1 adipocyte differentiation. These 
observations suggest that other members of Relm/fizz gene family might share functional 
properties with that of ADSF. In this regard, as mentioned earlier, various members of 
this family may form heteroligomers to elicit similar biological effects in vivo. 
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The newly identified ADSF brought wide attention from science communities 
interested in obesity and obesity-associated insulin resistance. However, the 
physiological function of ADSF in adipogenesis and insulin action is not yet clearly 
established. Evidence for the long-term physiological function of circulating ADSF in 
adipose tissue development as well as in glucose and lipid homeostasis needs to be 
demonstrated. Further studies on identifying ADSF target tissues and its putative receptor 
will make it possible to investigate ADSF function at a biochemical level. Furthermore, 
studying mouse models of gain-of-function and loss-of-function will cast light on the role 
of ADSF in adipogenesis and its associated pathophysiology and in insulin resistance. 
Understanding the physiological function of other Relm family members will also 
provide additional clues to the mode of ADSF function. 

4. CONCLUSIONS 

We have summarized in this review our studies on transcriptional regulation of fatty acid 
synthase, a central enzyme in lipogenesis, and characterization of Pref-1 and ADSF, 
secretory proteins that inhibit adipocyte differentiation. 

Elucidation of the molecular mechanisms underlying transcriptional activation of the 
fatty acid synthase gene will help us to understand the process that leads to the increase in 
fat synthesis and deposition that contributes to the hypertrophy of adipose tissue. We 
show that both the −150 SRE and the −65 E-box are required for regulation of the FAS 
promoter by nutritional and hormonal regulation, although none of these elements per se 
is sufficient for such regulation in vivo. It is possible that common mechanisms govern 
regulation of fatty acid synthase, mitochondrial glycerol-3-phosphate acyltransferase, and 
other lipogenic enzymes. 

In regard to the regulation of adipocyte differentiation, we have shown that Pref-1, via 
generating a biologically active soluble form, and ADSF inhibit adipocyte differentiation. 
The specific receptors or interacting protein(s) for Pref-1 and ADSF should be identified. 
Also important are the signaling pathways subsequent to pref-1 and ADSF receptor 
interaction that leads to the inhibition of adipocyte differentiation. Especially, the 
developmental role of Pref-1 needs to be examined in an in vivo context. Elucidating 
Pref-1 and ADSF actions will help us understand the adipocyte differentiation process 
that contributes to the development of obesity and its associated metabolic disorders. 
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1. INTRODUCTION 

Liver plays a central role in the regulation of macronutrient metabolism in response to 
changes in physiological and dietary conditions. Classic work in biochemistry has 
elucidated acute regulation of enzyme activities involved in glucose metabolism by 
phosphorylation/dephosphorylation and by allosteric action of intermediate metabolites. 
In addition to this acute regulation of enzyme activity, starvation or a large change in 
dietary composition requires metabolic adaptation. Transcriptional regulation plays the 
major role in this adaptation process. Key transcription factors that regulate this adaptive 
response have been identified in the last decade. Those include peroxisome proliferator-
activated receptors (PPARs), sterol regulatory element-binding protein (SREBP), and 
carbohydrate response element-binding protein (ChREBP). Furthermore, due to the 
advances in genomics and gene-targeting technologies, our knowledge of transcriptional 
regulation has been increasing dramatically. However, sorting and interpreting the flood 
of information is essential to utilize the abundant knowledge generated by these advanced 
technologies.Thus, the objective of this chapter is to summarize recent findings in the 
transcriptional regulation of carbohydrate and lipid metabolism in liver, and place them 
in physiological contexts. 

2. GLYCOLYSIS AND DE NOVO LIPOGENESIS 

2.1. Induction by Insulin and Glucocorticoids 

It has long been known that when animals are fed a high-carbohydrate diet after fasting, 
activities of lipogenic enzymes become much higher in the liver than in ad libitum-fed 
animals, and that both insulin and glucocorticoids are required for this “overshoot” 
response (1). Subsequent studies have shown that transcriptional induction is largely 
responsible for the increased activity of lipogenic enzymes. Fatty acid synthase (FAS), a 
key lipogenic enzyme, is primarily regulated at the transcriptional level, and has no 
known acute regulation (2, 3). An insulin response element (IRE) was identified in the 
proximal promoter of the Fas gene (4), and subsequent studies have  



 

FIGURE 1 Transcriptional regulation 
of the rat fatty acid synthase gene in 
liver. Insulin, glucocorticoids, glucose, 
and cholesterol activate transcription 
of Fas gene via respective transcription 
factors. Xu5P is a likely metabolite 
that mediates the glucose effect (31). 
GRE is not identified (9).The SRE 
sequence at −150 is not functionally 
confirmed (6). Transcriptional 
regulation of FAS and ACC is very 
similar (21, 33). The SCD-7promoter 
may have LXRE, but may not have 
ChoRE (21, 61). Abbreviations: 
ChoRE=carbohydrate response 
element; ChREBP=carbohydrate 
response element-binding protein; 
FAS=fatty acid synthase; 
GR=glucocorticoid receptor; 
GRE=glucocorticoid response element; 
IRE=(positive) insulin response 
element; LXR=liver-X receptor; 
LXRE=LXR response element; 
SRE=sterol regulatory element; 
SREBP=sterol regulatory element 
binding protein; Xu5P=xylulose 5-
phosphate. 
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shown that SREBP-1c is the transcription factor that binds the element and mediates 
insulin action (Fig. 1) (5, 6). 

Glucocorticoids are critical for metabolic adaptation during starvation (7), which is 
discussed in detail in the gluconeogenesis section. Moreover, glucocorticoids are required 
for replenishing fat storage after starvation. Adrenalectomized rats die within 10 days 
when they are subjected to once-a-day meal feeding because of body fat depletion (8). 
Insulin and glucocorticoids synergistically induce lipogenic genes after starvation or in 
meal feeding (1). In the rat Fas gene, the distal region of −4600 to −7380 is required for 
this glucocorticoid response (Fig. 1) (9), although the glucocorticoid response element 
(GRE) in this region is yet to be identified. Whereas glucocorticoids alone have little 
effect, glucocorticoids greatly increase the induction of lipogenic genes by insulin (9). 
Thus, glucocorticoids play a permissive role in the induction of lipogenic genes. 

2.2. The Binding Protein SREBP-1c and its Regulation 

As mentioned in the previous section, SREBP-1c (also called adipocyte differentiation 
and determination factor-1, ADD-1) mediates at least in part the insulin effects on 
lipogenic gene induction. The SREBPs are transcription factors of the basic helix-loop-
helix leucine zipper (bHLHLZ) family, and were first identified as the factors that bind 
the sterol regulatory element (SRE) in the low-density lipoprotein receptor promoter (10, 
11) and independently as an E-box-binding factor in adipocytes (12). The SREBPs have 
three isoforms: SREBP-1a, SREBP-1c, and SREBP-2. Isoforms SREBP-1 and SREBP-2 
are transcribed from different genes (11, 13). The 1c and la isoforms are encoded from 
the same gene by alternative promoter usage (14). The SREBP-2 form mainly activates 
transcription of genes involved with cholesterol synthesis and metabolism, SREBP-1c 
targets genes for fatty acid synthesis, and SREBP-1a can activate both (15, 16). The 
expression of SREBP-1a and 1c differs among tissues. Whereas SREBP-1a is the major 
species in all cell lines examined, as well as in intestine, thymus, spleen, and testes, 
SREBP-1c is highly expressed in liver, adrenal gland, adipose tissue and brain (14). The 
expression pattern of SREBP-1a suggests that the main role of SREBP-1a is to supply 
fatty acids for membrane phospholipids in proliferating cells. 

The SREBP-1c differs from la only in that the first exon encodes shorter peptides than 
does the exon in la (17). Because exon 1 encodes part of activation domain, 1c is less 
potent than la in transcriptional activation of target genes (17). In particular, SREBP-1c is 
unable to activate genes for cholesterol metabolism (16). Also, unlike SREBP-1a, the 
SREBP-1c mRNA is not induced by cholesterol deprivation (14). The SREBP-1c form is 
the major  

TABLE 1 SREBP-1c-lnduced Genes in Liver 

Enzymes for fatty acid synthesis 

  Acetyl-CoA carboxylase (16, 21, 117)a 

  Fatty acid synthase (5, 16, 21) 

  Long-chain acyl-CoA elongase (16, 118) 

Enzymes involved with bothTG and PL synthesis 

Transcriptional regulation of energy metabolism in liver     109



  Stearoyl-CoA desaturase-1, -2 (16, 42) 

  Glycerol-3-phosphate acyltransferase (16) 

Enzymes involved with PL synthesis 

  Delta-6 desaturase (44, 119) 

  Delta-5 desaturase(119) 

  CTP: phosphocholine cytidylyltransferase (52) 

Other lipogenic enzymes 

  Acetyl-CoA synthase (16, 21, 120) 

  ATP-citrate lyase (21) 

  Glucose-6-phosphate dehydrogenase (21) 

  Malic enzyme (21) 

  S14 (41) 
aReferences. 

one expressed in hepatocytes in vivo (14), it activates entire genes for fatty acid and 
glycerolipid synthesis in liver (Table 1). Accumulating evidence indicates that SREBP-1c 
mediates the effect of insulin on transcriptional activation of genes involved in fatty acid 
synthesis. The SREBP-1c expression is diminished in fasting and is rapidly increased in 
refeeding in an insulin-dependent manner (16, 18–20). Knocking out the Srebp-1c gene 
abolished the induction, that usually occurs with refeeding after 12-hr fasting, of glucose-
6-phosphate dehydrogenase (G6PDH), malic enzyme, stearoyl-CoA desaturase (SCD)-l, 
and glycerol-3-phosphate acyltransferase (G3PAT), but the induction of acyl-CoA 
carboxylase (ACC) and FAS was only partially impaired (21). This study has shown that 
SREBP-1c is required for maximum induction of lipogenic genes by refeeding. It is likely 
that the partial induction of FAS and ACC mRNA in Srebp-1c-/- mice upon refeeding is 
due to ChREBP, which is discussed in the next section. 

The SREBPs are synthesized as a larger precursor protein (pSREBP), the middle part 
of which is inserted into the endoplasmic reticulum membrane. After proteolytic 
cleavage, the amino terminal domain (nSREBP) migrates to a nucleus and activates target 
genes (Fig. 2) (15). The SREBP activity is primarily regulated by this proteolysis. The 
carboxyl terminal domain of SREBP plays a regulatory role and associates with another 
membrane-bound protein, SREBP cleavage-activating protein (SCAP),  
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FIGURE 2 Postulated regulation of 
SREBP-1c activity. Insulin may 
increase proteolytic activation of 
SREBP-1c by suppressing lnsig-2 
expression (25). Nuclear form SREBP-
1c may then activate transcription of 
SREBP-1c gene (26). PUFAs 
counteract this insulin effect by 
inhibiting proteolytic processing and 
decreasing mRNA (40, 41, 45, 46), 
most likely by increasing mRNA 
degradation (49). Dietary cholesterol 
and LXR agonists induce SREBP-1c 
via LXRE (58). Abbreviations: 
Insig=insulin induced gene protein; 
LXR=liver-X receptor; LXRE=LXR 
response element; nSREBP=nuclear 
form SREBP; pSREBP=precursor 
SREBP; PUFA=polyunsaturated fatty 
acid; SCAP= SREBP cleavage-
activating protein; SRE=sterol 
regulatory element; SREBP=sterol 
regulatory element binding protein. 
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which binds another protein, Insig (insulin-induced gene protein) (Fig. 2) (22, 23). 
Dissociation between Insig and SCAP initiates sequential events that result in the 
proteolytic activation of SREBP. Refeeding stimulates this proteolytic processing of both 
pSREBP-1c and pSREBP-2 (18, 24). Although refeeding increases both proteolytic 
activation of SREBP-1c and expression of SREBP-1c mRNA, the mechanism of this 
effect is not fully understood. An insulin-responsive Insig message, Insig-2a, was 
identified recently (25). Both Insig-2a and 2b mRNAs are encoded from the same gene 
with alternative promoters. Although the Insig-2a and 2b mRNAs differ in the first exon, 
the coding sequences are identical. The former, Insig-2a mRNA, is specifically expressed 
in liver, and is suppressed by insulin. Therefore, insulin may initiate the proteolytic 
activation of SREBP by reducing Insig-2a protein, which would then lead to dissociation 
of the SCAP: pSREBP complex from Insig-2 (Fig. 2) (25). In addition, a functional SRE 
is present in the mouse Srebp-1c prompter (26). Thus, nSREBP-1c is likely to activate 
transcription of the Srebp-1c gene as well as other target genes (Fig. 2). This auto-
activation may explain at least in part the induction of SREBP-1c mRNA by insulin. 

2.3. Glucose Effect Mediated by ChREBP 

High glucose induces glycolytic and lipogenic genes in liver. This glucose effect is 
additive to the effects of insulin and glucocorticoids. The carbohydrate response element 
(ChoRE) that mediates this glucose effect had long been identified in liver-type pyruvate 
kinase (L-Pk) and S14 genes, although the identity of the transcription factor that binds 
the element was elusive (27, 28). The ChoRE consists of tandem E-box (CACGTG)-like 
sequences separated by five nucleotides. Although the E-box-like sequence suggested 
that a transcription factor that bound ChoRE was the bHLHLZ family, known factors 
such as upstream stimulating factor (USF) did not bind the sequence (28). Recently, the 
transcription factor that mediates the glucose effect by binding ChoRE has been purified 
with affinity chromatography and named carbohydrate response element-binding protein 
(ChREBP) (29). As predicted, ChREBP is a transcription factor of the bHLHLZ family, 
and is expressed exclusively in liver (29). Under a high glucose condition, ChREBP is 
dephosphorylated and translocated to the nucleus, resulting in the activation of target 
genes (30). Protein phosphatase 2A, which is activated by xylulose-5-phosphate (Xu5P, 
an intermediate of the pentose phosphate cycle), is capable of dephosphorylating 
ChREBP (31). In addition to its presence in the L-Pk gene, ChoRE has been identified in 
promoters of Fas (Fig. 1) (32), Acc (33), and S14 (27). The presence of ChoRE in Fas 
and Acc is consistent with the report that these genes are still partially induced in the 
Srebp-1c-/- mice upon refeeding (21). 

Because high glucose stimulates insulin secretion, the Fas gene induction by glucose 
is mediated by both ChREBP and SREBP-1c (Fig. 1). Whereas ChREBP expression is 
liver-specific, SREBP-1c is widely expressed in tissues including those that lack a 
significant capacity for triglyceride (TG) synthesis (14). Thus, ChREBP, not SREBP-1c, 
may play the major role in the induction of liver-specific lipogenesis for excess glucose 
disposal. 
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2.4. Role of Polyunsaturated Fatty Acids in Regulation of Lipogenesis 

Polyunsaturated fatty acids (PUFAs) at 2–3 weight % of a diet suppress the induction of 
lipogenic genes by refeeding (34). This suppression is exerted at the transcriptional step 
and is unique to PUFAs. Other fatty acids such as saturated and monounsaturated fatty 
acids have no effects (35, 36). Although PUFA-responsive regions had been mapped in 
several gene promoters, the transcription factor that mediates the PUFA suppression was 
elusive (35, 37–39). Subsequently, SREBP-1c was identified as the factor that binds the 
PUFA response sequence and mediates the PUFA effect in Fas (40), S14 (41), Scd (42, 
43), and delta-6 desaturase (D6d) (44) genes. The PUFAs suppress nSREBP-1c with two 
mechanisms: (1) by inhibiting proteolytic processing, and (2) by decreasing the mRNA 
(Fig. 2) (40, 41, 45, 46). However, the mechanism of these PUFA effects on SREBP-1c is 
not well understood. The SCAP contains a cholesterol-sensing sequence and dissociates 
from the Insig protein when membrane cholesterol is low, leading to the activation of 
SREBPs (22). In Drosophila, phosphatidylethanolamine (PE)—not cholesterol—inhibits 
the SREBP processing (47). Interestingly, a recent study showed that increased 
membrane PE resulted in downregulation of three desaturases: D6D, delta-5 desaturase 
(D5D), and SCD (48). Although these desaturases are targets of SREBP-1c (Table 1), it 
is yet to be determined whether PE regulates SREBP activation in mammalian liver. 
Also, it is unknown if PUFAs modulate PL species in membrane. 

Polyunsaturated fatty acids also accelerate the degradation of SREBP-1c mRNA, 
although the mechanism has yet to be elucidated (Fig. 2) (49). In addition, PUFAs 
suppress SREBP-1c transcription in cell studies by antagonizing a synthetic liver-X 
receptor (LXR) agonist (50, 51), but they reduce SREBP-1c mRNA without affecting 
transcription in rat liver (40). Thus, it is unclear at this moment whether the observations 
in the cell line are relevant to the in vivo PUFA effect in liver. 

As shown in Table 1, one of the target genes of SREBP-1c is for CTP:phosphocholine 
cytidylyltransferase (CCTα), which is an enzyme specific for phospholipid (PL) synthesis 
(52). In addition, two desaturases—D6D and D5D—are also considered as enzymes for 
PL synthesis because the products—20:4 n-6 and 22:6 n-3—are mostly incorporated into 
PL, not TG (53, 54). The profile of SREBP-1c target genes suggests that the 
physiological role of SREBP-1c in liver may be the regulation of PL synthesis. This 
hypothesis is further supported by the identification of PUFA as the major regulator of 
SREBP-1c activation. As discussed in Section 2.3, lipogenesis for excess glucose 
disposal may be regulated by ChREBP rather than SREBP-1c. If this hypothesis holds, 
SREBP-1c and its regulation by PUFA on lipogenesis may not have a significant role in 
fat storage from glucose. 

2.5. Liver-X Receptor-α and Regulation of Lipogenic Genes by 
Cholesterol 

The LXRs are transcription factors of the nuclear receptor family. Two isoforms have 
been identified, LXRα is the most abundant in liver, whereas LXRβ is expressed 
ubiquitously (55). The LXRs form heterodimers with the retinoid-X receptor (RXR) and 
bind a direct repeat (DR)-4 element (LXR response element, LXRE) in target genes (56). 
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Cholesterol metabolites, oxysterols, are natural ligands of LXRs and activate them. The 
LXRs activate a group of genes involved in reverse cholesterol transport (55, 56). In 
liver, activated LXRα induces the messages of cytochrome P450 (CYP) 7A and ATP-
binding cassette transporters (ABC) G5 and G8 (55). Because CYP7A is an enzyme that 
catalyzes the rate-limiting step of bile acid synthesis, and ABCG5 and ABCG8 are 
cholesterol transporters, an overall effect of LXRα activation in liver is an increase in the 
bile acid synthesis and in the secretion of cholesterol and bile acid to bile. When the 
LXRα gene is disrupted, the mouse becomes intolerant of dietary cholesterol and 
accumulates cholesterol in its liver, underscoring the physiological function of LXRα 
(57). In addition, synthetic LXR agonists induce SREBP-1c, and LXRE is identified in 
the mouse Srebp-1c promoter (Fig. 2) (58). Thus, LXR agonists induce the lipogenic 
genes targeted by SREBP-1c, and increase very-low-density protein (VLDL) production 
in liver (59). A physiological role of this SREBP-1c induction by LXRα in liver may be 
providing fatty acids for the synthesis of PLs, which are also an essential component of 
bile. 

Recently, LXRE has been identified in the rat Fas promoter (Fig. 1) (60). Also, dietary 
cholesterol has been shown to induce the SCD-1 mRNA in an SREBP-1c-independent 
manner (61). These observations are consistent with the findings in a study with Srebp-1c 
null mice in which an LXR agonist failed to induce G6PDH and malic enzyme, whereas 
residual inductionwas observed in ACC, FAS, and SCD-1 (21).Therefore, like the Fas 
gene, the Acc and Scd-1 promoters may also have LXRE, and LXR may induce ACC and 
SCD-1 both directly and indirectly via LXRE and SRE, respectively. Because cholesteryl 
ester acts as a reservoir when cholesterol is in excess, provision of fatty acids for 
cholesteryl ester synthesis may be the role for the SREBP-1c-independent induction of 
these three lipogenic genes by LXR. This explanation fits well to the finding that D6D 
and D5D were not induced by dietary cholesterol (62). 

2.6. Summary 

Insulin and glucocorticoids synergistically induce lipogenic enzymes in liver. The 
SREBP-1c is likely to mediate the insulin effect. Polyunsaturated fatty acids suppress 
induction of lipogenic genes by suppressing SREBP-1c processing and expression. 
Another transcription factor, ChREBP, is activated by high glucose. The ChoRE is 
identified in L-Pk, S14, and Fas genes. The binding protein ChREBP may play a role in 
converting excess glucose toTG for energy storage, whereas the physiological role of 
SREBP-1c may be induction of PL synthesis. The LXR, the major regulator of 
cholesterol reverse transport, also activates lipogenic genes in SREBP-1c-dependent and 
-independent manners. Fatty acid synthesis induced by LXR may be required for bile 
secretion as well as cholesteryl ester synthesis. 

3. GLUCONEOGENESIS 

Liver performs both glycolysis and gluconeogenesis. Three steps—glucokinase 
(GK)/glucose-6-phosphatase (G6Pase), phosphofructokinase (PFK)/ fructose-l, 6-
bisphosphatase, and L-PK/phosphoenolpyruvate carboxykinase (PEPCK)—may form 
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potentially futile cycles if reactions of both directions are active at the same time. 
Activities of GK, PFK, fructose-1, 6-bisphosphatase, and L-PK are acutely regulated by 
hormones such as insulin, glucagon, and catecholamines. In addition, gluconeogenic 
enzymes are preferentially expressed in the periportal area, whereas glycolytic enzymes 
are abundant in the perivenous area of liver lobules (63). This zonal difference in enzyme 
expression also contributes to the prevention of futile cycles. However, there is no known 
acute regulation of enzyme activity of either PEPCK or G6Pase, the key enzymes of 
gluconeogenesis. Transcription is the major regulatory mechanism of these two enzymes. 

3.1. Glucagon and Glucocorticoids 

Under a fasted condition, glucagon induces gluconeogenic genes, such as Pepck and 
G6pase, by increasing cellular cyclic adenosine monophosphate (cAMP)(Fig. 3) (64, 65). 
The Pepck gene has the cAMP response element (CRE) in its promoter (Fig. 3) (65). The 
CRE-binding protein (CREB) binds CRE and activates gene transcription when it is 
phosphorylated by cAMP-dependent protein kinase A (66). This cAMP-mediated 
induction requires glucocorticoids although glucocorticoids alone have little effect on the 
induction of gluconeogenic enzymes (64, 65). The Pepck gene has at least two GREs that 
are required for maximal activation of transcription (Fig. 3) (65). Blood glucocorticoid 
concentration increases during fasting and starts decreasing upon refeeding (67, 68). As 
discussed in Section 2.1, glucocorticoids also synergistically induce lipogenic genes 
when insulin is present, although glucocorticoids alone have little effect. Thus, 
glucocorticoids have a permissive effect on the induction of both lipogenic and 
gluconeogenic genes, depending on the coexisting hormones. Therefore, the 
physiological role of glucocorticoids in energy metabolism is both the adaptation to 
fasting and the replenishing of energy stores upon refeeding.  

 

FIGURE 3 Transcriptional regulation 
of PEPCK gene. Glucagon and 
glucocorticoids induce PEPCK gene 
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by increasing binding of CREB and 
GR, respectively, to the PEPCK 
promoter (65). In addition to GR, 
FKHR and HNF4α are required for 
recruitment of PGC-1 (69, 70, 78). 
Insulin counteracts this activation by 
phosphorylating FKHR, which then 
loses activity (75, 76). Glucagon and 
glucocorticoids also induce PGC-1, an 
essential cofactor of the PEPCK gene 
activation (69). Insulin also inhibits 
PGC-1 transcription possibly by 
inactivating CREB (79). GRE has not 
been identified in the PGC-1 promoter. 
The G6Pase gene is regulated similarly 
(70, 75, 78). Abbreviations: CRE 
=cAMP response element; 
CREB=CRE-binding protein; 
DR=direct repeat; FKHR (=FOX01)= 
Forkhead transcription factor; 
gAF=glucocorticoid accessory factor 
element; GR=glucocorticoid receptor; 
GRE=glucocorticoid response element; 
HNF4=hepatocyte nuclear factor 4; 
IRE=(negative) insulin response 
element; 
PEPCK=phosphoenolpyruvate 
carboxykinase; PGC-1=PPAR-gamma 
coactivator-1. 

3.2. Hepatocyte Nuclear Factor 4α 

In addition to GREs, the glucocorticoid induction of the Pepck gene requires other 
sequences that are termed glucocorticoid accessory factor elements (gAF). Recently, 
hepatocyte nuclear factor 4α (HNF4α) has been identified as the factor that binds DR-1 
sequences in gAF 1 and 3, and is indispensable for PEPCK induction (Fig. 3) (69, 70). 
The HNF4α is a transcription factor of the nuclear receptor family and highly expressed 
in liver. The primary physiological role of HNF4α is to direct liver-specific gene 
expression (Table 2) (70, 71). Fatty acyl-CoA has been proposed as ligands of HNF4α 
(72).  
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TABLE 2 HNF4-Dependent Genes in Liver 

Lipoprotein synthesis and secretion (71)a 

  ApoAII 

  Apo A IV 

  Apo C II 

  Apo C III 

  Microsomal triglyceride transfer protein 

Bile acid synthesis and secretion (71) 

  Cytochrome P450 7A1 

  Organic anion transporter1 

  Liver fatty acid-binding protein 

Gluconeogenesis(70) 

  Phosphoenolpyruvate carboxykinase 

  Glucose-6-phosphatase 
aReferences. 

However, the crystal structure of HNF4α suggests that a fatty acid may constitutively 
bind the ligand pocket of HNF4α (73). If this is the case, HNF4α may be constitutively 
active. It remains unknown whether any endogenous ligands affect the activity of HNF4α 
and play a regulatory role in the PEPCK induction. 

3.3. Insulin-Protein Kinase B-Forkhead Transcription Factor 
Signaling Pathway 

Insulin suppresses induction of gluconeogenic genes.This effect is dominant over the 
induction by glucagon and glucocorticoids (65). The element required for this 
suppression by insulin (negative IRE) is also required for induction by glucocorticoids 
(gAF2 in Fig. 3). Forkhead transcription factor (FKHR/FOXO1) is identified as the 
protein that binds the negative IRE in the Pepck promoter and activates the gene (74). 
FKHR, an essential component for PEPCK induction, also mediates the suppression of 
the Pepck transcription by insulin (75). Protein kinase B (PKB/Akt) is a down-stream 
kinase in the insulin signaling pathway, and phosphorylates FKHR, which then loses 
binding affinity to IRE (Fig. 3) (75, 76). 

3.4. Peroxisome Proliferator Activated Receptor-Gamma 
Coactivator-1 

Although the Pepck promoter elements and associated transcription factors had been 
extensively studied, the regulatory mechanism was somewhat ambiguous until recently 
(65,74,77). A breakthrough came when PPAR-gamma coactivator-1 (PGC-1) was 
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identified as a key coactivator involved in the Pepck gene regulation (69). This protein 
binds glucocorticoid receptor (GR), HNF4α, and FKHR, and acts as an essential 
coactivator for these transcription factors (Fig. 3) (69, 78). Importantly, the expression of 
PGC-1 is also under the regulation of hormones. Glucocorticoids and glucagon induce 
PGC-1, whereas insulin suppresses it (Fig. 3) (69). Functional CRE is identified in the 
Pgc-1 promoter, and may mediate suppression by insulin as well as induction by 
glucagon (Fig. 3) (79). Regulation of the G6pase transcription is very similar to Pepck 
regulation, and all components shown in Fig. 3 are involved with the G6pase regulation 
(70), (75, 78). 

3.5. Effects of Fructose on Lipogenesis and Gluconeogenesis 

Fructose consumption in the form of high-fructose corn syrup has been increasing in the 
united states during the past decades (80). Liver is the primary site of fructose 
metabolism (81). Fructose is first phosphorylated by fructokinase to fructose-1-
phosphate, which is then cleaved to 3-carbon units by aldolase B before entering the 
glycolytic/gluconeogenic pathway. Thus, fructose bypasses two regulatory steps of 
glycolysis—GK and PFK—and stimulates de novo lipogenesis (82, 83) and VLDL 
secretion (84, 85). At the same time, fructose is also converted in liver to glucose, which 
then can be used by liver and other organs for energy production and glycogen synthesis. 
Thus, high dietary fructose also stimulates gluconeogenesis in liver (86, 87). The 
stimulation of these two pathways with opposite directions is achieved by differential 
gene expression between periportal and perivenous regions of the liver (63, 88). When 
rats were fed a high-fructose diet, food intake initially decreased and then returned 
normal in four days (89). High-fructose feeding changes not only the activity of enzymes 
(82, 87) but also the abundance of proteins (85) and messages (83, 90, 91). However, it is 
yet to be elucidated how liver senses high fructose intake and changes its gene expression 
to adapt its metabolism. 

3.6. Summary 

Glucagon activates transcription of gluconeogenic genes by the cAMP-mediated 
signaling pathway. Glucocorticoids have permissive effects on the induction of both 
gluconeogenic and glycolytic/lipogenic genes depending on the hormone that coexists. 
The HNF4α is an essential component for liver-specific gene expression including 
PEPCK and G6Pase, but HNF4α ligands and their regulatory role in gluconeogenesis are 
yet to be fully elucidated. Insulin suppresses gluconeogenic genes by inactivating FKHR. 
Coactivator PGC-1 binds GR, HNF4α, and FKHR, and plays a key regulatory role in the 
induction of PEPCK and G6Pase. Dietary fructose induces both gluconeogenic and 
lipogenic genes in liver. The mechanism of the induction by fructose is unknown. 

4. FATTY ACID OXIDATION AND KETOGENESIS 
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4.1. Peroxisome Proliferator-Activated Receptorα and Fatty Acids 

Glucose and fatty acids are two major sources of energy for mammals. The choice 
between glucose and fatty acids as an energy source is acutely regulated by hormones and 
the abundance of glucose in the liver. Malonyl-CoA, a potent allosteric inhibitor of 
carnitine palmitoyltransferase-1, plays the central role in this fuel switching (92, 93). 
Also, ketogenesis is acutely regulated by succinyl-CoA that inhibits mitochondrial 3-
hydroxyl-3-methyl-glutaryl-CoA synthase, the first step of ketogenesis (94, 95). Liver 
plays a critical role in energy metabolism during fasting by providing glucose and ketone 
bodies to other organs. This metabolic adaptation to fasting is largely achieved by the 
induction of enzymes for fatty acid oxidation and ketogenesis, not by the acute regulation 
of enzyme activity. A transcription factor of the nuclear receptor family, PPARα plays a 
central role in this process. Various long-chain fatty acids as well as hypolipidemic drugs 
act as ligands of PPARα (96, 97). Ligand-bound PPARα forms heterodimers with R×R 
and binds the DR-1 element of target genes, most of which are involved with fatty acid 
oxidation (Table 3). The essential role of PPARα in the adaptation to fasting was 
demonstrated by a targeted disruption of the gene. The Pparα-null mice grew 
phenotypically normally as long as animals were fed ad libitum. However, when the 
animals were fasted, they showed hypoglycemia, hypoketonemia, hypothermia, and 
impairment in the induction of fatty acid oxidation and ketogenic enzymes in their livers 
(98–100). Some of the Pparα-null mice died within 48 hours of fasting (99). These 
studies demonstrated that the major role of PPARα is transcriptional adaptation of energy 
metabolism to fasting. Consistent with this line of the physiological role, PPARα is also 
required for the induction of pyruvate dehydrogenase kinase4 that inactivates pyruvate 
dehydrogenase during fasting (Table 3). Moreover, PPARα may regulate amino acid 
metabolism during fasting (101). 

A variety of long-chain fatty acids bind and activate PPARα (96, 97). Fatty acids have 
strong binding affinity to PPARα with a reported Kd range of 5–10 nM (102). Therefore, 
non-esterified fatty acids released from adipose tissue are likely to act as endogenous 
ligands of PPARα during fasting. A group of hypolipidemic drugs such as fibrates also 
act as strong ligands of  

TABLE 3 Genes Dependent on PPARα in 
Induction by Fasting or by Agonists 

Gene mRNA by fasting 
mRNA by 
agonist 

Functional 
PPRE 

Fatty acid oxidation       

+a(PPARα-
independent) 

+(104)b   Liver carnitine palmitoyltransferase 
1 

(98, 99)     

Medium-chain acyl-CoA 
dehydrogenase 

+(99)     
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Acyl-CoA oxidase +(99) +(104, 121) Yes (122, 123) 

L-Bifunctional protein +(100) +(104, 121) Yes (123) 

Cytochrome P450 4A +(99, 100, 124) +(104, 121) Yes (125) 

Ketogenesis       

3-Hydroxy-3-methylglutaryl-CoA +(126) +(121) Yes (127) 

synthase (mitochondrial)       

Fatty acid transport       

Fatty acid transporter/CD36   +(121, 128, 129) No (129) 

Fatty acid desaturases       

Stearoyl-CoAdesaturase-1 −(104, 130) +(103, 104) Yes (103) 

Delta-6 desaturase 0(104) +(104) Yes(105) 

Delta-5 desaturase −/0(104) +(104) Unknown 

Glucose oxidation       

Pyruvate dehydrogenase kinase 4 +(131) +(121)   
aCompared with fed control animals: += increased; 0=no change; −=decreased. 
bReference. 

PPARα (96, 97). Thus, the hypolipidemic effect of fibrates may be due to the PPARα-
mediated induction of the fatty acid oxidation enzymes. 

As shown in Table 3, synthetic PPARα ligands, peroxisome proliferators, also strongly 
induce acyl-CoA desaturases (103, 104), and functional PPRE has been identified in 
promoters of SCD-1 (103) and D6D (105). The function of desaturases is the synthesis of 
unsaturated fatty acids and is not related to degradation of fatty acids. Furthermore, 
desaturases are not induced in fasted condition (104). The physiological significance of 
desaturase induction by PPARα is yet to be elucidated. 

4.2. Role of Polyunsaturated Fatty Acids in Fatty Acid Oxidation 

Dietary fish oil rich in docosahexaenoic acid (22:6 n-3) and eicosapentaenoic acid (20:5 
n-3) increases activities and mRNA of fatty acid oxidation enzymes (106–108). This 
induction is mediated by PPARα (109). Other PUFAs such as α-linolenic acid (18:3 n-3) 
(108, 110) and γ-linolenic acid (18:3 n-6) (111) have similar effects, whereas linoleic 
acid (18:2 n-6) does not have a significant effect on saturated fats (106, 108). Whether or 
not a fatty acid is readily stored in TG may explain the differential effects between 18:2 
n-6 and other PUFAs. With the exception of 18:2 n-6, PUFAs are not incorporated 
intoTG in large quantity (112–114). Thus, excess dietary PUFAs that are poor substrates 
for TG synthesis may serve as PPARα ligands in the fed state, resulting in the induction 
of their own oxidation pathway. In addition, dietary fish oil reduces plasmaTG. The 
hypotriglyceridemic effect of fish oil is not due to the PPARα-mediated induction of fatty 
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acid oxidation enzymes (109). Studies with cells suggest that fish oil may reduce VLDL 
secretion by stimulating insulin pathway (115, 116). 

4.3. Summary 

The receptor PPARα plays an essential role in the metabolic adaptation to fasting by 
inducing genes for fatty acid oxidation and ketogenesis. Fatty acids released from adipose 
tissue during fasting are the likely ligands of PPARα. Dietary PUFAs except for 18:2 n-6 
are likely to induce fatty acid oxidation enzymes via PPARα as a feed-forward 
mechanism. The hypotriglyceridemic effect of fish oil is not dependent on PPARα, and 
may involve the insulin-signaling pathway. 

ABBREVIATIONS 

ABC=ATP-binding cassette transporter; ACC=acetyl-CoA carboxylase; ADD-
1=adipocyte differentiation and determination factor-1=SREBP1c; bHLHLZ=basic helix-
loop-helix leucine zipper; CCTα=CTP: phosphocholine cytidylyltransferase; 
ChoRE=carbohydrate response element; ChREBP=carbohydrate response element-
binding protein; CRE=cAMP response element; CREB=CRE-binding protein; 
CYP=cytochrome P450; D5D=delta-5 desaturase; D6D=delta-6 desaturase; DR=direct 
repeat; FAS=fatty acid synthase; FKHR (=FOXO1)=Forkhead transcription factor; 
G3PAT=glycerol-3-phosphate acyltransferase; G6PDH=glucose-6-phosphate 
dehydrogenase; G6Pase=glucose-6-phosphatase; gAF=glucocorticoid accessory factor 
element; GK=glucokinase; GR=glucocorticoid receptor; GRE=glucoglucocorticoid 
response element; HNF4=hepatocyte nuclear factor 4; Insig=insulin-induced gene 
protein; IRE=insulin response element; L-PK=liver-type pyruvate kinase; LXR=liver-X 
receptor; LXRE=LXR response element; nSREBP=nuclear form SREBP; 
PE=phosphatidyletha-sphatidylethanolamine; PEPCK=phosphoenolpyruvate 
carboxykinase; PFK=phosphofructokinase; PGC-1=PPAR-gamma coactivator-1; PKB 
(=Akt)=protein kinase B; PL=phospholipid; PPAR=peroxisome proliferator-activated 
receptor; pSREBP=precursor SREBP; PUFA=polyunsaturated fatty acid; R×R=retinoid-
X receptor; SCAP=SREBP cleavage-activating protein; SCD=stearoyl-CoA desaturase; 
SRE = sterol regulatory element; SREBP=sterol regulatory element-binding protein; 
TG=triglyceride; USF=upstream stimulating factor; VLDL = very-low-density 
lipoprotein; Xu5P=xylulose 5-phosphate. 
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1. INTRODUCTION 

Over the last 5 years, microarrays for measuring mRNA expression have emerged as one 
of the most exciting new technologies available to help us understand basic biological 
underpinnings of complex biological phenomena. Microarrays offer the opportunity of 
measuring the transit level of thousands of genes simultaneously. This opens up new 
levels of questions that can be addressed at a more genomic than simply genetic level, 
that is, we can begin asking questions about coordinated gene activity, gene pathways, 
multivariate gene expression predictors of response or outcome, and the development of 
complex multivariate biomasses. Just as microarrays offer many opportunities, they also 
offer many challenges. Many questions remain unanswered about the measurement 
quality of existing microarray methods and how to maximize that measurement of 
quality. Statistically rigorous approaches to experimental design, data analysis, and 
interpretation are just now being articulated. A plethora of papers have appeared in the 
literature describing a wide variety of methods. It is not clear that all of the new methods 
offered are equally valid, and many may not be valid at all. Massive multiple testing 
brings both philosophical and statistical hurdles and at the same time offers novel 
statistical opportunities in the area of inference and estimation and inference. Perhaps one 
of the best outcomes of the recent focus on microarray research is that in trying to adapt 
new methodologies to these complex data structures, biologists, statisticians, and 
computer scientists are talking with each other more than ever in trying to develop 
methodologic approaches that build on the prior knowledge that biologists bring to the 
table. Herein, we try to describe some of these advances, offer caveats about the use of 
microarray research and several commonly utilized methods, and offer guidelines on 



some methods that may be especially useful to both. Further research in this area is 
needed and we encourage investigators to join in helping to build understanding and 
bring clarity to this new and complex area of research. 

1.1. What is a Microarray? 

There are several classes of microarrays (1) utilized for such purposes as genotyping (2), 
proteomic analysis (3), and quantification of the amount of a given type of mRNA in a 
biological specimen (4). For the remainder of this chapter, when we use the term 
microarray, we refer only to this last class of microarrays. 

A microarray consists of a flat surface on which one can place a substance derived 
from a biological specimen, subsequently process the microarray through an appropriate 
reader, and thereby estimate the quantity of mRNA present for multiple genes or 
expressed sequence tags in the original biological specimen from which the substance 
was extracted. There are multiple types of microarrays as will be briefly reviewed later in 
this chapter. The critical point that makes microarrays an interesting advance is that they 
can be used to measure the amount of mRNA in a specimen for thousands of genes 
simultaneously. This advance not only allows traditional questions about the expression 
levels of many genes, each considered inisolation, to be addressed with markedly 
increased efficiency, but also allows new genomic-level questions to be addressed in 
which the expression levels of multiple genes are considered simultaneously to 
understand gene networks, identify gene families, develop multivariate gene expression 
profiles that characterize organisms belonging to specific classes or to predict what class 
an organism belongs to, and address other such questions that bring us squarely into the 
realm of modern high dimensional biology (5). 

The power of microarrays has not been lost on the biomedical research community. 
Figure 1 displays the number of citations in the Web of Science (the Institute for 
Scientific Information’s Science Citation Index, Social Science Citation Index, and Arts 
& Humanities Citation Index combined) database that include the term microarrays or 
microarray and the number that include either term plus one of several obesity-oriented 
terms (any of the following: obese, obesity, adipose, adiposity, fat, adipocyte, 
adipocytes). As can be seen, since 1995, both have increased in a rapidly accelerating and 
roughly exponential and parallel fashion. Microarrays have taken the scientific 
community by storm, but their full potential has, in our opinion, yet to be realized. This 
appears to be due to several factors, including (but not limited to) the relatively high cost 
of some types of arrays and the need for more training in the conduct of array research, 
particularly with respect to design and analysis. We hope that this chapter can help to 
address the latter issue.  
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FIGURE 1 Growth of microarray 
research in Web of Science database. 
The line demarcated with triangles 
indicates the number of citations in 
Web of Science in each year 
containing the word microarray or 
microarrays.The line demarcated with 
squares indicates the number among 
these citations that include phrases that 
imply the paper is about statistical 
methods. 

2. WHY DO MICROARRAY STUDIES IN OBESITY RESEARCH? 

2.1. Gene Expression in General 

At one level, microarrays are just another method of measuring gene expression levels. 
The study of gene expression has many purposes. By detecting genes expressed during 
key phases of development, we may be able to discern the underlying molecular and 
physiological mechanisms that control development. By detecting genes that have their 
expression up or down regulated by toxins, nutrients, and drugs, we may increase our 
understanding of the pathways through which the substances affect organisms. By 
detecting genes that are differentially expressed with body composition changes during 
aging, we may begin to understand the underlying process of these age-related changes at 
a fundamental level. By detecting genes that are differentially expressed in experimental 
mutant models, we may discover new candidate genes for traits as diverse as muscle 
growth, intramuscular adipose tissue, adipogenesis, appetite regulation and any other 
traits affected by these genetic mutations. By knowing in which tissues and to what 
degree a gene is expressed, we can increase our understanding of the anatomic structures 
and pathways involved in the process in question. To some extent, all of these questions 
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can be addressed one gene at a time and, therefore, do not require microarrays. However, 
by allowing the measurement of many genes simultaneously, microarrays offer many 
additional benefits. 

2.2. Benefits of Massive Parallelization 

The first benefit of the massive parallelization that microarrays offer is efficiency. Many 
people view certain types of microarrays as expensive (6), costing between $500 and 
$1000 per array for Affymetrix microarray data acquisition in most academic institutions, 
not including the obtainment of the biological specimen. Although such costs may seem 
prohibitive at first glance, microarrays are not very expensive when cost is expressed on a 
per gene basis. In fact, considering that the total price is for thousands of genes, one is 
actually paying far less than $1 for each gene expression measurement. For the 
information offered, microarrays are actually quite inexpensive. 

However the benefits of microarrays extend beyond this economy of scale. By 
studying many genes together, one can potentially detect genes that are coexpressed (i.e., 
genes whose expression levels are correlated). In turn, by detecting genetic sequences 
that are coexpressed with other genes as part of a functional family, we may be able to 
assign functions to previously unknown genes or genes of unknown function. By offering 
us such highly multivariate data, microarrays potentially allow us to uncover gene 
networks (7, 8), predict outcomes (e.g., Ref. 9), classify objects (10), and develop indices 
or biomarkers against which to judge the effects of various interventions (11). 

3. WHAT IS THE CURRENT STATE OF ART IN THE OBESITY 
FIELD? 

Before proceeding further, we offer an overview of the use of microarrays to date as 
indicated in the published literature. This offers some perspective on where the field is 
and where it can benefit from expansion or modification. 

3.1. What Questions Are Being Addressed? 

Extant studies applying microarray methodology to the study of obesity and obesity-
related metabolic abnormalities have examined the role of dietary fat intake (12–14), 
food restriction (15–17), and soy protein intake (18) on gene expression. There is much 
ongoing research examining differences in gene expression between leptin-deficient and 
wild-type animals (15, 16, 19–21), lean versus obese animal models (22–24), and in 
insulin-resistant states (25, 26). Furthermore, the identification of genes that are 
differentially expressed in various adipose tissue compartments is being extensively 
explored (27–29). In addition, the expression of genes involved in preadipocyte 
differentiation has been the topic of some research (30–32). 

Other goals of microarray studies, in the context of obesity-related research, have been 
to identify genes involved in pre-eclampsia (33) and in muscle preferential energy source 
during space flight (34), as well as those genes activated by sterol regulatory element 
binding proteins (SREBP) (35). There also seems to be much interest in investigating the 
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genes associated with adipocyte differentiation and maintenance of adiposity as those 
genes could be involved in the development of metabolic disorders associated with 
obesity. There are data to suggest that some such genes are mutated or aberrant in animal 
models of obesity and metabolic disorders (36). The characterization of those genes may 
ultimately make possible the identification of new therapeutic targets for the treatment of 
obesity and other metabolic disorders (30). 

In fact, most studies seem to conclude, from the results of their micro-array analyses, 
that further studies of the identified genes and their biochemical pathways are necessary 
to increase our understanding of the mechanisms involved in the various hypotheses 
tested (17, 19, 26, 27, 30, 31). In addition, several authors suggest that the results 
obtained through their research provide new genetic targets for the treatment of obesity or 
related disorders (17, 19, 21, 24, 30, 35) or that results suggest the implication of certain 
genes in depot- and gender-related differences in the metabolic complications of obesity 
(28). Conclusions from several studies also propose that microarray analyses provide 
tools for searching for novel genes related to obesity and insulin resistance (29) and are 
useful to gain more insight into organ-specific gene expression in complex diseases (37). 

3.2. What Species Are Being Used? 

Studies to date have been mostly done using animal models with fewer studies using 
human subjects (26–29, 33, 37, 38). The most frequently employed species have been 
mice and rats, either lean or obese, with and without genetic mutations. The ob/ob mouse 
is the most studied animal, being involved in studies of leptin research and of genetic 
obesity (15, 16, 20, 21, 35). Other transgenic animals have included bombesin receptor 
substrate-deficient mice for the study of body weight and energy metabolism in adipose 
tissue (22), angiotensinogen knock-out mice to study angiotensinogen expression in 
relation to adiposity (14), insulin receptor substrate 1 and 2 knockout mice to determine 
the regulation of sterol SREBP-1c expression (25), and SREBP-1a transgenic mice to 
investigate the expression profile and nutritional regulation of acetyl-CoA synthetase 
cDNA and gene promoter (17). Lean and obese Zucker rats have also been used to 
measure hypothalamic mRNA signals for melanin concentrating hormone and its receptor 
(24), while obese Zucker rats were studied to examine the role of soy protein on liver 
mRNA expression (18). The only obesity-related study found that did not use a rodent 
animal model has used lean and fat chickens to analyze genes that are differentially 
expressed in the livers of these animals and how they may play a regulatory role in 
adiposity (23). 

Animals have ranged in age from 4 weeks (16) to 8 months (22) but most studies have 
used animals ranging from 6–10 weeks (17, 20–22, 32). However, not all studies report 
the age of the animals examined (12, 13, 15, 23, 24, 34), and animal age is not always 
obvious from the description of the methodologies in the various reports. 

Other studies have used cell lines to examine gene expression (19, 23, 30–32). Mouse 
3T3-L1 cells have those that are the most frequently used in microarray studies of obesity 
(30–32), but other cell lines have included chicken hepatoma LMH cells (23), GT1–7 
mouse hypothalamic neuronal cells (19), mouse 3T3-C2 fibroblasts (31) and human 
embryonic kidney 293T cells(32).  
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3.3. What Sample Sizes Are Being Used? 

Sample size varies with different studies and has not been reported in all publications (15, 
17, 23, 29, 35). In animal experiments, analyses have been made on samples ranging 
from three (12, 16, 20, 25) to 20 (24) animals per group. However, in most studies, 
sample sizes have been of four-six animals/group (14, 18, 22, 27, 32, 34). 

Sample size is also small in human studies. Of the studies reviewed here, one has 
included five patients and four controls (37), while others examined six patients/group 
(33), 10 (38) or 15 subjects (28), and 17 and 18 subjects of varying background (26). 

3.4. What Tissues Are Being Studied? 

Table 1 shows a list of the different tissues that have been analyzed for gene expression 
in studies linked to obesity research. The liver is the most frequently examined organ 
(close to 50% of studies) followed by epididymal fat pads (approximately 25% of 
studies). Peri-epididymal fat pads and intrascapular brown adipose tissue are other 
adipose tissue depots that have been analyzed, along with subcutaneous and visceral 
adipose tissue in human studies. Skeletal muscles have also been studied but somewhat 
less frequently. Kidney, brain, hypothalamus specifically, and placenta are  

TABLE 1 Tissues Extracted and Examined in 
Microarray Studies of Obesity 

Tissue Reference 

Abdominal subcutaneous adipose tissue 28, 35, 37 

Abdominal visceral adipose tissue 29, 35, 38 

Brain 22 

Epididymal fat pad 12–14, 21 

Hypothalamus 24 

Interscapular brown adipose tissue 22 

Kidney 14 

Liver 14, 16–18, 20, 21, 23, 25, 35 

Peri-epididymal fat pad 22 

Placenta 33 

Skeletal muscle 21 

Soleus muscle 34 

Soleus muscle 34 

Subcutaneous brown adipose tissue 27 

Subcutaneous white adipose tissue 27 

Vastus lateralis muscle 26 
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other organs that have been extracted and whose gene expressions have been studied. 

3.5. What Platforms (Types of Arrays) Are Being Used? 

Most studies reviewed here have used Affymetrix microarrays and software for analyses. 
mRNA are usually hybridized to the species-specific Affyme-trix GeneChip microarray. 
The most often used genome array is the murine U74v2 for studies involving a mouse 
model or the U34A rat genome for studies employing a rat model. Other platforms have 
included Hy Bond N+ nylon membranes and polylysine-coated glass slides. Arrays are 
then scanned using a confocal scanner, usually Affymetrix, when an Affymetrix platform 
is utilized, and appropriate analysis software. Table 2 shows a list of the different types of 
microarrays used in the studies examined in this chapter. 

Also, a large proportion of the studies examined have combined the microarray 
methodology with Northern blot analyses (12, 13, 16, 17, 20, 23, 25, 30, 32, 35) and, less 
frequently, with Western blotting (19,21) and immunoblotting (32). In addition, many 
studies have also included PCR analyses, either reverse transcriptase (12, 19, 22, 29, 38), 
real-time (21, 24, 26), or realtime reverse transcriptase PCR (28, 33). Reverse-
transcriptase PCR has a higher dynamic range than microarrays and is often used to 
validate observed trends with chip experiments (33). 

3.6. What Data Analytic Strategies Are Being Employed? 

The statistical methods used to determine differential gene expression varied widely 
between the experiments reviewed here. Furthermore, there was great variability in the 
extent to which statistical tools and tests were utilized. In addition, several reports did not 
describe any analytic strategy to statistically manipulate the data obtained (19, 21–23, 35, 
37).  

TABLE 2 Types of MicroarrayAssays Used in 
Obseity Research 

Type of array Reference 

Affymetrix array 13–15, 19, 21, 25, 29, 30, 32–34 

Dye terminator sequencing 17, 18 

ExpressHyb solution 37 

Hybond N+ nylon membranes 12, 29, 35, 38 

Polysine-coated plates Ferrante et al., 2002, (16) 

Most studies report fold-change (FC)* (12–14, 17, 25, 30, 32, 33, 37), but few have 
applied statistical tests to these results. Of those studies which have conducted statistical 
analyses, one has done pair-wise comparisons of mRNA levels between groups (14), 
while another used analysis of variance on log-transformed normalized intensities (32). In 
addition, the criterion used to assess whether genes were differentially expressed between 
groups differed between studies, with no apparent consensus. Fold changes of ≥2.0 (14, 
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37), ≥3.0 (33), and >5 or <−5 (30) have been reported. A few studies have reported K-
means (15, 20) and hierarchical means (20). As has been noted elsewhere, declaring 
genes to be differentially expressed or not differentially expressed solely on the basis of 
whether they exceed some FC cutoff without incorporating an assessment of variability 
has no theoretically sound basis and should be abandoned (26, 39, 40). 

Many authors also normalize their data. Ferrante et al. (16) reported mean normalized 
expression ratios and used 30% greater increase or decrease in signal intensity to 
establish differential expression. Ramis et al. (28) normalized their data for the amount of 
spotted PCR product, local hybridization conditions within a slide, and hybridization 
conditions between slides. They also used a ratio of ≥2.0 in normalized fluorescence 
intensity to determine differential expression and applied Student's paired t-test statistic 
to their data. In the study by Boeuf et al. (27), data with signal intensity <2.0 times the 
background level were excluded and the mean of the Cy5/Cy3 ratio calculated for each 
remaining clone was normalized with the median Cy5/Cy3 ratio of all spots. Data 
obtained by Iqbal et al. (18) were normalized with reference to the intensity of (β-actin 
gene after subtraction of the background intensity. Orthogonal contrasts were then used 
to compare and contrast changes between treatments. Finally, Yang et al. (38), in 2003, 
normalized their data among arrays based on the sum of background-subtracted signals 
from all genes on the membrane. Signal to noise ratios of ≥2.0 were considered as 
positive signals and Chi-squared tests with one degree of freedom were computed. 

Other statistical tests have been employed by different groups. These statistical 
methods include cluster analysis (20), Wilcoxon Rank Sum Test (26), and Fisher’s t-test 
(24).  

4. ASSOCIATION OF GENOME-WIDE TRANSCRIPTIONAL 
PROFILES WITH QUANTITATIVE TRAIT LOCI 

Recent studies have attested the power of using microarray analysis in combination with 
quantitative trait loci (QTL) mapping to identify candidate loci affecting variation in 
obesity-related phenotypes (41). The latter approach allows identification of the 
chromosomal regions containing loci responsible for producing variation in quantitative 
traits. In general, QTL mapping is a statistical analysis of the association between a 
complex phenotype and the occurrence of specific marker alleles in the genome of 
selected individuals. If a QTL is linked to or at the marker locus, there will be a statistical 
association between the marker genotypes at that locus and the mean values of the trait. 
Over the past few years, QTL mapping has been used to identify genomic regions 
associated with obesity-related phenotypes in humans (42, 43) and model animals 
(reviewed in Ref. 44). However, the genomic regions identified are usually very broad 
and encompass any where from tens to hundreds of genes. On the other hand, carrying 
out genomewide genetic analyses of gene-expression data in the same experimental 
population and treating the expression level of each gene as a quantitative trait will give  

*Fold-change (FC) is a measure of effect size. It is not defined perfectly consistently across studies, 

but is generally taken to be: where I(•) is the 
indicator function, is the mean of group 1 and is the mean of group 2. 
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the highest probability of successfully dissecting the genetic basis of the trait. The 
approach consists of using standard QTL mapping techniques to identify those genetic 
regions that can account for variation in the levels of gene expression. Then, if the 
differentially expressed genes are located within a QTL, more confidence can be assigned 
to the possibility that a differentially expressed gene is a predisposing factor for the 
expression of the selected phenotype. Schadt and colleagues have successfully used 
microarray analysis coupled with QTL mapping to identify candidate loci affecting 
variation in fat pad mass (FPM) in mice (41). They utilized a micro-array chip 
representing 23, 574 mouse genes to analyze the expression levels of the genes in the 
liver tissues from 111 F2 mice, and found that 7861 are significantly differentially 
expressed in the two parental strains. Measuring, as quantitative traits, the expression of 
each of the 7861 genes in the population, they were able to identify two patterns of 
expression that characterize two distinct groups, high FPM and low FPM. Interestingly, 
the high FPM subtype was clearly subdivided in two further expression patterns. This 
points out the problem of heterogeneity in the phenotype that affects the power of 
detecting associations to the causative loci using the population as a whole in QTL 
mapping studies. Indeed, after classifying, on the basis of clinical and gene expression 
data, each of the 111 F2 animals into distinct phenotypes, genetic analysis of these 
subtypes allowed Schadt et al. (41) to identify chromosome 2 and 19 QTL regions that 
affect one subgroup but not the other. The final step in the study was the identification of 
positional candidate genes simplified, as mentioned above, by the correlation between 
DNA variations and gene expression levels. Two main positional candidate genes 
encoding for a dolichyl-diphospho-oligosaccharide-protein glycosyltransferase and a 
cation-transporting ATPase were identified at the chromosome 2 locus. Notably, both 
genes have human orthologues mapping on the chromosome 20q12–q13.12 region, 
previously linked to human obesity-related phenotypes (45, 46). 

4.1. Summary of State of the Art 

Given the above, microarray-based research in the obesity field can be characterized as 
being at a very early and perhaps somewhat primitive state of development. This is not 
markedly different from the situation for most other applied fields in their early phase of 
implementation. In the overwhelming majority of studies, sample sizes are almost 
certainly far too small to yield studies with sufficient power and precision. Statistical 
analytic techniques used are generally very unsophisticated. They do not utilize newer 
methods available, often do not correct for multiple testing, and rarely capitalize on the 
added information available by having so many genes studied at once. 

5. DESIGN 

Here we discuss the design phase of the microarray experiment. Perhaps the most 
important thing we can state is that applied investigators are strongly encouraged to 
contact statisticians for consultation on the conduct of micro-array experiments before the 
data are collected. All too often, investigators only approach the statistician after the data 
are collected and then receive the frustrating news that there has been some fatal design 
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flaw that makes it difficult or impossible to extract meaningful insights from the data. 
Here we address some of the design issues that investigators may consider. 

5.1. Choice of Platform 

One of the first questions to consider in planning a microarray experiment is which 
platform (type of array) to use. There are multiple choices including prefabricated, 
commercially available oligonucleotide arrays (Affymetrix being the most popular), 
custom cDNA arrays, custom spotted oligonucleotide arrays, nylon membranes, and 
others (for reviews, see Refs. 47 and 48). Four primary considerations are generally 
brought to bear when choosing among platforms: availability, applicability, cost, and 
measurement quality.  

5.2. Availability 

Availability was more of an issue in past years than it is today. Most major research 
universities have one or more core facilities that offer investigators access to microarray 
technology. Moreover, obesity researchers can benefit from the investment that the 
National Institute of Diabetes, Digestive, and Kidney Diseases (NIDDK) has made in 
national biotechnology centers. For example, at Yale University, through an NIDDK 
Microarray Biotechnology Center Grant, investigators, who need not be at Yale, can 
access array technology for many platforms and many species at moderate cost (see 
http://info.med.yale.edu/wmkeck/dna_arrays.htm).Thus, having access to the technology 
is no longer a major issue. 

5.3. Applicability 

Nevertheless, having access to the broad technology is not the same as having access to 
an applicable microarray. For species such as human, mouse, rat, yeast, and a few other 
commonly used model organisms, this is not an issue. However, for most agricultural 
species, marine species, plants, and the occasional odd model such as lemmings, 
prefabricated microarrays are less likely to be available. For such situations, custom-
made, glass cDNA arrays (49) may be the best option, although using an array from 
another species seems to also yield useful information in some circumstances (e.g., Refs. 
50 and 51). For example, Affymetrix human chips have been successfully used with 
rhesus macaques (e.g., Ref. 52). 

5.4. Cost 

Currently, in-house custom arrays, once the system is set up, are far less (at least an order 
of magnitude) expensive than are Affymetrix microarrays. Other systems tend to lie in 
the middle with respect to cost. Given our comments in other sections of this chapter 
about the strong desirability of radically increasing sample sizes, cost is an important 
issue. Thus, at present, cost strongly favors custom glass cDNA arrays but, as with most 
technologies, prices tend to fall rapidly and this gap may close in the future. 
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5.5. Measurement Quality 

Given the enormous use of microarrays, one might think that many thorough studies of 
the measurement properties of each microarray technique would have been done with 
sufficient sample size to yield interpretable results; that those studies would have been 
analyzed with well-established methods in the field of measurement theory (53); and that 
results would be presented in a clear and interpretable manner. Unfortunately, this is not 
the case. Although a number of studies have been reported that yield some information 
about measurement quality, these tend to be modestly sized, idiosyncratically conducted 
studies of one or two microarray platforms and account for only one or two sources of 
variability. The field of microarrays could do well to take a page from the 
psychometricians who, through dealing with different instruments and different potential 
sources of bias, have delineated careful approaches to assessing measurement quality in 
an organized fashion (for a dense but superlative example, see Ref. 54). Larger and 
better-designed studies are underway, but at present, it is difficult to find data that 
convincingly favor one platform over another or are thoroughly informative about any 
platform. Nevertheless, we review some of the available information here. 

On a positive note, Nimgaonkar et al. (55) compared expression levels obtained across 
old and new generation Affymetrix chips. This can be seen as a form of parallel forms 
reliability. Nimgaonkar et al. (55) found that, as long as a high proportion of common 
probes were used and the degree of expression was relatively high, reliability was also 
high. Cheung et al. (56) investigated the heritability of gene expression levels in humans 
using cDNA microarrays. They found significant heritability for some gene expression 
levels which, ipso facto, implies some reliability of the measurements (or correlated 
errors across family members which seems unlikely). Moreover, in their Fig. 1, they 
plotted the variance between replicate measurements against the variance within replicate 
measurements for all genes examined. Simply eye-balling the figure indicates that, on 
average, the variance between is at least twice the variance within replicates, suggesting 
some reasonable degree of reproducibility. 

In contrast, Kothapalli et al. (57) compared two different commercial microarray 
systems and reported: 

Our analysis revealed several inconsistencies in the data obtained from the 
two different microarrays. Problems encountered included inconsistent 
sequence fidelity of the spotted microarrays, variability of differential 
expression, low specificity of cDNA microarray probes, discrepancy in 
fold-change calculation and lack of probe specificity for different 
isoforms of a gene. 

Kuo et al. (58) compared “mRNA measurements of 2895 sequence-matched genes in 56 
cell lines from the standard panel of 60 cancer cell lines from the National Cancer 
Institute (NCI 60).” 

They reported: By calculating the correlation between matched 
measurements and calculating concordance between cluster from two 
high-throughput DNA microarray technologies, Stanford type cDNA 
microarrays and Affymetrix oligonucleotide microarrays, corresponding 
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measurements from the two platforms showed poor correlation. Clusters 
of genes and cell lines were discordant between the two technologies, 
suggesting that relative intra-technology relationships were not preserved. 
GC-content, sequence length, average signal intensity, and an estimator of 
cross-hybridization were found to be associated with the degree of 
correlation. This suggests gene-specific or, more correctly, probe-specific 
factors influencing measurements differently in the two platforms, 
implying a poor prognosis for a broad utilization of gene expression 
measurements across platforms. 

Many other papers include some information about measurement quality of various 
microarray systems (e.g., Refs. 12 and 59–64). Perhaps one of the most important points 
concerning measurement quality is illustrated by Jenssen et al. (65). These workers 
assessed the repeatability of results using replicate cDNA spots on six cDNA microarray 
data sets. Their results “indicate a high degree of variation in data quality, both across the 
data sets and between arrays within data sets.” This high degree of variability in data 
quality across data sets implies that one should not be comforted by reports of good 
measurement quality in the literature nor should one necessarily be disturbed by reports 
of poor measurement quality in some studies. Rather, the ideal information is the 
reliability and validity of the microarray measurements taken in the laboratory, under the 
conditions of the study, and using the microarray platform used in the study. Without 
such information, which is lacking in the overwhelming majority of studies, some 
skepticism about any particular dataset is in order. 

5.6. Choice of Controls 

One of the key questions in designing a microarray study in obesity is the definition of 
the control group, if there is to be one. This obviously depends critically on the question 
being addressed (66). Although the choice of the appropriate control is critical, we will 
not belabor it here because it is not obvious that choosing appropriate controls is any 
different for a microarray study than any other study. 

5.7. Randomization 

As in any experimental design, the ability to infer causation is critically dependent on 
how cases (mice, people, etc.) are assigned to conditions and randomization is clearly the 
preferred technique (67). It is important to realize that random assignment is not 
equivalent to haphazard assignment, alternating assignment, or any other predictable 
process. If, for example, mice are to be assigned to either of two different diets before the 
tissue of interest is extracted for analysis, they should be assigned randomly. 

5.8. Counterbalancing Technical Factors 

In addition, it has been observed that factors such as technician handling the samples, the 
particular day on which samples were analyzed, lot of chips, dyes used in cDNA studies, 
and other such factors can have a major impact on measured expression levels. Therefore, 
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it is essential to avoid confounding such factors with the independent variable(s) under 
study. That is, one should not use, for example, red dye on all of the control specimens 
and green dye on all of the experimental specimens or vice versa (68, 69). Similarly, one 
should not analyze all of the control specimens on one day and all of the experimental 
specimens on another. Although this may seem trivial, in our experience, these factors 
have nontrivial effects. Alternatively, although the merit of counterbalancing such factors 
may seem obvious to some readers, in our experience, this is often overlooked in practice 
and adversely affects investigator’s ability to draw meaningful conclusions. 

5.9. Sample Size and Power 

Determining sample size and power for microarray experiments is challenging because of 
the newness of the endeavor. Our field has only just begun to generate the methodology 
and shared experience that allows for sound planning. Certainly statisticians are unified 
on at least two points. First, replication is critical, by replication we mean including more 
than one case in each condition in a microarray study (69, 70). Replication is necessary to 
allow measures of within condition variance to be constructed, without which, formal 
statistical inference is all but impossible. Again, this may seem obvious to investigators 
working in other areas, but this has apparently not been obvious to early microarray 
investigators. Second, most statisticians would strongly agree that the extremely small 
sample sizes commonly used in microarray studies (e.g., ≤three cases per condition) is an 
extreme limitation and severely impairs power and precision. Although statisticians are 
lining up to creatively attempt to make sense of data involving such small samples (e.g., 
Ref. 71), even our best statistical creativity cannot fully compensate for small sample 
sizes. 

When advising our collaborators on sample size, the first rule of thumb is to use no 
less than five cases per group when dealing with designs involving two or more groups. 
Although there are, of course, exceptions such as when each group represents a point on a 
continuum (e.g., age), many groups will be used, or linear effects of the continuum will 
be assessed, in general, we strongly adhere to this rule for the following reason. When 
sample sizes are small, parametric statistical tests of the differences between the mean 
levels of gene expression for each of the genes will be more sensitive to distributional 
forms of the expression data. Deviations from assumed distributions or other assumption 
violations may increase type I or type II error rates with small sample sizes (72). This can 
be resolved by use of an appropriate nonparametric test when the differences between the 
mean levels of gene expression for each of the genes are tested. We often recommend the 
use of a bootstrap test (with pivoting) for such situations (72). If one chooses the 
bootstrap as a method to nonparametrically produce p-values, the maximum number of 
different bootstrap samples is only 

 
  

where n is the number of cases per group in a two group comparison. When n=2, Wmax=9. 
When n=3, Wmax=100. When n=4, Wmax=1225. When n=5, Wmax=15,876. Most 
statisticians believe that at least 1000 bootstrap resamples should be used to offer valid 
inference and the number should be even larger if one uses very small alpha levels that 
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may be required for multiple testing corrections. For the above-stated reasons, we 
advocate that no less than five cases per group be used. Interestingly, a recent report from 
Pavlidis et al. (73) also recommends no less than five replicates per group based on 
empirical observations. 

Although we encourage that no less than five cases per group be used, this does not 
mean that we support the notion that no more than five cases per group be used. We (5) 
have developed a novel approach to study design and sample size determination for 
microarray research that is decidedly different than the classic approach that might be 
taken by, for example, a clinical researcher testing a single hypothesis, the outcome of 
which may lead immediately to a clinical recommendation. Such scientists want to be 
sure that their family-wise type I error rate (FWER) across the whole study is less than 
alpha (e.g., 0.05). However, in our experience, basic scientists conducting microarray 
experiments are more interested in three questions: (1) Of the genes declared significant 
at a particular threshold, what is the expected proportion that these are indeed genes that 
are differentially expressed? (2) Of the genes not declared significant, what is the 
expected proportion that these are indeed genes that are not differentially expressed (we 
refer to these two proportions as the true positive (TP) and true negative (TN) rates, 
respectively)? (3) Of the genes that are truly differentially expressed, what is the expected 
proportion that these genes will be detected in the data at a particular threshold? This last 
question is akin to the notion of power; however, we explore it from a slightly different 
angle and thus, to avoid confusion, will refer to this quantity as the expected discovery 
rate (EDR). These proportions are related to the quantities indicated in Table 3 below. 

The proportions that are of interest are that of a true positive 

 
  

that of a true negative, 

 
  

and where each proportion is defined to be zero if its denominator is zero. This latter 
proportion, EDR, represents the probability that a gene will be detected in the data at a 
particular threshold given that it is a gene that is differentially expressed. Ideally, we 
would like each of these quantities to be equal to 1.0. That would mean that we detect 
everything that there is to be detected and never have a false positive. This can only be 
achieved (asymptotically) with an infinite sample size. With finite sample sizes, we can 
trade these quantities against each other and try to find a combination of a threshold for 
declaring results to be significant and sample size that yields expected proportions we 
find acceptable. 

Using a mixture model (74) that we will describe in slightly greater detail below, and 
extended in Gadbury et al. (5), we are able to use a parametric bootstrap approach to 
estimate the quantities TP, TN, and EDR based upon observed pilot data. Figure 2 
contains an example plot of such estimates. These values are plotted at a threshold 
(alpha) level of 0.01.  

Design and analysis of microarray studies for obesity research     143



TABLE 3 Truth Versus DecisionTable for 
Microarray Inference 

  Genes for which there is 
not a real effect 

Genes for which there is 
a real effect 

Genes not declared significant at 
designated threshold level 

A B 

Genes declared significant at 
designated threshold level 

C D 

 

FIGURE 2 Power and sample size 
calculations for Dr.×(threshold is 
alpha=.01). Example of plot 
facilitating determination of desirable 
sample size for a planned micro-array 
study. 

Based on these data, we would estimate that with n=10 per group, over 90% of those 
genes we declare significant will be true positives, and over 90% of those genes we 
declare nonsignificant will be true negatives, and we will detect approximately 60% of 
the genes that are truly differentially expressed. Given that we often estimate that there 
are literally thousands of genes differentially expressed in the experiments we analyze, 
this would provide a very ample list with which to conduct follow-up research. Other 
statisticians have proposed similar approaches (75, 76). Methods for determining sample 
size in classification problems have now also begun to be elaborated (77, 78). 

5.10. Pooling 

A common technique in microarray research involves pooling mRNA from multiple 
tissue specimens. This may be done for either of two reasons. First, sometimes the tissue 
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of interest (e.g., hypothalamus in mice) is too small to permit extraction of enough 
mRNA for a full microarray analysis, thereby prompting investigators to pool multiple 
specimens (e.g., Ref. 79). Although pooling is one reasonable response to small tissue 
size, alternatives are available, such as various forms of amplification (80, 81). 

Second, microarrays can be expensive. Some investigators therefore ask the 
statistician “If you tell me that I need to have N cases in each condition, can I save money 
by pooling the biological samples from, for example, cases on each of two chips in 
each condition?” Several investigators have addressed this issue (82–84). A critical 
assumption in addressing this question is that the expected value of an expression 
measurement obtained from a pool of N sub-jects on a single chip equals the expected 
value that will be obtained from the arithmetic mean of those same N subjects measured 
on N separate chips. For convenience, although it is not strictly necessary, let us assume 
that the gene expression scores are normally distributed (within condition for each gene), 
that the number of cases per group studied is constant across groups and is an even 
number, and that there is homogeneity of variance across groups. An investigator could 
conduct a nonpooled analysis comparing the two groups under study. If the cases 
(subjects) were independent, one could test for group differences in the expression level 
for each gene using Student’s t-test (Eq. 1). 

 
(1) 

If one adopted a pooling approach, one could divide the N cases from each group into 
two pools of cases. Then, one could test whether the two pools from the first group 
differed from the two pools from the second group. The test statistics to use would also 
be a Student’s t-test with a slight alteration as in Eq. 2. 

 
(2) 

In Eq. 1, the variances are the variances among the individual cases, whereas in Eq. 2 the 
variances are the variance among chips containing mRNA from pools of subjects. 
These two t-distributions have noncentrality parameters that are given by Eqs. 3 and 4. 

 (3)  

 (4) 

These noncentrality parameters differ only in the term on the right under the square root. 
Here, represents the biological variability in gene expression scores and represents 
the variability due to measurement error. Unlike Eq. 4, in Eq. 3, will be reduced by a 
factor of 2/N. This illustrates that the noncentrality parameters, which largely drive 
power, will be identical when there is no measurement error.  
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When there is much measurement error, the noncentrality parameter for the nonpooled 
design will be much greater and is therefore likely to offer greater power. In contrast, 
when measurement error is 0, barring the differences in the degrees of freedom, virtually 
identical power can be obtained with the pooled as with the nonpooled design at much 
lower cost because fewer chips will be needed. This indicates that the careful assessment 
of the degree of measurement error will be critical to helping us design better studies in 
the future, and ascertaining whether, and under what circumstances, pooling is an 
effective strategy for microarray research. This discussion highlights the importance of 
investigators obtaining sound information about the measurement reliability of their 
microarray systems. 

6. CDNA SPECIFIC DESIGNS 

Multichannel Specific Design Issues and Opportunities 
When using Affymetrix GeneChips a single sample or pool of samples is hybridized to 
each chip that does not provide many options for complicated experimental design; 
however, spotted cDNA and oligo chips allow for two or more samples, each labeled 
with a different fluorochrome, to be hybridized to a single chip. This adds complexity and 
opportunities to the design of microarray experiments using this technology. 

There are three general designs for a spotted microarray experiment: (1) reference 
design, (2) balanced block, and (3) loop design. Over all of these is the need for dye 
swapping. The varieties of fluorochromes incorporate into RNA and DNA at different 
rates due to a variety of biochemical factors. While normalization procedures can remove 
average dye biases but cannot remove gene specific differences in dye incorporation, 
each sample or set of samples should be labeled with each dye and run on different chips. 
This is called reverse labeling or dye swapping (1, 2). 

The common reference design uses an aliquot of a single sample (the reference) on all 
chips in the experiment (Fig. 3 illustrates the design), with an experimental sample being 
the other sample of the chip. This will allow for all the samples in the experiment to be 
compared spot for spot to a single reference sample and thus all the experimental 
conditions readily compared. A single reference sample can be used across many 
different experiments so that the experiments can be directly compared. The reference 
design is also relatively straight-forward to implement, but requires more chips than other 
designs: 2n chips for n samples with dye swap. The dye swap may or may not be used in 
a reference design for any dye bias not removed by normalization will affect all samples 
equally.  
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FIGURE 3 Common reference with 
dye swap. 

The balanced block design (Fig. 4) has an advantage over the reference design since half 
of all the chips are not wasted on a reference sample. In the balanced block design each 
array is hybridized with a sample from each experimental group with half of each group 
labeled with one dye and half with the other dye. The analysis for this experiment is 
based on ANOVA. The balanced block design is very efficient since n samples can be 
tested on n chips as opposed to 2n in a reference design. There are also some limitations 
with this type of design, including difficulty to account for variation in the size and shape 
of the spots. In addition, it is difficult to implement an experiment with multiple classes, 
thus it is most efficient for two class comparisons. It is also inefficient if there is large 
inter-sample variability and when samples rather than arrays are the limiting factor (68, 
85, 86). 

The loop design (Fig. 5) has received much attention lately (87–89). The loop design 
has several advantages over the balanced block design. In the loop design, each sample is 
labeled with each dye. In its simplest form, the green (cy3) of sample 1 is hybridized with 
the red (cy5) of sample 2. The green of sample 2 is hybridized with red of sample 3, etc. 
until the green of  

 

FIGURE 4 Balanced block design 
with dye swap. 
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FIGURE 5 Loop deisgn with dye 
swap. 

sample n is hybridized with the red of sample 1. This allows n samples to be assayed on n 
arrays with dye swap. This design is very sample efficient and allows for all experimental 
groups to be compared, but there can be quite a bit of error in the comparisons if the loop 
is large, especially if there is large spot to spot variability (89). In addition, if a chip is 
lost, the loop is broken and much of the information is lost. Advanced multiple-cyclic 
loops have been developed to reduce some of the issues while only requiring a few more 
than n chips for n samples. The statistical analysis of these types of experiments can be 
quite complicated. Loops are more efficient than a reference design, but they can be very 
complicated to implement in the lab, and the incorrect hybridization of a single sample 
can destroy an experiment. Thus care must be taken when conducting a loop design. 

The choice of the design to be used in a spotted array experiment will have a large 
impact upon the results and interpretability of a microarray experiment. Investigators 
must be aware of the strengths and limitations as well as of the complexities of the 
analysis of some of these designs before initiating a microarray experiment. 

7. ANALYSIS 

7.1 Image Processing 

7.1.1. Image Processing 

Issues in the processing of Affymetrix type microarray images have received an extensive 
amount of attention (Mas 5.0 Dchip, RMA), but there are also many issues in the 
processing of cDNA type arrays. In general the scanners all generate a TIFF image of the 
entire chip, as well as often generating an image for each channel. Calculation of the 
background fluorescence is very important, but a variety of different methods have been 
developed including the calculation of local background using a variety of techniques as 
well as global background intensities. Spot finding is a very difficult issue and ideally all 
spotted cDNA will be of the exact same size and shape as each other and in the exactly 
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correct position, but this is not what happens in reality. Likely, the tips of some of the 
spotting needles may be sharper than others, the springs may be slightly less springy, etc. 
making the spots slightly nonhomogeneous. Manual adjustment is usually still required, 
which can be difficult for 40,000 spots. 

Segmentation involves deciding on the size and shape of spots as well as identifying 
the foreground and background spots. Some methods allow for fixed-diameter round 
spots while others are more flexible in shape and diameter. 

A variety of image-processing software tools are available and one should be aware of 
which tools are used in an experiment as well as the techniques that each one uses. 

7.1.2. Preprocessing 

The first step in the analysis of microarray data is sometimes referred to as preprocessing. 
The idea of preprocessing is, to the greatest extent possible, to remove extraneous sources 
of variance or bias in the measurements obtained and to transform the data in ways that 
hopefully lead to more interpretable and valid inferences and more stable and precise 
estimates. 

7.1.3. Normalization 

In the microarray field, normalization does not necessarily refer to transforming data to 
make it normally distributed as it would in the field of statistics (90). Rather, 
normalization refers to a process by which the original data observed on a microarray is 
adjusted in some way to account for artifacts that can affect the absolute numbers 
observed. There are many ways to normalize microarray data (91–99) and no one is 
universally accepted as the best. The simplest form of normalization is chip mean 
normalization in which one simply multiplies all the chips by a constant (usually target 
mean expression level/chip mean expression level) to take each of the chips to the same 
mean expression level. Quantile-quantile normalization converts the expression levels to 
percentile ranks (across genes, within arrays) which are then transformed to standard 
normal deviates via the inverse cumulative density function for the standard normal 
distribution. Unlike mean normalization, this not only forces the mean expression level to 
be constant across microarrays, but it also constrains the variance and shape of the 
distributions to be constant across microarrays. Whether this is a good thing or not is 
unclear. Other forms of normalization try to achieve linearity in the within-array across-
gene regression of the measured levels for one channel (dye) on the measured levels for 
the other channel. The biochemical properties of each of the dyes on a two-color array 
cause the dyes to be incorporated at different rates, which results in an apparent dye bias 
on a single array. This is often correct using a dye swap, where the same sample is 
divided and labeled with both dyes and run on different chips. This will allow the biases 
to be reduced. Alternatively, lowess (or Lowess) normalization (locally weighted 
regression) (100, 101) can be used to correct these differences, based upon the 
assumption that the same number of genes are changing up as down, a biased move in 
expression will bias the results. Lowess normalization involves estimating the mean of 
one variable conditional on another, usually made robust by using a moving window. 
Other methods of normalization use a common set of housekeeping genes that are, in 
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theory, expressed at about the same level in all tissues (102). The housekeeping genes can 
then either be used for chip mean normalization or lowess normalization. 

Microarrays, both single and multichannel, can have spatial variation in hybridization, 
which can affect results. A variation on lowess normalization is used to correct for these 
artifacts. A polynomial is fit to the two-dimensional space of measured fluorescence 
across a chip, areas of high or low fluorescence may then be detected and smoothed (92, 
103). 

7.1.4. Transformation 

Transformation is generally done after the normalization step and is intended to improve 
the fit of the observed distributions of data (withingene, across-microarrays) to some 
desired distribution, usually the normal distribution. A log transformation is by far the 
most commonly utilized and experience suggests that this is often a good choice, though 
no formal proof exists to state that it is the best choice. Another alternative would be to 
use the Box-Cox (104) family of transformation defined as: 

 
  

where Y is the original expression score, Y' is the transformed score, p is an additive 
constant set to ensure that Y+p>0 for all Y, and λ is a constant. If λ=0, then Y′ is simply 
taken to be LN (Y+p). A value of λ can be selected to insure that the residuals of Y (in a 
study of two or more groups or conditions, the residuals would be the values of Y after 
subtracting the group means) follow a normal distribution as closely as possible. An open 
question is whether a single value of λ should be selected, whether one common value 
should be chosen for all genes, or some middle ground selected. To our knowledge, this 
has not been addressed to date, but our intuition is that given sample sizes commonly 
used (e.g., <20 per group), estimating a common A for all genes is probably wise. Still 
other transformation approaches exist (105–107) although to date they have not been 
widely employed. 

7.1.5. PM–MM 

An aspect of preprocessing that is unique to Affymetrix oligonucleotide arrays involves 
subtracting values of the amount of hybridization to a mismatch (MM) sequence 
corresponding to each perfect match (PM) sequence on the chip. The MM sequences are 
identical to their corresponding PM sequences with the exception that they differ by a 
single nucleotide. The idea behind the subtraction of MM from PM is that MM will 
assess background hybridization [noise or error (e)] whereas PM should asses both true 
signal (t) plus noise (i.e., t+e). Therefore, subtracting MM from PM should yield 
(t+e)−e=t; that is a more accurate estimate of true signal intensity. However, this 
thinking is simplistic because: (1) both t and e are random variables; (2) e actually 
represent two separate random variables (one for PM and one for MM) that may or may 
not be correlated; and (3) MM scores may also be influenced by t, though perhaps to a 
lesser degree. Because of these points, the simple subtraction is probably not best. 
Alternatives that are now gaining favor include ignoring MM altogether or including MM 
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as a covariate in a linear model that has PM as the dependent variable (107, 108). 
Although yet to be widely used, this last approach may be the most sound. 

7.1.6. Inference 

In statistical analysis when we refer to inference, we refer to the process of drawing a 
conclusion about some aspect of a population (i.e., about some aspect of the state of 
nature) on the basis of some sample data. Most often, inference is conducted from the 
context of classical frequentist null hypothesis significance testing. Typically we ask “Is 
some effect or association zero in the population?” In the context of microarray research 
the most common inferential question is usually “Does the level of gene expression for 
this gene differ between the two groups (or conditions) I have studied?” There is no one 
method for making such inferences. Many methods exist and several factors may be 
considered when choosing among them including use of instrumentation, availability of 
software, and, in our opinion most importantly, the properties of the testing procedure 
and how well those properties are established. When we refer to the properties of the 
testing procedure we are generally referring to its error rate. Looking back to Table 3, 
decisions landing in cells C or B represent errors whereas decisions landing in cells A or 
D represent correct decisions. We want inferential testing procedures that maximize the 
number of correct decisions and minimize the number of errors. Among correct decisions 
(A and D) investigators may choose to place different value on correct decisions of type A 
and correct decisions of type D. Similarly, among incorrect decisions, investigators may 
choose to place different value on incorrect decisions of type C and incorrect decisions of 
type D. There is no right answer as to how one should weight these correct and incorrect 
decisions—it is simply a matter of choice, values, and resources. Traditionally, 
frequentist statistical testing has demanded procedures that fix the ratio of 

 
  

to some level, most often 0.05. This is the classical type I error rate. Thus, in considering 
which statistical procedures one wants to use, the answer may be the one which has the 
best error rate when errors are weighted according to the investigator’s values. To make 
such a judgment, investigators need to know the error rate of their procedures. This is 
challenging because there have been very few (if any) thorough simulation studies or 
mathematical proofs demonstrating that some of the preferred methods necessarily have 
better error rates than others across a broad variety of circumstances. In fact, for many 
methods that have been offered in the literature we do not even have information about 
what their properties are. This is because many methodologists who are rapidly offering 
methods in this rapidly evolving area seem to have forgotten the traditional need to 
validate methods and demonstrate their properties by simulation and/or analytic proof 
when offering a new method. Thus, the microarray researcher is at a significant 
disadvantage in being able to intelligently choose among the currently available methods. 
We try to give some guidance below. 

Perhaps the most commonly used method for drawing inference about differential 
expressions is the use of FC. FC is defined in greater detail in the section on estimation 
found later in this chapter. The commonly used approach is to define any two groups as 
having differential gene expression if the FC for the gene in question is greater than or 
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equal to some value FCT. FCT can be thought of as the threshold for declaring genes to be 
differentially expressed. The most commonly used thresholds appear to be 2.0 and 3.0 
although some authors use more complex rules. Currently, there is broad consensus 
among statisticians that simply using fixed cutoffs of FC to determine differential gene 
expression regardless of sample size, variability in expression levels for the gene and 
study under consideration, and other factors is without sound basis. This is so for many 
reasons. First, the distribution of FC is not known. Therefore, there is no way of knowing 
that, under the null hypothesis of differential gene expression, FC values greater than FCT 
will only occur less than or equal to 100×α% of the time. Without such knowledge, we 
have no way of describing the type 1 error rate of our procedures. Second, FC does not 
explicitly incorporate a measure of variability in expression. Thus, for example, an FC 
value on a gene with a much greater inter-subject variance is treated the same as an FC 
value with a smaller inter-subject variance. Because of this, FC is not what is referred to 
as a pivotal statistic, even asymptotically. Therefore, its distribution will depend on 
unknown factors again rendering it useless for formal inference. Third, the use of such 
cut offs for FC stands in contradiction to the law of large numbers which implies that 
(under virtually all circumstances) a sample estimate of a population parameter converges 
in probability to the population parameter as the sample size upon which the estimate is 
based approaches infinity. In other words, as our samples become larger, the estimates 
that we derive from them become increasingly more accurate to the point that, when 
sample sizes are very large, our estimates should be so accurate that even very small 
deviations from a value expected under the null hypothesis will be significant. Contrarily, 
in very small samples our estimates may vary so widely from the parameters that we are 
trying to estimate that even apparently huge deviations may be meaningless. For 
example, in a sample of only two cases, an FC of 2 may be quite unimpressive whereas in 
a sample of two million cases, even an FC value of 1.01 might be highly statistically 
significant. Fourth, it is sometimes stated that investigators are less interested in statistical 
significance than biological significance. We believe that such statements represent an 
inappropriate either/or point of view. That is, investigators should be concerned about 
both statistical and biological significance. Statistical significance can be thought of as 
telling one whether something is really there. Biological significance can be thought of as 
telling one, if it is really there, how big and important is it. FC may help us to determine 
how big potentially important things are, but not whether they are really there. Even for 
determining how big effects are, FC value may have some limitations as described in the 
section on estimation found later in this chapter. Finally, some investigators have taken 
the approach of taking a single biological specimen and aliquoting into two subsamples. 
These two subsamples are then treated as though they were different samples and run on 
microarrays. The FC value for each gene is then calculated and for the k genes on the 
microarray, a distribution of k FC values is presented. FC cutoff points corresponding to 
some percentile values of interest (e.g., the 1st and 99th) are then defined and 
subsequently used as cutoff points for determining statistical significance in subsequent 
research involving samples from two or more groups or conditions. Although this may 
seem sound, it makes at least two mistakes. First, it implicitly assumes that the 
distribution of FC, under the null hypothesis, is the same for all genes. Because, as we 
have stated above, FC is not a pivotal statistic, we have no basis for making this 
assumption. Second, this whole endeavor confuses the standard error of the mean with 
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the standard error of the measurement. Therefore, even if our first criticism of this 
approach were irrelevant, this approach would at best be offering correct answers to 
incorrect questions. That is, it would tell us whether two measurements were different not 
whether the means of two populations were different. For all of these reasons, we and 
many other statisticians recommend that the simplistic use of FC and fixed cutoff points 
for determining statistical significance be abandoned. 

If FC won’t work for determining whether genes are differentially expressed, what 
methods can be used? Although it may seem less than staggeringly dramatic to say so, the 
good old-fashioned Student’s t-test works extraordinarily well. When examining a single 
gene at a time, the Student’s t-test may offer the best combination of valid inference and 
statistical power available. In 1908, Student’s showed that when the data are normally 
distributed this test is valid and, moreover, it is known that when data (residuals actually) 
are normally distributed, there can be no more powerful test of whether or not any two 
means are equal. [This statement is not necessarily true when one considers testing many 
pairs of genes simultaneously, see Ref. 110). Therefore, we recommend strong 
consideration of the use of Student’s t-test when looking at each gene separately. 
However, we still need to note that in using Student’s t-test we are assuming that the data 
are normally distributed within each group or condition and that the variances are equal 
within each condition (i.e., homoscedasticity). To the extent that these assumptions are 
not met, Student’s t-test is not necessarily valid. We recently explored this question in 
detail in an extensive simulation study (72). We compared Student’s t-test to a large 
number of nonparametrical alternatives including permutation and bootstrap tests to 
evaluate the relative power and validity (by validity we refer to a per test control over the 
type I error rate) of each method under a variety of distributions, sample sizes, effect 
sizes, and degrees of heterogeneity of variance (i.e., heteroscedasticity). We found that 
when samples sizes are equal across the groups or conditions being studied and 
homoscedasticity holds, Student’s t-test performs remarkably well regardless of the 
normality of the distribution. When variances were unequal, Welch’s (111) adjusted t-test 
performed quite well. However, when samples sizes were unequal, we found that only 
when the groups have equal variance and the data is normally distributed can one use 
Student’s t-test. In other cases, only the Chebby Checker, and not permutation tests, was 
found to be valid. Thus one should strive for equal sample size per group or transform the 
data to be normally distributed with equal variance.  

7.1.7. Multiple Testing 

Of course, in microarray research we are not simply testing a single gene at a time but are 
testing for differences in many genes. This brings up two questions. First, should we take 
this multiple testing into account in the inferential process to correct for the increased 
probability of making one or more type I errors (decisions of type C in Table 3) as the 
total number of tests, and presumably the total number of true null hypotheses, increases? 
Second, is there some way we can take advantage of the fact that we are conducting so 
many tests and have so much more information and thereby conduct better tests? With 
respect to the first question, this is ultimately a philosophical issue that has troubled 
statisticians and investigators for decades. Saville (112) stated that each investigator must 
ultimately “cut the Gordian knot” and decide whether they simply wish to have their per 
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test type I error rate held at some level or whether they wish to have the type I error rate 
for an entire set of tests held at that level. We will not go into all of the philosophical 
questions that this issue raises (for review, see Refs. 112–115) but will simply state here 
that the zeitgeist of the field seems to be that some correction for multiple testing is in 
order. The question then becomes how to do it. By far the easiest and most robust way of 
doing so is the Bonferonni correction. The Bonferonni correction entails conducting each 
individual test at level α/k where α is some FWER one wishes to maintain and k is the 
number of tests conducted. This ensures that probability of making one or more type 1 
error remains less than or equal to alpha [i.e., P(C >0)≤α]. Unfortunately, it can also be 
extremely stringent. That is, when there are certain types of correlation structures among 
the tests conducted, types that are considered plausible and common, the Bonferonni 
correction will be too conservative. In addition, when many of the null hypotheses are not 
true, the Bonferonni correction will also be too conservative. Therefore, people are 
seeking alternative methods. One of the best outcomes of microarray studies may be the 
fact that it has stimulated so much new and good work in the area of multiple testing. 
With respect to these new methods, they can generally be divided into two types. One 
type tries to control the family-wise error rate. The other tries to control the false 
discovery rate. The false discovery rate (FDR) is equivalent to 1−TPwhere TP is defined 
as it was using the notation in Table 3. Although the concept of FDR goes back longer, it 
was formally introduced by Benjamini and Hochberg (116). Although neither controlling 
the FWER nor the FDR can be said to be intrinsically better than the other, there is 
currently a groundswell of enthusiasm for methods that control the FDR because 
controlling the FDR is both more powerful than controlling the FWER and, more 
importantly, seems to be more in line with the way applied investigators think. That is, 
investigators seem to be more interested in asking “What proportion of those things that I 
decide to follow up on will be good leads rather than ghost chases?” In contrast, they 
seem less interested in asking “If all the null hypotheses are true, what is the probability 
that I have incorrectly rejected one or more?” 

For both F WER and FDR control approaches there are multiple methods available. 
Some assume independence of all the tests conducted, others do not. Clearly those that do 
not are more robust and generally applicable than those that do. Those that do not assume 
independence tend to be more computationally demanding because they often use 
computer intensive methods to simulate the effects of the correlation structure among 
genes on the distribution of the test statistics involved. Those that assume independence 
can often be implemented with very simple, back-of-the-envelope calculations whereas 
those that do not assume independence often require more sophisticated computer 
programs. Among known FDR methods, some are adaptive in that they try to use all tests 
simultaneously to get some sense of how many null hypotheses may be false and then 
build that information into the FDR control procedure for greater statistical power (e.g., 
see Refs. 74, 116 and 117). Thus, with respect to multiplicity control we do recommend 
that some method of taking multiple testing into account be utilized. We favor methods 
that utilize the FDR as opposed to controlling the FWER, though both have merit. For 
both types of methods we advocate methods that take into account the dependency in the 
data and are adaptive to the extent that such methods can be utilized. 

The second issue with multitesting is more positive than negative. That is, it asks 
whether we somehow utilize the potential additional information available in multiple 

Genomics and proteomics in nutrition     154



other tests to strengthen the inferences we conduct with each individual test. The answer 
seems to be yes. A variety of methods that based on Bayesian, empirical Bayes, and 
frequentist testing are becoming available. In a different context, Berry and Berry (118) 
considered the same issue in deciding how to make inferences about multiple side effects 
in a clinical trial. Berry’s Bayesian method unfortunately ignores potential correlations 
among the observations. Other methods are based upon empirical Bayes methodology 
and involve shrinking estimates of effect toward a grand mean of effect estimates across 
all genes (e.g., (119)). These shrunken effect size estimates tend to be more precise, that 
is have less variance, than ordinary estimates. Because they are estimated with greater 
precision, they may be statistically significant where ordinary estimators are not. That is, 
by taking into account the multiple testing, in some cases one may actually be able to 
increase power. Recently, Brand et al. (120) developed an adaptive alpha-spending 
function that takes into account the tendency among genes induced by a presumed 
underlying biological cascades to be correlated in their expression. This method can 
improve the power of both methods that control the FWER and methods that control 
FDR. Finally, there are procedures that are becoming available that simultaneously 
consider all genes and try to draw valid inferences by simultaneously considering 
information from the ensemble (see Refs. 74, 87, 88, and 121–124). We cannot review all 
of these methods in great detail here and certainly cannot review many of the other 
methods that have been proposed. 

The mixed-model-based methods (87, 88, 123, 124) are some of the more statistically 
sound and well-thought-out approaches. These methods are highly adaptable to a broad 
range of circumstances, can often be run in widely available software (e.g., SAS) and 
enjoy a stronger statistical foundation than most methods presented in the literature for 
microarray analysis. A key difference among these ANOVA-based methods is the extent 
to which they constrain the residual variances for each gene (that is the variance in gene 
expression that is not explained by a model fitted to the data) to be equal across all genes. 
Kerr and Churchill’s (87, 88) method constrained all variances to be identical across all 
genes. Wolfinger et al. (124) allowed the variances to be different for every gene. Several 
investigators have now noted that the optimal answer may lie somewhere in between 
methods to either shrink variances towards a common mean variance or to cluster genes 
together and allow for common variances within clusters but different variances across 
clusters are being developed (125, 126). While these methods do enjoy a generally sound 
theoretical basis, this basis is founded in asymptotics. That is, we know that test statistics 
utilized in these models are asymptotically correct. They will give the right answer as the 
sample size approaches infinity. Unfortunately, as we have discussed above, the sample 
sizes used in microarray research have not begun to approach infinity. Therefore, it 
remains an open question whether these methods yield valid type I error rates in the 
sample sizes typically used in microarray research. This is an important question for 
methodologic research. The results of Catellier and Muller (127) give one grounds for 
doubt that these asymptotic methods perform well in small samples. 

An alternative approach to analyzing data is a two-stage approach in which one first 
conducts a significance test for each gene and then uses the distribution of p-values that 
result to fit a higher level model. Allison et al. (74) have developed a method based upon 
applying finite mixture models to these p-values. We have publicly available software 
that implements this method (see www.soph.uab.edu/ssg-content.asp?id=1164) and refer 
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to the software algorithm that implements this as the Mix-o-matic. The Mix-omatic takes 
the distribution of p-values and fits it to several components including a uniform 
distribution (the distribution that will be expected if all null hypotheses were true) and 
one or more beta distributions. Once the model is estimated, we can use it to calculate an 
FDR level for every gene. We are thereby able to provide investigators with statistics that 
they seem to find meaningful. Specifically, we are able to offer statements such as “for 
this gene our best estimate is that there is a 95% chance that it is a gene that is truly 
differentially expressed.” It is important to recognize that the preceding statement must 
be interpreted in a Bayesian framework. Examples of the use of this methodology with 
real data can be found in Ref. 11. Although our method certainly can benefit from further 
development, we find it useful because it allows us to communicate with investigators in 
ways that answer the questions that are on their minds and allow us to offer statements 
about our error rate that we have validated. Thus, investigators can have some confidence 
in inferences we offer them and, importantly, know exactly how confident they should or 
should not be. 

While we certainly favor the approach we have developed, it is not the only approach 
we utilize when analyzing microarray data and it is certainly not the only approach that 
we think has any merit. As of yet, there is no clear consensus as to which of all the 
available analytic techniques is best or even if one is best. That is, future research will 
need to tell us which of the current and future methods are worth using at all and among 
those that are worth using at all whether any one stands out as best or whether some are 
better for some purposes and under some circumstances and others better for different 
purposes and under different circumstances. 

Finally, after the formal inference using the microarray data, some investigators 
choose to take additional steps to validate their inferences. A variety of approaches exist 
for such validation. For an overview, see Ref. 128. 

7.1.8. Estimation 

In addition to simply attempting to determine whether a gene is differentially expressed 
across two or more conditions, investigators will probably want to know the magnitude of 
the difference. A statistic that estimates the magnitude of an effect is generally referred to 
as an effect size. The concept of magnitude of effect is very closely related to biological 
significance though they are hardly identical. There are many metrics of effect size (129–
131). In choosing among effect sizes and estimation approaches, two key issues are 
interpretability and statistical properties. 

With respect to interpretability, metrics that are scale free seem to be best. A raw mean 
difference would generally not be interpretable. For example, how would one 
meaningfully interpret the statement that the mean difference between some wild type 
and some knockout mice for WNT expression was 9346? In contrast, the FC metric is 
likely so popular, in part, because it is seemingly easy to interpret. Whether this seeming 
ease of interpretation for FC is warranted is open to question however. FC is a ratio-based 
metric. Such metrics are usually only justified when the variable under consideration is 
measured on a ratio scale (132). A ratio scale is a scale of measurement for which equal 
ratios of two pairs of measurements correspond to equal ratios of the corresponding 
underlying trait, for any two pairs of measurements. This can only occur when the 
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measurement scale has a true, fixed, and known zero point. Body weight, for example, is 
a ratio-scale measurement whereas temperature, in Fahrenheit or Celsius, is not. Thus, we 
would get the same FC if weight were our outcome in a study regardless of whether we 
recorded weight in pounds or kilograms. In contrast, we would not get the same FC if 
body temperature were our outcome in a study regardless of whether we recorded the 
data in Fahrenheit or Celsius. In the process of normalization and the use of PM-MM 
measurements, we are often adding arbitrary constants to gene-expression measurements 
such that they are not necessarily made on a ratio scale. Therefore, the FC results can be 
tremendously dependent on these arbitrary factors. Second, there is some linguistic 
confusion regarding the term FC. First, it is often confused with relative amount such that 
if the mean of group A is 1.0 and the mean of group B is 2.0, some investigators label this 
as a two-fold change when in fact it is a one-fold change. That is, the difference (change) 
between the two measurements is one times the smaller measurement. Second, even 
though FC can be defined as we did earlier to allow numbers to theoretically range from 
negative to positive infinity, a linguistic purist would not allow that for a quantity that 
cannot go below zero (i.e., the amount of mRNA molecules in a specimen). It is 
nonsensical to state that an FC is less than –1. That is, it is impossible to have more than 
a one-fold reduction because to do so would require having less than zero mRNA. 

Another scale-free metric is the standardized mean difference (δ) defined as the 
difference between the two means in question divided by their pooled within-group 
standard deviation (131). This statistic, though perhaps a bit unfamiliar to basic 
biologists, is very familiar to meta-analysts who use it routinely to summarize the 
strength of effect when two groups are compared on a quantitative outcome variable. In 
essence, this statistic standardizes the gene expression scores under consideration to have 
a standard deviation of 1.0 such that differences can then be described in standard 
deviation units. There is a 1:1 relationship between the δ and the proportion of variance 
in the gene expression score explained by the independent variable which we will denote 
τ. This proportion of variance represents yet another potential effect-size metric that is 
scale free. 

Finally, Wolfinger et al. (124) and Chu et al. (133) suggest estimating differences 
between means after transforming the data with a log base 2 transformation which we 
will denote . The rationale is that, on this scale, mean differences have an FC-like 
interpretation. However, it should be noted that this is more analogous than strictly 
correct and really refers to expression ratios rather than true FCs. 

Regarding statistical properties, the properties of δ, τ, and are all well known under 
normality and, even without assuming normality, asymptotically. They are consistent 
estimators of their corresponding parameters, and formulae for placing confidence 
intervals around sample estimates are available. The same can not be said of FC. 
Moreover, such sample estimates of effect size expressed as δ, τ, and when 
accompanied by estimates of their standard error, can be useful for subsequent power 
calculations. For example, if one wished to know how many subjects one should use to 
try and replicate a finding in a microarray study using a fresh sample of subjects and a 
method or assaying a single gene expression level (e.g., rtPCR), then these metrics would 
be useful in standard power analysis formulae. Again, this is not true of FC. Finally, it 
should be noted that for all of these effect-size estimators, if one only focuses on the 
estimates of effect size for which some degree of statistical significance has been 
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achieved and/or that are the largest among the entire set, then these estimates of FC will 
almost assuredly be highly biased upward. That is, the effects will appear, on average, 
much greater than they actually are. This has been well- established in other contexts 
(e.g., (74)) and there is no reason to believe it will be otherwise in the microarray context. 
Because of this, if one is interested in accurate estimation among a subset of genes with 
apparently large effects and/or among a subset of genes that appear to have statistically 
significant differential expression, then either of two things should be considered. 

First, it is wise to consider estimation procedures that are essentially ensemble 
estimation procedures and shrink estimated values toward the grand mean of the entire 
ensemble or toward some predicted value based upon a prediction model. Such 
approaches are often referred to as empirical Bayes approaches.We use an empirical 
Bayes approach developed by Morris (134) to obtain estimates of δ that are shrunken in 
the microarray context (119) and find that these are substantially more accurate (i.e., have 
smaller means for error) than ordinary estimates. A similar approach to estimating 
correlation coefficients in microarray analysis prior to clustering data has been provided 
(135). Second, one should consider replicating the finding in an independent data set. It is 
important to note that replicating an independent data set is distinctly different from 
showing that one can reproduce the results obtained from the same specimens when those 
specimens are under alternative measurement procedure such as rtPCR. We are referring 
here to obtaining fresh measurements, for example, if one is studying the adipose tissue 
of mice and wanted to confirm or reestimate the effect of a gene detected in a 
differentially expressed microarray, one might get a fresh set of mice, excise the adipose 
tissue of interest, extract the RNA, and then run both specimens through rtPCR. The 
effect-size estimates obtained in these second studies would then be unbiased. 

7.1.9. Prediction 

We use the term prediction here broadly to refer to a construction of scoring procedures 
involving multiple gene expression levels to classify objects into preexisting known 
categories or to develop indexes that can serve as some form of biomarker. In the field of 
cancer research, this first type of class prediction is very common. For example, 
investigators are interested in using microarrays to predict whether the biopsy of a tumor 
represents a benign or a malignant tumor, or a tumor that will progress rapidly and 
aggressively, or a tumor that will progress slowly and innocuously. There may be 
situations where this type of approach will be useful in the field of obesity research. For 
example, one could envision conducting microarray analysis on muscle tissue biopsies 
from obese individuals who currently show no signs of insulin resistance or type II 
diabetes. One might be able to follow these individuals and predict via a microarray 
profile who subsequently goes on to become insulin resistant or diabetic and who does 
not. Were such a method possible, this might have great utility. If one could predict 
which obese individuals would go on to have subsequent complications and which would 
not, one could more effectively target for treatment those individuals that are expected to 
go on to complications. However, at this time, this is a less common use of microarrays 
in the obesity field. For readers interested in techniques for such prediction, see Ref. 136 
and 137. We have used this general type of predictive approach to develop biomarkers 
using microarray measurements. For example, in Lee et al. (176), we constructed an 
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index that was a linear multivariate composite of all the expression scores on a 
microarray. We constructed the index such that it provides a very good separation 
between old and young animals. We were able to show through simulation that the 
degree of separation provided was statistically significant. That is, the degree of 
separation was greater than that which would be seen if there were no differences 
between old and young animals. Subsequently we were able to compare calorically 
restricted animals to both old and young animals with respect to this index. We found that 
caloric restriction tended to lower an animal’s apparent age at the transcription level by 
approximately 19%. This is consistent with the observation that caloric restriction 
prolongs life and seems to decrease the fundamental process of aging. When we develop 
such an index, we can then use it for future research to evaluate the effects of compounds 
or treatments that are hypothesized to alter the rate of aging. To the extent that these 
compounds or treatments reduce the value of this overall gene expression aging index, we 
can state that they have lowered a biomarker of aging. It then provides greater rationale 
for taking these compounds or treatments fully for use in further research in actual 
longevity testing in animals, a time consuming and expensive procedure. Work using this 
index in this way is currently under way. 

There are many methods for constructing such indexes. The classic case is Fisher’s 
discriminant function analysis. Under situations in which the number of cases exceeds the 
number of variables and the data are normally distributed, then Fisher’s method is the 
optimal method. However, neither of these two conditions necessarily are met in 
microarray analysis. In particular, the number of measurements available generally 
exceeds the number of cases available by several orders of magnitude. In such cases, 
alternative approaches can be utilized. These include machine-learning approaches such 
as support vector machines, least-squares approaches, and related techniques (138). 
Which of these techniques is best is not currently known. Essentially, all are trying to do 
the same thing. Specifically they are trying to find the best compromise between 
complexity and simplicity. That is, as one makes one’s predicted model more and more 
complex utilizing more and more of the sample information available, the predicted 
ability in the sample at hand will steadily increase. Life is complex and choosing ever 
more complex models will always be a little bit better if they are correct. When the model 
is based upon the sample data, it will always perform in predicting in that sample data 
because it is optimized for that purpose. However, the sample data contain not only 
information about the true compilation structure among the variables but it also contains 
noise due to sample variation. As one begins to fit more and more complex models, it 
becomes increasingly likely that one is simply adapting the model to take into account the 
chance variation due to sampling in the sample data set—that is, one is likely to be fitting 
the model to the noise. When one then goes to use this model to predict in the population 
at large or in a fresh sample, the prediction may be poor. The more one overfits the data 
in this manner, the poorer the subsequent prediction (sometimes referred to as cross-
validation) is likely to be. Therefore, one does not want to make the model too complex. 
The question is how does one choose the optimal compromise between complexity and 
simplicity. The answer is unknown. At present, the best we can offer is the statement that 
whatever model is chosen it should be rigorously cross-validated if at all possible. At 
minimum, its statistical significance should be evaluated via simulation or analytically if 
possible. Cross-validating requires that one have sufficient data to hold some out of the 
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estimation process so that one can subsequently check how good the prediction is using 
the data that is held out from the model estimation process. It is important to note that in 
order for the correct validation to be a legitimate exercise, the data used in the cross-
validation must have had absolutely no way in the selection of the structure of the model 
used for prediction, what variables go into that model, and what parameter estimates go 
into that model. It has not been uncommon for investigators to mistakenly allow their 
cross-validation data to be used in some aspects of the estimation or model-development 
process thereby invalidating the whole cross-validation. Those interested in further 
details should see Ambroise and McLachlan (139). 

7.1.10. Class Construction 

Cluster analysis has provided a set of methods that has been very useful for exploring 
gene expression patterns from microarray data. The goal of such analysis is to construct 
classes of genes or classes of samples such that observations within a class are more 
similar to each other than they are to observations in different classes according to their 
expression levels. There are several reasons for interest in cluster analysis of microarray 
data. First, there is evidence that many functionally related genes have similar expression 
patterns (140, 141). By grouping genes in a coordinated manner according to their 
expression under multiple conditions, we may be able to reveal the function of those 
genes which were previously unknown. Second, a class of genes with similar expression 
pattern may reveal much about regulatory mechanisms. The common regulatory elements 
(e.g., motifs) identified in a class of genes would greatly facilitate our understanding of 
genetic networks (142, 143). Third, it provides a more reliable and precise way to 
distinguish different subtypes of tumors (e.g., breast cancers), which are not achievable 
by standard microscopic or molecular approaches, by classifying the samples on the basis 
of their gene expression levels (144–147). The new subtype of tumors can also be 
identified. Eventually, such classifications can lead the advancement for successful 
prognosis, diagnosis, and therapeutics of diseases. Fourth, given that a microarray can 
potentially contain expression of tens of thousand of genes over several to hundreds of 
samples, by grouping either genes or samples, or both simultaneously (140, 148), 
clustering analysis potentially provides an effective way to reduce the complexity of data 
for easy organization, visualization, and interpretation. 

A variety of clustering algorithms, have been applied to analyze micro-array data to 
partition genes or samples into mutually exclusive classes. These methods include 
hierarchical clustering algorithms (140, 145), K-means (149, 150), self-organizing maps 
(151–154), the support vector machine (155, 156), model-based clustering (157,158) and 
other algorithms (159–162). The detailed description of each algorithm is beyond the 
scope of this chapter. Thus, we use the hierarchical algorithm as an example to illustrate 
the common features existing in many clustering algorithms. Researchers can refer to the 
corresponding literatures for other algorithms they are interested in.  

In the context of clustering analysis, the raw data matrix, X, is obtained by microarray 
experiments and is used as input. For a study with m genes for n samples, X is a matrix 
with m rows and n columns and can be represented as:
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  Gene Chip 1 Chip 2 … Chip n 

  1 X1,1 X1,2 … X1,m 

X 2 X2,1 X2, 1 … X2,n 

  … … … … … 

  m Xm,1 Xm,2 … Xm,n 

The matrix element xi,j corresponds to the expression level of gene i (row) for sample j 
(column) and the clustering algorithm can be applied either to rows (grouping genes) or 
to columns (grouping samples) or to both rows and columns (grouping genes and samples 
simultaneously). 

The first step is the normalization (or standardization) and transformation of the raw 
data. Although the techniques previously described can be virtually applied in this step, 
they have a different purpose than when used to meet requirements of statistical tests 
(e.g., to improve the fit of the observed distributions of data to some desired 
distributions). Hierarchical cluster analysis depends on a distance measure requiring 
commensurable variables. This means that the variables must have equal scales, which is 
not always the case in microarray data due to large variability between chips and makes 
the normalization and transformation more critical in clustering analysis. The second step 
is to find a distance measure between two observations and calculate it for each pair of 
observations. For example, the Euclidean distance can be used and computed between 
two genes, i and j by following formula based on the elements of row data X: 

 
  

There are many other distance measures available, including Pearson correlation 
coefficient, Manhattan distance, and Spearman Rank-Order correlation (163), etc. The 
actual choice should reflect the nature of the biological question and the technology that 
was used to obtain the data. The third step is to seek clusters of observations on the basis 
of the pair-wise distance matrix previously calculated. Generally, there are two different 
methods available: (1) the agglomerative method and (2) the divisive method. The 
agglomerative method starts with the assumption that each object is considered as a 
cluster. The algorithm merges two most similar clusters iteratively until there is only one 
cluster left. The divisive method starts with one single cluster containing all objects. The 
algorithm splits it step by step until each single object is a separate cluster. Suppose we 
are cluster genes with the Euclidian distance by the agglomerative method. Two genes 
with least distance are merged to a cluster and the distance between this cluster and the 
other genes are recalculated. Three common options that can be used to calculate the 
distance between two clusters are single linkage, average linkage, and complete linkage. 
At the last step, a dendrogram is generated to represent the results of hierarchical 
clustering analysis and the clusters are obtained by cutting the dendrogram at a specific 
height, which can be determined by a specified number of clusters or some external 
criteria. 

Cluster analysis is a powerful tool for microarray data exploration. However, there are 
several limitations for such analysis (82). First, clustering algorithms always generate 
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clusters for any data set but most procedures do not have a probabilistic foundation. 
Because of this, there is no universally accepted method to assess whether a gene cluster 
is significant or even a clear understanding of what it would mean to be significant (164). 
Thus, although cluster analysis can be used for data reduction and hypothesis generation, 
caution is required in interpreting its results. Second, in most published studies of 
clustering analysis, the variation of gene expression levels is greatly ignored. Obviously, 
this variation will influence clusters derived from gene expression data (165). The third 
important consideration is how many clusters to actually make when performing these 
clustering methods. Currently, this number is determined on the basis of external criteria 
or visual inspection of the dendrogram, which is often artificial and arbitrary. Many 
methods have been developed to overcome the weaknesses of cluster analysis, including 
the bootstrap and consensus method (165), the average silhouette width (166), the gap 
statistic (148), the Model-based methods (158), resampling methods (160), etc. 

Many clustering algorithms are available in general statistical software, such as SAS 
and S-Plus. Many researchers have also implemented their own software for cluster 
analysis to adapt to the high dimensionality and nuances of microarray data. However, 
given the availability of a large number of clustering algorithms and substantial 
differences between them, it is far from trivial to select an appropriate algorithm. One 
approach is to use several clustering algorithms for the same data and combine the results 
by consensus method (167). 

7.2. Software and Tools for the Analysis of Microarray Data 

This section provides a cursory overview of software for the analysis of microarray data 
categorized by their purposes and characteristics. Readers  
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TABLE 4 Annotated, abridged list of Software for 
Microarray Research 1. Statistics software and 
technical programming languages 
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Source: Refs. 68 and 85. 

are referred to a more comprehensive description of the online list which contains further 
details on the particular software systems features, platform requirements, license prices, 
and other information.  

Table 4 shows some commonly used academic and commercial statistical software 
and technical programming languages, including our own, HDBStat! 
(www.soph.uab.edu/ssg-.content.asp?id=1164). Of course, there are many other software 
programs with good qualities not included in these tables. Each software has its own uses, 
advantages, and disadvantages. Many have a feature that can extend functionality by 
programming new tools as extensions. This allows software to incorporate new analyses 
promptly. However, it requires users to have an understanding of the structure of their 
data and the statistical background of a particular analysis in order to perform an 
operation properly and conduct the analysis correctly. 
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There are two broad categories of software. One is a comprehensive software that 
incorporates many different analyses simultaneously like data preprocessing, 
dimensionality reduction, normalization, clustering, and visualization in a single package. 
Another is software that performs only one or a few specific analyses. Certain 
commercial software packages are quite expensive, make fancy graphic displays, and 
may appear very comprehensive at first glance. However, our experience is that these 
generally do not have much true analytic capability under the hood. In this respect, they 
are generally far outstripped by freely available software from academic and government 
based investigators. On the other hand software packages from academic sources are 
often harder to use, are not as well documented, and are not as thoroughly debugged, so 
greater effort and sophistication may be needed to get them to fully utilize them. 

8. INTERPRETATION 

The final step in the analysis involves interpreting what has been found. This is as much 
an endeavor in biology and bioinformatics as it is in statistics. When ultimately used to 
tie the statistical information obtained to the former analysis to other biological 
information to draw conclusions about what is going on with respect to the phenomena 
under study, this can be an extremely time-consuming and demanding process. It would 
be beyond the scope of this chapter to address it fully, but other references may be useful 
in this regard (168–173). 

9. CONCLUSION 

In conclusion, we believe that microarray research has opened up new and exciting 
opportunities for investigators. Many challenges remain to be addressed and investigators 
must stay on their toes to distinguish between the hope of gutsy analyses and procedures 
with backing of validity. Nevertheless, in our opinion, the ratio of fun and discovery to 
confusion is a good one and we encourage investigators to join in. 
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1. INTRODUCTION 

The sequencing of the human genome provides a fantastic opportunity to advance our 
understanding of nutritional diseases. Researchers have struggled through the collection 
of tissue samples from volunteers enrolled in clinical studies and measured gene 
expression one gene at a time with limited success. The advent of usable, reliable 
microarray technology promises to revolutionize how we view—and investigate—the 
functioning of the cells and tissue that make up our bodies. The purpose of this chapter is 
to introduce the clinical investigator to the day-to-day problems encountered in the 
design, implementation, and analysis of microarray analysis of clinical samples and to 
provide the background necessary to develop solutions to these problems.We 
acknowledge a bias toward samples that are pertinent to nutrition/obesity and accessible 
outside the surgery suite (e.g., skeletal muscle and adipose tissue). It should be kept in 
mind that other easily accessible cells, such as immortalized lymphoblasts, may serve as 
surrogates for the tissue of primary interest (1). 

1.2. “Having More Data Is Good.” (2) 

How can we best use microarrays in clinical nutrition research? This question has several 
very obvious answers and some that are not so obvious. First, microarrays can be used to 
identify single genes, or groups of genes that are upregulated or downregulated in a 
particular disease or nutritional condition. This is certainly the most common usage of the 
technology, and has provided important insight into physiology and pathophysiology of 
the human condition. 

A second and important use of the microarray is to better understand the results of an 
intervention on the transcriptosome (a global view of the mRNAs in a particular tissue). 
The statistical techniques and experimental design issues for these uses of microarray 
data are covered briefly in the subsequent section. The details of the statistical analysis of 
before-and-after intervention studies or across-tissue comparisons will not be covered 
herein to prevent redundancies within this book (Allison chapter). 

Another use of the microarray data is to separate a common clinical phenotype 
(disease, nutritional deficiency, etc.) into subtypes based on the pattern of mRNAs 



present in an individuals RNA sample. The pattern of mRNAs in a sample is referred to 
as an expression profile or a molecular fingerprint, which reflects the underlying 
pathophysiology of the tumor or diseased tissue relative to the normal state. For example, 
when reduced in complexity, microarray data can be used to predict the prognosis of 
cancer patients and their response to chemotherapy (3). Environment and genetics 
converge to regulate cellular function through coordinated regulation of large sets of 
genes. In other words,“…data sets produced in this way have emergent 
properties…patterns and systematic features become apparent and we begin to build an 
integrated picture of the whole system.” (2) 

Importantly, the design and analysis techniques identify molecular pathways 
underlying specific clinical/tissue subtypes and can identify single genes whose 
expression level serves as a surrogate marker for the complex RNA signature. These 
patterns and representative individual genes can be used to predict the prognosis of 
cancer patients and their response to chemotherapy. For example, Alizadeh et al. (3) 
demonstrated that patients with B-cell lymphomas whose tumors clustered into the 
activated B-cell category had a higher mortality rate and responded poorly to 
chemotherapy. The patients whose tumours clustered into the germinal center cluster had 
a much better response to chemotherapy and survived longer (3). An identical approach 
was applied to prostate and breast cancers with great success. We propose this approach 
as a means to diagnose and subtype nutritional diseases. 

Two important points must be considered regarding this experimental paradigm. First, 
this technique does not rely on a complete understanding of the underlying biology to 
advance our diagnostic and therapeutic acumen. In other words, we do not necessarily 
need to understand the function of any of the genes on the microarray to identify patterns 
of genes that make up a particular biological condition. For example, we did not need to 
know the genetic basis of blood types in order to identify and separate individuals and 
use this information to guide transfusion therapy. Similarly, we can subtype individuals 
using microarray data combined with clinical phenotypes to advance our understanding 
of the underlying pathophysiological state and potentially use this information to our 
advantage from a therapeutic standpoint. The latter use of microarrays is a branch of the 
field of pharmacogenomics that is only now beginning to emerge. 

Second, the application of microarray technology to clinical practice will be difficult. 
As such, the identification of a single gene, or small set of genes, that are representative 
of the overall expression pattern can be identified using discriminant analysis. 
Dhanasekaran et al. demonstrated that the novel gene hepsin is related to survival of 
prostate cancer patients (17). This gene had not been previously linked to prostate cancer 
and was discovered as a result of microarray analysis. A similar approach can be applied 
to nutritional diseases. 

Following this pathway, the discussions in this chapter revolve around four key areas: 

1.The design of the microarray analysis, 
2.The sample requirements and techniques for dealing with small RNA samples, 
3.The basics of clustering algorithms for the classification of individuals into diagnostic 

categories, and 
4.Discriminant analysis to select a single gene as a classifier or discriminant of diagnostic 

categories previously identified by clustering algorithms and clinical phenotype. 

Genomics and proteomics in nutrition     182



We will address each of these issues from the perspective of a clinical research study and 
point the reader toward more detailed information and resources when necessary. 

2. DESIGN OF THE CLIINICAL MICROARRAY STUDY 

Once the clinician has determined the type of array to employ in the study (eg., 
Affymetrix GeneChip® arrays, cDNA microarrays, or oligonucleotide (oligo) arrays) the 
amount of RNA required to perform microarray experiments can be determined. In many 
instances of clinical applications, one concern is significantly small sample size and 
potentially heterogeneous sample composition. By optimizing the experimental design, 
researchers will make the most of the available sample. This section discusses the 
potential sources of variation, options for decreasing variability, and the applicable 
statistical tests with relation to generating the most efficient experimental design using 
clinical samples. 

2.1. Experimental Variability 

There are four main sources of experimental variability: (1) measurement error, (2) 
technical variation, (3) biological variation, and (4) treatmentdependent variation. 
Although the sources of experimental variability are universal, potential sources of error 
for microarray experiments include: 

1. Dust or scratches on the microarray slide or chip, 
2. Variations due to the laser scanner used to measure the fluorescence of probes 

hybridized to the target genes spotted, or immobilized on the microarray slide, 
3. User-generated errors in spot location by the quantification software 
4. gene×dye-specific incorporation biases. 

The scanning process may involve gene spots that have either a very low intensity or a 
very high, overexposed (outside of the linear range of the laser) intensity. Traditionally, 
the operator rescans the slide at either a higher or lower laser power or PMT/gain (photo-
multiplier tube) setting. To date, there is no standard way of integrating the data from 
numerous scans of the same slide into a single quantification of gene expression. 
Although this problem is of special interest to our group, it is also an area in microarray 
software that needs attention and a practical solution. 

Next, technical variation may occur during the extraction of RNA for probe 
generation, reverse or in vitro transcription of the same into cDNA, hybridization of the 
labeled cDNA onto spotted targets, washing of the slides following hybridization, and in 
some cases (depending upon the technology used for detection), the development and 
detection of the labeled cDNA hybridized to targets. Measurement error and technical 
variation may be controlled and perhaps minimized by the consistent use of a well-tested 
and proven protocol by trained workers. Lee et al. (4) have proposed a statistical model to 
pool the output from a number of microarray hybridizations and suggest that the optimal 
number of replications of a single hybridization is three.  
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2.2. Interindividual Variability: Noise or Signal? 

Genetically diverse populations such as humans are likely to show even greater 
variability in gene expression than what we have observed among inbred mice. In 
addition, environmental conditions cannot be carefully controlled in humans. These 
factors present challenges for microarraybased studies of human gene expression in vivo 
(5). 

Biological variation is intrinsic to all organisms. Biological variation remains an 
important variable in clinical research. Subjects, although sometimes related, are not 
genetically identical. Biological variation can be due to genetic differences between 
organisms or changes in gene expression in response to exposure to environmental 
factors as demonstrated in studies of phenotypes and gene expression patterns of 
monozygotic twins. 

Some view biological variation as noise. However, it is possible that biological 
variation represents the integration of genetic and environmental influences (e.g., 
nutrition, social influences, etc.) and as such is a signal representative of the overall 
genetic and environmental influences. Obviously noise is “bad” and signal is “good.” 
Separating the two is a difficult task and the observed inter-individual variability can be 
viewed in either light. This will be discussed in further detail in the section on clustering 
algorithms. 

The variability in which the scientist or clinician is most interested is the treatment-
dependent or disease-dependent source of variation. By reducing the amount of the other 
sources of variation, the scientist or clinician greatly enhances the probability of finding 
genuine treatmentdependent or disease-dependent differences in gene expression using 
microarray technology. 

2.3. Experimental Design 

In order to effectively deal with the problem of variability—also called system noise—an 
efficient, appropriate experimental design is imperative. When designing gene expression 
experiments using clinical samples, it is important to consider four main factors: (1) the 
type of microarray to be used, (2) how the sample will be labeled for hybridization, (3) 
proper randomization of the study, and (4) the relevant statistical models and conclusions 
that can be drawn from these models. How samples are collected and processed, and how 
the resulting microarrays are analyzed depends upon the technology of the chip. 
Affymetrix data have their own caveats and will not be discussed at length in this chapter 
[see reviews published by the Speed laboratory (6–8) for a review of Affymetrix-specific 
normalization procedures]. Affymetrix chips, by design, do not require as many 
replications as do the cDNA or oligo microarray technologies, and a number of different 
human GeneChips are commercially available. The labeling technology for the cDNA 
and oligo microarrays is discussed later in this chapter. The choice of microarray type 
and the labeling method determine the first factor in experimental design, the amount of 
RNA required for single microarray hybridizations. The quantity of RNA available for an 
experiment may not be trivial when considering the size and difficulty in obtaining 
clinical samples. 
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The next factor considered is the order in which RNA samples will be labeled and 
compared to each other for the determination of gene expression patterns. Traditionally, 
an RNA sample is labeled with Cyanine-5 (Cy5) or Cyanine-3 (Cy3) and hybridized to 
the microarray slide. A single RNA sample may be used and the gene expression 
quantified. Although this process yields information regarding relative gene expression, it 
is not indicative of absolute gene expression in the given sample. If two samples are used, 
one is labeled with Cy5 and the other with Cy3. The two samples are then combined and 
hybridized to the gene spots on the microarray slide and later quantified using a laser 
scanner capable of detecting both Cy5 and Cy3. 

2.4. Randomization 

The concept of randomization—that the selected sample is truly representative of the 
population due to the randomness of the selection process—is also critical in 
experimental design. For microarray experiments, as well as for all well-designed 
experiments, if a treatment is linked to some unit (e.g., sex or genetic background), the 
changes in gene expression can only be discussed as associations and not true causal 
effects. Only careful randomization in a study will lead to a causal inference. 
Randomization has always been integral to well-designed clinical studies and the process 
of random selection is not discussed in this review. 

2.5. Pooling 

By creating pools of related units, i.e., samples from the same tissue from individuals in 
the same treatment group, biological variance is decreased. However, a gene that is 
grossly overexpressed or underexpressed in an individual may be missed due to the 
dilution effects of pooling. The most ideal situation would be to create a number of 
different pools using different combinations of the same RNA samples of interest and 
performing separate analyses. In this case, the assumption is that the variability between 
different pools of similar subjects would be negligible. However, when pools are 
composed of RNA from only a few subjects of interest, as may occur in the clinical 
setting, the resulting pools are not necessarily homogenous. In order to address this issue, 
one may use multiple assays of a single pool of RNAs to have sufficient replication of 
experiments (9). In general, pooling is not an optimal design but may be necessary for 
limiting quantities of RNA. 

2.6. Experimental Plan 

The first design (see Fig. 1) is a simple dye-swap experiment in which both sample A and 
sample B are labeled with Cy5 and Cy3 in four separate labeling reactions. Two 
hybridizations are represented in panel a, one with sample A labeled with Cy5 and 
sample B labeled with Cy3 (top) and the  
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FIGURE 1 Six basic hybridization 
designs for microarray experiments. In 
all panels, the tails of arrows represent 
the Cy5 (red)—labeled sample and the 
heads of the arrows represent the Cy3 
(green)—labeled samples. Panel a 
represents a single, balanced dye-swap 
experiment, whereas panel b represents 
multiple dye-swap experiments 
(technical replication). Panel c depicts 
an experimental replication of a single 
dye-swap experiment. Panels d and e 
show two alternative methods of dye-
swapping experiments, with panel d 
depicting a circular design and panel e 
representing the use of a reference 
RNA sample. The final panel (f) 
represents a reference design 
incorporating dye-swapping. (Figure 
adapted from Ref. 12). 
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second hybridization has sample A labeled with Cy3 and sample B labeled with Cy5 
(bottom). The dye-swap technique can be taken a step further, and multiple slides may be 
hybridized in order to assess technical variability, as shown in panel b. It is important to 
note, however, that although using the repeated dye-swap design, it is possible to assess 
the variability: The more slides used for hybridizations, the greater the degree of 
variability seen for a single gene. This variability is further increased by the use of the 
repeated dye-swap in which the experiment is reproduced with a second cohort of 
subjects, as shown in panel c. The selection criteria for up- or downregulated genes, 
therefore, have to become less stringent; the more robust changes are identified primarily 
during analysis. Using the designs in panels b and c, it is possible to identify more subtle 
changes in gene expression, i.e., upregulated 1.5-fold. However, the overall variability is 
increased and may therefore prevent the detection of a subset of genes that may be more 
variable. 

The ideal microarray slide is printed with two or more spots of every target gene side-
by-side in order to reduce regional differences in hybridization, development, or washing 
conditions. The correlation of gene expression between gene spots is ≥95% under these 
circumstances. When a second slide is hybridized using the same samples of labeled 
RNA, the correlation within a given gene between slides falls drastically to the range of 
60–80%, and the correlation becomes even lower than that range when dye-swapping is 
performed, due to a bias of dye effects caused by incorporation of Cy5 or Cy3 
nucleotides into cDNA (10). Panels d and e represent two alternates to dye-swapping 
experiments. Panel d is arranged using the same samples used in panel c and all samples 
are labeled once with each Cy-dye. However, panel d incorporates a simple loop design 
that allows the researcher to draw conclusions about each sample with respect to any 
other sample in the loop design, and has reduced variability due to the absence of dye-
swapping. 

An alternative method to direct comparisons between RNA samples is the use of a 
reference RNA, with or without dye-swapping, as shown in panels f and e, respectively. 
This reference RNA has to be abundant enough to complete the entire study, because the 
same reference pool must be used for hybridization to every array in the study, and must 
be homogeneous and stable because studies may take years to complete. The reference 
RNA sample may be generated from specific tissues, created by mixing together RNA 
samples in order to have as many gene spots as possible with a positive signal, or pooled 
from all of the RNA samples to be used in the study. The main pitfall of the reference 
sample design is that half of all resources from labeling to analysis are devoted to a 
sample that is not of interest, and that dye effects are confounded with treatment effects 
unless dye-swapping is employed (11).  

Given a small sample size (i.e., amount of tissue obtainable or allocated to RNA 
isolation), the two most likely candidates for experimental micro-array design to diagnose 
or identify subtypes are the designs shown in panels d and e in Fig. 1. Each of these has 
unique challenges. One weakness of the design shown in panel e is that half of the 
experiment is dedicated to a non-informative sample, the reference RNA. Dye-
incorporation differences across genes may lead to under-representation or 
overrepresentation of gene expression. A strong benefit of using the design shown in 
panel e is that all the microarray hybridizations are performed using the reference sample, 
and all the experimental samples are labeled using the same dye, which simplifies data 
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analysis and interpretation. Given this information, the design depicted in panel d may be 
the best choice. All samples in this scenario are labeled with both dyes, eliminating dye-
biases, and all gene expression data from the arrays can be expressed relative to each 
other. The main hindrance in using this approach is that the designs, analysis, and 
conclusions rapidly become very complex when more than a few samples or pools are 
used in an experiment, as depicted in Fig. 2. The interested reader is referred to the 
excellent review by Churchill (12) for additional information regarding complex 
experimental design. 

In summary, the design of microarray studies is fairly complex. Consideration of each 
source of variability within the samples and experimental  

 

FIGURE 2 A complex microarray 
hybridization design incorporating 
three experimental groups that were 
sampled five times. In this design, 
direct comparisons between samples 
are performed. Note that two forward 
and two reverse labelings are 
performed for each sample, 
maximizing the amount of data 
collected for each experimental group. 
By setting up the hybridizations in 
such a loop design, it is possible to test 
within treatment group differences. 
(Figure redrawn from Ref. 12 and 
adapted from Ref. 8.) 
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design will lead the investigator to the optimal experimental design. As we will see in the 
next section, newer techniques for amplification and labeling of RNA may reduce the 
need for large samples by increasing the number of replicates possible from each sample 
and increasing statistical power through increased use of replicate hybridizations. 

3. DEALING WITH SMALL SAMPLES IN THE CLIINICAL 
MICROARRAY STUDY 

Standard methods using direct incorporation of fluorescent-labeled nucleotides into first-
strand cDNA products typically require more than 20 and up to 200 µg of total RNA per 
reaction. These methods become impractical when tissue sample size is limited, as is 
often the case in clinical studies. In recent years, methodologies have been developed 
enabling investigators to analyze minute amounts of starting material using high-density 
oligonucleotide or cDNA microarray analysis. Following an overview of labeling 
strategies, several recent advances in the use of cDNA and oligonucleotide microarray 
analysis for small tissue samples and limited RNA amounts are discussed. 

3.1. Labeling Strategies 

Methods for labeling samples for microarray experiments can be divided into two general 
categories: direct or indirect incorporation of modified nucleotides into cDNA or 
antisense RNA. Direct incorporation of modified or fluorescent-tagged nucleotides can 
best be exemplified by the methods traditionally used to incorporate Cyanine 3 (Cy3) or 
Cyanine 5 (Cy5)labeled dNTPs into first-strand cDNA by reverse transcription (RT). 
Because Cy-labeled dNTPs do not incorporate efficiently into cDNA by RT, substantial 
amounts of total or poly A+ RNA must be used to generate sufficient amounts of labeled 
probe for signal detection on cDNA or oligonucleotide microarrays. Also, gene-specific 
bias in the incorporation efficiencies of Cy3- and Cy5-modified nucleotides requires the 
use of dye-swapping techniques for accurate analysis of differentially expressed genes. 

An alternative method of labeling uses the indirect incorporation of 5-(3-aminoallyl)-
dNTPs (aa-dNTPs) into first-strand cDNA synthesis followed by postlabeling coupling to 
N-hydroxysuccinimide-activated fluorescent dyes. The aa-dNTPs are incorporated into 
cDNA more efficiently than Cy-linked dNTPs. Postlabeling coupling of fluorescent dyes 
to aminoallyl moieties eliminates much of the bias observed with direct incorporation 
methods (13, 14). Sensitivity comparable to direct incorporation can be achieved with as 
little as 10–20 µg of total RNA. Xiang et al. 2002 (15) used a modification of this method 
where aa-dUTP was incorporated into random hexamers used for priming for first-strand 
cDNA synthesis and probe generation. This increased sensitivity dramatically and 
allowed the use of as little as 1–5 µg total RNA for labeling. 

3.2. RNA Amplification 

A number of strategies have been developed to amplify starting material for use as a 
probe in microarray applications. These methods can be divided into two categories: (1) 
linear amplification and (2) exponential polymerase chain reaction (PCR) based 

Solving clinical problems in nutrition research with microarrays     189



amplification. Linear RNA amplification methods have been used to amplify as little as 
10 nanograms (ng) of RNA while still conserving abundance relationships in gene 
expression (16–18). Briefly, first-strand cDNA is synthesized using an oligo-dTprimer 
with an attached T7 RNA polymerase oligonucleotide-binding site. Following second-
strand cDNA synthesis, the cDNA product is then subjected to in vitro transcription 
(IVT) usingT7 RNA polymerase to produce a 1000- to 5000-fold amplification of 
antisense RNA (18–20). Modified nucleotides can be directly incorporated during the 
IVTprocess, or after conversion of antisense RNA to cDNA. A second round of linear 
amplification can also be applied to achieve >106-fold amplification of original starting 
material and has been used to study gene expression in a single cell containing only 0.1 to 
1 picograms (pg) of mRNA (20, 21). The Affymetrix system utilizes a combination of 
both IVTand antibody-based signal amplification for probe labeling and signal detection 
(Affymetrix Inc., Santa Clara, CA). Because IVT methods tend to be quite laborious and 
time-consuming, several PCR-based methods have also been employed to amplify 
limited starting material for analysis of gene expression. Some of the disadvantages of 
PCR-based techniques include the possibility of disproportionate amplification of cDNAs 
because of size or abundance (17, 22), gene-specific differences in efficiency due to 
sequence or secondary structure (23), and error rate of nucleotide incorporation by TAQ 
polymerase (20). Advantages of PCR-based amplification methods include its ease of use 
and ability to produce amplification ranges of up to 3×1011-fold from as little as 10 pg of 
RNA (24). A number of commercially available products are presently available for both 
linear and exponential amplification of RNA for microarray analysis. 

3.3. Detection Amplification 

Several amplification methods have been developed to enhance the signal obtained in a 
microarray experiment. Signal amplification using tyramide chemistry (tyramide signal 
amplification; TSA), originally introduced to improve the sensitivity of 
immunohistochemistry (25), has been used by a number of laboratories for microarray 
analysis (13,26). This commercially available method (MICROMAX TSA; PerkinElmer 
Life Sciences, Inc., Boston, MA) is based on the enzymatic deposition of Cy3- or Cy5-
tyramide adjacent to immobilized horseradish peroxidase. Signal detection can be 
achieved with 20–100 times less RNA than direct cDNA-labeling methods, enabling 
investigators to use as little as 1 µg total RNA. We routinely use this method to amplify 
2–3 µg of total RNA for an 18,000+ gene oligonucleotide microarray with excellent 
signal-to-noise ratios. A second commercially available signal amplification method with 
sensitivity similar to the TSA method is based on a fluorescent oligonucleotide 
dendrimeric signal amplification system [(27); Genisphere, Philadelphia, PA]. Unlike the 
TSA method, the dendrimer detection process does not utilize the incorporation of 
modified dNTPs, but rather uses primers containing capture sequences for first-strand 
cDNA synthesis. The probes with modified 5′ ends are hybridized to the microarray 
followed by a secondary detection step in which specific Cy3- or Cy5-bound dendrimers 
are hybridized to the capture sequences. Thus far, the outlined strategies all use 
fluorescent detection methods for measuring changes in gene expression. A 
nonfluorescent ultrasensitive detection method based on resonance light scattering (RLS) 
by nano-sized gold and silver particles after illumination with white light (28) has been 
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recently demonstrated for use in microarray analysis [(29); Genicon Sciences 
Corporation, San Diego, CA]. The signal obtained from individual RLS particles can be 
more than 10,000 times greater than the most sensitive fluorescent molecules and, unlike 
fluorescence, the RLS signal is stable and does not photo-bleach, quench, or decay. These 
characteristics make it possible to integrate signal strength by varying exposure time and 
to allow multiple measurements without risk of signal degradation. 

3.4. Tissue Heterogeneity 

Another important consideration with small samples, such as those obtained from clinical 
biopsies, is lack of tissue homogeneity. Heterogeneous tissue samples having infiltrations 
of contaminating tissue or cells can easily affect gene expression patterns, especially as 
sample sizes become smaller. Methods for amplification of RNA in gene expression 
analysis have become increasingly advantageous for use with small samples containing 
only hundreds of cells such as those isolated using laser capture microdissection or laser 
pressure catapulting (30–38). These methods enable investigators to select specific cell 
types for gene expression analysis with a minimum amount of contaminating RNA from 
surrounding tissue.  

3.5. Degraded RNA 

If not properly stored immediately following excision, RNA can rapidly become 
degraded in tissue samples. This can be problematic in a clinical sense because samples 
removed during surgical procedures cannot always be rapidly frozen or fixed in RNA 
preserving media (e.g., RNALater, Ambion, Inc, Austin, TX). Methods have recently 
been developed that enable the use of partially degraded RNA samples for gene 
expression studies. Generally these methods are similar to the IVT amplification methods 
described previously, except that an RNA polymerase-binding oligonucleotide sequence 
is attached to random 9-mer oligonucleotides instead of to oligo-dT to enable priming 
within the RNA molecule and not exclusively at the 3′-end (39). 

In summary, many advances in recent years have improved both the sensitivity and the 
specificity of microarray analysis. These improvements have made it possible for clinical 
investigators to utilize a minimum amount of tissue sample and RNA while maintaining 
minimal ratio bias in gene expression studies. 

4. CLUSTERING OF THE CLINICAL MICROARRAY DATA 

4.1. General Definition and Purpose of Cluster Analysis 

Cluster analysis encompasses a number of algorithms serving the purpose of assigning 
objects to certain categories according to their measured or counted features, so that 
similar objects would fall in the same category and dissimilar objects would fall—in 
different ones. As a statistical discipline, cluster analysis has been applied to a wide 
variety of scientific problems. For example, in medicine, clustering diseases, cures for 
diseases, or symptoms of diseases can be very useful. 
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Thecorrectdiagnosisofclustersofsymptomssuch as paranoia, schizophrenia, etc. is 
essential for successful therapy. In general, cluster analysis is an indispensable tool in 
every situation when a huge amount of data has to be reduced to smaller, more 
manageable and meaningful chunks. Naturally, cluster analysis has been part of 
microarray technology ever since it was introduced. The fundamental issue of any 
classification is the definition of what is similar and dissimilar, in other words, the 
distance metric. 

4.2. Choice of Distance Metric 

The distance metric can be based on a single dimension or multiple dimensions. For 
example, if we were to cluster fast foods, we could take into account the calories and 
other nutritional values they contain, their price, taste rating, convenience, etc. The most 
straightforward way of computing distances between objects in a multidimensional space 
is to compute Euclidean distances. If we had a two- or three-dimensional space this 
measure is the actual geometric distance between objects in the space (i.e., as if measured 
with a ruler). However, for the purpose of cluster analysis it is irrelevant whether the 
distances are actual real distances, or some other derived measure of similarity that is 
more meaningful to the researcher; and it is up to the researcher to select the right method 
for the specific application. 

4.2.1. Euclidean Distance 

A Euclidean distance is probably the most commonly chosen type of distance. It is 
simply the geometric distance in multidimensional space. It is computed as: 

 
  

A common variation is squared Euclidean distance, which can be used to place 
progressively greater weights on objects situated further apart. Both Euclidean and 
squared Euclidean distances are usually computed from raw data, and not from 
standardized data. This method has certain advantages (e.g., the distance between any 
two objects is not affected by the addition of new objects to the analysis, which may be 
outliers). However, the distances can be greatly affected by differences in scale among 
the dimensions from which the distances are computed. For example, if one of the genes 
is expressed at a low level and then scaled up to the mean expression of the genes 
represented on the microarray, the resulting Euclidean or squared Euclidean distances 
(computed from multiple dimensions) can be greatly affected, and consequently, the 
results of cluster analyses may be very different. Using Euclidean distance requires a very 
careful choice of normalization schema. 

4.2.2. Correlation Distance 

This distance is probably the second most widely used in microarray data. Correlation 
distance is particularly useful in time-series experiments (e.g., changes in gene expression 
over time after the application of a treatment). It is reasonable to suppose that if two 
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genes are coexpressed, their expression profiles (i.e., expression values throughout a 
series of experiments) are correlated. This distance is insensitive to the direction of 
change in gene expression; both up- and downregulated genes can be placed in the same 
cluster. The distance is computed as:  

 

  

4.2.3. City-Block (Manhattan) Distance 

This distance is simply the average difference across dimensions. In most cases, this 
distance measure yields results similar to the simple Euclidean distance. However, note 
that in this measure, the effect of single large differences (outliers) is dampened (because 
they are not squared). The city-block distance is computed as: 

 
  

Binary or Hemming distance is a case of Manhattan distance, when all measurements are 
not quantitative, but binary, [i.e., only indicating presence or absence of a particular 
property (gene)]. In this case the distance can also be computed as the exclusive OR 
(XOR) of two binary vectors. 

4.2.4. Chebychev Distance 

This distance measure may be appropriate in cases when one wants to define two objects 
as different if they are different on any one of the dimensions. The Chebychev distance is 
computed as: 

   

4.2.5. Power Distance 

Sometimes one may want to increase or decrease the progressive weight that is placed on 
dimensions on which the respective objects are very different. This can be accomplished 
via generalization of the Euclidean distance, the power distance, also called Minkowki 
distance. The power distance is computed as: 

 
  

where r and p are user-defined parameters. Parameter p controls the progressive weight 
that is placed on differences on individual dimensions, parameter r controls the 
progressive weight that is placed on larger differences between objects. If r and p are 
equal to 2, then this distance is equal to the Euclidean distance. 
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4.2.6. Percent Disagreement 

This measure is particularly useful if the data for the dimensions included in the analysis 
are categorical in nature. This distance is computed as:  

   

4.2.7. Tahimoto Distance 

This metric is most often used in taxonomy, in cases where two patterns of features (the 
elements in the set) are either same or different, but there is no natural notion of graded 
similarity: 

 
  

where n1 and n2 are the number of elements in the first and the second sets, respectively, 
and n12 is the number of elements shared by both sets. 

4.3. Types of Cluster Analysis 

Once the distance metric is established, the clustering procedure can be conducted in a 
few radically different ways. There are virtually hundreds of published algorithms and 
variations, but all of them can in turn be classified into a few strategic approaches. First, 
clustering can be either agglomerative or disruptive. Agglomerative clustering starts with 
each object assigned to some cluster. This can be a cluster, containing only one element 
(singleton) or a group of elements, based on preexisting assumption—for example, a 
group sample from normal tissue introduced into cluster analysis of cancer samples. 
During the clustering process the objects are joined together based on their proximity to 
each other, measured by selected distance metric. As a result, the initial clusters grow in 
size, absorbing singletons and other clusters until the process stops. The great majority of 
algorithms currently used in microarray cluster analysis exploit the agglomerative 
approach. The opposite—so-called disruptive clustering—starts with all objects placed in 
one cluster. During the clustering process this cluster is partitioned into smaller clusters, 
which in turn can be subpartitioned into yet smaller clusters and so on. The process 
naturally stops when all clusters are broken into singletons. However, the sensible results 
are achieved before the final stage. On each step of subdivision a statistical metric can be 
devised to estimate the quality of classification. This metric can be based on local 
properties of the clusters (for example, density) or global property of classification, 
calculated for the whole data set. Further subdivision can be stopped when this 
classification quality metric reaches its maximum. Although agglomerative approach is 
not currently implemented in the major software packages for microarray analysis, there 
are several ongoing research projects attempting to prove the advantages of this approach 
for class discovery (40,41).  
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4.3.1. Supervised vs. Unsupervised Clustering 

Second, all cluster-analysis algorithms can be classified as supervised or unsupervised. 
Supervised clustering utilizes some kind of preexisting information on the cluster 
structure in the dataset. For examples, all clusters can be predefined by known typical 
representatives. Otherwise, clusters can be predefined by artificially created expression 
profiles. For example, in a series of experiments researcher may be interested only in the 
genes, demonstrated one of the expected models of behavior—up- or downregulated or 
upregulated and returning to the initial state, etc. after a treatment. 

Unsupervised algorithms utilize no predefined information about cluster structure. 
Some authors suggest that only application of unsupervised algorithms should be called 
clustering. However, there is no strict line dividing supervised and unsupervised 
approaches. The process of classification may include sequential application of two 
different algorithms or, in some algorithms, strict supervision can be substituted by 
assignment of priorities or weights to the clustered objects according to the preexisting 
information. In extreme cases, if some “model” objects are assigned priority I and all 
other objects assigned priority 0, clustering becomes supervised. Assigning all objects 
equal priority makes the algorithm unsupervised. 

4.3.2. Commonly Used Clustering Algorithms 

Hierarchical Tree. A hierarchical tree is the most commonly used algorithm and, 
arguably, the most intuitively understandable. The clustering process starts with 
computation of a distance matrix, n×n elements, where n is the number of objects in the 
data set. Each element of this matrix contains a distance measured between two objects. 
Then the algorithm assigns a leaf of the tree to each object (gene). On each step of the 
algorithm: 

1. Two most similar objects of a current matrix are computed and a node joining these 
objects is created. 

2. An expression profile for the joining node is created by averaging the expression 
profiles of the nodes it joins. 

3. A new, smaller distance matrix is computed with a new “joining” node substituting 
two joined elements. 

The process repeats until a single node remains. There are many possible variations of 
this algorithm, for example, using the group-weighted average of the distances to 
compute a new distance between centers. The hierarchical tree algorithms are widely 
used in biological sequence analysis, phylogenetic analysis, etc. The output of a 
hierarchical tree algorithm is not a set of clusters, but a nested tree of all possible clusters. 
Clusters can be isolated by cutting the branches of the tree at more or less arbitrary 
points. Selecting the meaningful cutting points and verifying the resulting clusters 
presents a significant computational and statistical challenge. 

K-Means Clustering. K-means clustering is very different from the hierarchical tree. In 
a typical implementation, the number of clusters is fixed to some value and has to be 
defined by the researcher before the start of computation. This user-defined parameter 
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(K) can be a reasonable guess of the number of expected regulatory patterns of gene 
expression profiles or a number of expected different phenotypes, known from the 
histological analysis or clinical data. The algorithm will assign the objects in the data set 
to exactly K different clusters. The computation starts with placing K seeds, or starting 
points. The seeding can be done differently in different implementations. Starting points 
can be placed randomly, or in K most distant points of the whole data set, or in the 
vicinity of predefined “model” objects, etc. During the clustering process, the seeds—or 
starting points—become the centroids of the created clusters. On each step: 

1. Each object is assigned to the cluster associated with the nearest centroid. 
2. New centroids are computed by averaging or taking the center of gravity of all objects, 

including the newly associated. 

The process is iterated until the centroids stop, or change between iterations falls below 
the significance cutoff. 

Self-Organizing Maps (SOMs). Self-organizing maps (SOMs) have a set of nodes with 
a simple topology (a two-dimensional grid) and a distance function d on the nodes. The 
topology has to be defined by the researcher, for example as a 2×3 grid. Nodes are 
iteratively mapped into the k-dimensional space (of gene expression profiles, for 
example) at first by random, then iteratively adjusted. On each iteration, an object is 
randomly selected from the pool of data and the nodes are moved toward the selected 
data point proportional to the distance to that object in the initial geometry. The nearest 
node is moved the most, while the other nodes are moved a shorter distance. 

The process is iterated until a satisfactory classification is produced. The number of 
iterations is usually a free parameter and can be set to anything from 12,500 (default 
value in Spotfire Decisionsite) to 20,000–50,000 (42). The SOM algorithm is closely 
related to the K-means algorithm. SOMs impose structure on the data, whereas 
neighboring nodes tend to define related clusters. This approach tends to make the 
algorithm more robust in dealing with real-life data, which may contain noisy, ill-defined 
items with irrelevant variables and outliers. On the other hand, SOMs share the same 
inherent problems as K-means clustering. Particularly, the number of clusters has to be 
arbitrarily fixed from the beginning. An incorrect guess about the expected number of 
clusters in the data may lead to misleading results. For example, it is very common that 
most of the gene expression profiles in microarray experiments are irrelevant to the 
subject of the research, which may be a treatment or a particular physiological condition. 
In this case such irrelevant data may populate most or all of the allowed clusters, while a 
minority of the most interesting expression profiles would remain undiscovered. 

4.3.3. Other Clustering Algorithms 

Most other clustering algorithms currently used in microarray analysis can be viewed as a 
more or less radical modification of either hierarchical tree or K-mean-clustering 
algorithms, aiming to improve its applicability in a particular type of research or 
mitigating the problems of these algorithms. The list includes (but is not limited to) the 
Expectation Maximization algorithm, Bayesian Clustering, Quality clustering, and many 
others. 
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4.4. Which Clustering Algorithm Is “Best”? 

Clustering algorithms cannot be categorized as good, better, or best. The utility of 
different algorithms can only be estimated by their applicability to particular data and 
their purpose of study. Selection, modification, or ab initio development of a clustering 
procedure suitable for a particular research project is one of the most challenging tasks in 
expression analysis. 

4.5. Clinical Data and Microarray Data Can Be Merged Before or 
After Clustering 

The initial data for any cluster analysis is a set of objects. Each object is defined by a set 
of measured or counted features. The objects can be viewed as points in n-dimensional 
space, where n is a number of different measurements or properties of each object. In this 
space, points situated close to each other reflect similar objects; clusters of similar objects 
can be imagined as clouds of points. The measurements, or properties, of the objects can 
be of various natures. Most familiar to the practicing physician would be patient’s body 
temperature, blood pressure, erythrocyte count, etc., used for diagnostic and prognostic 
purpose. Clustering or classification of observations into similar groups has been 
practiced since prehistoric times. With the advent of molecular methods it became 
possible to quickly measure the specific amount of antibodies or hormones to supplement 
the traditional diagnosis. Introduction of microarrays does not change the principles—it 
only adds a huge amount of measurable things. The expression levels of thousands of 
genes, estimated by probe intensities of a single microarray, can be used to diagnose and 
separate otherwise indistinguishable cases of disease or health condition. The microarray 
gene-expression measurements can be used for classification separately (as is done in 
most contemporary studies) or mixed with the “classic” clinical and biometric data. 
However, the very number of measurable properties for each patient or tissue sample 
creates a revolution in biomedical research (and potentially in patient diagnosis and care) 
and facilitates application of computer (and even supercomputer) analysis and the 
development of new, more effective algorithms. 

4.6. Examples of Clustering in Clinical Studies 

All applications of cluster analysis in microarray research can be divided in two 
categories: clustering of genes by the similarity of their expression patterns across a 
number of different conditions, or clustering of phenotypes (observations, conditions) by 
the similarity in gene-expression pattern. Gene-expression data can be presented in the 
form of a matrix n×m, where n is a number of observations (microarrays) and m is a 
number of genes interrogated by the microarray in the experiment. One can choose either 
rows n or columns m to be the objects of classification. Some algorithms allow 
simultaneous classification of a data matrix by rows and columns. A classic example of 
clustering genes by the similarity of their expression profiles is given in Spellman et al. as 
an identification of S. cerevisae genes implicated in the cell-cycle regulation (43). In this 
work, 6125 genes were the data objects, each of them defined by a vector of 77 
expression measurements derived from the normalized microarray experiments. An 
example of clustering observations of phenotypes can be found in any of a few dozen 
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works, attempting to build a molecular classification of cancer types based on the 
microarray data. Bhattacharjee et al. (44) investigated a set of 203 samples, containing 
125 cases of adenocarcinoma, 21 squamous cell lung carcinomas, 20 pulmonary 
carcinoids, 6 SCLC, and 17 normal lung samples. In this research 203 objects (samples) 
were classified using 3312 most variably expressed transcripts, i.e., each object was 
represented by a vector of 3312 measurements. 

These results are interesting to compare with another molecular classification of lung 
cancers from Garber et al. (45). The data in this research includes 67 lung tumors (41 
adenocarcinomas, 16 squamous cell carcinomas, 5 LCLC, and 5SCLC, along with five 
normal lung samples and one fetal lung tissue). In this research, a different set of genes 
has been used. Only 918 cDNA clones representing 835 unique genes has been selected 
for classification, out of 23,100 original cDNAs, representing 17,108 genes. The number 
of objects for classification in this case was 67, while dimensionality of the space in 
which these objects were analyzed was 835 (i.e., each object  

 

FIGURE 3 FOREL version of the 
cluster structure of lung cancer 
samples [Bhattacharjee et al. (38)]. 
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This figure shows a 3-D plot of the 
first three principal components of the 
Euclidean intercentroid distances for 
all FOREL clusters. Size of the spheres 
is proportional to the number of 
elements in the cluster. The color 
reflects the cluster fitness metric, 
derived from the variance inside the 
luster. Singletons have zero fitness. 
The blue cluster (a) in the center that is 
apart from most other samples—
clusters and singletons alike—includes 
the control noncancer lung samples. 
The only closely situated singleton (b) 
marked cyan belongs to a fetal lung 
tissue. Two closely situated midsize 
clusters (c) on the very bottom of the 
plot are made of Squamous Cell 
Carcinoma samples (SCC). FOREL 
clustering algorithm is developed at 
the Pennington Biomedical Research 
Center (Ptitsyn, A., paper in 
preparation). 

defined by the vector of 835 measurements.) In both cases, there was some preliminary 
selection of the genes involved—either genes showing general variability in expression 
(45) were selected, or a subset of genes whose expression is very similar between the 
tumor pairs but varied widely among the other tumor samples was selected (44). In both 
cases the authors found a good correspondence between histologically diagnosed tumor 
types and their molecular fingerprints. Also, in both cases adenocarcinoma samples fall 
into a few subgroups that are different in clinical and pathological properties, including 
patient survival. Molecular classification—performed on larger numbers of samples and 
genes—allows us to identify more valuable details in the expression landscape of the 
data; for example, 12 samples of likely metastatic adenocarcinomas from the colon (44). 
Molecular classification performed with more restricted sets of genes shows better 
correspondence to the histological subtypes of lung cancer (46). 

4.7. The Curse of Dimensionality 

Most of the clustering and machine-learning algorithms (particularly hierarchical and 
SOM) require some form of data selection before the classification. The reason for this is 
the so-called curse of dimensionality. This term, initially introduced in the 1960s (47), 
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refers to the exponential growth of hypervolume as a function of dimensionality. In terms 
of the microarray data analysis it means that commonly used algorithms have time 
complexities that are extremely high with respect to the number of dimensions. These 
methods typically require an exponential increase in the number of training samples with 
respect to an increase in the dimensionality of the samples in order to uncover and learn 
the relationship of the various dimensions to the nature of the samples. The second 
problem is that of noise because small changes in the distribution can change the end 
results of the experiments. The third problem is that high dimensionality may present a 
significant computational challenge even for the most powerful supercomputers. The 
selection of genes adequate to the purpose of the particular research can have a dramatic 
effect on the results (48,49). 

4.8. Goals of Clustering 

The gene selection procedure should always be considered with respect to the purpose of 
the cluster analysis. There are three possible research goals, to which cluster analysis can 
be applied (50): (1) class discovery, (2) class comparison, and (3) class prediction. 

4.8.1. Class Discovery 

Class discovery is probably the most appropriate application for cluster analysis. In class 
discovery no classes are predefined and the classification is derived entirely from the 
statistical properties of the data. However, the cluster structure can be seriously affected 
by the choice of the genes selected for clustering. Selecting genes by their relevance to 
certain clinical data would inadvertently impose a predefined cluster structure. Selection 
based only on the variation in gene expression may result in classification that has no 
relevance to the practical goals of research—diagnostic, prognostic, or drug development. 
Examples of the class discovery application of cluster analysis can be found in multiple 
attempts at molecular classification of cancer. 

4.8.2. Class Comparison 

Class comparison deals with comparison of groups, defined outside the microarray 
experiment, i.e. independently from the gene expression profiles or “molecular 
fingerprints, “depending on what is an object for classification. The specific purpose of 
such analysis is to figure out if the predefined classes are different by the pattern of gene 
expression and, if so, to identify the genes that make the difference. An example of this 
approach can be found in the analysis of expression fingerprints in breast cancer patients 
with and without germline BRCA1 mutations (51–53). 

4.8.3. Class Prediction 

Class prediction is closely related to class comparison with emphasis on the development 
of a multivariate function (often referred to as a classificatory or predictor) able to predict 
the class membership of a new sample on the basis of the expression level of the key 
genes. Class prediction and class comparison are often combined in one study. 

Genomics and proteomics in nutrition     200



Because of the great variety of algorithms and distance, metrics cluster analysis is 
extremely subjective by its nature. The subjective choice of the clustering strategy, 
algorithms, statistical metric, and parameters leaves a considerable number of traps open 
for research planning and results interpretation (49). Because it is likely that gene 
expression profiles will provide information that will affect clinical decision making, 
such profiling studies must be performed with statistical rigor and be reported clearly and 
with unbiased statistics. 

5. DISCRIMINANT ANALYSIS TO IDENTIFY SINGLE, 
REPRESENTATIVE GENES 

5.1. Discriminative Gene Selection 

Like the clustering analysis, classification analysis is another important strategy to 
explore the microarray data. Classification, also called the “supervised” method, is a 
discriminant technique used to develop a predictor or classification rule using a learning 
set of samples with known classification to distinguish unknown samples (54). For many 
classification tasks based on microarray data, it is not necessary to consider many genes 
simultaneously. In many cases it has been shown that a few genes are sufficient for 
classifying two groups of samples, and in some cases as few as one or two genes are 
sufficient for a perfect classification (55). The process of how to identify the small 
amount of the feature genes is called gene selection. The goals of this process are to 
retain the relative feature gene and cut off irrelevant genes that may obscure the useful 
signatures. 

The most commonly used methods for selecting discriminative genes are the standard 
two-sample t-test or its variants (54). This test computes sample means for each of two 
groups of observations and tests the hypothesis that the two means were different in two 
conditions. Genes out of the rejection region for the null hypothesis could be selected as 
discriminative genes. There are several versions of the two-sample t-test, depending on 
whether the two gene expression levels have equal variance (48,56). The application of 
this approach is often restricted by the assumption of normal distribution of genes. 

There are many alternative statistical methods, including univariate and multivariate 
techniques. Most techniques allow for the selection of genes from only two levels, e.g., 
disease or health, tumor or normal. However, inmany cases, biological and clinical 
researchers may want to identify more than two types of patients based on the selected 
genes. For instance, Ramaswamy et al. (57) diagnosed 14 different tumor classes from 
218 random samples and Suetal. (58) classified 13 types of human carcinomas from 100 
primary samples. 

In this section, we mainly address logistical discriminant analysis (LDA) with 
stepwise selection, which can select feature genes for classifying more than two classes 
of unknown samples. We then briefly introduce canonical discriminant analysis (CDA) 
with stepwise selection that also can be used to select genes to allocate two and more 
types of unknown samples as a supplemental method for Fisher’s linear discriminant 
analysis and stepwise optimization process introduced by Li (55). 
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However, no method can guarantee that the selected subset is best. At the very least, 
the selected feature gene should be reevaluated with a set of known samples. Murray (59) 
suggested a better idea may be to split the known samples into a number of batches and 
determine the best subset for each batch. The genes that appear the most frequently in the 
“best” subset can be used for future classification. 

5.2. Logistical Discriminant Analysis (LDA) 

The advantage of LDA is that there is no requirement for normal distribution of samples 
(compared to the two-sample t-test and Fisher’s Discriminant Analysis); nor is there a 
requirement for common variance-covariance matrices (compared to Fisher’s 
Discriminant Analysis). This approach is often considered the first choice if the response 
variables (e.g., types of tumors or disease states) are categorical. 

As the simplest way to generalize, we use three classification groups (e.g., normal, 
disease A, disease B) as to illustrate how LDA with stepwise selection procedure selects 
the discriminative genes based on the label samples. Let x be a randomly selected gene 
from population and let y=0 if x comes from the normal group and y=1 if x comes from 
disease group A, and y=2 if x comes from disease group B. One possible analysis strategy 
is to create a dichotomous response variable by combining two of the response 
categories, i.e., either Pr (normal) vs. Pr (disease A or disease B) or Pr (normal or disease 
A) vs. Pr (disease B), which simultaneously compares all types of samples. Refer to 
Stokes et al. for details (60). The probability that y=1 is: 

 

  

and the probability that y=(0 +1) combined is: 

 
  

or 

 

  

and the probability that y=2 is: 

 
  

where β0, β01, βj are the parameters of a logistical model that can be estimated by the 
maximum likelihood method and j=(1, 2,…, n) references discriminative genes. Based on 
the above notation, the stepwise selection option is involved to select the feature genes. 
At first, only one random gene is forced into the model to fit the parameters, and then the 
Chi-square of each gene not in model is computed and examines the largest of these 
statistics. If it is significant at the required level, say p=0.05, then the corresponding gene 
is selected into the model. The process is repeated until none of the remaining genes 
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meets the specified level (p=0.05). PROC LOGISTIC (SAS V8.2) with stepwise options 
is a suitable tool to complete the above analysis. 

5.3. Canonical Discriminant Analysis (CDA) 

Another statistical method addressed here is canonical discriminant analysis (CDA). Li 
(55) presented a program for gene selection called Tclass. The main statistical method 
incorporated into the program is Fisher’s linear discriminant analysis. The drawback of 
the program is that Fisher’s linear discriminant function can select feature genes from 
only two levels of populations. The CDA method can discriminate between two classes 
of known samples. In other words, CDA can select and identify two or more groups of 
discriminative genes from the samples. 

Similar to the principal components analysis (PCA), the canonical discriminant 
analysis first creates latent variables by taking the discriminant linear function of the 
original variables. It then translates information from the original variables into new ones 
(eigenvector). Suppose nj size of genes are selected from population with the 
assumption of normal distribution Np (m, Σ) and common variance-covariance matrices, 
for i=1, 2, 3,…, m. This means there are m categories of samples taken into account. Let 

 
  

where 

 
  

and let 

 
  

where B and W are the usual between-group and within-group sum-of-square and cross-
product matrices from one-way MANOVA. And the ratio: 

 
  

measures the variability between the groups relative to the common variability within 
groups, and a′ is called the canonical discriminant function. By selection of a′ we can 
maximize this ratio and get the eigenvalue 1i of (B+W)−1B. In order to classify more than 
two populations, we need two mutually orthogonal canonical discriminant functions, 

and which is different from the linear discriminant analysis with only 
one discriminant function. With these two functions, we can then calculate the distance 

   

and assign the gene x to one of the groups of labeled samples with the minimum value of 
d2. According to Li, each gene can be considered as an explanatory variable to enter the 
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canonical discriminant functions, and compute the classification accuracy for each of the 
features, and select the feature with the best value. This process repeats until reaching the 
prespecified dimension of the eigenvalues. 
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1. INTRODUCTION 

The molecular actions of vitamin D metabolites have been studied extensively over the 
past 30 years. This has led researchers to recognize roles for vitamin D nutriture and 
vitamin D metabolite action in a variety of physiological systems, e.g., calcium 
homeostasis, immune function, and the control of cell proliferation, differentiation, and 
apoptosis resulting in the prevention of various cancers. The following review is intended 
to summarize our understanding of the molecular actions of vitamin D, to review the 
limited approaches taken to date using genomic approaches to study vitamin D action, 
and to identify issues that may benefit from a genomic approach to vitamin D action. 

2. OVERVIEW OF VITAMIN D AND HEALTH 

Vitamin D is a conditionally required nutrient.UV light-stimulated skin conversion of 7-
dehydrocholesterol to vitamin D can meet the physiological needs of most individuals. 
However, low vitamin D status is a common condition during the winter months in 
people who live in the Northern United States, Northern Europe, and in Canada, in 
people who limit their sun exposure by wearing protective clothing and sunscreen, and in 
the elderly (1). High vitamin D status has been associated with protection from 
osteoporosis, through its traditional effects on calcium homeostasis (2), and protection 
from cancer, due to its ability to suppress cellular proliferation, promote differentiation, 
and activate apoptosis (3). These later features of vitamin D biology may also account for 
the anti-inflammatory and immunoregulatory actions of vitamin D (4). Recent studies 
suggest that current recommendations for vitamin D intake (400–600 IU per day) are not 
sufficient to protect bone health, a classic role for vitamin D in the optimization of human 
health (1,5,6). 

2.1. Metabolism of Vitamin D 

Vitamin D, whether from the diet or produced in skin, is hydroxylated in the liver to form 
25 hydroxyvitamin D3 (25-OH D) (7), a marker of vitamin D status (8,9). The biological 
actions of vitamin D require further activation of 25-OH D to 1α, 25 dihydroxyvitamin 
D3 (1, 25(OH)2 D) by a la hydroxylase before the hormone is biologically active (10). 



Alterations in renal la hydroxylase activity are responsible for changes in circulating 1, 
25(OH)2 D levels associated with variations in dietary calcium intake (i.e., low calcium 
intake increases renal lα hydroxylase activity through elevated parathyroid hormone 
production). However, extra-renal lα hydroxlase has been documented in a variety of 
tissues, including skin, prostate epithelial cells, colonocytes, and mammary epithelial 
cells. Thus, 1, 25(OH)2D, which has traditionally been viewed as an endocrine hormone, 
may also function as an autocrine- or paracrine-signaling molecule. 

Vitamin D compounds can also be modified by the actions of cytochrome P-450 
family member, 24-hydroxylase (CYP24). When 25-OH D is the substrate, 24, 25(OH)2 
D results. This vitamin D metabolite has been implicated in chondrocyte biology and in 
bone-fracture repair (11,12) Twenty-four hydroxylation of 1, 25(OH)2 D is the first step 
in the metabolic degradation of the active hormone. CYP24 gene transcription and 
activation is strongly activated by 1, 25(OH)2 D (13). Thus, CYP24 induction can be 
viewed as a feedback mechanism to control the biological actions of 1, 25(OH)2D. 

2.2. Vitamin D Mediated Gene Transcription 

Classically, 1, 25(OH)2D alters cell biology by activating the nuclear vitamin D receptor 
(nVDR), a member of the steroid hormone receptor superfamily, leading to the induction 
of gene transcription (10). The nVDR is expressed in a wide variety of cell types, from 
those that are involved in whole body calcium metabolism, i.e. enterocytes, renal tubule 
epithelial cells, and osteoblasts, to nontraditional vitamin D target tissues, e.g. immune 
cells, epithelial cells (mammary, prostate, colon, lung), pancreatic (β cells, and 
adipocytes (14). The biological actions of 1, 25(OH)2 D depend upon the presence and 
level of the nVDR. For example, vitamin D-mediated calcium absorption is increased in 
nVDR-overexpressing Caco-2 cells (15) and lower in nVDR null mice (16,17) while 
nVDR level is an important determinant of the growth inhibition in response to 1, 
25(OH)2D in prostate cancer cells (18–21). 

The steps leading to vitamin D-mediated gene transcription are summarized in Fig. 1. 
Ligand binding promotes heterodimerization of the nVDR with the retinoid X receptor 
(RXR) and is required for migration of the RXR-nVDR-ligand complex from the 
cytoplasm to the nucleus (22–25) where it then regulates gene transcription by interacting 
with specific vitamin D response elements (VDRE) in the promoters of vitamin D-
responsive genes (14). Although the consensus is that only a direct repeat with a 3 base 
spacing (DR3)-type VDRE is functional in vivo (14,26), Makishima et al., (27) recently 
found that both 1, 25(OH)2 D and lithocholic acid bind to the nVDR and induces CYP3A 
gene transcription through a nontraditional ER6 (everted repeat with a 6 base spacing) 
element. This suggests that the promoter elements conferring molecular regulation of 
gene expression by 1, 25 (OH)2 D may be more diverse than researchers have 
traditionally considered.  
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FIGURE 1 Steps required for 
activation of gene transcription by 1, 
25(OH)2 D. 

Access to VDREs in their chromosomal context may be limited (28) and may require 
the release of constraints imposed by chromosomal structure through phosphorylation of 
histone H3, acetylation of histones H3 and H4, and SWI/SNF complex-mediated 
phosphorylation events (29–31). Protein-protein interactions mediated by the nVDR are 
critical for chromosomal unwinding. The nVDR-RXR dimer recruits a complex with 
histone acetyl transferase (HAT) activity (e.g., CBP/p300, SRC-1 (32,33)) and the 
BAF57 subunit of mammalian SWI/SNF directly interacts with p160 family members 
like SRC-1 as well as steroid hormone receptors (34). After chromosomal unwinding, the 
nVDR-RXR dimer recruits the mediator D complex (DRIP) and utilizes it to recruit and 
activate the basal transcription unit containing RNA polymerase II (35,36). It is known 
that the composition of the mediator complex can vary depending upon the anchoring 
transcription factor (31). Thus, mediator D complex contains 16 proteins, only 14 of 
which are a part of the 18 protein mediator T/S complex involved in thyroid hormone 
receptor gene transcription. Further examination of coactivator complexes associated 
with nVDR-mediated gene transcription may be warranted. Preliminary evidence from 
kerotinocytes indicates that the major anchoring protein in the mediator complex, 
DRIP205, is replaced by the the steroid receptor coactivator (SRC) family members 
SRC-2 and SRC-3 in differentiated cells (37). Several smaller members of the mediator 
complex were still present in the complex. This suggests that there may be cell stage-
specific (and perhaps cell type-specific) differences in the coactivator complexes that 
drive vitamin D-mediated gene expression. 
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2.3. Rapid Actions of 1, 25(OH)2 D 

There is now compelling evidence for the existence of 1, 25(OH)2D-inducible signal 
transduction pathways within various cell types (38) that includes the rapid (within 
seconds and minutes) activation of phospholipase C (PLC), protein kinase C (PKC), and 
the MAP kinases JNK and ERK (39–42). Figure 2 summarizes the pathways that have 
been shown to be activated through rapid 1, 25(OH)2 D-mediated signaling. While 
activation of these pathways by 1, 25(OH)2 D is now generally accepted, it is not clear 
whether these actions require the activation of a unique membrane vitamin D receptor, as 
suggested by Nemere et al. (43), or whether these rapid actions reflect a unique, 
nonnuclear function of the traditional nVDR. Using cells isolated from mice expressing a 
mutant nVDR lacking a DNA binding domain, Erben et al. (44) found that rapid calcium 
signaling was dependent upon a functioning nVDR. This hypothesis is also supported by 
recent work in myocytes, where nVDR binds to, and is a target for src kinase (45) and in 
the enterocyte-like cell line, Caco-2, where 1, 25(OH)2 D binding to nVDR induces an 
interaction between a ser/thr phosphatase that results in cell cycle arrest (46). In contrast, 
Wali et al. (47) found that in osteoblasts from nVDR null mice, rapid increases in 
calcium fluxes and PKC translocation did not require the presence of the nVDR. 

2.4. Do Rapid and Nuclear Signaling Pathways Interact? 

Several studies support the hypothesis that signal transduction pathways are important 
regulators of nVDR-mediated gene expression. For example, suppression of PKC activity 
with staurosporine or H7 inhibited 1, 25(OH)2 D-regulated 25-hydroxyvitamin D 24-
hydroxylase (CYP24) gene expression in proliferating, small intestine crypt-like, rat IEC-
6 cells (48) and activation of PKC with phorbol esters enhanced 1, 25(OH)2 D-regulated 
CYP24 gene transcription in IEC-6 and IEC-18 cells (49). Similar findings have been 
observed for 1, 25(OH)2 D-mediated osteocalcin gene expression in the osteoblast-like 
ROS 17/2.8 cell (50), CYP24 gene induction in COS-1 cells (51), c-myc activation in 
proliferating skeletal muscle (52) and CYP3A4 gene regulation in proliferating Caco-2 
cells (53). Specific cross-talk between rapid, membrane initiated vitamin D actions and 
nVDR-mediated genomic actions are supported by the observation that an antagonist of 
the nongenomic pathway, 1β, 25(OH)2 D, blocks 1α, 25(OH)2 D-mediated osteocalcin 
gene transcription in osteoblasts (54). 
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FIGURE 2 A summary of signaling 
pathways shown to be activated by 
treatment of various cell types with 1, 
25(OH)2 D. 

3. QUESTIONS/PROBLEMS/STUDY DESIGN ISSUES 

Our understanding of vitamin D action has expanded dramatically in the last decade. 
However, the advances in this field continue to raise additional questions, some of which 
could clearly benefit from a more global examination of the molecular changes that 
mediate vitamin D action. The following section is intended to identify several critical 
questions that could be addressed with genomic or proteomic approaches as well as the 
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issues that need to be considered when using a genomic approach to examine 1, 25(OH)2 
D action. 

3.1. What Are the Molecular Targets of nVDR Mediated Gene 
Activation? 

Although many vitamin D-regulated genes have been identified by traditional means, the 
recent identification of CYP3 A as a vitamin D target gene, especially in light of its 
nontraditional ER6 motif (27), suggests that there are other, less obvious, molecular 
targets of vitamin D action that remain to be identified (CYP3A is involved in bile acid 
metabolism). Such discovery projects have traditionally been done with laborious 
methods like subtraction cloning or differential display hybridization. However, global 
gene expression profiling has the potential advantage of identifying all of the regulated 
transcripts simultaneously. Regardless of the research question being asked, the following 
sections present issues to consider when designing a global gene expression profiling 
experiment. 

3.1.1. Timing 

When one treats a cell with 1, 25(OH)2 D, transcript levels may change quickly or more 
gradually. Figure 3A shows that after a single injection of 1, 25(OH)2 D into mice, 
duodenal CaT1 mRNA levels increase quickly  
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FIGURE 3 Time after 1, 25(OH)2 D 
dose significantly influences the 
biological response in vivo. (A) 
Induction of CaT1 and calbindin D9k 
transcript level in mouse duodenum by 
a single injection of 1, 25(OH)2 D 
(200ng/100g BW) (From Ref. (72)), 
(B) A theo-retical bioresponse to 1, 
25(OH)2 D treatment demonstrating 
the relationship between primary 
responses, down-stream events, and 
natural changes in the biology of a cell. 

(8-fold by 3 h, 15-fold by 6 h) while the effect of 1, 25(OH)2 D injection on calbindin D9k 
mRNA levels is gradual, leading to a peak expression of three-fold greater than control 
levels after 24 h. Thus, examination of a single time point may miss a subset of biological 
responses to vitamin D. In addition, although the earliest changes are likely to be direct, 
the later changes could be a combination of slow, direct transcriptional changes, slow 
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direct, mRNA stabilization effects, or secondary responses caused by the first wave of 
direct changes (e.g. the first response is to increase the level of a transcription factor that 
subsequently increases transcription of another gene, see Fig. 3B). It will likely be 
impossible to differentiate between these control mechanisms without further 
experimentation. On top of this, one has to recognize that the natural biology of the cell 
could be changing over time. For example, the enterocyte-like cells Caco-2 
spontaneously differentiate in culture making paired, vehicle-treated, time-control 
samples essential for differentiating vitamin D-induced changes in molecular profile of 
the cells from those that occur naturally with time.  

3.1.2. Cellular Environment 

Another issue to consider is the difference between in vitro and in vivo environments. In 
cultured cells, the exposure to 1, 25(OH)2 D is continuous. However, 1, 25(OH)2 D from a 
single injection of hormone to animals will be rapidly cleared from the serum due to the 
induction of CYP24 activity by 1, 25(OH)2 D. Thus, while examination of gene 
expression 24 h after initiating treatment might be appropriate for a cell culture 
experiment, molecular changes induced by 1, 25(OH)2 D in vivo are likely to be transient 
and gone 24 h after the treatment (e.g., like the CaT1 response in Fig. 3A). Another major 
difference between in vitro and in vivo studies is the impact that cellular diversity has on 
the experiment. In vivo it is difficult, if not impossible, to rapidly isolate the vitamin D 
target cells from the complicated collection of cells that make up an organ. This will 
increase the difficulty to identify vitamin D responses in vivo above a background of 
nonresponsive cells. However, because of their cellular complexity, in vivo studies may 
lead to the identification of molecular responses that depend upon vitamin D mediated 
increases in paracrine signaling between the distinct cell types within the organ. 

3.1.3. Statistical Analysis 

Although the proper statistical analysis of microarray data is currently under debate (55), 
all of the design and analysis issues that we consider in our traditional experiments also 
apply to the global analysis of gene expression.Thus, sample size estimates and power 
calculations should be conducted prior to conducting experiments. Pooling of individual 
samples can also be done to reduce sample variability and microarray analysis costs 
simultaneously (56). After collection of data, investigators should utilize various 
approaches (e.g., log transformation of data, Bootstapping adjustments to p-values) to 
ensure that the central assumption of statistics (i.e., that the data are normally distributed) 
has not been violated. Finally, due to the large number of comparisons conducted in gene 
expression profiling experiments, researchers need to be careful to avoid type I errors 
(i.e., false positives) but not so careful that they lose control of the type II error rate (i.e., 
false negatives). Excessive type I error rate is a common characteristic of using t-tests; a 
conservative correction for type I error rate that leads to a high type II error rate is the 
Bonferroni correction. More balanced approaches to controlling the type I and type II 
error rates are available (e.g., the false detection rate, or FDR procedure). 
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We have previously applied these concepts to the analysis of gene expression that 
occurs during the spontaneous differentiation of the BBe subclone of the intestinal cell 
line, Caco-2 (57). 

3.2. Which Vitamin D-Regulated Transcripts are Modulated by a 
Common Mechanism? 

After identifying the proper times and doses for 1, 25(OH)2 D-mediated molecular action, 
additional studies must be conducted to clarify the mechanisms used to modulate specific 
molecular events or families of molecular events. In yeast, gene knockout strains that 
have been created for almost the entire 6000-gene genome have been tremendously 
valuable for elucidating molecular regulatory systems or pathways (58,59). A complete 
panel of gene knockout cells is not available for mammals. However, some alternative 
approaches that could prove fruitful are 

3.2.1. Use of Pharmacological Inhibitors of Transcription and Translation 

Identification of transcripts that are modulated by direct transcriptional activation versus 
those that require prior protein synthesis is traditionally done using specific inhibitors of 
transcription (e.g., actinomycin D) or translation (e.g., cycloheximide). In addition, once 
actinomycin D-sensitive regulation of specific genes can be confirmed, a bioinformatics 
approach can be attempted to assess whether changes in mRNA levels are associated with 
the presence of classical or nonclassical VDREs. Global, RNA half-life studies may also 
be fruitful in this area. Although activation of gene transcription has dominated the field 
of vitamin D biology, there is evidence for stimulation of posttranscriptional regulatory 
mechanisms by 1, 25(OH)2 D. For example, Mosavin and Mellon (60) found that 
although osteocalcin gene transcription was increased 2-fold by 1, 25(OH)2 D treatment, 
osteocalcin mRNA half life was increased four-fold by the treatment.  

3.2.2. Use of Vitam D Analogs nVDR-Mediated or Membrane-lnitiated 
Pathways 

As summarized in Figs 2 and 4, both classical, nVDR-mediated transcriptional and 
membrane-initiated rapid events are stimulated by 1, 25(OH)2 D treatment. Creative use 
of pharmacological and molecular inhibitors of various kinases and signaling pathways, 
coupled to global examination of gene expression, would inform us whether nVDR-
mediated nuclear, membraneinitiated rapid, or cross-talk between these pathways is 
needed for induction  
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FIGURE 4 The Mediator D complex 
is required for 1, 25(OH)2 D-mediated 
gene transcription. 

of transcript levels by vitamin D. For example, Norman et al. (61) have synthesized a cis 
locked analog of 1, 25(OH)2 D that preferentially activates the membrane-initiated 
pathway of vitamin D action and 1β, 25(OH)2 D is an antagonist of that pathway (62). 

3.2.3. Use of Genetically Modified Cells 

While a full spectrum of gene modifications is not available for mammalian cells, some 
genetically modified animal models do exist and others could be developed for directed 
examination of the role of specific proteins in the control of vitamin D-mediated events. 
As such, cells with a lower expression of genes isolated from gene knockout mice (e.g., 
nVDR or 1α hydroxylase knockout mice) or due to treatment with antisense 
oligonucleotides or small interfering RNA (RNAi), or cells over-expressing specific 
genes isolated from transgenic mice or transfected cells, could help tease out the 
molecular roles of specific proteins in vitamin D-mediated action or the role of specific 
transcripts induced by 1, 25(OH)2 D treatment. 

4. GENOMIC EVALUATION OF VITAMIN D ACTION 

The application of genomic technology to the study of vitamin D action has been 
relatively limited to date. Like most of the work that has been conducted using arrays, the 
full power of the technology has not been applied. This is because until very recently, 
arrays capable of profiling the entire transcriptome of 30,000–40,000 transcripts did not 
exist.The studies that do exist have examined gene expression profiles in both classical 
(e.g., bone, kidney, intestine, Caco-2, ROS/17/2.8) cells and nonclassical (e.g., HL-60, 
squamous cell carcinoma, B) cells and used a variety of platforms (e.g., filters, spotted 
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cDNA arrays, Affymetrix Genechips), sometimes with a limited number of highly 
focused transcripts (e.g., 406 transcripts related to human hematology), and rarely with a 
significant transcript target overlap with other platforms. This lack of consistency makes 
it very hard to compare the results of one experiment to the next. However, even with this 
caveat, the few studies available have been very promising. This section will review the 
available array studies on vitamin D action. 

4.1. Preliminary Reports in Classical Vitamin D Target Tissues 

Surprisingly, a genomic examination of classical vitamin D target tissues is not yet 
available as a peer reviewed report. However, several preliminary reports are available, 
although caution should be used when interpreting these reports due to the lack of 
experimental description (e.g., replicates, validation, statistical analysis, number of genes 
represented on array that are present). Henry et al. (63) used the Affymetrix U74B 
Genechip (12,000 targets; 6000 named genes) to compare the response of nVDR null 
mice and wild-type mice to a single i.p. injection with 1, 25(OH)2 D (250 ng, 8 h). Using 
a two-fold cut off, they identified 43 bone transcripts, 20 intestinal transcripts, and 98 
kidney transcripts as 1, 25 (OH)2 D regulated in wild-type, but not in nVDR null, mice. 
Peng et al. (64) injected vitamin D depleted mice with 1, 25(OH)2 D three times over 48 h 
(30 ng per injection at 48, 24, and 6 h prior to the end of the experiment) and examined 
the induction of renal transcripts using the U74B chip. They found only 57 genes 
increased by 50% or greater and they confirmed vitamin D regulation of two of them, 
C/EBP β and FK506. C/EBP β was subsequently shown to be involved in the regulation 
of another 1, 25(OH)2 D-inducible gene, CYP24. 

Megalin is a protein involved in the renal reabsorption of fat soluble vitamins like 
vitamin D; as such, the megalin null mouse is somewhat equivalent to a vitamin D 
depleted animal (plasma 1, 25(OH)2 D and 25-OH D are 60% lower in these mice). When 
Hilpert et al. (65) examined renal gene expression in megalin knockout mice using the 
Affymetrix MullK B chip (6,000 known transcripts), they found that the level of only six 
transcripts fell and 13 transcripts increased. Finally, Wood et al. (66) examined gene 
expression in the enterocyte-like Caco-2 cells after treatment with 100 nM 1, 25(OH)2 D 
for 24 h using the Affymetrix U95A chip (12,000 targets). Using a two-fold cut off, 25 
genes were upregulated (including amphiregulin, alkaline phosphatase, carbonic 
anhydrase XII, and CYP 24) and five genes were downregulated (including dihydrofolate 
reductase and a Ras-like protein). While these preliminary reports are interesting, the 
genomic analysis of classical vitamin D target tissues clearly requires additional 
examination. 

4.2. Nonclassical Cells 

1, 25(OH)2 D action has been studied in a number of nonclassical cell systems due to its 
ability to initiate growth arrest and differentiation—characteristics that may be useful for 
the prevention and treatment of cancer. A short report by Savli et al. (67) used the Atlas 
hematology spotted filter array (406 genes) to examined the impact of 1, 25(OH)2 
treatment (5nM, 24 or 72 h) on HL-60 leukemia cell gene expression. At 24 h 7 transcript 
levels were upregulated and 25 transcript levels were downregulated. Twelve of these 
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transcripts were also downregulated at 72 h, including c-myc and 3 other oncogenes, 
providing a glimpse into the mechanisms of chemop-revention by 1, 25(OH)2 D. 

The most extensive genomic profiling of vitamin D action has been reported in 
squamous cell carcinoma cell lines (68, 69). Akutsu et al. (68) found that 24 h of 
treatment with 100 nM EB 1089 (a 1, 25(OH)2 D analog that is resistant to 24-
hydroxylation) increased 38 transcript levels (1.5-fold cut off) based on a combined 
screening with an Atlas spotted cDNA filter array (588 genes) and a Research Genetics 
GF211 spotted cDNA filter array (4000 named genes). This is likely a conservative 
estimate due to problems the authors encountered with filter-to-filter, and hybridization 
variability (a common problem with spotted filter arrays). Still, this analysis identified 
up-regulation of several interesting transcripts that were validated by Northern blot 
analysis: gadd45α, a p53 target gene that is involved in DNA repair, components of 
various signal transduction pathways like the growth factor amphiregulin and 
transcription factors AP-4, STAT3, and fra-1, and cell adhesion proteins like integrin 
α7B. Six transcripts continued to be regulated in subsequent experiments even in the 
presence of cycloheximide (e.g., p21, amphiregulin, VEGF, fra-1, gadd45α, and integrin 
α7B). The mode of vitamin D regulation was not explored. 

Lin et al. (69) conducted a time course of response to 100 nM 1, 25(OH)2 D and 
EB1089 in squamous cell carcinoma cells (SCC25). Using the Affymetrix FL array and a 
2.5-fold cut-off, 152 genes were identified as vitamin D regulated (89 up, 63 down). 
Where overlap occurred, the results from Akutsu et al. (68) were validated and a number 
of expected changes in transcripts previously shown to be vitamin D regulated were also 
seen (e.g., CYP24, osteopontin, TGF β, PTHrp, CD14, VDUP1, carbonic anhy-drase II). 
Clustering was done based upon the pattern of expression or the functional classification 
of the transcripts. Figure 5 shows the diversity of the vitamin D responses in these cells. 
Even within the category of genes with documented, functional VDREs, there was 
heterogeneity in the response. For example, the CYP24 transcript level was rapidly 
increased (significantly increased in 1 h) and was placed in group 1 (U1) while 
osteopontin transcript levels increase more slowly (maximum expression at 12 h). This 
suggests that similar DR3-type VDREs are differentially regulated depending upon the 
promoter context, a finding that is consistent with studies by Toell (26). Another 
interesting finding from this study is that the vitamin D-induced responses were much 
more diverse than one might have previously predicted. For example, a number of 
transcripts encoding for proteins involved in the protection from oxidative stress were 
gradually up-regulated by EB1089 (falling into class U4 and U5); these include glucose 6 
phosphate dehydrogenase (NADPH generation), glutathione peroxidase, and 
selenoprotein P. In addition, the thioredoxin reductase transcript was increased by 1 h 
after treatment with a peak induction by 6 h. Rapid suppression of a transcripts for a 
variety of signaling peptides (e.g., PTHrp, galanin) and induction of intracellular cell 
signaling proteins (e.g., cox-2, PI3K p85 subunit) was also seen after treatment. It is not 
clear which of these responses is primary; none of these genes has previously been shown 
to be vitamin D regulated or contain a functional VDRE. However, since 1, 25(OH)2 D 
promotes cellular differentiation, the up regulation of some transcripts may represent a 
vitamin D-induced shift to a more differentiated phenotype. Regardless, these data 
suggest that the traditional approach of examining cell cycle proteins alone provides only 
a limited  
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FIGURE 5 Treatment of squamous 
cell carcinoma cells with the vitamin D 
analog EB1089 results in a 
heterogeneous regulatory response. 
(Adapted from Ref. 69). 

picture regarding the biological mechanisms of 1, 25(OH)2 D action on proliferating 
cancer cells. 

4.3. 
Preliminary Evidence for a Broader Mode of Molecular Regulation 

by 1, 25(OH)2 D 

Two additional preliminary reports warrant mention in this review. Both of them address 
the potential that membrane-initiated actions of 1, 25(OH)2 D may account for a 
significant proportion of the alteration in transcript levels that result from treatment of 
cells with 1, 25(OH)2 D. In the first report, Norman et al. (70) examined whether 1, 
25(OH)2 D-induced expression of transcripts (10 nM, 3 or 8 h) could be attenuated by 
either a MAP kinase inhibitor (PD98059, 10 uM, 3 h) or an agonist of the membrane-
initiated actions of 1, 25(OH)2 D, 1β, 25(OH)2 D. Of the 44 transcripts upregulated> two-
fold by 1, 25(OH)2 D at 3 h, the MAP kinase inhibitor blocked the increase in 20 of these 
genes. Similarly, while 8 h of 1, 25(OH)2 D treatment increased expression of 128 
transcripts>two-fold, the membrane antagonist 1β, 25(OH)2 D blocked the increase in 79 
of the genes. These data are consistent with the vitamin D-signal pathway cross-talk 
model shown in Fig. 6, i.e., activation of MAP kinase activity through membrane 
interactions is required for a subset the 1, 25(OH)2 D-mediated increases in transcript 
levels. Farach-Carson and Xu (71) examined gene expression in proliferating osteoblast-
like ROS 17/2.8 cells induced by either 1nM 1, 25(OH)2 D (0, 3, 24 h) or a vitamin D 
analog that can activate calcium influx but which has minimal ability to bind the nVDR 
(25(OH)16ene-23yne D) using the Research Genetics rat gene filter array (GF300; 5000 
genes). Using a cut off of two-fold increased or 50% decreased, they found that 1, 
25(OH)2 D increased the expression of 224 genes and reduced  
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FIGURE 6 Potential points of 
interaction between membrane 
initiated and nuclear 1, 25(OH)2 D 
signaling pathways within an 
enterocyte. 

the expression of 280 transcripts. Since they found the same pattern of regulation at 3 h 
when cells were treated with either 1,25(OH)2 D or the analog, they concluded that most 
of the genomic responses resulting from 1,25(OH)2 D treatment are independent of 
binding to the nVDR. These findings are provocative and if confirmed in subsequent 
experiments would dramatically alter our view of the relative importance of the nVDR-
mediated versus membrane-initiated pathways of 1,25(OH)2 D action. 

5. CONCLUSIONS 

Our understanding of the molecular mechanisms by which 1,25(OH)2 D alters cell 
biology has diversified over the last decade. It is now clear that 1,25(OH)2 D action is not 
limited to the nVDR-mediated transcriptional response but may also include 
posttranscriptional stabilization of messages and rapid activation of kinase and 
intracellular calcium-mediated signaling events that could have nVDR-independent 
effects on gene transcription and message stabilization. The diversity of these 
nonclassical responses, as well as the breadth of the molecular response through direct 
nVDR-mediated transcriptional activation is just now being addressed. As a result, the 
analysis of vitamin D action in classical and nonclassical target tissues is ripe for a global 
genomic analysis. Preliminary data using this technology suggest that 1,25(OH)2 D 
influences a broader array of cellular processes and that it is doing so by a mechanism 
that is more complex than we have traditionally believed. This suggests that a more 
extensive examination of 1,25(OH)2 D-mediated regulation of transcript levels is 
warranted. 
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1. INTRODUCTION 

Obesity is a worldwide public health problem and has reached epidemic proportions, with 
64.5% of adult Americans being overweight or obese Overweight is defined as a body 
mass index (BMI) between 25 and 30 and obesity as a BMI over 30 [BMI=Weight 
(kg)/Height (m2)]. Obesity prevalence has increased in the past two decades at an 
alarming rate across gender, race, ethnicity, and age. Obesity is also well recognized now 
as a significant risk factor for many disorders such as sleep apnea, respiratory problems, 
dyslipidemia, hypertension, and coronary heart disease, the number one killer in the 
United States. Higher BMIs are also associated with an increase in all-cause mortality 
(1). 

While there is strong evidence linking obesity to several degenerative diseases and 
evidence for the role of both genetic and environmental factors such as high fat diets and  

Abbreviations used: AD, adipocytes; ADD1/SREBP, ADD1 sterol regulatory element binding 
protein; ADFP, adipose differentiation related protein; AGT, angiotensinogen; ALDH, alde-hyde 
dehydrogenase; APM, adipose most abundant transcript; BMI, Body mass index; C/EBP, EBP, 
CCAAT/enhancer binding protein; COL, Collagen, DCN, decorin; DPT, dermatopontin; ECM, 
extracellular matrix protein; FABP, fatty acid binding protein; FACL, fatty acid co-enzyme A 
ligase; FAS, fatty acid synthase; FN, fibronectin; GO TM: Gene Ontology Tree Machine; GPD1, 
glycerol 3-phosphate dehydrogenase; LOX, lysyl oxidase; LPL, lipoprotein lipase; MMP, matrix 
metalloprotein; NIDDM, Non Insulin Dependent Diabetes Melitus, PA, preadipocytes; PLIN, 
perilipin; PPAR, peroxisome proliferator-activated receptor; RT-PCR, reverse transcription-
polymerase chain reaction; R×R retinoid X receptor; SMARC, SWI/SNF-related, matrix 
associated, actin-dependent regulator of chromatin; SMD, Stanford Microarray database; SOM, 
Self Organizing maps; SPARC (Secreted Protein that is Acidic and Rich in Cysteine) or 
osteonectin; SVF, Stromal Vascular Fraction; THBS, thrombospondin; VTN, Vitronectin. 
Note: Gene nomenclature used is based on gene identity given by the University Health 
Network Microarray Center (UHNMC), Toronto, Canada for the 19 k human slides. 



lack of physical activity in the pathogenesis of obesity (2, 3), the cellular and molecular 
mechanisms of this relationship are far from being understood. With the recent advances 
in analytical and genetic methodologies, obesity studies can now be further advanced. 

Given the emerging importance of adipose tissue, especially because of its recently 
discovered endocrine function linking adipocyte protein secretion to disease states (4, 5), 
it is crucial to dissect adipose tissue development to better understand its function and 
role in metabolic diseases. 

The drive to understand basic biological mechanisms of disease and gene-environment 
interactions has led to two distinct, yet related, approaches in the study of molecular 
biology: genomics and proteomics (6). This chapter will focus on the genomic approach 
using microarray analysis to understand adipogenesis-dependent gene expression. Such 
an approach may identify novel genes with important adipogenic functions and may help 
us understand the mechanism linking adipose tissue function and gene regu lation to 
human obesity and comorbid conditions.  

2. ADIPOSE TISSUE FUNCTION 

Adipose tissue is composed of mature adipocytes (AD), the stromal vascular fraction 
(SVF), which contains the preadipocytes (PA), blood vessels, lymph nodes, and nerves. 
However, the main cellular components of adipose tissue are adipocytes, which compose 
more than one third of the fat tissue (7–9). The primary function of the adipocyte is to 
store energy as triacylglycerols during periods of positive energy balance and release the 
stored energy, in the form of fatty acids, during starvation. Fat deposition results from the 
absorption of circulating fatty acids through the action of lipoprotein lipase (LPL), de 
novo lipogenesis from glucose and acetate in excess of the lipolysis stimulated by 
hormone-sensitive lipase and in situ lipid oxidation (10–16). Adipose tissue thus plays an 
essential role in the regulation of the energy balance of vertebrates. 

Although the traditional role attributed to white adipose tissue is energy storage and 
release of fatty acids when fuel is required, the metabolic role of white fat is more 
complex. Until the 1980s, adipose tissue was viewed almost exclusively as a depot for 
energy storage. However, modern molecular biological approaches and a better 
understanding of adipocyte biology have radically altered this view. A significant step in 
this change in perspective followed the discovery of leptin as an adipocyte secreted 
hormone (17) that is critical in energy balance regulation. Another obesity gene, agouti, 
whose product is also secreted by human fat cells, was reported to act at multiple sites to 
regulate energy homeostasis (18). Adipocyte secreted proteins include angiotensinogen, 
adipsin, acylation-stimulating protein, adiponectin, tumor necrosis factor a, interleukin 6, 
plasminogen activator inhibitor-1, and others (4, 5,16–21). These proteins regulate 
inflammation, lipid metabolism, vascular hemostasis, complement system and immunity, 
cardiovascular function, and other systems. Thus, the effects of specific proteins may be 
autocrine or paracrine, and the site of action may be distant from adipose tissue and have 
been reviewed elsewhere (4, 5, 16–21). 
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3. ADIPOSE TISSUE DEVELOPMENT AND ADIPOCYTE 
DIFFERENTIATION 

Adipocyte differentiation is a highly controlled process determined by several factors that 
lead to a programmed differentiation regimen. Adipocytes begin to develop from the late 
embryonic stage in humans with the majority of differentiation occurring shortly after 
birth (7–9, 22). It is well established that dormant precursors and multipotent stem cells 
exist in the adipose tissue throughout the life of an individual (7). All species have the 
ability to differentiate preadipocytes throughout their life spans in response to the body’s 
fat storage demands (7–9). 

Adipogenesis occurs in both the prenatal and postnatal states in humans, while in 
rodents most fat-cell development occurs postnatally. Adipogenesis results from both 
normal cell turnover and the requirement for additional fat mass that arises with 
significant calorie storage and weight gain. Adipocytes therefore form a potential 
tissue/organ of research interest concurrent with their disease associations. 

The development of immortal preadipocyte cell lines by Green and colleagues in the 
1970s was crucial in advancing the study and understanding of adipocyte development 
and physiology (23, 24). Adipocytes develop from multipotent mesenchymal stem cells 
that can also give rise to muscle, bone, or cartilage. In the developing fat pad, these cells 
become committed to the adipocytic lineage under the influence of cues that remain 
undiscovered (22). It is hypothesized that these cues might be hormonal interactions or 
the result of cell-cell or cell-matrix interactions. The determination process results in the 
formation of a preadipocyte cell with fibroblastic morphology (22–27). So far, there are 
no known expression markers that absolutely and specifically identify a cell as a 
preadipocyte. 

Adipocyte differentiation is characterized as the morphological transition from the 
undifferentiated fibroblastic PA into the mature, round lipid fat cells. In vivo studies 
demonstrate that PA proliferation and differentiation and their concurrent interrelations 
are very complex and are dependent upon a number of factors including age, hormones, 
species and depot (7, 9, 2–27). 

Adipogenesis as a particular system involves two major events: preadipocyte 
proliferation and adipocyte differentiation (25–27). The transition between cell 
proliferation and cell differentiation taking place during adipocyte differentiation is a 
tightly regulated process where both cell cycle regulators and differentiating factors 
interact, creating a cascade of events leading to the commitment of the cells into the 
adipocyte phenotype (27–29). 

The process of adipocyte development can be broadly distinguished into the following 
stages, as illustrated in Fig. 1: (1) cell determination; (2) exponential growth phase of 
adipoblasts; (3) clonal expansion, also followed by growth arrest; and (4) early, then late 
stages of differentiation. However, recent studies were able to dissect early differentiation 
events and dissociate clonal expansion from adipose conversion per se (30).  
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FIGURE 1 Stages of adipogenesis 
with sequential expression of 
adipogenic and lipogenic genes. 

The first hallmark of adipogenesis is a dramatic alteration in cell shape as the cells 
convert from fibroblastic to spherical morphology. The morphological modifications are 
paralleled by changes in the level and type of extracellular matrix (ECM) components 
and the level of cytoskeletal components (27, 29–32). Recent findings indicate that these 
events are key for regulating adipogenesis as they may promote expression of critical 
adipogenic transcription factors, including CCAAT/enhancer binding protein-α (C/EBP 
α) and/or peroxisome proliferator-activated receptor-γ (PPARγ) (25, 33). Mediation of 
the proteolytic degradation of the stromal ECM of preadipocytes by the plasminogen 
cascade is required for cell-shape change, adipocyte-specific gene expression, and lipid 
accumulation (28). These morphological and transcriptional changes are accompanied by 
changes in gene expression profiles as adipocyte differentiation progresses (30–32). 

4. REGULATION OF ADIPOCYTE DIFFERENTIATION 

Important factors determining adipogenesis include those required for the process, and 
those that modulate components of the process, such as growth arrest, clonal expansion 
and alteration in cell shape (27, 29). Transcription factors such as peroxisome 
proliferator-activated receptor-γ (PPAR-γ), CCA AT/enhancer binding protein-α 
(C/EBPα), and Adipocyte Determination and Differentiation factor 1 /Sterol Regulatory 
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Element Binding protein 1c (ADD1/SREBP1c), which activate many lipogenic genes, 
also control adipogenesis (8, 19, 25–27, 30–34). 

It has long been recognized that there are significant changes in gene expression 
during adipogenesis. While a considerable effort has already been put forth to try to 
understand these responses, a complete, well-defined molecular and cellular process of 
adipocyte differentiation has yet to be described. Due to the increasing number of 
disorders associated with obesity, such as hypertension, noninsulin dependent diabetes 
mellitus (NIDDM), some types of cancers, immune dysfunction, and artherosclerosis (4, 
5, 20), there arises an urgency to understand in detail the step-by-step process of 
adipocyte development and differentiation. 

In recent years, a number of proteins and factors have been identified in fat cells that 
play a potential role in obesity and related disorders. This has resulted in an effort to 
discover novel fat-specific genes and proteins. Using traditional molecular biological 
approaches such as Northern blot analysis and Reverse Transcriptase-Polymerase chair 
reaction (RT-PCR), several genes were shown to be differentially expressed in PA vs 
AD. Identification of additional and novel adipocyte genes requires a large-scale analysis 
tool such as microarray. 

5. GENE EXPRESSION PROFILING: MICROARRAY ANALYSES 

Traditional approaches used to investigate regulation of gene expression such as northern 
blot analysis and RT-PCR only allowed analysis of one or a very few genes 
simultaneously and required a prior knowledge of genes of interest. With the recent 
publication of partial or complete sequence of genomes of several organisms, all 
individual genes will soon be identified and assigned a function. Most genes do not 
function in isolation and biological systems and pathways function coordinately and 
interactively in networks. Thus identifying these networks is key to understanding the 
genome, gene function and regulation in health and disease and ultimately will impact 
our understanding as we develop better interventions for optimal health. 

Microarray technology is an innovative and relatively comprehensive technology used 
to study gene expression at a large scale. Major options commonly used for large scale 
analysis of gene expression are reviewed in this book by St-Onge et al. (35) and others 
(36–48) as subsequently reviewed. Briefly, microarray approaches employed to 
characterize gene expression  
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FIGURE 2 Schematic overview of a 
microarray experiment: from RNA 
labeling of two treatment groups to 
image and data analysis. 

profiles during adipogenesis include the cDNA microarrays (Fig. 2) or Affymetrix gene 
chips containing probes derived from full-length or annotated genes and expressed 
sequence tag (EST) clusters. Figure 2 provides an overview of one of these methods.  

Limited microarray studies related to adipocyte gene expression have been published 
to date. The model systems used for these studies have included mice, rat, hamster, and 
human (36–48). In this chapter we next discuss some of these studies that report gene 
expression regulation during adipocyte differentiation. Emphasis is then placed on the 
recent findings from our laboratory related to human adipocyte differentiation. 

6. GENE EXPRESSION ANALYSIS DURING ADIPOGENESIS 

As discussed previously, preadipocyte differentiation is characterized by altered 
expression levels of many genes required for the transition from a fibroblast-like 
preadipocyte to a lipid-storing fat cell. Several reports have attempted to schematize the 
stages of adipocyte differentiation into a simple hierarchy of molecular events. Genes 
differentially regulated during adipo-genesis have been categorized into early, 
intermediate, and late mRNA/ protein markers (19, 25, 30). However, obtaining an 
accurate chronology of the molecular events that take place during adipocyte 
differentiation is a daunting task. Growth arrest and clonal expansion, when present, are 
accompanied by complex changes in patterns of gene expression that can differ with cell 
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culture models and with the specific differentiation protocols employed. Moreover, 
progressive acquisition of the adipocyte phenotype is associated with changes in the 
expression of over 2000 genes, as highlighted in a recent study using microarray 
technology to monitor global changes in gene expression profiles during 3T3-L1 
differentiation (30, 40, 42, 44, 46). Gregoire et al. (27) reviewed in-depth the stages and 
process of differentiation in murine cell lines. 

Most gene expression profiling studies in adipocyte models have been conducted 
using murine cell lines, primarily due to their availability, established protocols for 
differentiation, and faster culture times (30, 40, 42, 44, 46). A few studies have used 
humanadiposetissuetocharacterize the gene expression profile (36–39). Gabrielsson et al. 
(39) studied the expression pattern in human 
adiposetissueusingthenylonmembranesarrays, which were spotted with human EST 
clones and hybridized to Poly ARNA from whole adipose tissue of four patients 
undergoing surgery. They were able to identify several genes that were not reported 
before as highly expressed in adipose tissue, and many of these genes were distributed on 
chromosomes 6 and 22. Their study provided a global perspective of the genes expressed 
in high levels in adipose tissue and their chromosomal clustering (39). 

The nylon membrane form of microarrays was also used by Guo and Liao to identify 
genes that were up- or downregulated in 3T3-L1 adipocytes as a consequence of 
differentiation (40). Cells collected at the initiation of differentiation were compared to 
those harvested 6 days after induction. After applying filtering criteria to reject genes 
with intensity levels not distinguishable from background, 1163 and 1521 genes were 
shown to be expressed in preadipocytes and adipocytes, respectively, for a total of 2230 
unique genes (approximately 13% of genes represented on the arrays), 194 of which were 
specific to adipocytes and 49 to preadipocytes. The increased number of genes expressed 
in adipocytes versus preadipocytes was paralleled by the fact that the majority of 
differentially expressed genes were induced rather than repressed with differentiation. 
Among the 2230 genes that were expressed, 20% (447) displayed a 10-fold or greater 
difference between the two cell types; of these, 345 were upregulated in adipocytes. 
While many of the elements on the arrays represented uncharacterized ESTs, these 
authors reported that many of the known genes upregulated with differentiation 
corresponded to transcription factors and signaling molecules. Almost half (989) of all 
expressed genes differed by threefold or more between preadipocytes and mature cells 
(40).  

Expression profiling during 3T3-L1 differentiation was explored more thoroughly by 
Jessen et al. (44) by Affymetrix arrays, using triplicate hybridizations of RNA from three 
time points after differentiation. Genes that passed a filter criterion of five-fold or greater 
change across three experiments were further classified according to functional group and 
time course of response. Survey of 24 hours, 4 days, and 1 week of differentiation 
resulted in differential expression of 24, 186, and 70 genes, respectively. The majority of 
genes at all time points were unknown genes, ranging from 12–22% of all differentially 
expressed genes. Among the known genes, the most predominant classes present at 24 
hours were those involved in the acute phase inflammatory response, apoptosis, signal 
transduction, and hormone metabolism. After 4 days of treatment, the major categories 
represented were signal transduction and transcription, and genes related to the 
extracellular matrix. By 7 days, the expression levels of many genes involved in lipid 
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synthesis had regressed, paralleled by greater representation of genes required for lipid 
transport and secreted gene products. There was little overlap in terms of the genes 
represented on these arrays and those on the arrays used by Guo and Liao (40) so direct 
comparisons between the results could not be adequately made. 

Both of the studies with 3T3-L1 cells reported previously, described genes with 
differential expression after cells had acquired the mature adipo-cyte phenotype, and its 
experimental design was not likely to identify genes important in the early stages of cell 
conversion. This window in cell development was carefully profiled by Burton et al. 
using the more comprehensive Affymetrix system (42). Again 3T3-L1 cells were used as 
the model, and samples were collected in a time course of 0, 2, 8, 16, and 24 hours after 
treatment with the standard differentiation cocktail (insulin, dexamethasone, and 
isobutyl-methylxanthine) at confluence. Samples were collected from two independent 
cell culture experiments and hybridizations were performed in duplicate. The arrays 
represented 13, 179 cDNA/EST clones, and 6946 (52%) of these gave a detectable signal 
in at least one of the time points in both experiments. This increase in expressed genes 
over the 13% reported by Guo and Liao (40) reflects the significantly increased 
sensitivity of Affy-metrix arrays over conventional P32-based detection. Compared to the 
control cells (time 0), 2.2% (285) of the genes exhibited a fivefold or greater change in 
expression level with differentiation. A cutoff of two-fold or greater yielded 1156 
differentially expressed genes. These authors furthered their data analysis using a 
combination of hierarchial clustering and selforganizing maps (SOM) applied to genes 
meeting the five-fold or greater criterion. Hierarchial clustering identified a tendency for 
the genes to fall into five clusters, and this information was then used to set the nodal 
geometry for SOM at five. Detailed functional classification of genes within each cluster 
was not performed, but individual genes within each cluster were described with 
reference to their potential function. For example, cluster 1 represented genes 
differentially expressed at the earliest time point, and it included the downregulated gene 
Gadd153, a protein potentially related to the early growth arrest necessary for 
differentiation to proceed. Cluster 5 included cyclins A and B1, and their upregulation at 
the latest time point was related to the clonal expansin phase of differentiation known to 
occur within 24 hours of induction. Several genes known to be differentially regulated 
during this part of differentiation were examined by Western blot, and array-expression 
levels conformed to protein level data (42). 

3T3-L1 cells represent a cell population that is already committed to the adipocyte 
phenotype and cannot differentiate into other cell types. Bone marrow mesenchymal stem 
cells are multipotent cells that can give rise to adipocytes, osteoblasts, chondrocytes, and 
myoblasts when cultured under the appropriate conditions (22). Suitable conditions 
prompt first the commitment to a specific lineage, followed by differentiation into the 
respective cell types. To identify the genes involved in adipocyte commitment, Nakamura 
et al. used microarrays to study human mesenchymal stem cells (hMSC) during both 
commitment and differentiation (37). hMSCs with a high-differentiating ability were 
induced to adipocyte development by treatment with dexamethasone, a potent 
glucocorticoid agonist and insulin. Temporal gene expression was studied using selected 
arrays made in-house for specific genes that are known to be expressed during 
adipogenesis. Their results provide information on the molecular mechanisms required 
for lineage commitment and maturation accompanying adipogenesis of hMSC and in part 
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parallelled temporal changes in gene expression observed in murine cell lines. A total of 
197 genes showed stage-specific gene expression changes during adipogenesis, including 
genes in lipid metabolism, cell cycle, gene transcription, and signal transduction. Forty-
four percent of these genes were lipid metabolizing genes (fatty acid binding proteins, 
fatty acid synthase, stearoyl Coa desaturase and others) or transcription factors (C/EBP β 
and δ genes and PPAR γ). Cluster analysis of genes over time showed that those 
differentially expressed in the late phase (day 7 to day 14) corresponded to genes 
previously reported for preadipocyte differentiation. In contrast, genes regulated during 
the early phase of treatment differed from those reported for 3T3-L1 preadipocytes (40, 
42), likely reflecting genes involved in the process of commitment that precedes entry 
into the preadipocyte stage. 

Microarray analysis has also been used to profile adipose tissue changes in gene 
expression with obesity. Affymetric arrays of 12,488 probe sets were used to query gene 
expression in white adipose tissue of C57BL/ 6J mice induced to become obese by 
feeding of a very high-fat diet for 8 weeks (43). In total, 472 genes were differentially 
expressed in obese versus lean animals using a cutoff of 1.2-fold or more, while a filter of 
three-fold produced 98 differentially expressed genes. Interestingly, the majority (69%) 
of the genes showed reduced expression in obese compared to lean controls. Moreover, 
several genes important to lipid metabolism were downregulated with obesity, as were 
markers of adipocyte differentiation. In addition, many genes encoding enzymes involved 
in detoxification processes also displayed significantly reduced expression in obese 
animals. On the other hand, most of the genes displaying increased expression in obese 
adipose tissue were genes involved in the acute phase response or inflammatory 
reactions. Interestingly, the latter finding has also been reported in genetically obese 
ob/ob mice (43). 

Saito-Hisaminato et al. (38) performed a comprehensive analysis of the expression 
profiles in 25 adult and four fetal human tissues using a cDNA microarray consisting of 
23,040 human genes. Their study revealed that 4080 genes were highly expressed (at 
least a fivefold expression ratio) in one or only a few tissues and 1163 of those were 
expressed exclusively (more than a tenfold higher expression ratio) in a particular tissue. 
Further, a hierarchical clustering analysis of gene-expression profiles in nerve tissues, 
lymphoid tissues, muscle tissues, or adipose tissues identified a set of genes that were 
commonly expressed among related tissues. Some of the adipose specific genes reported 
in this study were perilipin, fatty acid binding protein 4, lipoprotein lipase, adipose most 
abundant tissue protein and PPAR-γ (38). 

7. GENE EXPRESSION PROFILING IN PREADIPOCYTES AND 
ADIPOCYTES FROM HUMAN ADIPOSE TISSUE 

Our research focuses mainly on the differential gene expression in subcutaneous 
abdominal human adipose tissue taken from female patients (36, 49–51). Our initial goal 
was to identify genes that were differentially expressed in the stromal vascular fraction 
(SVF) which contained the preadipocytes (PA) versus the mature adipocyte (AD) 
fraction. Ultimately, we would like to link specific gene expression profile in PA or AD 
to patient BMI or disease status. Human adipose tissue from female patients was digested 
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to separate the fully differentiated adipose cells from the SVF (52, 53). The SVF fraction 
was cultured to propagate cells and to obtain sufficient amounts of RNA for microarray 
analysis. Over 70% of these cells (referred to as PA) were able to differentiate into AD in 
the presence of dexamethsanone, insulin and thiazolidinediones, thus indicating their 
preadipocyte property. Mature floating adipocytes obtained from collagenase digests are 
referred to as adipocytes (AD) and were used in our microarray studies (36). Because of 
the considerable differences among patients interms of BMI and potentially metabolic 
status, each patient’s specimens (PA and AD) were analyzed separately in this study. 
Subjects were females with a mean patient age of 51.33±7.31 years and a mean BMI of 
29.03±8.76. Our research focused on defining the underlying differences at the gene 
expression level between the committed preadipocytes and the fully developed adi-
pocytes derived from the same patient. The initial results have been promising and we 
have narrowed the list of genes from 19,000 on the array to a number that can be 
evaluated gene-by-gene for a respective role during adipogenesis (36). Additional studies 
are underway to map gene clusters differentially regulated as a function of patient BMI. 

We applied microarray analysis to better understand the process of adi-pocyte 
differentiation in human adipose tissue by identifying PA and AD specific genes. We 
used the Stanford microarray Database as a tool for our microarray analysis (54; Fig. 3). 
The microarray experiments with AD and PA from six patients showed a consistent 
pattern of gene expression for both cell types with the spot intensities, background, and 
hybridization efficiency being similar. To investigate consistency in gene expression 
profiling among patients, the genes that were either up or downregulated by two- or four-
fold in at least four and five patients are summarized in Table 1. 

The genes that were upregulated in adipocytes are directly or indirectly involved in 
fatty acid metabolism and include transcription factors, hormone  

 

FIGURE 3 The university of 
Tennessee microarray database 
homepage. 
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TABLE 1 Genes Upregulated in AD or PA from 
Four or Five Patients by Two or Four Fold (log 2) 

Fold 
difference 

Number of 
patients 

Number of genes 
upregulated 

Upregulated in 
AD 

Upregulated in 
PA 

>4 5 or 6 2 1 1 

>4 4–6 21 16 5 

>2 5 or 6 51 38 13 

>2 4–6 792 702 90 

receptors, and metabolic genes. In the preadipocytes, the cytoskeletal associated genes 
were more predominantly expressed. Some of the selected genes that were upregulated in 
adipocytes and preadipocytes are presented in Tables 2 and 3, respectively. Using Gene 
Ontology Tree Machine (GOTM) developed at Oak Ridge National Laboratory 
((http://genereg.ornl.gov/gotm), we identified specific cellular pathways in which genes 
were preferentially expressed for both PA and AD Figs. 4 and 5). The complete tree  

TABLE 2 List of Selected Genes that are 
Upregulated in AD. 

Gene 
ID 

Genes upregulated in adipocytes Log2 ratio of 
expression 

Accession 
number 

FABP4 Fatty acid binding protein 4 4.225–12.35 N78658 

LPL Lipoprotein lipase 4.601–15.425 W15543 

FACL2 Fatty acid co-enzymeAligase 1.24–13.25 AA131566 

GPD1 Glycerol 3-phosphate dehydrogenase 0.68–8.02 H42536 

VTN Vitronectin 0.869–7.04 H29054 

PLPN Perilipin 1.24–17.76 T70586 

AGT Angiotensinogen 0.59–6.26 R59168 

APM1 Adipose most abundant transcript 1 1.731 −11.023 H28548 

ADFP Adipose differentiation relation protein 1.032–5.28 W55903 

RXRA Retinoid×receptorA 0.698–10.973 H38814 

E2F5 E2F transcription factor 5 1.38–22.12 H77748 

PPAR-g Peroxisome proliferator activated receptor-
gamma 

1.97–5.202 H21596 

SMARC SWI/SNF 0.985–6.605 H04220 

DUSP1 Dual specificity phosphatase 1 0.907–13.445 H04220 

DPT Dermatopontin 1.79–20.76 H 01024 
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TABLE 3 List of selected genes that are 
upregulated in PA. 

Gene ID Genes upregulated in 
preadipocytes 

Log2 ratio of 
expression 

Accession 
number 

LOX Lysyl oxidase 1.28–19.2 R07161 

PPAR-δ PPAR-delta 1.842–7.198 N30528 

C/EBP-α CCAATenhancer binding protein-A 0.49–2.43 H25129 

FN1 Fibronectin 2.653–69.94 H03906 

COL3A1 Collagen type 3A1 4.02–43.029 N32802 

COL4A1 Collagen type 4A1 4.32–12.25 R26967 

COL5A1 Collagen type 5A1 2.504–19.25 W68613 

THBS1 Thrombospondin 1 1.82–26.4 R88106 

MMP2 Matrix metalloprotein 2 1.911–31.61 R48754 

DCN Decorin 2.2–22.5 N70028 

SPARC Osteonectin 1.76–19.75 R12744 

of these biological processes and all related data and publication can be accessed at: 
http://genome.ws.utk.edu/ (under published data tool). 

Since microarray analysis provides a general view of gene expression, it is crucial to 
confirm these findings for specific genes using more quantitative methods. Using RT-
PCR analysis for selected genes, we confirmed that the genes found to be upregulated by 
microarray analysis were also similarly regulated in AD vs PA (36). It is well known that 
stromal vascular cells and mature adipocytes represent different cell characteristics from 
morphological and biochemical perspectives. Our studies provide additional insight into 
the genes that underlie the differences found between committed preadipocyte cells and 
mature, differentiated adipocytes. 

Genes coding the Fatty Acid Binding Proteins (FABPs), Lipoprotein Lipase (LPL), 
fatty acid coA ligase (FACL2) and Glycerol 3 Phosphate Dehydrogenase (GPD1) are the 
main players in fatty acid metabolism. From our studies, the elevated expression of these 
genes is predictable in adipo-cytes and conforms to the predominant carbohydrate and 
lipid metabolic pathways in AD (7, 8, 27). FABP4/aP2 is an adipocyte protein involved 
in fatty acid uptake, transport, and metabolism in adipocytes and bind both long chain 
fatty acid and retinoids (55). FABP4 in particular was implicated in obesity and related 
disorders including insulin resistance, type II diabetes and atherosclerosis (55). 
Significant upregulation of such genes as aldehyde dehydrogenase, acyl coenzyme 
oxidase, phosphofructokinase, Adipocyte Differentiation Related Protein (ADFP, 56), 
Perilipin (PLPN, 57), and secreted proteins like vitronectin (VTN, 58), Adipose Most 
Abundant  

Gene expression profiling in adipose tissue     239



 

FIGURE 4 Metabolic pathways 
predominantly expressed in AD. The 
number of genes upregulated in each 
biological process is indicated. 

Transcript 1 (APM1, 59), and angiotensinogen (AGT, 60) in adipocytes further 
strengthens the idea that AD possess endocrine functions and the AD themselves are 
physiologically active cells contributing to whole body metabolism (4, 5, 20, 29, 36). 
Complementing the detection of these genes and proteins involved in fatty acid 
metabolism is the upregulation of the transcription factors, the crucial players in 
adipogenesis. PPARγ and PPARδ are regulated in an adipocyte differentiation dependent 
manner (35). PPARδ is detectable in growing preadipocytes and is upregulated just at 
confluence to reach a maximal expression during the postconfluent proliferation (19, 25, 
31–34). The γ isoform is induced at the end of clonal expansion proliferation and is 
maximally expressed in terminally differentiated cells (62). Our microarray studies in 
human adipose tissue also confirm this pattern of differential gene expression. Other 
important transcription factors induced during adipogenesis are the Retinoid X receptor A 
and E2F transcription factor 5 (26). The RXRs (A & B) form heterodimers with PPARs 
and regulate transcription of various genes. They bind retinoic acid, the biologically 
active form of vitamin A, which mediates cellular signaling in embryonic  
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FIGURE 5 Metabolic pathways 
predominantly expressed in PA. The 
number of genes upregulated in each 
biological process is indicated. 

morphogenesis, cell growth, and differentiation (22). The E2F family of transcription 
factors plays a crucial role in the control of cell cycle and regulates adipocyte 
differentiation (26, 61). Depletion of E2F4 induces adipo-genesis while E2F1 induces 
PPAR gamma transcription during clonal expansion and represents the link between 
proliferative signaling pathways, triggering clonal expansion and terminal adipocyte 
differentiation through regulation of PPAR gamma expression (26, 61). It is interesting to 
note the increased expression of the gene encoding SMARCB1 in AD. Although the 
function of this protein is relatively unknown, members of this family (SWI/SNF family) 
possess helicase and ATPase activities and are thought to regulate transcription of certain 
genes by altering the chromatin structure around those genes (62). These results concord 
with the fact that adipogenesis is a very defined and complex process involving a series 
of changes including activation and inactivation of several genes that are coordinately 
regulated. 

Fig. 4 illustrates the functional classification of genes significantly upregulated in AD 
(p<0.05). The figure was generated by GOTM (75). It was based on the fourth annotation 
level under biological processes. The dark/black bars represent gene numbers expected in 
the GO (Gene Ontology) categories using all the genes on the array as a reference. The 
light/white bars represent the numbers of significantly upregulated genes in AD in the 
GO categories. Four GO categories were found to be significantly enriched at this level 
based on the hypergeometric test implemented in GOTM. They are (1) cell growth, (2) 
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biosynthesis, (3) oxygen and reactive oxygen species metabolism, and (4) response to 
oxidative stress. GOTM identified a total of 19 categories that were significantly 
enriched. The DAG (Directed Acyclic Graph) representing the 19 categories and their 
relative location in the GOTree can be accessed at http://www.genome.ws.utk.edu/. 

Among the genes involved in the extracellular matrix, expression of fibronectin, 
collagen, and MMPs in adipose tissue has been documented (63–66). These are the 
primary genes that were upregulated in human PA in our study. During differentiation of 
preadipose cells into adipose cells there is an active synthesis of collagen in the 
preadipose state (61), while fibronectin, the adhesive extracellular matrix (ECM) protein, 
is strongly expressed in preadipocytes and decrease during adipose conversion (65). 
Associated with fibronectin is thrombospondin (THBS), also an adhesive glycoprotein 
that mediates cell-to-cell and cell-to-matrix interactions (67). It facilitates the building of 
fibrinogen, fibronectin, laminin, and type V collagen. The increased expression of these 
cytoskeletal genes is therefore expected and validated. The matrix metalloproteinase 
(MMP) family is involved in the breakdown of extracellular matrix in normal 
physiological processes (63, 64). However, detection of dermatopontin, an extracellular 
matrix protein that functions in cell-matrix interactions, matrix assembly, and mediates 
adhesion by cell surface integrin binding serves as a communication link between the 
dermal fibroblast cell surface and its extracellular matrix environment (68). 

The elevated expression of LOX in PA is substantiated by the fact that it is an amine 
oxidase expressed and secreted by fibrogenic cells (69, 70). LOX has not been previously 
reported in PA; however, it is known to play a critical role in the formation and repair of 
extracellular matrix by oxidizing lysine residues in elastin and collagen (69,70). Since in 
our study LOX expression is dramatically reduced in AD compared to PA, LOX is a 
prime candidate marker of early differentiation or committed PAs. 

Osteonectin or SPARC (Secreted Protein that is Acidic and Rich in Cysteine) is a 
matrix-associated protein. It elicits changes in cell shape, inhibits cell-cycle progression, 
and influences the synthesis of extracellular matrix (71, 72). Interestingly, this protein has 
recently been linked to obesity as SPARC knockout mice exhibit increased adiposity (71, 
72). Decorin is another protein that plays a functional role during growth and 
differentiation of adipocytes by contributing to the morphological changes occurring in 
the cell proteoglycan (68). Thus, in addition to LOX, we also identified SPARC, THBS 
and decorin as primarily expressed in PA at very high levels (more than four fold 
compared to AD) adding to the list of PA markers. 

Figure 5 shows the functional classification of genes significantly upregulated in PA 
(p<0.05). It was also based on the fourth annotation level under biological processes. 
None of the GO categories was found to be significantly enriched at this level by GOTM. 
However, GOTM identified totally 14 categories that were significantly enriched. The 
DAG representing the 14 categories and their relative location in the GOTree can be 
accessed from http://genome.ws.utk.edu/. 

Finally, it is worth noting that while several genes showed consistently high 
expression levels in either PA or AD across all patients, they were not statistically 
significant. The probable reason can be attributed to their low expression level and to 
variability among patients thus requiring a large number of samples to be analyzed to 
reach statistical power. Detailed statistical analyses of microarray data is discussed in this 
book in the chapters by St-Onge et al. (35) and Saxton and Moser (73). Our results 
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support the notion that adipogenesis is a very defined and complex process involving a 
series of changes including activation and inactivation of several genes. This process is 
coordinately regulated. Many proteins secreted from adipose tissue operate in an 
autocrine/paracrine manner to regulate adipocyte metabolism and upon secretion into the 
bloodstream, act as endocrine signals at multiple distant sites to regulate energy 
homeostasis, e.g., resistin, angiotensin, and adiponectin (4, 5, 20, 21, 60). 

In summary, our study was the first attempt to compare PA and AD derived from the 
same patients. We have also successfully demonstrated the installation and application of 
SMD for the cDNA microarray data analysis at the University of Tennessee (54). The 
results from the SMD analysis confirmed most of the previously reported genes in AD 
such as FABP, GPD1, PPAR-γ, AGT, and R×R as adipocyte markers. We were also able 
to identify several genes, which are selectively upregulated in adipocytes such as APMl, 
perilipin, VTN, LPL, SMARC, E2F5, and DPT making them selective potential 
adipocyte markers. Similarly, upregulated genes in the preadipocytes such as LOX, 
E2F4, fibronectin 1, collagen types 3A1, 5A1, and 6A1,THBS, decorin, and SPARC are 
the selective potential markers of committed preadipocytes. The major significance of 
this report is the contribution of these selective gene markers to facilitate demarcation 
between the preadipocyte and adipocyte state of the cells. The microarray technique is 
thus a very useful method to determine gene expression levels in different cell types.  

8. CONCLUSION 

Traditional approaches used to investigate regulation of gene expression such as northern 
blot analysis and reverse transcriptase polymerase chair reaction (RT-PCR) only allowed 
analysis of one or a very few genes simultaneously. With the recent publication of partial 
or complete genomes of several organisms, all individual genes will soon identified. Most 
genes do not function in isolation; rather biological systems and pathways function 
coordinately and interactively in networks. Thus identifying these networks is key to 
understanding the genome, gene function, and regulation in health and disease and 
ultimately will impact our understanding of better interventions for optimal health. 

In this chapter, we presented examples of large scale analysis of genes that are 
expressed in a cell type-specific manner in adipose tissue. While many of the genes found 
to be expressed in adipocytes versus their precursors in stoma vascular fractions are 
genes coding for proteins and enzymes in lipid metabolism, we identified new genes with 
unknown function in adipose tissue metabolism or obesity. Some of these genes code for 
secreted proteins that may regulate extra-adipose tissues as well as whole body 
homeostasis, such as vitronectin and osteonectin. To further gain insight into additional 
proteins secreted by adipose tissue, proteomics studies will be the next logical step to 
identify novel proteins that may constitute an important link between adipocytes and 
diseases such as obesity, diabetes, and cardiovascular disease. 
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1. INTRODUCTION 

The practice of self-medicating with botanical products is probably as old as humankind 
itself. Depicted in literature and film, we are well-familiar with the herbal remedies 
prepared and administered by the healers of ancient Egypt, medieval physicians, and 
American Indian cultures. Only in the past century has modern chemistry produced a 
distinction: a choice between synthetically derived drugs vs. natural products. With the 
great advances made by the pharmaceutical industry, our modern Western culture has 
distanced itself from the notion that phytochemicals may have specific medicinal actions. 
Most synthetically derived medicines are considered to have a specific target: as an 
enzyme inhibitor (e.g., cholesterol-lowering statins), receptor agonists, or receptor 
antagonists (the antidiabetic drug rosiglitazone is an agonist of the peroxisome 
proliferator activated receptor). Synthetic drugs are generally considered to have high 
specificity; hallmark examples may be action on specific serotonin receptor subtypes or 
the selective estrogen receptor (ER) modulators (SERMs) that act more potently on ERα 
or ERβ 

Understanding the specific effects of phytochemicals represents distinct challenges. 
Most often, commercially available products represent solvent-soluble extracts prepared 
from a botanical. These products usually contain mixtures of a wide number of 
compounds. The exact number and relative abundance of these products often varies 
from preparation to preparation. Growing conditions and the geographical source of a 
botanical may ultimately affect the potency of the extract. Evaluating the effect of a 
mixture on a biological system—whether a cell or animal model—becomes a more 
difficult task compared to evaluating the effect of a single compound. Different 
compounds present in the extract may have distinct effects, and may even interact 
negatively or positively. This interaction may vary in significance depending on the 
relative abundance of the different compounds in the extract. 

To evaluate the effect of phytochemicals on gene expression, one may use both cell 
and animal models. Further, if a specific compound is presumed to be the bioactive 
compound present in a botanical extract, that compound can be studied alone, as a 
purified compound, in parallel with studies evaluating a mixture containing the putative 
active compound. One would expect to see the same effect on the model system, if the  
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putative compound is indeed the active factor. 
If a candidate phytochemical is being evaluated as a potential regulator of gene 

expression, one might predict specific sites where gene regulation would be affected. For 
example, a phytochemical acting as a ligand for a specific nuclear receptor might enhance 
the trancription rate of a specific gene. Alternatively, a phytochemical might repress gene 
transcription if it interferes with coactivator recruitment. Phytochemicals acting as 
agonists or antagonists of kinases or phosphatases involved in a signal transduction 
pathway may ultimately affect the expression of a gene or sets of genes regulated by that 
specific pathway. 

A wide number of research reports have detailed the interaction between various 
phytochemicals. Rather than attempt to provide an encyclopedic collection of those 
reports, we have chosen a number of examples where phytochemicals have been shown 
to affect gene expression in different model systems. 

2. ST. JOHN’S WORT 

St. John’s wort is used to treat mild to moderate depression and anxiety (1). It is 
composed of numerous constituents, although its active component remains speculative. 
One component, hyperforin, inhibits synaptic uptake of various neurotransmitters such as 
serotonin and dopamine in vitro, although in vivo studies suggest other potential modes 
of action not fully dependent on hyperforin (1). St. John’s wort serves a wide array of 
therapeutic uses, not only historically, but also currently in both the United States and 
Europe (2). Recent reports have suggested that St. John’s wort decreases the efficacy of 
medications metabolized by cytochrome P450 3A4 (CYP3A4), a member of the 
cytochrome P450 monooxygenase family (CYP) (Table 1) (3). The CYP family of 
enzymes is responsible for clearing the majority of prescription drugs and ingested 
pollutants (4). These enzymes are located in hepatocytes and intestinal cells and are 
capable of metabolizing many endogenous compounds along with exogenous drugs and 
pollutants (5). Several CYP families exist, although CYP1, CYP2, and CYP3 metabolize 
most xenobiotic substrates (5). Moore et al. investigated the effect of St. John’s wort on 
the human pregnane X receptor (PXR), a nuclear receptor responsible for regulating 
CYP3A4 transcription (Figure 1) (3). They found that three different commercial brands 
of St. John’s wort extract activated PXR. Of the components tested, hyperforin induced 
PXR at half-maximal effective concentration (EC50) of 23 nM. Importantly, this 
concentration is well below the 200 nM level observed in plasma of individuals using St. 
John’s wort on a regular basis. Hyperforin was also found to directly bind PXR, as 
confirmed by competition binding assays. Finally, Moore et al. found that the St. John’s 
wort extract and hyperforin induced the expression of CYP3A4, validating the premise 
that this botanical could interfere with and increase the metabolism of drugs metabolized 
by CYP3A4 (5). Wentworth et al. also found that St. John’s wort and hyperforin 
activated the ligand-binding domain of the steroid X receptor (SXR), known as the 
human PXR (6). This occurs via the activation function site 2 (AF-2) of S×R. Steroid 
receptor coactivator-1 is a coactivator recruited by various nuclear receptors including 
S×R. St. John’s wort and hyperforin mediated the SXR-SRC1 association, further 
confirming of activation of CYP3A transcription by this phytochemical (6). Hyperforin 
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has recently been confirmed by crystal structure analysis to bind to the ligand-binding 
domain of PXR (7). St. John’s wort has also been implicated to increase the expression of 
CYP1A2, the second most abundant CYP accounting for over 10% of human hepatic 
CYP content (4). However, a human in vivo study did not find evidence of increased 
CYP1A2 activity after two weeks of St. John’s wort intake (300 mg three times per day), 
although CYP3A4 activity was significantly induced in the intestinal wall (8). These 
studies concluded that St. John’s wort increases the metabolism of certain medications by 
increasing the expression of CYP3A4 via hyperforin binding and activating human PXR.  

3. GUGGULSTERONE 

Guggulsterone is the active, lipid-lowering fraction of gugulipid, a gum resin extract from 
the Commiphora mukul tree used in India for thousands of years to treat hyperlipidemia 
(9). Numerous animal studies and clinical studies have been conducted since the 1960s 
when the initial scientific studies were begun on the hypolipidemic effect of the gum 
resin and its extracts. Most of the clinical studies found that gugulipid or guggulsterone 
reduced serum cholesterol levels by an average of 30% (9). Upon further investigation, 
Urizar et al. proposed that the lipid-lowering mechanism of this gum resin occurs via the 
antagonistic activity of guggulsterone for the farnesoid X receptor (FXR) (10). FXR 
heterodimerizes with the retinoid X receptor (RXR) upon ligand binding (11) and is 
known as the “bile acid sensor” because it is responsible for repressing bile acid synthesis 
via transcription of ileal bile acid-binding protein (I-BABP). Ligands of the nuclear 
receptor FXR include bile acids such as chenodeocycholic acid (CDCA). Activation of 
FXR also increases bile acid recirculation due to elevated bile acid concentrations within 
the cell (11). In the recent study by Urizar et al., the Z-guggulsterone isomer had no 
effect on FXR alone, although the E- and Z-guggulsterone isomers were able to inhibit 
CDCA activation of FXR along with FXR-regulated genes (10). The isomers were also 
able to inhibit CDCA activation of small heterodimeric partner (SHP). Small hetero-
dimeric partner is a nuclear receptor that heterodimerizes with other nuclear receptor 
complexes such as the active FXR-RXR complex, although it does not have a DNA-
binding motif, as do most other nuclear receptors (11). Guggulsterone inhibited 
transactivation of FXR-RXR and not DNA-binding of these complexes, indicating that 
the isomers were exerting an  

TABLE 1 List of Botanicals and Their Active 
Ingredients that are Able to Activate Nuclear 
Receptorsa 

Botanical Active ingredient Targeted nuclear receptor 

St. John’s wort Hyperforin PXR/SXR(hPXR) 

Guggulipid E-Guggulsterone FXR 

  Z-Guggulsterone   

Soy isoflavones Genistein PPARα/PPAγ 
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  Daidzein   

Isoflavones Genistein ER 

  Resveratrol   
aER, estrogen receptor; FXR, farnesoid X receptor; PPAR, peroxisome proliferators activated 
receptor; PXR, pregnane X receptor; SXR, steroid X receptor (human pregnane X receptor). 

inhibitory effect via the ligand-binding domain of the FXR (10). This effect was 
confirmed by using a fluorescence resonance energy transfer (FRET)-based coactivator 
binding assay, in which guggulsterone was found to directly compete with CDCA for the 
ligand-binding domain, inhibiting the recruitment of a necessary coactivator, SRC-1. 
Finally, FXR-null mice did not respond to the cholesterol-lowering effect of 
guggulsterone seen in the wild-type mice, indicating that FXR is necessary for the 
hypolipidemic effect of guggulsterone (10). Wu et al. also found that guggulsterone had 
an antagonistic activity of FXR in the presence of FXR activators and was able to 
decrease gene expression of FXR-regulated genes (12). More recently, a study found that 
guggulsterone induced the expression of the FXR-regulated bile salt export pump gene 
(BSEP) in vitro in the presence of two different FXR ligands, CDCA and GW4064 (13). 
This induction was also evident in rats fed a diet containing either 2.8 or 5.6% 
guggulsterone, in which both BSEP and SHP mRNA were elevated compared to the 
control-fed rats. However, mRNA levels of other FXR-regulated genes tested—such as 
cholesterol 7α-hydroxylase (CYP7α1), sterol 12α-hydroxylase (CYP8b1), and I-BABP—
were unaffected. In this study, guggulsterone blocked coactivator recruitment of p120 
and PBP as well as SRC-1, consistent with the prior report (13). These results indicate 
that guggulsterone may have selective antagonistic activity on required coactivator 
recruitment for FXR-mediated transcription, but also agonist-enhancing activity on 
selective FXR-regulated genes. 

4. SOY ISOFLAVONES 

4.1. Genistein and PPARs 

Soy isoflavones are phytochemicals often termed “phytoestrogens” due to the estrogenic 
properties of these botanically derived products (14). Soy isoflavones have been credited 
to have antiatherosclerotic, antidiabetic, and anticarginogenic properties, although the 
specific physiological and cellular mechanisms affected by isoflavones are an area of 
controversy and debate (15–17). Recent studies found that soy isoflavones were able to 
activate two isoforms of the peroxisome-proliferator-activated receptors (PPARα and 
PPARγ), proposing a novel way in which the isoflavones may be exerting their 
antiatherosclerotic and antidiabetic properties (Figure 2) (18,19). The PPARs are nuclear 
receptors involved in cellular lipid homeostasis (20). They have a promiscuous ligand-
binding domain able to bind a variety of lipophilic ligands, resulting in receptor 
activation. Activation of PPARα results in increased expression of genes involved in fatty 
acid catabolism, whereas activation of PPARγ results in increased expression of genes  
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TABLE 2 Effect of Various Flavanoids on 
Signaling Pathway Proteins 

Flavanoid Affected signaling protein 

Apigenin Ap-1, Elk-1, c-Jun 

Flavone Ap-1 

Chalcone Ap-1, Elk-1, c-Jun, CHOP 

Kaempferide Elk-1, c-Jun 

Genistein P38MAPK, ERK-1, ERK-2 

Naringenin P13K, Akt 

involved in cellular differentiation and insulin sensitization (20). Dang et al. found that 
the soy isoflavone genistein was able to activate PPARγ in a dose-dependent manner, and 
genistein also increased the expression of PPARγ-regulated genes and adipogenesis in 
KS483 cells at a dose of 25µM (19). Genistein interacts directly with the nuclear 
receptor, as verified by a membrane-bound PPARγ binding assay. However, a lower dose 
of genistein (1 µM) actually had an inhibitory effect on PPARγ-regulated genes as well as 
on adipogenesis. This is most likely due to the ability of low concentrations of genistein 
to activate estrogen receptor-mediated activity, resulting in a decrease of PPARγ 
activation (19). Mezei et al. found that both genistein and the soy isoflavone daidzein 
were able to activate PPARγ-mediated transcription (18). Furthermore, female obese 
Zucker rats fed a highisoflavone-containing soy diet had significantly improved glucose 
tolerance compared to casein and low-isoflavone-containing diets, consistent with effects 
of PPARγ activation. Genistein and daidzein were also able to activate PPARα-mediated 
transcription. Both male and female obese Zucker rats fed a high-isoflavone-containing 
diet had reduced liver cholesterol, liver triglycerides, and total liver weight, consistent 
with effects of PPARα activation (18). Harmon and Harp found an opposing effect of 
genistein on PPARγ (21). In this study, genistein was found to inhibit PPARγ expression 
as well as adipogenesis in adipocytes, a well-characterized consequence of PPARγ 
activation. However, these inconsistent effects may be due to the elevated concentration 
used in this study. Other studies found that a genistein concentration of 50 µM was 
enough to induce apoptosis in certain culture models such as colon carcinoma cell lines, 
whereas Harmon et al. used a genistein concentration of 100 µM (22, 23). Genistein and 
daidzein are not the only phytochemicals with PPAR-activating ability. Takahashi et al. 
discovered that farnesol and geranylgeraniol, two common fruit and herb isoprenols, are 
able to activate both PPARα and PPARγ along with several PPAR-regulated genes (24). 
Therefore, these studies give new insight on the mechanism by which soy isoflavones and 
other botanicals exert their favorable consequences. 

4.2. Isoflavones and Estrogen Receptors 

It is estimated that 80% of women over the age of 45 use some type of non-prescription 
therapy to manage menopause symptoms, ranging from the consumption of soy or 
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evening primrose oil to acupuncture (25). Of these therapies, the use of isoflavones as an 
alternative to hormone replacement therapy may be an attractive alternative to classical 
“hormone replacement therapy” (HRT) for many postmenopausal women, although their 
potential side effects and long-term health implications are still not fully understood (26). 
One of the soy isoflavones, genistein, has been shown in studies to have estrogenic 
activity (27, 28). Because some postmenopausal women with estrogen-dependent breast 
tumors may be consuming genistein as an alternative to HRT, Ju et al. studied the effect 
of genistein on estrogen-dependent breast cancer growth (29). In this study, mice with 
estrogen-dependent tumors had a significant, dose-dependent increase in tumor 
presenelin-2 (pS2) mRNA levels when provided dietary genistein. The level of induction 
seen with the higher genistein doses was similar to the induction produced by the 
subcutaneous 17β-estradiol pellet. The pS2 gene is an estrogen-responsive gene and 
indicative of estrogen-dependent growth. The ability of genistein to induce estrogen-
dependent growth in these tumors was also observed in tumor size and proliferation; both 
were significantly increased with genistein ingestion or 17β-estradiol supplementation 
(29). Therefore, the results of this study indicate that genistein consumption may promote 
the growth of certain estrogen-dependent breast tumors. Another phytochemical with 
known estrogenic activity is resveratrol, a polyphenolic compound in grapes and wine 
(30). Resveratrol has also been attributed to have cancer-preventative properties in colon 
cancer cell lines (31, 32). However, the effect of resveratrol on breast cancer growth is 
controversial, especially with respect to estrogen-dependent tumors (33). Levenson et al. 
found that resveratrol was able to induce gene expression of the estrogen-responsive gene 
tumor growth factor a (TGFα) in a dose-dependent manner in breast cancer cells 
expressing wild-type estrogen receptor (33). Higher doses of resveratrol were needed to 
mimic this effect in breast cancer cells expressing a mutant form of the estrogen receptor. 
However, resveratrol did not further stimulate TGFα expression when 17β-estradiol was 
present in its optimal concentration. Resveratrol inhibited the growth of the breast cancer 
cells regardless of the presence of the estrogen receptor or the antiestrogen ICI, indicating 
that growth inhibition by resveratrol is, at least in part, estrogen receptor-independent. 
Estrogen receptor protein levels were analyzed in both wild-type and mutant estrogen 
receptor-expressing cells. Both 17 β-estradiol and resveratrol decreased the wild-type 
estrogen receptor levels. Finally, resveratrol and 17(β-estradiol both increased the protein 
levels of p21cip/WAF1, a cyclin-dependent kinase inhibitor, although this increase 
appears to be an estrogen-mediated effect (33). Both resveratrol and genistein have 
estrogenic effects and are able to regulate many estrogen receptor-mediated genes. This 
activity may explain some of the beneficial effects of these phytochemicals, but also 
warrants further investigation due to possible harmful side effects. 

4.3. Genistein and Gene Expression Patterns 

Recent studies utilizing microarray technology reveal that genistein affects the regulation 
of many genes, including those involved in reproductive development and prostate cancer 
(34–36). Naciff et al. found that genistein had a gene expression profile similar to an 
estrogen (17 α-Ethynyl estradiol) and a weak estrogenic chemical (bisphenol A) in the 
developing uterus and ovary of the rat (34). Genes involved in cell growth (growth 
hormone receptor), differentiation (progesterone receptor), stress response (glutathione S-
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transferase M5), and apoptosis (interleukin 4 receptor) were regulated similarly by all 
three compounds. RT-PCR confirmed some of these results, such as increased expression 
of the progesterone receptor by 17 α-Ethynyl estradiol, bisphenol A, and genistein (34). It 
is important to note that although the three compounds have a similar gene expression 
profile in the developing reproductive system, the gene expression profiles of 17 α-
Ethynyl estradiol and bisphenol A were more similar to each other than to genistein. This 
may be due to the mainly “estrogenic” activity of these compounds, whereas genistein 
has other known activities, such as tyrosine kinase and topoisomerase-II inhibition along 
with activity as a PPAR agonist profiled earlier (34). Two recent studies also analyzed 
the gene expression profile of genistein using a human prostate cancer cell line (35, 36). 
Li and Sarkar found that genistein downregulated genes involved in angiogenesis, such as 
vascular endothelial growth factor and its receptor, and upregulated genes inhibiting 
angiogenesis, such as connective tissue growth factor and connective tissue activation 
peptide (35, 36). Furthermore, genistein also downregulated genes necessary for tumor 
cell invasion and metastasis (MMP-9/type IV collagenase, urokinase plasminogen 
activator, and urokinase plasminogen activator receptor). These results indicate that 
genistein may inhibit tumor metastasis and growth. Another study by Li and Sarkar found 
that genistein caused a difference in expression profiles of genes involved in cell cycle 
control, apoptosis, and cell signaling (36). Genistein downregulated cell cycle promoter 
genes such as cyclin A and cyclin B and induced genes that inhibit cell cycle progression, 
such as cyclin G2 in human prostate cancer cultured cells. Genes involved in the 
inhibition of apoptosis (survivin) and genes involved in cell growth (pescadillo) were also 
downregulated in genistein-treated cells (36, 37). Genistein also downregulated signaling 
genes such as NF-κB-inducing kinase and MAP kinase kinase potentially resulting in 
decreased cell proliferation (36). Therefore, microarray analysis revealed that genistein is 
able to affect many genes involved in biological processes such as cell growth, cell cycle 
control, differentiation, stress response, angiogenesis, tumor cell invasion, metastasis, 
signaling, and apoptosis. 

5. SOY DIET STUDIES 

Soy consumption may have many advantageous outcomes, such as an improved 
management of blood lipids and a decreased risk of cancer (38–40). In one rodent study, 
Tovar-Palacio et al. found that soy-fed gerbils had significantly reduced levels of 
circulating apolipoprotein B and significantly increased circulating levels of 
apolipoprotein A-I after a 28-day feeding study (41). However, apolipoprotein A-I gene 
expression was significantly reduced in gerbils fed a soy diet containing various amounts 
of isoflavones. This reduction was not reflected in the circulating protein content. This 
discrepancy may be a result of decreased circulating lipoprotein turnover or a 
downregulation of apolipoprotein A-I synthesis due to its elevated level in circulation in 
the soy-fed animals. It is important to note that the mRNA levels of apolipoprotein E an 
apolipoprotein also synthesized in the liver and similar in abundance to apolipoprotein A, 
remained unchanged (41). Two other genes also affected by soy consumption in gerbils 
are phosphoribosylpyrophosphate synthetase-associated protein (PAP) and a member of 
the cytochrome P450 2A family (CYP2A) (42). In a study by Mezei et al., gerbils fed a 

Genomics and proteomics in nutrition     254



soy diet with increasing levels of isoflavones had a dose-dependent increase in both PAP 
and CYP2A gene expression. PAP is a protein that negatively regulates 
phosphoribosylpyrophosphate synthetase (PRPP-synthetase) activity, an enzyme 
involved in nucleotide synthesis. Therefore, soy may be able to decrease nucleotide 
synthesis and cell proliferation via PAP regulation. CYP2A belongs to a family of 
enzymes used to metabolize endogenous and exogenous toxins and other xenobiotics 
(43). Therefore, upregulation of this CYP might decrease mutagenic threat to the cell. 
Ronis et al. found an induction in CYP3A protein levels in dexamethasone-treated (DEX-
treated), soy-fed rats relative to DEX-treated, casein-fed rats (44). This induction in 
protein level appears to be due in part to the increased expression of CYP3A2 mRNA. 
CYP3Al, CYP3A9, and CYP3A18 did not have increased mRNA levels in  

 

FIGURE 1 Increased drug metabolism 
results from hyperforin-induced PXR 
activation within the nucleus. 
Hyperforin binds directly to PXR and 
SRC-1 associates with the PXR-RXR 
heterodimer.This activation of PXR 
results in increased expression of 
several cytochrome P450s including 
CYP3A4. Increased CYP3A4 levels 
result in increased metabolism of 
certain prescription drugs, thereby 
increasing drug clearance and 
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decreasing drug half-life and efficacy. 
CYP: cytochrome P450, PXR: 
pregnane × receptor, R×R: retinoid X 
receptor, SRC-1: steroid receptor 
coactivator-1. (Adapted from Refs. 3, 
5–7.) 

DEX-treated, soy-fed rats compared to the DEX-treated, casein-fed rats. Neither 
CYP2B1 protein levels nor mRNA levels were different between these soy-fed and 
casein-fed rats. However, the enzymatic activity of CYP2B1 was greater in the DEX-
treated, soy-fed rats. This effect was also seen in CYP3A enzymatic activity except when 
CYP3A18-specific lithocholic acid was used as substrate (44). Therefore, soy had other 
stimulatory effects on CYP enzymes besides increased gene and subsequent protein 
expression. A second study by Ronis et al. focused on CYP1 A induction and activity 
resulting from a casein, whey, or soy protein source in 3methylcholanthrene- (3-MC) or 
isosafrole- (ISO) induced rats (45). 3-MC is an environmental carcinogen that induces 
CYP1A expression via the aryl-hydrocarbon receptor (AhR) located in the promoter of 
CYP1A genes, and ISO is a common phytochemical component of foodstuffs that 
induces CYP1A in an AhR-independent manner (45). 3-MC induced CYP1A1 gene 
expression while protein levels were significantly reduced in soy-fed rats compared to 
casein-fed rats. CYP1A2 mRNA levels were also significantly reduced in soy-fed rats 
compared to casein-fed rats, although protein levels were comparable. Finally, the 
enzymatic activities of both CYP1A1 and 1A2 were lower in the soy-fed group (45). 
Consistent with the results just noted, AhR expression was 50% lower in soy-fed rats, and 
AhR expression was highly correlated to 3-MC-induced CYP1A1 expression (45). The 
selective regulation of soy on CYP expression and activity may account for some of the 
anticargenogenic activities attributed to soy. 
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FIGURE 2 The effect of a soy extract 
and various soy components on PPRE-
directed luciferase activity induced by 
the PPRE-containing segment of the 
acyl CoA oxidase promoter in RAW 
264.7 cells using the PPARα and 
PPARγ expression plasmids, 
respectively. Cells were incubated with 
either a vehicle (VEH), (A) clofibrate 
(CLO) or (B) pioglitazone (PIO), or 
2.5 mg/L of the following: G-2535 (U-
SOY), Prevastein HC (C-SOY), 
genistein (GEN, 9.3 µmol/L), daidzein 
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(DAID, 9.8 µmol/L), or glycitein 
(GLYC 8.8 µmol/L). Values are 
means±SEM, n=7–8.Values do not 
share a letter differ (P<0.05). (Adapted 
from Ref. 18.) 

6. FLAVONOIDS AND SIGNALING 

Flavonoids are polyphenolic phytochemicals with antioxidative, anticarginogenic, and 
estrogenic activity that exert their effects through various biological processes including 
signaling cascades (46–48). Frigo et al. found that the flavonoids apigenin, flavone, and 
chalcone induced activator protein-1 (AP-1) activation in two estrogen-unresponsive cell 
lines (46). AP-1 is a transcription factor that is a target for multiple signaling cascades. 
Chalcone was the only flavonoid that induced all of the transcription factors tested (AP-1, 
Elk-1, c-Jun, and CHOP). The flavonoids kaempferide and apigenin inhibited PMA-
induced Elk-1 and c-Jun activity, decreasing cellular proliferation signaling important in 
tumor prevention (46). Genistein is another flavonoid that can moderate its biological 
effects such as cell-cycle arrest through intracellular signaling pathways (47). Frey and 
Singletary showed that genistein inhibited the growth of immortalized human breast 
cancer cells, as seen by DNA synthesis arrest (47). In this study, genistein was able to 
cause phosphorylation of the p38 mitogen-activated protein kinase (p38 MAPK) in a 
dose- and time-dependent manner and increase its activity. This ultimately caused the 
downregulation of Cdc25C, a cell-cycle promoter protein. Genistein also inactivated 
ERK1/ERK/2 and had no effect on SAPK/JNK activity, indicating that this isoflavone 
has a selective action on MAPK signaling pathways that may be dependent on cell type 
(47). Another flavonoid that affects signaling cascades is naringenin, a flavonoid found in 
grapefruit (48). Harmon and Patel found that this flavonoid inhibited insulin-mediated 
glucose uptake in adipocytes (48). Naringenin arrested Akt activation, but had no effect 
on the insulin receptor (IRβ), insulin receptor substrate-1 and -2 (IRS-1, IRS-2), or 
phosphoinositide 3-kinase (PI3K) phosphorylation status. Although naringenin did not 
affect the phosphorylation state of PI3K, it did inhibit the activity of PI3K, resulting in 
the observed decrease in Akt phosphorylation (48). In conclusion, flavonoids such as 
chalcone, genistein, and naringenin are able to mediate biological processes such as cell-
cycle arrest or altered gene transcription via intracellular signaling cascades. 

7. SUMMARY 

One of the most exciting advances in the field of regulation of gene expression by dietary 
constituents is the explosion of information becoming available regarding nuclear 
receptors such as PPAR, FXR, PXR, AhR, and many others. A particularly important 
aspect that must be considered is that many nuclear receptors are “promiscuous” 
receptors, having the ability to bind many different endogenous and exogenous ligands. 
Thus, is becomes immediately apparent that many phytochemicals have such lipophilic 
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properties that they may make excellent ligands for one or more of these nuclear 
receptors. In previous sections, we have discussed some of the recent examples just 
beginning to show how phytochemicals interact with these promiscuous receptors. One of 
the exciting challenges of future research will be to identify further phytochemical 
ligands for these receptors and to study phytochemical/phytochemical and 
drug/phytochemical interactions. The ability to point out both negative interactions and 
potentially promising positive interactions between drugs and phytochemicals may 
provide great practical health benefits to the consumer. 
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1. INTRODUCTION 

Aging is associated with the dysregulation of immune and inflammatory responses.This 
is believed tocontributetothehighermorbidityandmortality from infection, neoplastic, and 
inflammatory diseases. Studies indicate that a multitude of defects involving different 
immune cells are responsible for the decline of immune function and dysregulation of 
inflammatory responses observed with aging (1, 2). However, understanding the 
underlying mechanisms of these changes has progressed slowly because the activation 
and response of immune cells involve severalpathwayswithcomplexinteractions.  

Recent developments in microarray analysis make it feasible to measure mRNA 
abundance for large sets of genes, using a small number of cells. In the past few years, 
there has been a surge in the use of the microarray technique in an effort to identify and 
characterize the genetic regulation of the immune system including development, 
differentiation, maturation, lineage commitment, and the activation of various immune 
cells. However, few studies have utilized microarray analysis in determining the effect of 
aging on the immune cells. 

This chapter, discusses recent investigations on gene expression, the profiling of the 
immune cells as well as the application of microarray analysis to understand the 
molecular mechanisms of age-associated immune dysregulation. 

2. IMMUNE RESPONSE AND IMMUNE CELLS 

The immune response involves an interaction between various immune cells. Immune 
responses are classified as innate and adaptive, or as specific immune responses. The 
innate immune response is the first line of defense against many microorganisms and is 



provided by phagocytes (macrophages and neutrophils) and natural killer (NK) cells. The 
specific immune response provides long-term protection against specific antigens and is 
mediated by the lymphocytes. The specific immune responses can be divided into 
humoral and cell-mediated immune response based on the types of immune cells 
involved. Humoral immunity is mediated by antibodies produced by plasma cells 
(effector cells of B lymphocytes) and is responsible for eliminating extracellular 
microbes. Cell-mediated immunity is mediated by T lymphocytes. T lymphocytes 
activate macrophages to kill intracellular microbes and become effector cells that destroy 
virus-infected cells or certain tumor cells. The T cells play a regulatory role in the 
function of other cells. The various types of immune cells and their functions are shown 
in Table 1. 

2.1. Large-Scale Gene Expression Profiling of Immune Cells 

2.1.1. Changes in Gene Expression Profiles During Development of 
Immune Cells 

T Cells. T cells are derived from hematopoietic tissue and mature in the thymus to 
various types of differentiated T cells. Goh et al. (3) compared gene expression profiles 
of immature CD3−, 4−, 8− triple-negative, CD4+, 8+ double-positive, and CD4+, 8− single-
positive human thymocytes to analyze the changes during T cell development by analyses 
of expressed  

TABLE 1 Immune Cells and Their Functions 

Types of immune cells Functions 

Granulocytes Neutrophil Phagocytosis Killing extracelluar pathogen 

  Basophil Induction of allergic inflammatory response 

  Eosinophil Killing of antibody coated parasites 

  Mast cell Induction of allergic reaction 

Dendritic cell   Antigen presentation 

Macrophage   Phagocytosis Antigen presentation 

Natural killer cell   Lysis of virus-infected cells and tumor cells 

T lymphocytes Cytotoxic lymphocyte Lysis of virus-infected cells and tumor cells 

    Macrophage activation 

  T helper1 Macrophage activation 

  T helper 2 Stimulate B cell growth and differentiation 

B lymphocytes   Antibody production 

    Antigen presentation 
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sequence tags. Polymerase chain reaction (PCR)-based cDNA libraries were constructed, 
a total of 1477 randomly selected clones were analyzed by automated single-pass 
sequencing and the sequences were matched to known genes. Expression of genes 
involved in cell division/DNA synthesis and gene expression/protein synthesis was 
highly elevated in the doublepositive stage, whereas genes related to metabolism were 
expressed highly in triple-negative and CD4+ single-positive stages. This study had 
limited scope. Only a small number of sequences (392) were compared and cells 
representing different developmental stages were obtained from a single subject. 

Most of the gene expression profiling experiments on the development of T cells have 
so far focused on the lineage commitment or polarization of T helper (Th) 1 and Th2 cells 
(4–8). Differentiation of CD4+ T cells toTh1 or Th2 cells has implications for protection 
against different microbial pathogens and the development of different types of chronic 
diseases. Th1 cells mainly produce IFN-γ and protect against intracellular pathogens 
while Th2 cells produce IL-4, 5, and 13 and provide protection against extracellular 
pathogens. Th1 cells are involved in chronic inflammatory diseases such as autoimmune 
diseases and Th2 cells are associated with allergic diseases. Rogge et al. (4), Hamalainen 
et al. (8), Bonecchi et al. (6), and Nagai et al. (7) used Th1 and Th2 lines derived from 
human cord blood leukocytes. Cord blood leukocytes were initially stimulated with 
phytohemagglutinin in the presence of IL-12 (with or without anti-IL-4) for Th1 
development or IL-4 (with or without anti-IL-12) for Th2 development, and then 
expanded further. Chtanova et al. (5) used purified T cells from mice and cultured with 
anti-CD3, anti-CD28, IL-6, IL-2, and IL-12 (Th1 culture) or IL-4 (Th2 culture) for five 
days and then restimulated with anti-CD3 for 24 hrs. These studies differ in the method 
used in determining the gene expression profile of the immune cells. Rogge et al. (4) used 
HuGeneFL array from Affymetrix, Hamalainen et al. (8) used Roche PA-1 
oligonucleotide array, and Nagai et al. (7) used serial analysis of gene expression 
(SAGE). Rogge et al. (4) identified 215 genes, which were differentially expressed, at a 
confidence level of 95% and whose change in expression levels was at least twofold, 
betweenTh1 and Th2 cells collected at an early stage of polarization (three days). 
Transcription factors, which previously were not known to be associated with 
polarization of T helper cells such as RORα2, IRF-7A, and c-fos were identified. In 
addition, Th1 cells were suggested to be more susceptible to activation-induced cell death 
(AICD). The higher expression of Th1 genes is related to apoptosis and proteolysis, 
including tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), proapoptotic 
Bcl-2 family member BAK-2, caspase-8, perforin (PRF1), and granzyme B (Fig. 1). On 
the other hand, Hamalainen et al. (8) found increased expression of granzyme B as well 
as caspase-1 and clusterin in Th1 cells and higher expression of caspase-6 inTh2 cells. A 
distinct pattern of chemokine receptor (CCR and CXCR) expression was observed in Th1 
and Th2 cells. Chemokines are key components of the lymphocyte recruitment process. 
Therefore, differential expression of their receptors leads to a differential response to 
chemokines and the migration of Th1 and Th2 cells. Th1 cells have been shown to 
preferentially express CCR1, CCR2, CCR5, and CXCR3, whereas Th2 cells were shown 
to preferentially express CCR3 and CCR4. 

Chtanova et al. (5) used MullK array from Affymetrix and reported expression 
patterns that were different from those by Rogge et al. (4) and Hamalainen et al. (8). For 
example, they reported higher expression of CCR1 and CCR5 inTh2 cells and identified 
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more type II-biased genes than Rogge et al. (4) and Hamalainen et al. (8). Rogge (9) 
attributed this discrepancy in findings to the difference in culture condition to obtain 
polarized cells, especially the use of IL-6. These differences may also reflect the disparity 
in gene expression between human and mouse.  

 

FIGURE 1 Gene expression patterns 
in humanTh1 and Th2 cells. Bars 
represent “fold change” of the mRNA 
level of a particular gene when 
comparing Th1 with Th2 cells (mean 
of five experiments). Positive values 
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indicate that the transcript is more 
abundant in Th1 than inTh2 cells and 
negative values indicate the opposite. 
Colors Indicate the 
‘absolute’expression level of a gene 
(arbitrary fluorescence units). 
Red=high level of expression (>1000); 
orange=medium level of expression 
(200–1000); yellow=low transcript 
abundance (<200). The column next to 
the bar diagram indicates the fold 
change. (Adapted from Ref. 4). 
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B Cells. B cells develop in bone marrow from hematopoietic stem cells. Their 
developmental stages (Pre-ProB, ProB, PreB-I, large preB-II, small preB-II, immature B, 
and mature B) can be distinguished by their differences in expression of surface markers 
such as CD19 and CD25, rearrangement machinery, and status of immunoglobulin gene 
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rearrangement. Hoffmann et al. (10) investigated the gene expression profiles of five 
consecutive stages of mouse B cell development including preB-I, large and small preB-
II, immature B, and mature B, using Affymetrix Mullk gene chips. The gene expression 
patterns of the preB-I and large preB-II cells on the one hand, and the resting immature 
and mature B cells on the other hand, were the closest to each other. Small preB-II cells 
displayed a pattern that is transitional between two groups. Most of the genes expressed 
in early B cell precursors were involved in such general processes as protein folding or 
cell-cycle regulation, whereas more mature precursors expressed genes involved in 
specific molecular programs such as cell-surface receptors, secreted factors, and adhesion 
molecules. 

Dendritic Cells. Dendritic cells (DCs) are potent antigen-presenting cells that can 
initiate the adaptive immune response by primingTcells. Functions of DCs are closely 
related to their degree of differentiation and maturation. Immature DCs primarily take up 
antigens by phagocytosis, macropinocytosis, and receptor-mediated endocytosis, while 
mature DCs become highly efficient T cell activators as their expression of surface level 
of MHC, costimulatory, and adhesion molecules increase with maturation (11). 

Changes in the gene expression profile of DCs during differentiation and maturation 
have been studied in human peripheral blood monuclear cells (PBMCs), derived DCs (12, 
13), and mouse-derived DCs (14). Le Naour et al. (12) compared the gene expression 
profiles of CD14+ monocytes isolated from PBMCs, immature DC (cultured in vitro for 
seven days in presence of GM-CSF and IL-4), and mature DC (cultured for an additional 
seven days in presence of GM-CSF, IL-4, and TNF-α). As expected, the differentiation of 
monocytes to DCs was associated with the downregulation of monocytic markers such as 
CD14, CD163, and CD88 and the upregulation of cell-surface proteins, which are known 
to be highly expressed in DCs such as CD1a, CD86, and CD83. Decreased expression of 
cell adhesion molecules and enhanced expression of genes involved in cell motility 
indicated the change in migration properties of DCs compared to their precursor, 
monocytes. Differentiation of DCs was accompanied by upregulation of anti-
inflammatory proteins such as cyclophilin C and TSG-6 and downregulation of 
proinflammatory cytokines and their receptors, including TNF-a, IL-6 receptor, TNF-α 
receptor, and IL-8. Genes involved in lipid metabolism such as apolipoprotein E, 
apolipoprotein C-I, ABCG1, and lipo-protein lipase were upregulated in DCs. On the 
other hand, there were only few differences in overall gene expression between immature 
and mature DCs. Granucci et al. (15) used mouse DC line and D1(splenic, myeloid, and 
growth factor-dependent DC line in the immature state) to determine the effects of 
different stimuli, lipopolyssacharide (LPS) or TNF-α, on gene expression during 
maturation. The authors concluded that there is an important difference between LPS- 
and TNF-α-activated D1 cells in the control of cell-cycle progression. Terminal 
differentiation usually results in the growth arrest, and only LPS-treated cells showed a 
pattern of gene expression compatible with a definitive growth arrest; suppression of 
cyclin A and clyclin B1, B2, upregulation of cyclin D2, and upregulation of 
antiproliferative genes such as B cell translocation gene 1 (BTG1) and growth arrest-
specific (GAS) gene. Upon exposure to Escherichia coli (Gram-negative bacteria), many 
genes involved in cytoskeleton rearrangements, antigen processing, control of migration 
and apoptosis, and regulation of inflammatory response were modulated in DC1 cells 
(14). Of particular interest was that DCs produced IL-2 in a tightly regulated timeframe, 
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first at 4–8 h after bacterial uptake and second at 14–18 h after activation, which was 
compatible with the timing of appearance of MHC molecules at the cell surface. This 
finding provides one of the mechanisms by which DCs activate T lymphocytes in 
addition to their regulatory role in innate and adaptive immunity. 

2.1.2. Changes in Gene Expression During Activation of Immune Cells 

Macrophages. Macrophages are involved in the innate immune response by eliminating 
extracellular and intracellular pathogens through phagocytosis, and contribute to the 
specific immune response by presenting antigens and producing chemokines and 
cytokines. Developed from monocytes, mature macrophages are widely distributed 
throughout the body and exhibit considerable heterogeneity in expression of markers and 
receptors (16). 

Macrophages can be activated by microbial stimuli, cytokines and chemokines, and 
through cellular interaction. Upon stimulation, macrophages can secrete many products, 
including enzymes involved in antimicrobial resistance, prostaglandins and leukotrienes, 
cytokines, and reactive oxygen and nitrogen intermediates (16). Lipopolyssacharide 
stimulation of macrophages induces many genes, including those of cytokines IL-1, IL-6, 
TNF-α, and GM-CSF; chemokines such as IL-8 and MCP-1; transcription factors such as 
p50, c-Rel, IRF-1, Egr-1, and IκBα; and inducible nitric oxide synthase (iNOS) and 
cyclooxygenase 2 (17).  

Locati et al. (18) examined the gene expression profiles induced by the CC chemokine 
ligand 5/RANTES or LPS in human monocytes using Affymetrix HuGeneFL array. Of 
5600 transcripts examined, 42 were consistently induced by CCL5 and none were 
suppressed. Cytokine and receptors such as IL-1β, CCL2/monocyte chemotactic protein-
1, and CCL5 receptor, and molecules involved in extracellular matrix recognition and 
digestion such as CD44 splice transcripts, urokinase-type plasminogen activator receptor, 
and matrix metalloprotease (MMP)-9 and -19 were upregulated. The chemokine-induced 
gene profile was distinct from that activated by LPS and showed more restricted 
activation compared with those induced by LPS. Rosenberger et al. (19) studied the 
expression of genes during Salmonella typhimurium, a Gram-negative bacteria with an 
outer membrane rich in LPS, infection, or LPS stimulation of murine macrophage cell 
line RAW 264.7 using Atlas mouse cDNA expression array from Clontech. Overall 
patterns of macrophage gene expression observed during S. typhimurium infection and 
LPS activation overlapped considerably. Many of the genes were associated with 
proinflammatory or direct antimicrobial properties. Highly elevated expression levels 
were observed for (1) the chemokines (MIP-1α, MIP-1β, and MIP-2α), which recruit 
other effector cells to infection sites (2) NF-κB inhibitory factors (IκB-α and lκB-(3), 
which downregulate the transcriptional program initiated by the translocation of NF-κB, 
(3) signaling molecules involved in cell death (caspase 1,TNF receptor 1, Fas, TRAIL), 
and (4) genes involved in macrophage differentiation [leukemia inhibitory factor (LIF), 
Egr-1]. Stimulation by LPS seemed to enhance the macrophages’ ability to interact with 
other cells by upregulating expression of receptors such as CD40 and ICAM-1. 

T Cells. The activation of T cells involves multiple signal transduction pathways that 
eventually result in the transcription of a large variety of genes. The early events that 
follow TCR engagement include phosphorylation of receptor-associated tyrosine kinases 
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and downstream signaling molecules, activation of phospholipase C and subsequent 
hydrolysis of inositol phospholipids, and increases in intracellular calcium. These 
signaling events culminate in the activation of well-characterized transcription factors 
such as activator protein (AP)-1, nuclear factor (NF)-κB, and NF-AT. Although some 
targets of these transcription factors have been identified, a comprehensive view of 
transcriptional events occurring during Tcell activation requires the ability to 
simultaneously monitor the levels of all tanscripts (20). In addition, it has become 
increasingly clear that receptor-mediated signal transduction events leading to the 
proliferation and acquisition of differentiated functions by the T cells are not the result of 
a single wave of gene-activation events. Rather, these are likely to result from a regulated 
cascade of sequential gene-activation events that may be conditionally regulated (21). 

Teague et al. (22) examined the patterns of genes expressed in restingT cells and T 
cells 8 and 48 hrs after activation using Affymetrix gene arrays. T cells were activated in 
vivo by the injection of superantigen to C57BL mice. The authors reported that resting T 
cells expressed large diversity of genes and the patterns of gene expression showed 
dramatic changes within 8 hr, but returned to a pattern more like that of resting T cells 
within 48 hr of exposure. Many genes contributing to cell division, such as DNA 
polymerase, primase, cyclins, and enzymes involved in synthesis of DNA precursors, 
were expressed at higher levels in activated compared with resting T cells. Diehn et al. 
(23) examined the gene expression responses in primary human purified T cells to 
stimulation by anti-CD3 alone or anti-CD3 and anti-CD28 (costimulatory molecule) at 
seven time points (0, 1, 2, 6, 12, 24, and 48 hrs). A microarray with 4359 cDNA elements 
representing 2926 genes was used in this study. The following general features were 
discerned from this study: (1) genes encoding cytokines and chemokines, cytokine 
receptors, cell adhesion molecules, as well as cytotoxic effector molecules, such as 
granzyme B, granulysin, and fas ligand, were induced in a temporally choreographed 
pattern, (2) a significant fraction of the genes that were induced at intermediate and late 
time points had direct roles in promoting proliferation and progression through the cell 
cycle, (3) the gene expression pattern reflected the increased metabolic demand and 
macromolecular biosynthesis of T cells, (4) many of the genes, products of which are 
involved in transducing signals from the T cell receptor (TCR) such as phospholipase C, 
LAT, LCK, and genes encoding subunits of TCR were repressed with T cell activation, 
and, (5) expression of NFAT target genes was enhanced by CD28 costimulation. 

2.2. Age-Associated Changes in Immune Function and Immune Cells 

2.2.1. Macrophage and Aging 

Macrophages play a key role in inflammatory responses by releasing a variety of 
inflammatory mediators including prostaglandins and proinflammatory cytokines (24). 
Prostaglandins are generated from arachidonic acid, which is released from the 
membrane phospholipid by Phospholipase A2, by the action of the enzyme 
cyclooxygenase. We have shown that macrophages from old mice have a significantly 
higher production of n PGE2 compared to young mice. The higher PGE2 production was 
due to increased Cox-2 activity, which was in turn due to higher protein and mRNA 
expression of Cox-2 (25) in old compared to young macrophages. PGE2 has a direct 
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inhibitory effect on the early stages of T cell activation (26) and can modulate Th1/Th2 
cytokine secretion (27). 

Pro-inflammatory cytokines produced by macrophages have been shown to contribute 
to pathogenesis of several age-associated diseases such as atherosclerosis and arthritis, 
however, there is inconsistency in the literature regarding changes in their 
production/regulation with aging (28). 

2.2.2. T Cell and Aging 

Aging is associated with reduced T cell function, as demonstrated by decreased T cell 
proliferation and IL-2 production. One of the hallmarks of age-related changes is a shift 
toward greater proportions of antigen (Ag)-experienced memoryTcells with fewer Tcells 
of naive phenotype. NaiveT cells have different response kinetics to Ag challenge than 
memory T cells, with memory T cells responding faster and to a lower Ag dose than 
naive T cells (29). Recent evidence indicates that naive T cells show an age-related 
functional decline in the earliest stages of activation induced by peptide/ MHC complexes 
(1). We showed that T cells from old mice go through lower activation-induced cell 
division, have fewer IL-2+ cells, and produce less IL-2 per cell. These age-associated 
changes in T cells were only observed within naive T cell subpopulations (30). Other 
researchers reported that IL-2 receptor expression is decreased in cells from elderly 
individuals (31), and functional disruption of the CD28 gene transcriptional initiator is 
observed in senescent T cells (2). The adverse effects of age are observed in various steps 
involved in the T cell activation pathway, including tyrosine kinases such as ZAP-70, 
calcium/calmodulin-dependent protein kinases, and adaptor proteins (32). 

Although several advances have been made in our understanding of changes in T cell 
response with aging, it has been difficult to construct a comprehensive picture of 
molecular changes, which lead to a functional dysregulation of T cells because the 
activation of T cells involves simultaneous up- or downregulation of many different 
signaling pathways. 

The global view of the gene expression patterns of the immune cells and comparison 
of those between immune cells originated from young and old host will help identify the 
pathways or changes most profoundly affected with aging. With a growing knowledge of 
the functions of individual genes, microarrays can provide comprehensive and dynamic 
molecular pictures of the immune cells to better understand the changes occurring with 
aging.  

2.3. Changes in Gene Expression Profile with Aging 

2.3.1. Immune Cells 

Thus far, only a limited number of studies have investigated the age associated changes 
in the gene expression profiles of immune cells (33–35). Mo et al. (33) stimulated 
purified CD4 T cells from young and old mice with anti-CD3 and anti-CD28 for 72hrs 
and determined their gene expression profiles using Affymetrix microaarray chips. They 
found significantly higher expression of CCR2, CCR5, and CXCR5 and lower expression 
of CCR7 in unstimulated CD4 T cells from old animals compared with those from the 
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young. Stimulation resulted in decreased expression of CCR2, CCR5, and CXCR5 in 
both young and old T cells. As mentioned previously, a distinct pattern of chemokine 
receptor expression was associated with polarization of Th1 and Th2 cells. A shift toward 
the Th2 profile has been reported in aging T cells (36). However, in this study, the 
authors found that bothTh1- and Th2-associated chemokine receptors were increased in 
aged T cells. Table 2 shows a gene expression profile of a selected list of chemokines and 
their receptors and proteins associated with apoptosis and the proteolytic system, 
differentially expressed in Th1 and Th2 cells. The table also shows their expression 
pattern with aging. Results reported in this study were from two separate experiments 
using RNAs pooled from 5–15 animals and from two different chips, µ11k and U74A, 
used for each experiment. Rao et al. (34) examined the response of lymphocytes purified 
from two young and two old individuals to heat shock (1 hr at 42°C) using inhouse 
microarray chips representing 4032 genes. Authors concluded that some genes associated 
with signal transduction and mitochondrial respiration were upregulated and some genes 
associated with heat shock response and cell survival were downregulated in 
lymphocytes from old individuals after heat shock treatment. We (35) investigated the 
effect of aging on gene expression profiles of purified T cells stimulated with anti-CD3 
and anti-CD28 for 2 hrs. In unstimulated T cells, 43 genes were expressed significantly 
higher in old compared to young, mainly immunoglobulin genes, whereas 22 genes, 
including T cell receptor-related genes, were expressed significantly higher in young 
compared to old. Response to stimulation was significantly affected by age in expression 
of 40 genes. Significantly lower expression of T cell receptor alpha chain and factors 
involved in the signal transduction pathways were observed with aging. 

2.3.2. Other Cells and Tissues 

Global changes in the gene expression profile with aging have been reported for brain, 
muscle, colon, and liver tissues (37–42).  

TABLE 2 Gene Expression Profile of Selected List 
of Chemokines and Their Receptors and Proteins 
Associated with Apoptosis and Proteolytic System, 
Which are Differentially Expressed inTh1 and Th2 
Cells and Their Expression Pattern with Aging 

  Hamalainen et 
al. (8) 

Bonecchi et 
al. (6) 

Rogge et 
al. (4) 

Chtanova et 
al. (5) 

With 
aging 
(32) 

Chemokines           

CCR1 Th1   ↑ with IL-
12 

Th2   

CCR2 Th1       ↑ 

CCR3   Th2       

CCR4 Th2 Th2       
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CCR5 Th1 Th1 ↑ with IL-
12 

Th2 ↑ 

CCR7         ↓ 

Chemokine receptors           

CXCR1           

CXCR2           

CXCR3   Th1 Th1     

CXCR4       Th2   

CXCR5         ↑ 

Apoptosis and 
proteolytic systems 

          

Perforin     Th1     

Caspase1 Th1         

Caspase 6 Th2         

Caspase 8     Th1     

Granzyme H     Th1     

Granzyme B Th1   Th1     

Granzyme C       Th1   

Adhesion and 
migration 

          

Integrin alpha4       Th1   

Integrin beta7     Th2 Th2   

Lee et al. (38) observed an increase in genes involved in inflammatory and stress 
responses and a decrease in genes involved in protein turnover and growth and trophic 
factors in the neocortex and cerebellum part of the brain with aging. Subsequently, 
Blalock et al. (39) showed that synaptic structural plasticity, extracellular matrix 
formation/turnover, activity-regulated signaling, and protein chaperone functions were 
downregulated and myelin turnover, cholesterol synthesis/transport, lipid metabolism, 
iron utilization, tyrosine/tryptophan/monoamine metabolism, and cytoskeletal 
reorganization were upregulated in the hippocampus of aged rat brain. Most of these 
changes in gene expression pattern began by midlife (14 months), but cognition was not 
clearly impaired until late in life (24 months). 

Lee et al. (43) analyzed the age-related changes in the gene expression profile of the 
gastrocnemius muscle using Affymetrix oligonucletide array. Aged muscle showed: (1) 
increased stress response evidenced by induction of heat shock response, DNA damage-
inducible genes, and oxidative stress-inducible genes, (2) decreased energy metabolism 
evidenced by reduced glycolysis and mitochondrial dysfunction, and, (3) increased 
neuronal injury evidenced by reinnervation and neurite extension and sprouting. Welle et 
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al. (41) compared the age-associated changes in gene expression in muscle between mice 
and men by comparing gene expression profiles of muscles from young (mean age 23 yr) 
and old (mean age 71 yr) men obtained by the SAGE method and by using Affymetrix 
HG-U95A microarray to the results of gene expression profiles in mouse muscle by Lee 
et al. (43). Seventeen genes showed a similar age-related change between men and mice 
and 32 genes showed a difference in the effect of age on the level of expression between 
men and mice. The authors did not find any evidence of an increased stress response in 
older human muscle. They stated that the goal of the study was to evaluate the overall 
degree of consistency between the results reported for mice and those observed in 
humans, rather than to determine age-related global changes across species. Nevertheless, 
they cautioned against generalizing the reported effects of age on gene expression in 
muscle of inbred mice to that of humans. In the aged colon from rats, increased 
expression of genes involved in energy-generating pathways and lipid oxidation, and 
genes that show an aberrant regulation in colon cancer (CD44, ras, and mapsin) were 
observed (40). 

3. CONCLUSION 

Use of the microarray technique to investigate global changes in immune cells in 
response to environmental stimuli has improved our understanding of immune cell 
regulation. Several previously unknown genes have been found to be involved in immune 
cell regulation. Whereas several studies have utilized this technique to determine the age-
associated global changes in other tissues, limited investigation has focused on the effect 
of aging on gene expression of immune cells. 

Several considerations need to be taken into account before meaningful conclusions 
can be drawn from the gene expression profile analysis using the microarray technique. 
First, the nature of the microarray analysis requires multiple comparisons between limited 
numbers of samples, and therefore raises a challenge in discerning true changes from 
false-positive or false-negative results. Changes in expression levels observed from 
microarray analysis need to be validated by other methods and need to be associated with 
functional changes. Second, the cost of the chips and other reagents to conduct 
microarray experiments pressures the investigators to compromise by analyzing a small 
number of samples. Some of the previously published papers used as few as two samples 
per group. This is particularly important, considering the day-to-day, chip-to-chip, and 
animal/subject variability inherent in these experiments. Third, it is important to carefully 
examine the chips used, the statistical methods applied, and the study design when results 
from different studies are compared. Although more and more researchers are using 
commercial chips such as the Affymetrix microarray, many chips made in house with 
different gene profile and probe efficiency have been used in the past. This could affect 
the outcome of the study and should be taken into consideration when results from 
different investigations are compared.  
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1. INTRODUCTION 

Cereal grains are a major food and feed source. The top three stable food grains—rice, 
corn, and wheat—represent over 50% of the human food source. In a low-fat, high-
energy diet, these grains can provide over 30% of the total energy intake. They also 
contribute protein, vitamins, minerals, and dietary fiber in the human diet. In addition, 
cereal grain products are used in animal feeds, indirectly providing protein and energy 
resources to human nutrition. The health benefits of consuming grain products have been 
demonstrated to extend beyond nutrients the grains provide. It is well-recognized that a 
high-bulk diet, high in nonfermentable insoluble fiber, is beneficial to the human in terms 
of the prevention and treatment of numerous disorders. 

Optimization of the composition and yield of the grains could significantly improve 
their nutritional value (1, 2). For example, increasing phytase would allow more complete 
degradation of phytate during fermentation, thus increasing the bioavailability of the 
minerals and vitamins contained by the grains. Another example, more directly related to 
human nutrition, is the transgenic expression of vitamin A pathways in endosperm of 
golden rice (3). The success of this approach provides vitamin A in an otherwise deficient 
diet. Populations consuming processed rice grain lose significant amounts of vitamin A 
found in the aleurone layer of the grain because this layer is removed during processing. 
The genomic approach relocates the vitamin from the aleurone layer to the endosperm. 
However, increasing biousable vitamins and minerals is not the only goal. In fact, the 
major targets for grain improvement include increasing the total protein content (4) and 
improving protein and carbohydrate quality by increasing the amount of lysine or 
increasing the contents of branched starch (5–8). Changing the biochemical property of 
fatty acid, starch or protein could lead to specialty products with industrial or 
biopharmaceutical applications (9–12). 

The nutritional value of the grains is determined by the nutrient amount and 
composition in the grains that accumulate during grain filling and by the bioavailability 
of micronutrients (7, 13,14). Thus, improvement of the nutritional value of the grain 
depends on our understanding of the biological systems that control the nutrient 
partitioning in the grain-filling process. 

Despite their importance, designing and optimizing nutrient partitioning during grain-
filling remains a challenge, because of the complexity of the grain-filling process. Grain 
filling involves reproductive development and nutrient biosynthesis through multiple 



metabolic pathways. Although the biochemical pathways and the many genes 
participating in this complex process have been studied, the regulation and coordination 
of different participants is poorly understood. Because grain-filling is a complex trait 
controlled by a genetic network rather than a single gene, single-gene manipulation 
through breeding and biotechnology has had limited success. For instance, to deliver 
multiple transgenes and to reassemble a metabolic pathway requires coordinated in vivo 
expression of each transgene (3). However, due to the position effect of the transgene 
insertion in the genome, such coordination in gene expression is limited. An alternative 
approach is to identify and engineer the key regulators that control these multiple 
pathways, thus optimizing the quantity and quality of the grain nutrients. This requires a 
detailed understanding of the genetic network that modulates the gene expression. The 
available genome drafts, the EST (Expressed Sequence Tag) sequences in many crop 
species, and the technology for genome-wide gene expression analysis allow for the 
study and understanding of global transcription regulation of grain development and 
nutrient partitioning. This chapter describes our efforts to use a genomic approach to 
improve the nutritional value of rice.  

Our initial effort has been characterization of the transcriptome of grains during their 
development, with a focus on the coupling nutrient-partitioning process. Specifically, we 
wanted to answer four questions. How many nutrient-partitioning genes are involved in 
the grain-filling and what are they? How are these grain-filling genes expressed and 
regulated? How are genes belonging to different pathways coordinately expressed? 
Finally, can we identify and engineer the key genes that regulate grain-filling genes in 
different pathways? 

We used rice as our model system for studying grain-filling and nutrient partitioning. 
Rice is a valuable human food source. Rice is an ideal grain to use in answering our 
genomic questions. It has the smallest genome size (420 Mb) among the cereal crops, yet 
shows a high level of synteny to maize, wheat, barley, and other cereal crops (15). Rice 
also has typical grain structural and developmental features, thus many observations 
obtained from this species can be readily applied to other cereals. In addition, the genome 
drafts are available (16, 17) and there is a continuing effort in sequencing and assembling 
the complete genome (18–20). 

Microarrays have been proven to be a powerful tool for genome-wide gene expression 
analysis. The measured transcript level of all genes related to a certain process or 
condition reflects the molecular events underlying the cell physiological status, and can 
be integrated computationally to identify the responsive genes and dissect their 
relationship network. In order to identify the unknown key regulators of the grain 
transcriptome, it is necessary to survey the entire transcriptome to obtain the global 
transcriptome image. 

Two high-density and high-capacity oligonucleotide-probe GeneChip microarrays 
have been designed to date. The first rice GeneChip array was designed based on an 
earlier assembly of the genome draft and consists of approximately 400,000 unique 
oligonucleotide probes for 21,000 rice genes (21). Since then, a second generation of 
GeneChip microarray has been designed, based on the recently published rice genome 
draft (16, 22). This single GeneChip microarray contains 500,000 unique probes for 
51,000 rice genes and covers almost the entire transcriptome (22). The high coverage of 
the transcriptome is enabled by the modification of the original GeneChip standard 
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design. In both rice GeneChip arrays, each probe set contains 11–16 perfect-match 
oligonucleotide probes for one gene target. Mismatch probes were omitted from this 
modified design based on several simulation and statistical studies. A custom algorithm 
was also developed to accommodate such a change. The modified design and resultant 
high capacity means that the GeneChip data can be validated by a real-time quantitative 
polymerase chain reaction (PCR) assay with correlation coefficient of 0.92 (22).  

2. GRAIN FILLING IS A COMPLEX BIOLOGICAL PROCESS 

By examining the transcript level of the 51,000 genes in 33 samples collected throughout 
rice development, genes that participate in grain filling and development were identified 
(Fig 1). Similar to the results obtained in a previous survey, the majority are nutrient-
partitioning genes. These include genes that encode products involved in carbohydrate 
metabolism, fatty acid metabolism, amino acid metabolism, and protein synthesis, as well 
as various transporters, storage proteins, and membrane proteins. The involvement of 
various transporter genes in grain development has been previously reported. For 
example, it was observed that sucrose transporter genes are expressed in developing 
cereal grains (23). In addition, the genes encoding DNA-binding proteins and other 
transcription regulators, genes encoding kinases, and phosphatases that are involved in 
signal transductions are also significantly presented. However, as expected, the majority 
of the genes responsive to grain filling are encoding products with unknown function. Of 
the 1553 genes encoding known and predicted transcription factors, 135 are upregulated. 
It is necessary to point out that a significant number of genes are downregulated. These 
genes may also play important roles in grain intermediary metabolism. Initially, only 
genes that are upregulated during the grain-filling process, including those genes 
involving nutrient partitioning and their regulators, were studied. These genes are defined 
as grain-filling genes. The diversified functions of these grain-filling genes suggest that 
the grain filling is a complex biological process. 

The grain-filling genes were identified by the following approach. First, all of the 
nutrient-partitioning genes were identified based on the available sequence annotation, 
regardless of their involvement in grain filling. These genes include those involved in the 
biosynthesis of starch, storage proteins, and fatty acids and their transporters. Second, 
upregulated genes were identified among the nutrient-partitioning genes based on cluster 
analysis (24) of the expression pattern throughout the rice development. Third, the grain 
nutrient-partitioning genes were used as baits to identify (through pattern matching) the 
genes with similar upregulated expression pattern among all of the genes surveyed. 

In order to increase the confidence of this selection, the microarray data were 
reanalyzed by an alternative method—singular vector decomposition (SVD) (25), a 
pattern recognition method (26). The SVD analysis categorized the expression profiles of 
all nutrient-partitioning genes into 35 distinct expression patterns or signals. Among these 
patterns, the most frequently occurring patterns were the grain-filling signals. These are 
upregulated in expression during either the early or late developmental stage of grain 
development. When the genes associated with these patterns identified by SVD are 
compared to the grain-filling genes previously identified by clustering analysis, 80% 
overlapped. The rest of the previously identified grain-filling genes had upregulation 
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patterns that were less significant. SVD analysis also identified an additional 20 genes 
with grain-filling patterns. Thus, the alternative pattern recognition method 
computationally validated the selection of the grain-filling genes. 

To identify the genes that are involved in the basic grain-filling mechanism in other 
cereal crops, the expression patterns of the identified rice grain-filling genes were 
examined in other cereals using the rice GeneChip microarray. The feasibility of using 
rice GeneChip for genome expression analysis of other cereals was demonstrated 
previously (27). The comparative genomic DNA hybridization of microarray was used to 
identify the probes with conserved sequences that could hybridize to targets from 
different cereal species. For example, if genomic DNA of rice and corn (maize) both 
hybridize to one probe, this probe is a usable probe. Only the usable probes were 
included in the analysis. The results showed that most of the rice oligonucleotide probes 
can cross-hybridize to DNA or RNA targets from other cereal species (27). Based on this 
observation, 10 maize samples were analyzed using the rice GeneChip microarray. 
Among the 269 grain-filling genes identified in rice, 151 showed a similar upregulation 
expression pattern in maize, suggesting that they may have similar functions in grain 
filling (28). 

Although the grain-filling genes were primarily selected based on the temporal pattern 
of gene expression, that is, upregulation or downregulation during the grain development, 
the spatial expression pattern of these genes further supports their grain-filling related 
functions. The grain-filling genes are mainly expressed in the endosperm, a premier 
nutrient-storage tissue in rice grain, as predicted based on the previous knowledge. 
However, genes in different pathways may have different spatial patterns: The starch 
biosynthesis-related genes are preferentially expressed in the endosperm, whereas the 
storage protein biosynthesis genes are preferentially expressed in the aleurone, a special 
layer of the endosperm. Genes involved in fatty acid biosynthesis have a more balanced 
expression between the embryo and endosperm (21). 

To experimentally validate the expression pattern of selected grain-filling genes, the 
promoters of these genes were isolated and linked to a b-glucuronidase (GUS) reporter 
gene for in vivo expression analysis. It was found that the in vivo spatial expression 
pattern of these genes correlates well with the GeneChip data (29). 

3. GRAIN FILLING REQUIRES COORDINATION OF 
TRANSCRIPTION AMONG DIFFERENT PATHWAYS 

Although the grain-filling genes have diverse functions and belong to different metabolic 
pathways, the temporal expression of these genes shows a common pattern, that is, the 
upregulation during the grain development. This common expression pattern could be the 
result of the selection for the grain genes, or an indication of a coregulated synchronous 
expression pattern. 

To prove that these genes are coregulated, it is necessary to demonstrate that there is a 
mechanism for the coregulation, such as common regulatory motif in the promoters of 
these genes. A total of 16 known regulatory motifs were examined in the grain-filling 
genes for their representations. These motifs included Cold (CCGAC), G-Box 
(CACGTG), AACA motif (AACAAAA), GCN4 [TGA(G/C)TCA], C-Box 
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(TGACGTCA), GCC-Box (TAARAGCCGCC), Amylase (TATCCAY), GARE 
(RTAACRRANTCYGG), GT1 box (GGTTAA), In amylase (CGACG), BS1 
(AGCGGG), DPBF-1 (ACACNNG), ASF1 like (TGACGT), E-box (CANNTG), 
Prolamin-box (TGYAAAG), and I-box (core) (GATAAG). Among the 117 promoters 
examined, 75 genes contained the AACA motif. The bootstrap analysis was used to 
evaluate its statistical significance. The results demonstrated that the AACA element is 
overrepresented among the promoters for the grain gene cluster at 95.4% confidence 
interval (P-value 0.046). 

The existing overrepresented motif in the grain-filling genes strongly suggested that 
there is a regulatory mechanism involved in coordinating the transcription of the grain-
filling genes in several metabolic pathways. The A ACA element is known to be 
presented in genes encoding the seed storage proteins GluB-1 (30, 31). However, the 75 
genes are involved in diverse functions, including carbohydrate and fatty acid 
metabolism, nutrient transportation, transcription, and translation. If this can be 
confirmed, it will support the fact that these genes are coregulated, and the AACA 
element may play a critical role in the regulation of these grain-filling genes. 
Furthermore, it will provide direct evidence to support the hypothesis that a high degree 
of coordination of gene expression among many important pathways in major biological 
processes such as cereal grain filling could be achieved by transcription regulation 
through interactions between a transcription factor and a cis-regulatory element. 

4. MULTIPLE PATHWAYS MAY BE REGULATED BY 
COLLECTIVE TRANSCRIPTION FACTOR GENES DURING 

GRAIN FILLING 

To identify transcription factor genes involved in the grain-filling process, the expression 
of genes belonging to this category was investigated. A total of 57 genes that showed the 
grain-filling pattern were identified. Among them, nine genes encode MYB transcription 
factors. Because the consen-sus-binding sequence of type II MYB is similar to the AACA 
element (30, 31) and their typical grain-filling expression pattern, it was hypothesized 
that these MYB transcription factor genes may be involved in regulating gene expression 
during rice grain filling (21). 

4.1. Modeling Transcription Control of the Grain-Filling Process 

Although mutations in a single transcription factor gene could result in extensive changes 
in gene expression (32), it has been considered that specific gene expression during grain 
development requires the involvement and coordinated action of multiple transcription 
factors (regulatory modules). For instance, endosperm-specific expression of the rice 
glutelin gene needs the presence of Prolamin-box, ACGT, and ACAA motifs in the 
promoter region (31). In order to dissect the genetic network controlling the grain filling 
and identify the key regulators controlling multiple pathways, a straightforward approach 
is to investigate the composition and orders of various motifs in the regulatory region 
(33). Alternatively, the correlation of temporal expression patterns of all genes involved 
in grain filing could be interrogated in a time-delayed fashion (34). Genes with delayed 
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positive or negative correlations indirectly suggested their regulatory relationships. Based 
on these relationships, a gene interaction network could be constructed. 

These gene interaction relationships could be further characterized by examining the 
temporal expression patterns among genes with potential regulatory relationships 
predicted based on coregulation analysis and promoter sequence analysis. For example, 
genes encoding a DNA-binding protein, such as the transcription factors, could be 
identified based on studies of sequence-binding domains, and annotations based on a 
previous molecular biology study. Their relationships to their downstream target genes 
could be further revealed by their temporal and spatial expression correlation to the 
transcription factor genes, and the correlation between the promoter-binding sequences 
and binding transcription factors (Fig. 2). 

Phylogenetic footprints of the regulatory regions in the grain-filling genes of different 
crops may also provide valuable reference. Recent studies discovered that sequences at 
regulatory gene sites are relatively conserved among human and mouse (35). Based on 
these observations, a method was developed to detect the regulatory sequences directing 
liver-specific transcription (36). It would be interesting to test this hypothesis and gain 
insights of transcription control of grain filling. It is important to recognize the potential 
regulatory mechanism at a higher order, such as at the chromatin level (22).  

4.2. Use Functional Genomics Resource to Validate In Silico 
Predictions 

The transcriptional profiling and computational modeling suggested a comprehensive 
view of the molecular events underlying the grain-filling process and provided an 
opportunity to dissect the gene regulatory network that controls these events. However, 
the large-scale analysis and in silico  
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FIGURE 1 Hierarchical clustering 
analysis of gene expression data 
obtained from 33 rice samples 
collected through various 
developmental stages. A total of 
51,000 genes, representing over 90% 
of the rice genome, were analyzed. 
Genes involved in grain development 
and grain filling formed tight clusters. 
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FIGURE 2 Genes encoding different 
classes of transcription factors that are 
potentially involved in grain filling 
were identified based on their 
correlated expression patterns to the 
expression patterns of grain-filling 
genes during grain development. 

modeling results have to be experimentally validated. Recent developed functional 
genomics tools and resources, such as genome-wide DNA-protein interaction analysis 
and reverse genetics resources are increasingly used for this purpose. The identified gene 
network and key regulators could be validated experimentally by various approaches. By 
altering the expression of genes encoding putative regulators and examining the 
phenotypic changes, the associated function could be validated. The alteration of gene 
expression could be achieved by gene knockout via either the small interfering RNA 
(siRNA) or double-strand RNA (dsRNA) approach (37,38) or by over-expression through 
the introduction of an extra copy of a full-length gene driven by a strong promoter. Once 
their involvements in grain filling are established, the interaction among genes could be 
confirmed by in vitro or in vivo DNA-protein interaction experiments, as demonstrated 
by Ren et al. inyeast (39). 
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Recently developed reverse genetics resources, such as rice insertion or deletion of 
mutant collections, could be used to investigate gene functions in a systematical way 
(40). This, of course, will benefit the study of gene functions of those encoding 
transcription factors or downstream products. The phenotypic defects at the biochemical 
and morphological levels could further guide the molecular profiling work to identify the 
genes involved in grain filling (41). 

5. CONCLUSIONS AND PERSPECTIVES 

Rice grain filling involves all major nutrition-partitioning pathways, evidenced by the 
functional categories of reproducibly selected grain-filling genes by clustering analysis 
(21) and singlular value decomposition (25). These pathways are coordinately regulated 
at transcription level. While the regulatory mechanism of this coordination is unclear, the 
overrepresented AACA motif in the grain-filling genes suggests that the interaction 
between the common cis-regulatory elements and their DNA-binding proteins plays an 
important role (21, 25). Among other possible regulators involved in the coregulation of 
grain-filing genes, genes encoding Myb transcription factors may potentially interact with 
the common regulatory element (21). Whereas genes with upregulated expression are 
important to the grain-filling process, those genes that reduce their expression level are 
equally important. The genes should be examined in great detail using the same 
strategies. 

The identified and validated grain-filling-related target genes and possible regulatory 
mechanism could be utilized for improving grain quality and yield in cereal crops. It will 
be especially useful when combined with the information from proteome analysis (42) 
and quantitative trait locus (QTL) analysis (43). By combining the information, it is now 
possible not only to identify the genes responsible for simple traits, but also to identify 
genes responsible for complex quantitative traits. The orthologues of these genes could 
be identified and cloned by screening mutant lines in other crops. Alternatively, the 
orthologues could be identified by heterologous hybridization of microarray. Because the 
hybridization signals reflected both sequence homology and transcript abundance, the 
entire experiment should be conducted using samples from the same species to emphasize 
the detected gene expression pattern. The key regulator for multiple pathways could be 
optimized to improve the complex traits by adjusting their expression level in elite lines 
using the biotechnology approach. It has been shown that altering a single gene that 
encodes granule-bound starch synthase can dramatically affect the culinary quality (8), 
resulting in softer, less sticky cooked rice. It is also possible to screen the breeding lines 
to select the ones with favorable variations in their regulatory genes or regulatory 
domains. For example, polymorphisms in the coding regions of key regulators among 
different breeding lines that potentially modify protein structure and binding 
characteristics could be identified based on their sequence alignment and expression 
profiles. Polymorphisms in the promoters of key regulators/regulates among different 
breeding lines that may alter gene expression could also be identified and used as genetic 
markers to assist the selection (44). 
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1. INTRODUCTION 

The concept of comparing protein profiles of treated versus control samples is not novel, 
yet the concept of comparing the global protein profile from an organism or tissue in one 
biological state versus another is clearly innovative. This model has given rise to a new 
era in biological science, the proteomic era. The term “proteome” was realized at a 
conference in 1994 when a graduate student Marc Wilkins was searching for a word that 
would convey the protein equivalent of the genome (1). In truth, the proteome is a much 
more complex and dynamic entity than the genome. The genome of an organism is 
relatively static in the short term, whereas the proteome is a constantly changing mosaic 
of peptides and proteins that can be degraded, modified, cleaved, and increased or 
decreased in synthesis. This symphony of alterations occurs in response to numerous 
signals, both internal as well as external. For the purpose of studying the proteome, these 
changes in protein amount or modification are typically visualized by two-dimensional 
polyacrylamide gel electrophoresis (2D-PAGE), a technique developed simultaneously 
by the two independent labs of Klose (2) and O’Farrell (3) in the 1970s. 

Two-dimensional-polyacrylamide gel electrophoresis relies on two fundamental 
properties of polypeptides: They can be separated by (1) charge and/or (2) molecular 
mass. Proteins are charged biomolecules, and when an electric field is applied, they will 
migrate through an established pH gradient until the net charge of the polypeptide is zero. 
The position in the pH gradient where a protein has a net zero charge, resulting in a loss 
of migration, is the isoelectric point (pI). Two general types of 2D-PAGE have been 
developed, which differ in the way proteins are separated in the first dimension (based on 
pI). One establishes a pH gradient by use of free-moving ampholytes (2, 3) or by 
immobilized pH gradients (IPG) (4) prior to the application of a sample for separation. 
This system is called isoelectric focusing (IEF), and the use of IPG in proteomics has 
grown in popularity in recent years due to its ease of use and reproducibility. The 
disadvantages of IEF include a deficit in the ability to resolve extremely acidic or basic 



proteins and longer focusing times (around 50,000 Volt hours). The second 2-D 
application is termed nonequilibrium pH gradient gel eletrophoresis (NEPHGE) (5). In 
NEPHGE, a pH gradient is not formed prior to sample loading, allowing for the 
resolution of both acidic and very basic proteins on the same gel. In theory, the acidic 
proteins will focus to completion, but the basic proteins are moving toward their pI, never 
actually reaching it. Advantages to this system include a more complete picture of the 
proteome on a single gel and shorter focusing times (around 3000–4000 Volt hours). 
Once focusing is complete in the first dimension, proteins are subjected to standard SDS-
PAGE in the second dimension to separate proteins by molecular mass. 

Isoelectric focusing and NEPHGE are hampered their inability to resolve the entire 
proteome. There are several components at work that define this innate inability. Low 
abundant proteins are difficult to identify by both methods. By current silver staining 
methods, more than 1000 copies of a protein per eukaryotic cell are needed for it to be 
visible (6). Furthermore, protein solubility is a tremendous factor that affects focusing by 
either method. Typically, a nonionic detergent such as CHAPS or NP-40 is used to assist 
in the solubilization of proteins for focusing, but many proteins have a tendency to 
precipitate once they reach their pI. This propensity to fall out of solution can be 
problematic with proteins of high abundance and can actually inhibit the migration of 
other proteins in the electric field. Furthermore, many membrane proteins are extremely 
difficult to solubilize in the detergents that are commonly used with 2D-PAGE. Recent 
advancements in protein labeling (7–9) and the development of better nonionic detergents 
have allowed for the separation and identification of highly hydrophobic proteins. 
Moreover, some researchers are moving away from 2-D gels all together and are 
separating trypsin-digested peptides of a proteome by liquid chromatography (LC) for 
identification via mass spectrometry (MS) using a technique termed LC/MS (10). Recent 
advancements in MS technology, coupled with rapid advances in whole genome 
sequencing and annotation, have created novel proteomic approaches offering reasonable 
alternatives to answer difficult questions. 

A review of the literature will reveal the many variations of MS that are available. As 
is characteristic of many technologies in science, each technique has benefits and 
shortcomings. The decision to use a given technique will call into question many 
variables, such as which exact instrument should be employed for MS. Two popular 
methods of ionization of peptides for MS analysis are electrospray ionization (ESI) (11) 
and matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) (12). These 
technological breakthroughs were developed in the 1980s and were instrumental in 
overcoming the problems associated with producing ions of proteins and peptides, 
molecules that are large and nonvolatile, for transfer into the gas phase for the MS 
analyzer. Electrospray ionization and MALDI are considered “soft-ionization” methods 
because they generate minimal fragmentation of the analyte. MALDI-TOF as a method to 
generate a mass fingerprint of a particular protein of interest has gained popularity for 
several reasons, including its simplicity, sensitivity, high mass range, increased accuracy 
and resolution, and tendency to form singly charged ions. 

The steps in the process of comparative proteomics are as such: (1) A sample is 
exposed to two different conditions, and protein samples are prepared for analysis, (2) 
proteins are then separated by 2D-PAGE and visualized, (3) differences are determined 
by eye or by image analysis, (4) protein spots are then excised and prepared for in situ 
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digestion, (5) proteins are enzymatically cleaved into smaller peptides by timed exposure 
to proteases (usually trypsin), (6) the peptides are extracted from the gel and, as is the 
case for MALDI-TOF, are mixed with a matrix that will aid in the transfer of energy to 
the peptides to enhance ionization, (7) the peptide-matrix mix is then spotted on a target 
plate for MS analysis and ionized by use of a laser, (8) a mass spectra is generated that 
can be used to search protein databases for potential matches using analysis software (i.e., 
SEQUEST or Protein-Prospector) that compares the query mass spectra to all known 
proteins in the database digested in silico, and (9) a report is compiled listing, in order of 
significance, the probable identity of the unknown. It is essentially up to the investigator 
to perform quality control at this stage to verify the findings.  

2. PROTEOMICS & DISCOVERY 

Using proteomics to identify changes in protein synthesis patterns under one condition 
versus another is ideally employed in prokaryotic systems. The number of sequenced 
bacterial genomes that are now available in the NCBI database is astounding. 
Prokaryotes, although having a simpler genetic makeup compared to eukaryotes, have 
evolved various complex mechanisms to sense and adapt to their ever-changing 
environments (Fig. 1). Micro-organisms do not possess the five senses that mammals are 
accustomed  

 

FIGURE 1 Schematic depicting some 
of the pathways that allow 
microorganisms to respond to 
alterations in the environment. 
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Pathway 1 is a two-component system 
with a sensor kinase situated in the 
inner membrane that undergoes 
autophosphorylation. When the 
appropriate signal is received, the 
sensor kinase phosphorylates a 
response regulator, which in turn 
elicits the effector function. Pathway 2 
demonstrates an inducer molecule that 
is membrane-permeable (i.e., the 
quorum-sensing molecule N-acetyl-L-
homoserine lactone), which transduces 
a signal to a regulatory protein that 
then controls gene expression. 
Pathway 3 shows nutrients (i.e., 
metals, sugars, amino acids) that are 
actively transported by a 
phosphotransferase system (PTS) or by 
a high-affinity, specific transporter. 
Nutrients are brought into the cell and 
can be converted to an inducer or act 
directly upon a regulatory protein to 
alter gene expression. Finally, pathway 
4 depicts how environmental cues such 
as temperature and pH can cause a 
conformational change in a regulator 
when the internal milieu is altered, 
causing a response in the bacteria cell. 
All of these adaptive responses lead to 
changes in gene expression, often 
leading to drastic changes in levels of 
specific proteins within the 
microorganism. 

to; rather, they often rely on their ability to sense changes in nutrient levels, temperature, 
pH, and/or osmolarity to indicate their surroundings. This, in turn, triggers alterations in 
genes’ expression that often lead to changes in protein synthesis. Bacterial pathogens rely 
on this adaptive response to regulate the expression of virulence determinants that assist 
in the infection process. 
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How do environmental stimuli yield alterations in gene expression and protein 
synthesis? There are four general mechanisms that microorganisms use to sense the 
environment and regulate gene expression. First, a change in the environment can cause a 
conformational alteration in a protein that binds or interacts with DNA or RNA 
polymerase. Second, an allosteric mechanism affecting the oligomeric state of a 
regulatory protein can be influenced by environmental stimuli. Third, many proteins 
undergo covalent modification (i.e., phosphorylation, proteolysis, methylation, or 
oxidation/ reduction) in response to the environment. Finally, many proteins experience 
noncovalent modification such as activation, inhibition, or titration. These changes in 
response to environmental cues can be monitored by several methods including 
proteomics. 

In this chapter, we share some observations stemming from our experiences in both 
prokaryotic and eukaryotic systems. We have successfully initiated proteomic approaches 
to determine pH-regulated proteins in Borrelia burgdorferi (the cause of Lyme disease); 
to identify substrates for proteases, which may play a role in disease progression, that are 
produced by B. burgdorferi and Bartonella quintana; to identify accessory regulatory 
factors that bind specific promoters in B. burgdorferi; to investigate serum protein 
changes in Scrapie disease (a transmissible spongiform encephalopathy caused by a prion 
protein) in mice; and to determine changes that occur in pancreatic islets due to oxidative 
stress and exposure to various cytokines. The use of proteomics as a research tool can 
often help to quicken the discovery process and increase productivity. 

In 1997, the B. burgdorferi genome was completed, allowing for the use of MALDI-
TOF to identify proteins of interest (13). In that same year, we began to investigate what 
environmental cues, other than temperature, may influence differential expression of 
virulence determinants in B. burgdorferi as the spirochete is transmitted from the tick 
vector to a mammalian host. The tick and the mammal propose extremely different 
environments for B. burgdorferi in temperature, pH, and nutrients. Upon shifting the pH 
of the bacterial medium and separation of membrane proteins by 2D-NEPHGE, we 
observed well over 30 alterations in the protein profile in spirochetes cultured at pH 7.0 
compared to pH 8.0 (14) (Fig. 2). It was then that we first embraced the soft-ionization 
technique, MALDI-TOF MS, to assist in identifying these pH-regulated proteins (15).  
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FIGURE 2 B. burgdorferi membrane 
proteins separated by 2D-NEPHGE 
and stained with silver (top two panels) 
or probed with hyperimmune serum 
(bottom two panels). Changes in the 
protein profiles from samples prepared 
from spirochetes grown in pH 7.0 
(compared to pH 8.0) are indicated and 
numbered. Major outer surface protein 
(Osp) A and OspC are marked. 
Relative molecular masses in 
kiloDaltons are indicated to the left of 
each panel. The acidic end is to the left 
of the gels. 

Using this technique, we were able to identify more than 20 membrane proteins that were 
influenced by changes in the external pH. Determination of their identity has enabled 
better comprehension of which proteins and protein families may be important in 
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invasion, infection, and ultimately in pathogenesis. Rather than subject the entire cellular 
proteome to separation, we took to the task of fractionating the spirochetes into the 
subcellular components of membrane-associated proteins and soluble proteins. Cells were 
separated by lyses and ultracentrifugation (~300,000×g). This pellets the membranes (and 
associated proteins) and leaves the soluble proteins in suspension. Fractionation can assist 
in simplifying the overall protein pattern and allow the visualization of some lower-
abundance proteins. The membrane-associated proteins can be further partitioned (1) by 
adding potassium chloride to the membrane sample to remove loosely associated 
membrane proteins from anchored/integral membrane proteins, or (2) by the differential 
solubility of proteins in various detergents (i.e., triton-X 114 phase partitioning). Each 
fraction can then be subjected to separation by 2D-IEF or 2D-NEPHGE. 

Proteomics has been implemented to determine not only the differences among 
bacteria exposed to different environments, but to determine the substrates for specific 
proteases within a cell as well. A recent article details the use of a molecular trap 
combined with MS to identify putative substrates for the ClpXP protease complex in E. 
coli (16). We are currently involved in collaborative studies of B. quintana (cause of 
trench fever) and B. burgdorferi where the gene encoding a C terminal protease (CtpA) 
has been disrupted. Two-diemensional NEPHGE analysis of wild-type compared to 
mutant has revealed changes in the mobility of multiple proteins. The ability to identify 
these putative substrates of the CtpA protease by MALDI-TOF has assisted in defining a 
putative cleavage motif for the CtpA protease. Moreover, it has expanded our 
understanding of the specificity and necessity of this enzyme. Our proteomic studies 
suggest that CtpA is important in processing the C terminus of many membrane-bound 
proteins that are highly positively or negatively charged. The role that CtpA plays in 
infectivity has not been determined, but it is interesting that CtpA is associated with a 
pathogenicity island in Bartonella spp (17). 

Hopes for the future of proteomics include the ability to compare disease and 
nondisease states of a particular tissue, insight into the disease process, and the 
determination of specific markers for disease for diagnostic purposes. This is an 
ambitious endeavor when considering the number of potential proteins encoded by the 
genome of mammals, but success could have a monumental impact on the way diseases 
are diagnosed and treated. With the human and mouse genome projects nearing 
completion, several institutes and pharmaceutical companies have launched large-scale 
proteomic projects in an attempt to identify molecular markers for diagnostic purposes 
that are associated with disease states. As stated earlier, many have moved away from the 
labors of 2D-PAGE and have invested in analyzing complex mixtures of proteins by MS 
to increase throughput. Still, these groups face difficult challenges due to the sheer 
number of possible protein species present in the cell or tissue. There are over 100 types 
of posttranslational modifications recognized to date that include phosphorylation, 
glycosylation, and amino- and carboxy-terminus processing. It is estimated the human 
genome could potentially express well over one million different protein species and 
isoforms (1). Sifting through such an incredible array of material looking for significant 
differences will undoubtedly be a difficult endeavor. The overrepresented proteins in the 
proteome are typically associated with housekeeping functions (i.e., chaperones, matrix 
proteins, and cytoskeletal proteins), and it seems plausible that the most interesting and 
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more disease-relevant proteins will likely be of low abundance (i.e., phosphotases, 
kinases, and regulators), which will make identification all the more complicated. 

2.1. Proteomics to Determine Cell Signaling Differences in Eukaryotic 
Systems 

Yalidation of proteomic approaches in prokaryotic systems has provided and will 
continue to provide a basis for detailing protein changes in response to environmental 
stimuli. In the case of prokaryotes, environmental cues will generally arise in an 
organism-independent manner, whereas mammalian cells abide in a temperature-
controlled environment and the chemical environment is dependent on products made or 
released by the cell (Autocrine), neighboring cells (Paracrine), or distant cell/tissue 
(Endocrine). Eukaryotic systems therefore present a great many more challenges due to 
diversity, specifically in vivo systems. Proteomic analysis on in vivo systems where 
whole tissues are sampled will introduce differences possibly due only to populations of 
cell types in the tissue sampled. Primary cell culture is also not immune from this 
variable, as cell clusters such as pancreatic islets can contain 6–10 different cells types. A 
further modifier when using samples from animal models or human patients is the genetic 
diversity present in the populations. Therefore, it is critical that experimental design take 
into account the many types of differences inherent to the system or model. Work in vitro 
can aid to suppress differences; moreover, use of a single cell line can aid in eliminating 
background differences. In cases where an in vivo system is necessary, the use of inbred 
animal models that are essentially genetically identical can eliminate genetic variation, 
allowing the investigator to focus on treatment-induced differences. 

In the study of insulin-dependent diabetes mellitus (IDDM) or type 1 diabetes mellitus 
(T1D), the most widely used animal model has been the NOD mouse. The pathology of 
T1D in NOD mice resembles that in the human patient and is a spontaneous 
autoimmuneTcell-mediated disease (18). The distinguishing pathologic lesion in T1D is a 
destructive, immune cell infiltrate (Insulitis) initiated after weaning, preceded by entry of 
macrophages and dendritic cells. In the islets of young NOD mice, macrophages and 
dendritic cells produce the proinflammatory cytokines tumor necrosis factor alpha 
(TNFα) and interleukin 1 beta (IL-1β). IL-1β and TNFα are detrimental alone; in 
combination they have synergistic effects on human and rodent islet structure, function, 
and viability (19). Further, the combination of these two cytokines primes the β cell for T 
cell killing. 

Several years ago, we identified a mouse strain in which the islet cells were refractory 
to the effects of proinflammatory cytokines. This strain was specifically developed to 
resist the beta cell-specific free radical-generating toxin, alloxan (AL). Alloxan, a glucose 
analogue, gains entrance into the β cell via the glucose transporter 2 (GLUT2) and 
spontaneously decomposes (20), generating superoxide radicals and H2O2 in the presence 
of an iron catalyst (21, 22). Reactive oxygen species (ROS), produced by AL, mediate β 
cell necrosis and a permanent insulin-dependent diabetes mellitus syndrome. ALR is 
closely related to the TlD-susceptible NOD, and maintains remarkable resistance to 
chemical and cell-mediated β cell destruction. This resistance entails a systemic ability to 
dissipate free radicals that extends to the level of the pancreatic islet. Alloxan resistant 
islets express high levels of antioxidant enzymes, including glutathione peroxidase 
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(GPX) and glutathione reductase. These two enzymes are not normally expressed in 
islets. Free-radical production by ALR islets compared to controls (NOD and C3H) was 
determined by incubating islets for 5 d in IL-1β (30 U/ml), IFNγ (1000 U/ml), and TNFα 
(1000 U/ml). Whereas control islets showed significant decreases in viability and insulin 
content, and almost a complete depletion of reduced glutathione (GSH), ALR islets 
showed no loss in viability or insulin content, although GSH was reduced, suggesting that 
ALR islets are not unreactive to the effects of cytokines. Control islets produced H2O2 
and NO, and had two- to fourfold increases in nitrotyrosine (NT). In contrast, these 
radicals were not elevated in ALR islets, although basal levels of nitrite and H2O2 were 
similar. As basal levels of NTwere approximately 100-fold less in ALR, ALR must 
efficiently denitrosylate, a process catalyzed by GSH and GPX, two antioxidants that are 
significantly elevated in ALR islets. 

The ALR genome confers systemically elevated free radical defenses, dominantly 
protecting their pancreatic islets from free radical-generating toxins, cytotoxic cytokines, 
as well as diabetogenic Tcells (23–25). To establish the genetic basis for the unusually 
strong resistance of ALR islet cells to immune-mediated destruction, TlDM-free 
(NOD×ALR) F1 females were backcrossed to NOD males (BC1) (26). BC1 progeny 
females were monitored for T1DM and genetic linkage analysis was performed on all 
progeny. Back-cross mapping identified three genetic loci conferring T1DM resistance to 
the ALR strain. The loci were identified on Chr. 17, 8, and 3. To detect epistatic 
interactions, simultaneous genome scans for all pairs of markers were implemented (27, 
28). The genome scan searched through all pairs of loci by fitting a two-way ANOVA 
model with an interaction item. The pairwise genome scan calculated a significant 
interaction between the Chr. 8 and Chr. 17 loci. Further, to identify possible contributions 
from the mtDNA, we performed reciprocal outcrosses between ALR and NOD, and the 
F1 progeny were backcrossed to NOD. A fourfold lower frequency of spontaneous T1D 
development occurred when ALR contributed the mitochondrial genome (29). Because of 
the apparent interaction between nuclear and mitochondrial (mt) genomes, a mouse strain 
survey was performed and the mitochondrial genomes of 14 strains were sequenced. An 
ALR-specific novel variant in the mt-Nd2 gene, producing a nonconservative leucine to 
methionine substitution at amino acid residue 276 in the NADH dehydrogenase 2 subunit 
(mt-Nd2), was discovered. 

The genetic analysis in these crosses was complicated by the fact that ALR and NOD 
share genetic identity at approximately 70% of the 1000 simple sequence repeat markers 
(SSRM) we have typed. While ALR and NOD do share important diabetes susceptibility 
genes on Chr. 17, most of the chromosome is rife with informative markers. The high 
level of polymorphisms allowed the mapping of a very narrow interval (2.7 Mb) on Chr. 
17, spanning from D17Mit61 to the gene for MHC Class 1, H2-K. Unfortunately, this 
level of genetic disparity was not present on Chr. 3 and 8. In fact, the level of 
polymorphisms was 16 and 10%, respectively, creating long distances between markers 
on both chromosomes. Therefore, in the statistical analysis, the 95 % confidence intervals 
for the linkages on these two chromosomes are quite large, 30 cM (between 20–50 cM on 
Chr. 3) and 19 cM (spanning from 36–55 cM on Chr. 8) (26), which has created 
difficulties in shortening these two intervals. 

In order to identify the ALR-derived protective genes, reciprocal congenic mouse lines 
for all four loci are being generated. These eight lines should allow us to confirm the 
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genetic linkage analysis and also better understand the genetic protective phenotypes 
provided by each locus. Historically, the positional cloning of susceptibility genes in the 
NOD mouse has been difficult due to a phenotype (diabetes onset) that can be controlled 
by many variables (30). The unique phenotypes of the ALR have allowed us to utilize 
more stringent tests for diabetes protection. We have also employed surrogate tests to aid 
in the determination of genetic responsibilities for T1D protection for each locus.The 
determination of the protective responsibility should support narrowing the candidate 
genes in individual loci. 

Combined analysis of surrogate phenotypes comparing the congenic lines to the 
parental strains has allowed for us to determine preliminary protective responsibilities for 
the three nuclear loci. Analysis of the NOD.ALRcl7 congenic mice has shown that the β 
cells from these mice are resistant to killing by T cells by in vivo and in vitro assays (31). 
We have assessed that resistance of the pancreatic islets of ALR to cytokine-induced 
death and dysfunction is controlled by the locus on Chr. 8 (32). As stated previously, an 
epistatic interaction was found between the Chr. 17 and Chr. 8 linkages, and it is 
interesting to point out that proinflammatory cytokines prime the β cells for Tcell killing. 
Therefore, this synergism for may be a critical link in protection from immune-mediated 
β cell loss in T1D. Further, we have also determined that the region on Chr. 3 linked to 
diabetes protection controls, in part, the upregulated free radical defenses, specifically the 
ability to dissipate superoxide through an increase in the activity of the enzyme 
superoxide dismutase 1 (SOD1). The locus has been given the symbol Susp (Suppressor 
of superoxide production) (33). 

To determine whether overt differences in the islet protein profile could be detected 
comparing ALR and NOD strains, we have used the Amersham Ettan DIGE System for 
analysis of proteins run on 2-D gels. In classical analysis of a proteome in different states, 
the comparison of a 2-D protein pattern from one gel is compared to the pattern of a 
second (or more) gel. A common problem with this sort of analysis is the variations that 
can exist between 2-D gels. To combat this predicament, the 2-D gel system was 
modified, giving rise to the technique commonly referred to as difference gel 
electrophoresis (DIGE) (34). Difference gel electrophoresis technology allows for the 
separation of two distinct protein samples on one acrylamide gel, effectively eliminating 
the need to compare gels run at different times. Protein samples are derivatized by 
covalently labeling the samples with one of a mass and charge-matched set of fluorphores 
(typically Cy2, Cy3, or Cy5). The chemistry is such that the dyes undergo a nucleophilic 
substitution reaction with the lysine epsilon amine group of proteins. In our experiments, 
ALR islet protein was labeled with Cy3 and NOD with Cy5. Labeled islet protein 
samples were mixed and then subjected to isoelectric focusing in Immobiline Dry Strips 
(pI 3–10, 13 cm) for 80,000 Volt hours. The second dimension was run and the gels were 
then scanned using a Typhoon 9410 fluorescence laser scanner and the fluorescence 
intensities and image from the different channels were captured for analysis. A merging 
of the Cy3 and Cy5 channels allowed for comparison of each protein spot. A merge of 
the images showed multiple differences comparing the NOD and ALR samples. 
Differences in fluroscent intensities of each spot were analyzed using DeCyder 
Differential Analysis Software (Amersham). Areas showing differential protein 
composition were excised and processed for identification by MS. 
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Several proteins were identified. Two of these proteins are important signaling 
mediators of the IL-1 pathway. Beta cell death induced by cytokines is dependent upon 
activation of NF-�B downstream of the IL-1 Receptor (IL-1R) for the generation of 
iNOS. Through DIGE, we determined a lack of IKKβ and in ALR islets, an increase in 
the NK-kB inhibitor IkB (I kappa B). The role of IKK [inhibitor of kappa B kinase beta 
(Ikbkb)] is critical for the activation of NF-kB via the phosphorylation and degredation of 
the NF-kB inhibitory subunit IkB. Phosphorylation of IkB causes it to dissociate from the 
p50 and p65 subunits of NF-kB. The active heterodimer of NF-kB is then free to 
translocate to the nucleus and begin transcriptional activity. We have confirmed the 
DIGE analysis via western blot that shows the constitutive levels of IKKβ in ALR islet 
are very low compared to the level in islets of control strains (Fig. 3A). Correlating with 
this is the increased level of IkB in ALR islets compared to NOD islets (Fig. 3B). The 
suggestion from these results in untreated islets would be that the lack of IKKβ in ALR 
islets would inhibit IL-1R signaling through the inability to phosphorylate IkB, thereby 
activating NF-kB. This difference in ALR islets compared to controls would result in a 
break in the signaling pathway or at least a decrease in the velocity of signaling at the 
point where IkB is phosphorylated and NF-kB is activated. Our analysis after 48 hours of 
IL-1β treatment shows just this result (32). Exposure of control islets to  

 

FIGURE 3 Immunoblots of IKKβ and 
IkB in 48 hours. IL-1 βtreated (+) and 
untreated (−) ALR and NOD islets. (A) 
IKKβ is not present in untreated ALR 
islets. Levels of IKKβ were diminished 
with IL-1 βtreatment of NOD islets. 
(B) The constitutive level of IkB is 
elevated in ALR islets. 
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10 U/ml of IL-1β causes a decrease in the level of and IKKβ as well as elevation in IkB. 
In contrast, treatment of ALR islets with the same dose of IL-1 does not alter the levels of 
IKKs and further, IkB was decreased. Further, the incubation of control islets with IL-1 
led to the induction of iNOS and the production of nitric oxide (NO), yet ALR islets 
produced neither iNOS nor NO. 

The critical link between the IL-1R and iNOS is NF-kB. These results clearly lead us 
to hypothesize that NF-kB was not activated in ALR islets after incubation with IL-1 β 
Historically, to determine whether a transcription factor is activated, scientists have used 
Electrophoretic Mobility Shifts Assays (EMSA) to determine nuclear translocation of 
transcription factors that are constitutively present in an inactivated state in the 
cytoplasm. In accordance with National Institute of Health guidelines for reducing the 
use of animals in research, we have adopted methods that allow for a decrease in the 
number of animals used. The replacement of EMSA with immunofluorescence for the 
detection of activated transcription factors or cellular signaling components allows for a 
tenfold reduction in animals per experiment. This is due to the small protein mass 
isolated from pancreatic islets and the number of mice needed for EMSA versus the new 
methodology. A time course for proinflammatory, cytokine-induced translocation was 
performed using isolated pancreatic islets. Pancreatic islets isolated by standard 
methodology (35) were subjected to media containing cytokines of control media at 37°C 
in an atmosphere containing 5% CO2 for a maximum of 24 hours. After the incubation 
period, islets were washed free of media and fixed with 2% paraformaldehyde for 15 min 
and embedded in a mixture of Affi-Gel Blue Gel (BioRad) and HistoGel (Richard Allen 
Scientific). After refrigeration for 15min, samples were fixed again in 2% 
paraformaldehyde for 15 min, incubated in 30% sucrose overnight, frozen in liquid 
nitrogen and stored at −80. Sections for each time point were cut and the nuclei were 
stained with cytox green and a Phycoerythrin (PE)-labeled monoclonal antibody, specific 
for the p65 subunit of NF-kB. As shown in panels A and C of Fig. 4, in untreated islets, 
NF-kB is sequestered in the cytoplasm. Treatment of islets isolated from NOD mice with 
cytokines clearly induced a translocation of NF-kB into the nucleus (Fig. 4B), as 
indicated by the yellow nuclei in the overlay. In accord with our hypothesis, the cytokines 
did not induce translocation of p65 into the nucleus of ALR islets, clearly demonstrating 
that the NF-kB pathway is blunted in ALR islets. In fact, at all time points assayed, in the 
ALR islet, no translocation was extant. The fact that NF-kB does not translocate to the 
nucleus in cytokine-treated ALR islets proves that resistance of ALR islets to 
proinflammatory cytokines is mediated through the lack of IKKβ.  
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FIGURE 4 Immunofluorescent 
detection of NF-kB nuclear 
translocation NOD and ALR islets. 
Isolated pancreatic islets were treated 
with 1000 U TNFα, 1000 U IFNγ, and 
30 U IL-1 β (NOD 4A and ALR 4C) or 
left untreated (NOD 4B and ALR 4D) 
at 37°C in 5% CO2 for 16 hours. At the 
end of the incubation period, islets 
were fixed and embedded in HistoGel 
(Richard Allen Scientific) and frozen 
in liquid nitrogen. Frozen gel plugs 
containing islets were cut, mounted on 
slides, and stained with Sytox green 
and a PE-conjugated monoclonal 
antibody specific for the p65 subunit of 
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NF-kB. Sytox green labels the nucleus 
green and the PE-p65 NF-kB antibody 
labels NF-kB in red. A yellow nucleus 
denotes the translocation of NF-kB. In 
panels A (untreated NOD) and C 
(untreated ALR), the p65 NF-kB is 
sequestered in the cytoplasm. 
Treatment of NOD islets results in the 
translocation of p65 NF-kB into the 
nucleus and is demonstrated by the 
yellow nucleus on the merged image 
(B). In contrast, in ALR, islets do not 
exhibit nuclear translocation upon 
cytokine treatment (D). 

The determination that the NF-kB signaling pathway intermediate IKKβ is present at very 
low levels in ALR islets compared to controls has aided our search for the candidate 
genes that provide protection of ALR islets to diabetogenic effectors. IKKβ maps to Chr. 
8 and inside of the 95% confidence interval generated by the genetic analysis of the first 
backcross. Real Rime PCR analysis for the IKKβ transcript has revealed that the ALR 
islets express significantly less IKKβ compared to cDNA prepared from BALB/c, 
C3H/HeJC57BL/6, or NOD islets. Whereas IKKβ showed diiferent expression in ALR, 
the level of IkB transcript in ALR islets was equal to control islets. We are currently 
examining the promoter of the IKKβ gene to determine if mutations exist in ALR that 
might be the cause of the reduction in expression. 
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Coupling proteomic technology to our genetic analysis has allowed for the rapid 
identification of IKKβ as a candidate gene. The application of DIGE, while expensive, 
can provide important results if the reagents exist to confirm the findings. Although these 
methods can be a powerful tool, the use of DIGE may not be appropriate in every model 
system. As is the case with the ALR-derived locus on Chr. 3, we have applied a different 
proteomics tool to aid in the identification of the mechanism of protection.  
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The clear elevation in SOD1 activity in the ALR mouse compared to controls lead us to 
initially examine the levels of SOD1 via western blot and via gene expression via 
Quantitative-Real Time-PCR (Q-RT-PCR) analysis (24, 25). When compared to other 
antioxidant enzymes, such as Thioredoxin, Glutathione Reductase, or Glutathione 
Peroxidase, which are all expressed at elevated levels in ALR, SOD1 expression was 
identical compared to controls (32). Western blot analysis also revealed no difference in 
the level of SOD1 protein. Therefore, the increase in SOD1 activity in ALR tissues is not 
due to mechanisms involving elevated transcription or translation. A possible reason for 
the striking SOD1 activity difference between ALR and ALS could be a mutation or 
variation in the Sod1 gene, leading to a difference in the primary amino acid sequence. 
Yet, sequencing of Sod1 cDNA showed that there were no differences in the primary 
sequence. A result came from the examination of liver homogenate from ALR and 
controls via cellulose acetate gels. On these gels, it was clear that the Sod1 of ALR ran 
slower than expected and seemed to be a novel allele. Thus, this difference in mobility of  
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Sod1 from ALR was hypothesized to be the result of posttranslational modification 
(PTM), either enzymatic or nonenzymatic, between ALR and control strains tested, and 
further, the dominant isoform in ALR confers a higher enzymatic activity (36, 37). 

Currently, very little work has been done to characterize the SOD1 isoforms extant in 
mice. This knowledge is based on work in avian species and from human samples. To 
preliminarily determine whether the modification(s) to the SOD1 of ALR resulted in a 
change in pI, we performed nondenaturing isoelectric focusing on liver homogenates 
from ALR versus controls. Analysis of mobility on immobilized pH gradient gel strips 
(pH 4–7) showed that there was no difference in the pI of the ALR variant. We also 
examined the pI of SOD1 from samples that had been reduced by incubation with 1mM 
dithiothreitol (DTT) for 2 hr at 37°. These samples underwent isoelectric focusing for 
80,000 Volt hours and were developed via activity assay. Under reducing conditions, 
SOD1 from ALR maintained activity, albeit at a reduced level, compared to a complete 
abolition of activity in the controls. These data suggest that the modification of SOD1 of 
ALR does not alter the charge of the molecule, but does have a profound effect on 
activity, even under conditions that ablate activity in wild-type SOD. 

A single gene can give rise to a large number of protein products, through the 
combination of alternative splicing and varying possible modifications. Therefore, a 
specific species may exist as only a small fraction of the total amount of the gene 
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product. A critical consideration in the characterization of PTM is the need for as large an 
amount of the specific protein as possible (38). Further, purification of the protein will 
aid in reducing the background and will allow a direct analysis of PTM on small proteins. 
Protein isolation can be performed by many methods; the two we used most often are 
column purification or immunoprecipitation. When a protein has been purified, the size 
and predicted number of isoforms should determine the methodology followed. In 
instances where there are a limited number of gene products and the protein is less than 
100 kDa, the precise molecular weight of the intact purified fraction can be measured via 
MS. 

For determination of the modifications on ALR SOD1, we have purified SOD1 via 
immunoprecipitation with an SOD1-specific antibody conjugated to agarose. The 
precipitated SOD1 and antibody were then digested with trypsin and prepared for 
examination in a quadrupole mass spectrometer (Q-ToF). Currently, our group is using a 
recently acquired ThermoFinnigan ProteomeX, MDLC nanoESI Ion Trap with a 
quadrupole/ octapole ion guidance system at the front end to focus the ions into the ion 
trap. A Q-ToF consists of four parallel rods oriented like the four poles on a compass. 
The north-south pair has a radio frequency (rf) and direct current (dc) voltage of one 
polarity and the east-west pair has rf and dc voltages of opposite polarity. Hexapoles and 
octapoles are similar, but have six and eight rods, respectively. They are used as collision 
and/or storage cells. In tandem mass spectrometers such as triple quadrupoles or Q-Tofs, 
the quadrupole functions as either a mass spectrometer or in an ion transmission mode. 
To acquire MS spectra, the quadrupole is operated in the so-called rf mode, in which it 
acts to transmit the ions from the ion source to the third quadrupole or the TOF where the 
spectrum is recorded. In daughter ion/product ion MS/MS mode, the quadrupole is used 
in a static mode to select a particular ion for CAD (collision-activated dissociation). The 
resulting MS spectrum can be used to determine a partial amino acid sequence of a 
peptide. In parent ion/precursor ion MS/MS, and neutral loss MS/MS, the quadrupole is 
scanned in a particular relationship to the third quadrupole or the TOF. These two types 
of scans may both be used to detect the type and position of a modification.  

3. SUMMARY 

In this chapter, we have shown that proteomic technologies can be used to detail the 
effects of extracellular stimuli. During the life cycle of the B. burgdorferi environmental 
cues including pH changes can have a profound effect on gene expression and the 
resulting protein profile. Clearly, pH changes that mimic movement from the tick midgut 
(pH~8.2) to the tick salivary gland (pH~9.5) and the salivary gland to host (pH~6.2) 
involve protein changes that are critical for adaptation, infection, and persistence. The 
Borrelia genome encodes approximately 1400 genes, and the possible number of protein 
species has been estimated to be <4000. Whereas this is considerably less when 
compared to both the number of genes and protein species in mammals, nonetheless it 
provides an excellent model system to understand whole-proteome changes. Borrelia 
provides an excellent system for testing hypotheses and developing new technologies 
such as isotope-coded affinity tag (ICAT) (39), tandem-affinity purification (TAP) (40), 
and multidimensional protein identification technology (MudPIT) (41). Further, 
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combining these techniques with cell fractionation, improved detergents, and more 
sensitive MS technology will likely shift the equilibrium for identifying differences in 
favor of the investigator. 

Inherent technical roadblocks of mammalian systems via the complexities of the 
genome size and presence of numerous protein species as well as genetic variation 
present in populations force the development of an experimental design to minimize the 
possible interpretations of results obtained. We have tailored our proteomic experiments 
based on the phenotypes of our mouse models (23, 25, 42, 43), the genetic analyses that 
have identified and positioned loci protective fromTlDM (25, 26, 33), and expertise in 
specific proteomic techniques (14, 15, 44). Clearly, use of DIGE has accelerated our 
results and has successfully identified a valid candidate gene for T1DM protection on 
Chr. 8. Further, the pursuit of the PMT in the SOD1 of ALR that has increased both the 
stability and activity of the protein species would not be possible without technologies 
such as MALDI-ToF, SELDI-ToF, or Q-Tof with CID. 
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1. INTRODUCTION 

Sequencing of the human genome is a critically important advance in medicine. 
However, the genome of a person is largely static. The effects of infection, trauma, stress, 
or poor diet do not appear in the genome. The proteome is the set of all proteins actually 
present in a cell or tissue at a given time. The proteome includes all the posttranslational 
modifications present in mature proteins, which are often required for the proteins to 
perform their functions. These modifications also record the effects on proteins of the cell 
or tissue interacting with its environment. Analysis of the proteome—or proteomics—
should provide evidence of pathology and suggest target proteins for drug or nutritional 
therapy (1). 

Circulating leukocytes (or peripheral blood mononuclear cells) are not the cell type 
most often used for nutritional research, yet they have advantages for studying 
proteomes. Circulating leukocytes are easy to obtain in large numbers from both normal 
controls and people with diseases. Furthermore, these cells are nucleated cells, with 
normal, active metabolic pathways and receptors (such as glucose, lipid, cytokine, and 
insulin receptors) that make them useful for nutritional research. 

Although many promising gel-free approaches to proteome characterization and 
comparative analysis are being developed, 2-D gel electrophoresis (2) remains the most 
used method. In this method, proteins are first separated according to their isoelectric 
points (pI), and then in the second dimension according to their molecular weights. The 
resulting two-dimensional array of protein spots are then visualized by staining. In 
comparative studies, the intensities of matched spots in gels from different samples (e.g., 
control vs. treated) are used to evaluate any possible differential expression of individual 
proteins. The identity of the protein in a spot of interest can then be determined by mass 
spectrometry (3). 

2-D gel technology has the following advantages compared to nongel approaches: (1) 
highly complex mixtures like whole-cell homogenates can be studied with a minimum of 
sample preparation (and associated artifacts and protein loss), (2) mixtures with total 
protein content from several milligrams to less than a microgram can be studied, (3) 2-D 
gels produce sample fractionation with high resolution compared to most other protein 
separation procedures, and thereby allow detection of small changes associated with 
posttranslational modifications, (4) the individual steps in a 2-D gel proteome analysis 
can be separated in time and space, allowing flexibility in performing the work, (5) gels 



are efficient fraction collectors and sample-storage devices that can keep thousands of 
separated proteins stored indefinitely on a single page (gel) in a notebook, (6) a simple 
visual inspection can immediately reveal problems in quality or reproducibility of the 
sample fractionation process, although in many cases, proteome characterization can 
proceed in spite of slight distortions in separation, and (7) the methodology and 
equipment is relatively simple and inexpensive, allowing individual investigators to plan, 
conduct, and finance studies on their regular individual research grants (as long as 2-D 
gel maps or spot identification services by mass spectrometry are available). 

The normal in vivo physiological state of leukocytes is one of floating in liquid 
suspension. This means that they can be kept in tissue culture under nearly normal 
physiological conditions. In addition, isolation of leukocytes does not involve harsh 
manipulations that may damage function or alter the molecular state of cells. 

The ability to culture the leukocyte sample is a great advantage for comparative 
proteomics studies. The most sensitive visualization methods for proteins in 2-D gels are 
based on radioactive labeling of the proteins. By culturing cells in media containing 
isotope-labeled amino acids (usually 35S) with high specific activity, it is possible to 
visualize protein spots with a sensitivity several orders of magnitude higher than the most 
sensitive protein stains. Alternatively, the use of radioactive phosphate can be used to 
specifically label phosphorylated proteins, again with an unsurpassed level of sensitivity. 
Isotope labeling can be combined with pulse-chase approaches to study turnover rates of 
proteins, and to determine if the change in overall concentration of a protein is due to 
increased synthesis or decreased degradation.  

By combining radioisotope labeling (4) with cutting edge mass spectrometry (5), it is 
in theory possible to study proteins expressed at as few as 10 copies per cell using cells 
from <1 ml of blood (see Table 1). 

When using blood leukocytes, the main obstacle to studying proteins expressed at as 
few as 10 copies per cell is not obtaining sufficient sample nor is it the sensitivity of 
protein visualization and mass spectrometry identification methods. The problem is our 
inability to simultaneously study proteins whose expression levels differ by a factor of 
>105 (6). In 2-D gels of cell homogenates, this problem rears up in the neighborhood of a 
highabundance protein like actin. With general protein staining methods, actin covers a 
fairly large area of the gel around pI 5.5 and mass 55,000 Daltons, yet it is clear that a 
number of other proteins must also be present in that particular area of the gel. Indeed, if 
the gel is stained using a phosphoprotein stain (which does not stain actin because that 
protein is not phosphorylated), a number of spots appear that are not visible using a 
general protein stain (see Fig. 1, upper-right corner). Thus, the high-abundance proteins 
may mask and impede the study of less abundant proteins. 

Therefore, the main challenge of studying the estimated 50,000 different protein types 
in a tissue (including posttranslationally modified versions of the same protein) is the 
separation of high-abundance proteins from low-abundance proteins to allow quantitative 
study of the latter. In 2-D  
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TABLE 1 Number of Human Mononuclear Cells 
Needed to Detect Mediumto Low-Abundance 
Proteins.* 

Sensitivity 1,000 Copies/cell 100 Copies/cell 10 Copies/cell 

10 femtomole (10×10−15) 
(using protein stains and 
current standard MS) 

6×106 cells 
Mononuclear cells 
from 1ml of blood 

60×106 cells 
Mononuclear cells 
from 10 ml of blood 

600×106 cells 
Mononuclear cells 
from 100 ml of blood 

10 attomole (10×10−18) 
(using isotope labeling 
and cutting edge MS) 

6×103 cells 
Mononuclear cells 
from 1 µl of blood 

60×103 cells 
Mononuclear cells 
from 10 µl of blood 

600×103 cells 
Mononuclear cells 
from 100 µl of blood 

*Numbers are based on a theoretical calculation of how many molecules are in a mole and presume 
100% recovery and use in the detection signal. 

 

FIGURE 1 Section of a 2-D gel of 
mouse leukocyte proteins. The large 
spot in the upper-right corner is actin. 
The gel was sequentially stained by a 
phosphoprotein fluorescent stain (Pro-
Q-Diamond, Molecular Probes) and 
SYPRO ruby fluorescent (general 
protein) stain. (a) The result of the 
SYPRO ruby image scan. (b) The 
result of the phosphoprotein image 
scan. The rectangles indicate some of 
the proteins that stain substantially 
stronger with general (SYPRO ruby) 

Genomics and proteomics in nutrition     316



protein stain. The ovals indicate some 
of the proteins that stain substantially 
weaker with general protein stain. 
These results illustrate the power and 
advantages of using multiple stains on 
the same gel. 

gel proteome studies, the two main strategies for dealing with this problem are: (1) 
sample preseparation and (2) the use of high-resolution gels (so-called zoom gels that 
expand a narrow range of pI). For studies of proteins expressed at lower levels, sample 
protein preseparation allows the loading of proteins from a large enough sample to study 
less abundant proteins without overloading the gel with abundant proteins. Although the 
600 million mononuclear cells from 100ml of blood would, in theory, allow studies of 
protein that existed at the 10 copies/cell level (see Table 1), we routinely apply proteins 
from only 10–20 million cells, and we would not recommend loading regular gels with 
proteins from much more than that number of cells to avoid problems with gel 
overloading. Yet, if we could enrich a sample by a factor of 60 and remove interfering 
high-abundance proteins, current methodology/technology would allow us to study 
proteins expressed at the 10 copies/cell level. 

2. EXPERIMENTAL DESIGN 

An essential consideration in planning the overall proteomic experiment, and in deciding 
which samples should be chosen for analysis, is statistics. Inherent biological variability 
and the vicissitudes of complex experimentation require that an investigator recognize the 
importance of good statistics. To have confidence in the results of a proteomics study, 
there should be at least N=3 to 5 independent experiments, not just multiple gels from the 
same experiment. Statistical significance is, or course, the minimum requirement. One 
must consider carefully whether a statistically significant difference is biologically 
meaningful. On the other hand, a result cannot be biologically meaningful if the 
difference is not statistically significant. (Like roulette, science is stacked against the 
player.) 

Because there are many proteins under study, one must use analysis of variance and 
post hoc tests to determine the significance of differences in the abundance of individual 
proteins. It is invalid to use multiple t-tests, for example, because with multiple t-tests, 
one in 20 differences will appear significant by chance alone, if P is set at 0.05. We also 
recommend that the investigator extract the numerical results from the gel analysis 
program output and run independent statistics. The gel analysis programs are probably 
accurate, but the programs move too fast for the human eye and brain to follow. It is 
important for the investigator to look carefully at the data and make judgments about the 
validity of the analysis and conclusions. As with other discovery approaches to gaining 
molecular insights, major conclusions cannot be drawn from a single experiment. It is 
much better to have several experimental indicators supporting a conclusion, preferably 
from independently obtained samples and different experimental methods. 
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We have suggestions for the overall experimental design. Do not attempt to study too 
large a biological change by proteomics, or there will be too many protein changes to 
rationalize. Consider the following: 

1. Comparing healthy liver to necrotic liver would be pointless. 
2. Comparing healthy liver to cirrhotic liver would be difficult, because it would be hard 

to decide which changes represented a cause of cirrhosis, and which changes are 
central effects, and which are tangential. 

3. On the other hand, comparing liver from an animal fed alcohol for two weeks with a 
control liver may show something interesting about the early changes that ultimately 
damage the liver. 

Be aware that proteins with molecular weight (MW) <10,000 Da will not separate on 
standard 2-D gels, but will run with the dye front. So, if you want to study peptide 
hormones or chemokines, for example, you will have to modify the gels or use another 
proteomics technique. 

Do not attempt too many different types of sample in a given 2-D gel experiment. 
Four or fewer is good; lengthy time courses or scores of drugs are impractical. A good 
experiment with statistical validity needs multiple replicates of each sample. Current 
high-capacity, 2-D gel instruments are designed to run a maximum of 12 gels at a time. It 
has been our experience that each run has its own characteristics, and that it is much 
easier to compare gel images from within the same run than from different runs. There is 
a practical limit to the number of gels that can be compared in a computer analysis. 
Twelve appears to be the practical limit, despite what is claimed by some software 
makers. Twenty-four may be possible with the latest versions of software and a fanatic 
computer operator. There is a practical limit to the number of gels that a human can 
examine carefully, and ensure that the spots are matched, and that the bubbles and other 
artifacts are corrected. Headaches and personality disorders can result from too many 
hours of spot analysis. There is also a practical limit to the number of samples and gels 
that a human can comprehend and think about critically. So, it is important to think 
through the experiment carefully, and to keep it simple, preferably to a maximum of 12 
samples. 

3. SAMPLE PREPARATION 

When considering which samples to submit to proteomic analysis, it is important to make 
sure that the underlying biological experiment is good. 2-D gel proteomics is labor-
intensive and expensive, and should not be wasted on dubious experimental samples. 
Atypical 2-D gel experiment takes a month and costs at least $1000. There should be 
assays to prove that the cells showed “activation” or “differentiation” in culture, or that 
the drug worked. Or there should be good histology to show that the dissection was clean, 
and that the samples are truly comparable. 

Leukocytes are sensitive to becoming activated by mitogens and bacterial products, 
and this activation will induce substantial changes in the proteome. To avoid problems 
with inadvertent activation, one must either take steps to avoid contamination, or take 
steps to ensure a normalization of such contamination to equal levels in all samples. 
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Impure water is the most likely source of contamination, and we recommend the use of 
bottled water from the pharmacy. Indeed, the changes in the monocyte proteome after 
exposure to bacterial lipopolysaccaride (LPS) have been a focus of a research program of 
author Michael Pabst (7). 

If cells are placed in tissue culture, LPS contamination is not the only concern 
regarding culture medium preparation. The choice of culture medium and supplements 
may drastically influence the function of cells and therefore their expressed proteome. 
Traditionally, a complete medium such as RPMI 1640 has been popular for long-term 
cultures of leukocytes. Yet simpler media such as DMEM or EMEM has also been 
successfully used for studies of cultured leukocytes. Indeed, our studies of monocyte 
activation by LPS were conducted in a modified Earle’s balanced salt solution without 
any serum supplementation (7). Although the use of as much as 10% fetal bovine serum 
supplementation of culture medium has been used to enrich culture medium, we 
recommend the least possible use of serum. The serum proteins may stick to the cells and 
become a substantial contaminant in the cell proteome studied. If the biological effect of 
interest does not show up in serum-free media, we suggest use of a low % serum and/or 
serum-free supplements such as insulin/transferrin/selenium. 

Even when working with single-cell suspensions, the release and solubilization of 
proteins from the sample is not a trivial question. When cells are dissolved directly in 
first-dimension electrophoresis buffer, a precipitate of material can be seen after 
centrifugation. Such undissolved material is not observed if the cells are extracted using a 
tri-reagent such as TRIzol® (Invitrogen). The tri-reagent extracts DNA, RNA, and 
proteins into separate fractions that can be used for further study. Indeed, in many of our 
studies, we are interested in characterizing both the transcriptome (the mRNA) and the 
proteome from the same sample in a process we call “molecular phenotyping.” The use 
of a tri-reagent to extract proteins from cells overcomes the problem of undissolved 
material, and has allowed us to recover 30–40% more protein from the cell sample than if 
the cells are dissolved directly into electrophoresis buffer. 

Although as many as 10,000 proteins can be separated in specialized, large-format 
gels (8), most 2-D gel studies on unfractionated samples only study the 1000–2000 most 
abundant proteins. The technical challenges of large-format, high-resolution gels are 
often too high to warrant the effort. Similar consideration should be given to the issue of 
fractionating the sample before 2-D gel studies (9). Although this preseparation will 
allow the study of less abundant proteins, it may also produce technical challenges and 
isolation artifacts whose solution may require considerable effort. An individual 
judgment must be made about how important it is to dig deep into the proteome of a 
given sample in a given project. 

Fractionating the sample can be done at either the cellular or the protein level. 
Standard methods for isolating membranes, organelles, nuclear fractions, etc. can help 
focus proteome characterization to a specific subcellular component of interest, and gain 
higher resolution of proteome characterization of that component (10). Membrane 
proteins are difficult to analyze, mostly due to issues of solubility, so modified protocols 
are highly recommended for that particular subcellular fraction (11). If proteomes of 
several subcellular compartments are characterized, it is possible to gain information 
about changes in intracellular location of individual proteins that cannot be gained from 
whole-cell proteome studies.  
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Protein fractionation can also be done using traditional biochemical methods. Usually, 
there is little gain in sensitivity by separating according to the same or similar 
biochemical parameters as those by which proteins are separated in 2-D gel 
electrophoresis. A number of different affinity separation methods can be used to either 
fractionate the proteome of a sample or to specifically remove certain abundant proteins 
like albumin or actin. Subproteomes can also be created based on protein solubility 
(12,13). A number of commercial kits and matrixes are available, and new products are 
introduced constantly. 

Gels can hold several milligrams of protein, but gels are sensitive to excess salts, 
which can be a problem with cultured cells. If salt levels vary among samples, the gels 
will not run alike. The solution to such problems can be to use tri-reagent or acetone 
precipitation to concentrate proteins and remove salts. If samples are put directly into the 
first dimension buffer, be sure to centrifuge the samples before starting, to minimize 
problems associated with DNA and connective tissue. 

During sample preparation and throughout the proteomic experiment, wear vinyl 
gloves and a hairnet to avoid keratin contamination. A mask to prevent sample 
contamination by breath-borne materials is also useful. This is critical in preparing 
samples, especially up to the point of running the first dimension. After that point, 
contaminants will add to background, but will not form spots. However, a general 
background contamination with keratin may ensure that all protein spots are identified as 
keratin by mass spectrometry. We confess to having samples in which mass spectrometry 
showed about a dozen forms of keratin, in addition to the protein of interest. 

4. GEL ELECTROPHORESIS 

The use of immobilized pH gradient strips has improved both inter- and intralaboratory 
reproducibility of 2-D gel electrophoresis (14). These precast first-dimension strips have 
been a critical improvement for 2-D gel proteomics; they are available from Bio-Rad and 
from Amersham Bio-sciences. For the first-dimension electrophoresis, it is possible to 
either: (1) use a strip and buffer that cover a large pI range such as pH 3–10 (linear or 
nonlinear gradient), or (2) spread the proteins out more in the first dimension by using a 
more narrow range (zoom gels) that covers only one or a few units of pI (15). The 
advantage of gaining better protein separation comes at the cost of having to run and 
analyze more gels, or studying a smaller range of the pI scale. Furthermore, if the choice 
is to run multiple, narrow-range gels rather than one broad pI-range gel, this will usually 
consume more sample. For first-dimension separation, a dry pI gradient strip is 
rehydrated in the dissolved sample and then focusing is performed. New integrated 
systems simplify this procedure by performing rehydration and focusing in one step (16). 

In the second dimension, which is usually SDS-PAGE gel electrophoresis, proteins are 
separated according to molecular weight. The choices here are between gradient or 
homogeneous gels and choosing the percentage of acrylamide to use. Precast, plastic-
backed gels are commercially available, but can be expensive. The plastic backing can be 
particularly helpful for handling low-percentage gels that otherwise have a tendency to 
break during fixing and staining. Manipulation of the percentage of acrylamide in the gels 
can help increase separation within a specific molecular weight range at the expense of 
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separation in another range. With standard gels using 12–13% acrylamide/bisacrylamide, 
the separation in the lower MW range may be unnecessarily high and separation in the 
higher MW range may be less than desired. Use of low-percentage gels or gradient gels 
can help with this problem, but at the cost of being more technically challenging to 
produce and handle. An alternative is to use a homogeneous 12 or 13% gel, but to let it 
run for one or more hours past the time that the dye line exits the bottom of the gel. 
Although the lowest molecular weight (<15,000 Da) proteins are lost by this approach, 
those proteins usually do not yield good and reproducible results in 2-D gel proteome 
studies anyway. The use of several different second-dimension gels for each sample is 
another possibility, provided that enough sample is available. 

5. STAINING PROCEDURES 

After proteins have been separated by 2-D gel electrophoresis, they must be visualized in 
a quantitative or semiquantitative way that allows judgment of relative expression levels 
between gels (17). As mentioned earlier, the ability to culture leukocytes allows for use 
of radioisotopes to metabolically label and visualize individual proteins. 35S-Methionine 
for general proteins and 33P-phosphate for phosphoproteins are most often used to label 
proteins (18). They are available at high specific activities, and their radiation is of low 
enough energy to produce small, well-defined spots in the image process. The main 
disadvantage of these labeling procedures is the need to work with fairly high levels of 
radioisotopes. Another potential disadvantage is that the isotopes in themselves may 
induce radiation artifacts (19). Furthermore, in most labs, the ability to visualize proteins 
by isotope labeling far outperforms the ability to identify faint spots by mass 
spectrometry. So although a larger number of protein spots may be visualized, few of the 
additional spots can be identified. Therefore, most labs prefer to use regular protein 
staining methods for visualization.  

The traditional protein-staining procedures for gels have been Coomassie blue stain 
and silver stain. Both provide a visible image that can be captured using a regular flat-bed 
computer scanner. Coomassie blue is not as sensitive as silver staining, but silver staining 
is more prone to overstaining artifacts that may interfere with the relative quantification. 
The initial problems of compatibility of silver staining with the mass spectrometry 
methods for protein identification have been solved by modifying the protocols for silver 
staining (20, 21). Colloidal Coomassie blue preparations—such as GelCode Blue (Pierce, 
Rockford, IL)—give nice uniform staining with low background (22), so that gels loaded 
with high amounts of protein give a good spot pattern. If abundant sample is available, 
such gels can be loaded with several mg of proteins, making it easier to identify spots by 
mass spectrometry. 

The new fluorescent protein stains such as SYPRO ruby (Molecular Probes, Eugene, 
OR) have several advantages relative to traditional staining procedures (23, 24). 
Although their sensitivity is not significantly different from that of silver stains, the 
dynamic range of these stains is much larger (>1000). As a result, losing the ability to 
conduct relative quantification is a much less frequent problem with the fluorescent 
stains. In our hands, the background staining of fluorescent stains is both less intense and 
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more uniform than that of silver stain. This allows for a more precise quantification of the 
more weakly stained spots in a gel. 

In addition to general protein stains, there are several stains that specifically stain 
subsets of the proteome. Many of the older glycoprotein stains or phosphoprotein stains 
have the disadvantage of being not very sensitive. Newer fluorescence-based 
glycoprotein and phosphoprotein stains appear to have higher sensitivity (25, 26). Indeed, 
in experiments using both phosphoprotein fluorescent stain (Pro-Q-Diamond, Molecular 
Probes) and SYPRO ruby fluorescent (general protein) stain, we found that certain 
protein spots appeared to stain more intensely with the phosphoprotein stain than with the 
SYPRO (general protein) stain (Fig. 1). 

In some cases, it may be advantageous to conduct several staining procedures on the 
same gel. In a recent multiplexed proteomics study, we conducted four sequential stains 
on one gel to gain the maximum information (unpublished data): First, phosphoprotein 
stain; then glycoprotein stain; followed by SYPRO ruby stain; and at the end, silver stain. 
This allowed a maximum collection of information from a single gel. Based on these 
stains, certain spots in the SYPRO-stained images could be assigned preliminary status as 
phosphoproteins and/or glycoproteins. Using both SYPRO ruby and silver general 
protein stains allows study of approximately 20–30% more protein spots, because each 
stain does uniquely stain some spots that are not visible with the other. It is important to 
always use the silver stain as the last stain in a staining sequence, because silver, for some 
unknown reason, appears to block the fluorescence-based stains. 

In an alternative approach to comparative proteomics in 2-D gels, two samples are 
stained before electrophoresis with two different fluorescent dyes (Cy dyes, Amersham 
Biosciences), and are then mixed and applied together to a 2-D gel (27, 28). The images 
from this differential in-gel electrophoresis (DIGE) are then captured at the two 
corresponding wavelengths. Because the proteins have been subjected to electrophoretic 
separation in the same gel, the images are a perfect match. An internal standard of a third 
color can be added to help normalize spot intensities between several of these multicolor 
gels. For simple comparison of two samples, this method has the advantage that image 
comparison is not complicated by different local distortions in different gels. If multiple 
sample sets are analyzed (e.g. five controls vs. five treated), several gels have to be run, 
and the issues of alignment of images from gels with their own individual distortions 
again become a complication. The use of an internal third-color standard sample added to 
all gels may help with such problems. Another problem is that either a low percentage of 
each protein is bound to the dye, limiting sensitivity; or a high percentage of each protein 
is bound to dye, causing chemical modification of the bulk of the protein, disturbing 
movement in the gel and complicating identification by mass spectrometry. 

6. IMAGE ANALYSIS 

At its best, 2-D gel electrophoresis can be used to judge the upregulation or 
downregulation of thousands of proteins in one set of samples vs. another set of samples. 
For this to work, the staining method must be at least semiquantitative for each protein 
spot evaluated, such that increased staining intensity is seen always and only when there 
is an increase in the protein content of that spot. The previously discussed issue of 
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dynamic range of the protein dye is important for that quantification to work. 
Furthermore, it is important that the images from all gels can be aligned such that it is 
known which spots are corresponding and which are different between all spots on all 
gels. With local gel distortions and differences in overall staining intensities of gels, it 
may become difficult for the computer to assign which spots are identical between 
several gels. An example of this problem is shown in Fig. 2, in which gels containing 
proteins from the islets of Langerhans from three different strains of mice are compared. 
In the upper-left corner of the gel, local distortions make it difficult to judge to what 
extent protein spots have moved in relative position, whether one spot has disappeared 
and another reappeared nearby. Another example is shown in Fig. 3, where staining 
intensities are similar, but a distortion in the second dimension of  

 

FIGURE 2 Section of silver-stained 2-
D gels of mouse islet of Langerhans 
proteins. Samples obtained from (a) 
four-week-old NOD, (b) NOD-scid, 
and (c) NON female mice (Jackson 
Laboratory, Bar Harbor Maine). Note 
the stronger overall stain of the gel 
with the NOD sample (a) relative to 
the other gels.The box encloses an area 
where the differences in staining 
intensity, combined with a local 
distortion of gel separation, make it 
difficult for the computer to determine 
which spots correspond to each other 
in the three gels. Some manual 
inspection and spot assignment is 
required in that area. 

these images of the leukocyte proteome from two different strains of mice at two 
different ages, makes spot assignment difficult for some spots. Ultimately, the identity of 
two protein spots from different gels may have to be proven by mass spectrometry, but 
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even that may not be enough. A slight change in posttranslational modification of a 
protein may change its position in a gel, and in reality, create what should be considered a 
new spot, yet the new spot and the old spot would be identified as identical with most 
mass spectrometry methods. It is in those situations that the DIGE approach has its 
greatest strength, because the spots in images from these gels will only separate if there is 
a real difference in their biochemical properties, not if there is a distortion in the gel. 

Although the human eye is adept at analyzing which spots correspond to each other on 
different gels, this task is remarkably difficult for a computer. Only recently have image 
analysis programs progressed to the point where they can align images without extensive 
input (landmarking) and correction by human evaluators. The problem is that many 
images are imperfect due to small and highly localized imperfections in the protein 
separation. The image analysis program will often either take these distortions at face 
value and consider them true differences (because the exact x, y coordinates differ), or be 
programmed to accept a certain misalignment, which then, in other parts of the gel, will 
lead to assignment of a match between two spots that are truly different. Ultimately, the 
most important differences should always be confirmed by a critical visual inspection of 
the gel images, and not just accepted from a bar graph produced by a computer.  

 

FIGURE 3 Section of silver-stained 2-
D gels of mouse leukocyte proteins. 
Samples were obtained from two-
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week-old (a, b) and four-week-old (C, 
D) female NOD (a, c), and NON (b, d) 
mice (Jackson Laboratory, Bar Harbor 
Maine). A distortion in the second 
dimension (b) has changed the relative 
distances between proteins in the top 
(ssp0211), middle (ssp0118), and 
bottom (ssp0111) of the image. This 
makes it more difficult for the 
computer to assign which spots in (b) 
correspond to which spot on the three 
other gels. But a visual inspection of 
the spot “constellations” Zcan solve 
the puzzle. 

The computer is superior to the human eye when it comes to the ability to evaluate the 
relative intensity of spots in gels, in particular if there are significant differences in 
overall staining intensities between gels (see Fig. 2). Most image analysis programs allow 
the normalization of spot intensity to the total intensity of all stained spots in the whole 
gel. This serves the purpose of compensating for overstaining or understaining of one gel 
relative to other gels, or for small differences in protein loading. Without such 
normalization, a large number of differential expression differences would be artifacts of 
differences in total protein loading on gels or the staining procedures. Silver staining is 
particularly difficult to control to the same overall intensity because it is not a saturation 
stain, but must be stopped based on an individual judgment of “enough” staining, and 
then the gel will often continue gaining some stain intensity after the stopping solution 
has been added. 

7. IDENTIFICATION OF DIFFERENTIALLY EXPRESSED 
PROTEINS 

Although there may be some satisfaction in observing a difference in intensity of a 
stained spot on a 2-D gel, the biological meaning and significance of such an observation 
cannot be gained without identification of the protein(s) in such differentially stained 
spots. The fastest way to identify a protein spot on a 2-D gel is to use a map published 
with the protein spots already identified by others (29–31). If the sample, sample 
preparation, electrophoresis conditions, and staining conditions are almost identical, the 
images are usually similar. One of the largest collections of 2-D gel maps and links to 
them can be found at www.expasy.ch. Yet even this database lacks many important 
tissues from many species, and often the descriptions of sample preparation, 
electrophoresis, and staining are sketchy at best. Furthermore, many published maps 
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contain a relatively small number of identified spots, making it less likely that all spots of 
interest can be identified simply by comparison to a 2-D gel map. 

Usually, it is necessary to identify the proteins in interesting spots by mass 
spectrometry (32). This is done by cutting the spot of interest out of the gel, and cleaving 
the protein or proteins into fragments by digestion with trypsin or another protease. The 
masses of the peptide fragments are then characterized using mass spectrometry. Two 
different approaches are usually used to identify the proteins that produced the peptide 
fragments. In peptide mass fingerprinting, the masses of all the peptides are determined 
with precision as high as possible. Information from gel position and mass spectrometry 
regarding pI and molecular weight (both intact protein and tryptic peptides) can be used 
to determine the identity of the protein(s) in the spot (33). Two of the most widely used 
protein databases for this identification are the NCBInr (nonredundant) database 
maintained by the National Center for Biotechnology Information, and the SWISSPROT 
database maintained by the University of Geneva and the European Bioinformatics 
Institute. Several search engines and other proteomics tools are available on the Internet 
(34), e.g., the Peptldent on the ExPASy site (www.expasy.ch) or MS-fit and MS-Tag at 
the Protein Prospector site (prospector.ucsf.edu). These sites also provide links to other 
databases, and allow scientists to access and process information in an efficient and 
integrated manner (35, 36). Several criteria are used to evaluate the database search 
output and judge the confidence of the protein identification by peptide mapping 
(keck.med.yale.edu/prochem/procmald.htm) (37). These criteria are: (1) the number of 
matching peptides and their deviation from the calculated mass, (2) the percentage of the 
protein’s sequence covered by the matching peptides, (3) the difference in number of 
matched peptides between each candidate protein, and (4) the agreement of the 
experimental (from position on the gel) and theoretical pI and MW of the protein. When 
more than one credible candidate protein is retrieved by the search, further investigation 
is conducted (e.g., obtaining sequence information on “key” peptides or digestion with a 
different enzyme). Peptides are selected for sequencing based on whether their amino 
acid sequence can help rule in or rule out the presence of one or more of the candidate 
proteins. 

The second approach to identify a protein in a spot via its peptide fragments is to use 
tandem mass spectrometry (MS/MS) to obtain amino acid sequence information on the 
peptides (38). In this approach, the peptide bonds between amino acids in the peptide are 
broken, and the masses of the resulting fragments determined. With information on the 
exact masses of the fragments corresponding to breaking each of the peptide bonds in the 
peptide, an analysis of the masses from the lowest to the highest mass from either end of 
the peptide will allow prediction of the amino acid sequence of the peptide. Each step 
from lowest to highest peptide mass will correspond to a mass increase of exactly the 
mass of the corresponding amino acid. If masses are determined with high enough 
accuracy, the only uncertainty left is that of leucine and isoleucine, because these two 
amino acids have identical mass. In real-world experiments, it is rare to obtain masses of 
all the fragments of a peptide. But incomplete information may still be enough to get 
partial amino acid sequences of peptides. A relatively short amino acid sequence is often 
enough to get an unequivocal identification of a protein. The combination of amino acid 
sequence and peptide fragment sizes provides a very powerful tool for identification of 
the protein or proteins in a spot on a gel. An example of a monocyte protein identified by 
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a combination of peptide mass fingerprinting and peptide sequencing by tandem mass 
spectrometry is shown in Fig. 4. 

Regardless of the method used to identify a protein, it should be remembered that the 
exact isoform and the degree of posttranslational modification of a given protein in a 
given spot often remain unclear. In most cases, the investigator does not know whether or 
where the protein is phosphorylated, glycosylated, etc. Sometimes it is not even possible 
to determine which of several alternative splicing variants of a protein is present in a 
specific spot (39). Although such information can be gained by  

 

FIGURE 4 Amino acid sequence of 
Macrophage Capping Protein. Tryptic 
peptides detected by peptide mass 
fingerprinting, using the MALDI-TOF 
mass spectrometer, are shown in 
italics. The identification of 
Macrophage Capping Protein was 
made by comparing the masses of the 
tryptic peptides with the theoretical 
masses of tryptic peptides from all 
known human proteins, using Pept-
ldent software and the Swiss-Prot 
database. Peptides sequenced by the 
Liquid Chromatography Electrospray 
Quadrupole Ion Trap mass 
spectrometer (LCQ) are shown in bold 
type. In this instrument, tryptic 
peptides were separated by liquid 
chromatography and sprayed into the 
mass spectrometer, where the masses 
of the various peptides were measured, 
and the ions of each peptide were 
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collected and fragmented by collision 
with helium gas.The masses of the ion 
fragments were measured for each 
peptide, and compared with theoretical 
masses of the fragments predicted 
from the sequences of tryptic peptides 
from all known human proteins, using 
Sequest software. Peptides identified 
in both instruments are shown in bold 
italics. The percentages of the total 
amino acid covered by the peptides 
detected by each method are shown. 
On 2-D gels, the spot containing 
Macrophage Capping Protein was 
increased 4.4-fold in monocytes 
exposed to bacterial lipopolysaccaride, 
making this protein spot interesting for 
understanding inflammation and 
resistanceto infection (7). 

mass spectrometric methods, those investigations may require substantial further effort. 

8. SUMMARY 

Blood leukocytes are among the easiest cellular biopsies to obtain in humans, and 
leukocytes can be harvested in large amounts. They are nucleated cells with many 
different types of relevant receptors and a normal metabolism. They are in their natural 
environment in liquid cell culture suspension, and can therefore provide physiologically 
relevant data in pulse-chase and radiolabeling experiments. Although these cells are often 
used by immunologists, investigators in other fields may find them useful due to the 
advantages mentioned earlier in the chapter.  

Although many interesting new gel-free approaches to proteome studies are being 
developed, the approach most often used to characterize and compare proteomes is 2-D 
gel electrophoresis. 2-D gels provide a relatively simple and cost-effective way to 
characterize and compare expression of over 1000 proteins, as well as detect some of 
their posttranslational modifications. Although 2-D gel proteome studies may take some 
learning, the instrumentation and available products for sample preparation, 
electrophoresis, gel staining, and image analysis have, even in the last few years, made 
this technique a lot easier to use for people without previous 2-D gel experience. 
Although the final spot identification does require some specialized knowledge and 
expensive mass spectrometry equipment, it is not beyond the capability of nonspecialist 
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investigators to conduct protein identification, if they are unable to find a 2-D gel 
proteome map or a core service to do the work. 

Proteomics technology is still developing; currently we can easily study only the most 
abundant proteins. The techniques of proteomics will continue to evolve rapidly, 
however, because this science is so important. As mentioned in the introduction, DNA is 
stable and tells us little about our interaction with the environment. mRNA analysis 
correlates only partially with protein expression, and mRNA cannot reveal protein 
modifications. Therefore, the answers to the critical questions in medicine and nutrition 
are hidden in the proteins. For the foreseeable future, 2-D gel-based proteomics will be an 
important technique to discover these secrets. 
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1 INTRODUCTION 

The term proteome originated in 1995 as a descriptor for the full protein complement of 
the genome of a cell or tissue (1). Proteomic technologies are increasingly recognized as 
necessary for understanding the role nutrients and drugs play in nutrient and cellular 
metabolism. With the publishing of the human genome in 2001, the answer to the 
question, “Where do we go next?” needs to be addressed (2–4). Many believe the answer 
lies in the proteome. Research utilizing proteomic techniques will augment the data 
obtained from studying gene expression in response to experimental cellular conditions, 
and will significantly increase our understanding of the role nutrients play in cellular 
physiology and biochemistry (5). The use of proteomic techniques allows investigators to 
analyze global protein expression, and define the functions and interrelationships of 
proteins within cells or tissues (6). 

The transcriptome represents those genes that are expressed in response to the cellular 
conditions at a given time, and becomes the link between the genotype and the 
phenotype, as expressed by the proteome (7).  

The connection between genotype and phenotype is not linear. Complex epigenetic 
interactions involving the environment, genes, and gene products result in the cell or 
tissue phenotype (2). Researchers are fully aware that a single gene product is capable of 
producing a protein that, due to posttranslational modification, could potentially result in 
various forms with different isoelectric points and/or masses. The regulation of the 
expression and post-translational modification of proteins within various cellular 
compartments will differ. In addition, variations in start and stop sites, or frameshifting, 
result in providing a single mRNA with the means to produce multiple proteins. 
Frameshifting has been proposed as a mechanism for HIV-1 synthesis of viral 
selenoproteins such as glutathione peroxidase, thioredoxin reductase, and env-fs (8–10). 
Further, there are differences in the turnover of mRNA and protein, resulting in ratios of 
mRNA: protein significantly different from unity (11). Analysis of mRNA and protein 
from human liver found that, though β actin exhibited mRNA abundance less than that of 
γ actin, the protein abundance of β actin was greater than γ actin (mRNA: β=0.189% vs. 
γ=0.215%; protein: β=1.41% vs. γ=0.65%). Carbamyl phosphate synthase mRNA 
comprised only 0.139% of the message, yet the protein abundance level was 2.83% (11). 



Thus, the disparity between mRNA and protein levels indicates the need for use of 
proteomic techniques to obtain a more complete picture of cellular and molecular 
metabolic processes. 

2 USE OF PROTEOMIC TECHNIQUES IN NUTRITION 
RESEARCH 

A recent review article proposes that the development of nutrition science in the future 
will require the use of proteomic techniques (5). Adaptation of these techniques will yield 
exciting results as novel protein interactions are identified and characterized. The goals 
for any proteomic technique are to visualize global protein expression of cells or tissues, 
and to analyze the dynamic changes protein expression undergoes following treatment 
with various nutrients or pharmacological agents, or to investigate changes in global 
protein expression occurring in cells and tissues carrying genetic mutations. Two-
dimensional gel electrophoresis, combined with mass spectrometry, is currently the 
primary tool for proteomic studies. However, other approaches are being used, including 
multidimensional protein identification utilizing liquid chromatography (6, 12), isotope-
coded affinity tag (ICAT), electrophoretic prefractionation (13–15), and surface-
enhanced laser desorption/ionization protein chip arrays combining the retention of 
proteins on solid-phase chromatographic surfaces with time-of-flight mass spectrometry 
(16).  

Several investigators interested in understanding the mechanism(s) involved in β-cell 
destruction associated with diabetes have utilized the proteomic techniques, two-
dimensional gel electrophoresis and mass spectrometry. Interleukin 1 β is thought to play 
a significant role in the loss of β-cells from pancreatic islets. The global protein 
expression pattern of rat islets was altered in rats administered interleukin 1β, or 
chemicals that induce nitric oxide production (17–20). The proteins belonged to several 
biochemical pathways, including those involved in energy transduction, glycolysis, 
protein expression and posttranslational modification, signal transduction, and apoptosis 
(19). Others have used these proteomic techniques to identify disease markers for type I 
diabetes (21), compositional changes in protein in rat cerebral microvessels (22), and the 
regulation of gene and protein expression in β-cells by glucose (23). 

There are also several reports in the literature utilizing proteome analysis in obesity 
research. 2DE and mass spectrometry have been used to create proteome maps of adipose 
tissue (24, 25). Others have used proteome analysis to study fatty acid metabolism in 
obese mice. The nuclear transcription factors—peroxisome proliferator-activated 
receptors (PPARs)—are activated by fatty acids and their metabolites. PPARα is 
expressed in the liver and kidney, and its activation induces the proliferation of 
peroxisomes, and increases mitochondrial and peroxisomal fatty acid oxidation. 
Proteome analysis of livers from obese diabetic mice (ob/ob) indicated that 16 of 1500 
spots detected following 2DE were upregulated with treatment with the peroxisome 
proliferator WY14,643. Fourteen of these proteins were components of peroxisomal fatty 
acid metabolism (26). Treatment of these mice with the PPARγ agonist, rosiglitazone, 
increased peroxisomal enzymes in obese but not lean mice. In comparison, WY14,643 
increased peroxisomal enzymes in both lean and obese mice (27, 28). 
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3 USE OF PROTEOMIC TECHNIQUES IN ZINC RESEARCH 

My laboratory has applied two-dimensional gel electrophoresis to identify the proteins 
that are influenced by genes affecting, or affected by, zinc nutriture and metabolism. The 
general methodology involves the separation of proteins according to their isoelectric 
point (pI) using either carrier ampholyte or immobilized pH gradient isoelectric focusing 
(IEF). The IEF gel is placed across the top of a slab gel for the separation of the proteins 
according to their mass. Following the running of the second dimension, the gel is stained 
and analyzed for differential protein expression. The differentially expressed proteins are 
then excised and prepared for mass spectral analysis. The sequences within protein 
sequence databases are queried for peptide matches and the identities of the proteins of 
interest are determined. Initial proteomic research from this lab has shown that a human 
mutation affecting cellular zinc metabolism alters protein expression in human fibroblasts 
(29). Another study with young rats indicated that the expression of the hippocampal 
purinergic receptor subunit P2X6 was enhanced with dietary zinc deficiency (30). In 
these studies, proteins not previously linked with zinc status were identified as 
differentially expressed. The application of proteomic techniques in nutrition research 
will be essential to understanding the complex interactions between nutrient status, 
proteins, and cellular metabolism. 

4 DEVELOPMENT OF A PROTEOME FOR ACRODERMATITIS 
ENTEROPATHICA (AE) 

The acrodermatitis enteropathica mutation affects intestinal zinc absorption, and is 
treated with supplemental zinc (31, 32). Skin lesions, hair loss, growth retardation, and 
diarrhea characterize the disease (33–36). Abnormal lipid metabolism has also been 
observed (37, 38). Partial penetrance of the mutation has also been suggested (39, 40). 
Recent advances in genomic technology have identified hZIP4 as a potential candidate 
for the biochemical defect in AE (41, 42), the protein sequence having been derived from 
the mRNA sequence in GenBank. Data from pooled fibroblast cell lysates indicating the 
presence of several proteins affected by the AE mutation are presented susequently. This 
is an expanded analysis using fibroblasts from three normal and four AE individuals. 

4.1 Methods 

Human fibroblast cells were purchased from the Coriell Institute for Medical Research 
Genetic Mutant Cell Repository (Camden, NJ) and from the Montreal Children’s 
Hospital Cell Repository (Montreal, Canada). Normal cells were GM5659D, GM5756A, 
and GM8680 from the Coriell Institute for Medical Research. The AE cells were 
GM2814 from the Coriell Institute for Medical Research and WG0575 and WG0576 
from the Montreal Children’s Hospital Cell Repository. The cells were grown in minimal 
essential medium (Eagle’s) containing 20% fetal calf serum, penicillin, streptomycin, and 
double the concentrations of essential and nonessential amino acids and vitamins. The 
fibroblasts were subcultured in 75 cm2 cell culture flasks at a density of 1.3×104 cells/cm2 
to confluence. 
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The method for the preparation of the total cell lysate has been published previously 
(29). The composition of the buffers used for preparing the cell lysate is listed in Table 1. 
The confluent cell layer of each flask was rinsed three times with 10 ml ice-cold rinsing 
buffer, and then scraped into 0.24 ml boiling sample buffer 1. The cell lysate was 
transferred into 1.5 ml microfuge tubes, heated for 5min at 100°C, and chilled on ice for 
5 min. Sample  

TABLE 1 Buffers for Preparation of Total Cell 
Lysate 

• Rinsing buffer 10 mM Tris HCl, pH 7.4 

  150 mM NaCl 

• Sample buffer 1 50 mM Tris HCl, pH 8.0 

  200 mM DTT 

  10.4 mM SDS 

• Sample buffer 2 500 mM Tris HCl, pH 8.0 

  50 mM MgCl2 

  1g/LDNAase1 

  250 mg/L RNAase A 

• Acetone precipitation 13.8 M final concentration 

• Sample buffer mix 22.4 mM Tris HCl 

  17.6 mM Tris 

  7.92 M urea 

  2.1mM SDS 

  17.6 mM ampholytes (pH 3–10) 

  120 mM DTT 

  51 mM Triton X-100 

buffer 2 (0.024 ml) was added to digest the nucleic acids and incubated with the cell 
lysate for 8min. Acetone was used to precipitate the cellular proteins. Following 
centrifugation, the supernatant was discarded, the pellet was dried at room temperature 
for 5 min, and then resuspended in 0.24 ml sample buffer mix. The protein concentration 
from each cell lysate preparation was determined using the Bradford method (43). The 
protein concentrations obtained from individual cell lysate preparations were 10 to 12 
µg/µL. Pooled samples were prepared by combining equal amounts of protein together 
per genotype. 

Isoelectric focusing was performed using precast carrier ampholyte tube gels (180 
mm×1.2mm; Genomic Solutions, Ann Arbor, MI). Their composition is listed in Table 2 
along with the buffers used for this first dimension. Sample overlay buffer was first 
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applied to the tubes, and then 100 µg protein in no more than 50 µL was applied under 
the overlay buffer. The gels were run at 100 µA per gel for 17.5 h. 

Precast Tris/Tricine slab gels were used for the second dimension (Genomic Solutions, 
Ann Arbor, MI). The buffers used are listed in Table 3. The IEF gels were extruded into 
equilibration buffer, incubated for 2 min at room temperature, and loaded onto large-
format 10% acrylamide precast gels (22 cm×22 cm×1 mm). The gels were run at 25 
W/gel at 4°C until the dye front reached within 1 cm of the gel bottom. The separated 
proteins were  

TABLE 2 CarrierAmpholyte Isoelectric Focusing 
Buffers 

• IEF gel buffer 580 mM acrylamide 

  9.5 M urea 

  32 mM Triton X-100 

  5 mM CHAPS 

  0.58 g/L ampholytes (pH 3–10) 

• Sample overlay buffer 500 mM urea 

  3.2 mM Triton X-100 

  1 g/L ampholytes (pH 3–10) 

  50 mM DTT 

• Cathode buffer 100 mM NaOH 

• Anode buffer 10 mM phosphoric acid 

visualized by silver staining using a modified Rabilloud method (44). Molecular weight 
(MW) and pI standards were also run to estimate the mass and pI of differentially 
expressed proteins. 

The gels were removed from their glass plates and fixed with buffer containing 6.9 M 
ethanol and 1.7 M acetic acid for 1 h, then overnight with buffer containing 50 mM 
glutaraldehyde, 5.2 M ethanol, 8.3 mM potassium tetrathionate, and 500 mM sodium 
acetate. Following rinsing with 18 MΩ water (4×15 min), the gels were incubated with a 
solution containing 5.9 mM silver nitrate and 8.3 mM formaldehyde for 30 min. The gel 
image was developed for 30 min in a solution containing 200 mM potassium carbonate, 5 
mM formaldehyde, and 0.05 mM sodium thiosulfate. Development was stopped by 
incubating the gels for 10 min in a solution containing 410 mM Tris and 350 mM acetic 
acid. The gels were stored in 270 mM glycerol until scanning to digitize the image. The 
gels were visually inspected and differentially  

TABLE 3 Second-Dimension Slab Gel Buffers 

• IEF gel equilibration buffer 112 mM Tris acetate 

  5% SDS 
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  50 mM DTT 

  0.01 % bromophenol blue 

• Cathode buffer 200 m M Tris 

  200 mM Tricine 

  0.4% SDS 

• Anode buffer 25 mM Tris acetate, pH 8.3 

expressed proteins were noted. The relative density of the differentially expressed protein 
spots was measured using the 2-D Advanced densitometry program (Advanced American 
Biotechnology, Fullerton, CA). 

The gel analysis protocol for identifying consistent differences between the different 
cell lysate preparations was to first run the pooled samples and identify differentially 
expressed proteins. Following this gel analysis, the individual cell lysate samples were 
run and each gel was compared to the pooled gel to confirm the expression levels within 
and between the two cell lysate genotypes. The Student’s t-test was used to determine 
significant differences in expression levels (p<0.05; Statmost, Dataxiom, Los Angeles, 
CA).  

4.2 Results and Discussion 

Figure 1 shows the two-dimensional gel images from pooled normal and AE fibroblast 
cell lines. Thirty-six protein spots were identified as potentially different between normal 
and AE fibroblast’s cell lysates. Of these, six were consistently different between 
genotypes following individual cell lysate’s analysis (Fig. 2; Table 4). The relative 
densities of these spots are shown in Fig. 3. The differences in expression of these spots 
was 50% or greater. The spots were excised and submitted for peptide mapping using 
mass spectrometry; however, the peptide fragments obtained were not sufficient for a 
peptide mass fingerprint. The silver staining technique that was used was not mass 
spectrometry-compatible. Future gels will be stained with Sypro Ruby, which is as 
sensitive as to silver staining and is compatible with mass spectrometry protocols (45, 
46). The carrier ampholyte IEF system used here exhibited a total protein capacity of 100 
µg. Presented in the next section are proteomic data obtained following the use of 
immobilized pH gradient strips, which have a loading capacity of mg quantities of protein 
(47, 48). 

The amino acid sequences of several human zinc transport proteins are present in the 
National Center for Biotechnology Information database (Table 5). The hZIP4 protein 
has been identified in a Jordanian family to be defective in those suffering from AE (41, 
42). The protein that is closest in M W and pI to the theoretical values for hZIP4 is 
protein number 2. However, peptide mass fingerprinting and/or tandem mass 
spectrometry sequencing will be necessary to definitively identify any of the 
differentially expressed proteins and determine whether any of the proteins are hZIP4 or 
other zinc transporter proteins.  
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4.3 Caloric Restriction and Dietary Zinc Deficiency Affects 
Hippocampal Protein Expression 

The hippocampus is involved in spatial learning and memory, and contains the highest 
zinc concentration of all the brain regions (49–51). Zinc is found  

 

FIGURE 1 Pooled normal fibroblast 
cell lysate 2DE. Carrier ampholyte IEF 
was used for the first dimension and a 
10% acrylamide denaturing gel was 
used for the second dimension. Over 
800 protein spots were visible 
following staining of the gel with 
silver. The presence of cathodic drift is 
indicated by the black arrowhead 
labeled A. Following visual inspection 
of the gels, six protein spots were 
identified as exhibiting differential 
expression (arrowheads numerically 
labeled).The densities of these spots 
were determined using Universal 
Software 2-D Advanced (Advanced 
American Biotechnology, Fullerton 
CA). 
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in the mossy fiber system of the hippocampus, and is found with the synaptic vesicles of 
hippocampal neurons (52–54). One role for zinc in hippocampal function is as a 
modulator for the NMDA and GABA receptors (55–58). Other roles for zinc include 
those involving gene expression and protein  

 

FIGURE 2 Differentially expressed 
normal and AE cell lysate proteins. 
Individual normal and AE cell lysate 
samples were analyzed by two-
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dimensional gel electrophoresis. Six 
protein spots were observed to be 
consistently up- of downregulated 
between the two genotypes. 

TABLE 4 MWand pI of Proteins Differentially 
Expressed in Normal and AE Fibroblast Cell Lysate 

Protein # MW (kDa) Pl 

1 82 6.1 

2 60 6.3 

3 43 5.6 

4 37 5.3 

5 38 5.5 

6 22 6.4 

synthesis through zinc-finger transcription factors (59–62). The use of proteomic 
technologies will expand our understanding of the proteins involved in hippocampal zinc 
metabolism. 

 

FIGURE 3 Relative densities of 
differentially expressed proteins from 
normal and AE cell lysates.The 
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densities of the six spots in Fig. 2 were 
measured by the 2-D Advanced 
program (Advanced American 
Biotechnology, Fullerton, CA). The 
data are expressed as the mean±SE. 
For each spot, the values were 
significantly different between the 
genotypes (P≤0.05). 

TABLE 5 Human ZincTransporter Proteins in the 
National Center for Biotechnology Information 
Databasea 

Transporter Number of amino acids MW pI 

hZIP2 309 33 6.0 

hZIP4 626 66 5.7 

hZTL1 523 57 6.8 

hZNT4 429 47 6.1 
aMWand pI are theoretical. 

In the previous section, carrier ampholyte isoelectric focusing was used in the first 
dimension. In this section, immobilized pH gradient (IPG) strips were used for the first 
dimension isoelectric focusing. There are several benefits to using IPG strips, including 
cathodic drift (compare Fig. 1 to Fig. 4), limitations on the protein loading capacity, and 
the ease of handling the gels when loading the IPG strip onto the slab gel for the second 
dimension separation. The reduced resolution of proteins at the basic end of carrier 
ampholyte isoelectric focusing gels is called cathodic drift (47). The loading capacity of 
carrier ampholyte isoelectric focusing gels is from 100 µg for analytical gels to 300 µg 
for preparative gels. Immobilized pH gradient strips can handle protein loads a 
magnitiude higher (47, 48). Finally, the plastic backing on the IPG strips facilitates their 
easy transfer to the slab gels, without stretching and physical distortion of the gel, 
including breakage. 

4.4 Methods 

Male Sprague-Dawley rats (Harlan, Indianapolis, IN) 37–41 days old were divided into 
three dietary groups (CT, PF and ZD). The ZD group was fed an AIN-93G egg-white-
based diet with less than 1 ppm Zn (Dyets, Bethlehem, PA), whereas the PF and 
CTgroups were given AIN-93G with 20 ppm Zn (Dyets, Bethlehem, PA) for 24 days. 
Upon sacrifice, the hippocampal tissue was quickly dissected out and frozen in liquid 
nitrogen. Hippocampal tissue was pulverized with protease inhibitors and extracted in 
sample buffer I (Table 6). The sample mixes were vortexed and incubated at 100°C for 5 
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min, and sample buffer II (Table 6) was added and incubated on ice for 10min. Urea was 
added (1:1 of total weight of the mixture). The sample mix was stirred at room 
temperature for 30 min and centrifuged at 80,000 g for 30 min. Acetone was added into 
the supernatant to precipitate the protein. The protein pellet was resuspended in sample 
loading buffer (Table 6). Protein concentration of the sample was measured by the Bio-
Rad protein assay (Bio-Rad, Richmond, CA).  

 

FIGURE 4 Immobilized pH 2DE 
gradient of rat hippocampus. This gel 
is from the hippocampus of weanling 
male rats fed a normal diet ad libiutm 
containing 20 ppm zinc. 
Approximately 500 protein spots were 
visible following staining of the gel 
with Coomassie blue. Unlike Fig. 1, 
there is no cathodic drift evident at the 
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basic region of the gel. Gels from 
control, pair-fed, and zinc-depleted 
diet groups were analyzed for 
differential protein expression using 
Phoretix 2-D software (Nonlinear 
Dynamics Ltd., Newcastle, UK). 

First-dimension isoelectric focusing was performed using immobilized pH gradient gels 
(IPG strip 17 cm, pH 3–10; Bio-Rad, Richmond, CA). Two mg protein per dietary group 
were loaded onto the IPG strips. Isoelectric focusing was performed at 250V for 15 min, 
followed by 10,000 V for 6 hr at 20°C using the Protean IEF cell (Bio-Rad, Richmond, 
CA). Immediately prior to loading the IPG strips onto the second-dimension slab gels, the 
strips were equilibrated in 5 ml equilibration buffer (Table 7) for 20 min. The strip was 
then dipped into the cathode buffer (Table 7), placed on top of the slab gel, and sealed 
with a layer of 1% agarose. Second-dimension electrophoresis was performed (12.5% 
polyacrylamide with dimensions of 22×22×0.1cm) at 20 W/gel. The gel images were 
analyzed with Phoretix  

TABLE 6 Immobilized pH Gradient Isoelectric 
Focusing Buffers 

• Sample buffer I 0.3% SDS 

  200 mM DTT 

  28 mM Tris HCl 

  22 mM Tris base 

  Protease inhibitors 

• Sample buffer II 24 mM Tris base 

  476 mM Tris HCl 

  50 mM MgCl2 

  1 mg/ml DNAse I 

  0.25mg/ml RNAseA 

• Sample loading buffer 7 M urea 

  2 M thiourea 

  4% CHAPS 

  1% DTT 

  2% Pharmalyte 3–10 

software (Nonlinear Dynamics Ltd, Newcastle, UK). Spots with staining levels of change 
greater than 50% were excised manually and processed for mass spectrometry. 
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The excised gel plugs were incubated with 150 µL of 50 mM NH4HCO3 containing 
12.2 M acetonitrile. The gel plugs were then dried and rehydrated with 5 µL of 50 mM 
NH4HCO3 containing 0.5 µg trypsin.When the gel piece  

TABLE 7 Slab Gel Buffers for Immobilized pH 
Gradient 2DG 

• Equilibration buffer 6 M urea 

  30% glycerol 

  2% SDS 

  0.05 M Tris HCl 

  2 mM tributylphosphine 

  Bromophenol blue 

• Cathode buffer 50 mM Tris base 

  384 mM glycine 

  6.9 mM SDS 

• Anode buffer 25 mM Tris base 

  192 mM glycine 

  3.5 mM SDS 

• Agarose gel 1 % agarose in cathode buffer 

had swelled to its original size, the plug was covered with 50 mM NH4HCO3 and 
incubated overnight at 30°C. After the addition of 1.5 µL of 880 mM trifluoroacetic acid, 
the peptides were extracted with 50 mM NH4HCO3 containing 14.6 M acetonitrile. The 
supernatants were dried to approxi- mately 10 µL and analyzed by mass spectrometry.  

4.5 Results and Discussion 

Figure 4 shows a two-dimensional gel stained with Coomassie blue. Approximately 500 
spots were detected and 20 were observed to exhibit differential staining intensities 
between the control and dietary treatment groups. Currently, four of the 20 spots were 
further analyzed by mass spectrometry (Figure 5; Table 8). 

Spot 1 was identified as µ-crystallin (accession number NP446407), which contains 
313 amino acids. Although crystallins make up the lens proteins, they are also found in 
other tissues. The mouse tissues in which  
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FIGURE 5 Hippocampal protein 
expression from control, pair-fed, and 
zinc-deficient male weanling rats. Four 
protein spots, indicated by the 
numbered arrows, have identified by 
mass spectrometry. Each of the spots 
in this figure exhibited a change in 
density of 50% or greater. This 
identities of the spots, along with their 
normalized volumes, are listed in 
Table 8. 

TABLE 8 Differentially Expressed Proteins of the 
Hippocampusa 

Spot # Control Pair-fed Zinc def Identity 

1 1.5 2.1 0.7 µ-cystallin 

2 1.2 2.4 1.2 Guanine nucleotide binding protein Gq α-subunit 

3 0.2 0.6 0.5 Proteosome subunit 
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4 0.7 0.7 1.3 Homeobox protein 
aVolumes normalized. 

µ-crystallin mRNA transcripts are found include the hair follicle (highest levels), eye, 
brain, kidney, heart, lung, and liver (63). In the human, µ-crystal-lin is also a NADP-
regulated, thyroid-binding protein in the kidney (64). The expression of this protein was 
increased in the calorie-restricted, pair-fed rats and reduced in the zinc-deficient animals. 
The specific role this protein may play in hippocampal function is not known; however, a 
link between zinc status and thyroid hormone metabolism has been observed (65, 66). 

Guanine nucleotide-binding protein Gq α-subunit (accession number P82471) was 
identified as spot 2. It is a 353-amino acid polypeptide involved in signal transduction. 
Antidepressant drugs modulate the expression of these G proteins in the rat brain (67). Its 
expression was increased in the pair-fed, calorie-restricted rat hippocampus and may be 
part of a neuroadaptive mechanism for this condition. Consumption of a zinc-depleted 
diet had no apparent effect on the expression of this protein, suggesting that its 
expression was in response to the stress associated with food restriction. 

Spot 3 was identified as a proteasome subunit α-type 6 (accession number NP036098; 
246 amino acids). The proteasome, 700 kDa MW, functions as a nonlysosomal proteinase 
in eukaryotic cells and consists of 28 protein subunits stacked as heptameric rings of α 
and β subunits (68). Seven copies of the a subunit form two outer rings, which direct 
assembly, while seven copies of the β subunit form the two inner rings, the catalytic core 
for the proteasome (69). Increased expression of this protein was observed in both the 
pair-fed and zinc-deficient rats. However, caloric restriction (pair-feeding) is the control 
for the reduced food consumption observed in rats consuming a zinc-depleted diet. 
Therefore, the primary factor for the expression of this proteasome subunit is likely to be 
due to caloric restriction. 

Spot 4 was identified as a homeobox protein HOXC-10 or HOX-3.6 (accession 
number P31257). The protein has 342 amino acids. These DNA-binding proteins serve to 
control pattern formation in Drosophila, and their sequences are conserved across species 
including plants (70). The homeobox proteins reside in the nucleus, with the 
homeodomain exhibiting similarity with DNA-binding proteins and transcription factors 
(71, 72). This particular protein is not considered to be a zinc-finger transcription factor; 
however, its increased expression in the zinc-deficient animals may be associated with 
the transcriptional regulation of other proteins involved in hippocampal development or 
plasticity. 

In this study, the combined use of two-dimensional gel electrophoresis and mass 
spectrometry resulted in the identification of proteins whose expression was affected by 
caloric restriction and/or consumption of a zinc-depleted diet. Upon the identification of 
all 20 of the proteins whose expression was altered by the dietary treatment, a clearer 
picture of their relationship to each other and to the hippocampal response to diet will 
arise. 
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1. INTRODUCTION 

Adipose tissue constitutes the main site for the storage of energy in the form of fat. 
Growing concerns about the increase of obesity and associated metabolic disorders has 
intensified the need to understand the molecular and cellular mechanisms regulating 
adipose tissue biology. Adipose tissue is now clearly accepted as a major secretory and 
endocrine organ. Proteins secreted by adipocytes are intimately involved in a host of 
paracrine and autocrine functions, including the regulation of preadipocyte proliferation 
and differentiation. The study of adipocyte secretome is therefore of prime interest for the 
development of preventive and therapeutic strategies that seek to target diseases such as 
diabetes and obesity.  

The purpose of this chapter is provide an overview of the adipocyte as a secretory 
organ and to describe the genomic and proteomic approaches that have been used for the 
study of the adipocyte secretome. Finally, we will discuss some of the novel advances in 
proteomics that could be employed to dissect the adipocyte secretome in greater detail. 

2. ADIPOSE TISSUE AS AN ORGAN 

Two types of adipose tissues exist in mammals: white adipose tissue (WAT) and brown 
adipose tissue (BAT). Although BAT in hibernating mammals plays an important role in 
thermogenesis and is maintained throughout the life span, in humans its importance 
seems to be limited to the early periods of life where it plays a role in compensatory 
thermogenesis (1). During human fetal and newborn life, BAT constitutes between 2–5% 
of the body weight and is localized to very defined areas; however, its abundance 
decreases in most sites in the adult. In contrast, WAT represents as much as 20% of the 
body weight in men and 25% of the body weight in women, thus being the largest storage 
of energy in the body. Until now, this tissue was considered to be a mere fat depot, but 



the last decade has proven this view to be far from reality. The discovery of a large 
variety of secreted proteins that exert pleiotropic endocrine and metabolic functions has 
raised the adipose organ to a central position in the regulation of energy balance and body 
homeostasis. Other secondary roles attributed to WAT are thermal regulation and 
protection against trauma. 

A large deposit for energy storage has clear advantages for survival and reproduction 
during long periods of starvation; however, an excessive energy intake relative to energy 
expenditure leads to obesity and associated disorders such as diabetes, hypertension, 
cancer, atherosclerosis, and gall bladder disease (2, 3). The increasing incidence and 
prevalence of obesity in western societies has made it necessary to understand adipocyte 
biology, as it may help in the design and development of appropriate therapies and 
prevention strategies (3–5). 

Food provides energy mainly in the form of carbohydrates and fat. Glucose can be 
readily used by all organs and is the only source of energy for the brain. Except for the 
brain, most organs can store only a limited amount of glucose in the form of glycogen for 
their own consumption. The excess of glucose in blood is converted into fatty acids and 
subsequently into triglycerides mostly by the liver. Triglycerides from the diet or 
produced by the liver are transported in the blood in the form of chylomicrons and very 
low density lipoproteins. In the adipose tissue, insulin-dependent lipoprotein lipase 
catalyzes the hydrolysis of triglycerides to glycerol and free fatty acids (FFAs), which 
enter the adipocyte and are converted into triacylglycerides, the main form of fat storage. 
Under fasting conditions, adipose tissue supplies the energy necessary to maintain the 
energy balance. The fat stored in the adipocyte is converted by triacylglycerol lipase into 
glycerol and FFAs. The liver converts FFAs into glucose for release into blood. 

3. BIOLOGY OF ADIPOGENESIS 

The principal constituent of WAT is the adipocyte. In addition, adipose tissue contains 
stromal and vascular cells including fibroblasts, leukocytes, macrophages, and 
preadipocytes. The fat is largely stored in the form of triacylglycerides in a single large 
droplet surrounded by a ring of cytoplasm. The cell nucleus and the remaining organelles 
are displaced against the plasma membrane. Fat constitutes approximately 60–85% of the 
weight of white adipose tissue, with 90–99% as triacylglycerides and the rest as 
diacylglycerides, FFAs, cholesterol, phospholipids, and small quantities of cholesterol 
esters and monoglycerides. 

Obesity can result from adipocyte hypertrophy as well as hyperplasia. It is now well 
recognized that adipogenesis can occur throughout the lifetime of humans. The capacity 
to increase the adipocyte number is retained in adulthood, as has been shown by several 
rodent obesity models and suggested by several studies in humans where preadipocytes 
were isolated from adult tissues (6–8). 

Clonal cell lines and primary cultures have been extremely helpful in the elucidation 
of the molecular and developmental pathways of adipogenesis. The details of the 
commitment process of embryonic stem cell precursors to the adipose lineage is obscure 
due to the difficulty in studying embryonic stem cells and the lack of specific markers for 
adipocyte precursors. Stem cells derived from tissues of mesenchymal origins such as 
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bone marrow and muscle have been shown to retain the potential to generate adipocytes 
(9–11). Other studies have shown that stromal cells derived from adipose tissue can also 
give rise to a variety of tissues of mesenchymal origin (12, 13). Studies using cell lines or 
stem cells of mesenchymal origin have shown different lineage plasticity that depends on 
the differentiation state. Cultures of the fibloblastlike CH310T1/2 and Swiss 3T3 cell 
lines or the osteoclastlike BMS2 cell line have different cell lineage differentiation 
capabilities, including the potential to differentiate into adipocytes (14, 15). 

The most understood adipogenic process is the process of adipocyte differentiation. 
The study of this process has been enormously facilitated by the use of cell lines that 
resemble the fibloblastic stromal preadipocytes that have been used to reproduce the 
events occurring during differentiation in vivo (16–19). Primary cell cultures have also 
been used to confirm the results obtained with cell lines and to study the regional 
differences of the adipocyte differentiation process. Studies using 3T3-L1 and 3T3-
F442A cell lines have provided much of the knowledge about the adipocyte 
differentiation process. 3T3-L1 and 3T3-F442A cell lines were isolated from Swiss 3T3 
mouse embryo lines and are thought to be already committed preadipocytes (20, 21). 
3T3-L1 can differentiate into clusters of adipocytes if maintained long enough in cell 
culture medium containing fetal calf serum. This process can be accelerated by the 
addition to a postconfluent cell culture of a differentiation-inducing cocktail (DMI) 
containing dexamethasone, methylisobutylxanthine (a phosphodiesterase inhibitor that 
increases the concentration of cAMP), and insulin (22). The fact that subcutaneously 
implanted 3T3-F442A cells give rise to adipose tissue indistinguishable from the 
endogenous WAT pads (21, 23, 24) proves the value of these in vitro models and 
represents a new approach to the study adipose tissue biology. 

The differentiation process of preadipocytes can be divided into three well-defined 
steps: exit from cell cycle, clonal expansion, and differentiation into adipocytes. Exit 
from cell cycle is achieved in vitro by growing postconfluent preadipocyte cultures for 
two days, followed by treatment with the DMI cocktail described earlier. Clonal 
expansion occurs during the ensuing two days in which the cells undergo two rounds of 
division and stop dividing. Although this process is required in vitro, the requirement of 
clonal expansion in vivo is not clear (25, 26). During the next several days, the cells 
gradually acquire the phenotypic features that are typical of adipocytes, as shown in Fig. 
1. Shown here are adipocytes stained by oil red at different time points of their 
differentiation process.  

 

FIGURE 1 Differentiation of 3T3-L1 
preadipocytes into adipocytes. 3T3-L1 
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cells were cell cycle-arrested by 
growth in medium with serum until 
confluence and further cultured for two 
days. Clonal expansion was induced by 
treatment with a differentiation-
inducing cocktail: dexamethasone, 
methylisobutylxanthine, and insulin 
(DMI). After two days of clonal 
expansion, the cells were grown for an 
additional two days in medium 
containing serum and insulin. Cells 
were grown in medium with serum for 
an additional day. Parallel cell cultures 
at days 1, 3, and 5 were stained with 
Oil-red to visualize lipid accumulation. 

4. THE ADIPOCYTE SECRETOME 

Our perception of adipose tissue has changed drastically from its being a mere storage 
site for fat to a highly active endocrine and paracrine organ. Although lipoprotein lipase 
has been known to be secreted by adipocytes for a long time, and several studies have 
suggested endocrine roles of the adipose tissue, it was not until the discovery of leptin in 
1994 that adipose tissue caught the attention of the scientific community (27–29). Table 1 
shows a listing of the various molecules secreted from adipocytes that have autocrine 
and/or paracrine effects. The central nervous system and several other organ systems are 
directly modulated by molecules secreted by the adipocytes as shown in Fig. 2. 

One of the modes of regulating the energy balance is the action of these molecules on 
the central nervous system—a major center for integrating different metabolic signals 
from different organs. We will briefly discuss the effects of leptin on the regulation of 
food intake. At the hypothalamus, several neuronal centers are responsible for the 
integration of signals and the activation of effector pathways that regulate food intake and 
energy homeostasis. Neurons of the arcuate nucleus are the primary targets of leptin and 
insulin. These two potent signals form part of a negative feedback loop that results in the 
modulation of feeding behavior and energy expenditure. Leptin was identified as a 
product of the obese gene that is truncated in the obese homozygous (ob/ob) mutant mice. 
Leptin is secreted almost exclusively by adipocytes and senses the body energy reserves. 
Activation of leptin receptors induces the expression of two anorexigenic peptides, 
POMC (pro-opiomelanocortin), which is the precursor of the anorexigenic peptide, α-
melanocyte-stimulating hormone (α-MSH), and CART (cocaine- and amphetamine-
related transcript), at the same time reducing the expression of two orexigenic 
neuropeptides, neuropeptide Y (NPY) and agouty-related protein (AgRP) (30–33). Thus, 
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an increase of leptin levels leads to a reduction of appetite and an increase in energy 
expenditure (34–37). 

5. GENOMIC METHODS FOR ANALYZING THE ADIPOCYTE 
SECRETOME 

The use of high-throughput genomic methods such as microarrays and signal sequence 
trapping have contributed greatly to the identification of the factors secreted by the 
adipocytes and also to the discovery of new genes and their expression patterns in 
adipose tissue. DNA microarrays are powerful tools to study mRNA expression levels of 
thousands of genes simultaneously and changes in the expression profile under different 
biological  

TABLE 1 Molecules Secreted by Adipose Tissuea 

  Category Molecule 

Procollagen alpha-2(1) 1. Extracellular matrix and related 
proteins 

    

Procollagen alpha C-proteinase enhancer protein 

    Type I, III, IV, VI, XV collagen alpha-1 

    Type IV collagen alpha-2 

    Fibronectin 

    Cysteine-rich glycoprotein (SPARC/osteonectin) 

    Laminin 

    Entactin/Nidogen 

    Fibulin-2 

    Lysyl oxidase 

    Dystroglycan 

    Matrix metalloproteinases 2–9, 13, and 14 

    Tissue inhibitor of matrix metalloproteases (TIMP-2, 3) 

2. Acute phase response α1-Acid glycoprotein 

    Haptoglobin 

    Serum amyloid A3 

3. Complement pathway Adipocyte complement-related protein (ACRP30, GBP-
28, apM1, AdipoQ, Adiponectin) 

    Acylation-stimulating protein (ASP) 

    Complement factor B 
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    Complement factor C3 

    Complement H 

    Complement factor D (Adipsin) 

4. Cardiovascular Angiotensinogen 

    Angiopoietin-2 

    Plasminogen activator inhibitor-1 (PAI-1) 

    PPARgamma angiopoietin-related (PGAR/FIAF) 

Lipoprotein lipase (LPL), 

Cholesterol ester transfer protein (CETP) 

5. Lipid metabolism enzymes, binding 
and transfer proteins. 

Phospholipid transfer protein (PLPT) 

    Apoprotein E (Apo E) 

    FK506-binding protein (FKBP23) 

  Category Molecule 

6. Obesity Leptin 

    Agouty signaling protein (ASIP) 

7. Cytokines Tumor necrosis factor (TNF) 

    Interleukins: IL-6, IL-16 

    Macrophage migration inhibitory factor (MIF) 

8. Growth factors Transforming growth factor β (TGFβ) 

    Insulin-like growth factor (IGF-1) 

    Vascular endothelial growth factor (VEGF) 

    Macrofage colony-stimulating factor (MCSF) 

9. Other secreted proteins Resistin 

    Cystatin C (cysteine protease inhibitor) 

    Neutrophil gelatinase-associated lipocalin precursor (NGAL) 

    PEDF/SDF-3, SDF-1 1 

    Calumenin 

    Gelsolin 

    Colligin-1/Hsp47 

    Hippocampal cholinergic-neurostimulating peptide precursor 
protein (HCNP) 

    Sulfated glycoprotein (Sgp1) 

    Epithelin 
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    Disulfide isomerase-related protein (Erp72) 

    Interferon receptor-soluble isoform (IFNAR2) 

10. Miscellaneous molecules   

  Ecosanoids Prostaglandin E2 (PGE2) 

    Prostaglandin 12 (PI2) 

  Fatty acids Free fatty acids 

  Corticosteroids Cortisol 

  Sex steroids Testosterone 

    Oestradiol 
aA representative compilation of proteins secreted by adipocytes has been classified according to 
molecular, biochemical, and functional relationships. (Adapted from Refs. 50, 61, 77, and 78) 

conditions. This technology has been applied to the study of the adipocyte transcriptome, 
its changes during the differentiation process, and the regulation by different growth 
factors and pathological conditions (38–47). Classification of mRNAs expressed by the 
adipose tissue has shown that the proportion of mRNA-encoding secreted proteins is 
much higher in adipose  

 

FIGURE 2 Metabolic roles of adipose 
tissue. An overview of proteins 
secreted by the adipocytes that are 
involved in the regulation of food 
intake and energy homeostasis. The 
arrows indicate the main target organs 
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or systems. The negative-feedback 
loop exerted by leptin and insulin over 
the neurons at the arcuate nucleus of 
the hypothalamus is represented. 
(Adapted from Ref. 36, 79, and 80) 

tissue than in a wide range of other human tissues, again revealing this organ as the 
biggest endocrine organ in the body. The signal sequence trapping method takes 
advantage of the presence of signal peptides, allowing the specific identification of 
secreted and transmembrane proteins (48, 49). Tsuruga and colleagues used this method 
to identify 50 secreted proteins from a 3T3-L1 adipocyte cDNA library demonstrating the 
utility of this approach (50). 

6. PROTEOMICS METHODS FOR ANALYZING THE 
ADIPOCYTE SECRETOME 

Proteomic approaches are necessary to complement the study of the adipocyte secretome. 
With respect to the identification of secreted proteins, genomic studies do not account for 
protein heterogeneity derived from posttranslational modifications and protein cleavage, 
both important in the determination of the protein activity. In addition, expression 
profiling studies based on DNA microarrays are biased by the fact that the levels of 
mRNA and protein are not always correlated (51–53). Therefore, proteomic approaches 
are needed to complement genomic methods to characterize the adipocyte secretome 
fully. 

Several different major proteomic approaches have been used for large-scale studies of 
the adipocyte proteome and secretome. These include subtractive antibody screening and 
various mass spectrometry-based approaches. Subtractive antibody screening relies on 
the generation of antibodies that specifically recognize cell surface or secreted proteins. 
A polyclonal antiserum is raised against target cells and subsequently subtracted by 
incubation with different tissues or cells. This has been used to clone cDNAs encoding 
secreted and plasma membrane proteins induced during adipocyte differentiation (54). 
Mass spectrometry-based approaches can be broadly divided into two categories based on 
whether two-dimensional (2-D) gel electrophoresis is used for separation of the protein 
mixture. 

In the method involving 2-D gel electrophoresis, the spots are visualized by staining, 
followed by excision and digestion with a specific endoprotease and identification of the 
proteins by mass spectrometry. The development of databases of 2-D-gel electrophoresis 
images and software tools for cross comparison of samples has supplied additional values 
and favored its use in differential proteomics (55, 56). Analysis of the proteome of WAT 
and BAT using 2-D-gel electrophoresis (57, 58) is available in the SWISS-2D PAGE 
database (59). A major drawback of this technique is the difficulty in detecting certain 
classes of proteins such as very large or very small proteins, or very acidic or basic 
proteins. Other limitations, when different protein samples are compared, are the low 
reproducibility between gels and the fact that several proteins might comigrate, giving 
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rise to unreal differences between two samples. These problems have been improved by 
the introduction of labeling techniques that allow for the mixing of protein samples and 
will be discussed subsequently. 

The aforementioned limitations have spurred the development of new separation and 
identification techniques. Sophisticated HPLC systems can be used to concentrate and 
separate the digested peptides and coupled online with mass spectrometers. The 
resolution and sensitivity of mass spectrometric analysis have also been improved by the 
use of tandem mass spectrometry that allows identification of thousands of peptides in a 
single experiment (60). This combination of reverse-phase liquid chromatography with 
tandem mass spectrometry (LC-MS/MS) is the basis of high-throughput studies that aim 
to analyze complex protein mixtures without the use of gel electrophoresis.  

Taking advantage of this system, we have described and carried out a proteomic 
approach to identify differentially secreted proteins between 3T3-L1 preadipocytes and 
adipocytes (61). In this study, the conditioned medium from preadipocytes and 
adipocytes at various differentiation stages was collected, and the proteins were separated 
by one-dimensional (1-D)-gel electrophoresis. After silver staining of the proteins, the 
differentially expressed protein bands were digested with trypsin and identified by LC-
MS/MS. In the future, differential identification of proteins using such approaches with 
preadipocytes/adipocytes, BAT/WAT, or adipose tissue from different regions will 
provide great progress toward the understanding of the role of the adipocyte secretome. 

7. NOVEL PROTEOMIC APPROACHES FOR STUDYING THE 
ADIPOCYTE SECRETOME 

Recent efforts to obtain quantitative profiles using mass spectrometry have resulted in 
several protein-labeling techniques that could be applied to the study of proteins secreted 
under different biological situations (62). The general advantage of using a labeling 
technique is that the reproducibility of the experiments is improved because the protein 
samples are mixed after labeling and the remaining experimental procedure is carried out 
on the mixed sample. 

7.1. In Vitro Labeling with Dyes 

One promising labeling strategy in 2-D-gel electrophoresis differential proteomics is 
difference gel electrophoresis (DIGE) technology (63). By using cyanine-2, -3, or -5 
fluorescent dyes to covalently label the protein samples, up to three differently labeled 
protein extracts can be mixed and separated in a single 2-D gel electrophoresis run. The 
gel can be scanned at different wavelengths, avoiding problems with spot matching 
between gels. This method has improved the reproducibility of 2-D electrophoresis, 
however, it presents some serious limitations when it is used for the quantification of 
protein abundance changes. It has been shown that changes in low-abundance proteins 
can be overestimated, whereas changes in highly abundant proteins can be missed (64, 
65). 

7.2. In Vitro Labeling with Stable Isotopes 
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The incorporation of stable isotopes after cell lysis or during cell growth, coupled with 
high resolution mass spectrometry, provides a robust founda-tion for large-scale 
quantitative approaches. The basis for the quantification of the relative changes in protein 
abundance is the use of stable isotopes to label the samples with a “light” or a “heavy” 
isotope. The mass difference between the peptides containing each of the isotopes allows 
their distinction in the mass spectrum in which they appear as pairs of isotopic 
distributions separated by an expected distance corresponding to the mass difference (Fig. 
3). The relative abundance between proteins derived from two different samples is 
obtained by estimating the ratio between the integrated areas of the isotopic distributions 
of the peptide pairs. 

Several in vitro labeling methods have been developed, the most frequently used ones 
being ICAT and 18O-labeling. The chemical method of isotope labeling using isotope-
coded affinity tags (ICAT) was first pioneered by Aebersold and coworkers (66). The 
labeling is performed by the covalent binding of a linker group that contains a heavy or a 
light isotope to the reduced cysteines of peptides. After combining both light- and heavy-
labeled samples, the addition of a biotin moiety enables the selection of the labeled 
peptides by avidin affinity chromatography, reducing the complexity of the sample and 
thereby simplifying its analysis. The peptides are subsequently separated by liquid 
chromatography and analyzed by mass spectrometry. Two major ICAT technological 
improvements have emerged since its first description: the use of cleavable linkers, which 
avoids the problems derived from the presence of bulky tags, and the use of linkers 
labeled with isotopes of carbon instead of deuterium. This results in the coelution of the 
peptides in the reverse-phase chromatography, which facilitates their comparison (67, 
68). The major constraint of this method is the partial coverage of proteins, as only the 
peptides containing cysteines can be labeled. 

Labeling with heavy water (H2
18O) during endoprotease digestion can also be applied 

to the qualitative and quantitative comparison of two protein extracts (69–71). In this 
procedure, one of the systems is completely shifted to [18O] water during endoprotease 
digestion, while the other is digested in [16O] water (normal water). Labeling of the 
peptides is catalyzed by the endoprotease, usually trypsin, during digestion, resulting in 
the complete incorporation of two 12O atoms into the C-terminal carboxyl group of the 
cleaved peptide (72). The samples are mixed before mass spectrometry analysis. The two 
18O atoms incorporated in one peptide population lead to a 4-Da difference with respect 
to the peptides cleaved in normal water, which can be detected easily using LC-MS/MS. 
Limitations of 18O-labeling arise when quantifying the abundance of highly charged 
peptides (bearing more than three charges) because the separation between the isotopic 
distributions is too small to be differentiated unambiguously.  
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FIGURE 3 Quantitative analysis of 
the adipocyte secretome during 
differentiation. To compare the amount 
of proteins secreted during adipocyte 
differentiation, conditioned medium 
from adipocytes grown in [12C6] lysine 
(light) was collected on day 1 and an 
equal volume of conditioned medium 
from [13C6] lysine (heavy)-labeled 
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adipocytes was collected on days 4,7, 
and 9 of the adipocyte differentiation 
process. These sam-ples were loaded 
independently or mixed 1:1 (v/v) for 
protein separation by I-D gel 
electrophoresis, as indicated in panel 
A. Following Coomassie blue staining, 
the pro-tein bands were excised, 
digested by trypsin, and analyzed by 
LC-MS/MS. Panel B presents the mass 
spectrometric analysis of the circled 
bands in panel A. Sequencing of 
several peptide pairs by mass 
spectrometry indicated that two 
proteins were present in this band: 
fibronectin and collagen alpha-3. A 
comparison of intensities of the light 
vs. the heavy peptides on different 
days of the differentiation process is 
shown. 

7.3. In Vivo Labeling with Stable Amino Acid Isotopes 

Labeling of growing cells by stable isotope-containing amino acids has been successfully 
employed for quantitative proteomics and, although limited to culture systems, offers 
several advantages over in vitro systems (73–75): it is highly reproducible as the samples 
can be mixed earlier in the experimental procedure (following cell harvesting), and 
labeling only requires the growth of cells in special media; and it is simple to perform and 
versatile, as several amino acid isotopes or different isotopic versions of the same amino 
acid can be used. 

Because in vitro models for the study of adipose tissue biology and the preadipocyte 
differentiation process are well established, this labeling method combined with LC-
MS/MS represents a promising approach for the study of the changes in the adipocyte 
secretome. As an example, we present an experiment where we have used stable isotope 
labeling by [13C6] lysine to study the secretome changes during the preadipocyte 
differentiation process into adipocytes. 

In this experiment, 3T3-L1 preadipocytes were grown in media containing [12C6] 
lysine (light) or [13C6] lysine (heavy) as the only source of lysine. Conditioned media 
from [12C6] lysine-labeled adipocytes on day 1 and [13C6] lysine-labeled adipocytes on 
days 4, 7, and 9 after the addition of DMI were collected. Equal volumes were used 
independently or mixed 1:1 (v/v) (day 1 vs. the rest of the days) for protein separation by 
1-D gel electrophoresis (Fig. 3A). Following visualization by Coomassie blue staining, 
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several protein bands were excised, trypsin-digested, and identified by LC-MS/MS. 
Because trypsin cleaves after arginine or lysine, the lysine-containing peptides from the 
mixture of two experimental samples could be visualized as pairs separated by a mass 
difference of 6 Da. Figure 3B shows the mass spectrometric analysis of a band where we 
observed an increase in the intensity of one of the bands as the differentiation progressed. 
Analysis by mass spectrometry revealed that two proteins, fibronectin and collagen 
alpha-3, were present in this band. Quantification of the relative amounts of each of the 
proteins in the different experimental mixtures indicated that while the amount of 
secreted fibronectin was downregulated during the differentiation process, the amount of 
secreted collagen alpha-3 was upregulated as indicated by the respective decrease or 
increase in the ratios between day-1 adipocytes and day-4, -7, and -9 adipocytes. By 
combination of [13C6] lysine and [13C6] arginine isotopes, all the peptides generated by 
trypsin digestion will be labeled and can be used for quantification purposes. Moreover, 
by using several amino acid isotopes, more than two systems could be compared 
simultaneously, which could be especially useful in time-course experiments. 

8. CONCLUSION 

A number of labeling, fractionation and quantitative methods can be used in gel-free 
systems or in conjunction with 1-D or 2-D gel electrophoresis, as exemplified in the 
study by Smolka and colleagues where ICAT was coupled to 2-D gel electrophoresis 
(76). The importance of secreted proteins as modulators of body homeostasis makes their 
identification and study especially relevant in the biomedical field. Quantitative 
approaches to examining the expression levels of proteins and posttranslational 
modifications may be the key to obtaining a more complete understanding of adipocyte 
biology. 
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1. INTRODUCTION 

Recently, mass spectrometry has become a routine technique for the automatic 
identification of thousands of proteins per day, in the subpicomolar range, and thus a key 
technique in proteomic applications. First introduced by Wilkins, the word “proteomic” 
designates the systematic identification of proteins found in organs, tissues, cells, and 
biological fluids that are the expression products of a genome (1). 

Most proteomic studies are based on two main analytical techniques: two-dimensional 
gel electrophoresis (2DE) and mass spectrometry (MS). The common way of processing 
consists of three steps (Fig. 1). First, the proteins from a crude sample (of varied origins 
such as tissues, cells, or  



 

FIGURE 1 General strategy for the 
identification of proteins purified by 
2DE. Protein spots are excised from 
the gel, either manually or by 
dedicated robots. Spots are then 
washed to remove detergents, and 
proteins are reduced and alkylated. 
Note that this step is often conserved 
even if the alkylation has been done on 
the samples prior to 
electrophoresis.Then samples are 
submitted to proteolytic cleavage and 
the supernatant is directly analyzed by 
mass spectrometry. Several protocols 
using an additional step called peptide 
extraction, sometimes followed by a 
desalting step, can be found in the 
literature (see, for example, the 
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protocol used at EMBL at 
http://www.mann.emblheidelberg.de/G
roupPages/PageLink/activities/protocol
s/ingeldigest.html). In our pro-teomic 
lab, we have chosen to by-pass these 
steps due to extensive sample loss 
during desalting. For a detailed 
protocol, see Fig. 2. After these sample 
preparation steps, mass analysis can be 
performed, followed by database 
searching. 

biological fluids) are separated by 2DE; second, individual spots are excised from the gel 
and submitted to a protease treatment, usually trypsin hydrolysis—trypsin cleaves 
specifically the C-terminal side of lysine and arginine residues—to generate protein 
specific peptides (Fig. 2); and third, these peptide mixtures are measured by MS, and the 
resulting peptide mass lists  

Mass spectrometry strategies for proteomic studies      371



 

FIGURE 2 Protocol for the 
proteolysis of 2DE gel spot prior to 
mass spectrometry analysis. (Adapted 
from Ref. 82.) 

are compared to database entries, using appropriate search engines. These experiments 
can be completed by tandem mass spectrometry (MS/MS) in order to obtain sequence 
information on the peptides. This is performed either by de novo sequencing (the 
deduction of a peptide sequence from a raw fragmentation spectrum) or by straight 
comparison of the fragmentation pattern with the theoretical fragmentation spectra of all 
proteins of a database. Database searches constitute a key step for protein identification: 
large-scale nucleotide sequencing of Expressed Sequence Tags (EST) or of genomic 
DNA has provided much information on the amino acid sequences of proteins now 
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contained in databases, and complete genome sequencing has been achieved for a wide 
variety of organisms (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Genome). 

The purpose of this chapter is to introduce recent mass spectrometry applications in 
the field of proteomics. The basics of proteomics experiments will be described, with 
particular emphasis on MS contributions both to large-scale proteomic projects and to 
fine protein characterization such as posttranslational modifications. The reader will be 
given an overview of what has become possible in this emerging field. 

2. MASS SPECTROMETRY 

2.1. Common Strategies for Protein Identification by MS 

To identify a protein by MS, two strategies can be employed: peptide mass fingerprinting 
(PMF) and sequencing by MS/MS. 

The finger printing strategy PMF, also called peptide mass mapping, is the most 
commonly employed strategy for large-scale protein identification by MS. The principle 
is based on the matching of an experimentally measured peptide mass list with masses 
obtained by in silico digesting the proteins of a database using the same protease 
specificity as that used for the sample. Eventually, partial cleavage by the protease and 
chemical modifications of the protein can be taken into account. Crucial points for the 
confidence of protein identification using the PMF approach are the mass accuracy (50 
ppm is a typical error window if internal calibration has been done on trypsin autolysis 
peaks) and the number of peptide masses that match with theoretical fragments of the 
protein. Several free algorithms allow database searching by PMF, for example, Profound 
(http://prowl.rockefeller.edu/cgi-bin/ProFound), Mascot 
(http://www.matrixscience.com/), Peptldent (http://us.expasy.org/tools/peptident.html), 
and MS-Fit (http://prospector.ucsf.edU/ucsfhtml4.0/msfit.htm). 

Most MS/MS experiments are based on the selection of a given (“parent”) peptide and 
its sequence-dependent fragmentation in a collision cell. The rules for the fragmentation 
of peptides are well established (2–4): most fragments are produced by the breakage of 
the amide bond (…–CO–NH–…) along the peptide backbone. Therefore, MS/MS spectra 
usually contain easily identifiable series of fragment ions from which a sequence tag can 
be deduced; the mass difference between two consecutive fragment peaks corresponds to 
the mass of an amino acid (Fig. 3) and, therefore, one can deduce a short stretch—
commonly 3 to 4 residues—of amino acid sequence. The sequence tag is part of this short 
sequence of amino acids, completed by the start and the end masses of the fragments. 
This tag provides additional information to the peptide mass list obtained by PMF and 
can be used for database searching in order to reach more specific protein identification 
(5). Actually, many algorithms do not reconstitute a sequence tag but rather proceed by 
comparison of the whole fragmentation pattern observed on the MS/MS spectrum with 
predictable ions generated by virtual  
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FIGURE 3 (a) MS/MS spectrum 
obtained on the Global Q-TOF 
(Waters) for the peptide 
IDAALAQVDTLR of flagellin from 
Salmonella typhimurium (NCBI entry 
gi|96744) separated by 2DE after 
tryptic cleavage. Corresponding 
fragments (y- or b-) are indicated on 
the peaks. (b) Nomenclature of the 
peptide fragmentation. (From Ref. 4.) 

fragmentation of all possible peptides from a database. This is a powerful tool when the 
protein record is in the database; however, if the protein is not in the database, one has to 
reconstitute sequence tags for several peptides of the protein and use them for an MS-
BLAST (Basic Local Alignment Search Tool) search (http://dove.embl-
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heidelberg.de/Blast2/msblast.html) or for a BLASTsearch (search for short nearly exact 
matches) if the sequence stretch is long enough (http://www.ncbi.nlm.nih.gov/BLAST/). 
The third possibility is the de novo sequencing of the peptide that exists within the 
interpretation of the complete fragmentation spectrum without any prior knowledge of 
the peptide sequence. 

2.2. Instrumentation 

Mass spectrometers are composed of an ion source, a mass analyzer, an ion detector, and 
a data acquisition unit. Sample molecules are ionized in the ion source, and separated 
according to their mass-to-charge ratio (m/z, in Thomson units (Th)) in the analyzer. Ions 
of given m/z values are counted when they reach the detector and the result is an ion 
current (IC) composed of all individual mass spectra. The most widely used techniques 
for the ionization of biomolecules—proteins and peptides, mainly—are: matrix-assisted 
laser desorption ionization (MALDI) and electrospray ionization (ESI). These soft 
ionization techniques are commonly coupled to time-of-flight (TOF) analyzers, ion trap 
analyzers, or two analyzers in tandem as in the widespread quadrupole-TOF 
configuration (Q-TOF). 

2.2.1. The MALDI-Based Instruments 

The MALDI technique was introduced in 1988 by Karas and colleagues (6). Before 
analysis, samples are mixed with a UV-absorbing matrix, loaded onto a stainless steel 
target plate, and allowed to dry. Cocrystallization of the matrix and the analyte occurs 
during drying. α-Cyano-cinnamic acid or 2, 5-dihydroxybenzoic acid are common 
matrices for peptide analysis, whereas sinapinic acid is preferred in the case of intact 
proteins. Laser pulses are then used to sublimate and ionize the cocrystals and generate 
ions in the gas phase. Although the exact mechanism of ion production remains 
controversial, it is generally thought that ionization occurs via a matrix-to-analyte proton 
transfer in the gas phase. Ions produced in MALDI are generally singly charged (they are 
noted [M+H]+ where M is the mass of the molecular species). For that reason, MALDI 
has been traditionally coupled to TOF analyzers, enabling the measurement of high—
theoretically unlimited—m/z ratios. The fact that singly charged ions are preferentially 
produced by MALDI implies that most molecular species will give only one mass peak in 
the spectrum, allowing the interpretation of even complex mixture spectra. Such analysis 
can be easily automated, and modern MALDI sources accommodate 96- or 384-well 
plates, making the technique especially attractive for large-scale proteomic projects. 

Until recently, most instruments with a MALDI source had a single analyzer and were 
not very adaptable to MS/MS measurement. Fragmentation of ions could be performed 
by post-source decay (PSD) and the fragments analyzed in a TOF tube equipped with an 
electrostatic reflector; however, performance of PSD experiments is complex and 
difficult to automate. Therefore, proteomic studies using MALDI instruments were 
largely performed with the PMF approach. Yet, one difficulty in the PMF approach is 
when one starts with a mixture of proteins. This might happen in proteomic samples even 
when they are extracted from 2DE gels. In fact, after protease cleavage, the peptide 
mixture is even more complex than the starting sample; although MALDI easily deals 
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with mixtures, this is not true for database search algorithms. Usually, the score 
calculated by these algorithms in order to sort protein hits is inappropriate if several 
proteins match nicely with database entries. To overcome this difficulty, newer 
instrument configurations with MALDI ion sources allowing fragmentation of selected 
peptides (MS/MS) have been introduced: MALDI-Q-TOF and MALDI-TOF-TOF 
instruments. 

One available MALDI-MS/MS hybrid configuration is based on the use of a 
quadrupole in tandem with a TOF analyzer (MALDI-Q-TOF). Today, double-source Q-
TOF spectrometers enable the use of both MALDI and ESI ionizations on the same 
instrument. In the double-source configuration proposed by Waters (Q-TOF Global), ESI 
and MALDI sources are rapidly interchangeable without venting the instrument. It has 
been shown that the fragmentation patterns differ according to the ionization method 
used. A study by Wattenberg and collaborators demonstrated that with MALDI-Q-TOF, 
both C-terminal (y-fragments) and N-terminal (b- and a-fragments) as well as neutral loss 
of water and ammonia were found in the spectra, whereas mainly C-terminal fragments 
are generated with the ESI-Q-TOF technique (7). Although attractive, current MALDI-Q-
TOF instruments can hardly be used for high-throughput proteomic studies because target 
plates usually contain no more than a dozen spots. Nevertheless, this instrument can be 
helpful to complete the information provided by MALDI-TOF alone, without the need to 
desalt the sample, as required in the case of ESI-Q-TOF analysis. 

The MALDI-TOF-TOF technique utilizes two TOF tubes in combination (in tandem). 
Parent ion masses are measured in the first TOF analyzer, selected by an ion gate (which 
allows the transmission of an ion population at a given time), and transmitted to a 
collision cell where fragmentation occurs. This is called collision-induced dissociation 
(CID) which is a high-energy fragmentation process. The fragment masses are then 
measured in the second analyzer. The MALDI-TOF-TOF procedure is especially adapted 
to high-throughput identification of proteins because it combines facile automation with 
the accurate mass determination of fragments and the sensitivity of TOF analyzers (8). 
Another advantage of this technique is the high specificity of the mass spectra obtained, 
allowing more confidence in protein identification, and its possible application to the 
analysis of complex protein mixtures without preliminary separation. Although relatively 
more complex than MALDI-Q-TOF spectra, the data can be used for de novo 
sequencing. This has been done by Yergey and coworkers for sequence determination of 
sea urchin egg membrane proteins. In this study, the method allowed the exact 
determination of peptide sequences differing by only a single mass unit (9).  

2.2.2. Electrospray lonization-Based Instruments 

The application of the ESI technique for the analysis of biomolecules by MS was 
introduced by Fenn in 1989 (10). The sample is prepared in an acidified aqueous-organic 
solvent (usually, a 1:1 (v/v) mixture of water and acetonitrile containing 0.5% formic 
acid) and is continuously sprayed into the ESI source via a metal capillary. An electric 
field (ca. 3000 V/cm) is applied at the exit of the capillary, which has the effect of 
polarizing the liquid and directing positive droplets toward the entrance of the mass 
spectrometer. Due to a charge repulsion effect, the droplets undergo multiple explosions 
upon evaporation of the solvent. This phenomenon generates “daughter” droplets of 
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smaller volume. Although the exact mechanism of ESI remains unknown, it is admitted 
that daughter droplets give rise—in the end—to completely dried (positive) ions. The 
positive charges that are carried by the ions in ESI are preexisting in solution; in the case 
of proteins and peptides, for example, positive charges occur through protonation of basic 
residues (arginine, lysine, histidine, N-terminus) under the acidic conditions of the 
sprayed solution. A consequence is that, contrary to MALDI, it is rather common to 
observe multiply charged ions in ESI. In the case of peptides generated by trypsin 
proteolysis, doubly charged ions are generally observed, because these peptides contain a 
C-terminal lysine or arginine residue, and become protonated at their N-terminal amino 
group. This situation is particularly favorable for the fragmentation of such peptides 
because spectra contain singly charged fragments and are thus quite easily interpreted. 

Crucial advantages of ESI are that the whole ionization/desorption process occurs at 
atmospheric pressure, and that the analytes are infused into the ion source from a 
solution. Therefore, this method is compatible with separative techniques such as liquid 
chromatography or capillary electrophoresis. However, one drawback of ESI is that it is 
not tolerant to salts, making desalting of the samples absolutely necessary before 
analysis. 

The fact that ESI produces multiply charged ions enables the coupling of this 
technique to mass analyzers with a moderate m/z range (e.g., 0–2000 m/z); hence, 
traditionally, ESI was coupled to triple quadrupole analyzers, which provided affordable 
MS instruments with already good performances (mass accuracy was better than 0.01%). 
Today, more and more laboratories involved in proteomics projects are equipped with 
ESI-Q-TOF instruments (e.g., a quadrupole mounted in tandem with a TOF tube), 
because these configurations enable high-sensitivity measurement (a few femtomole/µL), 
especially in the MS/MS mode. Furthermore, the excellent mass accuracy (around 50 
ppm in routine measurements) and the resolution of the TOF analyzer that enables 
unambiguous determination of the charge states increase the confidence of peptide 
sequence determination. Adapted algorithms are now available that enable routine 
interpretation of MS/MS experiments, and MS/MS spectra acquisition can be easily 
automated by using the “survey MS scan” (e.g., the selection for fragmentation of every 
possible precursor ion on the basis of its intensity, charge state, mass range, etc., as 
defined by the user). 

Another type of analyzer classically coupled to ESI sources is the ion trap. In such 
analyzers, the ions are captured in a small volume of helium (the trap), using high-
frequency electric fields. By varying the value of the frequencies, ions are scanned out of 
the trap and detected to give a mass spectrum. The advantages of this type of analyzer are 
its low cost and its sensitivity, since ions can be accumulated in the trap to increase the 
signalto-noise (S/N) ratio. Moreover, multiple stages of MS/MS measurements can be 
performed since the trap plays the role of an analyzer and a collision cell at the same 
time. After an MS scan, a set of ions of a given m/z can be stored in the trap to be 
fragmented; fragmentation then occurs by application of a voltage on the cap electrodes 
of the ion trap, with a frequency corresponding to the resonance frequency of the trapped 
parent ions. Fragment ions can be stored again in the trap, and the fragmentation process 
repeated. These instruments allow the realization of multiple-stage MS experiments 
whereas only MS/MS experiments can be done on Q-TOF or TOF-TOF instruments that 
have only two analyzers separated by one collision cell. Ion traps are widely used for fine 
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determination of the chemical structure of small molecules (e.g., oligosaccharides (11, 
12)). In proteomics, many studies have been carried out by LC-MS/MS using ion trap 
analyzers (13). However, the MS/MS spectra generated during these LC-MS/MS runs are 
almost impossible to interpret in a de novo manner (i.e., by manually reconstituting 
stretches of amino acid sequence). In fact, fragmentation patterns are often more complex 
than in Q-TOF mass spectrometers and are further complicated by the abundant loss of 
water in the traps. Above all, the resolution is usually insufficient to separate a series of 
isotopes in a peptide and, therefore, does not allow the use of software deconvolution 
tools with good confidence (e.g., transformation of a m/z spectrum into a“real mass” 
spectrum). Thus, interpretation is done by straight comparison of the experimentally 
observed fragmentation pattern with in silico-simulated fragmentation spectra for all 
peptides of a database, which is limited to proteins that are present in the database. In 
these algorithms, a set of candidate peptides is selected from the in silico-digested 
database if their masses match the experimentally measured mass of the parent ion; only 
these selected peptides will be considered for the second step of the search: the 
comparison of the fragmentation patterns. Thus, if the protein is not in the database, there 
are few chances that it will be identified with these algorithms unless a very homologous 
protein is recorded in the database that gives similar digestion peptides. 

Recently, hybrid instruments combining triple quadrupole technology and linear ion 
trap analyzers have been developed (Q-TRAP from Applied Biosystems). These 
instruments allow the enhancement of multiply charged ions (an interesting feature for 
the analysis of tryptic peptides) and the use of three different scan modes. In addition to 
the traditional “survey scan” mode, precursor ion scan detection can be used: this mode 
allows the selective detection of a modified peptide by the detection of a given fragment. 
For example, phosphorylated peptides are characterized by a fragment of m/z=−79 in the 
negative mode (loss of the phosphate PO3

−), and tryptic peptide spectra contain a 
fragment at m/z=+147 in the positive mode. The third original scanning mode is the 
neutral loss mode which permits, for example, the detection of phosphorylated peptides 
(loss of 98 Da for H3PO4 loss of 49 Da for doubly-charged peptides in the positive mode) 
without the need to switch instrument polarity (14). 

Another type of mass spectrometer using ESI ionization and also based on the trapping 
of ions (but in a high magnetic field under vacuum) is the Fourier Transform Ion 
Cyclotron Resonance Mass Spectrometer (FTICR-MS). Among all the MS techniques, 
FTICR-MS is the most resolutive, sensitive, and accurate. For example, with only 400 
attomoles of a protein digest, a glutamine and a lysine (representing a mass difference of 
only 0.036 Da) could be discriminated by accurate mass measurement of precursor ion 
and fragment ions (15). Moreover, the technique is used to determine accurate masses for 
high-molecular-weight proteins, allowing the characterization of posttranslational 
modifications (16). However, its high cost, complexity of use, and poor fragmentation 
efficiency explain why it is still not widely used in the field of proteomics. Nevertheless, 
an example of the application of this technique to high-throughput proteomics is the 
“accurate mass tag” approach, described by Smith and coworkers (17). This study used 
the accurate mass determination (e.g., with a precision <1 ppm) by FTICR-MS to 
unambiguously validate the identity of peptides sequenced by conventional MS/MS 
techniques. This method provides a very high level of confidence regarding peptide 
identification and will probably have a great impact on the field. 
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2.3. Quantitative Mass Spectrometry 

The determination of protein quantitative variation as a function of various parameters 
such as cell-cycle states, environmental conditions, genotypes, disease states, or 
administration of drugs represents a major interest in our field, called “differential 
expression proteomics.” Today, with more and more studies focusing on protein 
differential expression profiles, such as, for example, between control and treated cells, it 
has become a challenge for mass spectrometry to not only identify proteins, but also to be 
able to quantify the differences in protein expression levels. 

Yet, it must be noted that mass spectrometry has always been a poor quantitative 
method: Neither MALDI-MS nor ESI-MS alone can be used to obtain quantitative 
information due to preferential ionization of some peptides compared to others of 
different chemical nature. This observation, known as spectral suppression, although 
poorly understood, prevents the detection of some peptide species and systematically 
results in incomplete sequence coverage (18). 

One possible way to overcome the problem is to use synthetic peptides as internal 
standards to realize an absolute quantification of proteins, as was done by Gerber and 
colleagues (19). In this example, peptides were synthesized with incorporated stable 
isotopes (13C and 15N) in order to mimic their native counterpart. The study permitted the 
identity of low-abundance yeast proteins as well as quantitative measurement of the 
phosphorylation state of a serine residue from human separase protein. Obviously, 
absolute quantification is rather complex by mass spectrometry, since it utilizes 
chemically synthesized standard materials mimicking the molecules of the analyzed 
samples. 

Relative quantification by MS was achieved using the isotope-coded affinity tag 
(ICAT), a method pioneered by Gygi and coworkers in 1999 (20). In this precursor work, 
Gigy and his colleagues applied this technology to compare protein expression levels in 
the yeast Saccharomyces cerevisiae using either ethanol or galactose as the source of 
carbon. The methodology enabled the concurrent identification and comparative 
quantitative analysis of proteins from different biological samples such as cells, tissues, 
and biological fluids. Since the introduction of this methodology, proteomic studies have 
gained a new dimension: they not only produced extensive protein lists but could also 
address fundamental questions related to changes in protein expression.  

The ICAT method is based on a specific chemical reagent composed of 1) a cysteine-
reactive group (iodoacetic acid, commonly used as a sulfhydryl group-alkylating agent to 
prevent the formation of disulfide bonds between reduced cysteine residues); 2) a linker 
containing eight heavy (2D atoms) or eight light (1H atoms) isotopes; and 3) an affinity 
tag (biotin, for example). The principle of the method consists of labelling the control 
sample and the experimental sample (for instance, two extracts from cells in two different 
biological states) with the light and heavy ICAT reagents, respectively. The two samples 
are mixed together before proteolytic cleavage. The mixture is then separated on a 
suitable affinity column (avidin, if the biotin group has been used) to selectively purify 
the labelled peptides. The last step is the analysis of the mixture by reverse-phase 
nanocapillary liquid chromatography coupled with electrospray tandem mass 
spectrometry (nanoLC ESI-MS/MS). Each peptide is represented by a pair of peaks 
separated by 8 Da (the mass difference between the light- and heavy-tagged forms) which 
can be attributed to the control and experimental samples. Their relative abundances, and 
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hence the relative abundance of the protein from which they originate, can be deduced 
from the peak intensities, since the light and the heavy forms of the peptide behave—e.g., 
ionize—in the same manner in the mass spectrometer, due to similar chemical 
composition (see Fig. 4). 

Although the ICAT method is rather robust, some complications may appear during 
automated data treatment in the case of deuterated ICAT: The addition of deuterium 
atoms to a given peptide has some influence on its retention time, compared to the 
nondeuterated species, and the deuterated peptide has been shown to elute at lower 
organic solvent percentage, compared to its native homologue. The shift in the retention 
times may lead to false data interpretation with the software tools available for treating 
the ICAT-based experiments (21, 22). Today, a new generation of ICAT reagents 
immobilized on beads and using 13C isotopes overcomes this problem. The linker is 
composed of nine 12C atoms or 13C atoms for the light and heavy forms, respectively. One 
other advantage is that the use of these reagents eliminates the possible confusion 
between peptides that have two ICAT-labelled cysteines (mass shift of +16.10 Da) and 
peptides that have one oxidized methionine (mass shift of +15.99 Da). These new ICAT 
reagents also incorporate an acid-cleavable group between the isotope tag and the biotin 
affinity group in order to avoid the fragmentation of the tag during MS, which greatly 
simplifies mass spectral interpretation (23, 24). 

During an ICAT experiment, the labelled peptides are also fragmented for protein 
identification by MS/MS. Recent software developments enable  

 

FIGURE 4 Quantification by MS: the 
ICAT method. This method allows the 
comparative quantification of the 
protein content of two samples 
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obtained under different conditions 
(for example, two samples of bacterial 
cells grown in culture media with 
different compositions). Before 
mixing, each sample is labelled with 
two ICAT reagents differing in mass 
by 8 Da due to different isotope 
composition. Mass spectrometry 
analysis of the mixture allows the 
comparison of the intensities of a given 
peptide labelled with the lighter 
isotope and the same peptide labelled 
with the heavier isotope, logically, the 
abundances of the protein from which 
rom which the peptide is derived can 
be deduced. (Adapted from Ref. 19.) 

the selective identification of differentially expressed proteins, based on the selective 
fragmentation of the pairs of peptides showing a mass difference of 8 Da (in the case of 
deuterated and nondeuterated ICAT reagent) and differing in their abundances (25, 26). 

One additional benefit of the ICAT technique is that cysteine-containing peptides are 
selectively purified by affinity chromatography (thanks to the biotin part), thus 
decreasing the complexity of the mixture. Of course, the subsequent drawback is that 
proteins that do not contain cysteine residues are not amenable to this technique; this 
concerns 8% of the proteins from the total yeast proteome, for example. 

The ICAT methodology has been employed to obtain quantitative information on low-
abundance proteins (27), integral membrane proteins (28), subcellular structures (29), and 
macromolecular complexes (30). In the latter study, a complex composed of 68 subunits 
(a RNA polymerase II pre-initiation complex) was analyzed. The components of the 
complex were identified due to their higher abundances when the sample was prepared 
by using a specific complex purification (use of promoter DNA affinity), compared to the 
abundances of the same components when no specific purification was performed. This 
ingenious procedure achieved with quantitative MS circumvents the problem of 
copurifying nonspecific proteins during the isolation of macromolecular complexes. 

2.4. Determination of Posttranslational Modifications by Mass 
Spectrometry 

The use of mass spectrometry is obviously a great tool for the identification of 
posttranslational modifications (PTMs). It is commonplace to say that PTMs are covalent 
chemical modifications that result in a decrease or an increase of the protein mass (a 
PTM mass list is available in the deltamass database at 
http://www.abrf.org/index.cfm/dm.home). This mass difference is characteristic of a 
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PTM, and the fragmentation of the modified peptide may even lead to the identification 
of the modified amino acid. Reality is more complicated, since careful interpretation of 
hundreds of mass spectral data is necessary to actually locate and identify these PTMs. 

By the way, some large-scale PTM identification studies have been attempted, an 
example of which is the investigation of the “phosphoproteome” (e.g., all phosphorylated 
proteins in cells or tissues). Phosphorylation (representing a net monoisotopic mass 
adduct of +79.96 Da) is a ubiquitous PTM (about one-third of all mammalian proteins are 
supposed to be phosphorylated at any given time) that occurs mostly on serine or 
threonine residues; reversible phosphorylation is a key factor in the regulation of many 
biological mechanisms such as subcellular localization, enzymatic activity, protein 
degradation, protein complex formation, and cell apoptosis. Thus, the analysis of the 
phosphoproteome has raised the interest of the scientific community including mass 
spectrometry users. 

One difficulty in phosphoproteome analysis is that phosphorylation occurs at a very 
low level in the cell. Thus, finding phosphopeptides in a mixture with their non-
phosphorylated counterparts is like finding a needle in a haystack. One old but robust 
technique in order to specifically enrich samples in phosphoproteins is immobilized metal 
affinity chromatography (IMAC); it is based on the specific retention of negatively 
charged phosphate groups (PO3

−) on the stationary phase containing immobilized 
positively charged metal ions (Fe3+, Cu2+, or Ga3+). Nonspecific binding of acidic 
residues on the IMAC resin can be lowered by performing a methyl esterification of the 
side-chain carboxylates of glutamic and aspartic acids; this greatly improves the recovery 
of phosphorylated peptides after IMAC by diminishing the competition for the binding 
(31, 32). Other derivatization methods can be found in the literature but they require 
larger sample amounts (33, 34). 

As illustrated for phosphoproteins, one way of undertaking the complexity of a sample 
is to carry out a selective enrichment of the proteins of interest. Other enrichment 
methods exist for other PTMs, for example, to enhance the detection of glycopeptides 
(35, 36). The latter study describes the purification of O-linked N-acetylglucosamine 
peptides. More recently, a large-scale method has been developed to purify N-
glycosylated proteins. The strategy termed IGOT for isotope-coded glycosylation-site-
specific tagging consists of five steps: 1) the affinity capture of glycoproteins from a 
complex sample using a lectin column; 2) the tryptic digestion of the glycoprotein; 3) the 
purification of the glycopeptides using the same lectin column; 4) the treatment of the 
glycopeptides with an enzyme that cleaves specifically the N-glycosylation (peptide N-
glycosidase F (PNGase F); the cleavage is catalyzed in H2

18O, which leads to the 
incorporation of an 18O atom at the N-glycosylation site; and 5) the analysis of the 18O-
labelled peptide by LC-LC-MS/MS. This method allowed the identification of 400 
unique glycosylation sites from 250 glycoproteins purified from an extract of 
Caenorhabditis elegans (37). 

Considering that it is impossible to develop selective purification methods for every 
single type of covalent modification—more than 200 protein PTMs have been listed so 
far (38)—and that reduction of sample complexity leads to biased data since all the 
proteins that do not contain the reactive group under study are not identified, the need of 
a shotgun method for PTM characterization seems necessary. MacCoss and coworkers 
have presented an alternative approach based on the use of a multienzymatic system, 
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including both specific (trypsin) and nonspecific (subtilisin and elastase) enzymes for 
proteolytic cleavage and multidimensional chromatography coupled to tandem MS (39); 
they show that the redundancy obtained in the protein sequences considerably reduces the 
ambiguity in PTM determination. The authors were able to detect 60 unambiguous PTM 
sites (acetylations, oxidations, phosphorylations, and methylations) on 11 human 
crystalline proteins. This strategy was slightly modified by Wu and colleagues with the 
single nonspecific enzyme, proteinase K. Although the complete digestion of proteins 
using this enzyme usually leads to dipeptides, partial cleavages occurred under acidic 
conditions and resulted in peptides of 6 to 20 residues long. Using this method, low 
sequence coverage was obtained (<20% sequence coverage for the majority of the 
identified proteins). However, the study permitted the identification of 79 modifications 
(phosphorylations, acetylations, and mono-, di-, or tri-methylations) on 51 proteins from 
rat brain homogenate (40). 

Software tools such as the “findmod” software available on the internet 
(http://www.expasy.ch/sprot/findmod/) might be helpful to characterize and locate PTMs 
from peptide mass fingerprinting data; this software compares mass differences between 
experimental and theoretical peptides, and if these mass differences correspond to one of 
the 35 referenced PTMs, some rules are applied to determine the most probable 
localization in the sequence (41). A similar tool is also available at the following address: 
http://www.expasy.ch/tools/glycomod/. This tool aims at determining the possible 
oligosaccharide structures occurring in glycopeptides from experimental mass data (42). 

2.5. Probing Biomolecular Interactions by MS 

2.5.1. The Surface Plasmon Resonance-MS method 

Surface Plasmon Resonance (SPR) used in combination with MS has demonstrated its 
efficiency for determining biomolecular interactions in the field of proteomics. This 
technique is also called biomolecular interaction analysis (BIA). The methodology 
involves the fixation of the receptor of interest (either an antibody or any other protein for 
which a ligand has to be determined) on a“sensor chip” (or “biosensor”). The chip is 
made of glass coated with a layer of gold to which carboxymethyl dextran is attached. 
The carboxy termini of dextran chains can be activated by treatment with N-
hydroxysuccinimide (NHS) and 1-ethyl 3-(3 dimethylaminopropyl) carbodiimide (EDC), 
enabling the reaction of amino, sulfhydryl, aldehyde, or carboxyl groups with the 
activated surface. Therefore, any protein can be coated on the chip. Upon injection of the 
sample, the ligand bounds to the chip with its attached protein, and their interaction can 
be measured by the variation of the refractive index close to the surface of the sensor chip 
(Fig. 5). The output is a sensorgram that represents the real-time monitoring of the 
association-dissociation process between the receptor and the target molecule. A very 
new development of the technique allows the regeneration of the chip using suitable 
buffer and the elution of the bound target molecule  
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FIGURE 5 Strategy of a SPR 
experiment for theoff-linecouplingwith 
MS.The SPR-MS method consists of 
the binding of a target molecule (a 
receptor, antibody, or any protein of 
interest) on a chip. After chip 
preparation, the crude sample can be 
loaded on the chip and, after washing, 
the specifically bound protein of 
interest can be eluted with adapted 
buffer. In the eluate solution, 
proteolysis can then be performed in 
preparation for mass spectrometry 
analysis. The method of SPR allows 
the user to measure the value of the 
interaction between the protein used as 
the “fishhook” and the unknown 
molecule. Although very promising, 
this technique only permits the 
recovery of a few femtomoles of 
biological material, a quantity which is 
difficult to manage, thus making mass 
spectrometry analysis uncertain. 

in a reduced volume (4 to 7 µL). This process, called “microrecovery,” has opened new 
insights for the identification of a molecule of interest by MS. Moreover, the 
microrecovery process can be automated, allowing successive recoveries of the target 
molecule and the pooling of several fractions for the enrichment of the target molecule. 
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To be identified, the protein recovered in a small volume can be digested by a protease 
prior to mass analysis. A paper by Lopez and collaborators describes this strategy for the 
fishing of SHP2 tyrosine phosphatase present in cytosolic extracts using an 
immunoreceptor tyrosine-based inhibitory motif sequence of the sst2 somatostatin 
receptor. A low amount of the target protein (17 femtomoles) was recovered using 10 
mM triethylamine (TEA) containing 0.5 M urea. This buffer was chosen because TEA 
can easily be removed by evaporation prior to the addition of ammonium 
hydrogenocarbonate, a buffer suitable for trypsin digestion. The authors clearly 
demonstrate the capabilities of the BIA-MS strategy for the specific and unambiguous 
identification of target molecules present at the femtomolar range even in complex 
mixtures (43).  

2.5.2. The Tandem Affinity Purification Tag Method 

Among the methods useful for probing biomolecular interactions, the tandem affinity 
purification (TAP) tag approach seems promising. This technique developed by Rigaut 
and coworkers allows the purification of protein complexes under native conditions at 
their biological level. This procedure led to the identification of a three-protein complex 
in yeast: the tagged protein (Map31p) and two copurified proteins (Map10p and Map3p) 
(44). 

The process consists of four steps: 1) The target protein is expressed as a fusion 
protein containing a calmodulin-binding peptide (CBP) followed by a Tobacco-Etch 
Virus (TEV) protease cleavage site and a protein A tag. This tag is called the TAP tag 
and is generally located on either the C- or the N-terminus of the target protein, 2) The 
fusion protein and its associated proteins are loaded onto a first affinity column 
composed of IgG beads interacting with the protein A part of the target molecule, 3) TEV 
protease is added, which results in the cleavage of the target sequence and in the elution 
of the protein complex, and 4) A second affinity step is performed on calmodulin beads 
in the presence of Ca2+ to wash the TEV protease, and the complex is then eluted in 
ethyleneglycol-bis-(beta-amino ethyl ether) (EGTA). The eluted fraction can be analyzed 
by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS PAGE) followed by 
the traditional ingel digestion and MS analysis (Fig. 6). 

Another recent study by Gavin and collaborators showed that the TAP tag 
methodology was applicable to large-scale identification of protein complexes from 
baker’s yeast. This work allowed the identification of 232 distinct multiprotein 
complexes showing the applicability of this kind of approach for the study of the 
“interactome” (45). 

Another interesting report by Taoka and coworkers illustrates the use of the TAP tag 
procedure for the identification in rat cerebral extracts of the VI protein partners, namely, 
the α and β subunits of (β-actinin (46). These two proteins where identified after in-gel 
tryptic digestion and tandem MS. Interestingly, SPR experiments were also performed in 
order to obtain kinetic data on complex formation. This technique was used after the 
identification of the complex molecules. Other studies on higher-eukaryote cells 
demonstrated the efficiency of this purification procedure coupled to the identification of 
the proteins by MS (47, 48). 
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2.5.3. Selective Enhance Laser Desorption lonization-MS 

Selective enhance laser desorption ionization (SELDI) has been introduced very recently. 
This technique allows a more selective detection than MALDI-MS due to the use of 
ProteinChips™ developed by the Ciphergen Company. The surface of the chip is coated 
with a variety of solid phases  

 

FIGURE 6 The Tap Tag approach, a 
new method for purification of protein 
complexes. This method allows the 
purification of protein complexes by 
two-step affinity chromatography.The 
protein is expressed with a Calmodulin 
Binding Peptide (CBP) part and a 
protein A tag separated by a TEV 
protease cleavage site. After a first 
affinity purification step based on the 
protein A part of the target protein (on 
IgG beads), the complex is eluted by 
the action of the TEV protease. This 
purification is followed by a second 
affinity step based on the binding of 
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the free CBP part of the target protein. 
Classic 1DE and mass spectrometry 
can then be performed to respectively 
isolate and identify the individual 
proteins of the complex studied. 
(Adapted from Ref. 44). 

classically used as chromatographic sorbents (hydrophobic C18, hydrophilic SiO2, 
cationic, anionic, or metal affinity phases) or with an activated surface on which any 
customer may select the molecules to be bound (antibodies, DNA, receptors etc). The 
basic steps of the technique involve: 1) the selective binding of target proteins on the 
chip, 2) the washing of the chip to preserve specific interactions with the chip surface and 
elute unbound proteins and interfering substances, 3) the addition of a matrix (similar to 
those used in MALDI-MS) that cocrystallizes with the analytes bound onto the chip, 4) 
the ionization of the crystals by a laser, and 5) the detection of the analytes in a linear 
TOF analyzer.  

This technology has been designed for the rapid screening of pathologic biomarkers 
from complex biological fluids (cell lysates, blood serum, urine, etc.) (49). It has proven 
to be useful in the early diagnosis of diseases such as cancer (50, 51). The methodology 
has also been successful in the determination of protein-protein interaction and DNA-
protein interaction, and in the detection of phosphorylated proteins. 

A significantly different protein profile displayed in the control sample vs. pathologic 
sample is the first step toward the discovery of a biomarker at an early stage of a disease. 
The biomarker patterns can also be used for treatment monitoring by comparing the 
protein profiles before and after drug administration. However, the candidate protein 
cannot be identified solely on the basis of its molecular mass. In order to identify the 
protein, in situ digestion with a protease can be performed on the chip, followed by 
peptide mapping strategy (52). Moreover, testing different chips with different washing 
conditions may improve the knowledge of the physicochemical properties of a protein, 
and further lead to considerably facilitated purification. This helps to predict the 
chromatographic properties of a protein and make any further purification by 
conventional chromatographic methods easier. 

Although promising for the rapid protein profiling from complex clinical samples, this 
technique remains limited as far as protein identification is concerned, because 
conventional peptide mass fingerprinting has to be employed. This fact seems to limit the 
use of SELDI to a discovery tool in the field of proteomics. 

3. SAMPLE SEPARATION 

In the classical approach, proteomic studies combine a separative method allowing the 
isolation of all protein components from crude samples, and a mass spectrometric method 
allowing their identification and, possibly, the fine characterization of their 
posttranslational modifications. There are basically two alternatives for sample separation 
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prior to mass spectrometry analysis: mono- or two-dimensional gel electrophoresis (1DE 
or 2DE) or liquid chromatography (monodimensional or multidimensional). 

3.1. Electrophoresis 

Sample separation is of utmost importance for proteome analysis. Whatever mass 
spectrometric method is used downstream, the way samples are prepared and separated is 
crucial for the overall success of the experiment. Moreover, it is often the time-limiting 
factor for large-scale studies. Today, automation of mass spectra acquisitions as well as 
data treatment and databank searching is widespread. However, among the sample 
separation methods, the most widely used, namely 2DE, is not amenable to automation. 
Because this technique is also time-consuming and cumbersome, it is the limiting factor 
in proteomics. 

The 2DE technique was introduced by O’Farrell in 1975 (53) and is widely used. It is 
obvious that the resolving power of 2DE (ca. 1500–3000 proteins can be separated on 
one gel) is not, so far, reachable in routine by any other technique. However, the 
technique has inherent limitations, especially regarding the separation of membrane 
proteins, proteins of extreme molecular weight, proteins of extreme isoelectric points (<3, 
5 and >10), or low-abundance proteins. The detractors of 2DE say that it is a good 
method for 50-kDa proteins within a pI range of 5–7. On the other hand, Rabilloud 
recently claimed that 2DE is “old, old fashioned, but it still climbs up the mountains.” We 
feel that the technique will remain the separation technique of choice in proteomics 
studies for a long time (54). We will not describe this technique in detail here but focus 
on the staining methods, which can greatly influence the amenability of samples to MS. 

Among the standard procedures for protein staining, we can enumerate the Coomassie 
blue staining, the photochemical staining with silver, the imidazole-zinc negative 
staining, and the staining with fluorescent dyes named Sypro. Although Coomassie blue 
staining methods are very popular and compatible with mass spectrometric analysis, the 
detection limit of 30–100 ng (for conventional Coomassie Blue) or 8–10 ng (for colloidal 
Coomassie Blue) prevents their use for low-abundance proteins. Silver staining methods 
are more sensitive (detection limit reaches 1 ng of protein), but the use of aldehydes as 
fixatives has shown poor recovery of peptides after in-gel proteolysis. Another problem 
of the silver staining method is that lysine and arginine residues are irreversibly modified 
which makes trypsinolysis difficult or even impossible. Mass spectrometry-compatible 
silver staining methods omitting the use of aldehydes for the sensibilization and silver 
impregnation steps have been extensively reported (55, 56). Many alternatives to this 
staining method have been published during the last years, among which are some 
protocols using a destaining step prior to the standard gel digestion procedure (57, 58). 

Zinc-imidazole staining is less sensitive than silver staining, the detection limit being 
around 5 to 10 ng (59). This type of detection is a reverse-staining method where free Zn 
ions precipitate with imidazole but protein-bound Zn ions do not. The result is an opaque 
background gel where protein spots appear transparent. The staining method is fully 
compatible with trypsin digestion followed by MS analysis (60–62). 

The fluorescent dye SYPRO ruby shows several attractive features for proteomic 
applications: first, in term of sensitivity, it is very close to silver staining (less than 10 ng 
of proteins), but a better sequence coverage is obtained for low-abundance proteins 
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stained with SYPRO ruby (63); and second, fluorescent staining provides a relatively 
routine method to quantify protein expression levels on a gel, especially since Amersham 
Biosciences has put on the market special kits for labelling protein extracts with the so-
called 2D difference gel electrophoresis (2D-DIGE) method (64). The principle is to label 
two different samples with two different cyanine fluorescent dyes (Cy3 and Cy5) 
exhibiting distinct fluorescent properties. This enables the separated detection of two 
different samples that have been loaded on a single 2D gel. One advantage is that it 
suppresses the differences in protein levels that come from gel-to-gel variation of the 
amount of protein detected. Another considerable advantage is that the linearity range of 
fluorescent stains is much wider than that of Coomassie blue stains or silver stains, which 
enables the use of fluorescent dyes to quantify changes in protein levels between two 
samples after image analysis. Last but not least, this staining method is fully compatible 
with MS. This method was applied to study the Escherichia coli proteome after benzoic 
acid treatment. A total of 179 differentially expressed proteins were unambiguously 
identified from 500 µg of protein recovered from control and treated bacteria. The 
majority of the relative change ratios (expression levels due to the acidic treatment) were 
rather small (<1.4-fold), but some larger ratios were also found (15.4-fold for the largest). 
Although careful interpretation of the observed changes is needed to establish their 
biological relevance, it is clear that fluorescent dyes open new possibilities in the field of 
protein expression studies to reveal small quantitative changes. The use of an internal 
standard—the incorporation of a known quantity of proteins in the samples—has proven 
to improve the accuracy of the detection of small variations in protein levels of different 
samples (65). 

Other recent developments in the field of 2DE that led to improved resolution of the 
technique include: larger format gel for the second dimension (24 cm), smaller pH range 
strips for the first dimension, and pH strips adapted to the electro-focusing of basic 
proteins (66). 

3.2. High-Performance Liquid Chromatography Coupled to Tandem 
Mass Spectrometry 

First described by Hunt and coworkers in 1992, high performance liquid chromatography 
coupled to tandem MS (LC-MS/MS) is widely used in the field of proteomics. This 
precursor work aimed at the characterization of peptides bound to a class I major 
histocompatibility complex molecule, namely, HLA-A2. The authors identified nine 
amino acid-long peptides present in subpicomolar amounts by MS sequencing (67).  

Unfortunately, the LC-MS/MS technique cannot be directly applied to crude samples 
(for example, total cell lysates) because the complexity of such samples is too high 
compared to the separative power of HPLC. It thus has to be used after a primary 
fractionation step, the most widely used being 1DE or 2DE. An example of the former 
way of processing is represented by the work of Pflieger and coworkers on the yeast 
mitochondrial proteome (67). Since this organelle is composed of large numbers of both 
membrane-associated proteins and highly alkaline proteins, the 1DE approach was 
successfully chosen. Using this method, 35 % of the mitochondrial proteome was 
identified. The authors concluded that their strategy was unbiased because of the equal 
representation of hydrophilic vs. hydrophobic identified proteins and the identification of 
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extreme pI proteins. This work also points out that the 1D-LC-MS/MS approach is 
particularly adapted to low-molecular-weight protein analysis (68). 

Today LC-MS/MS experiments are also commonly employed with 2DE-separated 
samples. Even though 2DE spots are supposed to contain a single protein, in several cases 
the LC-MS/MS analysis reveal colocalization of different proteins on the gels. By 
combining two separative techniques (2DE and LC), additional information can be 
gained for protein identification and characterization. Other major reasons for using LC-
MS/MS are the easy automation of sample introduction, the on-line desalting of the 
samples, the better sensitivity of MS detection for separated peptides, and the up-to-now 
relatively easier MS/MS experiments with ESI instruments rather than with MALDI. 

Another non-gel-based technique for analyzing the proteome has been proposed 
recently by Gevaert and coworkers (69). In order to reduce the complexity of the sample 
prior to LC-MS/MS analysis, the authors selectively purified N-terminal peptides from 
the cytosolic and membrane skeleton fraction of human thrombocytes. This imaginative 
off-line technique is based on: 1) the acetylation of free amine groups, 2) the tryptic 
digestion of the sample which leads to the generation of acetylated N-terminal peptides 
and free amino groups from internal peptides, 3) the labelling of internal peptides 
generated by trypsinolysis by a very hydrophobic chemical reagent (2, 4, 6-
trinitrobenzenesulfonic acid or TNBS), 4) the LC fractionation of the sample to separate 
the N-terminal peptides from the TNBS-tagged internal peptides shifted to later elution 
times, and 5) the LC-MS/MS analysis of the pre-fractionated N-terminal peptides. 

Another way of considerably reducing sample complexity is to analyze selectively the 
C-terminal peptides generated by trypsinolysis. This can be done by digesting the sample 
in a mixture of H2

16O/H2
18O (1:1). The internal peptides and the N-terminal peptide of 

each protein present a disrupted isotopic pattern, due to 18O incorporation in their C-
terminal end during trypsin hydrolysis, but the C-terminal peptide peak is undisrupted. 
Although this does not permit the prefractionation of the C-terminal peptides, their 
characteristic isotopic pattern obtained by MS allows their selective selection for 
fragmentation (70). 

3.3. Multidimensional Chromatography 

As mentioned earlier, the off-line coupling of a primary separation method is necessary 
before an LC-MS/MS analysis can be performed, due to the complexity of the samples in 
common proteomic studies. Both 1DE and 2DE are classically used as upstream 
separation techniques. However, a complete on-line approach would enable the total 
automation of the proteome analysis process. Furthermore, by reducing the number of 
separate preparative steps on the samples, one can save a significant amount of material. 
The multidimensional protein identification technology (MudPIT) has shown promising 
results in that sense, by analyzing the proteome without the previous electrophoretic step. 
This is of great interest especially for proteins that are not amenable to 2DE due to their 
size or physicochemical properties. The term MudPIT refers to multidimensional 
chromatography: peptides are first separated and fractionated according to their 
electrostatic charges using strong cation exchange high-performance liquid 
chromatography (SCX HPLC). Increasing salt concentrations are applied to the column, 
either in a stepwise manner or as a continuous gradient of the mobile phase, which results 
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in the elution of the peptides by increasing pI. After this first dimension, each discrete 
peptide fraction is further separated according to hydrophobicity using reverse-phase 
high-performance liquid microchromatography (RP µHPLC) with a gradient of 
increasing organic solvent (second dimension). These eluting peptides can be directly 
analyzed by ESI MS/MS. This method was first presented by Link and coworkers, who 
identified macromolecular protein complexes (13). Another interesting work by 
Washburn et al. described the first large-scale proteomic study using the MudPITmethod 
on the whole yeast proteome. In this study, 1484 proteins were identified, among which 
were 131 integral or membrane-associated proteins, 29 highly basic proteins (with 
pI>11), 12 acidic proteins (pI<4.3), and 24 high-molecular-weight proteins (>190 kDa) 
(71). These results and others (72) clearly demonstrate the relevance of the MudPIT 
approach for high-throughput mapping of large proteomes. 

3.4. Proteomics of Membrane Proteins 

As we pointed out before, 2DE is not applicable to the separation of membrane proteins 
(73), mainly because of their hydrophobicity: Membrane proteins are usually hard to 
solubilize, and detergents have to be added in the isoelectric focusing buffer. Another 
characteristic of membrane proteins, again affecting their solubility, is that they easily 
precipitate at their isoelectric point. This latter observation has pushed toward the 
suppression of the first dimension and the use of classical 1DE for membrane proteins. 
The 1DE step is then followed by in-gel proteolysis and MS analysis, usually by LC-
MS/MS because one single 1DE gel band generally contains several proteins. 

As alternatives, other strategies employing direct LC-MS/MS or LC-LC-MS/MS are 
found in the literature. They require protein solubilization using different methods based 
on the selective extraction of membrane proteins with either organic solvents (74, 75) or 
non-ionic or zwitterionic detergents (76). 

Another difficulty encountered in proteomic analysis of membrane proteins concerns 
the trypsin cleavage step: These proteins often lack sufficient possible cleavage sites 
(lysine and arginine) preventing the production of reasonably sized peptides (in the range 
of 900 to 3000 Da) for their analysis by MS. Moreover, the hydrophobicity of the 
peptides is also a limit for their ionization in MS. Chemical cleavage by cyanogen 
bromide (CNBr) presents an alternative method to overcome this problem and enhance 
the sequence coverage in protein identification. For example, Van Monfort and 
coworkers used CNBr treatment after trypsinolysis on the same gel fragments, allowing 
the generation of peptides of mass 2500 Da or lower for the membrane protein lactose 
transporter (LacS) of Streptococcus thermophilus (77). This study showed that neither 
trypsin cleavage nor CNBr treatment alone could lead to suitable peptide sizes for MS 
analysis. 

The development of multidimensional chromatography-based strategy has made 
possible the identification of membrane proteins by global proteomic approaches. In the 
study by Wu and colleagues (78), the use of proteinase K, a protease with poor amino 
acid specificity, permitted the identification of membrane proteins (representing 28% of a 
total of 1610 identified proteins). An interesting aspect of this study is the topological 
information obtained on membrane proteins by the digestion of extracellular proteins and 
of the soluble part of membrane proteins using neutral pH proteinase K treatment, and the 
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re-isolation of the membranes, followed by an acidic pH digestion step that unseals the 
membranes, giving the protease access to the intracellular proteins and to the luminal part 
of membrane proteins (78). 

4. CONCLUDING REMARKS 

Today, proteomics is a tremendously promising field that is rapidly producing large 
amounts of data. One pillar of proteomic studies is MS techniques, which have the 
capability of being fully automated, thus enabling the analysis of thousands of proteins 
per day. Because of the high cost of mass spectrometers, the trend is for the creation of 
huge MS facilities that offer their knowledge as a service for a community of laboratories 
(or technology platforms). For these laboratories, the bottleneck remains the 
interpretation of enormous sets of data. Although software—mainly provided with 
spectrometers (for example, BioAnalyst™ for Applied Biosystems, Protein Lynx Global 
Server for Waters, Turbo-SEQUEST for Finnigan)—greatly facilitates the interpretation 
of mass data, a careful manual verification is often needed to validate the results. The 
interpretation must take into account the sample preparation method used. Indeed, the 
simple filtering of peptide mass fingerprinting results based on the scores calculated for 
the database search (based on a probability) can lead to incorrect peptide assignment, 
often due to poor spectral quality for some of the samples. This is less true for MS/MS 
data that usually contain fewer false positive results when the protein is in the databank. 
When the protein or the ESTsequence is not available, de novo sequencing is needed. The 
feature of de novo sequencing is not a simple achievement and automation of sequence 
determination is still an unresolved problem, although some software packages do 
propose this functionality. Note that a very recent algorithm that generates de novo 
sequences from a tandem MS spectrum (from data file format) has been developed by Lu 
and colleagues (79). The computer program is available at http://hto-
c.usc.edu:8000/msms/menu/denovo.htm. Suitable data processing and careful 
interpretation of MS/MS spectra can lead to unambiguous sequence determination (but 
not in all cases). Indeed, the deciphering of complete peptide sequences is possible only if 
the fragmentation has occurred at each peptide bond, an ideal case which is rarely 
accomplished. Common situations include the determination of the best combination for 
two consecutive amino acids (usually for the N-terminal determination since the 
corresponding y-fragments are usually missing), or dealing with other missing fragments, 
such as, for example, the fragment corresponding to a cleavage at the C-terminal side of a 
proline residue. Moreover, internal fragment ions or neutral loss fragments can appear on 
the spectrum and be misinterpreted as being b- or y-ions. The digestion of the protein in a 
H2

16O/H2
18O (1:1) mixture was proposed a few years ago with the aim of helping the 

interpretation of MS/MS spectra: Carboxy termini of tryptic peptides are labelled with 
18O atoms; therefore, upon fragmentation, y-fragment series (which retain the C-
terminally labelled lysime or arginine residues) can easily be identified by their 
characteristic 16O/18O ratio (80). It has to be noted that in such experiments a 4-Da 
difference (corresponding to the incorporation of two 18O) can be measured between 
labelled and unlabelled peptides (81). Since the de novo method does not rely on a match 
of the measured fragments to those generated in silico from a databank, the advantage of 
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the de novo method is that it is particularly flexible and adaptable to the determination of 
posttranslationally modified peptides. 

The new challenge in proteomics studies is to increase the biological interest of the 
collected data by addressing the crucial question of quantification, in order to compare 
two cellular populations in different physiological conditions. This is achieved by the 
ICAT and/or the DIGE methods, which are being actively developed in mass 
spectrometry laboratories. 

Another challenging task is to increase the throughput of mass spectral analysis by 
developing non-gel-based techniques such as multidimensional chromatography analysis. 
This has to be done in relationship with an adequate data storage method, since proteome 
analysis is synonymous with a huge amount of collected data that must be archived and 
rationally handled (a single LC-MS/MS run can contain hundreds of fragmentation 
spectra and represent hundreds of megabytes). 

Because proteomic studies by 2DE gel electrophoresis were characterized as spot 
collection a few years ago, the addition of protein names is generating “protein lists,” and 
this is why proteomics is often not regarded as a biological science per se but rather as a 
tool to help the understanding of complex biological processes. This is becoming less and 
less true with the development of techniques such as SPR-MS that have produced more 
information on protein functions. These kinds of approaches may raise the interest of 
those who are not yet convinced by the use of systematic protein identification. In 
summary, the sensitivity, the accuracy, and the obvious potential of modern mass 
spectrometry to be interfaced with various sample preparations make it a unique 
technique for protein identification in the field of proteome research, and MS will surely 
seduce a growing number of biologists in the near future. 

ABBREVIATIONS 
2D-DIGE 2D difference gel electrophoresis 

2DE Two dimensional electrophoresis 

ESI Electrospray ionization 

EDC 1-ethyl 3-(3 dimethylaminopropyl) carbodiimide 

FTICR-MS Fourier transform ion cyclotron resonance mass 
spectrometer 

ICAT Isotope coded affinity tag 

IGOT Isotope coded glycosylation-site-specific tagging 

IMAC Immobilized metal affinity chromatography 

MALDI Matrix-assisted laser desorption 

TOF Time of flight 

NHS N-hydroxysuccinimide 

PTM Posttranslational modification 

QMS Quantitative mass spectrometry 

SELDI Selective enhanced laser desorption ionization 
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TAP Tandem affinity purification 

TEA Triethylamine 
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1. BIOINFORMATICS AND NUTRITIONAL GENOMICS: AN 
INTRODUCTION 

In this chapter we will discuss the application of genomics and bioinformatics as it 
applies to nutrition. Nutritional genomics (“Nutrigenomics”) is the study of genome-wide 
influences of nutrition (1). From the molecular perspective, nutrients are dietary signals 
that are recognized by cellular sensors (often receptors), which influence gene 
expression, protein synthesis, and a resultant metabolome. Nutrigenomics seeks to 
examine the influence of dietary signals as it relates to cellular homeostasis and the 
effects of nutrition on health and disease. With the recent completion of several genome 
projects, we are now well poised to establish a linkage between gene expression and 
nutrition, the influence of micro and macronutrients on cellular homeostasis, and the 
relationship between diet, genetic predisposition, and human disease. The importance of 
diet to health is well established and many modern diseases are in part a result of chronic 
metabolic imbalances related to diet, including cancer, obesity, type 2 diabetes, 
hypertension atherosclerosis, osteoporosis, and inflammatory disease (2). Metabolic 
imbalance may be a result of a lack of essential nutrients and/or an abundance of non-
essential components in the diet. Epidemiological and clinical studies have identified 
dietary determinants associated with these metabolic imbalances and have focused this 
knowledge toward disease cure and prevention. 

The knowledge that diet influences gene expression was established long ago and, 
historically, this relationship was examined one gene at a time. This approach has led to 
numerous significant detailed discoveries in nutritional science and has been the basis for 
our initial understanding and insight into the mechanistic action of specific genes and the 
regulatory pathways through which diet influences cell homeostasis. A logical extension 
of “one gene at a time” has been the development of transgenic and knockout mice. The 
development of these mice has been instrumental in establishing the role of single genes 
in nutrition and disease and continues to be an important component relating gene 
function to animal health. With the development of new genomic tools and techniques 
including comparative genomics, expression profiling, genome association studies, and 



bioinformatics, we are now establishing a thorough knowledge of the complex 
interactions between genotype, phenotype, and environmental interaction. Equally 
important is the development of similar approaches for the analysis of nontranscriptional 
events occurring in the proteome (e.g., protein phosphorylation and glycosalation) and 
the analysis of resultant metabolomes. These new tools have facilitated a new paradigm 
in biological sciences based upon development of patterns in gene expression termed 
“systems biology.” The use of such technology is rapidly changing the way in which 
nutrition science is conducted, emphasizing global expression differences at varying 
levels of biological organization. 

Genomic sciences refer to mapping, sequencing, and functional analysis of individual 
genomes. As an emerging field, genomics incorporates aspects of structural, comparative, 
and functional biology. Structural genomics represents the construction of high-resolution 
genetic, physical, and transcript maps of a given genome including linkage analysis, 
physical mapping, genome sequencing, and genome organization. Comparative genomics 
allows the comparison of two or more genomes to identify the extent of similarity of 
specific features or a large-scale screening of a genome to identify the gene sequences 
present in another organism (3). Functional genomics is characterized by the 
development and application of genome-wide, highthroughput experimental approaches 
to assess gene function, combined with statistical and computational analysis. Functional 
genomics has been aided by the continual development of gene expression tools 
including microarray analysis, subtractive hybridization, Serial Analysis of Gene 
Expression (SAGE), and differential display.  

The availability of draft sequences of human, mouse, rat, and other organisms’ 
genomes extends the ability to study aspects of nutrition as it relates to the whole genome 
level. Integration of structural, comparative, and functional genomics through robust 
bioinformatics is facilitating a comprehensive view of the complex interactions between 
nutrition, diet, and genetics. The ultimate goal of this approach is to understand the 
relationship between nutrition and gene function as it relates to pathology and disease 
prevention. General questions to be addressed by nutrigenomics relate to how diet 
influences gene regulation, subsequent changes in metabolism along with the association 
to altered cellular homeostasis, and the influence of individual genetic variation on diet 
and nutrition. 

In keeping with questions on the influence of specific dietary components on gene 
regulation, an emerging theme in nutrition science is the function of nuclear receptors as 
cellular sensors for nutrients and their metabolites (4). It is now understood that effects of 
many dietary compounds, including cholesterol, fatty acids, fat-soluble vitamins, and 
other lipids, are mediated by the action of nuclear receptors. It has been well established 
that nutritional lipid intake constitutes an important determinant of disease susceptibility 
and is often exacerbated by individuals with dislipidemia. Numerous studies in nutritional 
genomics are now addressing questions of the influence of dietary lipids on gene 
regulation and subsequent changes in metabolism with a goal of establishing how diets 
can be modified to improve health. Receptors including PPAR-fatty acids, LXR-
oxysterols, FXR-bile acids, PXR/CAR-bile acids, and other hydrophobic dietary 
ingredients have been shown to coordinate metabolic gene networks associated with 
maintenance of cellular homeostasis by governing transcriptional regulation of genes 
involved with lipid metabolism, storage, transport, and elimination (4). The identification 
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and activity of nuclear receptors as cellular sensors as they relate to nutrition is a subject 
of intensive study. 

Genetic variation within populations and individuals is additionally a critical 
determinant of differences in nutritional requirements and disease susceptibilities. The 
most common form of genetic variation is the single nucleotide polymorphism (SNP), a 
single-base substitution within DNA. To date, over 2.8 million SNPs have been 
discovered and linked to discrete locations in the human genome. SNPs are highly stable 
and occur approximately once in every 1000–2000 nucleotides (5). With the recent 
development of genetic polymorphism databases, great strides have been made in 
understanding gene environmental interactions. Thus, it is now well substantiated that 
most major diseases including cardiovascular disease, diabetes, obesity, and cancers 
result from the interaction between genetic susceptibility and environmental factors, 
including diet. Several genetic polymorphisms of importance to nutrition have been 
identified including folate metabolism, iron homeostasis, lipid metabolism, and immune 
function (6). In the field of lipoprotein metabolism and cardiovascular disease, several 
gene polymorphisms for key proteins, such as apoproteins (apo) E, B, A-IV, and C-III, 
LDL receptor, microsomal transfer protein (MTP), fatty acid-binding protein (FABP), 
cholesteryl ester transfer protein (CETP), lipoprotein lipase, and hepatic lipase, have been 
identified and linked to variable responses to diets (7). Thus, the importance of genetic 
variation to nutrition continues to be established and highlights the relationships between 
genetic predisposition, physiological response, and disease susceptibility. Evidence now 
suggests that most common disorders are caused by the combined effects of multigenes 
and nongenetic environmental factors, i.e., they are multifactorial. SNP analysis provides 
an important component to understanding the relationship between nutrition, human 
health, and disease. Resolving the relative influence of gene environmental interactions 
will be a major challenge for nutritional and genomic scientists in the near future. 

Integrative genomic approaches are now being conducted that coordinate dietary 
changes at gene (genomic), protein (proteomic), and metabolite (metabolomic) levels of 
organization. Combined systematic approaches are currently being employed to address 
the complexities of nutrient consumption, uptake, metabolism, and the resulting 
relationships to animal health and disease. Genomic technologies enable the nutritionist 
to simultaneously measure multiple biological events in molecular detail. The reliance of 
bioinformatics in these studies is paramount. Development in computerized data 
management has made much of genomics possible, and advancements in bioinformatics 
continue to broaden genomic approaches. In this chapter we will demonstrate the use of 
bioinformatics principles and application as applied to nutritional genomics. The 
computational strategy for gene sequence-related data is very different from that for 
numerical data. For example, we can easily define 20/10=2, but sequence data are not so 
easily categorized. Analyzing sequence data involves many more complex mathematical 
operations. Thus, we need special computational models to solve sequence analysis 
problems. In the following sections, we will discuss computational tools, but also 
overview the models and assumptions used to develop these tools. In this way, readers 
can choose tools appropriately and interpret results correctly. Since it is impossible to list 
all bioinformatics tools in a chapter, we use examples from the nutritional research 
literature to illustrate key concepts. An overview of possible uses for bioinformatics tools 
is shown in Fig. 1. In addition, a web companion of this chapter is available at 
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http://dbsr.duke.edu/pub/nutrition to provide updated web links to the tools and details of 
the worked-out examples.  

 

FIGURE 1 Bioinformatics tools used 
for the fictitious HELO1 cloning 
project. 

Throughout this chapter, we use this example to illustrate the effective use of 
bioinformatics tools. We start with the yeast ELO2 protein, and search the human 
proteome database. A putative human homologue, HELO1, is identified. Then, we map 
this sequence to chromosome 6p12.1. The OMIM database is queried to determine if 
there are any human genetic diseases linked to this region. By using the Ensemble 
browser, we examine the genomic DNA structure of this gene, and identify a potential 
alternative splicing. A query of the gene expression databases indicates HELO1 is 
overexpressed in leukemia cell lines. We then search the MEDLINE literature database to 
see if this link is plausible. With these bioinformatics investigations prior to wet 
laboratory experiments, we can explore many possibilities before fine-tuning our 
hypothesis. 

2. BIOINFORMATICS: A ROADMAP TO EDUCATE YOURSELF 

Bioinformatics skills can be mastered at several levels. At an entry level, you should be 
familiar with the various bioinformatics database and tool websites, minimally the tool 
collections at the National Center for Biotechnology Information (NCBI) or European 
Bioinformatics Institute (EBI) website. There are also integrated toolkits available, such 
as the commercially available GCG/SeqWeb (Accerlers, CA) and the academic tool 
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called “The Bioinformatics Workbench” (8). At an intermediate level, you should be 
comfortable running UNIX programs via a command-line interface. You would expect to 
write some programs using UNIX or Perl scripting languages to perform repetitive tasks, 
such as a program to search 1000 sequences and parse out the results. At an advanced 
level, you would expect to master a programming language, such as C++ or Java; to 
know database constructions and queries; and to master a statistical or mathematical 
modeling language, such as S-plus or MatLab. 

Bioinformatics tools evolve rapidly, and a common impediment to becoming 
proficient in this arena is trying to hit a moving target. Thus, you should study 
fundamental theories and stay updated by reviewing recent literature. Good introductions 
to bioinformatics theory include Computational Methods in Molecular Biology (9), 
Computational Molecular Biology:an Introduction (10), and Bioinformatics: the Machine 
Learning Approach (11). A good annual update is the database issue (January) and web 
service issue (July) of the journal, Nudeic Acid Research (Oxford University Press). 

3. SCORING MATRIX AND SIMILARITY MATCH: BLAST THE 
DATABASE 

Suppose you are interested in the elongation of saturated and monounsaturated fatty 
acids. As a first step, we want to find the human counterpart associated with this 
metabolic function. For purposes of this chapter, we have chosen to examine the ELO2p 
protein in Saccharomyces cerevisiae (12). To begin, we will screen the human genome 
database using the yeast sequence as a query. This database query should be based on 
protein sequence similarity. Such database queries are very different from most business 
applications, where the query is often looking at exact matches of certain criteria. How 
can we find and evaluate a similar match? 

The Basic Local Alignment Search Tool (BLAST) is the primary utility to search 
similar sequences in a database. Based on the biological assumption that similar 
sequences usually have like functions, a BLASTsearch can quickly identify 
corresponding sequences and establish their putative function by analogy. Thus, BLAST 
is a fundamental bioinformatics tool that every experimental biologist should master. A 
simple BLAST search can either return an exciting array of possibilities to the bench 
work, or ruin your chance of making an important discovery (13). Readers are 
encouraged to read and learn more about BLAST. Good reviews and tutorials have been 
written by Altschul et al. (14) and Nicholas et al. (15).  

To measure the degree of similarity, BLAST utilizes a scoring mechanism. The 
scoring schema is backed up by comparing physical and chemical properties of amino 
acids at each position (Fig. 2, groups I to VI). Some amino acids can be substituted with 
another one without affecting the structure and function of the protein. This is considered 
as a homologous substitution. Other amino acid substitutions can result in altered 
functionality. To quantify the compatibility of substitutions, Henikoff and Henikoff (16) 
compiled a distance matrix called BLOSUM62 (Fig. 2). In this matrix, a score larger than 
zero indicates that the two amino acids are essentially  
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FIGURE 2 The BLOSUM62 scoring 
matrix. Amino acids are grouped 
according to their chemical properties. 
Numbers in the matrix indicate the 
compatibility of the substitution in 
homologous proteins. A large number 
suggests the substitute is admissible. 

 

FIGURE 3 Scoring a match of two 
similar protein sequences (a raw 
score). 
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inter-exchangeable in homologous proteins, whereas a score below zero indicates an 
unfavorable substitution. Note that the numbers on the diagonals of Fig. 2 are not the 
same. This reflects the idea that since residues such as cysteine (C) and tryptophan (W) 
are rare in sequences, a match should be given a higher significance. 

By using BLOSUM62, we can score to what extent the two sequences match (Fig. 3). 
There are other scoring matrices, such as BLOSUM45 or PAM250 (17), which are 
designed for comparisons of distantly related proteins. To make the scores using different 
scoring matrices comparable, the raw scores are usually adjusted into a bit score that is 
reported in BLAST searches (Fig. 4). We use the bit score in conjunction with the E-
value (discussed later) to evaluate sequence similarity. 

Using our ELO2 protein as an example, we run a BLASTsearch of computationally 
identified proteins in the human genome and find a homologous  

 

FIGURE 4 BLASTsearch result. The 
yeast ELO2 protein was used to search 
the human proteome database. in this 
example, the yeast ELO2 protein is 
called the Query sequence; the 
matching sequence in the human 
database is called the subject (Sbjct) 
sequence. The alignment of these two 
sequences is shown.“−” indicates a 
gap. On the central line of the 
alignment, identical amino acids are 
indicated by characters; similar ones 
that receive a positive score are 
identified as“+” signs.The number of 
matches with a score equivalent to or 
better than this one is expected to be 
2e-15 (2×10−15) by chance. 
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protein as shown in Fig. 4. This match received a bit score of 80.9 from a raw score of 
198. The bit score is a numerical measurement of similarity, but it does not take the size 
of the database into consideration. Further evaluation of the result is indicated by the 
expected number of matches which is given an expect value, or E-value. This value 
indicates how often there is a similar match to proteins in the database with no homology 
to the query sequence. This is why a smaller E-value generally indicates a more 
significant sequence match. For the BLASTsearch of ELO2, the combined positive and 
identical matches is 74%; together with the E-value of 2E-15,we can conclude that this 
search is a significant one. 

The BLASTsearch is essentially a template-matching model that uses a single input 
sequence to find similar ones in the database. This searching strategy is more sensitive if 
we can specify a better template from several related sequences in the protein family as 
an input. Thus, iterative BLAST tools were developed such as PSI-BLAST (18). The 
PSI-BLAST tool utilizes one input sequence as a starting query to search the databases. 
Resulting sequences from the first round of the search are used to construct the 
possibilities of different amino acids at each position, which is represented by a position-
specific scoring matrix (PSSM). The PSI-BLAST tool is used most appropriately when 
searching for distantly related proteins. Otherwise, a BLASTsearch is adequate. Often 
BLASTand PSI-BLAST searches provide many sequences as an output. In the following 
section, we will discuss tools to deal with multiple sequences, and then introduce a more 
mathematically powerful tool to model sequences in general. 

4. MULTIPLE SEQUENCE ALIGNMENTS: PILE THEM UP 

Besides a BLASTsearch, sequence alignment is one of the most commonly used 
bioinformatics tools. The conserved sequences from multiple species can help us design 
PCR primers to amplify a gene from the species of interest. Furthermore, the conserved 
domains suggest a primary sequence basis for certain biological functions and from 
which mutations can be made to confirm their importance. In addition, a multiple 
sequence alignment is the starting point for phylogenetic analysis of the evolutionary 
relationships. 

To cover a broader range of examples in nutritional research, here we temporarily 
depart from the ELO1 example and introduce another study of C2H2 zinc finger-
containing proteins (Fig. 5) in this and the following section. Zinc finger domains are 
characterized by incorporation of a single zinc ion bound by two pairs of cysteine (Cys) 
residues, or two cysteine and two histidine (His) residues in a tetrahedral arrangement. 
This unique structure forms a finger-like motif that is highly conserved among DNA-
binding proteins. In the multiple sequence alignment of Fig. 5, we can clearly see the  
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FIGURE 5 Alignment of zinc finger 
proteins. Conserved residues are 
highlighted using BOXSHADE 
(http://www.ch.embnet.org/software/B
OX_form.html). “.” indicates a gap. 
Due to the highly conserved Cys and 
His residues (indicated by arrows), the 
domain is called C2H2. 

conserved Cys and His residues. The biological significance of zinc fingers is that they 
usually mediate the protein/DNA interactions of transcription factors. Zinc finger 
proteins thus regulate a variety of cellular activities, such as development, differentiation, 
and tumor suppression (19). It has been shown that dietary zinc deficiency can implicate 
zinc finger signal transduction proteins (20). 

The best alignment of two sequences can be solved by dynamic programming 
algorithms (21, 22). However, finding the optimal alignment of multiple sequences is 
computationally intractable in theory (10). Thus, a heuristic algorithm is utilized to speed 
it up. A progressive pairwise method (23) transforms the difficult multiple alignment 
problem into a series of pairwise alignment problems. Briefly, the most similar pairs of 
sequences are aligned and then merged into a consensus. This consensus sequence is 
aligned again with the rest of other sequences, and the procedure continues until done. In 
such an iterative manner, a multiple sequence alignment is achieved. 

Two frequently used programs align sequences in this manner: PILEUP (in GCG 
package) and CLUSTAL (24). The alignment result depends on several factors: first, the 
scoring matrix used for gauging similarity among substitutes; second, the gap penalties 
for nonaligning stretches; and third, the alignment method being either global (PILEUP 
program) or local (CLUSTAL program). A global alignment optimizes the overlap from 
the beginning to the end of the sequences, whereas a local alignment searches for the best 
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similar segments. Thus, a local alignment is more appropriate for assessing domain 
structures. 

Due to the computational complexity and the occasional misalignment between the 
mathematically optimal alignment vs. the biologically significant alignment, sequence 
alignment results are usually subject to manual adjustments. A human expert can force 
the alignment of critical residues that are identified by experimental mutations. To this 
end, a multiple alignment editor program, such as SeqLab in GCG or CINEMA (25), is 
handy. Multiple sequence alignments can also be optimized by the hidden markov model 
(HMM) discussed in the next section (26). 

5. HIDDEN MARKOV MODELS AND THEIR APPLICATIONS: A 
BEAUTIFUL MIND 

Once multiple alignments of a protein family are produced, we can create a fingerprint 
that represents the multiple alignment and its variations. This fingerprint leverages the 
observed variations from the alignment, and can be used itself as a query to identify 
protein with a similar pattern when constructing a database search. This is a powerful 
method to identify unknown proteins with similar structural/functional motifs that can be 
missed by using a BLASTsearch. To implement this idea, here we will discuss two 
formal methodologies from mathematical linguistics: regular expressions and HMMs. A 
readable introduction of linguistic modeling of sequences has been written by Searls (27). 

The following is a regular expression describing the matching portions of strings by 
using a generic template to describe the likely amino acids and their prescribed order. For 
example, the zinc finger domain can be expressed as 

C− x(2,4)− C− x(3)−[LIVMFYWC] − x(8)−H−x(3,5) − H 
↑                   ↑            ↑              ↑ 
Cysteine           Choice from   Eight amino   Histine 
at this position;  any of        acids of any  at this 
position; 
                   LIVMFYWC;     kind; 

which indicates that there is a gap of two to four amino acids of any kind between the 
first and the second cysteine; a gap of three to five amino acids between the two 
histidines; and a middle position that always contains a small hydrophobic or aromatic 
amino acid (LIVMFYWC). A compilation of common protein motifs such as the one just 
shown are available in the PROSITE database (28). The MOTIFS program in the GCG 
package can search databases using PROSITE motifs to identify potential members in the 
protein family. In addition, MOTIFS search can be used to see if there are any functional 
domains in a newly identified protein and thus infer the protein’s function.  

Manually writing a regular expression as illustrated in the preceding paragraph from a 
multiple sequence alignment not only is time-consuming but also does not lend itself to 
quantifying the likelihood of each amino acid at each position. Thus, we can use HMMs 
in sequence analysis (29–31). An HMM elegantly models substitutions, insertions, and 
deletions of sequences by “states” and “state transitions.” It assumes there is a hidden 
process (unobservable) that generates a sequence of amino acid residues (observed). Each 
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observed protein sequence comes from this hidden process with some realization of the 
probability distribution of the HMM. Fig. 6 shows part of an HMM model of the zinc 
finger motif. Sequences such as “CE. DC” and “CKFPDC” can all be derived from this 
model by traveling through the nodes (states) with different paths (state transitions) from 
left to right. 

Similar to regular expressions, HMMs are used to identify new family members from 
database searches and to characterize whether a new protein contains a certain functional 
domain. Such models of proteins can be constructed by the HMMER program (33). The 
database Pfam contains precompiled HMM models. Using an HMM model of zinc finger 
proteins,  

 

FIGURE 6 HMM representation of 
the zinc finger motif. Boxes in 
different shapes represent different 
states: match, insertion, and deletion. 
Arrows indicate state transitions. For 
clarity, we do not show the full 
probability distribution of each residue 
at each state, but indicate only the 
dominant ones.The number is 
proportional to the likelihood of each 
residue at a given state. For the 
transitions, a thicker line indicates a 
higher probability. This figure is 
constructed according to the HMM 
model (# PF00096) in the pfam 
database (From Ref. 32.). 
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Clarke and Berg (34) tried to find all zinc finger proteins in Caenorhabditis elegans, and 
Manning et al. (35) identified a new cyclin-dependent kinase in the human genome. The 
HMM is also a powerful tool to model sequences in general. It can also be used to find 
genes (36), CpG islands (37), RNA secondary structures, and to align sequences (31). 

6. THE HUMAN GENOME: KNOWING OURSELVES 

The promise of the genomic era is evidenced by the complete sequencing of several 
model organisms, including yeast, worm, zebrafish, fly, mouse, rat, and human. Utilizing 
the wealth of these data in everyday research is a necessity for molecular biologists. To 
provide integrated access to these data, several browsers were designed at NCBI, UCSC, 
and the Sanger Center. 

Returning to our ELO2 example, we demonstrate how a comparative genomic 
approach can help identify human homologues. Having run the BLASTsearch against the 
proteins identified in the human genome, we were able to locate HELO1, which is the 
human homologue of yeast ELO2. Based on the direct mapping of computationally 
translated proteins to genomic DNA sequences, we are able to map the exact location of 
HELO1 on chromosome 6p12.1 (Fig. 7). We are also able to determine the intron-exon 
structure, and inspect the potential alternative splicing variants. With the experimental 
indication of alternative splicing of a closely related enzyme, ELOVL6 (38), we are 
interested in the splicing of HELO1. Based on ab initio (meaning from the beginning) 
gene boundary predictions and expressed sequence tags (ESTs), some possible gene 
exon-intron structures of HELO1 are suggested (Fig. 7C). The true gene transcription 
structure is subject to experimental biology verification. 

To identify the relevance of HELO1 to human disease, we first query the Online 
Mendelian Inheritance in Man (OMIM) database (39). We find chromosomal 6pl2 is 
implicated in diabetes (OMIM#125853), epilepsy (OMIM # 606904), and Char syndrome 
(OMIM#169100). 

Other databases of interest include transcription factor databases (40); pathway 
databases, such as the Kyoto Encyclopedia of Genes and Genomes (KEGG) (41) and the 
Encyclopedia of Escherichia coli (EcoCyc) (42); and microarray databases. In the 
following section, we further illustrate how to generate additional biological hypotheses 
through data mining of the gene expression databases. 

7. DATABASE OF CHIPS: THE POWER OF EXPRESSION 

With the rapid accumulation of microarrays and Serial Analysis of Gene Expression 
(SAGE) data from profiling the transcriptomes, it is now possible  
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FIGURE 7 A view of the genomic 
region containing HELO1 (NM-
021814) using the Ensembl browser. 
(Top) Cytochromal bands on 
chromosome 6. The 6p12.1 band 
where HELO1 resides is highlighted in 
the red box. (Middle) An overview of 
6p12.1. The genes surrounding 
HELO1 are FBOX9, GCM1, GCLC, 
and other computationally found 
genes. (Bottom) A detailed view 
showing the ensemble gene model 
(Ensembl trans), an ab initio 
computational prediction (Genscans), 
and alignments with ESTs (EST 
trans).Vertical bars indicates exon-
inton boundaries.This computational 
evidence suggests a potential 
alternative splicing of HELO1. 
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to mine these databases and generate new hypotheses without doing preliminary 
experiments. Such databases include the Gene Expression Omnibus (GEO) (43) at NCBI 
and ArrayExpress (44) at EBI. There are also commercial expression database providers 
such as GeneLogic (Gaithersburg, MD).  

In this example, we have used the gene expression database at Novartis GNF (45) and 
the NCBI SAGE database (46) to continue exploring our fictitious HELO1 cloning 
project. First, we conducted a BLASTsearch to see if HELO1 is represented in the 
Novartis GNF database. Our results suggest that HELO is represented as an EST 
(‘33821_at’) on the Affymetrix U74A chip. This enables us to follow expression 
information of HELO1 in various tissues. In Fig. 8, the GNF database query of HELO1 is 
in agreement with the experimental data of Leonard et al. (12) where a significant amount 
of expression is found in spinal cord, testis, prostate, and the adrenal gland. In addition, 
we identify this gene as highly expressed in various types of blood  

 

FIGURE 8 Tissue distribution of 
HELO1 expression from the Novartis 
GNF microarray database. The 
abundance of HELO1 expression in 
various tissues is plotted. Data are 
from the GNF survey of 47 human 
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tissues using the Affymetrix U95A 
chip. The EST 33821_at is the 
identifier of HELO1 on the Affymetrix 
chip.The original chip design of 
33821_at is based on a genomic DNA 
contig sequence of 6p12.1–21.1 
(Genbank AL034374) that contains 
computationally identified unknown 
genes. This unknown gene matches 
HELO1. (From Ref. (45).) 

cells, especially in the lymphoblastic MOLT-4 cell line. This observation is further 
supported by another microarray study of acute lymphoblastic leukemia at St. Jude 
Children’s Research Hospital (47) in which HELO1 was identified as a potential marker 
protein. 

The SAGE data (Fig. 9) from the NCBI SAGE database suggests HELO1 is 
significantly overexpressed in ovarian and breast cancer samples. All of these 
bioinformatics studies point to a new direction of investigation on the relevance of 
HELO1 in various types of cancers. 

Due to space limitations, we will not discuss the statistical analysis of microarray data; 
readers can consult other chapters in this book. Other introductions to microarray 
bioinformatics include A Practical Approach to Microarray Data Analysis (48), Methods 
of Microarray Data Analysis vol. I–III (49), Data Analysis Tools for DNA Microarrays 
(CRC Press), and Statistical Analysis of Gene Expression Microarray Data (50).  

 

FIGURE 9 Expression of HELO1 in 
103 SAGE libraries including kidney, 
prostate, mammary gland, ovary, brain, 
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and other tissues.The right-most four 
libraries are ovary carcinoma and three 
mammary gland carcinomas. 

8. ONTOLOGIES: THE LINGO OF SMARTER REASONING 

With microarrays, we dramatically extend our investigation spectrum to all genes in the 
genome. Such experimental results require the development of a corresponding 
computational model to handle the relationship among the genes. An ontology is a formal 
specification of concepts and relationships in the domain of interest (51). This powerful 
tool comes from decades of artificial intelligence research. Usually, it is presented as a 
vocabulary of terms. For example, phosphorylation is a kind of interaction (Fig. 10) and 
fatty acid is a kind of lipid (Fig. 11A). Gene ontology is an emerging conceptual model to 
define gene functions (52). This instrumental development helps to interpret gene lists in 
terms of biochemical function, biological process, and cellular compartments. Practical 
tools using gene ontology include Onto-Express (53), MAPPFinder (54), FunSpec (55), 
Tree Maps (56), and FatiGO (57). Herrero et al. (57) demonstrated the use of gene 
ontology to interpret both microarray and proteomic data sets using a publicly available 
web server. 

Because an ontology captures the knowledge structure of a particular scientific 
domain, it becomes an important tool for intelligent database searches. In particular, the 
machine can answer queries beyond the primary facts deposited into the database by 
applying known rules to the facts. For example, if we tell the computer that “GABA-R is 
phosphorylated by PKA” and “the components participating in phosphorylation must be 
in the same  

 

FIGURE 10 Ontology and logic 
extend the database query capability. 
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Based on ontology and rules, the 
computer can answer intelligent 
questions beyond the literal facts 
entered as parameters. 
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FIGURE 11 MeSH ontology for 
literature search. (A) The hierarchical 
structure of chemical compounds, 
indicating the parenting concepts of 
unsaturated fatty acids. (B) and (C) are 
resultant abstracts by searching “fatty 
acids, unsaturated” and “leukemia.” 
Note that although “unsaturated fatty 
acids” never appears as a keyword in 
(B), we still get this abstract due to 
semantic mapping of ontology terms. 

physical location,” then the computer automatically knows GABA-R should be in the 
same cellular compartment with PKA (Fig. 10) when the interaction happens. This 
example might sound trivial, but in the genomic exploration of interconnected gene 
products and small molecules, this artificial intelligence capability can help answer 
questions involving thousands of facts and rules. 

A mature application of ontologies is MeSH, a medical ontology (58). It has been 
extensively used in MEDLINE to search the medical literature. For example, after we get 
some hint of HELO1 being associated with leukemia from microarrays, we want to 
search the literature and see if there are any links between unsaturated fatty acid and 
leukemia. The two abstracts obtained by a conceptual search in Fig. 11 further shape our 
hypothesis for future investigation. 

9. Medline: Knowledge Is Power 

Genomic and proteomic screening usually results in a long list of genes. Harnessing the 
power of existing biological knowledge to interpret these findings has been an active 
research topic in bioinformatics. A frequently encountered problem is: Given such a list 
of statistically significantly changed genes, how do we find the pathways involved? How 
do we discover the potential interconnection between the genes? 

To answer these questions, we first need a vast repository of all current knowledge 
with regard to the gene products. MEDLINE can be such a knowledge base. A 
rudimentary approach could be simply looking at the co-occurrence of a pair of genes in 
a MEDLINE abstract, and thus construct a gene-gene interaction network. Inpharmix 
(Greenwood, IN) and Pubgene (59) implemented this idea. Figure 12 shows a resultant 
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biological network generated by using the gene list identified in Fig. 2 of the fibroblast 
micro- 

 

FIGURE 12 Using Pubgene to infer a 
potential genetic network from a list of 
genes. MEDLINE abstracts were 
searched for co-occurrence from a list 
of 517 genes. Shown is one of the 
resultant sub-networks and the 
corresponding gene expression ratio (1 
h/common reference). Each node 
indicates a gene; each line indicates a 
connection in the literature. 

array study (60). This subnet includes genes for immunological responses of activating 
B-cells and T-cells (IL6, IL8, ICAM1, and PBEF), inflammation and mitogenesis 
(PTGS2), and fibroblast proliferation (EDN1). The microarray data at 1 hour after serum 
stimulation are all upregulated, which suggests this network of genes is acting in 
concordance. This kind of analysis can greatly help experimental biologists digest the 
microarray observations in terms of biological knowledge, and then formulate a new 
hypothesis to test. 

10. The Fun Has Just Started: A Conclusion 

With the yeast ELO2/human HELO1 protein cloning example in this chapter, we have 
shown how bioinformatics and functional genomic databases can transform molecular 
biology research. With the existing blueprint of the human genome and the transcriptome 
databases, we first located the potential human homologue on chromosome 6p12.1, and 
then surveyed its expression distribution in human tissues. In addition, we explored 
potential alternative splicing, and its link to human diseases. This rich information will 
help to guide the wet laboratory experimental design and hypothesis testing. 
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With the maturation of genomic technologies, experimental biologists are more 
capable of acquiring large data sets.“Data mining” is a commercial description of the 
process of extracting actionable knowledge from these data. Bioinformatics tools will 
continue to be indispensable to mining the realm of genomic and proteomic data to come.  
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1. INTRODUCTION 

Statistical analysis is generally defined as the process of making scientific inferences 
from data containing variability. Microarray experiments certainly illustrate this 
definition, with scientists trying to decide which genes show differential expression in the 
face of substantial biological and technical variation (1). Methods for statistical analysis 
of array data have been widely presented, as in Chapter 7 (St Onge et al.) and elsewhere 
(2, 3). These presentations generally assume a working knowledge of statistics and focus 
on methodology rather than on underlying statistical concepts. Even if scientists 
collecting array data will not themselves statistically analyze the data, some knowledge 
of how statistical principles apply to these experiments would enhance collaboration with 
statisticians.  

This chapter will consider only the question: Does average gene expression across 
biological groups differ? This question is answered by hypothesis testing. Other scientific 
questions are addressed by different statistical methods, such as clustering. These 
methods are beyond the scope of this chapter. Hypothesis testing for comparing means is 
commonly conducted by t-tests or analysis of variance, appropriate when the measured 
response variable is normally distributed. 

In this chapter we present basic statistical principles needed during analysis of array 
data, in the hopes that scientists will be able to make better decisions with their data. 
Example data are presented, so researchers can use them to practice their statistical 
analysis skills using their choice of software. We have used SAS software to produce the 
results presented here. 

2. ANALYSIS OF VARIANCE CONCEPTS 

An example is taken from Chapter 4 (Urs et al.), where adipose tissue from six patients 
was sampled and processed to yield two cell types. Each cell type was assigned a dye 



color (red and green) for this cDNA microarray experiment. Experimental data consist of 
six patients, one array per patient, two cell types (or dyes) per array, and two spots per 
cell type. The arrays actually measured over 10,000 genes, but just Perilipin results are 
initially considered. Raw data collected by measuring fluorescent intensity are given in 
Table 1. 

To statistically process these data, and answer whether red intensity differs from 
green, the most comprehensive and flexible approach is to use a linear model. For 
example, a t-test to compare two means can be done with the linear model 

yij=µ+di+eij  
(1) 

Model (1) explains y, the intensity measures, with an overall mean (µ), an effect of the ith 
dye (i=red or green), and residual unexplained error (e). If the dye effects differ greatly, 
then we conclude there is differential expression of the Perilipin gene. An objective 
decision on what is “greatly” is obtained from the significance probability, or P-value. 
For this model, applied to Table 1 data, the F statistic is 2.26, indicating that dye 
differences are over twice as large as error differences. Statistical tests reflect the signal-
to-noise concept, testing whether the dye signal is greater than the error noise. This F 
ratio has a P-value of 0.1469, which tells us that if red and green intensities are truly 
equal, we would have a 14.7% chance of observing data at least as different as Table 1. 
This chance is large, and only if the P-value goes below 5% do scientists generally 
consider that there is sufficient evidence that red and green intensities differ. If the 0.05 
significance level cutoff is used, then  

TABLE 1 Raw Data for the Perilipin Gene, 
Comparing Two Cell Types (Dyes) Using Six 
Microarrays with Duplicate Spots 

Array Signal Background Dye 

40 277 257 Green 

40 248 235 Green 

43 192 189 Green 

43 198 168 Green 

55 2,292 4,010 Green 

55 2,130 4,268 Green 

69 1,007 350 Green 

69 978 404 Green 

70 663 585 Green 

70 792 536 Green 

72 1,161 820 Green 

72 1,287 816 Green 
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40 1,090 984 Red 

40 690 732 Red 

43 113 60 Red 

43 101 59 Red 

55 467 297 Red 

55 478 639 Red 

69 7,901 240 Red 

69 7,220 330 Red 

70 632 169 Red 

70 735 143 Red 

72 3,615 933 Red 

72 2,972 890 Red 

it should be kept in mind that there will be a 5% chance of declaring a difference when in 
truth there is none, the false positive result of a Type I error. 

Model (1) does not address any sources of variation except for the dye effect. We 
know that all arrays are not equal. In Model (1), any array differences will be left in the 
residual error term, making it too large, in turn making the F ratio too small and leading 
to an inability to detect true differences. This gives a false negative, a consequence of low 
statistical power. One way to increase power is to correctly address known sources of 
variation in the linear model, thus making the error variation smaller. This model, 

yij=µ+aj+di+eij  
(2) 

uses both array and dye effects to explain observed intensities. Model (2) is a “mixed 
model” because it includes fixed and random effects. Dye effects are “fixed effects” 
because they are modeled as additive constants. Suppose the red dye effect is 100, and 
the green dye effect is −100. Defining dye as fixed means that whenever red is observed, 
we expect a 100-unit increase in intensity, whereas green produces a constant 100-unit 
decrease. In contrast, arrays are generally modeled as random effects. They produce 
variation in the observations, but on average do not change the mean. In short, arrays are 
modeled as having a zero mean. Statistically, array in this model is an example of a 
“block” effect, with a block being a group of observations that are similar and have 
several treatments (usually all) applied within the block. For experiments with two 
treatments, this model is equivalent to the possibly more familiar paired t-test. 

Correct statistical analysis of a mixed model requires software that addresses the 
random effects differently from the fixed effects, something that a standard two-way 
analysis of variance will not do. Be sure to understand the capabilities of the statistical 
software you are using. Applying Model (2) to Table 1 data gives an F of 3.66 and a P-
value of 0.0726. Thus, addressing array variation did decrease error, making the F ratio 
larger. Some would interpret this as being suggestive evidence for differential expression, 
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since the P-value is close to the 0.05 cutoff generally used. But strict interpretation would 
conclude that the gene is not differentially expressed between cell types (P>0.05). 

The statistical analysis still is not correct. Statistical tests must use error terms that 
reflect the variation among replicates. This is why replication is so important in 
experiments. For microarray experiments, replicates are arrays, as these are the units to 
which treatments can be independently applied. As a counter example, duplicate spots 
within an array are not replicates, as they will measure the same experimental application 
of a treatment. Statistically spots are called samples, multiple observations on the 
replicate. In Model (2), the error term has both replicate and sample variation. To 
separate out sampling variation, the correct error term must be added, producing the 
model 

yijk=µ+aj+di+a×dij+eijk 
(3) 

The complexity of subscripts may give scientists headaches, but they are needed to 
identify all components in the model, here an observation on the jth array for the ith dye 
and kth spot. The new term, array×dye, is a random term that captures replicate variation. 
Running a mixed model analysis of variance with this model produces an F of 1.09 
(P=0.3439). Correctly using replicate variation among arrays shows that evidence for 
differential gene expression is much weaker than previous models suggested.  

Most common microarray designs use the blocking concept. For example, reference 
designs have arrays with a common control and one other treatment. By including block 
(array) in the model, data are adjusted so that effectively all observations are equalized by 
the control value. Then correct comparisons among the other treatments can be made. If 
there are at least three treatments including the control, then the statistical design is called 
an incomplete block design. Incomplete refers to the fact that all treatment conditions are 
not included or could not fit within the same block. Loop designs with more than two 
treatments also produce incomplete block designs. It is critical that incomplete block 
designs be analyzed with statistical software designed for mixed models. Only mixed 
model analysis can extract all information about treatment differences from such designs, 
producing the most precise results. 

The example in Table 1 does not include dye reversals, where replicate arrays are run 
but with red and green dyes assigned to opposite treatments. Designs with reversals allow 
dye effects to be estimated separately from treatment effects, providing more information 
(4). Interestingly, arguments against extensive use of dye swapping have been made (5). 
The smallest possible design for dye reversals has no replicate arrays, i.e., multiple arrays 
with the same dye-treatment assignments. For example, with two treatments the array-
dye-treatment combinations would be 1-R-1, 1-G-2, 2-R-2, and 2-G-1. Such a small 
experiment permits only estimation of the linear model 

yijk=µ+aj+di+tk+eijk 
(4) 

Dye and treatment effects can be addressed separately, but no other information is 
provided. It is better to include replicate arrays, allowing dye by treatment interactions to 
be estimated. These interactions, symbolized as D×T, measure how much treatment 
differences change for the red dye vs. green. If an interaction does occur, it means 
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measuring differential gene expression is affected by dye, and interpretation must be 
done more carefully. A typical linear model, including duplicate spots on each array, 
would look like 

yijkl=µ+aj+di+tk+d×tik+a×d×tijk+eijkl 
(5) 

This model can be viewed as another incomplete block design, with the dye-treatment 
combinations incompletely represented in each array block. An important concept 
researchers should see from this section is how the appropriate linear model changes 
depending on how the experiment was conducted. Of primary importance is to choose an 
experimental design that permits all effects of interest, such as treatments, and of 
concern, such as arrays, to be considered in the model. The design should assign 
treatments to arrays in such a way that the questions of interest can be answered with the 
highest precision for a given experiment size (5).  

3. DATA QUALITY ISSUES 

Model (3) is the correct linear model for analysis of Table 1 data, but there are several 
other concepts that may impact statistical analysis results. The first issue is to consider 
background noise on the microarray slide. This intensity, not associated with real gene 
expression, could be added to the linear model as a“covariate,” producing the model 

yijk=µ+aj+di+a×dij+βNijk+eijk 
(6) 

Covariates are regression variables that remove variation from the error term, thus 
increasing the ability to detect dye differences. This approach opens up even more 
complex possibilities, such as modeling the spatial fluctuations in background across the 
microarray slide. Such approaches could benefit from using all the background data, 
instead of correcting each spot separately for its local background. However, it is much 
more common to simply subtract the local background from each spot’s signal, and 
analyze the resulting corrected intensities with Model (3). This can produce negative 
intensities, which are best set to a small positive number (2). Note that setting β=1 in 
Model (6) produces Model (3) for the corrected data. After background correction of the 
example data, an F ratio of 2.02 (P=0.2140) is produced, suggesting that background 
correction has removed noise from the data, allowing dye differences to be more clearly 
seen. However, differences are not large from the statistical significance viewpoint. 

The P values for testing mean differences are based on a normal distribution. Specifically 
the residual errors (e) in linear models must have the symmetric, single-peak, bell-shaped 
curve characteristic of the normal distribution. This requirement should be checked 
during every statistical analysis. Figure 1A shows the residuals for Model (3). They have 
a distribution with a strong central peak and long tails, giving a Shapiro-Wilk W statistic 
of 0.87 (W=1 indicates perfect normality). This information is not strongly indicative of 
nonnormality (due to the small number of observations), but general experience with 
microarray intensity data suggests a log transformation provides better normality 
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characteristics. Instead of analyzing signal intensities, log base 2 values are used. Choice 
of base 2 gives a convenient scale for expression ratios, as a two-fold increase will have a 
value of 1, and so forth. For achieving statistical normality, any base will perform 
similarly. Figure 1B shows background corrected signal residuals after log 
transformation. This distribution appears more bell-shaped, but still has a W of only 0.89, 
not a large improvement. The statistical test for dye differences now has an F of 3.43 
(P=0.1233), an example of the influence that deviations from normality can have. 
Depending on the observed distribution, it is possible to make either false positive or 
false negative conclusions when the data are not normal. In this example, however, 
conclusions remain the same. Note that the new analysis is actually on a multiplicative 
scale (data are logtransformed) rather than on an additive scale as originally fit, and it is 
not uncommon to observe different outcomes. 

In addition to normality, standard linear models require that residuals have the same 
variance across arrays or treatments, for example. This is necessary because the residual 
variance is averaged to produce one error variance for all experimental data, and this 
error variance is used in the denominator of the F ratio. If variances are not equal, 
incorrect inferences are made, giving false positives for treatments with larger variance 
than average, and false negatives for treatments with smaller variance than average. The 
log transformation generally improves normality, but also usually stabilizes the variance, 
or makes error variances more equal. More complex transformations have been 
considered (6). 
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FIGURE 1 Frequency distribution of 
residuals from Model (3) for 
background corrected (A) signal 
intensity and (B) log base 2 signal 
intensity. 
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Figure 1B suggests another data quality issue. Outliers are extreme values that are 
likely to be biased by unusual events in the biological sample or in the technical process 
of measurement. Dust spots that produce high intensities on microarrays will cause 
outliers. If one looks at the data in Table 1, some extremely high values over 7000 will be 
noted. These appear inconsistent with values from the other arrays, but a more objective 
measure of “extreme” should be used. A common practice is to use the mean and 
standard deviation. If values are normally distributed, 99% should fall within plus-or-
minus 3 standard deviations.Values outside this range could be considered outliers, or 
more conservatively 4 standard deviations could be used. One problem with this is that 
outliers will inflate the standard deviation, and thus make outliers more difficult to detect. 
A possible solution is to use robust measures of variation that will be less affected by 
outliers. Several robust approaches have been developed, such as Windsorized and 
median absolute deviation (MAD). For the Table 1 example, the standard deviation of 
residuals is 2.57, and the MAD is 1.57. The smallest residual of −7.62 would be 
identified as an outlier since it is more than 4 times MAD. However, both it and the 
largest positive residual of 6.22 are where background exceeded signal. Residuals should 
be used, not the measured or corrected intensities, because array and dye effects will 
affect outlier decisions, just as they affect normality. 

Difficult decisions must sometimes be made during a statistical analysis. If both 
potential outliers are discarded, then the F ratio is 8.42 (P=0.0337). If only the 7.62 is 
discarded, then the F ratio is 11.94 (P=0.0181). The former choice is commonly used, 
and it is important to realize this choice will affect results. It is difficult to remain 
unbiased, but in our judgment, none of the data should be discarded in this example. 
Although the 7.62 meets a common criterion for identifying outliers, the small number of 
observations and the shape of Figure 1B do not strongly support this observation being 
“extremely” unusual. 

Adding to the difficulty is the realization that this is just one gene of over 10,000, and 
it is not realistic to make careful judgments such as those just presented for each 
individual gene. An automated process must be programmed, and the results interpreted 
in light of the possibility that data quality issues affected the analysis. 

We can now complete the analysis of differential expression for this gene. Using all 
background-corrected data and Model (3), least squares mean log expressions are 4.83 
and 7.06 for green and red dyes.The difference is 2.2 (P=0.12) with a standard error of 
1.2. Mathematically, log(R)-log(G)=log(R/G), so the difference can be back-transformed 
by raising 2 (the log base) to the difference power, giving 4.59. Interpretation is thus that 
the red dye shows over a four-fold increase in gene expression compared to green. That 
this large observed difference is not statistically different suggests that a false negative 
has occurred. There was too much variability among arrays (or among individual subjects 
since the biological sample for each array is one person), causing low statistical power or 
low ability to detect true differences. If this difference is scientifically important, then 
future experiments should attempt to reduce variation, or the number of observations 
must be increased. These are the two variables that researchers can control to increase 
statistical power. Estimation of required sample size is a fairly complex process, with 
more details given elsewhere (1, 7). But a reasonable approximation can be made with 
the formula 

Number per treatment=25×Variance(difference×difference).   
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Variance is the error variance, which can be obtained from the standard error of the 
difference by 

Variance=N×SE×SE/2  
(7) 

where N is the number of observations for the mean. For the example data, this gives 
12×1.2×1.2/2=8.64. Difference in Eq. (7) is the treatment difference of interest, and the 
observed difference can be used. Doing so here gives 45 observations, or 23 arrays 
considering duplicate spots per array. If variation can not be reduced, then a substantially 
larger experiment will be needed. 

4. CONCEPTS FOR MULTIPLE GENE ANALYSIS 

The value of microarrays is the ability to measure thousands of genes, but analysis of 
such data requires extension of the above concepts. For linear models, gene becomes a 
factor that needs to be included in the analysis. However, this produces a complex model 
with many interaction terms involving gene, very difficult to interpret scientifically. Also 
computationally, the statistical analysis is difficult because of the thousands of genes 
being considered. Wolfinger et al. (3) suggested a two-step modeling process that avoids 
these difficulties. First, a model such as 

yijk=µ+aj+eijk  
(8) 

is fit to all gene data, so the k subscript now represents genes and duplicate spots. The 
purpose of this analysis is to remove average array effects, averaged over all genes. Dye 
is not included because for the Table 1 example, dye is equivalent to treatment. If a dye 
swap experiment were used, then dye effects would be included in this first step. Then for 
the second step, residuals from the first analysis are used as the y-variable in a second 
model, run on each gene separately. 

 
(9) 

This model must have correct error terms and treatments of interest, as discussed earlier, 
since it will produce the scientific results to be interpreted. 

For data quality issues, analysis of all genes allows an additional correction to be 
made. Scientifically, it is assumed that most genes will not be over- or underexpressed. 
Thus, if expression ratios are plotted against intensity, a flat line should be observed (8). 
In reality, each array may have a different pattern, and corrections such as the loess 
smoothing can be used to remove these array differences. 

Finally, there is the concept of multiple testing. Analysis of each gene produces a P-
value test for differential expression. Each statistical test has a chance of false positives. 
For example, if P<0.05 is used, then each test has a 5% chance of a Type I error, or false 
positive. If all tests are independent, then these 5% chances accumulate. After 200 tests, 
the chance of at least one false positive is essentially 100%. Microarray analysis 
generally involves over 10,000 tests, so there is real concern that test results will include 
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too many false positives. The Bonferroni correction is mathematically proven to prevent 
increases in false positives for independent tests, simply by dividing the critical P-value 
by the number of tests (7). Thus we would use a significance level of 0.05/10000, for 
example. However, almost certainly tests for microarrays are not independent, since 
genes operating in the same pathway are likely to be over- or underexpressed to a 
somewhat similar degree. The Bonferroni correction then becomes too conservative, or 
the significant P value is too small and we make false negative errors too often. There is 
growing acceptance for an alternative method, called the False Discovery Rate. Details 
can be found in (1, 9), but basically an attempt is made to balance false positives and 
false negatives.  

5. ANALYSIS FOR OLIGONUCLEOTIDE ARRAYS 

Oligonucleotide arrays provided commercially as GeneChips™ from Affymetrix (Santa 
Clara, CA) add their own set of challenges for the analysis of microarrays. In these 
experiments, each gene is represented by a set of (usually) 20 oligonucleotide sequences 
called probes. In addition, each probe has a control probe that is identical except for a 
single nucleotide mismatch at position 13. These pairs of probes are referred to as perfect 
match (PM) and mismatch (MM) probes, respectively. 

The design of experiments using oligonucleotide arrays differs from cDNA arrays in 
that only a single set of treatment conditions is applied to an array, rather than having two 
treatment conditions applied as with the cDNA array. Thus, the array no longer serves as 
a block (or incomplete block when more than two treatments are considered) in the 
design, but as an experimental unit. Traditional completely randomized designs with 
factorial treatment arrangements apply to these experiments. This distinction is very 
important because it has implications on the models appropriate for analysis of these 
experiments. 

Since each array is calibrated and read independently of the others, and since the 
arrays no longer serve as blocks in the experiment, normalization may be required to put 
the arrays on a comparable basis. Chu et al. (10) recommend a log base 2 transformation 
of the intensities, then centering these values at zero separately for each array. In this way 
the geometric means of the arrays are equilibrated. The assumption is that centering of 
the data removes calibration noise, but does not remove treatment effects. One also has to 
make decisions regarding whether or not to use the mismatch data in the analyses. The 
differences PM-MM are supposed to indicate the degree to which the PM probes are 
expressed by the treatments above the noise generated by nonspecific binding as 
measured with the MM probes. Unfortunately, these differences can be negative. If a log 
base 2 transformation of the differences is desired, then a constant could be added to the 
differences to make them all positive, or the negative values may be truncated to 1 or 
some other small positive number prior to transformation. Alternatives include using the 
MM intensity as a covariate in the model or using the log base 2-transformed MM 
intensities as a covariate when the PM data are log base 2-transformed. 

Chu et al. (10) recommend a mixed-models approach to the analysis of 
oligonucleotide arrays. Their approach fits traditional split-plot models to the data where 
the array is the whole-plot experimental unit, and probe locations on an array are the 
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subplot experimental unit. This design assumes that arrays on which treatment factors are 
applied, such as cell lines or other treatment conditions, are independent, whereas the 
probe measurements made on a given array may be correlated. This is the approach that 
we recommend. However, we treat the model in a repeated measures context, so that if 
use of the spatial information about the probe locations in the analysis is desired, then it 
becomes a straightforward extension of our approach. 

We will illustrate the analysis of an oligonucleotide experiment using data taken from 
an experiment by Tusher et al. (11) to examine the ionizing radiation response on two cell 
lines. The experiment was a completely randomized design with a two-factor factorial 
arrangement of treatment (irradiated or unirradiated) and cell line (1 or 2) with each 
combination replicated on two separate arrays making a total of 8 arrays in the 
experiment. These combinations are referred to as I1A, I1B, I2A, I2B, U1A, U1B, U2A, 
and U2B, with the three-letter codes indicating treatment, cell line, and replicate, 
respectively. Again there are 20 PM probes and 20 MM probes for each gene on each 
array. A model corresponding to this experiment should consider treatment, cell line, 
probe, and array effects. A gene-specific model for the PM data is 

yijkl=µ+τi+φj+τφij+aijk+ρ1+τpil+φρjl+eijkl 
(10) 

where τi is the effect due to ionizing radiation, φj the effect due to the jth cell line, ρl is the 
probe effect, and aijk and eijkl are random effects due to variation among arrays and probe 
locations within arrays, respectively. This is the split-plot model proposed for these data 
by Chu et al. (10). Note that they have not allowed for a three-factor interaction of 
treatment×cell line×probe in this model. The repeated measures (multivariate) model 
differs from model 10 by having separate equations for each probe, but then linking those 
equations by specifying a correlation structure (12). The coding for the mixed-model 
analysis in SAS using the repeated measures model approach matches that for the split-
plot model, so we will use the split-plot model specification. In addition, we have 
selected a compound symmetry covariance structure that will give results identical to the 
traditional splitplot model (12). Given the spatial coordinates for the probes on the arrays, 
more explicit spatial correlation structures can be fit. Results are reported for the gene 
numbered 170 in the data set with PM and MM data shown in Tables 2 and 3, 
respectively. Prior to analysis, all of the PM data are log base 2-transformed and centered 
at zero for each array. The log base 2 geometric means for each array are included in 
Tables 2 and 3. To center the data, compute the log base 2 transformation for each value 
including the means, and then subtract the transformed array mean from each of the 
transformed probe values. 

A large treatment effect (F=125.7; df=1, 4; P>F=0.0004) is observed on the log base 
2-transformed and centered PM data for gene 170 using the repeated measures Model 
(10). In addition, significant effects are  
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TABLE 2 Perfect Match (PM) Data for Gene 170 
from an Oligonucleotide Experiment 

Probe I1A I1B I2A I2B U1A U1B U2A U2B 

1 1,652.0 1,805.0 1,875.5 1,970.3 1,442.5 1,636.5 2,628.0 2,152.0 

2 2,330.0 2,450.0 2,351.3 2,478.5 1,939.3 2,001.5 2,867.3 2,525.5 

3 2,761.5 2,732.3 2,554.8 2,687.0 2,058.3 2,259.3 3,333.5 2,730.3 

4 1,505.0 1,573.8 1,432.8 1,587.0 1,111.0 1,304.0 1,962.3 1,657.8 

5 529.5 469.5 440.3 498.5 398.3 437.0 554.0 521.8 

6 972.0 958.8 976.0 1,044.5 899.5 918.3 1,243.8 1,086.0 

7 799.3 747.0 835.5 729.5 652.3 699.3 1,006.3 812.8 

8 1,308.5 1,420.5 1,441.8 1,481.5 1,097.0 1,200.5 1,612.5 1,578.0 

9 931.8 938.3 850.0 896.3 734.5 841.8 1,088.8 971.0 

10 1,151.3 1,201.5 1,294.5 1,279.8 1,049.3 1,113.3 1,623.5 1,355.3 

11 1,206.3 1,175.8 1,204.3 1,198.8 1,083.8 1,013.8 1,438.3 1,234.5 

12 1,995.3 2,018.8 2,142.5 2,164.8 1,538.5 1,632.3 2,253.5 2,152.8 

13 1,048.3 948.5 1,093.8 1,059.0 884.8 959.3 1,327.0 1,071.8 

14 2,374.0 2,453.3 2,399.8 2,494.0 2,074.8 2,208.5 2,631.8 2,521.3 

15 2,635.8 2,614.5 2,804.5 2,944.5 2,249.8 2,334.0 3,391.3 2,956.0 

16 1,415.5 1,267.0 1,470.5 1,406.8 1,116.8 1,308.0 1,850.8 1,542.3 

17 1,720.0 1,656.8 1,728.3 1,842.0 1,339.8 1,474.0 2,214.0 1,822.0 

18 2,026.8 2,045.0 2,259.8 2,067.5 1,729.0 1,790.3 2,651.5 2,233.5 

19 589.8 570.0 588.0 592.0 458.3 547.5 733.8 636.3 

20 1,833.5 1,669.0 1,929.5 1,813.0 1,377.3 1,547.5 2,109.0 2,009.0 

Array geometric mean 980.6 951.7 1,014.2 1,009.7 886.1 950.9 1,301.9 1,136.2 

(Data from Ref. 11.) 

observed for treatment×cell line (F=8.4; df=1, 4; P>F=0.0441), probe (F= 997.8; df= 19, 
95; P>F=0.0001), and cell line×probe (F=2.1; df= 19, 95; P>F=0.0093). Thus, there may 
be some evidence that the probes do not respond the same way for each cell line, and that 
the treatment may affect the cell lines differently for this gene. The estimated 
(leastsquares) means from the model for treatment, cell line, and treatment×cell line are 
given in Table 4. One can examine the treatment×cell line means and observe that the 
difference between cell lines means appears greater for the unirradiated than the 
irradiated treatment. The simple effects or interaction slices provide a more convenient 
way to investigate this interaction. Simple effects compare the means of one factor at 
fixed levels of another factor. These simple effect tests are reported in Table 5. These 
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indicate that the cell lines do not differ for the irradiated treatment, but do differ in the 
unirradiated treatment, which is consistent with an interaction of treatment with cell line. 
The probe effect is very large and indicates that the intensities for a given experimental 
condition vary considerably among  

TABLE 3 Mismatch (MM) Data for Gene 170 
from an Oligonucleotide Experiment 

Probe I1A 11B I2A I2B U1A U1B U2A U2B 

1 692.5 679.0 734.3 819.0 607.0 618.0 876.5 826.8 

2 933.8 927.8 997.5 1,102.8 824.5 869.8 1,157.5 1,013.0 

3 666.8 670.8 658.0 694.0 603.5 629.0 835.3 694.3 

4 597.5 611.5 620.0 620.5 599.0 576.3 809.5 674.8 

5 453.8 447.5 447.0 429.0 381.3 378.8 534.8 492.0 

6 596.3 558.3 582.5 580.3 484.5 522.8 728.0 597.8 

7 471.8 413.8 480.5 456.0 401.5 411.0 527.8 525.0 

8 515.8 543.8 578.0 575.3 532.3 548.3 767.0 605.8 

9 475.8 514.3 503.0 517.8 415.3 507.3 665.5 594.5 

10 643.5 767.5 759.8 725.3 636.3 635.0 944.0 754.5 

11 544.3 539.3 575.8 619.8 506.0 485.0 662.8 621.3 

12 590.5 646.5 696.8 698.0 539.5 628.8 736.0 703.0 

13 544.8 569.3 589.8 569.0 566.3 526.0 702.3 655.8 

14 842.0 962.8 955.3 1,104.0 935.3 848.0 1,092.8 929.3 

15 954.3 1,101.5 1,128.8 1,212.3 908.8 880.0 1,381.5 1,022.8 

16 526.3 502.3 480.3 513.0 406.0 463.3 643.0 524.5 

17 954.3 1025.0 1,026.3 1,145.5 977.0 984.8 1,332.0 1,199.3 

18 819.8 821.8 871.8 917.3 737.3 754.5 1,120.0 863.8 

19 525.3 446.0 463.3 498.0 429.5 447.5 649.5 548.8 

20 496.0 479.0 514.5 545.8 489.8 538.0 621.3 565.3 

Array geometric mean 829.6 831.2 874.4 877.9 763.6 808.6 1,097.7 970.0 

(Data from Ref. 11.) 
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TABLE 4 Least-Squares Meansa (LSMean) of 
Treatment, Cell Line, and Treatment×Cell Line 
Effects for Gene 170 

Effect Treatment Cell line LSMean Standard error 

Treatment I   0.5114 0.007362 

Treatment U   0.3946 0.007362 

Cell Line   1 0.4474 0.007362 

Cell Line   2 0.4586 0.007362 

Treatment×Cell Line I 1 0.5209 0.01041 

Treatment×Cell Line I 2 0.5018 0.01041 

Treatment×Cell Line U 1 0.3740 0.01041 

Treatment×Cell Line U 2 0.4153 0.01041 
aMeans are of centered log base 2 PM data from an oligonucleotide experiment (Data from Ref. 
11.) 

TABLE 5 Treatment×Cell Line Interaction Simple 
Effect Slices for the PM Data of Gene 170 from an 
Oligonucleotide Experiment 

Effect Treatment Cell 
line 

Numerator 
DF 

Denominator 
DF 

F 
Value 

Prob > 
F 

Treatment×Cell 
Line 

I   1 4 1.67 0.2655 

Treatment×Cell 
Line 

U   1 4 7.88 0.0485 

Treatment×Cell 
Line 

  1 1 4 99.56 0.0006 

Treatment×Cell 
Line 

  2 1 4 34.54 0.0042 

(Data from Ref.11) 

the probes for this gene. These centered log base 2 mean intensities are graphed as a 
function of probe number in Fig. 2 and suggest that some probe intensities are 4 times 
larger than others (mean difference of 2 on a log base 2 scale). 

Again, the usual goal is to identify the more important, distinguishing genes, so all 
genes are analyzed using the selected model, and then  
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FIGURE 2 Estimated (least-squares) 
means of the probe effects using 
Model (10) plotted as a function of 
probe number. 

techniques to identify the important genes are applied as discussed for the cDNA array 
experiments. One graphical aid to help with this decision is the volcano plot (10), in 
which the effect differences and associated hypothesis test P-values are presented 
together. Rather than being plotted directly, the P-values are rescaled so that small P-
values appear near the top of the plot, and so that judgments relative to their importance 
can be made using the P-values. We have transformed the P-values using −2 log P-value, 
resulting in an approximate chi-squared-distributed random variable. The fold-differences 
are plotted on the x-axis and the chi-square values are plotted on the y-axis. The resulting 
volcano plot for the treatment effect for the Tusher experiment is given in Fig. 3. Notice 
that just because the P-value is very small, it does not necessarily imply that the fold-
difference is large. The P-value not only is a function of the fold-difference, but also 
depends upon the variability in the data. In this experiment, many small fold-differences 
have been assigned small P-values. Thus, using a cut-off value of  
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FIGURE 3 Volcano plot of the 
treatment effect over all genes within 
the experiment for Model (10). 
Vertical reference lines are located at 
differences of 1 unit indicating a two-
fold change. The −2 log(PValue) are 
natural logarithms of the treatment 
effect P-values and are approximately 
chi-squared distributed. 

P<0.05 is not very informative, as many of the genes would be selected as informative. If 
the volcano plot is used, genes with points near the top and to the left or right extremes 
would be more closely examined. 

The residuals from the above mentioned analysis are examined for normality and 
consistency with the model using a quantile-quantile plot. The observed residual 
quantiles appear consistent with those that would be expected if the residuals are 
normally distributed (Fig. 4), following closely along the straight reference line. 
Unfortunately, examining such a plot for each gene in the experiment is overwhelming 
(thousands of such plots), so techniques of combining residuals over all genes have been 
proposed. Chu et al. (10) suggest standardizing the residuals from each gene’s analysis by 
the estimated standard deviation of the residuals. For the split-plot or repeated measures 
Model (10), the standardization is to compute the estimate of for each gene, where 
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are the variance components for the whole-plot and subplot units, respectively, 
using the estimates from each gene’s analysis. For gene 170, the estimated variance 
components are and , yielding an estimated standard 
deviation  

 

FIGURE 4 Quantile-quantile (QQ) 
plot of the residuals from Model (10) 
fit to the log base 2-centered PM 
oligonucleotide data. 
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FIGURE 5 Standardized residuals vs. 
predicted values plot corresponding 
with Model (10) for the log base 2-
centered PM oligonucleotide data. 

of . We then divide each residual from the model for 
gene 170 by this standard deviation to produce the standardized residuals. The 
standardized residuals from the analysis of all genes can then be plotted against gene 
number and predicted values to scan for outliers and indications of poor model fit. Due to 
the high density of points in these graphics, Chu et al. (10) refer to this residual vs. 
predicted values plot as a submarine plot. The submarine plot of standardized residuals 
for Model (10) is shown in Fig. 5. Note that there are a number of large residuals, so 
these intensities should be carefully examined before accepting the results as final. In 
addition, since is the covariance among probe measurements made on the same array, 
a correlation among such measurements, also called the intraclass correlation, can be 
constructed as 

 (11) 

indicating that there is very little spatial association among the probe measurements from 
the same array. One could also use the actual spatial coordinates of the probe locations on 
the arrays to fit more explicit spatial correlation models. 
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6. CONCLUSIONS 

The analysis of both cDNA and oligonucleotide microarrays requires an understanding of 
the experimental designs that are used for each, along with the accompanying statistical 
models that account for or explain the various sources of experimental variation from 
those designs. For the oligonucleotide experiments, probe-level information must also be 
dealt with. Normalization of the data may be required to adjust for overall differences in 
intensity readings from array to array. Various diagnostics are required to examine 
overall model fit, and to identify outliers. Due to the large number of genes examined, 
new techniques and graphics are required to accommodate the multiplicity in testing and 
to aid in the identification of important, discriminating genes. The mixed-models 
approach that we advocate here is quite flexible and accommodates a wide number of 
experimental designs permitting a consistent approach to the analysis of such data. 
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