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Preface

This is the first text devoted specifically to the negative binomial regression
model. Important to researchers desiring to model count response data, the
procedure has only recently been added to the capabilities of leading commercial
statistical software. However, it is now one of the most common methods used
by statisticians to accommodate extra correlation – or overdispersion – when
modeling counts. Since most real count data modeling situations appear to
involve overdispersion, the negative binomial has been finding increased use
among statisticians, econometricians, and researchers who commonly analyze
count response data.

This volume will explore both the theory and varieties of the negative bino-
mial. It will also provide the reader with examples using each type of major vari-
ation it has undergone. However, of prime importance, the text will also attempt
to clarify discrepancies regarding the negative binomial that often appear in the
statistical literature. What exactly is a negative binomial model? How does it
relate to other models? How is its variance function to be defined? Is it a mem-
ber of the family of generalized linear models? What is the most appropriate
manner by which to estimate parameters? How are parameters to be interpreted,
and evaluated as to their worth? What are the limits of its applicability? How
has it been extended to form more complex models? These are important ques-
tions that have at times found differing answers depending on the author. By
examining how the negative binomial model arises from the negative binomial
probability mass function, and by considering how major estimating methods
relate to the estimation of its parameters, we should be able to clearly define
each variety of negative binomial as well as the logic underlying the respective
extensions.

The goal of this text is to serve as a handbook of negative binomial regression
models, providing the reader with guidelines of how to best implement the
model into their research. Although we shall provide the mathematics of how
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x Preface

the varieties of negative binomial model are derived, the emphasis will be on
clarity and application. The text has been written to be understandable to anyone
having a general background in maximum likelihood theory and generalized
linear models. To gain full benefit of the theoretical aspects of the discussion,
the reader should also have a working knowledge of elementary calculus.

The Stata statistical package (http://www.stata.com) is used throughout the
text to display example model output. Although many of the statistical models
discussed in the text are offered as a standard part of the commercial package, I
have written a number of more advanced negative binomial models using Stata’s
proprietary higher programming language. These programs, called ado files by
Stata, display results that appear identical to official Stata procedures. Some
25 of these Stata programs have been posted to the Boston College School of
Economics SSC archive, accessed at: http://ideas.repec.org/s/boc/bocode.html.
Programs are ordered by year, with the most recent posted at the bottom of the
respective year of submission. Most statistical procedures written for this text
can be found in the 2004 files.

LIMDEP software (http://www.limdep.com) is used to display output for
examples related to negative binomial mixed models, the NB-P model, neg-
ative binomial selection models, and certain types of truncated and censored
models. These programs were developed by Prof. William Greene of New York
University, author of the LIMDEP package. Stata and LIMDEP statistical soft-
ware contain more procedures related to negative binomial regression than all
other packges combined. I recommend that either of these two packages be
obtained if the reader intends to duplicate text examples at their site. A basic
NB-2 model in R is provided as part of the MASS package, based in Venables
and Ripley (2002). Negative binomial models in R are limited as of this writing,
but more advanced models are sure to follow in the near future.

All data sets and Stata ado files related to models used in the text can be
downloaded from: www.cambridge.org/XXXXX. Each ado file will have a date
of origin associated with it. Occasionally updates or additions will be made to
this site; it is recommended that you check it from time to time, updating to the
most recent iteration of the procedure of interest. I also intend to post additional
materials related to negative binomial modeling at this site.

I shall use the following citation and reference conventions throughout the
text. Program commands, variable and data set names, as well as statistical
output, are all displayed in Courier New typewriter font. Data sets and command
names are in bold, e.g.medpar, glm. I shall follow standard conventions with
respect to mathematical expressions.

This monograph is based on seminars and classes related to count response
models that I have taught over the past 20 years. In particular, the presentation of
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the material in this book closely follows the notes used for short courses I taught
in November 2005 at the Federal Food and Drug Administration, Rockville,
MD, and in Boston as a LearnStat program course sponsored by the American
Statistical Association. I learned much from the lively discussions that were
associated with the two courses, and have attempted to clarify various issues that
seemed murky to several course participants. I have also expanded discussion
of areas that were of particular interest to the majority of attendees, with the
expectation that these areas will be of like interest to those choosing to read
this book.

Note that I reiterate various main statistical points in the early chapters. I
have found that there are certain concepts related to count response modeling,
as well as to statistical modeling in general, that need to be firmly implanted in
a statistician’s mind when engaging in the modeling process. I have therefore
characterized given concepts from differing points of view as well as reinforced
the definitional properties of the statistics by repetition. For those who are
approaching generalized linear models, maximum likelihood regression, and
count response modeling for the first time, such repetition should prove useful.
For those who are already familiar with these concepts, I suggest that you skim
over repetitive material and concentrate on the underlying points being made.
As we progress through the text, repetitiveness will be kept at a minimum.

Many colleagues have contributed to this work. I owe special appreciation
to John Nelder, who spurred my initial interest in negative binomial models in
1992. We spent several hours discussing the relationship of Poisson and gener-
alized linear models (GLMs) in general to negative binomial modeling while
hiking a narrow trail from the precipice to the bottom and back of the Grand
Canyon. This discussion initiated my desire to include the negative binomial
into a GLM algorithm I was developing at the time to use as the basis for
evaluating commercial GLM software.

I also wish to acknowledge the valuable influence that James Hardin and
William Greene have had on my thinking. Dr Hardin and I collaborated in the
writing of two texts on subjects directly related to count models, including
the negative binomial. Our frequent discussions and joint projects have shaped
many of the opinions I have regarding the negative binomial. He kindly read
through the entire manuscript, offering valuable comments and suggestions
throughout. Prof. Greene’s profound influence can especially be found in the
final chapters of this book. As author of LIMDEP, Greene has developed far
more software applications relevant to count regression models – and nega-
tive binomial models in particular – than any other single individual. He has
kindly shared with me his thinking, as well as his writings, on negative bino-
mial models. Additionally, I thank Hyun Kim, University of Massachussetts,
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Lowell, who is using the negative binomial in his research. He read through the
manuscript and offered many helpful comments, particularly as related to early
chapters of the book.

Finally I wish to express appreciation to Diana Gillooly, Statistics Editor, and
to Catherine Appleton, Assistant Editor, Science, Technology, and Medicine at
Cambridge University Press. Ms Gillooly’s encouragement and willingness to
extend deadlines when I required more time for research have helped make
this book more comprehensive. Ms Appleton provided very useful information
related to the technical aspects of the text.

A special thanks go to my wife, Cheryl, and to the two of our children who
are living at home, Michael and Mitchell. They were forced to endure many
hours without my active attention. Far too often my mind was deep in stat-land,
while my body participated in family events. I dedicate this book to them, as
well as to my daughter, Heather, and to my late parents, Rader John and NaDyne
Anderson Hilbe.



Introduction

The negative binomial is traditionally derived from a Poisson–gamma mixture
model. However, the negative binomial may also be thought of as a member of
the single parameter exponential family of distributions. This family of distri-
butions admits a characterization known as generalized linear models (GLMs),
which summarizes each member of the family. Most importantly, the char-
acterization is applicable to the negative binomial. Such interpretation allows
statisticians to apply to the negative binomial model the various goodness-of-fit
tests and residual analyses that have been developed for GLMs.

Poisson regression is the standard method used to model count response
data. However, the Poisson distribution assumes the equality of its mean and
variance – a property that is rarely found in real data. Data that have greater
variance than the mean are termed Poisson overdispersed, but are more com-
monly designated as simply overdispersed. Negative binomial regression is a
standard method used to model overdispersed Poisson data.

When the negative binomial is used to model overdispersed Poisson count
data, the distribution can be thought of as an extension to the Poisson model.
Certainly, when the negative binomial is derived as a Poisson–gamma mixture,
thinking of it in this way makes perfect sense. The original derivation of the
negative binomial regression model stems from this manner of understanding
it, and has continued to characterize the model to the present time.

As mentioned above, the negative binomial has recently been thought of as
having an origin other than as a Poisson–gamma mixture. It may be derived as
a generalized linear model, but only if its ancillary or heterogeneity parameter
is entered into the distribution as a constant. The straightforward derivation of
the model from the negative binomial probability distribution function (PDF)
does not, however, equate with the Poisson–gamma mixture-based version of
the negative binomial. Rather, one must convert the canonical link and inverse
canonical link to log form. So doing produces a GLM-based negative binomial
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2 Introduction

that yields identical parameter estimates to those calculated by the mixture-
based model. As a non-canonical linked model, however, the standard errors
will differ slightly from the mixture model, which is typically estimated using
a full maximum likelihood procedure. The latter uses by default the observed
information matrix to produce standard errors. The standard GLM algorithm
uses Fisher scoring to produce standard errors based on the expected informa-
tion matrix – hence the difference in standard errors between the two versions
of negative binomial. The GLM negative binomial algorithm may be amended
though to allow production of standard errors based on observed information.
When this is done, the amended GLM-based negative binomial produces iden-
tical estimates and standard errors to that of the mixture-based negative bino-
mial. This form of negative binimoal was called the log-negative binomial by
Hilbe (1993a), and was the basis of a well-used SAS negative binomial macro
(Hilbe, 1994b). It is also the form of the negative binomial found in Stata’s glm
command as well as in the SAS/STAT GENMOD procedure in SPSS’s GLZ
command, and in GENSTAT’s GLM program.

Regardless of the manner in which the negative binomial is estimated, it is
nevertheless nearly always used to model Poisson overdispersion. The advan-
tage of the GLM approach rests in its ability to utilize the specialized GLM
fit and residual statistics that come with the majority of GLM software. This
gives the analyst the means to quantitatively test different modeling strategies
with tools built into the GLM algorithm. This capability is rarely available
with models estimated using full maximum likelihood or full quasi-likelihood
methods.

In this book we shall discuss in greater depth the two methods of estimating
negative binomial data that have been outlined above. The complete derivation
of both methods will be given, together with discussion of how the algorithms
may be altered to deal with count data that should not be modeled using simple
Poisson or standard negative binomial methods. In fact, we shall devote consid-
erable space to describing the base Poisson regression model, and the manner
in which its assumptions may be violated. In addition, we shall find that just as
Poisson models can be overdispersed, negative binomial models can as well.
Following an examination of estimating methods and overviews of both the
Poisson and negative binomial models, the remainder of the book is devoted to
a discussion of how to understand and deal with various enhancements to both
the Poisson and traditional negative binomial models.

Extensions to the respective Poisson and negative binomials are made
depending on the type of underlying problem that is being addressed. Extended
models include, among others, those for handling excessive response zeros –
zero-inflated Poisson, zero-inflated negative binomial, and hurdle models; for
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handling responses having no possibility of zero counts – zero-truncated Pois-
son and zero-truncated negative binomial; having responses with structurally
absent values – truncated and censored Poisson and negative binomial; and hav-
ing longitudinal or clustered data – fixed, random, and mixed effects negative
binomial as well as negative binomial GEE. Models may also have to be devised
for situations when the data can be split into two or more distributional sub-
sets. In fact, both Poisson and negative binomial models have been extended to
account for a great many count response modeling situations. We shall attempt
to give an overview of each of the major varieties mentioned here, which should
provide the researcher with a map or guideline of how to handle a wide variety
of count modeling situations.

Typically, extensions to the Poisson model precede analogous extensions to
the negative binomial. For example, statisticians have recently created random
parameter and random intercept count models to deal with certain types of cor-
related data. The first implementations were based on the Poisson distribution.
Nearly all literature dealing with random parameter count models relates to the
Poisson. Negative binomial versions have only surfaced within the past couple
of years, primarily as a result of the work of William Greene. The only soft-
ware available for modeling negative binomial random parameter and intercept
models is LIMDEP, and even at that, it has not yet been made part of its menu
system procedures.

Of the two general count regression models, the negative binomial has greater
generality. In fact, as will be discussed at greater length later in the text, the
Poisson can be considered as a negative binomial with an ancillary or hetero-
geneity parameter value of zero. It seems clear that having an understanding of
the various negative binomial models, basic as well as complex, is essential for
anyone considering serious research dealing with count models.

It is important to realize that the negative binomial has been derived and
presented with different parameterizations. Some authors employ a variance
function that clearly reflects a Poisson–gamma mixture. With the Poisson vari-
ance defined as µ and the gamma as µ2/α, the negative binomial variance is
then characterized as µ + µ2/α. The Poisson–gamma mixture is clear. This
parameterization is the same as that originally derived by Greenwood and Yule
(1920). An inverse relationship between µ and α was also used to define the
negative binomial variance in McCullagh and Nelder (1989), to which some
authors refer when continuing this manner of representation.

However, shortly after the publication of that text, Nelder developed his KK
system (1992), a user-defined negative binomial macro written for use with
Genstat software. In this system he favored the direct relationship between
α and µ2 – resulting in a negative binomial variance function of µ + αµ2.
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Nelder has continued to prefer the direct relationship in his subsequent writings
(1994). Still, relying on the 1989 work, a few authors have continued to use the
originally defined relationship, even as recently as Faraway (2006).

The direct parameterization of the negative binomial variance function was
favored by Breslow (1984) and Lawless (1987) in their highly influential sem-
inal articles on the negative binomial. In the decade of the nineties, the direct
relationship was used in the major software implementations of the negative
binomial: Hilbe (1993b, 1994a) – XploRe and Stata, Greene (2006) – LIMDEP,
and Johnston (1997) – SAS. The direct parameterization was also specified in
Hilbe (1994a), Long (1997), Cameron and Trivedi (1998), and most articles and
books dealing with the subject. Recently Long and Freese (2003, 2006), Hardin
and Hilbe (2001, 2007), and a number of other recent authors have employed
the direct relationship as the preferred variance function. It is rare now to find
current applications using the older inverse parameterization.

The reason for preferring the direct relationship stems from the use of the
negative binomial in modeling overdispersed Poisson count data. Considered in
this manner, α is directly related to the amount of overdispersion in the data. If
the data are not overdispersed, i.e. the data are Poisson, then α = 0. Increasing
values of α indicate increasing amounts of overdispersion. Values for data seen
in practice typically range from 0 to about 4.

Interestingly, two books have been recently published, Hoffmann (2004)
and Faraway (2006), asserting that the negative binomial is not a true general-
ized linear model. However, the GLM status of the negative binomial depends
on whether it is a member of the single-parameter exponential family of dis-
tributions. If we assume that the overdispersion parameter, α, is known and is
ancillary, resulting in what has been called a LIMQL (limited information max-
imum quasi-likelihood) model (see Greene, 2003), then the negative binomial
is a GLM. On the other hand, if α is considered to be a parameter to be esti-
mated, then the model may be estimated as FIMQL (full information maximum
quasi-likelihood), but it is not a GLM.

In this text, the negative binomial is estimated as both a GLM and as a full
maximum (quasi-)likelihood model. As a GLM, the model has associated fit
and residual statistics, which can be of substantial use during the modeling
process. However, in order to obtain a value of α, i.e. to make α known, it
must be estimated. The traditional, and most reasonable, method of estimating
α is by a non-GLM maximum likelihood algorithm. Extensions to the negative
binomial model, e.g. zero-inflated, zero-truncated, and censored models, are
nearly all based on FIMQL methods. I shall be using both methods of esti-
mation when modeling basic Poisson and negative binomial data. How these
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methods are used together will become apparent as we progress through the
text.

The first chapter provides a brief overview of count response regression models.
Incorporated in this discussion is an outline of the variety of negative binomial
models that have been constructed from its basic parameterization. Each exten-
sion from the base model is considered as a response to a violation of model
assumptions. We list seven types of violation to the standard negative binomial
model. Enhanced negative binomial models are identified as solutions to the
respective violations.

Chapter 2 examines the two major methods of parameter estimation rele-
vant to modeling Poisson and negative binomial data. We begin by illustrat-
ing the construction of distribution-based statistical models. That is, starting
from a probability distribution, we follow the logic of establishing the esti-
mating equations that serve as the focus of the fitting algorithms. Given that
the Poisson and traditional negative binomial, also referred to as NB-2, are
members of the exponential family of distributions, we define the exponen-
tial family and its constituent terms. In so doing we derive the iteratively re-
weighted least squares (IRLS) algorithm and the form of the algorithm required
to estimate the model parameters. Secondly, we define maximum likelihood
estimation and show how the modified Newton–Raphson algorithm works in
comparison to IRLS. We shall discuss the reason for differences in output
between the two estimation methods, and explain when and why differences
occur.

Chapter 3 is devoted to the derivation of the Poisson log-likelihood and
estimating equations. The Poisson traditionally serves as the basis for deriving
the negative binomial – at least for one variety of negative binomial. Regardless,
Poisson regression is the fundamental method used to model counts. We identify
how overdispersion is indicated from Poisson model output, and some of the
methods used to deal with it. We also discuss the rate parameterization of the
count models. We find that rates can be thought of in a somewhat analogous
manner to the denominators in binomial models. There are important differences
though – which we discuss. The subject relates to the topic of offsets.

Chapter 4 details the difference in real versus apparent overdispersion.
Criteria are specified which can be used to distinguish real from apparent
overdispersion. Simulated examples are constructed that show how apparent
overdispersion can be eliminated. We show how overdispersion affects oth-
erwise equi-dispersed data. Finally, scaling of standard errors, application of
robust variance estimators, jackknifing, and bootstrapping of standard errors are
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all evaluated in terms of their effect on inference. An additional section related
to negative binomial overdispersion is provided, showing that overdispersion
is a problem for all count models, not simply for Poission models. This chapter
is vital to the development of the negative binomial model.

In Chapter 5 we define the negative binomial probability distribution func-
tion (PDF) and proceed to derive the various statistics required to model the
canonical and traditional form of the distribution. Additionally, we derive the
Poisson–gamma mixture parameterization that is used in maximum likelihood
algorithms. In this chapter it becomes clear that the negative binomial is a full
member of the exponential family of generalized linear models. We discuss
the nature of the canonical form, and the problems that have been claimed to
emanate when applying it to real data. We then re-parameterize the canonical
form of the model to derive the traditional log-linked form (NB-2).

In Chapter 6 we discuss the development and interpretation of the NB-2
model. Examples are provided that demonstrate how the negative binomial is
used to accommodate overdispersed Poisson data. Goodness-of-fit statistics
are examined, in particular methods used to determine whether the negative
binomial fit is statistically different from a Poisson. Residuals appropriate to
evaluation of a negative binomial analysis are derived and explained.

Chapter 7 addresses alternative parameterizations of the negative binomial.
We begin with a discussion of the geometric model, a simplification of the neg-
ative binomial where the overdispersion parameter has a value of one. When the
value of the overdispersion parameter is zero, NB-2 reduces to a Poisson model.
The geometric distribution is the discrete correlate of the negative exponential
distribution. We then address the interpretation of the canonical link derived in
Chapter 5. We thereupon derive and discuss how the linear negative binomial, or
NB-1, is best interpreted. Finally, the NB-2 model is generalized in the sense that
the ancillary or overdispersion parameter itself is parameterized by user-defined
predictors for generalization from scalar to observation-specific interpretation.
NB-2 can also be generalized to parameterize the negative binomial exponent.
This model is called the NB-P model.

Chapter 8 deals with a common problem faced by researchers handling real
data. In many situations the data at hand exclude a zero count. Other data
situations have an excessive number of zeros – far more than defined by usual
count distributions.

Zero-truncated and zero-inflated Poisson (ZIP) and negative binomial
(ZINB) models, as well as hurdle models, have been developed to accommo-
date these two types of data situations. Hurdle models are typically used when
the data have excessive zero counts, much like zero-inflated models. There
are differences, however. Detailed are logit, probit, and complementary loglog
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negative binomial hurdle models. Finally, we examine negative binomial mod-
els having endogenous stratification.

Chapter 9 discusses truncated and censored data and how they are mod-
eled using appropriately adjusted Poisson and negative binomial models. Two
types of parameterizations are delineated for censored count models: econo-
metric or dataset-based censored and survival, or observation-based censored,
parameterizations.

The final chapter addresses the subject of negative binomial panel models.
These models are used when the data are either clustered or when they are
in the form of longitudinal panels. We derive and examine unconditional and
conditional fixed effects and random effects Poisson and negative binomial
regression models. Population averaged panel models, also referred to as gen-
eralized estimating equations (GEE) are also examined as are random intercept
and random coefficient multilevel negative binomial models.

Several appendices are associated with the text. The titles are listed in the
Contents.



1

Overview of count response models

Count response models are a subset of discrete response regression models.
Discrete models address non-negative integer responses. Examples of discrete
models include:

RESPONSE

Binary: binary logistic and probit regression
Proportional: grouped logistic, grouped complementary loglog
Ordered: ordinal logistic and ordered probit regression
Multinomial: discrete choice logistic regression
Count: Poisson and negative binomial regression

A count response consists of any discrete response of counts, e.g. the number of
hits recorded by a Geiger counter, patient days in the hospital, and goals scored
at major contests. All count models aim to explain the number of occurrences,
or counts, of an event. The counts themselves are intrinsically heteroskedas-
tic, right skewed, and have a variance that increases with the mean of the
distribution.

1.1 Varieties of count response model

Poisson regression is the basic count model upon which a variety of other count
models are based. The Poisson distribution may be characterized as

fy(y; µ) = e−µµy/y!, y = 0, 1, 2, . . . ; µ > 0 (1.1)

where the random variable y is the count response and parameter µ is the
mean. Often, µ is also called the rate or intensity parameter. Unlike most other
distributions, the Poisson does not have a distinct scale parameter. Rather, the
scale is assumed equal to the location parameter µ.

8



1.1 Varieties of count response model 9

The Poisson distribution may also include an exposure variable associated
with µ. The variable, t, is considered to be the length of time or exposure during
which events or counts occur. If t = 1, then the Poisson probability distribution
reduces to the standard form. If t is a constant, or varies between events, then
the distribution can be parameterized as

fy(y; µ) = e−tµ(tµ)y/y! (1.2)

When included in the data, modelers enter the natural log of t as an offset in
the model estimation. Playing an important role in estimating both Poisson and
negative binomial models, offsets are discussed at greater length in Chapter 3.

A unique feature of the Poisson distribution is the relationship of its mean
to the variance – they are equal. This relationship is termed equidispersion.
The fact that it is rarely found in real data has driven the development of more
general count models, which do not assume such a relationship.

The Poisson regression model derives from the Poisson distribution. The
relationship between µ, β, and x, the fitted mean of the model, parameters,
and model covariates or predictors respectively, is parameterized such that
µ = exp(xβ). So doing guarantees that µ is positive for all values of η, the
linear predictor, and for all parameter estimates. By attaching the subscript, ι,
to µ, y, and x, the parameterization can be extended to all observations in the
model. The subscript can also be used when modeling non-iid observations.

As shall be described in greater detail later in this book, the Poisson model
carries with it various assumptions. Violations of Poisson assumptions usually
result in overdispersion, where the variance of the model exceeds the value of
the mean. Violations of equidispersion indicate correlation in the data, which
affect standard errors of the parameter estimates. Model fit is also affected.
Chapter 4 is devoted to this discussion.

A simple example of how distributional assumptions may be violated will
likely be instructional at this point. We begin with the base count model – the
Poisson. The Poisson distribution defines a probability distribution function for
non-negative counts or outcomes. For example, given a Poisson distribution
having a mean of 2, some 39% of the outcomes are predicted to be zero. If, in
fact, we are given an otherwise Poisson distribution having a mean of 2, but
with 50% zeros, it is clear that the Poisson distribution may not adequately
describe the data at hand. When such a situation arises, modifications are made
to the Poisson model to account for discrepancies in the goodness of fit of
the underlying distribution. Models such as zero-inflated Poisson and zero-
truncated Poisson directly address such problems.

The above discussion regarding distributional assumptions applies equally
to the negative binomial. A traditional negative binomial distribution having
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a mean of 2 and an ancillary parameter of 1.5 yields a probability of approx-
imately 40% for an outcome of zero. When the observed number of zeros
substantially differs from the theoretically imposed number of zeros, the base
negative binomial model can be adjusted in a manner similar to the adjustments
mentioned for the Poisson.

Early on, researchers developed enhancements to the Poisson model, which
involved adjusting the standard errors in such a manner that the presumed
overdispersion would be dampened. Scaling of the standard errors was the first
method developed to deal with overdispersion from within the GLM framework.
It is a particularly easy tactic to take when the Poisson model is estimated as a
generalized linear model. We shall describe scaling in more detail later in the
text. Nonetheless, most count models required more sophisticated adjustments
than simple scaling.

Again, the negative binomial is normally used to model overdispersed Pois-
son data, which spawns our notion of the negative binomial as an extension of
the Poisson. However, distributional problems affect both models, and nega-
tive binomial models themselves may be overdispersed. Both models can be
extended in similar manners to accommodate any extra correlation or disper-
sion in the data that result in a violation of the distributional properties of
each respective distribution (Table 1.1). The enhanced or advanced Poisson or
negative binomial model can be regarded as a solution to a violation of the
distributional assumptions of the primary model.

The following list enumerates the types of extensions that are made to both
Poisson and negative binomial regression. Thereafter, we provide a bit more
detail as to the nature of the assumption being violated and how it is addressed
by each type of extension. Later chapters are devoted to a more detailed exam-
ination of each of these model types.

Earlier in this chapter we described violations of Poisson and negative bino-
mial distributions as related to excessive zero counts. Each distribution has an
expected numbers of counts for each value of the mean parameter; we saw
how for a given mean, an excess – or deficiency – of zero counts result in
overdispersion. However, it must be understood that the negative binomial has
an additional ancillary or heterogeniety parameter, which, in concert with the
value of the mean parameter, defines (in a probabilistic sense) specific expected
values of counts. Substantial discrepancies in the number of counts, i.e. how
many zeros, how many ones, how many twos, and so forth, observed in the
data from the expected frequencies defined by the given mean and ancillary
parameter (NB model), result in correlated data and hence overdispersion. The
first two items in Table 1.1 directly address this problem.
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Table 1.1. Violations of distributional assumptions

1 No zeros in data
2 Excess zeros in data
3 Data separable into two distributions
4 Censored observations
5 Truncated data
6 Data structured as panels: clustered and

longitudinal data
7 Some responses occur based on the value of

another variable

Violation 1: The Poisson and negative binomial distributions assume that zero
counts are a possibility. When the data to be modeled originate from a generating
mechanism that structurally excludes zero counts, then the Poisson or negative
binomial distribution must be adjusted to account for the missing zeros. Such
model adjustment is not used when the data can have zero counts, but simply do
not. Rather, an adjustment is made only when the data must be such that it is not
possible to have zero counts. Hospital length of stay data are a good example.
When a patient enters the hospital, a count of one is given. There are no lengths
of stay recorded as zero days. The possible values for data begin with a count
of one. Zero-truncated Poisson and zero-truncated negative binomial models
are normally used for such situations.

Violation 2: The Poisson and negative binomial distributions define an expected
number of zero counts for a given value of the mean. The greater the mean,
the fewer zero counts expected. Some data, however, come with a high per-
centage of zero counts – far more than are accounted for by the Poisson or
negative binomial distribution. When this occurs statisticians have developed
regression models called zero-inflated Poisson (ZIP) and zero-inflated negative
binomial (ZINB). The data are assumed to come from a mixture of two dis-
tributions where the structural zeros from a binary distribution are mixed with
the non-negative integer outcomes (including zeros) from a count distribution.
Logistic or probit regression is typically used to model the structural zeros,
and Poisson or negative binomial regression is used for the count outcomes. If
we were to apply a count model to the data without explicitly addressing the
mixture, it would be strongly affected by the presence of the excess zeros. This
inflation of the probability of a zero outcome is the genesis of the zero-inflated
name.
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Violation 3: When the zero counts of a Poisson or negative binomial model do
not appear to be generated from their respective distributions, one may separate
the model into two parts, somewhat like the ZIP and ZINB models above.
However, in the case of hurdle models, the assumption is that a threshold must
be crossed from zero counts to actually entering the counting process. For
example, when modeling insurance claims, clients may have a year without
claims – zero counts. But when one or more accidents occur, counts of claims
follow a count distribution, e.g. Poisson or negative binomial. The logic of the
severability in hurdle models differs from that of zero-inflated models. Hurdle
models are sometimes called zero-altered models, giving us model acronyms
of ZAP and ZANB.

Like zero-inflated models, hurdle or zero-altered algorithms separate the data
into zero versus positive counts: modeling zero (1) versus positive count (0)
as a logit, probit, or complementary loglog model, and counts from one to the
upper range of counts as Poisson or negative binomial. Zero-inflated likelihood
functions differ from the likelihood functions of similar hurdle models. We
shall address these differences in more detail in Chapter 9. Good references to
these discussions in particular can be found in Greene (1994) and Cameron and
Trivedi (1998).

Violation 4: At times certain observations are censored from the rest of the
model. With respect to count response models, censoring takes two forms. In
either case a censored observation is one that contributes to the model, but for
which exact information is missing.

The traditional form, which I call the econometric parameterization, re-
values censored observations as the value of the lower or upper valued non-
censored observation. Left-censored data take the value of the lowest non-
censored count; right-censored data take the value of the highest non-censored
count. Another parameterization, which can be referred to as the survival param-
eterization, considers censoring in the same manner as is employed with survival
models. That is, an observation is left censored to when events are known to
enter into the data; they are right censored when events are lost to the data due to
withdrawal from the study, loss of information, and so forth. The log-likelihood
functions of the two parameterizations differ, but the parameter estimates cal-
culated are usually not too different.

Violation 5: Truncated observations consist of those that are entirely excluded
from the model, at least for the period of truncation. Unlike the economet-
ric parameterization of censoring described in Violation 4, truncated data are
excluded, not revalued, from the model. Data can be left censored from below,
or right censored from above.
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Violation 6: Longitudinal data come in the form of panels. For example, in
health studies, patients given a drug may be followed for a period of time to
ascertain effects occurring during the duration of taking the drug. Each patient
may have one or more follow-up tests. Each set of patient observations is con-
sidered a panel. The data consist of a number of panels. However, observations
within each panel cannot be considered independent – a central assumption of
maximum likelihood theory. Within-panel correlation result in overdispersed
data. Clustered data result in similar difficulties. In either case, methods have
been developed to accommodate extra correlation in the data due to the within-
panel correlation of observations. Such models, however, do require that the
panels themselves are independent of one another, even though the observations
within the panels are not. Generalized estimating equations (GEE), fixed-effects
models, and random-effects models have been widely used for such data.

Violation 7: Data sometimes come to us in such a manner that an event does not
begin until a specified value of another variable has reached a certain threshold.
One may use a selection model to estimate parameters of this type of data.
Greene (1994) summarizes problems related to selection models. Selection
models for count response data are in their infancy, and more theoretical work
needs to be done. At this point only LIMDEP incorporates a negative binomial
selection model among its offerings.

Table 1.2 provides a schema of the major types of negative binomial regres-
sion model. A similar schema may also be presented characterizing varieties
of the Poisson. Some exceptions exist, however. Little development work has
been committed to the exact statistical estimation of negative binomial standard
errors. However, substantial work has been done on Poisson models of this type –
particularly by Cytel Corp, manufacturers of LogXact software. Additionally,
models such as heterogeneous negative binomial and NB-P have no correlative
Poisson model.

1.2 Estimation

There are two basic approaches to estimating models of count data. The first
is by full maximum likelihood (ML or FML); the second is by an iteratively
re-weighted least squares (IRLS) algorithm, which is based on a simplification
of the full maximum likelihood method. IRLS is intrinsic to the estimation of
generalized linear models (GLMs), as well as to certain extensions to the gen-
eralized linear model algorithm. We examine the details of estimation in the
following chapter. However, we can mention here that both methods are com-
monly used for the analysis of Poisson and negative binomial data. The negative
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Table 1.2. Varieties of negative binomial model

1 Negative binomial (NB)
NB2
NB1
NB-C (canonical)
Geometric
NB-H (Heterogeneous negative binomial)
NB-P

2 Zero-adjusting models
Zero-truncated NB
Zero-inflated NB
NB with endogenous stratification (G)
Hurdle NB models

NB-logit hurdle / geometric-logit hurdle
NB-probit hurdle / geometric-probit hurdle
NB-cloglog hurdle / geometric-cloglog hurdle

3 Censored NB
Censored NB-E: econometric parameterization
Censored NB-S: survival parameterization

4 Sample selection NB models
5 Panel NB models

Unconditional Fixed Effects NB
Conditional Fixed Effects NB
Generalized Estimating Equations
Linear Mixed NB Models

Random intercept NB
Random parameter NB
Latent Class NB models

6 Exact NB model

binomial, conceived as a Poisson–gamma mixture model, is usually estimated
by maximum likelihood using a variety of the Newton–Raphson estimating
algorithm. A commonly used variety is the Marquardt (1963) modification,
which has itself been modified for use in leading commercial packages. Such a
method allows the estimation of the negative binomial ancillary or overdisper-
sion parameter, which we refer to as α.

The negative binomial was first supported in the generalized linear models
software by Hilbe (1994), who incorporated it into the GLM procedures of both
XploRe and Stata software. So doing allowed use of the full range of GLM fit
and residual capabilities. However, since the standard IRLS GLM algorithm
allows estimation of only the mean parameter, µ, or exp(βx), the ancillary or
heterogeneity parameter must be entered into the GLM algorithm as a known
constant. It is not itself estimated. The scale parameter for all GLM count
models is defined as one, and does not enter into the estimation process.
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There are methods to estimate α (Breslow, 1984; Hilbe, 1993a) based on an
iterative covering algorithm with an embedded IRLS that forces the deviance-
dispersion statistic to a value of 1.0. But the resulting estimated value of α

typically differs from the value estimated using maximum likelihood. More-
over, no standard error is obtained for the estimated α using the cited IRLS
approaches. Typically though, the difference in estimated α between the two
methods is not very different. Both methods will be examined in detail in the
next chapter, together with recommendations of how they can be used together
for a given research project.

1.3 Fit considerations

Fit statistics usually take two forms: so-called goodness-of-fit statistics and
residual statistics. With respect to the negative binomial, goodness-of-fit gen-
erally relates to the relationship of the negative binomial model to that of a
Poisson model on the same data. Assuming that the purpose of negative bino-
mial modeling is to model otherwise Poisson overdispersed data, it makes
sense to derive fit statistics aimed at determining whether a negative binomial
model is statistically successful in that regard. Two of the commonly used
fit statistics include a Score test, or Lagrange multiplier test, and a Vuong
test (Vuong, 1989). These, as well as others, will later be examined in more
detail.

Residual analysis of negative binomial models generally follows the model
varieties constructed for members of the family of generalized linear models.
These include unstandardized and standardized Pearson and deviance residuals,
as well as the studentized forms for both. Additionally, Anscombe residuals have
been developed for the NB-2 negative binomial (Hilbe, 1994a; Hardin and Hilbe,
2001). In application, however, values of the Anscombe are similar to those
of the standardized deviance residuals, with the latter being substantially less
complicated to calculate. Most commercial GLM software packages provide
standardized deviance residuals as options. At the time of this writing, only
Stata provides Anscombe residuals as a standard option. A commonly used
residual fit analysis for negative binomial models plots standardized deviance
residuals against the fitted values, µ.

1.4 Brief history of the negative binomial

Negative binomial regression can be viewed as a nonlinear regression model,
estimated by maximum likelihood, or as a member of the family of generalized
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linear models. The basic or traditional form of negative binomial – NB-2 –
employs a natural log link function. So doing forces the fitted values to be
positive, as is appropriate for counts. In this respect, it is similar to the Poisson.
Again, as stated earlier, when the negative binomial ancillary parameter has a
value of zero, the model is Poisson. However, the canonical link of the negative
binomial, unlike the Poisson, is not the log link. It is simply called the canonical
link, taking the form: ln(αµ/(1 + αµ)).

When considered as a generalized linear model, the negative binomial fol-
lows in the tradition originating from Gauss (1823), who developed the theory
of normal or Gaussian regression, also called ordinary least squares regression
(OLS). Likelihood theory was developed by Ronald Fisher in 1922, the same
year as he constructed the first complimentary loglog model. Two years earlier,
Greenwood and Yule had derived the negative binomial probability distribution
function as the probability of observing y failures before the rth success in a
series of Bernoulli trials. The negative binomial probability may be construed
differently though, as reflected in the structure of the function. Regardless, the
negative binomial has been derived from the binomial, as above, as well as from
the Poisson as a Poisson–gamma mixture. The contagion or mixture concept of
the negative binomial originated with Eggenberger and Polya (1923).

George Beall (1942) and F. J. Anscombe (1949) followed on the efforts’s
of Bartlett (1947) and his analysis of square root transforms on Poisson
data, by examining variance stabilizing transformations for overdispersed data.
Anscombe’s work entailed the construction of the first negative binomial regres-
sion model, but as a one-parameter nonlinear regression. A maximum likelihood
Poisson regression model was not fully developed until Birch in 1963, which
he used to analyze tables of counts. The rate parameterization of the Poisson
took another 11 years to develop. John Nelder, of London’s Imperial College
of Science and Technology, originated offsets as an admitted afterthought, not
realizing until later the extent to which they could be used.

The theory of generalized linear models was developed by John Nelder and
R. W. M. Wedderburn in 1972 (Nelder and Wedderburn, 1972), then expanded
by Nelder thereafter. Following Wedderburns’s untimely death, Nelder wrote
the first version of GLIM software, which allowed users to estimate GLMs for
a limited set of exponential family members. Although GLIM did not have a
specific option for negative binomial models, one could use the open option
to craft such a model. In 1982 Nelder joined with Peter McCullagh to write
the first edition of generalized linear models, in which the negative binomial
regression model was described. Negative binomial regression software was
only available as a user defined macro in GLIM or in Genstat, via Nelder’s
KK system extension until 1993. In that year Hilbe incorporated the negative
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binomial into both XploRe and Stata GLM software. He also wrote a GLM-
based negative binomial macro in SAS, which was the only SAS program for
the model until Gordon Johnston made it part of the SAS/STAT GENMOD
procedure in 1998. In 1994, Venables posted a GLM-based negative binomial
to Statlib using S-Plus.

Maximum likelihood estimation of the negative binomial began with Plackett
in 1981, while working with categorical data which he could not fit using a
Poisson approach.

Geometric hurdle models were developed by Mullahy (1986), with a later
enhancement to negative binomial hurdle models. William Greene’s LIMDEP
was the first commercial package to offer negative binomial regression models
to its users (1987 [2006]). Stata was next with a maximum likelihood negative
binomial (1994). Called nbreg, Stata’s negative binomial command was later
enhanced to allow modeling of both NB-1 as well as NB-2 parameterizations.
In 1998, Stata offered a generalized negative binomial, gnbreg, in which the
heterogeniety parameter itself could be parameterized. It should be empha-
sized that this command does not address the generalized negative binomial
distribution, but rather it allows a generalization of the scalar overdispersion
parameter such that parameter estimates can be calculated showing how model
predictors comparatively influence overdispersion. Following LIMDEP, I have
referred to this model as a heterogeneous negative binomial, or NB-H, since
the model extends NB-2 to permit observed sources of heterogeneity in the
overdispersion parameter. In the meantime, LIMDEP has continuously added
to its initial negative binomial offerings. It currently estimates nearly every neg-
ative binomial-related model that shall be discussed in this monograph. In 2006
Greene developed a new parameterization of the negative binomial, called NB-
P, which estimates both the traditional negative binomial ancillary parameter,
as well as the exponent of the second term of the variance function.

As mentioned in the Preface, R can be used to model negative binomial
data using the MASS package available from the R package library. The first R
implementation was written by Ihaka and Gentleman in 1996. The software is
under continuous development.

1.5 Summary

Negative binomial models have been derived from two different origins. First,
and initially, the negative binomial can be thought of as a Poisson–gamma
mixture designed to model overdispersed Poisson count data. Conceived of
in this manner, estimation usually takes the form of a maximum likelihood
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Newton–Raphson type algorithm. This parameterization estimates both the
mean parameter, µ, as well as the ancillary or heterogeneity parameter, α. Exten-
sions to this approach allow, for example, α itself to be parameterized (NB-H),
as well as the negative binomial exponent (NB-P). Violations of distributional
assumptions are addressed by various adjustments to the base negative bino-
mial (NB-2) model. Examples include models such as ZINB, zero-truncated
negative binomial, and censored negative binomial regression.

Secondly, the negative binomial can be derived as a full member of the single
parameter exponential family of distributions, and hence be considered as one
of the generalized linear models. The value of this approach rests on the ability
to evaluate the model using well-tested GLM goodness-of-fit statistics as well
as to employ the host of associated GLM-defined residuals. Estimation in this
case takes the form of Fisher scoring, or iteratively re-weighted least squares.
Since the traditional GLM algorithm only allows estimation of parameter θ ,
which gives us the value of µ, ancillary parameter α must be specified directly
into the estimating algorithm as a known constant – it is not itself estimated.
Although this is a drawback for its usefulness in modeling, the ability to assess
fit in part offsets this problem.

Many statisticians use both methods in concert when engaging in a modeling
task. Initial estimation is performed using a full maximum likelihood procedure,
with the resultant estimated value of α then inserted into a GLM algorithm. The
respective value of each method thereby contributes to the overall modeling
task.

We shall next examine the foremost methods of estimation.
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Methods of estimation

Two general methods are used to estimate count response models: (1) iteratively
re-weighted least squares algorithm based on the method of Fisher scoring,
and (2) a maximum likelihood Newton–Raphson type algorithm. Although the
maximum likelihood approach was first used with both the Poisson and negative
binomial, we shall discuss it following our examination of IRLS. We do this
for strictly pedagogical purposes, as will become evident as we progress.

2.1 Derivation of the IRLS algorithm

The traditional generalized linear models (GLM) algorithm, from the time it
was implemented in GLIM (generalized linear interactive modeling) through its
current implementations in Stata, S-Plus, and other GLM software, uses some
version of an IRLS estimating algorithm. This method arises from Fisher scor-
ing, which substitutes the expected Hessian matrix for the observed Hessian
matrix in a Taylor series defined updating step for a solution of the estimating
equation. The resulting Newton–Raphson or updating equation for the regres-
sion coefficients may be written in terms of ordinary least squares (OLS) due to
the simplification afforded by Fisher scoring. The reason for its initial develop-
ment had much to do with the difficulty of modeling individual GLM models
using full maximum likelihood algorithms. In the late 1960s and early 1970s,
statistical software was limited to mainframe batch runs. That is, one wrote an
estimating algorithm in a higher programming language such as FORTRAN,
tied it together with data stored on cards, and submitted it to a mainframe,
which usually resided at a remote site. If one desired to make changes, then the
entire batch file required rewriting. Each submission to the mainframe had a
cost applied to it, normally charged to the department of the user. Problems with
initial values, difficulties with convergence, and other such difficulties resulted
in a modeling project taking substantial time and money.

19
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When Wedderburn proposed an IRLS algorithm for estimating regression
models based on the exponential family of distributions, specific models still had
to be submitted on cards and to a mainframe. The difference was, however, that
there were substantially fewer difficulties with convergence, and one algorithm
could be used for all members of the class. All that required alteration from
one model type to another, e.g. a logit model compared with a probit model,
or a gamma compared with a Poisson, was a change in the specification of the
link and variance functions. The algorithm took care of the rest. Time savings
transferred to money savings.

As previously mentioned, GLIM was the first commercial software imple-
mentation of GLM. When desktop computing became available on PCs starting
in August 1981, Numerical Algorithms Group in the UK, the manufacturer of
GLIM, quickly implemented a desktop version of the GLIM software. For the
first time models such as logit, probit, Poisson, gamma, and so forth could be
modeled in an interactive and inexpensive manner. An international GLIM user
group emerged whose members designed macros to extend the basic offerings.
The negative binomial was one of these macros, but was not published to the
general user base.

The important point in this discussion is that the IRLS algorithm was
designed to be a single covering algorithm for a number of related models. Also
important to understand is that the IRLS algorithm is a simplified maximum
likelihood algorithm and that its derivation is similar to that of the derivation
of general Newton–Raphson type models. We turn to this demonstration next.

IRLS methodology, like maximum likelihood methodology in general, is
ultimately based on a probability distribution or probability mass function.
Generalized linear models software typically offers easy specification of vari-
ance functions defined by eight families, each of which is a probability function.
These include:

GLM DISTRIBUTIONAL FAMILIES

Gaussian Bernoulli
Binomial Gamma
Inverse Gaussian Poisson
Geometric Negative Binomial

We may express the GLM probability function as

f (y; θ, ϕ) (2.1)

where y is the response, θ is the location or mean parameter, and ϕ is the scale
parameter. Count models by definition set the scale to a value of one. The
outcome y, of course, has the distributional properties appropriate to the family
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used in estimation. Probability functions determine properties of the response,
or data, given values of the mean and scale parameters. Maximum likelihood,
on the other hand, bases estimation on the likelihood.

The likelihood function is the reverse of the probability function. Rather
than data being determined on the bases of mean and scale values, the mean,
and possibly scale, parameters are estimated on the basis of the given data. The
underlying goal of likelihood is to determine which parameters make the given
data most likely. This parameterization can be characterized as

L(θ, φ; y) (2.2)

Statisticians normally employ the natural log of the likelihood function in order
to facilitate estimation. The prime reason is the observations and their respective
parameter estimates enter the likelihood function in a multiplicative manner.
However, it is much easier to estimate parameters if their relationship is instead
additive. In fact, for many modeling situations, using a likelihood function rather
than a log-likelihood function would not allow the estimation process to get off
the ground. An excellent discussion of this topic, together with numeric exam-
ples, can be found in Gould, Pitblado, and Sribney (2006). Also see Edwards
(1972).

The log-likelihood function can be written as

L(θ, φ; y) (2.3)

The first derivative of the log-likelihood function is called the gradient; the
second derivative is the Hessian. These functions play an essential role in the
estimating process for both IRLS and traditional Newton–Raphson type algo-
rithms.

Gradient – first derivative of L
Hessian – second derivative of L

Derivation of the iteratively re-weighted least squares algorithm is based on a
modification of a two-term Taylor expansion of the log-likelihood function. In
its original form, Taylor expansion appears as

0 = f (X0) + (X1 − X0) f ′(X0)

+ (X1 − X0)2

2!
f ′′(X0) + (X1 − X0)3

3!
f ′′′(X0) + · · · (2.4)

The first two terms reduce to

0 = f (X0) + (X1 − X0) f ′(X0) (2.5)
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which can be recast to

X0 = X1 − f (X0)

f ′(X0)
(2.6)

The Newton–Raphson method of estimation adopts the above by using the score
or gradient of the log-likelihood function as the basis of parameter estimation.
The form is

βr = βr−1 − ∂L(βr−1)

∂2L(βr−1)
(2.7)

where

∂L = ∂L
∂β

and ∂2L ∂2L
∂β∂β ′ (2.8)

In traditional nomenclature, we let

U = ∂L and H = ∂2L (2.9)

Then

βr = βr−1 − H−1U (2.10)

where

H = Hr−1 and U = Ur−1 (2.11)

Newton–Raphson estimates βr , the model parameter estimates, by iteratively
finding solutions for H and U, which define βr . βr resets itself to βr−1 in each
subsequent iteration until some predefined threshold is reached. We shall see,
however, that the matrix H used by the Newton–Raphson is the observed infor-
mation matrix. IRLS, on the other hand, defines H as the expected information
matrix. We next turn to how both methods define U.

2.1.1 Solving for ∂L or U – the gradient

In exponential family form, the log-likelihood function is expressed as

∂L
∂β j

=
ni∑

i=1

yiθi − b(θi )

αi (φ)
+

ni∑
i=1

C(yi , φ) (2.12)

Solving for L, with respect to β, can be performed using the chain rule

∂L
∂β j

=
ni∑

i=1

=
(

∂L
∂θ

)
i

(
∂θ

∂µ

)
i

(
∂µ

∂η

)
i

(
∂η

∂β j

)
(2.13)
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Solving for each term yields

∂L
∂θi

=
ni∑

i=1

yiθi − b′(θi )

αi (φ)
=

ni∑
i=1

yi − µi

α(φ)
(2.14)

We obtain the above formula by solving each of the terms of the chain.
We have b′ (θi ) = µi

∂µi

∂θi
= ∂b′(θi )

∂θi
= b′′(θi ) = V (µi );

∂θi

∂µi
= 1

V (µi )
(2.15)

and

∂ηi

∂β j
= ∂(xiβ j )

∂β j
= xi j , since ηi = xiβ j (2.16)

and

∂µi

∂ηi
= [g−1(ηi )]

′ = 1

∂ηi/∂µi
= 1

g′(µi )
(2.17)

which is the derivative of the link function with respect to µ.
Substitutions of expressions specify that the maximum likelihood estimator

of β is the solution of the vector-based estimating equation

ni∑
i=1

(yi − µi )xi

αi (φ)V (µi )g′(µi )
= (yi − µi )xi

αi (φ)V (µi )

(
∂µ

∂η

)
i

= 0 (2.18)

where y and µ are scalars, x is a 1 × p row vector, and the resulting sum is a
p × 1 column vector.

The next step in the derivation takes two turns, based on a decision to use
the observed or expected information matrix. Again, Newton–Raphson type
maximum likelihood estimation uses the observed matrix; IRLS, or Fisher
scoring, uses the expected. We first address the latter.

2.1.2 Solving for d2L
The traditional GLM algorithm substitutes I for H, the Hessian matrix of
observed second derivatives. I is the second of two equivalent forms of Fisher
information given by

I = −E

[
∂2L

∂β j∂β
′
k

]
= E

[
∂L
∂β j

∂L
∂β ′

k

]
(2.19)
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Solving the above yields

I = ∂

∂β j

[
(yi − µi )x j

αi (φ)V (µi )

(
∂

∂η

)
i

]
∗ ∂L

∂βk

[
(yi − µi )xk

αi (φ)V (µi )

(
∂µ

∂η

)
i

]
(2.20)

I = (yi − µi )2x j xk

αi (φ)V (µi )2

(
∂µ

∂η

)2

i

(2.21)

Since

(yi − µi )
2 = αi (φ)V (µi ) (2.22)

and letting

V (yi ) = αi (φ)V (µi ) = (yi − µi )
2 (2.23)

I therefore becomes formulated as

I = x j xk

V (yi )

(
∂µ

∂η

)2

i

= x j xk

V (yi )g′2 (2.24)

Putting the various equations together we have

βr = βr−1 −
[

x j xk

V (yi )

(
∂µ

∂η

)2

i

]−1 [
xk(yi − µi )

V (yi )

(
∂µ

∂η

)
i

]
(2.25)

Multiply both sides by I yields[
x j xk

V (yi )

(
∂µ

∂η

)2

i

]
βr =

[
x j xk

V (yi )

(
∂µ

∂η

)2

i

]
βr−1 +

[
xk(yi − µi )

V (yi )

(
∂µ

∂η

)
i

]
(2.26)

We next let weight W equal

W (weight) = 1

V (yi )

(
∂µ

∂η

)2

i

(2.27)

with the linear predictor, η, given, as

ηi = xkβr−1 (2.28)

We next convert the above algebraic representation to matrix form. This can be
done in parts. First, given the definition of W above, the following substitution
may be made [

x j xk

V (yi )

(
∂µ

∂η

)2

i

]
βr = [X ′W X ]βr (2.29)
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Secondly, recalling the definition of V(y) and W

xk(yi − µi )

V (yi )

(
∂µ

∂η

)
i

= xk(yi − µi )

1

W

(
∂µ

∂η

)2

i

(
∂µ

∂η

)
i

(2.30)

Thirdly, since η = xk βr−1, we have, in matrix form[
x j xk

V (yi )

(
∂µ

∂η

)2

i

]
βr−1 = X ′Wηi (2.31)

Combining the terms involved, we have

[X ′W X ]βr = X ′Wηi +


 xk(yi − µi )

1

W

(
∂µ

∂η

)2

i

(
∂µ

∂η

)
i


 (2.32)

[X ′W X ]βr = X ′Wηi +
[

Xk W (yi − µi )

(
∂η

∂µ

)
i

]
(2.33)

Finally, letting z, the model working response, be defined as

zi = ηi + (yi − µi )

(
∂η

∂µ

)
i

(2.34)

we have

[X ′W X ]βr = X ′W zi (2.35)

so that, by repositioning terms, βr is equal to

βr = [X ′W X ]−1 X W zi (2.36)

which is a weighted regression matrix used to iteratively update estimates of
parameter vector βr , as well as values for µ, η, and the deviance function.
Iteration typically culminates when the difference in deviance values between
two iterations is minimal, usually 10−6. Some software uses the minimization
of differences in the log-likelihood function as the basis of iteration. Others
use differences in parameter estimates. In any case, the results are statistically
identical. However, since the deviance is itself used to assess the fit of a GLM
model, as well as being a term in the goodness-of-fit BIC statistic, it has enjoyed
more use in commercial software implementations of GLM. The log-likelihood
function is also used to assess fit, and is a term in the AIC goodness-of-fit
statistic. The use of deviance over log-likelihood is a matter of preference and
tradition. We generally calculate both statistics. Some software iterates based
on the deviance statistic, then calculates the log-likelihood function at the end
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of the iteration process from the final values of µ and η, thereby providing a
wider range of post-estimation fit statistics.

Remember that the matrix form of the estimation relationship between
parameter and data for ordinary least squares regression (OLS) is

βr = [X ′ X ]−1 X y (2.37)

The formula we derived is simply a weighted version of the OLS algorithm.
Since the IRLS algorithm is iterative, and cannot be solved in one step for models
other than the basic Gaussian model, the response is redefined as a function of
the linear predictor – hence the value of z rather than y. A consideration of the
iteration or updating process is our next concern.

2.1.3 The IRLS fitting algorithm

The IRLS algorithm, using an expected information matrix, may take one of
several forms. Not using subscripts, a standard schema is:

1 Initialize the expected response, µ, and the linear predictor, η, or g(µ).
2 Compute the weights as

W −1 = V g′(µ)2 (2.38)

where g′(µ) is the derivative of the link function and V is the variance, defined
as the second derivative of the cumulant, b′′(θ ).

3 Compute a working response, a one term Taylor linearization of the log-
likelihood function, with a standard form of (using no subscripts)

z = η + (y − µ)g′(µ) (2.39)

4 Regress z on predictors X1 . . . Xn with weights, W , to obtain updates on the
vector of parameter estimates, β.

5 Compute η, or Xβ, based on the regression estimates.
6 Compute µ, or E(y), as g−1(µ).
7 Compute the deviance or log-likelihood function.
8 Iterate until the change in deviance or log-likelihood between two iterations

is below a specified level of tolerance, or threshold.

Again, there are many modifications to the above scheme. However, most tra-
ditional GLM software implementations use methods similar to the above.

The GLM IRLS algorithm for the general case is presented in Table 2.1. The
algorithm can be used for any member of the GLM family. We later demonstrate
how substitution of specific functions into the general form for link, g(µ),
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Table 2.1. Standard GLM estimating algorithm (expected
information matrix)

Dev = 0
µ = (y+ 0.5)/(m+ 1) /	 binomial 	/

µ = (y+ mean(y))/2 /	 non− binomial 	/

η = g(µ) /	 linear predictor 	/

WHILE(abs(
Dev) > tolerance){
w = 1/(Vg′2)
z = η + (y− µ)g′ − offset
β = (X′wX)−1 X′wz
η = X′β + offset
µ = g−1(η)
Dev0 = Dev
Dev = Deviance function

Dev = Dev− Dev0

}
Chi2 = � (y− µ)2/V(µ)
AIC = (−2LL+ 2p)/n/	 AIC is sometimes defined w/o η	/
BIC = Dev− (dof)ln(n)/	 alternative definitions exist	/

Where p = number of model predictors+ const
n = number of observations in model
dof = degrees of freedom(n− p)

inverse link, g−1(η), variance, V, and deviance or log-likelihood function create
different GLM models. All other aspects of the algorithm remain the same,
hence allowing the user to easily change models. Typically, with parameter
estimates being of equal significance, the preferred model is the one with the
lowest deviance, or highest log-likelihood, as well as the lowest AIC or BIC
statistic. AIC is the acronym for the Aikake Information Criterion, which is
based on the log-likelihood function; BIC represents the Baysean Information
Criterion, which is usually based on the deviance value. These will be discussed
at greater length later in the text. For count response models, statistics reflecting
overdispersion need to be considered as well.

Table 2.1 provides a schematic view of the IRLS estimating algorithm,
employing the traditional GLM expected information matrix for the calculation
of standard errors. The algorithm relies on change in the deviance (Dev) value
as the criterion of convergence. We have also added formulae for calculating
the Pearson χ2, the AIC, and BIC statistics.

Other terms needing explanation are m, the binomial denominator, g′, the first
derivative of the link, and the two variables: Dev0, the value of the deviance in
the previous iteration, and 
Dev, the difference in deviances between iterations.
When the difference reaches a small value, or tolerance, somewhere in the range
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of 10−6, iterations cease and the resultant parameter estimates, standard errors,
and so forth are displayed on the screen.

There are of course variations of the algorithm found in the table. But the
variations largely deal with whether iteration takes the form of a WHILE-DO
loop, an IF-THEN loop, or some other looping technique. The form of
Table 2.1 is that used for Stata’s original GLM algorithm.

2.2 Newton–Raphson algorithms

In this section we discuss the derivation of the major estimating algorithms
that have been used for the negative binomial and its many variations. We first
address the Newton–Raphson algorithm, followed by the technique known as
Fisher scoring, which is used with iteratively re-weighted least squares algo-
rithms. The latter is the standard estimation method used for generalized linear
models (GLM). We conclude by showing how the parameterization of the GLM
mean, µ, can be converted to X′β.

2.2.1 Derivation of the Newton–Raphson

There are a variety of Newton–Raphson type algorithms. Few software pro-
grams use the base version, which is a simple root-finding procedure. Rather,
they use one of several types of modified Newton–Raphson algorithm to produce
maximum likelihood estimates of the parameters. A type of modified Marquardt
algorithm is perhaps the most popular commercial software implementation.
Moreover, complex models require methods other than Newton–Raphson or
Marquardt. Quadrature methods are commonly used with random effects and
mixed models; simulation-based methods are employed when no other estimat-
ing algorithm appears to work, or when estimation takes an inordinate amount
of time.

In any event, a marked feature of the Newton–Raphson approach is that
standard errors of the parameter estimates are based on the observed information
matrix. However, the IRLS algorithm can be amended to allow calculation
of observed information-based standard errors. The theoretical rationale and
calculational changes required for being able to do this is detailed in Hardin
and Hilbe (2001). GLM software such as SAS, Stata, XploRe, and LIMDEP
allow the user to employ either the expected or observed information matrix. We
note, though, that the more complex observed matrix reduces to the expected
when the canonical link is used for the model. The log link is canonical for
the Poisson, but not for the negative binomial. Therefore, which algorithm, and
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which modification, is used will have a bearing on negative binomial standard
errors, and consequently on the displayed significance of parameter estimates.
Differences between the two matrices are particularly notable when modeling
small numbers of observations.

Derivation of terms for the estimating algorithm begin as a Taylor lineariza-
tion and continue through the calculaton of the gradient, or first derivative of the
likelihood function. Fisher scoring, used as the basis of the GLM estimating
algorithm, calculates the matrix of second derivatives based on the expected
information matrix

I = −E

[
∂2L

∂β j∂β
′
k

]
= E

[
∂L
∂β j

∂L
∂β ′

k

]
(2.40)

Newton–Raphson methodology, on the other hand, calculates the second deriva-
tives of the likelihood on the basis of the observed information matrix, which
allows estimation of likelihood-based algorithms other than the more limited
exponential family form

H =
[

∂2L
∂β j∂βk

]
=

n∑
i=1

1

αi (φ)

[
∂

∂βk

] {
yi − µi

V (µi )

(
∂µ

∂η

)
i

x j xi

}
(2.41)

Solved, the above becomes

−
n∑

i=1

1

α (φ)

[
1

V (µi )

(∂µ

∂η

)2

i
− (µi − yi )

EIM{
1

V (µi )2

(
∂µ

∂η

)2

i

∂V (µi )

∂µ
− 1

V (µi )

(
∂2µ

∂η2

)
i

}]
x ji xki

× (2.42)
OIM

Note that in the case of the canonical link terms including and following the
term, −(µ−y), in the above formula cancel, reducing to the value of the expected
information. Compare (2.42) with (2.21). A single line is drawn under the
formula for the expected information matrix. The double line rests under the
added terms required for the observed information.

Table 2.2 provides a schema for the modified Newton–Raphson algorithm
used for the SAS/STAT GENMOD procedure.

We note here that this algorithm uses a convergence method based on the
elementwise absolute differences between the vector of parameter estimates.
βn represents the new β, βc represents the previously calculated, but cur-
rent β. The intercept, sometimes represented as α0, is included in comparison
vectors. Elements of the entire parameter vector, α0 + β1 + β2 + · · · + βn , must
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Table 2.2. A Newton–Raphson algorithm

g = g(µ) = link
g′ = g′(µ) = 1st derivative of link,wrt µ

g′′ = g′′(µ) = 2nd derivative of link, wrt µ
V = V(µ) = variance
V′ = V(µ) = derivative of variance
m = binomial denominator
y = response
p = prior weight
φ = phi, a constant scale parameter
off = offset

µ = (y+ mean(y))/2 : binomial = (y+ 0.5)/(m+ 1)
η = g
βn = 0
while MAX(ABS(βn− βc)) > tolerance {

βc = βn
z = p(y− µ)/(Vg′φ) < a column vector >
s = X′z < gradient >

We = p/(φVg′2) < weight : expected IM >

Wo = We+ p(y− µ){(Vg′′ + V′g′)/(V2g′3φ)} < observedIM >
Wo = diag(Wo) < diagonalize Wo >
H = −X′WoX < Hessian >

βn = βc− H−1s :==: βc+ (X′WoX)−1 X′(p(y− µ))
:==: (X′WoX)−1 X′W[η + (y− µ)g′]
:==: (X′WoX)−1 X′Wz < ifz = η + (y− µ)g′ >

η = X′βn+ off < linear predictor >

µ = g−1(η) < inverse link >

}

not change (much) from one iteration to another in order for the algorithm to
converge.

The Newton–Raphson type algorithm takes the general form of Table 2.3.
Initial values must be provided to the algorithm at the outset. Some software
sets initial values to all zeros or all ones. Others calculate a simpler model,
perhaps an OLS regression, to obtain initializing parameter estimates. Negative
binomial algorithms typically use the parameter estimates from a Poisson model
on the same data when initializing parameters.

The algorithm employs a maximum difference in log-likelihood functions
as well as a maximum difference in parameter estimates as the criterion of
convergence. The first terms in the algorithm are calculated by the means shown
in our previous discussion. The observed information matrix is used to calculate
H. Maximum likelihood parameter estimates are calculated in line four of the
loop. The remaining terms deal with the updating process. One can observe the
similarity in the algorithms presented in Table 2.2 and Table 2.3.
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Table 2.3. Maximum likelihood: Newton–Raphson

Initialize β
WHILE(ABS(βn− βo) > tol & ABS(n− o) > tol) {

g = ∂L/.∂β

H = ∂2L/.∂β2

βo = βn
βn = βo− H−1g
Lo = Ln
Ln

}
V(µ)

2.2.2 GLM with OIM

The GLM algorithm can be modified to accommodate the calculation of stan-
dard errors based on the observed information matrix, which is the inverse of
the negative Hessian. The main feature of the alteration is an extension of the
w term in the standard GLM. w is defined as

w = 1/{V (µ)g′(µ)2} (2.43)

where V (µ) is the variance function and g′(µ)2 is the square of the derivative
of the link function. GLM terminology calls this a model weight. Weighting in
terms of frequency weights are termed prior weights, and are entered into the
algorithm in a different manner.

Returning to the modification of w necessary to effect an observed informa-
tion matrix, w is amended and entered into the GLM IRLS algorithm as

w0 = w + (y − µ){V (µ)g′′(µ) + V ′(µ)g′(µ)}/{V (µ)2g′(µ)3} (2.44)

so that it reflects (2.42). The full working algorithm is presented in Table 2.4.
In terms of the Hessian, w0 is defined as

H = ∂2L
∂β j∂β

′
k

(2.45)

2.2.3 Parameterizing from µ to X ′β

One finds parameterization of the GLM probability and log-likelihood func-
tions, as well as other related formulae, in terms of both µ and X ′β. µ is defined
as the fitted value, or estimated mean, E(y), whereas X ′β is the linear predictor.
GLM terminology also defines the linear predictor as η. Hence X ′β = η.

Transforming a log-likelihood function from a parameterization with respect
to µ to that of X′β is fairly simple. Making such a transformation is at times
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Table 2.4. Standard GLM estimating algorithm (observed
information matrix)

Dev = 0
µ = (y+ 0.5)/(m+ 1) /	 binomial 	/

µ = (y+ mean(y))/2 /	 non− binomial 	/

η = g(µ) /	 g; linear predictor 	/

WHILE(abs(
Dev) > tolerance) {
V = V(µ)
V′ = 1st derivative of V
g′ = 1st derivative of g
g′′ = 2nd derivative of g
w = 1/(Vg′2)
z = η + (y− µ)g′ − offset

Wo = w+ (y− µ)(Vg′′ + V′g′)/(V2g′3)
β = (X′WoX)−1 X′Woz
η = X′β + offset
µ = g−1(η)

Dev0 = Dev
Dev = Deviance function


Dev = Dev− Dev0
}
Chi2 = � (y− µ)2/V(µ)
AIC = (−2LL+ 2p)/n
BIC = Dev− (dof)ln(n)

Where p = number of model predictors+ const
n = number of observations in model

dof = degrees of freedom(n− p)

required when one needs to estimate more-complex count models, such as
zero-truncated or zero-inflated models.

The method involves substituting X′β for η and substituting the inverse link
function of µ at every instance of µ in the formula. For an example, we use the
Poisson model. Shown without subscripts, the probability distribution function
may be expressed as Equation (1.1)

fy(y; µ) = e−µµy/y!

The Poisson log-likelihood function may then be derived as

L(µ; y) = �{y ln(µ) − µ − ln(y!)} (2.46)

Since the Poisson has a link defined as ln(µ), the inverse link is

µ = exp(X ′β) (2.47)
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Substituting into (2.46) yields

L(µ; y) = �{y ln(µ) − µ − ln(y!)}
L(β; y) = �{y X ′β − exp(X ′β) − ln(y!)} (2.48)

We also see the above expressed as

L(β; y) = �{y(xβ)− exp(xβ)− ln�(y + 1)} (2.49)

where y! can be calculated in terms of the log-gamma function, ln�(y + 1).
The first derivative of the Poisson log-likelihood function, in terms of xβ, is

�{yx − xexp(xβ)} (2.50)

or

�{(y − exp(xβ))x} (2.51)

Solving for parameter estimates, β, entails setting the above to zero and solving

�{(y − exp(xβ))x} = 0 (2.52)

All Newton–Raphson maximum likelihood algorithms use the xβ param-
eterization. µ is normally used with GLM-based estimation models. Both
parameterizations produce identical parameter estimates and standard errors
when the observed information matrix is used in the IRLS GLM algorithm. A
similar transformation can be performed with negative binomial models. Except
for the base NB2 model, all estimating algorithms use the xβ parameterization.

2.3 The exponential family

The probability function for the exponential family of distributions is commonly
expressed as

f (yi ; µiφ) = exp

{
yiθi − b(θi )

α(φ)
+ C(yi ; φ)

}
(2.53)

where

θi is the canonical parameter or link function
b(θi ) is the cumulant
α(φ) is the scale parameter, set to one in discrete and count models
C(yi ; φ) is the normalization term, guaranteeing that the probability fun-

ction sums to unity.

The exponential family form is unique in that the first and second deriva-
tives of the cumulant, with respect to θ , respectively produce the mean and
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variance functions. The important point to remember is that if one can convert a
probability function into exponential family form, its unique properties can be
easily used to calculate the mean and variance, as well as facilitate estimation
of parameter estimates based on the distribution. All members of the class of
generalized linear models can be converted to the exponential form

b′(θi )/dθ = mean

b′′(θi )/dθ = variance

2.4 Residuals for count response models

When modeling, using either full Newton–Raphson maximum likelihood or
IRLS, it is quite simple to calculate the linear predictor as

xβ = η = α0 + β1 + β2 + · · · + βn

Each observation in the model has a linear predictor value. For members of
the exponential family, an easy relationship can be specified for the fitted value
based on the linear predictor. The normal or Gaussian regression model has
an identity canonical link, i.e. η = µ. The canonical Poisson has a natural log
link, hence η = ln(µ) = ln(exp(xβ)) = xβ. The traditional form of the negative
binomial also has a log link, although it is not the canonical form. The linear
predictor and fit are essential components of all residuals.

The basic or raw residual is defined as the difference between the observed
response and the predicted or fitted response. When y is used to identify the
response, ŷ or µ is commonly used to characterize the fit. Hence

Raw residual = y − ŷ or y − µ or y − E(y)

Other standard residuals used in the analysis of count response models include:

Pearson: R p = (y − µ)/sqrt(V )
Deviance: Rd = sgn(y − µ)sqrt(deviance)

Note: �(Rd )2 = model deviance statistic
Standardized residuals: Divide residual by sqrt(1-hat), which aims to

make its variance constant. hat = stdp∧2∗V
Studentized residuals: Divide residual by scale, φ. (See McCullagh and

Nelder (1989), p. 396.)
Standardized–studentized: Divide by both standardized and studentized

adjustments; e.g. R p : (y − µ)/
{φV (µ)∗sqrt(1 − h)}

In the above formulae we indicated the model distribution variance function as
V, the hat matrix diagonal as hat and the standard error of the prediction as stdp.
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A scale value, φ, is user defined, and employed based on the type of data being
modeled. See McCullagh and Nelder (1989, p. 396), for a detailed account of
these residuals.

We mentioned earlier that the Anscombe residual (Anscombe, 1972) has
values close to those of the standardized deviance. There are times, however,
when this is not the case, and the Anscombe residual performs better than Rd .
Anscombe residuals attempt to normalize the residual so that heterogeneity in
the data, as well as outliers, become easily identifiable.

Anscombe residuals use the model variance function. The variance functions
for the three primary count models are

Poisson: V = µ
Geometric: V = µ(1 + µ)
NB2: V = µ + αµ2 or µ(1 + αµ)

Anscombe defined the residual which later became known under his name as

R A = A(yi ) − A(µi )

A′(µi )sqrt(V (µi ))
(2.54)

where

A(.) =
∫

dµi/V 1/3(µi ) (2.55)

The calculated Anscombe residuals for the three basic count models are, without
showing subscripts,

Poisson:

3(y2/3 − µ2/3)/(2µ1/6) (2.56)

Geometric:

{3{(1 + y)2/3 − (1 + µ)2/3} + 3(y2/3 − µ2/3)}
2(µ2 + µ)1/6

(2.57)

Negative binomial:

{3/a{(1 + αy)2/3 − (1 + αµ)2/3} + 3(y2/3 − µ2/3)}
2(αµ2 + µ)1/6

(2.58)

The negative binomial Anscombe has also been calculated in terms of the
hypergeometrix2F1 function. See Hilbe (1993a) and Hardin and Hilbe (2001)
for a complete discussion.

y2/3 H (2/3, 1/3, 5/3, y/α) − µ2/3 H (2/3, 1/3, 5/3, µ/α) (2.59)

= 2/3B(2/3, 2/3){y − BI(2/3, 2/3, µ/α)} (2.60)
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where H is the hypergeometrix2F1 function, B is the beta function, and BI is the
incomplete beta function. Hilbe (1994) and Hardin and Hilbe (2001) show that
the two-term beta function has the constant value of 2.05339. It is also noted
that the value of α is the negative binomial ancillary parameter.

We are ready to proceed to the more detailed derivation of the Poisson model,
which is considered to be the base or standard count response regression model.

2.5 Summary

We have discussed the two foremost methods used to estimate count response
models – Newton–Raphson and Fisher scoring. Both are maximum likelihood
methods, using the likelihood function, or its derived deviance function, as the
basis for estimation. That is, both methods involve the maximization of the
likelihood score function in order to estimate parameter values. Standard errors
are obtained from the Hessian, or, more correctly, from the information matrix,
which is calculated as the second derivative of the likelihood function.

We also mentioned that most software applications use some variation of the
traditional or basic Newton–Raphson algorithm. For our purposes, we refer to
these methods collectively as full maximum likelihood methods of estimation.
These methods produce standard errors based on the observed information
matrix.

Fisher scoring is typically based on an iteratively re-weighted least squares
(IRLS) algorithm. It is the algorithm traditionally used for estimation of gen-
eralized linear models (GLM). Fisher scoring is a simplification of the full
maximum likelihood method that is allowed due to the unique properties of the
exponential family of distributions, of which all GLM members are instances.
Standard errors produced by this method are generally based on the expected
information matrix. In the case of canonically linked GLMs, the observed infor-
mation matrix reduces to the expected (see Equation (2.42)), resulting in stan-
dard errors of the same value. For example, a log-linked Poisson, which is the
canonical link, can be estimated using a form of the Newton–Raphson algorithm
employing the observed information matrix, or by considering it as a member of
the family of generalized linear models, using the expected information matrix.
In either case the calculated standard errors will be identical, except for perhaps
very small rounding errors. Non-canonical linked GLMs will produce standard
errors that are different from those produced using full maximum likelihood
methods.

It is possible, though, to adjust the GLM IRLS algorithm so that the observed
information matrix is used to calculate standard errors rather than the expected.
We showed how this can be accomplished, and how it results in standard errors
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that are the same no matter which of the two major methods of estimation are
used.

Finally, we addressed the type of residuals that are used to evaluate the worth
of count response models. Residuals based on GLM methodology provide the
statistician with a rather wide range of evaluative capability. It is recommended
that standardized deviance and Anscombe residuals be used with the fitted val-
ues, µ, to determine if the data are appropriate for the model used in estimation.

Exercises

1 What type of models are more appropriately estimated using a Newton–
Raphson type of algorithm rather than IRLS?

2 State the essential difference between the expected information matrix and
the observed information matrix? Under what conditions do they reduce to
the same formula?

3 Using a higher language such as R, Stata, SAS-IML, or similar facility,
develop a functional IRLS algorithm based on Table 2.1 with the following
values

g(µ) = ln(µ) g−1(η) = exp(η) V = µ

Deviance = 2�{y ln(y/µ) − (y − µ)}

The expression, g′, in Table 2.1 is the same as g′(µ) or the first derivative of
g(µ) wrt µ. Use the non-binomial initialization for µ and include the Chi2,
AIC, and BIC statistics only as a bonus.

4 Using the data ex2 4 given below, together with the algorithm developed in
question 3, model y on x1 and x2. Determine the parameter estimates and
standard errors for x1 and x2.

Data y x1 x2

1 1 61
1 1 65
2 1 59
3 1 52
4 1 56
4 1 67
5 1 63
5 1 58
8 1 56
8 0 58
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5 Amend the algorithm developed in question 3 so that the observed information
matrix is used as in Table 2.4. Run the model using the same data as in question
4. Why is there no difference in results?

6 Show why the observed information matrix collapses to the expected infor-
mation matrix of a canonically linked GLM.

7 AIC statistics can be calculated for all maximum likelihood models. Why is
it the case that not all maximum likelihood models can be evaluated using a
BIC statistic?
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Poisson regression

Poisson regression is the standard or base count response regression model. We
have seen in previous discussion that other count models deal with data that
violate the assumptions carried by the Poisson model. Since the model does play
such a central role in count response modeling, we begin with an examination
of its derivation and structure, as well as how it can be parametermized to model
rates. The concept of overdispersion is introduced in this chapter, together with
two tests that have been used to assess its existence and strength.

3.1 Derivation of the Poisson model

A primary assumption is that of equidispersion, or the equality of the mean
and variance functions. When the value of the variance exceeds that of the
mean, we have what is termed overdispersion. Negative binomial regression is
a standard way to deal with certain types of Poisson overdispersion; we shall
find that there are a variety of negative binomial based models, each of which
address the manner in which overdispersion has arisen in the data. However, to
fully appreciate the negative binomial model and its variations, it is important
to have a basic understanding of the derivation of the Poisson as well as an
understanding of the logic of its interpretation.

Maximum likelihood models, as well as the canonical form members of gen-
eralized linear models, are ultimately based on an estimating equation derived
from a probability distribution. In the case of the Poisson, the probability func-
tion can be expressed as

fy(y; µ) = e−µµy/y! (3.1)

for y = {0, 1, . . . } and µ > 0.
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The conversion of the Poisson PDF to log-likelihood form is accomplished
by casting it as a member of the exponential family of distributions given,
without subscripts, as

f (y; µ, φ) = exp

{
yθ − b(θ )

α(φ)
+ C(y; φ)

}
(2.53)

Equation (3.1) may be caste into exponential family form for a calculated
random sample as

fy(y; µ) = �{exp(y ln(µ) − µ − ln(y!)} (3.2)

The log-likelihood function is a transformation of the probability function in
which the parameters are estimated to make the given data most likely

L(µ; y) = �{y ln(µ) − µ − ln(y!)} (3.3)

With subscripts to indicate the individual observation contribution to the overall
log-likelihood function, we have

L(µi ; yi ) = �{yi ln(µi ) − µi − ln(yi !)} (3.4)

The canonical link and cumulant terms can then be abstracted from the above,
without showing subscripts, as

LINK: θ = ln(µ) = η (3.5)

CUMULANT: b(θ ) = µ (3.6)

The inverse link is a re-interpretation of µ with respect to η, the linear predictor.
Transformation yields

INVERSE LINK: η = exp(µ) (3.7)

Recalling that the exponential family mean is defined as the first derivative of
the cumulant with respect to θ , and the variance as the second derivative with
respect to θ , we calculate the Poisson mean and variance as

MEAN: b(θ ) = ∂b

∂µ

∂µ

∂θ
= (1)(µ) = µ (3.8)

VARIANCE:

b′′(θ ) = ∂2b

∂µ2

(
∂µ

∂θ

)2

+ ∂b

∂µ

∂2µ

∂θ2
= (0)(1) + (µ)(1) = µ (3.9)

We see the equality of the Poisson mean and variance functions.
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Since the derivative of the link is important to the estimating algorithm, we
have

DERIVATIVE OF LINK:
∂θ

∂µ
= ∂{ln(µ)}

∂µ
= 1

µ
(3.10)

Recall that Equation (2.47) in the previous chapter specified the Poisson mean,
µ, as equal to exp(x′β). We can therefore make the following translation such
that µ takes the value exp(x′β): Note that the x′β parameterization is used in
all full maximum likelihood estimating algorithms

1

µ
= 1

exp(x ′β)
(3.11)

The Poisson log-likelihood, parameterized in terms of x ′β, is therefore given,
with subscripts, as

L(βi ; yi ) = �{yi (xiβ) − exp(xiβ) − ln(yi !)} (3.12)

or

L(βi ; yi ) = �{yi (xiβ) − exp(xiβ) − ln �(yi + 1)} (3.13)

When the response has a value of zero, the log-likelihood function reduces to

L(βi ; yi = 0) = −exp(xiβ) (3.14)

Returning to the traditional GLM parameterization of the mean as µ, the GLM
deviance function is defined as

DEV = 2�{L(yi ; yi ) − L(µi ; yi )} (3.15)

The deviance is a measure of the difference between the full, or saturated, and
model likelihoods. It is a likelihood ratio test of the full to the model likelihoods.
Traditionally, the deviance statistic has been used as the basis of convergence
for GLM algorithms (see Table 3.1). It has also been used as a goodness-of-fit
statistic, with lower positive values representing a better fitted model.

Substituting the appropriate Poisson terms into the saturated likelihood
parameterization entails substituting the value of y for each instance of µ.
This gives us

DEV = 2�{yi ln(yi ) − yi − yi ln(µi ) + µi } (3.16)

= 2�{yi ln(yi/µi ) − (yi − µi )} (3.17)

We may recall Table 2.1, which schematized the generic IRLS algorithm. We
can now substitute the above Poisson statistics into Table 2.1 to develop a
paradigm IRLS-type Poisson regression.
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Table 3.1. Poisson regression algorithm

µ = (y+ mean(y))/2
η = ln(µ)
WHILE(abs(
dev)tolerance) {
u= (y− µ)/µ
w = µ
z = η + u− offset
β= (X′wX)−1X′wz
η = X′β + offset
µ = exp(η)
oldDev = dev
dev = 2�{yln(y/µ)− (y−µ)}

dev = dev− oldDev
}

Chi2 =�(y−µ)2/µ
AIC = (−2	�(yln(µ)−µ−lngamma(y+ 1))+ 2	p)/n
BIC = 2�(y	ln(y/µ)− (y−µ))− df	ln(n)
/	 n = number of model observations 	/
/	 p = number of model predictors 	/
/	 df = model degrees of freedom 	/

The Poisson regression model is also considered as a nonlinear regression
to be estimated using maximum likelihood methods. But in order to do so, we
must calculate the derivatives of the log-likelihood function, which define the
gradient and observed Hessian matrix.

The gradient vector, or first derivative of the Poisson log-likelihood function
with respect to parameters β, is calculated as

∂(L(β; yi ))

∂β
= �(yi − exp(xiβ))xi (3.18)

Setting Equation (3.18) to zero, such that

�(yi − exp(xiβ))xi = 0 (3.19)

provides for the solution of the parameter estimates.
The Hessian is calculated as the negative inverse of the second derivative of

the log-likelihood function

∂(L(β; yi ))

∂β∂β ′ = [−�(exp(xiβ))xi x j ]
−1 (3.20)

The square-roots of the respective terms on the diagonal of the negative inverse
Hessian are the values of parameter standard errors. A Newton–Raphson
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algorithm can be used for maximum likelihood estimation of parameters

βi+1 = βi−H−1g (3.21)

Poisson models are typically used to either summarize predicted counts based
on a set of explanatory predictors, or are used for interpretation of exponentiated
estimated slopes, indicating the expected change or difference in the incidence
rate ratio of the outcome based on changes in one or more explanatory predictors.
An example will demonstrate how each of these modeling concerns appears in
fact.

This example comes from Medicare hospital length of stay data from the
state of Arizona. The data are limited to only one diagnostic group. In addition,
patient data have been randomly selected to be part of this data set [data =
medpar].

The model response is los, length of stay, a count of the days each patient
spent in the hospital. Predictors include hmo, whether the patient belonged to
an HMO (1/0), white, if the patient identifies themselves as primarly Caucasian
(1/0), and a three level factor predictor, type∗, related to the type of admission:
1 = elective, 2 = urgent, and 3 = emergency. type = 1 is specified as the
referent.

Generalized linear models No. of obs = 1495
Optimization : ML Residual df = 1490

Scale parameter = 1
Deviance = 8142.666001 (1/df) Deviance = 5.464877
Pearson = 9327.983215 (1/df) Pearson = 6.260391<

AIC = 9.276131
Log likelihood = −6928.907786 BIC = −2749.057

OIM
los Coef. Std.Err. z P>|z| [95% Conf.Interval]

hmo −.0715493 .023944 −2.99 0.003 −.1184786 −.02462
white −.153871 .0274128 −5.61 0.000 −.2075991 −.100143
type2 .2216518 .0210519 10.53 0.000 .1803908 .2629127
type3 .7094767 .026136 27.15 0.000 .6582512 .7607022
cons 2.332933 .0272082 85.74 0.000 2.279606 2.38626

In the parameterization that follows, the coefficients are exponentiated to assess
the relationship between the response and predictors as incidence rate ratios.
I have altered the formatting of descriptive and fit statistics above the table of
parameter estimates, standard errors, and so forth. No statistical values have
been deleted; empty lines of output have been merged. I follow this method
throughout the text.



44 Poisson regression

OIM
los IRR Std.Err. z P>|z| [95% Conf.Interval]

hmo .9309504 .0222906 −2.99 0.003 .8882708 .9756806
white .8573826 .0235032 −5.61 0.000 .8125327 .904708
type2 1.248137 .0262756 10.53 0.000 1.197685 1.300713
type3 2.032927 .0531325 27.15 0.000 1.931412 2.139778

We observe that the number of days a patient is in the hospital is increased by
24% if the patient entered as an urgent rather than as an elective admission. A
patient stays twice as long as an elective if they entered as an emergency admit.

We also see that HMO patients stay in the hospital slightly less time than
do non-HMO patients – 7% less time; non-white patients stay in the hospital
about 14% longer than do white patients.

On the surface the model appears acceptable. However, the Pearson dis-
persion value is 6.26, far exceeding unity. The dispersion statistic has been
indicated with a “<” to the immediate right of the statistic. Thus it appears that
the model is overdispersed. The Lagrange multiplier and Z tests also indicate
overdispersion (not shown).

Expected counts (of days of stay) can be calculated for a user defined set
of predictor values. We can predict on the basis of the model that an HMO
non-white patient entering the hospital as an urgent admission has a predicted
length of stay of 12 days.

This is particularly easy to calculate since all predictors are binary. Thus

constant + β1
∗1 − β2

∗1 = linear predicator

2.3329 + .2217 − .07155 = 2.48305

which is the value of the linear predictor. Next we apply the inverse link to
determine the fitted value, µ, which in this case is a predicted count

exp(2.48305) = 11.977741 or 12

Unfortunately the data are not well fitted, as we shall determine. This gives rise
to the following observed values of los, given the above criteria:

los hmo white type1 type2 type3 mu

1 1 0 0 1 0 11.97757
14 1 0 0 1 0 11.97757
3 1 0 0 1 0 11.97757
19 1 0 0 1 0 11.97757

The four observed values are 1, 3, 14, and 19. The mean of these counts is

(1 + 3 + 14 + 19)/4 = 9.25
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A quick assessment of the fit of this model tells us that it is overdispersed.
An easy way to check for possible overdispersion in a Poisson model is

to look at the Pearson-based dispersion statistic that is typically displayed in
model output. The dispersion is defined as the ratio of the Pearson statistic to the
degrees of freedom, or the number of observations less predictors. In this case
we have 9327.983/1490 = 6.260. Such a value for a model consisting of some
1500 observations is clearly excessive. Ideally, if there is no overdispersion in
the data, the dispersion statistic will have a value of 1.0.

A value of near 6.25 indicates overdispersion, but only additional investiga-
tion will inform us if it is real, or only apparent. We shall address this subject
in depth in the following chapter.

3.2 Parameterization as a rate model

We briefly addressed the rate parameterization of the Poisson model in
Chapter 1. Although µ is sometimes said to be an intensity or rate parame-
ter, it is such only when thought of in conjunction with a constant coefficient,
t. The rate parameterization of the Poisson PDF can be expressed as

f (yi ; µi ) = e−ti µi (tiµi )
yi /yi ! (1.2)

t represents the length of time, or exposure, during which events or counts occur.
t can also be thought of as an area in which events occur, each associated with
a specific count. For instance, when using a Poisson model with disease data,
tiµi can be considered as the rate of disease incidence in specified geographic
areas, each of which may differ from other areas in the population. Again, the
incidence rate of hospitalized bacterial pneumonia patients can be compared
across counties within the state. A count of such hospitalizations divided by the
population size of the county, or by the number of total hospitalizations for all
diseases, results in the incidence rate ratio (IRR) for that county. When t = 1,
the model is understood as applying to individual counts without a consideration
of size. Many commercial software applications indicate exponentiated Pois-
son coefficients as incidence rate ratios. IRR is also used with exponentiated
negative binomial coefficients.

When employing a rate parameter to a Poisson model, statisticians enter the
natural log of t as an offset into the estimating algorithm. The fitted value is
expressed as

µi = exp(xiβ + ln(ti )) (3.22)

Tables 2.1 and 2.4 show how ln(t) is entered into the estimating algorithm.
Called an offset, ln(t) is entered into the algorithm as a constant.
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An example of a Poisson model parameterized as a rate is provided below.
The data are from the Canadian National Cardiovascular Disease registry called,
FASTRAK. They have been grouped by covariate patterns from individual
observations. The response is die, which is a count of the number of deaths of
patients having a specific pattern of predictors. Predictors are anterior, which
indicates if the patient has had a previous anterior myocardial infarction; hcabg,
if the patient has a history of having had a CABG procedure; and killip class, a
summary indicator of the health of the patient, with increasing values indicating
increased disability. The number of observations sharing the same pattern of
covariates is recorded in the variable case. This value is log-transformed and
entered into the model as an offset.

. glm die anterior hcabg kk2-kk4, fam(poi) eform lnoffset(cases)

Generalized linear models No. of obs = 15
Optimization : ML Residual df = 9

Scale parameter = 1
Deviance = 10.93195914 (1/df) Deviance = 1.214662
Pearson = 12.60791065 (1/df) Pearson = 1.400879

AIC = 4.93278
Log likelihood = −30.99584752 BIC = −13.44049

OIM
die IRR Std. Err. z P>|z| [95% Conf. Interval]

anterior 1.963766 .3133595 4.23 0.000 1.436359 2.684828
hcabg 1.937465 .6329708 2.02 0.043 1.021282 3.675546

kk2 2.464633 .4247842 5.23 0.000 1.75811 3.455083
kk3 3.044349 .7651196 4.43 0.000 1.86023 4.982213
kk4 12.33746 3.384215 9.16 0.000 7.206717 21.12096

cases (exposure)

The Pearson dispersion is relatively low at 1.40, but given a total observation
base of 5388, the added 40% overdispersion may represent a lack of model fit.
We shall delay this discussion until the next section where we deal specifically
with models for overdispersed data.

3.3 Testing overdispersion

The concept of overdispersion is central to the understanding of negative bino-
mial models. Nearly every application of the negative binomial is in response to
perceived overdispersion in a Poisson model. We shall address the problem of
ascertaining whether indicators of overdispersion represent real overdispersion



3.3 Testing overdispersion 47

in the data, or only apparent. Apparent overdispersion can usually be accommo-
dated by various means in order to eradicate it from the model. However, real
overdispersion is a problem affecting the reliability of both the model parameter
estimates and fit in general.

We showed one manner in which overdispersion could be detected in a
Poisson model. We will address other methods in the next chapter. However,
two related, yet well-used, tests are at times provided in commercial software
applications. These are the Z and Lagrange multiplier tests.

A score test to evaluate whether the amount of overdispersion in a Poisson
model is sufficient to violate the basic assumptions of the model is defined
as:

Z TEST: Zi
(yi − µi )2−yi

µi sqrt(2)
(3.23)

The test is post-hoc, i.e. performed subsequent to modeling the data. Using the
medpar data set as earlier delineated, we first model the data using maximum
likelihood Poisson regression:

Poisson Regression Number of obs = 1495
Wald chi2(4) = 866.32

Log likelihood = −6928.9078 Prob > chi2 = 0.0000

los IRR Std. Err. z P>|z| [95% Conf. Interval]

hmo .9309504 .0222906 −2.99 0.003 .8882708 .9756806
white .8573825 .0235032 −5.61 0.000 .8125327 .904708
type2 1.248137 .0262756 10.53 0.000 1.197685 1.300713
type3 2.032927 .0531325 27.15 0.000 1.931412 2.139778

AIC Statistic = 9.276 BIC Statistic = −2749.057
Deviance = 8142.666 Dispersion = 5.465
LM Value = 62987.860 < LM Chi2(1) = 0.000

Note: I have included additional fit statistics under the table of parameter esti-
mates that are not in the commercial software output. The software to produce
this output is available on the website for this book.

Using Stata, the statistic may be calculated using:

predict xb
gen mu = exp(xb)
gen double z=((los-mu)∧2-los)/ (mu∗sqrt(2))
regress z
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Source SS df MS Number of obs = 1495

F(0, 1494) = 0.00
Model 0 0 Prob > F =

Residual 348013.82 1494 232.940977 R-squared = 0.0000
-------------------------------------- Adj R-squared = 0.0000

Total 348013.82 1494 232.940977 Root MSE = 15.262
-----------------------------------------------------------------

z Coef. Std. Err. t P>|t| [95% Conf. Interval]
-----------------------------------------------------------------

�cons 3.704561 .394732 9.39 0.000 2.930273 4.478849

The Z score test is 3.7, with a t-probability of <0.0005. Z tests the hypothesis
that the Poisson model is overdispersed. In practice, it tests whether the data
should be modeled as Poisson or negative binomial. This example indicates
that the hypothesis of no overdispersion is rejected, i.e. it is likely that real
overdispersion does exist in the data.

The Lagrange multiplier test is given as:

LAGRANGE MULTIPLIER TEST: χ2 = (�iµ
2
i −ny)2

2�iµ
2
i

, with 1 dof (3.24)

Again, using Stata commands to calculate the statistic, we have:

. summ los, meanonly /	 solving for Lagrange

. Multplier 	/

. scalar nybar = r(sum)

. gen double musq = mu	mu

. summ musq, meanonly

. scalar mu2 = r(sum)

. scalar chival = (mu2-nybar)∧2/(2	mu2)

. display ”LM value =” chival n ”P-value =”
chiprob(1,chival)

LM value = 62987.861
P-value = 0

With one degree of freedom, the test appears to be significant – the hypothesis
of no overdispersion is again rejected. See model output above.

3.4 Summary

The Poisson model is the paradigm or basic count response model. We discussed
the derivation of the model and how the basic Poisson algorithm can be amended
to allow estimation of rate models, i.e. how many counts are in a certain defined
area or over various time periods. The rate parameterization of the Poisson
model is also appropriate for modeling counts that are weighted by person years.



Exercises 49

A central distributional assumption of the Poisson model is the equivalence
of the Poisson mean and variance. This assumption is rarely met with real data.
Usually the variance exceeds the mean, resulting in what is termed as overdis-
persion. Underdispersion occurs when the variance is less than the nominal
mean, but this rarely occurs in practice. Overdispersion is, in fact, the norm,
and gives rise to a variety of other models that are extensions of the basic
Poisson model.

Negative binomial regression is nearly always thought of as the model that
is to be used instead of Poisson when overdispersion is present in the data.
Because overdispersion is so central to the modeling of counts, we next address
it, and investigate how we determine if it is real or only apparent.

Exercises

1 How are the constants between two Poisson models related in which the
response of one has values five times greater than the other? How are the
Pearson dispersion statistics related? Both models have identical predictors.
Formulate a general principal for these two relationships.

2 Amend the GLM-based Poisson regression algorithm as shown in Table 3.1
so that the canonical natural log link is changed to the identity link. (a) Amend
it so that standard errors are based on the expected information matrix.
(b) Amend it so that standard errors are based on the observed information
matrix [difficult].

3 How does the offset in a Poisson model relate to the binomial response
denominator in a grouped logistic regression model?

4 What is the relationship between the Pearson χ2 statistic and the Lagrange
multiplier test for Poisson overdispersion?

5 Model the HIV data below with a Poisson model. The response is infec,
the number of patients infected. The natural log of cases is the offset, with
cd4 and cd8 as two explanatory predictors. Since the values given for the
predictors represent ranges of marker values, they should be factored into
three levels each. Prepare a well-fitted Poisson model.

infec cases cd4 cd8

1 1 0 2
2 2 1 2
4 7 0 0
4 12 1 1
1 3 2 2
2 7 1 0
0 2 2 0
0 13 2 1
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6 Show how the Poisson PDF is the same as the negative binomial with an
ancillary parameter of zero.

7 The following data horsekick are the famous “horse-kick” data set collected
by Bortkewitsch for the period 1875–1894. His final data included the fre-
quency of horse kicks for ten corps of Prussian soldiers over the 20-year
period. Determine if a Poisson model is an appropriate measure of the data.

Deaths 0 1 2 3 4 >=5
Frequency 109 65 22 3 1 0
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Overdispersion

This chapter can be considered as a continuation of the former. Few real-life
Poisson data sets are truly equi-dispersed. Overdispersion to some degree is
inherent to the vast majority of Poisson data. Thus, the real question deals with
the amount of overdispersion in a particular model – is it statistically sufficient
to require a model other than Poisson? This is a foremost question we address
in this chapter, together with how we differentiate between real and apparent
overdispersion.

4.1 What is overdispersion?

Not all overdispersion is real; apparent overdispersion can sometimes be iden-
tified and the model amended to eliminate it. We first address the difference
between real and apparent overdispersion, and what can be done about the latter.

1 What is overdispersion?
Overdispersion in Poisson models occurs when the response variance is
greater than the mean.

2 What causes overdispersion?
Overdispersion is caused by positive correlation between responses or by an
excess variation between response probabilities or counts. Overdispersion
also arises when there are violations in the distributional assumptions of the
data.

3 Why is overdispersion a problem?
Overdispersion may cause standard errors of the estimates to be
underestimated; i.e., a variable may appear to be a significant predictor when
it is in fact not significant.

4 How is overdispersion recognized?

51
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A model may be overdispersed if the value of the Pearson (or χ2) statistic
divided by the degrees of freedom (dof) is greater than 1.0. The quotient of
either is called the dispersion. Small amounts of overdispersion are of little
concern; however, if the dispersion statistic is greater than 1.25 for moderate
sized models, then a correction may be warranted. Models with large numbers
of observations may be overdispersed with a dispersion statistic of 1.05.

5 What is apparent overdispersion; how may it be corrected?
Apparent overdispersion occurs when:
(a) the model omits important explanatory predictors;
(b) the data include outliers;
(c) the model fails to include a sufficient number of interaction terms;
(d) a predictor needs to be transformed to another scale; or when
(e) the assumed linear relationship between the response and the link

function and predictors is mistaken, i.e. the link is misspecified.

4.2 Handling apparent overdispersion

We can show the impact of the various causes of apparent overdispersion,
delineated in 5(a)–(e) above, by creating simulated data sets. Each constructed
data set will entail a specific cause for the overdispersion observed in the display
of model output.

We shall first create a base Poisson data set consisting of three normally
distributed predictors.

CREATION OF A SIMULATED BASE POISSON MODEL

Construct a data set with the following constructed predictors:

Constant == 1.00 x1 == 0.50
x2 == −0.75 x3 == 0.25

Stata code to create the simulated data consists of the

following:

. set obs 10000

. gen x1 = invnorm(uniform())

. gen x2 = invnorm(uniform())

. gen x3 = invnorm(uniform())

. gen xb=1 +.5	x1 +.75	x2 +.25	x3

. genpoisson y, xbeta(xb)

Created response variable, y, has an observed count distribution appearing as
(excluding counts greater than 25):
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y Freq. Percent Cum.

0 1458 14.58 14.58
1 1808 18.08 32.66
2 1507 15.07 47.73
3 1160 11.60 59.33
4 899 8.99 68.32
5 735 7.35 75.67
6 509 5.09 80.76
7 397 3.97 84.73
8 301 3.01 87.74
9 208 2.08 89.82
10 174 1.74 91.56
11 151 1.51 93.07
12 104 1.04 94.11
13 86 0.86 94.97
14 63 0.63 95.60
15 68 0.68 96.28
16 53 0.53 96.81
17 50 0.50 97.31
18 40 0.40 97.71
19 35 0.35 98.06
20 30 0.30 98.36
21 20 0.20 98.56
22 15 0.15 98.71
23 18 0.18 98.89
24 11 0.11 99.00
25 12 0.12 99.12

y is next modeled on the three randomly generated predictors:

. glm y x1 x2 x3, nolog fam(poi)

Generalized linear models No. of obs = 10000
Optimization : ML Residual df = 9996

Scale parameter = 1
Deviance = 10640.17865 (1/df) Deviance = 1.064444
Pearson = 9871.053244 => (1/df) Pearson = .9875003

AIC = 3.718926
Log
likelihood

= −18590.62923 BIC = −81426.38

OIM
y Coef. Std. Err. z P>|z| [95% Conf. Interval]

x1 .5005922 .0049171 101.81 0.000 .4909548 .5102296
x2 −.745506 .00495 −150.61 0.000 −.7552079 −.7358042
x3 .2496633 .0048491 51.49 0.000 .2401593 .2591673

�cons 1.002132 .0066982 149.61 0.000 .9890042 1.015261

Since the data are randomly distributed, other simulated data sets will have
slightly different values. If we ran several hundred simulated models, however,
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we would find that the parameter estimates would equal the values we assigned
them, and that the Pearson dispersion statistic, defined as the Pearson statistic
divided by the model degrees of freedom, would equal 1.0. Note the Pearson
dispersion statistic in the above model is 0.9875, with the parameter estimates
approximating the values we specified.

DELETE PARAMETER X1

We now omit predictor X1, and again model the data.

. glm y x2 x3, nolog fam(poi)

Generalized linear models No. of obs = 10000
Optimization : ML Residual df = 9997

Scale parameter = 1
Deviance = 21047.48811 (1/df) Deviance = 2.10538
Pearson = 21655.83485 (1/df) Pearson = 2.166233

AIC = 4.759457
Log
likelihood

= −23794.28397 BIC = −71028.28

OIM
y Coef. Std. Err. z P>|z| [95% Conf. Interval]

x2 −.7382381 .0049227 −149.97 0.000 −.7478865 −.7285898
x3 .2374987 .0048487 48.98 0.000 .2279954 .2470019

�cons 1.131906 .0061875 182.93 0.000 1.119779 1.144034

Parameter estimates deviate from those defined in the base data set – but not
substantially. What has notably changed is the dispersion statistic. It has nearly
doubled to a value of 2.1. Given a data set of 10 000 observations, the dis-
persion statistic correctly indicates that the data are overdispersed. The AIC
and BIC statistics are also inflated. These fit statistics are commonly used
when comparing models; those with lower AIC and BIC statistics are better-
fitted.

OUTLIERS IN DATA

We create ten outliers out of the 10 000 values of the response, y. This represents
1/10 of 1 percent of the observations. The synthetic values of y we created range
from 0 to 101, although the 9,997th largest number is 58. The mean is 4.19 and
median 3.0.

Two sets of outliers will be generated. One set will add 10 to the first 10
values of y in the data, which have been randomized. The second will add 20
rather than 10. Code showing the creation of the outliers, together with a listing
of the first 15 values of y and outlier values is given below:
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. gen y10�10 = y

. replace y10�10 = y10�10 + 10 in 1/10

. gen y20�10 = y

. replace y20�10 = y20�10 + 20 in 1/10

. l y y10�10 y20�10 in 1/100

y y10�10 y20�10

1 0 10 20
2 2 12 22
3 7 17 27
4 6 16 26
5 4 14 24
6 3 13 23
7 7 17 27
8 0 10 20
9 4 14 24

10 1 11 21
11 2 2 2
12 0 0 0
13 2 2 2
14 4 4 4
15 1 1 1

Modeling the y-plus-10 response on the same set of predictors yields:

. glm y10�10 x1 x2 x3, fam(poi)

Generalized linear models No. of obs = 10000
Optimization : ML Residual df = 9996

Scale parameter = 1
Deviance = 10893.15795 (1/df) Deviance = 1.089752
Pearson = 10637.66647 (1/df) Pearson = 1.064192

AIC = 3.746111
Log likelihood = −18726.55299 BIC = −81173.4

OIM
y10�10 Coef. Std. Err. z P>|z| [95% Conf. Interval]

x1 .4990834 .004911 101.63 0.000 .489458 .5087087
x2 −.7429948 .0049438 −150.29 0.000 −.7526844 −.7333052
x3 .2486112 .0048434 51.33 0.000 .2391184 .2581041

�cons 1.007355 .0066797 150.81 0.000 .9942634 1.020447

Note that the parameter estimates are nearly identical to the synthetic model
having a response of y, i.e. y with the first ten responses having 10 added to the
value y. The Pearson dispersion statistic, however, has increased from 0.9875
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to 1.0642. Given the large number of observations, a value of 1.06 indicates
overdispersion. Of course, we know that the source of the overdispersion results
from the ten outliers.

Adding another ten counts to the observations we already made to the first
ten observations produce additional overdispersion:

. glm y20�10 x1 x2 x3, nolog fam(poi)

Generalized linear models No. of obs = 10000
Optimization : ML Residual df = 9996

Scale parameter = 1
Deviance = 11329.94492 (1/df) Deviance = 1.133448
Pearson = 12982.97046 (1/df) Pearson = 1.298817

AIC = 3.790353
Log likelihood = −18947.76719 BIC = −80736.62

OIM
y20�10 Coef. Std. Err. z P<|z| [95% Conf. Interval]

x1 .4975823 .0049049 101.45 0.000 .4879689 .5071956
x2 −.7404962 .0049376 −149.97 0.000 −.7501736 −.7308187
x3 .2475645 .0048377 51.17 0.000 .2380827 .2570462

�cons 1.012549 .0066612 152.01 0.000 .9994931 1.025605

The Pearson dispersion statistic has increased from an initial value of 0.9875
to 1.2988 – an increase of some 30%. The effect of these outliers, given that
they constitute only 1/1000 of the observations in the model, is remarkable.
This example provides good evidence of the importance of checking for model
outliers in the presence of apparent overdispersion. Once the outliers are cor-
rected the Pearson dispersion reduces to near 1.0. In fact, in some cases where
outliers have been identified, but we do not have information as to how they
are to be amended, it may be preferable to simply drop them from the model.
Dropping the first ten observations results in a model that is nearly identical to
the original model:

. glm y x1 x2 x3 in 11/10000, nolog fam(poi)

Generalized linear models No. of obs = 9990
Optimization : ML Residual df = 9986

Scale parameter = 1
Deviance = 10630.39818 (1/df) Deviance = 1.06453
Pearson = 9861.534172 (1/df) Pearson = .987536

AIC = 3.719126
Log likelihood = −18573.0342 BIC = −81334.07

OIM
y Coef. Std. Err. z P>|z| [95% Conf. Interval]

x1 .5006113 .0049181 101.79 0.000 .490972 .5102507
x2 −.7456277 .0049518 −150.58 0.000 −.755333 −.7359224
x3 .249782 .0048501 51.50 0.000 .240276 .259288

�cons 1.001902 .0067024 149.48 0.000 .9887655 .015039
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CREATION OF INTERACTION

We next consider a Poisson model having an interaction term. We create it in
the same manner as we did the base model:

. gen x23 = x2	x3

. gen xbi =1+.5	x1−.75	x2+.25	x3+.2	x23

. genpoisson yi, xbeta(xbi)

The interaction term, created byx2 andx3, is represented by the predictorx23.
We furthermore specified a parameter value of 0.2 for the interaction term. The
dataset is created with main effects predictors and the interaction:

. glm yi x1 x2 x3 x23, nolog fam(poi)

Generalized linear models No. of obs = 10000
Optimization : ML Residual df = 9995

Scale parameter = 1
Deviance = 10816.20559 (1/df) Deviance = 1.082162
Pearson = 10047.10403 (1/df) Pearson = 1.005213

AIC = 3.743824
Log
likelihood

= −18714.11936 BIC = −81241.15

OIM
yi Coef. Std. Err. z P>|z| [95% Conf. Interval]

x1 .4953458 .004901 101.07 0.000 .48574 .5049516
x2 −.7512554 .0049728 −151.07 0.000 −.7610019 −.7415089
x3 .2486223 .0059682 41.66 0.000 .2369248 .2603197
x23 .2014496 .0048848 41.24 0.000 .1918756 .2110236

�cons 1.006059 .0067253 149.59 0.000 .9928779 1.019241

All parameter estimates appear as expected, including the interaction. Again,
the dispersion statistic approximates 1.0. The AIC and BIC statistics are very
close to those of the base model.

Now, we model the data without the interaction:

. glm yi x1 x2 x3, nolog fam(poi)

Generalized linear models No. of obs = 10000
Optimization : ML Residual df = 9996

Scale parameter = 1
Deviance = 12464.79638 (1/df) Deviance = 1.246978
Pearson = 11834.63586 (1/df) Pearson = 1.183937

AIC = 3.908483
Log likelihood = −19538.41476 BIC = −79601.77

OIM
yi Coef. Std. Err. z P>|z| [95% Conf. Interval]

x1 .5008559 .0049115 101.98 0.000 .4912296 .5104823
x2 −.7336854 .0049411 −148.49 0.000 −.7433698 −.7240011
x3 .1063038 .0048617 21.87 0.000 .0967751 .1158325

�cons 1.035805 .0065672 157.72 0.000 1.022933 1.048676
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We see that the dispersion rose 18%, AIC higher by .15, and BIC by 1,640.
x3 is also quite different from the true model having the interaction term. x3
was one of the two terms from which the interaction was created. This model is
apparently overdispersed. Of course, the overdispersion can be accommodated
by creating the proper interaction.

TESTING THE LINK

Since we do not normally employ links other than the natural log with count
response models, it is perhaps easier to demonstrate testing of the link function
by using members of the GLM binomial family. Criterion 5(e) can be evaluated
by creating a complementary loglog model using the same data as the base
model. This will serve as the true model. When we then model the data using
a logistic regression, we find that it is overdispersed. The major difference,
however, relates to the parameter estimates.

The command to create a synthetic data set is given as:

. genbinomial yc, xbeta(xb) n(50) link(cloglog)

The data are modeled, with a binomial denominator of 50, as:

CLOGLOG REGRESSION

. glm yc x1 x2 x3, nolog fam(bin 50) link(clog)

Generalized linear models No. of obs = 10000
Optimization : ML Residual df = 9996

Scale parameter = 1
Deviance = 8535.227445 (1/df) Deviance = .8538643
Pearson = 10074.44639 (1/df) Pearson = 1.007848

Variance
function

: V(u) =
u∗(1-u/50)

[Binomial]
[Complementary log-log]

Link function : g(u) =
ln(-ln(1-u/50))

Log = −16215.10735 AIC = 3.243821
likelihood BIC = −122635.9

OIM
yc Coef. Std. Err. z P>|z| [95% Conf. Interval]

x1 .496669 .0026889 184.71 0.000 .4913989 .5019392
x2 −.7474651 .0031267 −239.06 0.000 −.7535933 −.741337
x3 .2485862 .0023845 104.25 0.000 .2439127 .2532597

�cons .9962508 .0027719 359.42 0.000 .990818 1.001684

The Pearson dispersion has a value, as expected, of 1.008. Note the values of
the AIC and BIC goodness-of-fit statistics.
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Analyzing the data as a logistic model yields the following output:

LOGISTIC REGRESSION

. glm yc x1 x2 x3, nolog fam(bin 50) link(logit)

Generalized linear models No. of obs = 10000
Optimization : ML Residual df = 9996

Scale parameter = 1
Deviance = 12618.40477 (1/d) Deviance = 1.262345
Pearson = 10949.24219 (1/df) Pearson = 1.095362
Variance
function

: V(u) = u∗(1-u/50) [Binomial]

Link
function

: g(u) = ln(u/(50-u)) [Logit]

AIC = 3.652139
Log
likelihood

= −18256.69601 BIC = −118552.7

OIM
yc Coef. Std. Err. z P>|z| [95% Conf. Interval]

x1 .9787876 .0053431 183.19 0.000 .9683152 .98926
x2 −1.47635 .0060993 −242.05 0.000 −1.488305 −1.464396
x3 .4925683 .0048725 101.09 0.000 .4830184 .5021181

�cons 2.630692 .0070696 372.12 0.000 2.616836 2.644549

Estimates differ greatly from the synthetically created “true” values. The dis-
persion statistic indicates overdispersion – 1.095; AIC & BIC are higher than
with the complementary loglog model, indicating that the latter is preferable to
the logistic model.

Again, the Poisson model is rarely used with a non-canonical link; hence
comparison of link misspecification for this model is problematic. We shall
again look at proper link specification when dealing with negative binomial
regression.

TESTING PREDICTOR SCALE

We next construct a Poisson data set where x1 has been transformed to x1-
squared with a parameter value of 0.50. Other predictors are given the same
parameters as before.

. gen x1sq = x1	x1 /	 square x1 	/

. gen xbsq = 1 +.5∗x1sq -.75∗x2 +.25∗x3

. genpoisson ysq, xbeta(xbsq)

. glm ysq x1sq x2 x3, nolog fam(poi)
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Generalized linear models No. of obs = 10000
Optimization : ML Residual df = 9996

Scale parameter = 1
Deviance = 10791.22666 (1/d) Deviance = 1.079554
Pearson = 10078.38171 (1/df) Pearson = 1.008241

AIC = 4.274683
Log
likelihood

= −21369.41684 BIC = −81275.34

OIM
ysq Coef. Std. Err. z P>|z| [95% Conf. Interval]

x1sq .500438 .0006325 791.20 0.000 .4991983 .5016777
x2 −.7523986 .0031063 −242.21 0.000 −.7584869 −.7463103
x3 .2486034 .0028204 88.15 0.000 .2430756 .2541312

�cons .9996225 .0051985 192.29 0.000 .9894335 1.009811

Parameter estimates all approximate the synthetically assigned values, and the
dispersion statistic is close to one. We model the data as with the base model,
except for the new y, which we call ysq.

. glm ysq x1 x2 x3, nolog fam(poi)

Generalized linear models No. of obs = 10000
Optimization : ML Residual df = 9996

Scale parameter = 1
Deviance = 353558.2906 (1/d) Deviance = 35.36998
Pearson = 5758862.8 (1/df) Pearson = 576.1167

AIC = 38.55139
Log
likelihood

= −192752.9488 BIC = 261491.7

OIM
ysq Coef. Std. Err. z P>|z| [95% Conf. Interval]

x1 −.3259203 .0029165 −111.75 0.000 −.3316366 −.320204
x2 −.5801257 .0029266 −198.23 0.000 −.5858617 −.5743898
x3 .327435 .0028917 113.23 0.000 .3217673 .3331027

�cons 2.18808 .0036302 602.74 0.000 2.180965 2.195196

. save odtest/	 save simulated datasets in one file 	/

Parameter estimates now differ greatly from the true values. Dispersion statistics
are both extremely high (Pearson = 576.1), as are the AIC and BIC statistics.
The model is highly overdispersed. Note the difference created by not taking
into account the quadratic nature of x1. Squaring x1, of course, results in the
correct model.

These examples show how apparent overdispersion may be corrected. The
caveat here is that one should never employ another model designed for overdis-
persed count data until the model is evaluated for apparent overdispersion. A



4.3 Methods of handling real overdispersion 61

model may in fact be a well-fitted Poisson or negative binomial model once
appropriate transformations have taken place. This is not always an easy task,
but necessary when faced with indicators of overdispersion. Moreover, until
overdispersion has been accommodated either by dealing with the model as
above, or by applying alternative models, one may not simply accept seem-
ingly significant p-values. Although it has not been apparent from the examples
we have used, overdispersion does many times change the significance with
which predictors are thought to contribute to the model. Standard errors may
be biased either upwards or downwards.

4.3 Methods of handling real overdispersion

We may summarize the possible remedies that can be made to a model when
faced with apparent overdispersion by the following:

OVERDISPERSION ONLY APPARENT

1 Add appropriate predictor
2 Construct required interactions
3 Transform predictor(s)
4 Transform response
5 Adjust for outliers
6 Use correct link function

When faced with indicators of overdispersion, we first check for the possibility
of apparent overdispersion. If overdispersion persists, there are a variety of
methods that statisticians have used to deal with it – each based on addressing
a reason giving rise to overdispersion.

MODELS DEALING WITH POISSON OVERDISPERSION

1 Scale SEs post hoc; deviance, chi2 dispersion
2 Scale SEs iteratively; scale term
3 Robust variance estimators
4 Bootstrap or jackknife SE
5 Negative binomial
6 Heterogeneous negative binomial
7 NB-P
8 Generalized Poisson
9 Generalized estimating equations (GEE)

10 Unconditional fixed effects
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11 Conditional fixed effects
12 Random effects
13 Latent Class NB
14 Random intercept
15 Random parameter

OVERDISPERSION DUE TO ZERO COUNTS

1 Zero-inflated model
2 Zero-truncated model
3 NB with endogenous stratification
4 Heterogeneous NB w endogenous stratification
5 Hurdle model
6 Selection model

OVERDISPERSION RESULTING FROM CENSORED OBSERVATIONS

1 Censored model E
2 Censored model S

4.3.1 Scaling of standard errors

Scaling of standard errors was the first method used to deal with overdispersion
in binomial and count response models. The method replaces the W, or model
weight, in

β = (X ′W X )−1 X ′W z

with the inverse square root of the dispersion statistic. Scaling by the deviance
entails estimating the model, abstracting the deviance-based dispersion, apply-
ing the transformation, then running one additional iteration of the algorithm,
but as

β(X ′Wd X )−1 X ′Wd z (4.1)

Scaling in effect adjusts the model standard errors to the value that would have
been calculated if the dispersion statistic had originally been 1.0. McCullagh
and Nelder (1989) recommend that deviance-based scaling be used with discrete
response models, while continuous response models use Pearson-based scaling.
Both deviance and Pearson scaling should produce similar standard errors if
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Table 4.1. Poisson algorithm: scaling by chi2 dispersion

µ = (y+ mean(y))/2
η = ln(µ)
WHILE(abs(
dev) > tolerance) {

u = (y− µ)/µ
w = µ
z = η + u− offset
β = (X′wX)−1X′wz
η = X′β + offset
µ = exp(η)
oldDev = dev
dev = 2�{yln(y/µ)− (y− µ)}

dev = dev− oldDev

}
/	Afterconvergence,calculate 	/

dof = n− pred− 1
sc = chi2/dof
w = µ/sqrt

/	DisplayagainwithSE′sadjustedbyneww 	/

the model is well fitted. However, simulation studies have demonstrated that
Pearson χ2-based scaling of count models is preferred over deviance-based
scaling.

In Table 4.1 we see an IRLS Poisson algorithm showing both offsets and
how scaling is calculated.

An example will demonstrate how an overdispersed model can have the
standard errors adjusted, providing the user with a more accurate indication of
the true standard errors.

A non-scaled model using the Medpar data is given as:

. glm los hmo white type2 type3, fam(poi) eform

Generalized linear models No. of obs = 1495
Optimization : ML Residual df = 1490

Scale parameter = 1
Deviance = 8142.666001 (1/df) Deviance = 5.464877
Pearson = 9327.983215 (1/df) Pearson = 6.260391

AIC = 9.276131
Log likelihood = −6928.907786 BIC = −2749.057

OIM
los IRR Std. Err. z P>|z| [95% Conf. Interval]

hmo .9309504 .0222906 −2.99 0.003 .8882708 .9756806
white .8573826 .0235032 −5.61 0.000 .8125327 .904708
type2 1.248137 .0262756 10.53 0.000 1.197685 1.300713
type3 2.032927 .0531325 27.15 0.000 1.931412 2.139778
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The Pearson χ2 dispersion is an extremely high 6.26, especially considering
the relatively large number of observations. For example, based on the original
standard error for hmo (.0222906), we may calculate a scaled standard error
as sqrt(6.260391)∗ 0.0222906 =.05577281. Note the calculated value in the
model output below:

. glm los hmo white type2 type3, nolog fam(poi) eform scale(x2)

Generalized linear models No. of obs = 1495
Optimization : ML Residual df = 1490

Scale parameter = 1
Deviance = 8142.666001 (1/df) Deviance = 5.464877
Pearson = 9327.983215 (1/df) Pearson = 6.260391

AIC = 9.276131
Log likelihood = −6928.907786 BIC = −2749.057

OIM [95% Conf.
los IRR Std. Err. z P>|z| Interval]

hmo .9309504 .0557729 <= −1.19 0.232 .8278113 1.04694
white .8573826 .0588069 −2.24 0.025 .7495346 .9807484
type2 1.248137 .0657437 4.21 0.000 1.12571 1.383878
type3 2.032927 .1329416 10.85 0.000 1.788373 2.310923

(Standard errors scaled using square root of Pearson
X2-based dispersion)

It needs to be emphasized that the parameter estimates remain unaffected, and
only the standard errors are scaled. Apparently model overdispersion biases
standard errors such that hmo appears to significantly contribute to the model,
and our consequent understanding of los, when in fact it does not. Scaling by
the deviance dispersion produces similar results in this example. (Note: Stata
does not include the log-likelihood and AIC statistic for scaled output. Scaling
implies misspecification and Stata tries not to include likelihood-based statistics
in such cases.)

4.3.2 Quasi-likelihood variance multipliers

Quasi-likelihood (QL) methods were first developed by Wedderbrun (1974).
The method is based on GLM principles, but allows parameter estimates to
be calculated based only on a specification of the mean and variance of the
model observations without regard to those specifications originating from a
member of the single-parameter exponential family of distributions. Further
generalizations to the quasi-likelihood methodology were advanced by Nelder
and Pregibon (1987). Called extended quasi-likelihood (EQL), these methods
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were designed to evaluate the appropriateness of the QL variance in a model.
However, EQL models take us beyond the scope of our discussion. Quasi-
likelihood models though are important to understanding extensions to the
Poisson and negative binomial models we consider in this text.

Quasi-likelihood methods allow one to model data without explicit specifica-
tion of an underlying log-likelihood function. Rather, we begin with a mean and
variance function, which are not restricted to the collection of functions defined
by single-parameter exponential family members, and abstract backward to an
implied log-likelihood function. Since this implied log-likelihood is not derived
from a probability function, we call it quasi-likelihood or quasi-log-likelihood
instead. The quasi-likelihood, or the derived quasi-deviance function, is then
used in an IRLS algorithm to estimate parameters just as for GLMs when the
mean and variance function are those from a specific member of the single-
parameter exponential family.

Derived from Equation (2.18), quasi-likelihood is defined as

Q(yi ; µi ) =
∫ µi

yi

yi − µi

φV (µi )
dµi (4.2)

and the quasi-deviance as

Q D(yi ; µi ) = 2
∫ yi

µi

yi − µi

V (µi )
dµi (4.3)

In an enlightening analysis of leaf-blotch data, the quasi-deviance was applied
by Wedderburn using the logit link and a “squared binomial” variance function
µ2(1 − µ)2. However, the same logit could also have been specified with
traditional exponential family variance functions. In the case of the Poisson,
we see that by taking the integral of (y − µ)/µ from µ to y with respect to µ,
the resultant equation is the Poisson log-likelihood, but without the final ln(y!)
normalizing term. The normalizing term is what ensures that the sum of the
probabilities over the probability space adds to unity. The negative binomial
(NB-2) log-likelihood function can be similarly abstracted using the variance
function µ + αµ2.

The manner in which quasi-likelihood methodology is typically brought
to bear on overdispersed Poisson data is to multiply the variance µ by some
constant scale value. Indicated as ψ , a quasi-deviance Poisson algorithm is
shown in Table 4.2.

The fact that the variance function is multiplied by a constant changes
the likelihood, or, in this case, the deviance function, by dividing it by the
scale. It is the next stage in amending the Poisson variance function, and
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Table 4.2. Quasi-deviance Poisson
regression algorithm variance multiplier

µ = (y+ mean(y))/2
η = ln(µ)
WHILE(abs(
dev) > tolerance) {

u = (y− µ)/µ
w = µ	ψ
z = η + u− offset
β = (X′wX)−1X′wz
η = X′β + offset
µ = exp(η)
oldDev = dev
dev = [2�{yln(y/µ)− (y− µ)}]/ψ

dev = dev− oldDev

}

log-likelihood/deviance, to accommodate or adjust for overdispersion. We
present an example using the same Medpar data. In this case we enter the
deviance dispersion statistic from the base model as the variance multiplier.

QUASI-LIKELIHOOD: VARIANCE MULTIPLIER

. glm los hmo white type2 type3, nolog ef fam(poi) irls
disp(5.464877)

Generalized linear models No. of obs = 1495
Optimization : MQL Fisher

scoring
Residual df = 1490

(IRLS EIM) Scale parameter = 5.464877
Deviance = 1489.999867 (1/df) Deviance = .9999999
Pearson = 1706.897171 (1/df) Pearson = 1.145569
Variance
function

: V(u) = u [Poisson]

Link
function

: g(u) = ln(u) [Log]

Quasi-likelihood model with BIC = −9401.724
dispersion: 5.464877

EIM
los IRR Std. Err. z P>|z| [95% Conf. Interval]

hmo .9309504 .0095353 −6.99 0.000 .912448 .949828
white .8573826 .010054 −13.12 0.000 .8379019 .8773162
type2 1.248137 .0112399 24.61 0.000 1.2263 1.270362
type3 2.032927 .0227285 63.46 0.000 1.988865 2.077966



4.3 Methods of handling real overdispersion 67

Extra variation is dampened from the variance by multiplying it by the value of
the deviance dispersion, 5.464877. Note that the deviance-dispersion value of
this quasi-likelihood model is now 1.0.

Compare the summary statistics of this model with the standard Poisson
model applied to the same data. The BIC statistic is substantially less than that
of the standard (and scaled) model, indicating a better fit. The deviance statistic
is also substantially less than that of the standard models.

Standard Quasi-likelihood model
Deviance 8142.67 1490.00

BIC −2749.10 −9401.72

The quasi-likelihood model is not a true likelihood model, and hence the stan-
dard errors are not based on a correct model-based Hessian matrix. Leading to
the discussion of the next section, we employ a robust or sandwich variance
estimator, producing the following adjusted standard errors. Note that the pre-
viously indicated statistically significant contribution of both hmo and white to
the model is now called into question.

Semi-Robust
los IRR Std. Err. z P>|z| [95% Conf. Interval]

hmo .9309504 .0481602 −1.38 0.167 .8411858 1.030294
white .8573826 .0714211 −1.85 0.065 .7282298 1.009441
type2 1.248137 .0660044 4.19 0.000 1.125249 1.384445
type3 2.032927 .2354717 6.13 0.000 1.620049 2.55103

4.3.3 Robust variance estimators

Unlike the standard variance estimator, −H (β)−1, the robust estimator does
not need L L(β; x) to be based on the correct distribution function for x. Robust
variance estimators have also been referred to as sandwich variance estimators.
Associated standard errors are sometimes called Huber standard errors or White
standard errors. Huber (1967) was the first to discuss this method, which was
later independently discussed by White (1980) in the field of econometrics.
Robust estimators are implemented in a post-estimation procedure according
to the schema outlined in Table 4.3. Readers interested in a more complete
exposition can see Hardin (2003).

We shall find that robust variance estimators are quite robust, hence the
name, when modeling overdispersion in count response models. They also play
an important role when interpreting the Poisson or negative binomial parameter
estimates as risk ratios. The robust score equations for the three count response
models are listed in Table 4.4.
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Table 4.3. Implementation of robust variance estimators

1/ Estimate the model
2/ calculate the linear predictor, xβ.
3/ calculate score vector: g′ = g(β;x) = x∂LL(xβ)/∂.xβ) = ux
4/ calculate dof adjustment: n(n− 1)
5/ combine terms: V(β) = V(n/(n− 1)�u2x′x)V
6/ replace model Variance-Covariance matrix with robust

estimator: an additional iteration with new matrix.

Table 4.4. Robust score equations

Poisson : y− exp(xβ)
Geometric (log) : (y− exp(xβ))/(1+ exp(xβ))
Negative binomial (log) : (y− exp(xβ))(1+ α exp(xβ))

An example using the same Medpar data is displayed:

POISSON WITH ROBUST VARIANCE ESTIMATOR

. glm los hmo white type2 type3, nolog fam(poi) robust eform

Generalized linear models No. of obs = 1495
Optimization : ML Residual df = 1490

Scale parameter = 1
Deviance = 8142.666001 (1/df) Deviance = 5.464877
Pearson = 9327.983215 (1/df) Pearson = 6.260391

AIC = 9.276131
Log pseudo-
likelihood

= −6928.907786 BIC = −2749.057

Robust
los IRR Std. Err. z P>|z| [95% Conf. Interval]

hmo .9309504 .0481602 −1.38 0.167 .8411858 1.030294
white .8573826 .0714211 −1.85 0.065 .7282298 1.009441
type2 1.248137 .0660044 4.19 0.000 1.125249 1.384445
type3 2.032927 .2354717 6.13 0.000 1.620049 2.55103

When robust variance estimators are applied to this type of quasi-likelihood
model, we find that the effect of the robust variance overrides the adjustment
made to the standard errors by the multiplier. It is as if the initial quasi-likelihood
model were not estimated in the first place.

Robust variance estimators can also be applied to models consisting of clus-
tered or longitudinal data. Many data situations take this form. For instance,
when gathering treatment data on patients throughout a county, it must be
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assumed that treatments given by individual providers are more highly corre-
lated within each provider than between providers. Likewise, in longitudinal
data, treatment results may be recorded for each patient over a period of time.
Again it must be assumed that results are more highly correlated within each
patient record than between patients. Data such as these are usually referred to
as panel data. Robust variance adjustments of some variety must be applied to
the data due to the fact that observations are not independent.

Modified sandwich variance estimators or robust-cluster variance estimators
provide standard errors that allow inference that is robust to within group cor-
relation, but assumes that clusters of groups are independent. The procedure to
calculate this type of robust estimate begins by summing the scores within each
respective cluster. The data set is thereupon collapsed so that there is only one
observation per cluster or panel. A robust variance estimator is then determined
in the same manner as in the non-cluster case, except n is now the number of
clusters and u consists of cluster sums. Refer to Table 4.3. A complete discussion
of robust panel estimators is found in Hardin and Hilbe (2003).

The Medpar data provide the hospital provider code with each observation.
Called provnum, it is entered as an option to obtain the modified sandwich
variance estimator. Unlike scaling and variance multipliers, robust estimators
may be used with any maximum likelihood algorithm, not only GLM-based
algorithms.

POISSON: CLUSTERING BY PROVIDER

. glm los hmo white type2 type3, nolog fam(poi)
eform cluster(provnum)

Generalized linear models No. of obs = 1495
Optimization : ML Residual df = 1490

Scale parameter = 1
Deviance = 8142.666001 (1/df) Deviance = 5.464877
Pearson = 9327.983215 (1/df) Pearson = 6.260391

AIC = 9.276131
Log pseudo-
likelihood

= −6928.907786 BIC = −2749.057

(Std. Err. adjusted for 54 clusters in provnum)

Robust
los IRR Std. Err. z P>|z| [95% Conf. Interval]

hmo .9309504 .0490889 −1.36 0.175. 8395427 1.03231
white .8573826 .0625888 −2.11 0.035 .7430825 .9892642
type2 1.248137 .0760289 3.64 0.000 1.107674 1.406411
type3 2.032927 .4126821 3.49 0.000 1.365617 3.02632
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Standard errors are produced by adjusting for the clustering effect on providers –
that is, we suppose that the relationship between length of stay (los) and predic-
tors is more highly correlated within a provider than between providers. This is
a reasonable supposition. Only hmo fails to be contributory. Note again that all
summary statistics are the same as in the unadjusted model. Also note that the
model parameters are not adjusted for clustering. The model is still specified
and estimated as if the observations were all, in fact, independent. It is only the
standard errors that are adjusted.

4.3.4 Bootstrap and jackknifed standard errors

Bootstrap and jackknife are two additional methods that are used to adjust
standard errors when they are perceived to be overdispersed. Non-parametric
bootstrapping makes no assumptions about the underlying distribution of the
model. Standard errors are calculated based on the data at hand. Samples are
repeatedly taken from the data (with replacement), with each sample providing
model estimates. The collection of vector estimates for all samples is used to
calculate a variance matrix from which reported standard errors are calculated
and used as the basis for calculating confidence intervals. Such confidence
intervals can be constructed from percentiles in the collection of point estimates
or from large sample theory arguments. The example below uses 50 samples of
1495; each sample provides an estimated coefficient vector from which standard
errors are calculated. The number of samples may be changed. This method
is primarily used with count data when the data are not Poisson or negative
binomial, and the model is overdispersed.

. glm los hmo white type2 type3, nolog fam(poi) eform vce(boot)
(running glm on estimation sample)

Bootstrap replications (50)
--+-- 1 --+-- 2 --+-- 3 --+-- 4 --+-- 5
. . . . . . . . . . . . . . . . . .

50
Generalized linear models No. of obs = 1495
Optimization : ML Residual df = 1490

Scale parameter = 1
Deviance = 8142.666001 (1/df) Deviance = 5.464877
Pearson = 9327.983215 (1/df) Pearson = 6.260391

AIC = 9.276131
Log likelihood = −6928.907786 BIC = −2749.057

Observed Bootstrap Normal-based
los IRR Std. Err. z P>|z| [95% Conf. Interval]

hmo .9309504 .0432587 −1.54 0.124 .8499111 1.019717
white .8573826 .0690078 −1.91 0.056 .7322583 1.003887
type2 1.248137 .0555599 4.98 0.000 1.143856 1.361924
type3 2.032927 .2612241 5.52 0.000 1.580321 2.61516
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Table 4.5. Comparision of standard errors: Medpar Poisson moel

EIM/OIM D-SCALE ROBUST CLUSTER BOOT JACK

hmo .0222906 .0521090 .0481602 .0490889 .0432587 .0484649
white .0235032 .0549437 .0714211 .0625888 .0690078 .0732884
type2 .0262756 .0614248 .0660044 .0760289 .0555599 .0664530
type3 .0531325 .1242082 .2354717 .4126821 .2612241 .2415363

Standard errors again indicate that hmo and white are problematic.
Jackknifed standard errors are used for the same purpose as standard errors

calculated from bootstrapping. The model is estimated as many times as there
are observations in the data – in this case 1495. Each iteration excludes one
observation. The collection of estimated coefficient vectors is used to calculate
a variance matrix from which the standard errors are reported in the output,
together with (large-sample based) confidence intervals.

. glm los hmo white type2 type3, nolog fam(poi) vce(jack)
eform Jackknife replications (1495)

Generalized linear models No. of obs = 1495
Optimization : ML Residual df = 1490

Scale parameter = 1
Deviance = 8142.666001 (1/df) Deviance = 5.464877
Pearson = 9327.983215 (1/df) Pearson = 6.260391

AIC = 9.276131
Log likelihood = −6928.907786 BIC = −2749.057

Jackknife
los IRR Std. Err. t P>|t| [95% Conf. Interval]

hmo .9309504 .0484649 −1.37 0.170 .8405768 1.03104
white .8573826 .0732884 −1.80 0.072 .7250295 1.013897
type2 1.248137 .066453 4.16 0.000 1.124361 1.385538
type3 2.032927 .2415363 5.97 0.000 1.6103 2.566474

Jackknifing yields standard errors similar to those obtained from bootstrap-
ping. Again, hmo and white are questionable contributors to the Poisson
model.

To compare standard errors between models on the same data, see
Table 4.5.

It is clear that the Medpar data we modeled as Poisson are overdispersed. The
standard model suggests that all predictors are statistically significant. However,
when we employ adjustments to the variance in order to accommodate any
overdispersion in our inference, we find that hmo and white are now questionable
contributors to the model, and that the adjusted standard errors are fairly much
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the same for all but type3 (emergency admissions). Actually, interpretation of
coefficients using robust, bootstrapped, or jackknifed standard errors are similar
for type3, only Pearson-scaling and clustering on provider differ.

4.3.5 Negative binomial overdispersion

Although the subject is rarely discussed, it is implicit in what we have been
discussing that negative binomial (NB-2) models may also be overdispersed.
We commonly define Poisson overdispersion as occurring when the Poisson
variance exceeds the value of the mean. That is because Poisson distributional
assumptions equate the two statistics. We have mentioned several reasons that
give rise to Poisson overdispersion in count data.

Given a specified, as well as calculated, value of the mean, µ, we may define
negative binomial overdispersion as occurring when the calculated model vari-
ance exceeds µ + αµ2. That is, a count model may be both Poisson and negative
binomial overdispersed if the variance produced by the estimated model exceeds
the negative binomial variance.

We may simulate Poisson and negative binomial responses by generating
random variates for both distributions. Using Stata, we generate a constant
value of 3, and use it to calculate a Poisson and a negative binomial random
variate.

POISSON

. gen cons = 3 /	 constant - mean - of 3.0 n 	/

. genpoisson yp, xbeta(cons)/	 Poisson random number generator 	/

. su yp, detail /	 partial output 	/
Mean 20.0909 <=
Std. Dev. 4.508844
Variance 20.32967 <=

. glm ypc, nolog fam(poi)

Generalized linear models No. of obs = 10000
Optimization : ML Residual df = 9999

Scale parameter = 1
Deviance = 10231.27276 (1/df) Deviance = 1.02323
Pearson = 10117.83304 => (1/df) Pearson = 1.011884
Variance function : V(u) = u [Poisson]
Link function : g(u) = ln(u) [Log]

AIC = 5.843747
Log likelihood = −29217.73637 BIC = −81862.92

OIM
ypc Coef. Std. Err. z P>|z| [95% Conf. Interval]

�cons 3.000267 .002231 1344.81 0.000 2.995894 3.00464
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NEGATIVE BINOMIAL

. gennbreg ynb, xbeta(cons) alpha(.3)/	 NB RNG; alpha=.3 	/

. su ynb, detail
Mean 20.0231 <=
Std. Dev. 11.72842
Variance 137.5557 <=

. di 20.0231 + .3	20.02312/	 mean + alpha	mean ∧ 2 ∗/

. 140.30046 <=

. glm ynbc, nolog fam(nb.2908478)

Generalized linear models No. of obs = 10000
Optimization : ML Residual df = 9999

Scale parameter = 1
Deviance = 10517.23312 (1/df) Deviance = 1.051828
Pearson = 10066.66474 =>(1/df) Pearson = 1.006767
Variance function : V(u) =

u + (.2908478)u∧2
[Neg. Binomial]

Link function : g(u) = ln(u) [Log]
AIC = 7.543505

Log likelihood = −37716.52489 BIC = −81576.96

OIM
ynbc Coef. Std. Err. z P>|z| [95% Conf. Interval]

cons 2.996887 .0058377 513.37 0.000 2.985445 3.008328

. save nboverex /	 save simulated data in one file 	/

Repeating the simulation will produce slightly different results, but the values
for the respective variances will cluster around the appropriate values; the values
for the regression statistics will vary as well.

Overdispersion for both the Poisson and negative binomial models is gen-
erally indicated by the value of the Pearson Chi2 dispersion statistic, which
reflects the underlying variability in the model data, i.e. the variance. The Pear-
son Chi2, or χ2, fit statistic is commonly displayed in GLM program output. It
may be defined as

Pearson χ2 =
n∑

i=1

(yi − µi )2

V (µi )
(4.4)

The Pearson statistic is the sum of all model Pearson residuals as defined in
Chapter 2.4.

Some statisticians have used the deviance dispersion as the basis for scaling
standard errors. However, as will be discussed later in the text, simulation stud-
ies indicate that the Pearson dispersion better captures the excess variability,
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and adjusts standard errors in such a manner as to reflect what the standard
errors would be if the excess variability were not present in the data. In any
case, Pearson dispersion in excess of 1.0 tends to indicate Poisson or negative
binomial overdispersion respectively. Whether the overdispersion is significant
depends on: (1) the value of the dispersion statistic, (2) the number of observa-
tions in the model, and (3) the structure of the data, e.g. if the data are highly
unbalanced.

Enhanced negative binomial models, e.g ZINB, zero-truncated negative
binomial, and so forth, attempt to accommodate negative binomial overdisper-
sion just as enhanced Poisson models attempt to accommodate Poisson overdis-
persion. The difference is that negative binomial regression is itself one of the
models used for overdispersed Poisson data. It is important to keep in mind the
relationships between the various models, and what it is that each is constructed
to do.

The type of overdispersion – Poisson or negative binomial – we deal with
when discussing the various models in the text should be evident from the
context. Care must be taken though to remember that although both are indicated
by the value of the dispersion statistic, the underlying criteria for each differ.

4.4 Summary

We have outlined the methods to determine whether a Poisson model is sub-
ject to real or to only apparent overdispersion. Various remedies for apparent
overdispersion were detailed, and methods for adjusting the Poisson model
standard errors were specified. However, we provided adjustments while still
modeling the data as Poisson. Negative binomial regression is a common alter-
native to enhanced Poisson regression models when dealing with overdispersed
data. Additionally, as previously discussed, both Poisson and negative binomial
models can themselves be extended to address the specific reasons why overdis-
persion arises in the data.

Table 4.6 provides a listing of direct adjustments that are commonly applied
to the Poisson variance. The first two are discussed in this chapter.

Exercises

1 How can one use simulation to determine whether the Pearson Chi2 disper-
sion or deviance dispersion better scales standard errors, per the discussion
of Section 4.3 above?
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Table 4.6. Methods to directly adjust the variance

1 Scaling SE’s by deviance-dispersion
Chi2-dispersion

2 Multiplying V by a constant
QL = Vφ (with φ a constant)

3 Variance multiplied by ancillary parameter
NB−1 = Vφ = µ(1+ α) = µ + αµ

4 Geometric
Vφ = µ(1+ µ) = µ + µ2

5 Negative binomial
NB−2 = Vφ = µ(1+ αµ) = µ + αµ2

6 Heterogeneous negative binomial
NB−H = µ + (αγ)µ2 (with α parameterized by γ)

7 Negative binomial P
NB−P = µ + αµν

8 Generalized Estimating Equations (GEE)
GEE = V[correlation matrix]V′

2 Compare deviance-dispersion and Pearson χ2-dispersion as the basis for
scaling simulated overdispersed Poisson models. You may use the same type
of simulated data sets as were used in Chapter 4.2, or you may create entirely
new ones. Provide evidence to support one method over the other in elimi-
nating specific types of overdispersion.

3 Why should a robust variance estimator be used with quasi-likelihood count
models?

4 Specify the indicators of overdispersion in Poisson models. Why is it impor-
tant to test for apparent overdispersion before adjusting a model for real
overdispersion?

5 Use the drg112az data set found on the text web site. Model length of stay
(los) on urgent, cabg, male, and age75. If the model is overdispersed, adjust
the standard errors by employing a robust variance estimator, clustered on
hospital code (hosp). Discuss the results.

6 Given the variance function µ + αµ2, derive the quasi-likelihood and quasi-
deviance negative binomial functions.

7 What criteria are used to determine if a robust variance estimator is appro-
priate for a given count response model?

8 The following data ticks are of the count of ticks on sheep. Determine if
the distribution is overdispersed? [Data from Fisher (1941), “The negative
binomial distribution”, Annals of Eugenics]
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Numb�ticks Freq Numb�ticks Freq

0 4 13 2
1 5 14 2
2 11 15 1
3 10 16 1
4 9 17 0
5 11 18 0
6 3 19 1
7 5 20 0
8 3 21 1
9 2 22 1

10 2 23 1
11 5 24 0
12 0 25 2
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Negative binomial regression

In this and subsequent chapters we shall discuss the nature and utility of some
25 varieties of negative binomial regression that are useful for modeling count
response data. In addition, we also examine certain models that are related to
the negative binomial family of models. This chapter will primarily be devoted
to an examination of the derivation of the negative binomial model and to the
two foremost methods of its estimation. We also consider how the probabilities
generated from a negative binomial model differ from the Poisson, as well as
how they differ among various negative binomial models based on both mean
and ancillary parameters.

5.1 Varieties of negative binomial

I mentioned that the basic negative binomial model can be enhanced to allow
for the modeling of a wide range of count response situations. The Poisson can
likewise be enhanced to adjust for data that violate, for instance, its essential
distributional assumptions. In fact, many of the same distributional problems
face both Poisson and negative binomial models. We therefore find similar
approaches to the handling of such data for both the Poisson and negative
binomial. These include models such as zero-inflated Poisson (ZIP), which is
directly related to the zero-inflated negative binomial (ZINB). Other models
without a specific negative binomial correlate are also discussed, e.g. general-
ized Poisson, which has a heterogeneity parameter like the NB-2 model, but
which can also be used to model underdispersion. All of the models allow for
variance that exceeds the mean – the principal assumption of the Poisson regres-
sion model being that of equi-dispersion. With respect to the negative binomial,
allowance of extra variation involves: (1) an adjustment to the NB2 variance

77
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Table 5.1. Negative binomial models

1 NB-2 V = µ + αµ2

2 NB-1 V = µ + αµ
3 NB-C <Canonical>
4 0-truncated NB
5 0-truncated NB-1
6 0-truncated NB-C
7 0-inflated NB (ZINB)
8 Censored NB
9 NB-logit hurdle
10 NB-cloglog hurdle
11 NB w endogenous stratification
12 NB-H <Heterogeneous>/ w ES
13 Conditional fixed effects NB
14 NB-P
15 GEE NB (population averaged)
16 Beta random effect NB
17 Sample selection NB
18 Geometric
19 0-truncated geometric
20 Canonical geometric
21 Geometric-logit hurdle
22 Geometric-cloglog hurdle
23 Latent class NB
22 Random Intercept NB
22 Random Parameter NB

function, or (2) a modification to the NB-2 probability distribution, resulting
in a modified log-likelihood function. The NB-2 variance function, it may be
recalled, is expressed as µ + αµ2.

Canonical linked models maintain both the likelihood and variance functions
of the NB-2 model, but instead modify the link function. It can be argued,
however, that it is the NB-2 model that is an alteration of the basic canonical
form, which derives directly from the negative binomial probability function.
We shall ferret out these complications beginning with this chapter.

Table 5.1 lists the 25 varieties of negative binomial regression for modeling
count response data.

Note that we have included the geometric model as a variety of negative
binomial. We do this because the geometric is a negative binomial distribution
having a value of α equal to one. It may be argued that Poisson should also be
included as a variety of negative binomial since a NB-2 model having α equal
to zero is a Poisson model. We exclude it, however, since the negative binomial
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ancillary or heterogeneity parameter, qua negative binomial distribution, can
only approach zero, never reach it. On the other hand, as we have observed in
practice, a negative binomial model with a value of α close to zero is statistically
indistinguishable from a Poisson model. In this sense the Poisson is a variety of
negative binomial. However, we have already attended to the model and will be
discussing enhanced Poisson models in the context of related negative binomial
models. Table 5.1 simply details the specific varieties of negative binomial that
will be discussed in this and coming chapters. It does not entail that alterna-
tive Poisson-based models will be ignored. We do not need to duplicate that
effort.

5.2 Derivation of the negative binomial

We have previously mentioned that the standard negative binomial regression
model, which following Cameron and Trivedi (1998) is usually referred to
as NB-2, can be derived as either a Poisson–gamma mixture model, or as a
member of the exponential family of distributions which serve as the basis of
generalized linear models. We shall first address the Poisson–gamma mixture
model. For ease of interpretation I shall dispense with subscripts for this chapter.
It is understood, therefore, that the terms λ, µ, η, θ, x, y, n, u, r, and p have
subscript, i, and xx has xi xi . Moreover, log-likelihood functions all assume
summation across observations; therefore

n∑
i=1

is assumed to preface log-likelihood functions. The multiplication summation
function

n∏
i=1

is assumed to preface probability functions. However, integration, as a summa-
tion, is displayed when required.

5.2.1 Poisson–gamma mixture model

The negative binomial PDF can be derived from the specification of an outcome
characterized by

f (y; u) = e−λu (λu)y

y!
(5.1)
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which can be thought of as a Poisson model with gamma heterogeneity where the
gamma noise has a mean of 1. The gamma mixture accommodates overdispersed
or correlated Poisson counts.

The mean of y, conditioned on u, is Poisson with the conditioned mean and
variance given by u

f (y; u) =
∫ ∞

0

e−λu (λu)y

y!
g(u)∂u (5.2)

f (y; u) =
∫ ∞

0

e−λu (λu)y

y!

νu

�(ν)
uν−1e−νu∂u (5.3)

The gamma nature of u is evident in the derivation from Equations (5.1) to
(5.2). We carry the derivation further by moving

= λy

� (y + 1)

νv

� (ν)

� (y + ν)

(λ + ν)y+ν
(5.4)

to the left of the integral, with the remaining terms under the integral equaling 1.
We continue as

= λy

�(y + 1)

νν

� (ν)
�(y + ν)

(
ν

λ + ν

)ν 1

νν

(
λ

λ + ν

)y 1

λy
(5.5)

= �(y + ν)

�(y + 1)�(ν)

(
ν

λ + ν

)ν (
λ

λ + ν

)y

(5.6)

= �(y + ν)

�(y + 1)�(ν)

(
1

1 + λ/ν

)ν (
1 − 1

1 + λ/ν

)y

(5.7)

Inverting ν, the gamma scale parameter, yields α, the negative binomial ancil-
lary or overdispersion parameter. We also equate λ and µ. Doing so, we then
recognize the resulting negative binomial probability function

�(y + 1/α)

�(y + 1)�(1/α)

(
1

1 + αµ

)1/α (
1 − 1

1 + αµ

)y

(5.8)

Equation (5.8) is a commonly observed form of the negative binomial PDF.
The last term may be converted to the following, which is another popular
expression of the function

= �(y + 1/α)

�(y + 1)�(1/α)

(
1

1 + αµ

)1/α (
αµ

1 + αµ

)y

(5.9)

Important to maximum likelihood, estimating algorithms are the derivatives
of the log-likelihood. We saw in Chapter 2 that setting the first derivative of
the log-likelihood, with respect to β, to zero and then solving, is the basis of
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maximum likelihood estimation.

∂L
∂β

=
∑ x (y − µ)

1 + αµ
= 0 (5.10)

∂L
∂α

=
∑ {

1

α2

(
ln (1 + αµ) − ln

(
� (y + 1/α)

� (1/α)

))
− y − µ

α (1 + αµ)

}
= 0

(5.11)

−∂2L
∂β∂β ′ =

∑ µ

1 + αµ
xx ′ = 0 (5.12)

∂2L
∂β∂α

= E

[
−

∑ µ (y − µ) xx ′

(1 + αµ)2

]
= 0 (5.13)

∂2L
∂α2

= −
∑ 1

α4

(
ln (1 + αµ) − ln

(
(� (y+1/α))

� (1/α)

)2

+ µ

α2 (1 + αµ)

)
= 0

(5.14)

Negative binomial score functions are provided as

SCORE: (β) = (y − µ) / (1 + αµ) (5.15)

SCORE: (α) = (−1/α) {(α ∗ (µ − y)) / ln (1+αµ)} − ln (1+αµ)+�1 − �2

(5.16)

where

�1 = {ln � ((y+1/α) + .0001) − ln � ((y + 1/α) − .0001)} /.0002 (5.17)

and

�2 = {ln � ((1/α) + .0001) − ln � ((1/α) − .0001)} /.0002 (5.18)

Note: � represents the digamma function, the derivative of the log-gamma
function, ln�()

5.2.2 Derivation of the GLM negative binomial

Two major forms of the negative binomial may be derived from the negative
binomial probability function. Both forms may be considered as members of
the exponential family of distributions, and modeled under the framework of
generalized linear models. One is the canonical, being derived directly from
the PDF, the other is a conversion from the canonical form to the log-linked
form. The latter is known as NB-2 or the traditional negative binomial regression
model. Utilizing the log-link allows comparison of point estimates to the Poisson
model.
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We can describe the negative binomial PDF as the probability of observing
y failures before the r th success in a series of Bernoulli trials. Under such
a description r would be a positive integer. However, there is no compelling
mathematical reason to limit this parameter to integers; only to limit r as positive.
Although the negative binomial may be parameterized differently, it is always
possible to convert terms to produce the final form derived here. Nevertheless,
the form with which we begin is expressed as:

NEGATIVE BINOMIAL PDF

f (y; r, p) =
(

y + r − 1

r − 1

)
pr (1 − p)y (5.19)

Converting the negative binomial PDF into exponential family form results in:

EXPONENTIAL FAMILY FORM

f (y; r, p) = exp

{
y ln (1 − p) + r (ln (p)) + ln

(
y + r − 1

r − 1

)}
(5.20)

From our earlier discussion we found that the canonical link and cumulant can
easily be abstracted from a PDF when it is expressed in exponential family
form.

LINK, CUMULANT, SCALE

θ = ln(1 − p) => p = 1 − exp(θ ) (5.21)

b (θ ) = −r ln (p) => −r (1 − exp(θ )) (5.22)

α(φ), the scale, is taken as 1 (5.23)

The first and second derivatives, with respect to θ , respectively yield the mean
and variance functions.

NEGATIVE BINOMIAL MEAN

b′(θ ) = ∂b

∂p

∂p

∂θ
= − r

p
{− (1 − p)} = r (1 − p)

p
= µ (5.24)

NEGATIVE BINOMIAL VARIANCE

b′′(θ ) = ∂2b

∂p2

(
∂p

∂θ

)2

+ ∂b

∂p

∂2 p

∂θ2
= r

p2
(1 − p)2 + −r

p
(1 − p) = r (1 − p)

p2

(5.25)
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V(µ) therefore equals r(1−p)/p2. We now parameterize p and r in terms of µ

and α.

(1 − p) / (αp) = µ (5.26)

(1 − p) /p = αµ (5.27)

p = 1/ (1 + αµ) (5.28)

where α = 1/r .
Given the defined values of µ and α, we may re-parameterize the negative

binomial PDF such that

f (y; µ, α) =
(

y + 1/α − 1
1/α − 1

) (
1

1 + αµ

)1/α (
αµ

1 + αµ

)y

(5.29)

Re-expressed in terms of the log-likelihood, Equation (5.29) yields

L(µ; y, α) = � exp{y ln((αµ)/(1 + αµ)) − (1/α) ln(1 + αµ)

+ ln �(y + 1/α) − ln �(y + 1) − ln �(1/α)} (5.30)

or

� exp{y ln (αµ) − (y + 1/α) ln (1 + αµ) + ln � . . .} (5.31)

The GLM deviance function is derived from both the saturated and fitted log-
likelihood functions. The saturated function consists of replacing the value of
y for each value of µ.

DEVIANCE

D = 2
n∑

i=1

{L (y; y) − L (µ; y)} (5.32)

Substituting the log-likelihood function as specified in either Equation (5.21)
or Equation (5.22), we have

Dnb = 2
n∑

i=1

{y ln (y/µ) − (y + 1/α) /α ∗ ln ((1 + αy) / (1 + αµ))} (5.33)

Calculating the terms required for the IRLS algorithm, we have

LINK

g(µ) = θ = ln((αµ) / (1 + αµ)) = − ln (1/αµ + 1) (5.34)
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INVERSE LINK

g−1(µ) = µ = 1/{a(e−θ − 1)} (5.35)

CUMULANT

b (θ ) = 1/α ln (1/ (1 + αµ)) (5.36)

= −1/α ln (1 + αµ) (5.37)

MEAN, VARIANCE AND DERIVATIVE

b′(θ ) = µ = ∂b

∂µ

∂µ

∂θ
= 1

1 + αµ
µ (1 + αµ) = µ (5.38)

b′′(θ ) = V = ∂2b

∂µ2

(
∂µ

∂θ

)2

+ ∂b∂2µ

∂µ∂θ2
= µ + αµ2 (5.39)

g′(θ ) = ∂θ

∂µ
= ∂(ln (αµ/ (1 + αµ)))

∂µ
= 1

µ + αµ2
(5.40)

IRLS algorithms normally are parameterized in terms of the fit statistic µ rather
than xβ, the linear predictor. Maximum likelihood algorithms such as Newton–
Raphson or Marquardt are always parameterized as xβ. In Chapter 1 we showed
how to convert between the two parameterizations, which is simply substituting
the inverse link function for µ. We do that next for the negative binomial log-
likelihood function.

L = y ∗ ln(α exp(xb)/(1 + α exp(xb))) − ln(1 + α exp(xb))/α

+ ln �(y + 1/α) − ln �(y + 1) − ln �(1/α) (5.41)

5.3 Negative binomial distributions

Figures 5.1–5.11 illustrate negative binomial distributions for various values of
both the mean and α. Note that when α = 1, all distributions take the form of a
geometric distribution, which is the discrete correlate of the continuous negative
exponential distribution. Note also that as the mean increases, the probability
of a zero decreases.

Range of Mean (0.5, 1, 2, 5, 10) per each Alpha(0, 0.33, 0.67, 1.0, 1.5, 3.0)
Range of Alpha (0, 0.33, 0.67, 1.0, 1.5, 3.0) per each Mean (0.5, 1, 2, 5, 10)
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Figure 5.1. Negative binomial distributions: alpha = 0
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Figure 5.3. Negative binomial distributions: alpha = .67
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Figure 5.4. Negative binomial distributions: alpha = 1
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Figure 5.5. Negative binomial distributions: alpha = 1.5
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Figure 5.6. Negative binomial distributions: alpha = 3.0
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Figure 5.7. Negative binomial distributions: mean = .5
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Figure 5.8. Negative binomial distributions: mean = 1
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Figure 5.9. Negative binomial distributions: mean = 2
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Figure 5.11. Negative binomial distributions: mean = 5

5.4 Algorithms

5.4.1 NB-C: Canonical negative binomial

We have derived the IRLS functions required to construct the canonical form
of the negative binomial, which we shall refer to using the acronym, NB-
C. When we derived the Poisson–gamma mixture model, the resultant PDF,
log-likelihood, cumulant, and so forth, were all appropriate for the traditional
negative binomial or NB-2 model. It is for this reason that statisticians have
tended to think that this form of the negative binomial is basic. As a mixture
model, it is; as a model directly derived from the negative binomial PDF, it
is not. This has caused some confusion among those using negative binomial
models.

Substituting the canonical and inverse link functions into the GLM algorithm,
we produce the canonical form of negative binomial regression as schematized
in Table 5.2.

I have used the deviance as the basis for the convergence criterion. The
log-likelihood function could have been used as well. The deviance statistic
has been the commonly used form since the initial release of the GLIM soft-
ware package in the early 1980s. A trend is developing, however, to use the
log-likelihood instead (when appropriate), calculating the deviance function
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Table 5.2. Negative binomial: canonical

µ = (y− mean(y))/2 /	initialization of µ 	/

η = −ln(1/αµ + 1) /	NB canonical link 	/

WHILE(ABS(
Dev) > tolerance {
w = µ + αµ2 /	NB variance function 	/

z = η + (y− µ)/w− offset
β = (X′wX)−1X′wz
η = X′β + offset /	 calculation of linear predictor 	/

µ = 1/(α(exp(−η)− 1)) /	NB inverse link 	/

oldDev = Dev
Dev = 2�{ yln(y/µ)− (y + 1/α)ln((1+ αy)/(1+ αµ))} /	 Deviance	/


Dev = Dev− oldDev
}

after the parameters have been estimated. The deviance statistic can be derived
directly from the final values of µ and α, and used as a term in the BIC goodness-
of-fit statistic. The deviance is also used as a goodness-of-fit statistic in its own
right, with lower values indicating a comparatively preferable model. However,
most statisticians now prefer the use of the AIC, BIC, and other model-specific
fit statistics to the deviance.

Note that α enters the algorithm as a constant. Unlike the traditional NB-2
negative binomial, the canonical linked algorithm incorporates α into the link,
inverse link, and variance functions. Having α as a term in the link and
inverse link resulted in convergence difficulties with older estimating algo-
rithms. Convergence seemed to be particularly tedious when estimated via
Newton-Raphson type maximum likelihood. However, most of the current opti-
mization code is sufficiently sophisticated to handle canonically linked models
without difficulty.

The canonical model has not been used for any research project of which
I am aware. However, this need not be the case. It is a viable parame-
terization, and is directly derived from the negative binomial probability
and likelihood functions. Using it with various example data has at times
resulted in a better fit than modeling with NB-2 or NB-1 models. In addition,
exact statistics algorithms can be developed for canonically linked GLM-type
models.

Cytel’s LogXact has the capability of calculating exact p-values and confi-
dence intervals for logit and Poisson regression models. The logit link is the
canonical form derived from the binomial and Bernoulli distributions. The nat-
ural log link is canonical for Poisson. Exact statistics developed for negative
binomial models can utilize the canonical form.
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Table 5.3. Fisher scoring: expected imformation matrix

µ = (y− mean(y))/2
η = ln(µ)
WHILE(ABS(
Dev) > toleration {

w = µ + αµ2

z = η + (y− µ)/w− offset
β = (X′wX)−1X′wz
η = X′β + offset
µ = exp(η)
oldDev = Dev
Dev = 2�{ yln(y/µ)− (y + 1/α)ln((1+ αy)/(1+ αµ))}

Dev = Dev− oldDev

}

5.4.2 NB-2 – expected information matrix

To convert the canonically linked GLM model to a non-canonical natural log
link, change the initial values of the link and inverse link.

Link: η = ln(µ)
Inverse link: µ = exp(η)

When we substitute the non-canonical log link into the GLM algorithm, the
standard errors change from being generated on the basis of the observed infor-
mation matrix to the expected information matrix. In smaller and unbalanced
data sets, the calculated standard errors will differ from those produced by full
maximum likelihood algorithms, which employ observed information matrix-
based standard errors. Nevertheless, the differences are not usually enough to
change the apparent significance level of the model predictors. However, when
those values lie near the edge of a pre-assigned level of significance, e.g. 0.05,
apparent significance may change. In medium and large data sets this situation
is not usually of concern.

The value of using a Fisher scoring method of estimation, which uses the
expected information matrix for production of standard errors, is the simplifi-
cation of the Newton–Raphson steps to a sequence of weighted ordinary least
squares model fits. Furthermore, models can be easily changed from one to
another within a distributional family by simply changing the link and inverse
link functions. GLMs can be interchanged between families by changing the
variance and deviance functions, as well as the link and inverse link functions.
Thus, all GLMs are specified through four functions. Creating an overall IRLS
algorithm for the estimation of GLMs is thus a relatively simple matter, and it
affords a great deal of modeling flexibility.

The IRLS algorithm can be schematized as shown in Table 5.3.



5.4 Algorithms 93

Table 5.4. Negative binomial regression
(log linked) with iterative estimation of α

via χ2 dampening

Poisson y < predictors >
Chi2 = �(y− µ)2/µ
Disp = Chi2/df
φ = 1/disp
j = 1
WHILE(ABS(
Disp) > tolerance {

oldDisp = Disp
NBy < predictors >, α = φ
Chi2 = �{(y− µ)2/(µ + αµ2)}
Disp = Chi2/df
φ = Disp	φ

Disp = Disp− oldDisp
j = j+ 1

}

The problem of using Fisher scoring for modeling the log-negative binomial
is the necessity of entering α into the algorithm as a constant. Alternative values
of α result in different parameter estimates and standard errors.

A fairly accurate point estimate of α can be obtained by searching for the
value of α which results in the Pearson Chi2 (χ2) dispersion statistic approxi-
mating 1.0. So doing indicates that Poisson overdispersion has been dampened
from the model. This value is also close to that produced using maximum
likelihood methods, which directly estimate α as a parameter.

Breslow (1984) was the first to develop this idea. Hilbe (1993a) developed
an algorithm to iteratively search for the optimal value of α. The algorithm was
made into a SAS macro based on the SAS\STAT GENMOD procedure. It was
also implemented into Stata (Hilbe, 1993b) and Xplore software (Hilbe and
Turlach, 1995).

The logic of the updating algorithm is simple. The algorithm begins by
estimating a Poisson model. The inverse of the Pearson χ2 dispersion statistic
is calculated, and is given the value of a constant, φ. φ is equated with α, and
entered into the GLM negative binomial model. After estimation of the negative
binomial, another χ2 dispersion statistic is calculated. This time, however, the
value of φ is multiplied by the dispersion, resulting in an updated value of
φ. Convergence is based on minimizing the difference between old and new
dispersion statistics. Once convergence is achieved, the value of α is recorded.
It is the optimal value of α produced by this dampening algorithm.

Table 5.4 schematizes the algorithm.
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Again, the algorithm estimates the negative binomial model, and the ancil-
lary or heterogeneity parameter, α, by iteratively forcing Pearson χ2 to 1. The
deviance may be used in place of χ2 to determine the dispersion; however, it
involves more terms to calculate. On the other hand, as previously mentioned,
simulation studies appear to indicate that dampening by the Pearson χ2 disper-
sion results in a value of α that is closer to that estimated by full maximum
likelihood than is dampening by the deviance dispersion.

5.4.3 NB-2 – observed information matrix

Finally we parameterize the IRLS log-negative binomial (NB-2) by transform-
ing the weight function so that standard errors are based on an observed rather
than an expected information matrix. This subject was initially addressed in
Chapter 2.

To effect this conversion, various terms need to be calculated, and introduced
into the estimating algorithm. Common to both Newton–Raphson and Fisher
scoring are:

LINK

η = g(µ) = ln(µ)

hence

g′(µ) = 1/µ

and

g′′(µ) = −1/µ2

VARIANCE

V (µ) = µ + αµ2

hence

V (µ) = 1 + 2αµ

and

V 2 = (µ + αµ2)2

DEFINING W

u = (y − µ)g′(µ) = (y − µ)/µ

w−1 = V {g′(µ)}2 = (µ + αµ2)/µ2 = (1 + αµ)/µ

w = µ/(αµ)
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Table 5.5. NB-2 negative binomial with observed information matrix

µ = (y− mean(y))/2
η = ln(µ)
WHILE (ABS(
Dev) > toleration {

w = µ + αµ)+ (y− µ){αµ/(1+ 2αµ + α2 + µ2)}
z = {η + (y− µ)/(w(1+ αµ))} − offset
β = (X′wX)−1X′wz
η = X′β + offset
µ = exp(η)
oldDev = Dev
Dev = 2�{yln(y/µ)− (y + 1/α)ln((1+ αy)/(1+ αµ))}

Dev = Dev− oldDev

}

DEFINING w0

The observed information matrix adjusts the weights, w, such that

w0 = w + (y − µ){V (µ)g′′(µ) + V ′(µ)g′(µ)}/{V 2g′(µ)3}
= µ/(1 + αµ) + (y − µ){[−(µ + αµ2)/µ2]

+ [(1 + 2αµ)/µ]}/[(µ + αµ2)/µ3]

= µ/(1 + αµ) + (y − µ){αµ/(1 + 2αµ + α2µ2)}
DEFINING z0

A revised working variate, z0, is defined as

z0 = η + w−1
0 wu

= η + (y − µ)/{w0(1 + αµ)}

with w and w0 representing diagonal weight matrices. Substituting w0 and z0

into the log-negative binomial algorithm provides the proper adjustment.
Table 5.5 schematizes the IRLS estimating algorithm, which is adjusted such

that standard errors are produced from the observed information matrix.
This IRLS algorithm will produce the same estimates and standard errors as

that of a full maximum likelihood algorithm, which also estimates α. However,
the GLM IRLS algorithm only allows α to be entered as a constant. This is a
rather severe limitation of the GLM approach. As we have observed however,
an updating algorithm synthesized into the IRLS algorithm can approximate the
maximum likelihood value of α. A tactic that many statisticians implement is to
first estimate α using a maximum likelihood routine, then substitute that value
of α into the a GLM-based algorithm that is adjusted to calculate an observed
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information matrix as in Table 5.5. Typically the algorithm schematized in
Table 5.5 uses a log-likelihood function as the basis of convergence rather than
the deviance. Either method produces the same result.

We next address issues related to the development of well-fitted negative
binomial models. We shall limit our discussion to the NB-2, or log-negative
binomial, model. Subsequent chapters will deal with alternative parameteriza-
tions and extensions to the base model.

5.5 Summary

In this chapter we introduced the both the canonical and traditional forms of the
negative binomial model. The traditional form of the model is a Poisson–gamma
mixture model in which the gamma distribution is used to adjust the Poisson in
the presence of overdispersion. The original manner of expressing the negative
binomial variance clearly shows this mixture relationship: µ + µ2/ν. µ is the
Poisson variance and µ2/ν the one-parameter gamma distribution variance. We
inverted the gamma scale function, ν, to α, the negative binomial ancillary or
heterogeneity function: µ + αµ2. This provides a direct relationship of α to
the amount of overdispersion in the otherwise Poisson model. α is sometimes
referred to as the overdispersion parameter.

The traditional negative binomial model, as defined above, is many times
referred to as the NB-2 model, with 2 indicating the degree of the exponential
term. We also derived the negative binomial model directly from the negative
binomial probability fiunction. This is the normal method used to derive any of
the members of family of generalized linear models.

When the negative binomial is derived from its probability function, the
canonical form is different from the Poisson–gamma mixture model version, of
NB-2. We showed the canonical linked algorithm, defining its primary compo-
nents. We also showed how the canonical form of the model can be amended to
the traditional of NB-2 form. We do this by converting the canonical form to a
log-linked form, which is the same link as the canonical Poisson. We see then
that the GLM log-negative binomial is the same as the NB-2 model that is tradi-
tionally estimated using full maximum likelihood methods. As a non-canonical
linked model though, it must be further amended to allow estimation of standard
errors based on the observed rather than expected information matrix. All of
the relevant derivations are shown in this chapter.

By equating the traditional Poisson–gamma mixture model parameterization
with the amended GLM log-negative binomial model, we find that either version
can be used to estimate parameters and standard errors. The only drawback with
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the GLM version is that the heterogeneity parameter, α, is not estimated, but
rather has to be entered into the GLM model as a constant. Algorithms have been
developed using point estimate methods that provide a close approximation of
the value of α as compared with the value estimated using full maxiumum
likelihood methods. In fact, this was the method used by the author to construct
a SAS macro for the negative binomial in 1993.

We argue that a researcher should use a full maximum likelihood algorithm
to estimate the negative binomial, but then insert the resultant value of α into
a GLM log-negative binomial model, estimating the same parameter estimates
and standard errors as in the initial estimation. The value of doing this consists
in the use of GLM residuals and fit statistics, which are standard options and
output in most commercial GLM applications. This allows the user with a
variety of methods to evaluate the fit of the model.

We next turn to the task of modeling with negative binomial regression.

Exercises

1 Refer to question 1 of the Chapter 3 exercises. Is there a general principle
for relating the constants of two negative binomial models, one of which has
a response with values x times that of the other model?

2 What are the essential differences between NB-1 and NB-2 models? Why is
NB-2 considered as the standard negative binomial model?

3 Model the data below using both Poisson and negative binomial regression.
The natural log of pyears is to be entered as an offset. Deaths is the response
with age the explanatory predictor. Age represents age groups, and should
therefore be entered into the model as leveled. Explain the value of the
Pearson-dispersion and what it indicates in this circumstance. Is negative
binomial (NB-2) the appropriate model for these data? Is Poisson? Explain.

age smokes deaths pyears

<40 1 32 52407
<40 0 2 18790

41-50 1 104 43248
41-50 0 12 10673
51-60 1 206 28612
51-60 0 28 5710
61-70 1 186 12663
61-70 0 28 2585

>70 1 102 5317
>70 0 31 1462
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4 Re-express the formulae from Equations (5.9) to (5.16) from a parameteri-
zation in terms of µ to a parameterization in terms of xβ.

5 In the same manner of the graphs shown in 5.3, create a graph showing: (1)
a negative binomial with mean of 10 and alpha 0.1, (2) a negative binomial
with mean 10 and alpha 0.25, and (3) a Poisson with a mean of 10. What
are the reasons for the differences in the three graphs? What type of trend
do you see? What do you predict happens to the graph if the mean were
changed to 20?

6 Graphically demonstrate how the negative binomial distribution approaches
the Poisson as the value of alpha nears zero.

7 For a negative binomial distribution with a mean of 2 and N of 30, calculate
the probability of three or fewer events for each of the conditions listed

α = 0 α = 0.5 α = 1.0 α = 1.5 α = 2.0

8 Show that

(1/1 + αµ)1/α (1 − 1/ (1 + αµ))y

= ((1/α) / (1/α + µ))1/α (µ/(1/α + µ))y

9 Given a negative multinomial probability mass function of

� (�yi + 1/α)

�(1/α)�� (yi + 1)

(
1

1 + α�µi

)1/a ∏ j

i=1

(
1 − 1

α�µi

)yi

what value of j reduces the function to a negative binomial as given in
Equation (5.8)? Extra credit: Determine the negative multinomial log-
likelihood function in terms of Equations (5.30) or (5.31).

10 Discuss how the negative binomial ancillary parameter differs from the
scale parameter of models such as gamma and inverse Gaussian.

11 Model the data in exercise 8 of Chapter 4 using negative binomial regression.
Compare the parameter estimates and dispersion statistics with a Poisson
model of the data. Discuss the reasons for differences, if any.
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Negative binomial regression: modeling

In this chapter we describe how count response data can be modeled using the
NB-2 negative binomial regression. NB-2 is the traditional parameterization of
the negative binomial model, and is the one with which most statisticians are
familiar. For this chapter, then, any reference to negative binomial regression
will be to the NB-2 model unless otherwise indicated.

6.1 Poisson versus negative binomial

When earlier describing how apparent overdispersion may be dealt with in a
model, we created simulated data sets to demonstrate the effect of interactions,
transformations, and so forth, on the model fit. The same will be done here,
showing how the negative binomial model accommodates overdispersion in
Poisson data. We begin then by creating simulated negative binomial data, with
the value of the ancillary parameter, α, specified as 0.5. To affect the results
desired, the number of observations will be set at ten thousand. Table 6.1 shows
the steps to create this data set.

Modeling the synthetic data using full maximum likelihood results in the
following output:

NEGATIVE BINOMIAL: MAXIMUM LIKELIHOOD

. nbreg ynb x1 x2, nolog

Negative binomial regression Number of obs = 10000
LR chi2(2) = 12574.54

Dispersion = mean Prob > chi2 = 0.0000
Log likelihood = −19267.411 Pseudo R2 = 0.2460

ynb Coef. Std. Err. z P>|z| [95% Conf. Interval]

x1 1.483868 .0120109 123.54 0.000 1.460327 1.507409
x2 −.7434778 .0108178 −68.73 0.000 −.7646803 −.7222752

�cons .5094076 .0126692 40.21 0.000 .4845764 .5342388
-----------------------------------------------------------------
/lnalpha −.7077611 .0266405 −.7599755 −.6555467
-----------------------------------------------------------------

alpha .4927462 .013127 .4676779 .5191582
-----------------------------------------------------------------
Likelihood-ratio test of alpha = 0:chibar2(01) = 2.2e+04 Prob> =
chibar2 = 0.000

99
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Table 6.1. Synthetic negative binomial with alpha = 0.5

. set obs 10000

. gen x1 = invnorm(uniform())

. gen x2 = invnorm(uniform())

. gen xb = .5 + 1.5	x1 −.75	x2

. gennbreg ynb, xbeta(xb) alpha(.5) /∗ Creates NB model ∗/

Since we synthesized the data to be modeled using negative binomial regression,
it is no surprise that the model fits well. The parameter estimates show close
agreement to the deterministic values used to generate the data, and the like-
lihood ratio test indicates that the data are significantly different than Poisson.
Modeled as a GLM, we observe additional statistics:

NEGATIVE BINOMIAL: GLM

. glm ynb x1 x2, nolog fam(nb.4927462)

Generalized linear models No. of obs = 10000
Optimization : ML Residual df = 9997

Scale parameter = 1
Deviance = 9794.929447 (1/df) Deviance = .9797869
Pearson = 10022.89697 (1/df) Pearson = 1.00259
Variance
function

: V(u) =
u+(.4927462)uˆ2

[Neg. Binomial]

Link function : g(u) = ln(u) [Log]
AIC = 3.854082

Log likelihood = −19267.41111 BIC = −82280.84

OIM

ynb Coef. Std. Err. z P>|z| [95% Conf. Interval]

x1 1.483868 .0120109 123.54 0.000 1.460327 1.507409
x2 −.7434778 .0108177 −68.73 0.000 −.76468 −.7222755

�cons .5094076 .0126692 40.21 0.000 .4845764 .5342387

We now observe (Pearson Chi2 dispersion 1.00) that the data are not overdis-
persed – as a negative binomial model. That is, the model accommodates
for extra correlation that might be in the data. Recall that if we were to re-
run the simulation code above, slightly different data, and hence parameters,
would result. Setting a random seed value to a specific number allows the same
sequence of pseudo-random numbers to be generated so that re-fitting the model
produces the same results.

Running a Poisson model on the negative binomial data results in:
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POISSON: USING NEGATIVE BINOMIAL DATA

. glm ynb x1 x2, nolog fam(poi)

Generalized linear models No. of obs = 10000
Optimization : ML Residual df = 9997

Scale parameter = 1
Deviance = 40148.47459 (1/df) Deviance = 4.016052
Pearson = 44637.58746 (1/df) Pearson = 4.465098

AIC = 6.090518
Log likelihood = −30449.59071 BIC = −51927.3

OIM

ynb Coef. Std. Err. z P>|z| [95% Conf. Interval]

x1 1.478781 .0041106 359.75 0.000 1.470724 1.486838
x2 −.7028355 .0040693 −172.72 0.000 −.7108111 −.6948598

�cons .5378572 .0076955 69.89 0.000 .5227743 .5529401

The Poisson model indicates that the data are highly overdispersed – with a
Pearson dispersion of 4.465. Moreover, the absolute values of the parameter
z-values are inflated as compared with the “true” negative binomial values.
Inflation of the z statistics result from a deflation of associated standard errors.
This is a typical result of overdispersion. Overdispersed Poisson models many
times lead us to believe that predictors significantly contribute to the model
when in fact they do not.

We next look at the results of scaling Poisson standard errors to see if the
model effects of overdispersion are attenuated. Only the table of parameter
estimates is shown; the statistics in the header are the same as for the standard
model.

POISSON: SCALED STANDARD ERRORS

EIM

ynb Coef. Std. Err. z P>|z| [95% Conf. Interval]

x1 1.478781 .008686 170.25 0.000 1.461757 1.495805
x2 −.7028354 .0085987 −81.74 0.000 −.7196886 −.6859823

�cons .5378572 .0162612 33.08 0.000 .5059858 .5697286
-------------------------------------------------------------------------
(Standard errors scaled using square root of Pearson X2-based dispersion)

For this model, scaling roughly doubles the standard errors of each parameter,
including the constant. This adjustment is made in the direction of the true
negative binomial statistics, but is not nearly enough.
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Table 6.2. Comparison of model z statistics

x1 x2 �con

Negative binomial z 123.54, −68.73 40.21
Poisson z 359.75, −172.72 69.89
Scaled Poisson z (Chi2) 170.25, −81.74 33.08

(dev) 179.52, −86.19 34.88
Robust z 50.45 −29.15 17.75
Bootstrapped z 55.08 −25.94 12.66

Standard errors may also be scaled using the deviance dispersion rather
than the Pearson Chi2 dispersion statistic, although I do not recommend it. In
addition, standard errors may be adjusted using a robust variance estimator or
by employing a bootstrap mechanism. Table 6.2 displays the z-statistics for the
true negative binomial model and for the alternative Poisson models.

It appears that using robust or bootstrap techniques for estimation of stan-
dard errors tend to overadjust standard errors relative to the values of their
respective parameter estimates. Still, adjustments to the Poisson do not closely
approximate the “true” negative binomial estimates.

It is clear from what has been discussed that when data are referred to as
Poisson or count overdispersed, the data may in fact be distributed as negative
binomial. That is, overdispersed Poisson data may be the same as negative
binomial data. Of course, there are many other types of overdispersed count
data – count data situations in which the negative binomial does not account for,
or explain, overdispersion in the data. The negative binomial model may have
to be itself extended, or other Poisson-type models may have to be evaluated,
in order to deal with the data.

Count data have also been analyzed using a gamma model first proposed
by Winkelmann (1995), by two-parameter log-gamma or log-inverse Gaussian
models (Hilbe, 2000), by a generalized Poisson, by a generalized negative bino-
mial, or by a generalized binomial. The generalized negative binomial was first
defined and analyzed by Jain and Consul (1971), but was later amended by
Consul and Gupta (1980) following Nelson’s (1975) discovery that the dis-
tribution did not sum to one when the heterogeneity parameter was less than
zero. The generalized binomial, defined by Consul and Gupta (1980) is based
on the generalized negative binomial distribution. Famoye (1995) presented an
excellent overview of all three generalized models, expanding the generalized
binomial to include multiple predictors. Together with the generalized Poisson,
the generalized binomial will be discussed at greater length in Chapter 7. All of
these methods have primarily been used to handle underdispersed Poisson data,
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although they can handle overdispersion as well. Regardless, the negative bino-
mial and its many extensions have been used with considerable effectiveness
for dealing with a wide variety of count models.

6.2 Binomial versus count models

At times data come to us in the form of individual data that we wish to model
as exposures. It is also the case that we may need to decide if data should be
modeled as logistic or as a count. To draw out these relationships I shall begin
with a noted data set that has traditionally been analyzed using a logistic model.
The data come to us from Hosmer and Lemeshow (2003), Applied Logistic
Regression, 2nd edition. Called the low birth weight (lbw) data, the response
is a binary variable, low, which indicates whether the birth weight of a baby is
under 2500g (1), or over (0). To simplify the example, only two predictors will
be included in the model: smoke (1/0), and race. Race enters the model as a
three-level factor variable, with level 1 as the referent. I have also expanded the
data threefold, i.e. I multiplied each covariate pattern by three. So doing allows
the example to more clearly illustrate the relevant relationships. The initial data
set consists of 189 observations; we utilize a subset of 567.

The data are first modeled as a logistic regression. Parameter estimates have
been exponentiated to odds ratios. Note also the low value of the AIC and BIC
goodness-of-fit statistics.

. glm low smoke race2 race3, nolog fam(bin) eform

Generalized linear models No. of obs = 567
Optimization : ML Residual df = 563

Scale parameter = 1
Deviance = 659.9241316 (1/df) Deviance = 1.172157
Pearson = 553.7570661 (1/df) Pearson = .9835827

AIC = 1.177997
Log likelihood = −329.9620658 BIC = −2909.698

OIM

low Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

smoke 3.052631 .6507382 5.24 0.000 2.010116 4.635829
race2 2.956742 .8364414 3.83 0.000 1.698301 5.147689
race3 3.030001 .7002839 4.80 0.000 1.926264 4.766171

Observation level data can be converted to grouped format, i.e. one observation
per covariate pattern, using the following Stata code. Users of other packages
can easily apply the same logic to produce the same result.



104 Negative binomial regression: modeling

Table 6.3. Low birth weight data

n = 567 data = lbwch6
----------------------------------------
variable name variable label

low birth weight<2500g
smoke smoked during pregnancy
race1 race = = white
race2 race = = black
race3 race = = other

/∗ Be certain that data consist of low, smoke, race1
race2 race3 only ∗/

. egen grp = group(smoke-race3)

. egen cases = count(grp), by(grp)

. egen lowbw = sum(low), by(grp)

. sort grp

. by grp: keep if �n == 1 /∗ discard all but 1st of
like CP’s ∗/

In grouped format, the logit model appears as

. glm lowbw smoke race2 race3, nolog fam(bin cases) eform

Generalized linear models No. of obs = 6
Optimization : ML Residual df = 2

Scale parameter = 1
Deviance = 9.470810009 (1/df) Deviance = 4.735405
Pearson = 9.354399596 (1/df) Pearson = 4.6772

AIC = 7.443406
Log likelihood = −18.33021651 BIC = −3.209909

OIM
lowbw Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

smoke 3.052631 .6507383 5.24 0.000 2.010117 4.635829
race2 2.956742 .8364415 3.83 0.000 1.698301 5.14769
race3 3.030001 .700284 4.80 0.000 1.926264 4.766172

Parameter estimates and associated standard errors and confidence intervals
are identical, except for small differences resulting from estimation rounding
errors. On the other hand, both AIC and BIC statistics have markedly risen.

Overdispersion makes no sense for a binary response model. Therefore,
the dispersion statistic displayed in the output of a binary logistic model does
not indicate overdispersion, or, in this instance, equidispersion. For binomial
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models, overdispersion can only be assessed when the data are formatted as
grouped. Here the binomial model has significant overdispersion − 4.677.
We could scale the model, estimate robust variance estimators, use bootstrap-
ping and jackknife techniques, or engage in specialized procedures such as the
Williams Procedure (Collett, 1989), to handle the overdispersion. We should
also look to see if the overdispersion is real or only apparent. In addition, we can
model the data using an entirely different GLM family. Once the binary logistic
data have been converted to grouped format, the binomial numerator can be
modeled as Poisson. The binomial numerator is considered as a count (rather
than a success) and the denominator is considered an exposure. Exposures enter
the model as a log-transformed offset.

. glm lowbw smoke race2 race3, nolog fam(poi) eform
lnoffset(cases)

Generalized linear models No. of obs = 6
Optimization : ML Residual df = 2

Scale parameter = 1
Deviance = 9.717852215 (1/df) Deviance = 4.858926
Pearson = 8.863298559 (1/df) Pearson = 4.431649

AIC = 7.954159
Log likelihood = −19.86247694 BIC = 6.134333

OIM

lowbw IRR Std. Err. z P>|z| [95% Conf. Interval]

smoke 2.020686 .3260025 4.36 0.000 1.472897 2.772205
race2 1.969159 .4193723 3.18 0.001 1.29718 2.989244
race3 2.044699 .3655788 4.00 0.000 1.440257 2.90281
cases (exposure)

Not surprisingly, the model is still overdispersed (4.43), which is similar to
that of the binomial logistic model (4.68). The primary difference due to re-
parameterization is in how the estimates are interpreted. The AIC and log-
likelihood statistics are similar in each model, but not the BIC. The latter value
indicates that the logistic model is preferable.

We know that the model is not finalized. Since the Poisson model is overdis-
persed, one must check for apparent versus real overdispersion, and take appro-
priate remedies based on each alternative. Given that the data are truly overdis-
persed, we can model the data as negative binomial to see if overdispersion is
accommodated. A maximum likelihood negative binomial algorithm is initially
applied to obtain an estimate of the ancillary parameter, α.
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. nbreg lowbw smoke race2 race3, nolog irr exposure(cases)

Negative binomial regression Number of obs = 6
LR chi2(3) = 8.37

Dispersion = mean Prob > chi2 = 0.0389
Log likelihood = −19.472423 Pseudo R2 = 0.1770

lowbw IRR Std. Err. z P>|z| [95% Conf. Interval]

smoke 2.035876 .4337797 3.34 0.001 1.340873 3.091114
race2 2.072214 .5627557 2.68 0.007 1.216948 3.528558
race3 2.063825 .5048891 2.96 0.003 1.277724 3.333563
cases (exposure)

---------------------------------------------------------------
/lnalpha −3.707643 1.557557 −6.760397 −.6548881
---------------------------------------------------------------

alpha .0245353 .0382151 .0011588 .5195002
---------------------------------------------------------------
Likelihood-ratio test of alpha = 0: chibar2(01) = 0.78

Prob> = chibar2 = 0.189

The output indicates that the model is not statistically different from a Poisson
model. The likelihood ratio test determining if α is statistically different from
zero fails. In effect, the value of α is approximately zero, indicating a preference
for the more parsimonious Poisson model.

If considered as a count model, it is unlikely that we can do any better with
the data than to consider them as Poisson. If Poisson distributional assumptions
are not a concern however, calculating standard errors via bootstrap may be a
viable modeling strategy.

Observed Bootstrap Normal-based
lowbw IRR Std. Err. z P>|z| [95% Conf. Interval]

smoke 2.020686 .7705485 1.84 0.065 .9569959 4.266656
race2 1.969159 .7648926 1.74 0.081 .9196939 4.216171
race3 2.044699 1.017267 1.44 0.151 .7711595 5.421438
cases (exposure)

It is clear that the grouped logistic model is preferred over Poisson and negative
binomial rate parameterizations. Logistic parameter estimates appear to signifi-
cantly contribute to understanding the response and both AIC and BIC statistics
indicate a better fitted model. Specialized goodness-of-fit tests for logistic mod-
els are discussed in texts such as Hosmer and Lemeshow (2003), Collett (1989),
and Hardin and Hilbe (2001), but go beyond the scope of our discussion.

An indicator of whether data should be modeled as a grouped logistic or
as a rate parameterized count model relates to the ratio of successes to cases
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Table 6.4. Ratio of response values

lowbw cases %ratio

1 60 165 36.4
2 15 48 31.3
3 12 132 09.1
4 15 36 41.7
5 18 30 60.0
6 57 156 36.5

or counts to exposure respectively. This logic goes back to the derivation of
the Poisson distribution from the binomial. Considered in this manner, Poisson
models rare binomial events. If the ratio of the Poisson counts to the exposure
is small, it is likely that a Poisson or negative binomial model will better fit the
data. On the other hand, when the binomial numerator is close to the value of
the denominator, it is likely that a logistic, probit, loglog, or complementary
loglog model would be preferable. This topic is discussed at length in Hardin
and Hilbe (2001, 2007).

The percent ratio of the variables lowbw and cases are provided in
Table 6.4. The values of percent ratio do not indicate a clear preference for
a binomial or count model. However, given the rather large mean percent of
36.5, the data appear to lean toward a logistic model. However, this is not
always the case. Given a binary response model, we may also have reason to
need information concerning risk. When this occurs, the data must be converted
to a count response. To do this, however, the binary format must first be con-
verted to grouped, and the binomial denominator must be entered into the count
model as an exposure. Example 3 in this chapter will demonstrate a successful
use of this method.

6.3 Examples: negative binomial regression

I shall present four examples demonstrating how negative binomial regression
can be used to model count response data. These examples will also be used
in later chapters when dealing with extensions to the basic form of negative
binomial model.

Example 1: Modeling number of marital affairs

For the first example we shall evaluate data from Fair (1978). Although Fair
used a tobit model with the data, the outcome measure can be modeled as a
count. In fact, Greene (2003) modeled it as Poisson, but given the amount of
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Table 6.5. Example 1: affairs data

affairs�nb.dta

obs: 601

naffairs number of affairs within last year
kids 1 = have kids; 0 = no kids
vryunhap ratemarr = = 1 very unhappily married
unhap ratemarr = = 2 unhappily married
avgmarr ratemarr = = 3 avg marriage
hapavg ratemarr = = 4 happily married
vryhap ratemarr = = 5 very happily maried
antirel relig = = 1 anti religious
notrel relig = = 2 not religious
slghtrel relig = = 3 slightly religious
smerel relig = = 4 somewhat religious
vryrel relig = = 5 very religious
yrsmarr1 yrsmarr = = 0.75 yrs
yrsmarr2 yrsmarr = = 1.5 yrs
yrsmarr3 yrsmarr = = 4.0 yrs
yrsmarr4 yrsmarr = = 7.0 yrs
yrsmarr5 yrsmarr = = 10.0 yrs
yrsmarr6 yrsmarr = = 15.0 yrs

Table 6.6. Naffair: frequency of counts

year Freq. Percent Cum.

0 451 75.04 75.04
1 34 5.66 80.70
2 17 2.83 83.53
3 19 3.16 86.69
7 42 6.99 93.68
12 38 6.32 100.00

Total 601 100.00

overdispersion in the data, employing a negative binomial model is an appro-
priate strategy (see Table 6.5).

Naffairs is the response variable, indicating the number of affairs reported
by the participant in the past year. The classification of counts appears as
Table 6.6.

The number of zeros in the data far exceeds the number reasonably expected
by the distributional assumptions of both the Poisson and negative binomial.
To observe differences between the observed and predicted number of zeros,
as well as other values, we first model the data using Poisson regression.
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. glm naffairs kids avgmarr-vryhap notrel-vryrel
yrsmarr3--yrsmarr6, fam(poi)

Generalized linear models No. of obs = 601
Optimization : ML Residual df = 588

Scale parameter = 1
Deviance = 2305.835984 (1/df) Deviance = 3.92149
Pearson = 4088.616155 (1/df) Pearson = 6.953429

AIC = 4.701873
Log likelihood = −1399.912931 BIC = −1456.538

OIM
naffairs Coef. Std. Err. z P>|z| [95% Conf. Interval]

kids −.2226308 .1059723 −2.10 0.036 −.4303328 −.0149289
avgmarr −.8858196 .1050272 −8.43 0.000 −1.091669 −.6799701
hapavg −1.023898 .0859245 −11.92 0.000 −1.192307 −.8554889
vryhap −1.38385 .1009577 −13.71 0.000 −1.581723 −1.185976
notrel −.6553382 .1111865 −5.89 0.000 −.8732597 −.4374166

slghtrel −.5236987 .1113403 −4.70 0.000 −.7419218 −.3054756
smerel −1.370688 .1213036 −11.30 0.000 −1.608439 −1.132938
vryrel −1.363744 .1589703 −8.58 0.000 −1.67532 −1.052168

yrsmarr3 .7578109 .1612081 4.70 0.000 .4418488 1.073773
yrsmarr4 1.104536 .1698768 6.50 0.000 .7715832 1.437488
yrsmarr5 1.480332 .1648648 8.98 0.000 1.157203 1.803461
yrsmarr6 1.480467 .1555978 9.51 0.000 1.175501 1.785433

�cons 1.101651 .1648297 6.68 0.000 .7785906 1.424711

Exponentiating the parameter estimates results in them becoming incidence
rate ratios.

OIM
naffairs IRR Std. Err. z P>|z| [95% Conf. Interval]

kids .8004103 .0848213 −2.10 0.036 .6502927 .985182
avgmarr .412376 .0433107 −8.43 0.000 .3356558 .5066321
hapavg .3591922 .0308634 −11.92 0.000 .3035203 .4250753
vryhap .2506118 .0253012 −13.71 0.000 .2056204 .3054478
notrel .5192664 .0577354 −5.89 0.000 .4175881 .6457023

slghtrel .5923257 .0659497 −4.70 0.000 .4761979 .7367728
smerel .2539321 .0308029 −11.30 0.000 .2001998 .3220856
vryrel .2557017 .040649 −8.58 0.000 .1872483 .34918

yrsmarr3 2.1336 .3439536 4.70 0.000 1.555581 2.9264
yrsmarr4 3.017823 .5126582 6.50 0.000 2.163188 4.210108
yrsmarr5 4.394404 .7244825 8.98 0.000 3.181023 6.070621
yrsmarr6 4.394996 .6838517 9.51 0.000 3.239764 5.962159

Observed counts from Table 6.5 can be graphed against predicted counts based
on the fitted values, µi , from the above model.

Slightly above 75% of observed zero counts clearly differ from the approx-
imate 38% zeros predicted on the basis of the distributional assumption of
the Poisson model. From a count of 3 upwards, the empirical and predicted
distributions are similar. This type of distributional violation typically results
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Figure 6.1. Poisson model for number of affairs: observed versus predicted probabilities

in substantial overdispersion, as indicated by the high value for the Pearson
Chi2-based dispersion statistic. In this case the dispersion is 6.95.

Several statistical packages provide a Poisson goodness-of-fit test. It is sim-
ply the deviance evaluated by a Chi-square distribution with a degree of freedom
equal to the number of observations less the number of predictors, including
the constant. The statistic here tells us that, given the model, the hypothesis that
the data are Poisson is rejected at the <.001 significance level.

Goodness-of-fit chi2 = 2305.836
Prob > chi2(588) = 0.0000

Given what we know of the relationship of Pearson dispersion and overdisper-
sion, the above goodness-of-fit test would likely be more effective using the
Pearson rather than the deviance dispersion. Regardless, testing indicates that
the overdispersion evidenced in both model output and as a result of various
comparison tests is in fact real. A Lagrange multiplier test provides a value
of 508.85, also indicating overdispersion. Additionally, Figure 6.1 provides
excellent visual support for this conclusion.

As previously discussed, two foremost methods used to accommodate Pois-
son overdispersion are post-hoc scaling and application of a modified variance
estimator. Typical modifications to the Hessian matrix are (1) White, or Huber,
sandwich robust estimator, (2) bootstrapping, and (3) jackknifing. Other mod-
ifications are available as well in most of the major statistical packages.

The standard errors that result from an application of a robust variance esti-
mator affects the parameter estimate p-values. Usually overdispersion serves
to deflate p-values, perhaps misleading a researcher into believing that a pre-
dictor contributes to the model when in fact it does not. Application of a robust
variance estimator, scaling of standard errors, or bootstrapping, usually inflates
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the p-values of an overdispersed count model. At times, however, given the
interaction between predictors, such modification appears to work in the oppo-
site direction. But this situation is not the usual.

It is also important to mention that the source of overdispersion in Pois-
son models may be clearly identifiable. For example, overdispersion arises in
longitudinal or clustered data when they are modeled without taking into con-
sideration the extra correlation effected as a result of the similarities of the
observations within groups. When an obvious source of overdispersion is iden-
tified, we may attempt to find the specifically appropriate remedy for it. For
longitudinal and clustered data, a robust variance estimator may be applied by
considering each group or cluster to be a single observation, with a summary
variance statistic given to each respective cluster. Treated as individuals, each
group is then assumed to be independent from one another. Care must be taken
when applying this method though. Consider data taken from hospitals within a
medium-sized city. If there are only, for instance, four hospitals in the city, and
we apply a robust variance estimator on clusters, we effectively reduce the size
of the data set to four independent components. The parameter estimates are not
affected by this method though – only the Hessian matrix from which the algo-
rithm abstracts model standard errors. Using clustering methods is extremely
helpful when dealing with identified overdispersion, but the number of clusters
must be sizeable.

Application of a robust variance estimator to the affairs data gives us
the following output. Notice that kids and yrsmarr3 no longer contribute to the
model. However, no source of overdispersion has been identified other than the
inflated zeros. We shall later return to this example when we discuss methods of
dealing with excessive zeros in the data, e.g. zero-inflated poisson, zero-inflated
negative binomial, and hurdle models.

Robust
naffairs IRR Std. Err. z P>|z| [95% Conf. Interval]

kids .8004103 .2437552 −0.73 0.465 .4406457 1.453904
avgmarr .412376 .0995915 −3.67 0.000 .2568755 .6620094
hapavg .3591922 .0772231 −4.76 0.000 .2356818 .5474287
vryhap .2506118 .0655191 −5.29 0.000 .1501296 .4183471
notrel .5192664 .1333609 −2.55 0.011 .3138918 .8590145

slghtrel .5923257 .1459787 −2.12 0.034 .3654112 .9601502
smerel .2539321 .0731995 −4.75 0.000 .1443267 .4467745
vryrel .2557017 .0953902 −3.66 0.000 .1230809 .5312229

yrsmarr3 2.1336 1.039479 1.56 0.120 .8211304 5.543882
yrsmarr4 3.017823 1.66825 2.00 0.046 1.021293 8.917379
yrsmarr5 4.394404 2.21657 2.93 0.003 1.635112 11.81007
yrsmarr6 4.394996 2.230482 2.92 0.004 1.625434 11.88359
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Negative binomial regression employs an extra parameter, α, that directly
addresses the overdispersion in Poisson models. Generally speaking, there is a
direct relationship between the amount of overdispersion in a Poisson model
and the value of α in a well-fitted negative binomial model. The relationship is
clearly evident in the variance functions of the two models:

Poisson variance = µ
Negative binomial variance = µ + µ2

Alternative parameterizations of the negative binomial will be considered in
later chapters.

. glm naffairs kids avgmarr-vryrel yrsmarr3-yrsmarr6,
eform fam(nb 6.760067)

Generalized linear models No. of obs = 601
Optimization : ML Residual df = 588

Scale parameter = 1
Deviance = 339.9146951 (1/df) Deviance = .5780862
Pearson = 574.2568411 (1/df) Pearson = .9766273
Variance
function

: V(u) =
u+(6.760067)uˆ2

[Neg. Binomial]

Link function : g(u) = ln (u) [Log]
AIC = 2.453377

Log likelihood = −724.2398359 BIC = −3422.459

OIM
naffairs IRR Std. Err. z P>|z| [95% Conf. Interval]

kids 1.091006 .3393095 0.28 0.779 .5930593 2.00704
avgmarr .3788406 .1626535 −2.26 0.024 .1633041 .8788527
hapavg .3754898 .1370964 −2.68 0.007 .1835748 .7680389
vryhap .2491712 .0936138 −3.70 0.000 .1193166 .5203494
notrel .735144 .3482966 −0.65 0.516 .2904624 1.860608

slghtrel .6610617 .3191906 −0.86 0.391 .2565921 1.703102
smerel .2307172 .1071631 −3.16 0.002 .0928358 .5733825
vryrel .2202639 .1199509 −2.78 0.005 .0757526 .6404555

yrsmarr3 1.95046 .7752988 1.68 0.093 .8949284 4.250947
yrsmarr4 3.801339 1.695028 2.99 0.003 1.586293 9.109401
yrsmarr5 3.283675 1.471676 2.65 0.008 1.364172 7.904079
yrsmarr6 4.165032 1.61167 3.69 0.000 1.950939 8.891866

A non-nested likelihood ratio test of the log-likelihood of the full model against
the log-likelihood of the Poisson model (α = 0) on the same data informs us of
whether the data are Poisson or non-Poisson. A significant p-value is usually
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Figure 6.2. Negative binomial model for number of affairs: observed versus
predicted probabilities

taken to mean that the model is negative binomial. It may be, but it also may
be some variant of the basic negative binomial model.

Is any case, a likelihood ratio test of α = 0 (the Poisson model) yields a χ2,
with 1 degree of freedom, of 1351.35. The corresponding p-value is <.000001,
indicating that the negative binomial model with an α of 6.76 is significantly
different from the Poisson. The negative binomial model produces AIC and
BIC statistics of 2.45 and −3422.46 respectively. These values compare with
the Poisson model statistics of 4.70 and −1456.54. The values for the negative
binomial model are clearly and substantially less than those of the corresponding
Poisson – indicating again that the data are better modeled as negative binomial
rather than Poisson.

Visually comparing the observed and predicted counts for the negative bino-
mial model may help in distinguishing it from the Poisson, as well as assist in
determining if it is a preferable model.

Figure 6.2 clearly shows the close association between the observed counts of
affairs and the number of affairs predicted on the basis of the negative binomial
model. The fit is far superior to that shown for the Poisson model (Figure 6.1).
Of particular interest is that the differences between predicted and observed
zero counts are now minimal – only 0.01 (Table 6.7). On the other hand, the
difference for the Poisson model is some 37.

The model is not yet finalized. There are several predictors that do not
contribute to the explanation of the response. Interactions have been checked
outside of our discussion and a final model developed, appearing as shown in
the output below:
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Table 6.7. Observed vs predicted
negative binomial model

CNT OBS PRED

0 .7504 .7394
1 .0566 .0898
2 .0283 .0433
3 .0316 .0265
4 0 .0181

. glm naffairs avgmarr-vryhap smerel vryrel yrsmarr4-
yrsmarr6, nolog eform fam(nb 6.908197)

Generalized linear models No. of obs = 601
Optimization : ML Residual df = 592

Scale parameter = 1
Deviance = 339.2113501 (1/df) Deviance = .5729921
Pearson = 517.6346425 (1/df) Pearson = .8743828
Variance
function

: V(u) =
u+(6.908197)uˆ2

[Neg. Binomial]

Link function : g(u) = ln(u) [Log]
AIC = 2.446937

Log likelihood = −726.3044443 BIC = −3448.757

OIM
naffairs IRR Std. Err. z P>|z| [95% Conf. Interval]

avgmarr .3720682 .1590264 −2.31 0.021 .1609937 .8598769
hapavg .3681403 .1352423 −2.72 0.007 .1791888 .7563381
vryhap .2514445 .0923022 −3.76 0.000 .1224549 .516307
smerel .3047693 .088186 −4.11 0.000 .1728515 .5373648
vryrel .279958 .1149339 −3.10 0.002 .1252105 .6259576

yrsmarr4 2.824666 1.125855 2.61 0.009 1.293288 6.169344
yrsmarr5 2.462933 .9828394 2.26 0.024 1.126623 5.384268
yrsmarr6 3.173011 .9689469 3.78 0.000 1.74397 5.773035

All predictors significantly enter the model and both AIC and BIC statistics have
been reduced, albeit not significantly. The model can be re-fitted using a robust
variance estimator to determine if empirically based standard errors result in a
difference in p-value significance. In this case there is minimal difference, with
significance moving in the opposite direction, i.e. appearing more contributory
than less.
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Figure 6.3. Negative binomial model for number of affairs: standardized deviance
residuals versus fitted values

Robust
naffairs IRR Std. Err. z P>|z| [95% Conf. Interval]

avgmarr .3720682 .1075804 −3.42 0.001 .2111081 .655753
hapavg .3681403 .0885893 −4.15 0.000 .2297102 .5899925
vryhap .2514445 .0716387 −4.85 0.000 .1438558 .439498
smerel .3047693 .0710436 −5.10 0.000 .1929971 .4812731
vryrel .279958 .0883555 −4.03 0.000 .1508174 .5196779

yrsmarr4 2.824666 1.026682 2.86 0.004 1.385417 5.759086
yrsmarr5 2.462933 .7091724 3.13 0.002 1.400746 4.33058
yrsmarr6 3.173011 .7823943 4.68 0.000 1.95697 5.144688

An analysis of the standardized deviance residuals versus the fitted values shows
that only two cases rest outside +/−2.0. These are considered outliers. However,
the values are not far above 2.0 −2.029 and 2.165− and represent only two of
the 601 cases in the data. Both of these outliers have counts of 12 for the reported
number of affairs, being at the extreme high end of the tabulation of counts.

Lastly, it is understood that the levels of factor predictors are evaluated with
reference to a referent level. When a contiguous level to the initially assigned
referent is not itself significantly different from the referent, we may combine
the two levels so that the resultant referent is a combination of the two levels.
We do this by simply excluding both levels from the estimation. This was done
for marriage status levels 1 and 2, religious status 1–3, and years married groups
1–3. Levels other than combined referent levels significantly contribute to the
model (naffairs) when compared with the referent.
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Table 6.8. Testing interlevel predictor significance

test avgmarr = vryhap
chi2(1) = 1.19
Prob > chi2 = 0.2751

test smerel = vryrel
chi2(1) = 0.04
Prob > chi2 = 0.8433

test yrsmarr4 = yrsmarr6
chi2(1) = 0.09
Prob > chi2 = 0.7623

It is also possible to evaluate the levels that are significantly different from
the combined referent levels, now simply called the referent. They may not sig-
nificantly differ from each other. If this turns out to be the case, then significant
levels may themselves be combined. All major statistical packages allow levels
to be tested for inter-level significance based on a χ2 or Wald statistic. Stata has
a number of ways such can be evaluated. The simplest is to use the commands
shown in part in Table 6.8.

Table 6.8 indicates that each non-referent level in the model can be combined
with one or more other significant levels. It is likely from an observation of
the table that each model predictor can be dichotomized such that each is
considered to be binary. For instance, with respect to marital status, a predictor
called marrstatus can be defined as 1 = levels 3–5; 0 = levels 1–2 (referent).
Religious status can be dichotomized as relstatus with 1 = levels 4–5; 0 = levels
1–3 (referent) and years married can be likewise be dichotomized as yrmarr
with 1 = levels 4–6; 0 = levels 1–3 (referent). Such a model may be preferable
to the multi-leveled one. I leave it to the reader to determine.

Due to the fact that the response, naffairs, consists of some 75% zero counts,
we shall later return to these data when considering zero-inflated and hurdle
models. Of interest will be a determination if either of these extended models
fit the data better than the one we have developed here.

Example 2: Heart procedures

The second example relates to data taken from Arizona cardiovascular patient
files in 1991. A subset of the fields was selected to model the differential length
of stay for patients entering the hospital to receive one of two standard car-
diovascular procedures: CABG and PTCA. CABG is an acronym representing
coronary artery bypass surgery; PTCA represents percutaneous transluminal
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Table 6.9. CABG/PTCA: upper frequencies and
summary stats

PTCA CABG
LOS Freq. Percent Freq. Precent

1 147 7.68
2 399 20.86
3 292 15.26 1 0.06
4 233 12.18 1 0.06
5 176 9.20 10 0.60
6 149 7.79 48 2.86
7 124 6.48 105 6.26
8 102 5.33 195 11.63
9 66 3.45 200 11.93

10 68 3.55 183 10.92
11 38 1.99 157 9.37
12 23 1.20 129 7.70
13 22 1.15 93 5.55
14 14 0.73 114 6.80
15 14 0.73 81 4.83
16 7 0.37 52 3.10

Mean Median SD

CABG 13.02 11 7.07
PTCA 5.16 4 4.16

coronary angioplasty. Angioplasty is performed by inserting a bulb through the
artery to the place containing a blockage near the heart. The bulb is inflated or
dilated, clearing the blockage in the affected part of artery. It is substantially
safer than a CABG, and, as can be seen from Table 6.9, usually results in an
earlier release from the hospital.

Length of stay values are found in the variable los; procedure data are found
in procedure, with 1 = CABG and 0 = PTCA. CABG is considered to be the
more difficult procedure of the two. Other controlling or confounding predictors
include the following:

sex 1 = Male; 0 = Female
admit 1 = Urgent/Emergency; 0 = Elective
age75 1 = age>75; 0 = age <= 75
hospital encrypted facility code

The data, azprocedure, consist of 3589 observations. The distribution of counts,
together with a listing of the mean, median and standard deviation for each
procedure is displayed in Table 6.9

A graphical representation of the differences in length of stay between the
two procedures can be found in Figure 6.4.
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Figure 6.4. Length of stay (LOS) distributions: PTCA versus CABG

It is evident that having a CABG results in a longer hospital stay. The question
is whether the difference in stay is statistically significant between the two
procedures, controlling for gender, type of admission, and age of patient. Also
desired is to determine the probable length of stay given patient profiles.

Modeling the data as Poisson, we have the following output:

. glm los procedure sex admit age75, nolog fam(poi) eform

Generalized linear models No. of obs = 3589
Optimization : ML Residual df = 3584

Scale parameter = 1
Deviance = 8874.147204 (1/df) Deviance = 2.476046
Pearson = 11499.22422 (1/df) Pearson = 3.208489

AIC = 6.238449
Log likelihood = −11189.89758 BIC = −20463.15

OIM
los IRR Std. Err. z P>|z| [95% Conf. Interval]

procedure 2.612576 .031825 78.84 0.000 2.550939 2.675702
sex .8834417 .0104349 −10.49 0.000 .8632245 .9041324

admit 1.386239 .0168061 26.94 0.000 1.353688 1.419573
age75 1.129999 .0140675 9.82 0.000 1.102761 1.15791

Given the large number of cases in the data, a Pearson Chi2 dispersion of 3.21
indicates overdispersion. Possible intrinsic causes may stem from the fact that
the data have no zeros, as well as the disparity in the numbers of low counts.
There may also be a clustering effect resulting from a higher correlation of
procedures being done within providers than being done between providers.
First, however, we shall model the data as negative binomial.
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[Model first using full maximum likelihood negative
binomial to obtain an estimate for α, which is then
included into the GLM algorithm]

. glm los procedure sex admit age75, nolog fam(nb .1601022)
eform

Generalized linear models No. of obs = 3589
Optimization : ML Residual df = 3584

Scale parameter = 1
Deviance = 3525.650017 (1/df) Deviance = .9837193
Pearson = 4947.825864 (1/df) Pearson = 1.380532
Variance
function

: V(u) =
u+(.1601022)uˆ2

[Neg. Binomial]

Link function : g(u) = ln(u) [Log]
AIC = 5.560626

Log likelihood = −9973.543468 BIC = −25811.64

OIM
los IRR Std. Err. z P>|z| [95% Conf. Interval]

procedure 2.667403 .0490528 53.35 0.000 2.572973 2.765298
sex .881229 .0168211 −6.62 0.000 .8488693 .9148221

admit 1.448736 .0276089 19.45 0.000 1.395621 1.503871
age75 1.127589 .0228369 5.93 0.000 1.083706 1.173249

The incidence rate ratios between the Poisson and negative binomial models
are quite similar. This is not surprising given the proximity of α to zero. On the
other hand, the AIC and BIC statistics for the negative binomial model are less –
12% and 26% respectively – than the Poisson. A likelihood ratio χ2 value of
2432.7, with one degree of freedom, indicates that the model value of α, at 0.16,
is nevertheless significantly different from an α of zero.

The fact that hospital length-of-stay data exclude the possibility of having
zero counts suggests that the data be modeled using a type of zero-truncated
model, e.g. a zero-truncated negative binomial – commonly referred to as a
ZINB model. A negative binomial with endogenous stratification model is
another possibility. Both of these models will be applied to the data in later
chapters.

Example 3: Titanic survival data

These data come from the 1912 Titanic survival data. It consists of 1316 passen-
gers, as well as crew. The crew members have been excluded from the analysis.
Only four variables are recorded, with each in binary format. The goal of the
study is to assess the risk of surviving. These data have previously been exam-
ined using binary logistic regression. Here we shall demonstrate that modeling



120 Negative binomial regression: modeling

Table 6.10. Titanic survivor dictionary

n = 1,316

survived Survived 1/0

age Child vs Adult 1/0
sex Male vs Female 1/0
class1 class = = 1st class 1/0
class2 class = = 2nd class 1/0
class3 class = = 3rd class 1/0

it as logistic is inferior to modeling the data as a count. Converting a binary
model to grouped has been shown earlier in this chapter.

The example data are defined in Table 6.10.
Modeled as a binary logistic model, and reporting the exponentiated param-

eter estimates as odds ratios, we have the following output:

. glm survived age sex class2 class3, nolog fam(bin) eform

Generalized linear models No. of obs = 1316
Optimization : ML Residual df = 1311

Scale parameter = 1
Deviance = 1276.200769 (1/df) Deviance = .973456
Pearson = 1356.674662 (1/df) Pearson = 1.03484

AIC = .9773562
Log likelihood = −638.1003845 BIC = −8139.863

Odds OIM
survived Ratio Std. Err. z P>|z| [95% Conf. Interval]

age .3479809 .0844397 −4.35 0.000 .2162749 .5598924
sex .0935308 .0135855 −16.31 0.000 .0703585 .1243347

class2 .3640159 .0709594 −5.18 0.000 .2484228 .5333952
class3 .1709522 .0291845 −10.35 0.000 .1223375 .2388853

Recall that goodness-of-fit is evaluated differently for binary binomial models
than for count models. It makes no sense to talk about overdispersed binary
response data, therefore the Pearson Chi2 dispersion statistic has little value in
assessing model worth. AIC and BIC statistics are important, but only when
comparing between models. Hosmer and Lemeshow (2003) and Hardin and
Hilbe (2001) provide extensive information regarding fit considerations for
logistic models.

As seen earlier, an individual or observation level format may be converted
to grouped format by using code similar to the following:
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Table 6.11. Titanic data set

survive cases age sex class1 class2 class3

1 14 31 child women 0 0 1
2 13 13 child women 0 1 0
3 1 1 child women 1 0 0
4 13 48 child man 0 0 1
5 11 11 child man 0 1 0
6 5 5 child man 1 0 0
7 76 165 adults women 0 0 1
8 80 93 adults women 0 1 0
9 140 144 adults women 1 0 0
10 75 462 adults man 0 0 1
11 14 168 adults man 0 1 0
12 57 175 adults man 1 0 0

egen grp = group(age-class3)
egen cases = count(grp), by(grp)
egen survive = sum(survived), by(grp)
sort grp
by grp: keep if �n == 1

The above code groups the 1316 cases into 12 covariate patterns. Table 6.11
consists of the entire re-formatted data set.

The data are modeled as a grouped logistic model. Parameter estimates,
standard errors, and so forth are identical to the binary model.

. glm survive age sex class2 class3, nolog fam(bin cases)
eform

Generalized linear models No. of obs = 12
Optimization : ML Residual df = 7

Scale parameter = 1
Deviance = 110.8437538 (1/df) Deviance = 15.83482
Pearson = 100.8828206 (1/df) Pearson = 14.41183

AIC = 13.14728
Log likelihood = −73.88365169 BIC = 60.56729

OIM
survive Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

age .3479809 .0844397 −4.35 0.000 .2162749 .5598924
sex .0935308 .0135855 −16.31 0.000 .0703585 .1243347

class2 .3640159 .0709594 −5.18 0.000 .2484228 .5333952
class3 .1709522 .0291845 −10.35 0.000 .1223375 .2388853

As a grouped logistic model, we find that the data are indeed overdispersed
with a Pearson Chi2 based dispersion statistic of 14.41. The AIC and BIC are
13.15 and 60.57 respectively.
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It is easy to re-parameterize the model as a count response model. Converting
the GLM family from binomial to Poisson is all that is required to make the
change. Since the canonical link is the default (with most commercial software),
it is not necessary to manually change link functions. On the other hand, the
total number of observations per group, as indicated in the variable cases, is
changed from the binomial denominator to the Poisson logged offset.

. glm survive age sex class2 class3, nolog fam(poi) eform
lnoffset(cases)

Generalized linear models No. of obs = 12
Optimization : ML Residual df = 7

Scale parameter = 1
Deviance = 38.30402583 (1/df) Deviance = 5.472004
Pearson = 39.06072697 (1/df) Pearson = 5.580104

AIC = 8.921621
Log likelihood = −48.5297265 BIC = 20.90968

OIM
survive IRR Std. Err. z P>|z| [95% Conf. Interval]

age .6169489 .0898438 −3.32 0.001 .4637587 .8207412
sex .3117178 .0296204 −12.27 0.000 .2587484 .3755308

class2 .6850337 .0805458 −3.22 0.001 .5440367 .8625725
class3 .463439 .0496088 −7.18 0.000 .3757299 .5716227
cases (exposure)

The Poisson model produces an approximate three-fold reduction in dispersion
over the grouped logistic model. Additionally, the AIC and BIC statistics are
reduced by some 50% and 300% respectively. The deviance statistic has also
been reduced from 110.84 to 38.30. Clearly, the Poisson is the preferable model.
On the other hand, with a dispersion statistic of 5.58, the model indicates that
the data are overdispersed. Modeled as a negative binomial, we have:

. glm survive age sex class2 class3, fam(nb .1040345)
eform lnoffset(cases)

Generalized linear models No. of obs = 12
Optimization : ML Residual df = 7

Scale parameter = 1
Deviance = 12.47948608 (1/df) Deviance = 1.782784
Pearson = 11.07146766 (1/df) Pearson = 1.581638
Variance
function

: V(u) =
u+(.1040345)uˆ2

[Neg. Binomial]

Link function : g(u) = ln(u) [Log]
AIC = 8.119471

Log likelihood = −43.71682842 BIC = −4.91486
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OIM
survive IRR Std. Err. z P>|z| [95% Conf. Interval]

age .5116907 .1289491 −2.66 0.008 .312248 .8385238
sex .3752549 .0887939 −4.14 0.000 .2360003 .5966782

class2 .6875551 .2097046 −1.23 0.219 .3781732 1.250041
class3 .4037074 .1157954 −3.16 0.002 .2301 .7082993
cases (exposure)

The AIC and BIC statistics are 8.12 (from 8.92) and −4.91 (20.91), with BIC
alone indicating better fit. A likelihood ratio test, performed following a previ-
ously run (not shown) maximum likelihood negative binomial model – which
provided the value of α that was input into the GLM algorithm – indicates that
the model is significantly different from Poisson [χ2 = 9.63; dof = 1; p > χ2 =
0.001].

To clean up the model it is necessary to combine class2 with class1 as the
referent for class. α is slightly increased, with the deviance and AIC lightly
decreased. More substantial change is found in the reduced model BIC statistic
(−4.9 to −8.2). A final model is presented below.

. glm survive age sex class3, nolog fam(nb .1339329)
eform lnoffset(cases)

Generalized linear models No. of obs = 12
Optimization : ML Residual df = 8

Scale parameter = 1
Deviance = 11.71286801 (1/df) Deviance = 1.464109
Pearson = 8.68621808 (1/df) Pearson = 1.085777
Variance
function

: V(u) =
u+(.1339329)uˆ2

[Neg. Binomial]

Link function : g(u) = ln(u) [Log]
AIC = 8.061748

Log likelihood = −44.37048795 BIC = −8.166385

OIM
survive IRR Std. Err. z P>|z| [95% Conf. Interval]

age .5410341 .1465874 −2.27 0.023 .318127 .9201288
sex .3996861 .1034007 −3.54 0.000 .2407183 .6636345

class3 .4819995 .1261313 −2.79 0.005 .2886033 .8049927
cases (exposure)

Example 4: Health reform data

A fourth example consists of data from a subset of the 2001 German Socio-
Economic Panel (SOEP). The subset was created by Rabe-Hesketh and
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Table 6.12. German health reform data

Numvisit Visits to MD office 3 mo prior − response
reform 1 = interview yr after reform: 1998; 0 =

pre-reform:1996
badh 1 = bad health; 0 = not bad health
age Age(yrs 20−60)
educ Education(yrs 7−18)
loginc ln(household income DM)
id Person ID

Skrondal (2005). Only working women are included in these data. Beginning
in 1997, German health reform in part entailed a 200% increase in patient co-
payment as well as limits in provider reimbursement. Patients were surveyed
for the one-year panel (1996) prior to and the one year panel (1998) after reform
to assess whether the number of physician visits by patients declined – which
was the goal of reform legislation.

The response, or variable to be explained by the model, is numvisit,
which indicates the number of patient visits to the physicians office during
a three-month period. The data set, mdvisits, consists of 2227 cases. A tab-
ulation of numvisit provides an overview of the observed or empirical count
distribution.

The data are first modeled using a Poisson regression. Results appear as:

. glm numvisit reform badh age educ loginc, nolog fam(poi)

Generalized linear models No. of obs = 2227
Optimization : ML Residual df = 2221

Scale parameter = 1
Deviance = 7422.124433 (1/df) Deviance = 3.341794
Pearson = 9681.69202 => (1/df) Pearson = 4.359159

=> AIC = 5.343357
Log likelihood = −5943.828046 BIC = −9698.256

OIM
numvisit Coef. Std. Err. z P>|z| [95% Conf. Interval]

reform −.1398842 .0265491 −5.27 0.000 −.1919195 −.0878489
badh 1.132628 .0302986 37.38 0.000 1.073244 1.192013
age .0048853 .0012526 3.90 0.000 .0024302 .0073404

educ −.0118142 .0059588 −1.98 0.047 −.0234933 −.0001351
loginc .1520247 .0359837 4.22 0.000 .081498 .2225515

�cons −.421508 .268966 −1.57 0.117 −.9486718 .1056558

The model appears prima facie to fit well. Predictors appear significant. How-
ever, the dispersion statistic is over 4, indicating substantial overdispersion
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Table 6.13. Tabluation of response: numvisits

Visits
MD of

Freq. Percent Cum.

0 665 29.86 29.86 < = large number of 0’s
1 447 20.07 49.93
2 374 16.79 66.73
3 256 11.50 78.22
4 117 5.25 83.48
5 101 4.54 88.01
6 76 3.41 91.42
7 21 0.94 92.37
8 27 1.21 93.58
9 9 0.40 93.98
10 61 2.74 96.72
11 1 0.04 96.77
12 20 0.90 97.67
13 5 0.22 97.89
14 3 0.13 98.02
15 19 0.85 98.88
16 2 0.09 98.97
20 10 0.45 99.42
24 1 0.04 99.46
25 3 0.13 99.60
30 4 0.18 99.78
36 1 0.04 99.82
40 2 0.09 99.91
50 1 0.04 99.96
60 1 0.04 100.00

Total 2,227 100.00

given the large number of observations. The AIC statistic equals 5.343, a value
with which we shall later compare alternative models.

Exponentiated coefficients give us incidence rate ratios, and appropriately
adjusted standard errors and confidence intervals.

OIM
numvisit IRR Std. Err. z P>|z| [95% Conf. Interval]

reform .8694589 .0230834 −5.27 0.000 .8253733 .9158993
badh 3.103804 .0940408 37.38 0.000 2.924853 3.293703
age 1.004897 .0012588 3.90 0.000 1.002433 1.007367
educ .9882553 .0058888 −1.98 0.047 .9767805 .9998649

loginc 1.164189 .0418918 4.22 0.000 1.084911 1.24926

Employing a robust sandwich variance estimator gives us the following table
of results.
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Table 6.14. Observed proportion and predicted
probability for model visits from 0−10

Visits %Visits Obs %Visits Pred

1 0 0.298608 0.115397
2 1 0.200718 0.233520
3 2 0.167939 0.240503
4 3 0.114953 0.170382
5 4 0.052537 0.096959
6 5 0.045352 0.051449
7 6 0.034127 0.029828
8 7 0.009430 0.020123
9 8 0.012124 0.014646
10 9 0.004041 0.010482
11 10 0.027391 0.007053

Robust
numvisit IRR Std. Err. z P>|z| [95% Conf. Interval]

reform .8694589 .0515157 −2.36 0.018 .7741322 .9765241
badh 3.103804 .2590781 13.57 0.000 2.635382 3.655486
age 1.004897 .0029544 1.66 0.097 .9991234 1.010705
educ .9882553 .0112303 −1.04 0.299 .9664875 1.010513

loginc 1.164189 .0895704 1.98 0.048 1.00123 1.353671

There is an approximate 13% reduction in visits to a physician between 1996
and 1998, adjusted for health status, age, education, and the natural log of
household income. Age and education are not contributory to model. Recall
that the model appears to indicate overdispersion.

The fact that the response consists of 30% zero counts is likely to be a cause
of overdispersion. Table 6.14 displays the observed and predicted counts from
0 to 10. Predicted values are derived from the last Poisson model.

This table shows the observed proportions or empirical probabilities for each
count up to 10 together with the predicted probability for each count based on
the model (given the probability function f (µ; y) = e−µµy/y!).

Note the near three-fold higher value in the observed frequency for zero
counts than for the predicted value. This is reflected in a graph of the table data,
with additional counts through 20.

The observed proportions approximate a geometric distribution, which is
the discrete correlate of a negative exponential distribution. It is likely that if
the model is estimated using a negative binomial regression, the value of α will
approximate 1.0. A negative binomial model with α = 1 is a geometric model.
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Figure 6.5. Poisson model for number of visits: observed versus predicted probabilities

It is important, though, to first deal with educ and age. Educ does not appear
to be contributory to the model and age is questionable, particularly when
subjected to scaling and adjusted by a robust sandwich variance estimator (not
shown here). However, recall that both variables are discrete, with many levels.
Educ has 16 levels; age has 41, one level for each year from 20 through 60. Both
predictors may be considered as continuous, however, each age is measured as
a unit, with no decimals. Categorizing each of these predictors may help both
understand the differential contribution of education levels and age groups, and
also may help in dealing with model overdispersion.

Edu may be left as found, or separated into three separate binary predictors.
Commerical statistical software generally prefers one type or another. In any
event, one can have the software generate three dummies resulting in predictor
levels educ1, educ2, and educ3. Levels are defined by the lowest number of
years of education.

edu Freq. Percent Cum.

7- 549 24.65 24.65
10.5- 926 41.58 66.23
12- 752 33.77 100.00

----------------------------------------------------------
Total 2,227 100.00

Recalling that study ages range from 20 to 60, age may be expanding into four
levels: 20–29, 30–39, 40–49, and 50–60.

Modeling with age1 (20–29) as the referent, it is found that age2 (30–39) is
not statistically significant, implying that there is little difference between the
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two age divisions. In such a situation the two levels may be combined for an
expanded reference group, 20–39. Levels can be labeled and tabulated.

age Freq. Percent Cum.

20−39 1,352 60.71 60.71
40−49 515 23.13 83.83
50−60 360 16.17 100.00
----------------------------------------------------------
Total 2,227 100.00

Re-running the model with levels educ1–3 and age1–3, the model appears as:?

.glm numvisit reform badh educ2 educ3 age2 age3 loginc,
nolog fam(poi) eform

Generalized linear models No. of obs = 2227
Optimization : ML Residual df = 2219

Scale parameter = 1
Deviance = 7398.293267 (1/df) Deviance = 3.334066
Pearson = 9518.948272 (1/df) Pearson = 4.289747

AIC = 5.334452
Log likelihood = −5931.912464 BIC = −9706.67

OIM
numvisit IRR Std. Err. z P>|z| [95% Conf. Interval]

reform .8706594 .0231258 −5.21 0.000 .8264932 .9171858
badh 3.132308 .0938026 38.13 0.000 2.95375 3.321661

educ2 1.085224 .0365147 2.43 0.015 1.015965 1.159204
educ3 .9221584 .0340499 −2.19 0.028 .8577794 .9913691
age2 1.095001 .0352259 2.82 0.005 1.028092 1.166266
age3 1.144818 .0410837 3.77 0.000 1.067062 1.22824

loginc 1.146791 .0410935 3.82 0.000 1.069012 1.230228

Due to overdispersion in the model, and the fact that there may be a clustering
effect resulting from multiple visits by the same individual, it is wise to apply
a robust cluster variance estimator to the model.

. glm numvisit reform badh educ2 educ3 age2 age3 loginc,
fam(poi) eform cluster(id)

Generalized linear models No. of obs = 2227
Optimization : ML Residual df = 2219

Scale parameter = 1
Deviance = 7398.293267 (1/df) Deviance = 3.334066
Pearson = 9518.948272 (1/df) Pearson = 4.289747

AIC = 5.334452
Log
pseudolikelihood

= −5931.912464 BIC = −9706.67

(Std. Err. adjusted for 1518 clusters in id)
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Robust
numvisit IRR Std. Err. z P>|z| [95% Conf. Interval]

reform .8706594 .0488115 −2.47 0.013 .7800593 .9717823
badh 3.132308 .2628195 13.61 0.000 2.657318 3.692202

educ2 1.085224 .0977545 0.91 0.364 .9095888 1.294773
educ3 .9221584 .0774285 −0.97 0.334 .7822307 1.087117
age2 1.095001 .0877094 1.13 0.257 .935909 1.281138
age3 1.144818 .1069266 1.45 0.148 .9533091 1.374798

loginc 1.146791 .0946715 1.66 0.097 .9754714 1.348198

Application of a negative binomial model is a reasonable approach to dealing
with the excess dispersion in the Poisson model (4.29), particularly when a
specific source of the overdispersion has not been identified.

. glm numvisit reform badh educ2 educ3 age2 age3 loginc,
fam(nb .9982126) eform

Generalized linear models No. of obs = 2227
Optimization : ML Residual df = 2219

Scale parameter = 1
Deviance = 2412.452952 (1/df) Deviance = 1.08718
Pearson = 2644.673532 (1/df) Pearson = 1.191831
Variance
function

: V(u) =
u+(.9982126)uˆ2

[Neg. Binomial]

Link
function

: g(u) = ln(u) [Log]

AIC = 4.103197
Log likelihood = −4560.909631 BIC = −14692.51

OIM
numvisit IRR Std. Err. z P>|z| [95% Conf. Interval]

reform .871369 .0445206 −2.69 0.007 .7883371 .9631464
badh 3.134872 .2332147 15.36 0.000 2.709542 3.626969

educ2 1.085687 .0716943 1.24 0.213 .953882 1.235704
educ3 .970105 .0685734 −0.43 0.668 .8445984 1.114262
age2 1.049625 .0666178 0.76 0.445 .9268511 1.188662
age3 1.206782 .0867935 2.61 0.009 1.048115 1.389468

loginc 1.134513 .0798461 1.79 0.073 .9883313 1.302316

Negative binomial regression has changed the model statistics. Note at first
that the Pearson χ2 dispersion has been reduced from 4.29 to 1.19. AIC and
BIC statistics deflate from 5.33 to 4.10 and from −9706.67 to −14692.51
respectively. The deviance itself has been substantially reduced from 7398 to
2412 – a three-fold reduction. An interesting side is that the value of α is very
close to unity. Recall the discussion regarding Figure 6.5, which showed that
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the shape of the predicted counts from the Poisson model took the form of a
geometric distribution. This speculation has been borne out with the value of
α = 0.9982 in the negative binomial model of the same data.

Adjusting the model by the clustering effect of id, and applying robust stan-
dard errors to the result, produces the following table of estimates. Notice that
the cluster-adjusted standard errors differ very little from base-model standard
errors. Moreover, a simple application of robust standard errors to the Hes-
sian matrix without a clustering effect yields little difference to the model with
clustering. This mutual lack of effect can be interpreted that there is little if
any overdispersion in the resultant model data due to clustering and that any
remaining variability in the data comes from a yet to be specified source. Fortu-
nately, the unadjusted negative binomial model accounts for most of the Poisson
overdispersion. This conclusion runs concordant to the observed value of the
dispersion statistic.

(Std. Err. adjusted for 1518 clusters in id)

Robust
numvisit IRR Std. Err. z P>|z| [95% Conf. Interval]

reform .871369 .0446676 −2.69 0.007 .7880764 .963465
badh 3.134872 .2587493 13.84 0.000 2.666628 3.685337

educ2 1.085687 .0880525 1.01 0.311 .9261247 1.272739
educ3 .970105 .0786037 −0.37 0.708 .827655 1.137072
age2 1.049625 .0772138 0.66 0.510 .9086928 1.212415
age3 1.206782 .1161242 1.95 0.051 .9993571 1.457259

loginc 1.134513 .0952187 1.50 0.133 .9624292 1.337365

It appears that the negative binomial model – or geometric model – fits the data
better than the Poisson model. However, it also appears that the cuts we made
in educ and age have resulted in levels that do not significantly contribute to the
model. For those who wish to continue model development, re-classification
should be attempted. In addition, since the observed zeros in the data exceed the
distributional assumption of the negative binomial, alternative models designed
to deal with this specific type of problem should be investigated. Zero-inflated
and hurdle models are foremost models that come to mind. Both of these models
will be discussed in later chapters and employed on these data.

When modeling a data situation in which two groups are being distinguished
to determine differences of some sort between them, it is sometimes instruc-
tional to graph the residual data as a whole while allowing the intrinsic groupings
to emerge. This may be done by graphing standardized deviance residuals by the
predicted mean or µ. A correction value is used with the values of µ, calculated
as 2∗sqrt(µ).
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Two groupings of residuals reflect the reform periods of 1996 and 1998. Stan-
dardized deviance residuals greater than 4 can be regarded as possible outliers.
Pierce and Schafer (1986) recommend an adjusted standardized deviance using
the following formula: Dadj − d + 1/{6

∗
sqrt(mean(y))}. However, I have not

found them to be superior to traditionally defined standardized deviance residu-
als. On the other hand, I have argued for the use of Anscombe residuals (Hilbe,
1994a, 1994b; Hardin and Hilbe, 2001) which are theoretically more appropri-
ate than standardized deviance residuals, although the two values are generally
quite similar. When modeling, both should be attempted. If negative binomial
Anscombe and standardized deviance residuals differ, then additional tests are
required.

Noticeably, the negative binomial fit is preferred over the Poisson. There are
many fewer observations with standardized deviance residuals less than −2 or
greater than 2. Although the relative shapes of the residuals by fit are similar,
their respective variability is substantially different. Those involved in health
outcomes research would likely find it interesting to search for the determinants
of outlier status.

It is interesting to note that when the predicted number of visits for pre-
and post-reform periods are calculated at the average of each predictor ver-
sus the average prediction for pre- and post-reform visits, that the distribu-
tion lines are fairly similar. The negative binomial model used here is based
on educ and age being separated into their respective levels. Recall that
Figure 6.5 is based on educ and age being considered as continuous variables.
Table 6.15 displays mean values of visit for pre- and post-reform periods through
ten visits.

Figure 6.7 visually displays the values from 0 through 10 given in
Table 6.15. In addition, Figure 6.7 provides average prediction values for pre-
and post-reform periods. These distributions are consistent with the previous
distributions. (Figure 6.7 and values in Table 6.15 were calculated from a
suite of programs created by Prof. Scott Long of the University of Indiana
for use with binary and count response models. Aimed at assisting researchers
to assess model fit, the programs, termed SPOST, may be downloaded from
http://www.indiana.edu/∼jslsoc/spost.htm.)

6.4 Summary

The examples used in this chapter demonstrate methods of handling overdis-
persed Poisson data without going beyond the basic negative binomial model.
When identifying a count response model as overdispersed, it is first necessary
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Figure 6.6. German health reform 1996 and 1998: standardized deviance residuals
versus corrected predicted mean number of visits. (A) Poisson model; (B) negative
binomial (NB-2) model

to determine if the overdispersion is real or only apparent. If it is real, one next
determines if it is significant, i.e. whether the variability significantly exceeds
Poisson distributional assumptions.

Modeling data using a full maximum likelihood negative binomial allows the
statistician to determine if the resultant value of α is statistically different from
zero. If not, then the data are to be modeled as Poisson. If there is a statistically
significant difference, then a model needs to be found that addresses the genesis
of the extra correlation in the data. A basic negative binomial model may be
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Table 6.15. Pre (1996) and post (1998) mean predicted visits with CI’s
confidence intervals calculated by delta method

PRE REFORM (1996)

95% Conf. Interval

Rate: 2.5115 [2.3345, 2.6885]
Pr(y = 0|x): 0.2845 [0.2701, 0.2989]
Pr(y = 1|x): 0.2037 [0.1976, 0.2099]
Pr(y = 2|x): 0.1458 [0.1443, 0.1473]
Pr(y = 3|x): 0.1043 [0.1032, 0.1053]
Pr(y = 4|x): 0.0746 [0.0723, 0.0768]
Pr(y = 5|x): 0.0533 [0.0507, 0.0560]
Pr(y = 6|x): 0.0381 [0.0355, 0.0408]
Pr(y = 7|x): 0.0273 [0.0248, 0.0297]
Pr(y = 8|x): 0.0195 [0.0173, 0.0216]
Pr(y = 9|x): 0.0139 [0.0121, 0.0158]
Pr(y = 10|x): 0.0100 [0.0085, 0.0115]

POST REFORM (1998)

95% Conf. Interval

Rate: 2.1884 [2.0329, 2.344]
Pr(y = 0|x): 0.3134 [0.2981, 0.3287]
Pr(y = 1|x): 0.2153 [0.2096, 0.2211]
Pr(y = 2|x): 0.1479 [0.1472, 0.1485]
Pr(y = 3|x): 0.1015 [0.0997, 0.1033]
Pr(y = 4|x): 0.0697 [0.0668, 0.0725]
Pr(y = 5|x): 0.0478 [0.0448, 0.0508]
Pr(y = 6|x): 0.0328 [0.0300, 0.0356]
Pr(y = 7|x): 0.0225 [0.0201, 0.0249]
Pr(y = 8|x): 0.0154 [0.0134, 0.0174]
Pr(y = 9|x): 0.0106 [0.0090, 0.0122]
Pr(y = 10|x): 0.0073 [0.0060, 0.0085]

MEAN VALUES OF REMAINING PREDICTORS

badh educ2 educ3 age2 age3 loginc

.11360575 .41580602 .337674 .23125281 .16165245 7.7128263

sufficient to deal with the overdispersion, but if the data violate the distributional
assumptions of both Poisson and negative binomial models, then adjustments
need to be made to the negative binomial algorithm that directly deal with the
source of overdispersion. Some data do not admit for an easy solution.

In the following chapters, the basic or traditional negative binomial algorithm
is enhanced to address count data that cannot be modeled using the traditional
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Figure 6.7. Hospital visitations: pre- and post-reform

methods. First to be evaluated are data situations that require an adjustment
to the Poisson and negative binomial variance function. Afterwards, data that
violate Poisson and negative binomial distributional assumptions are discussed.

Exercises

1 Given the following data, model kyp on start using a binary response logistic
regression model. Determine if the model is overdispersed by converting the
data to grouped format. Then determine if the grouped data is equi-dispersed
when modeled using Poisson regression.

kyp start kyp start

1 8 0 16
0 9 0 14
0 13 0 12
1 1 0 16
1 8 0 10
0 1 0 15
0 16 0 15
0 16 1 13
0 10 0 13
0 17 0 13
0 13 1 6
0 11 0 13
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2 Given the following cross-tabulation, calculate the odds ratio and the relative
risk, then model both with low as the response, or outcome, and smoke the
predictor, or exposure. Discuss the relationship between the two models.

birth smoked during
weight<250 pregnancy

0g 0 1 Total

0 86 44 130
1 29 30 59

--------------------------------------------------------
Total 115 74 189

3 Use the gss2002�educ data set to model the highest number of respondent
years of education on the basis of a number of explanatory predictors. Con-
struct the best-fitted model using the criteria discussed in the text.

4 Using the Titanic data set, grouped as in the final model output for
Example 3, create both negative binomial Anscombe and standard deviance
residuals. Graph the two residuals against the fitted negative binomial values.
Identify any outliers and discuss the fit of the model on the basis of the two
sets of residuals.

5 Model the data in Chapter 3, question 5, using negative binomial regression.
Is the overdispersion eliminated? Discuss.

6 Model the data used for Chapter 4, question 5, using a negative binomial
model. Does the negative binomial model successfully adjust for the overdis-
persion found in the Poisson model. Discuss.

7 Model the following data to determine if smoking adds to the risk of devel-
oping coronary heart disease. (Data doll from Breslow, 1985, pp. 109–143).

Person-years Coronary deaths

Age Non-smokers Smokers Non-smokers Smokers

35−44 18790 52407 2 32
45−54 10673 43248 12 104
55−64 5710 28612 28 206
65−74 2585 12663 28 186
75−84 1462 5317 31 102
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Alternative variance parameterizations

Negative binomial regression has traditionally been used to model otherwise
overdispersed count or Poisson data. It is now considered to be the general catch-
all method used when Poisson data are found to be overdispersed, particularly
when the source of overdispersion has not been identified. When we can identify
that which gives rise to extra correlation, and hence overdispersion, the basic
Poisson and negative binomial algorithms may themselves be further adjusted
or enhanced to directly address the identified source of the extra correlation.
For example, when overdispersion results from an excess of zero counts in
the response, an appropriate strategy is to model the data using either a zero-
inflated Poisson (ZIP) or zero-inflated negative binomial (ZINB). Employing a
hurdle model may also result in a better fit. On the other hand, if the response is
structured such that zero counts are not possible, such as in hospital length of
stay data, a zero-truncated Poisson (ZTP) or zero-truncated negative binomial
(ZTNB) model may be appropriate.

A variety of alternative models have been developed to address specific
facts in the data that give rise to overdispersion. Models dealing with an excess
or absence of zeros typically define a mixture that alters the distributional
variance of the Poisson distribution. Other models are constructed to alter not the
probability and log-likelihood distributions, but rather the Poisson and negative
binomial variance functions. We discuss these types of models in this chapter.

Models that address overdispersion by making changes to the Poisson and
negative binomial variance function are listed in Table 7.1. Note that the Poisson
is regarded as the base count distribution as well as the base variance function.
The negative binomial generically deals with overdispersion, and is itself mod-
ified given certain data situations.

136
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Table 7.1. Count model variance functions

Poisson : V = µ
QL Poisson : V = µφ
Geometric : V = µ(1+ µ)
NB-1 : V = µ(1+ α)
NB-2 : V = µ(1+ αµ)
NB-H : V = µ(1+ (αν)µ)
NB-P : V = µ + αµρ

NB-2 with α = 0 is Poisson
NB-2 with α = 1 is Geometric

7.1 Geometric regression

The geometric distribution is a special case of the negative binomial. Using the
parameterization developed in Chapter 5, the geometric is the negative binomial
with the heterogeneity or overdispersion parameter, α, set to 1.0. GLM software
that incorporates the negative binomial as a member family can be used to design
geometric models by setting the value of α to a constant value of 1.0; the GLM
algorithm should also be set with a log link together with the negative binomial
family. Maximum likelihood negative binomial algorithms, on the other hand,
generally do not allow estimation of geometric models. Since α is estimated
as an additional parameter, it cannot normally be constrained to a user defined
value unless the software allows constrained optimization. However, a geo-
metric regression algorithm is simple to design with the appropriate program-
ming language, e.g. SAS’s IML, Stata’s ML capabilities, or by programming
in R.

7.1.1 Derivation of the geometric

The derivation of the geometric follows the same logic as that of the negative
binomial, with the exception that the term α is omitted. This greatly simplifies
the log-likelihood function, which appears as

L(µ; y) =
n∑

i=1

exp{yi ln(µi/(1 + µi )) − ln(1 + µi )} (7.1)

or

L(µ; y) =
n∑

i=1

exp{yi ln(µi ) − (yi + 1)∗ ln(1 + µi )} (7.2)



138 Alternative variance parameterizations

Parameterized in terms of the log link function ln(µ) = β ′x or ln(µ) = xb

L(xi b; yi ) =
n∑

i=1

exp{yi ln(exp(xi b)/(1 + exp(xi b))) − ln(1 + exp(xi b))}
(7.3)

or

L(xi b; yi ) =
n∑

i=1

exp{y∗
i xi b − (1 + yi ) ln(1 + exp(xi b))} (7.4)

As a special case of the negative binomial, the geometric mean, variance, and
related functions take the same form. Therefore, we have

MEAN = µi or exp(xi b) or exp(xiβ) (7.5)

VARIANCE = µi + µ2
i or µi (1 + µi ) (7.6)

= exp(xiβ)(1 + exp(xiβ)) (7.7)

DERIVATIVE OF LINK = 1/{µi (1 + µi )}
or 1/{exp(xiβ)(1 + exp(xiβ))} (7.8)

DEVIANCE = 2
n∑

i=1

{yi ln(yi/µi )

− (1 + yi ) ln((1 + yi )/(1 + µi ))} (7.9)

7.1.2 Using the geometric model

Refer to the various graphs presented in Chapter 5 representing the shape of neg-
ative binomial data given specified values of the mean and of α. The geometric
distribution, with an α = 1, produces a shape that is the discrete correlate of the
negative exponential distribution. Many types of data fit one of these shapes. If
the counts of some item or event deplete in a smooth decreasing manner, then a
geometric model will likely fit the data. If the data are modeled using negative
binomial regression, the value of α will approximate 1.0. We found this to be
the case for Example 4 in the last chapter.

It may be instructional to observe the relationship between the Poisson
and geometric models. After all, regardless of the shape of the geometric
distribution, the geometric model represents an accommodation of Poisson
overdispersion.

We shall first create a simulated geometric data set having the linear predictor
being composed of a constant equal to −1, and two parameters with values of
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Figure 7.1. Negative binomial distributions: alpha = 1.

2.0 and −0.5 respectively. Hence the linear predictor is synthesized to be

β ′xi = b0 + b1x1 + b2x2

−1 + 2x1 − 0.5x2

Modeled using a maximum likelihood negative binomial algorithm produces
the following output:

. nbreg y2 x1 x2, nolog

Negative binomial regression Number of obs = 50000
LR chi2(2) = 43212.16

Dispersion = mean Prob > chi2 = 0.0000
Log likelihood = −57930.636 Pseudo R2 = 0.2716

y2 Coef. Std. Err. z P>|z| [95% Conf. Interval]

x1 1.992554 .0095348 208.98 0.000 1.973866 2.011242
x2 -.5023906 .0075823 -66.26 0.000 -.5172516 -.4875296

�cons -.9916718 .0107862 -91.94 0.000 -1.012812 -.9705312
----------------------------------------------------------------
/lnalpha -.0133656 .0147555 -.0422859 .0155547
----------------------------------------------------------------

Alpha .9867233 .0145596 .9585957 1.015676

Likelihood-ratio test of alpha = 0: chibar2(01) = 9.9e+04 Prob>
= chibar2 = 0.000
AIC Statistic = 2.317

The parameter estimates are very close to what was specified in the simulation
set-up. In addition, the fitted value of α is approximately 1.0, as would be
restricted for a geometric model. Recall that unless a seed value is given to
the random number simulator, the values of the parameter estimates will differ
slightly from run to run. Also shown is a value for the separately calculated
AIC statistic.
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In the context of negative binomial modeling, anα of 0, or close to 0, indicates
that the model is Poisson. The model will be considered as Poisson even if α is
not exactly zero. There is no absolute criterion for determining when a model is
to be classified as Poisson, since there are gradations of model fit. Given tests of
negative binomial vs Poisson, such as the likelihood ratio test shown under the
table of estimates above, a model can be classified as Poisson until it exceeds
some specified p-value – usually 0.05 – for a given test. Models in which the
above defined log-likelihood ratio test produce p-values equal to or greater than
0.05 are Poisson. Those under 0.05 are regarded as negative binomial, or rather,
as a non-Poisson count model. The logically prior assumption is that the test is
on a count response model belonging to the exponential family of distributions.

We next model the geometric data using Poisson regression. The aim is to see
the extent of overdispersion in the Poisson model, as indicated by the dispersion
statistic. Notice that the parameter estimates are close to those defined, but
that the Pearson χ2 dispersion is at 4.19. This is a particularly large value
considering the number of observations in the data. If the data were estimated
using a maximum likelihood Poisson algorithm that fails to provide information
concerning fit, a user may well believe that model is in fact a good one. It is not.

. glm y2 x1 x2, nolog fam(poi)

Generalized linear No. of obs = 50000
models
Optimization : ML Residual df = 49997

Scale parameter = 1
Deviance = 161518.4435 (1/df) Deviance = 3.230563
Pearson = 209535.3003 (1/df) Pearson = 4.190957

AIC = 4.288977
Log likelihood = -107221.4299 BIC = -379438

OIM
y2 Coef. Std. Err. z P>|z| [95% Conf. Interval]

x1 2.041422 .0024603 829.74 0.000 2.036599 2.046244
x2 -.5193739 .0024727 -210.04 0.000 -.5242204 -.5145274

�cons -1.070714 .0057808 -185.22 0.000 -1.082045 -1.059384

AIC and BIC statistics of the geometric model are calculated as 2.317 and
−505568.5 respectively, indicating that the Poisson model is a comparatively
poor fit.

7.1.3 The canonical geometric model

The geometric probability function can be expressed for y ≥ 0, as (I shall forgo
subscripts for the rest of this section for ease interpretation)

f (y; p) = p(1 − p)y (7.10)
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In exponential family form we have

f (y; p) = exp{y ∗ ln(1 − p) + ln(p)} (7.11)

Following the same logic as in Chapter 5

LINK = ln(1 − p) (7.12)

CUMULANT = ln(p) (7.13)

Differentiating the cumulant wrt ln(1−p)

MEAN = (1 − p)/p = µ (7.14)

VARIANCE = (1 − p)/p2 = V (µ) = µ(1 + µ) (7.15)

Parameterized in term of µ, the geometric probability distribution function is
defined as

f (y; µ) = 1/(1 + µ) ∗ (µ/(1 − µ))y (7.16)

The log-likelihood, expressed in exponential family form, appears as

L(µ; y) = �exp{y ∗ ln(µ/(1 + µ)) − ln(1 + µ)} (7.17)

with θ = ln(µ/(1 + µ)). We define the link and inverse link in terms of µ as

LINK = η = ln(µ/(1 + µ)) = − ln(1/µ + 1) (7.18)

INVERSE LINK = µ = 1/(exp(−η) − 1) (7.19)

The canonical form of the geometric log-likelihood function in terms of βx , or
xb, may be determined by substituting the value of the inverse link for every
instance of µ.

CANONICAL LOG-LIKELIHOOD

L(xb; y) = y ∗ ln(1/(exp(−xb) − 1)) − (1 + y) ln(1 + (1/(exp(−xb) − 1)))
(7.20)

Table 5.2 provides a sample GLM estimating algorithm for the canonical neg-
ative binomial. Using the same algorithm, but excluding the term α throughout
the algorithm (or setting the value of α to 1.0), provides the appropriate canon-
ical geometric parameter estimates.

In the last chapter, the fourth example concerned itself with attempting to
determine the difference between pre- and post-reform visits to a physician by
participants in the German health system. It was noted that the negative binomial
value of α was close to 1.0. It might be of interest to compare the (log)geometric
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model, or traditional negative binomial with α = 1, to a canonically linked geo-
metric model. The parameter estimates are exponentiated, producing incidence
rate ratios.

LOG-GEOMETRIC MODEL

. glm numvisit reform badh educ2 educ3 age2 age3 loginc,
nolog fam(nb 1) eform

Generalized linear models No. of obs = 2227
Optimization : ML Residual df = 2219

Scale parameter = 1
Deviance = 2410.140094 (1/df) Deviance = 1.086138
Pearson = 2641.379859 (1/df) Pearson = 1.190347

AIC = 4.103197
Log likelihood = -4560.910337 BIC = -14694.82

OIM
Numvisit IRR Std. Err. z P>|z| [95% Conf. Interval]

Reform .8713684 .0445485 -2.69 0.007 .788287 .9632062
Badh 3.134881 .2333899 15.35 0.000 2.709253 3.627375

educ2 1.085688 .0717399 1.24 0.213 .953805 1.235807
educ3 .9701217 .0686174 -0.43 0.668 .8445398 1.114377
age2 1.049611 .0666594 0.76 0.446 .9267655 1.188741
age3 1.206801 .0868511 2.61 0.009 1.048037 1.389617

loginc 1.134511 .0798964 1.79 0.073 .988244 1.302428

CANONICAL GEOMETRIC MODEL

. glm numvisit reform badh educ2 educ3 age2 age3 loginc,
nolog fam(nb 1) link(nb) eform

Generalized linear models No. of obs = 2227
Optimization : ML Residual df = 2219

Scale parameter = 1
Deviance = 2412.058271 (1/df) Deviance = 1.087002
Pearson = 2654.882303 (1/df) Pearson = 1.196432

AIC = 4.104059
Log likelihood = -4561.869425 BIC = -14692.9

OIM
Numvisit exp(b) Std. Err. z P>|z| [95% Conf. Interval]

Reform .9691608 .0123938 -2.45 0.014 .9451713 .9937593
Badh 1.276637 .0168662 18.49 0.000 1.244004 1.310126
educ2 1.017842 .0155696 1.16 0.248 .9877794 1.04882
educ3 .9802774 .0175087 -1.12 0.265 .9465547 1.015202
age2 1.023043 .0156445 1.49 0.136 .9928357 1.05417
age3 1.029421 .0167671 1.78 0.075 .9970771 1.062814

loginc 1.029692 .017289 1.74 0.081 .9963574 1.064141

Although the parameter estimates and standard errors are different, the fit statis-
tics are all extremely close. The log-likelihood function, AIC and BIC statistics,
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Figure 7.2. Canonical geometric model for predicted mean number of visits: stan-
dardized deviance residuals versus fitted values

and dispersion statistics are each nearly identical with one other. Only one pre-
dictor, age3, has ambivalent results with respect to significance. Scaling stan-
dard errors and applying a robust variance estimator did not affect the difference.
As it is, because the coefficients of age2 and age3 are similar, one might attempt
to combine levels 2–3 with age1. The three levels together then would serve
as the referent. Education appears to be ruled out as contributory, and should
likely be dropped. Moreover, assessing the possibility of interactions may lead
to beneficial results. Modeling is far from complete.

A comparison of graphs of standardized deviance residuals by fit can apprise
the reader if there are major distributional differences between the models,
that somehow were not picked up by the fit statistics. Figure 6.6 displays the
Poisson and negative binomial model residuals; Figure 7.1 shows the canonical
geometric. However, since the negative binomial graph is based on an α of 1,
it can be considered as (log) geometric.

7.2 NB-1: The linear constant model

7.2.1 NB-1 as QL-Poisson

Cameron and Trivedi (1986) were the first to make a distinction between the
NB-1 and NB-2 models. The notion is based on the value of the exponent in
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Table 7.2. Creation of synthetic NB-1 data set <stata code>

set obs 50000 // Set data to 50,000 observations
gen x1 = invnorm(uniform()) // x1 random normal variate
gen x2 = invnorm(uniform()) // x2 random normal variate
gen xb1 =.5 + 1.25 ∗x1 - 1.5∗x2 // define linear predictor
gen exb1 = exp(xb1) // exponentiate linear predictor
gennbreg y1, mu(exb1) delta(0.5) dispersion(constant)

// NB-1 random variates

the variance function. NB-2, the traditional parameterization of the negative
binomial, has a variance function appearing as µ + αµ2, or equivalently,
µ(1 + αµ). The first of these formulae is the most common representation
of the variance. The square value of µ in the formula classifies the equation as
quadratic. The NB-1 model, on the other hand, is called the linear parameteri-
zation, due to its form: µ + αµ or µ(1 + α). The highest (implied) value of an
exponent of µ in the formula is 1. A variable power negative binomial variance
function has been given as µ + αµp, with p taking the value of 2 if quadratic,
and 1 if linear. In the next section we shall address the situation where p is
considered as another ancillary parameter – NB-P.

Table 7.1 displayed the range of multiplicative extensions that have been
applied to the Poisson variance function. The top five in the list included the
following:

Poisson : V = µ NB-1 : V = µ(1+ α)
QL Poisson : V = µ(φ) NB-2 : V = µ(1+ αµ)
Geometric : V = µ(1+ µ)

Expressed in the above manner, we see that the values within the parentheses
are, taken together, multipliers of the basic Poisson variance. As such, there
is little difference in the quasi-likelihood and NB-1 parameterizations. If α is
entered into the estimating equation as a constant, then the two formulae are
identical – both are quasi-likelihood models. On the other hand, if α is estimated
(maximum likelihood), then the models are clearly different. An example may
help clarify these relationships.

Parameters are defined as:

Constant = 0.50
X1 = 1.25
X2 = -1.50
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Modeling the data as NB-1, using maximum likelihood, we have:

. nbreg y1 x1 x2, nolog dispersion(cons)

Negative binomial regression Number of obs = 49770
LR chi2(2) = 108413.66

Dispersion = constant Prob > chi2 = 0.0000
Log likelihood = -87238.249 Pseudo R2 = 0.3832

y1 Coef. Std. Err. z P>|z| [95% Conf. Interval]

x1 1.250363 .0016506 757.50 0.000 1.247128 1.253599
x2 -1.500081 .0016055 -934.37 0.000 -1.503228 -1.496934

�cons .5027491 .0035794 140.46 0.000 .4957337 .5097646
----------------------------------------------------------------
/lndelta -.6870266 .0222631 -.7306615 -.6433917
----------------------------------------------------------------

delta .5030697 .0111999 .4815903 .525507

Likelihood-ratio test of delta=0: chibar2(01) = 4039.17 Prob>
=chibar2 = 0.000

We now model the data as a QL-Poisson with φ = (1 + α) = 1.503+. The
estimating algorithm uses built-in quasi-likelihood capability, which is based
on Fisher scoring. Fisher scoring in turn uses the expected rather than observed
information matrix to calculate standard errors. This results in the comparative
differences between the standard errors of the NB-1 and QL-Poisson models.

. glm y1 x1 x2, nolog fam(poi) disp(1.5030697) irls

Generalized linear models No. of obs = 49770
Optimization : MQL Fisher

scoring
Residual df = 49767

(IRLS EIM) Scale parameter = 1.50307
Deviance = 43557.89747 (1/df) Deviance = .8752366
Pearson = 50154.52375 (1/df) Pearson = 1.007787
Quasi-likelihood
model with
dispersion

: 1.50307 BIC = -494680.6

EIM
y1 Coef. Std. Err. z P>|z| [95% Conf. Interval]

x1 1.250264 .0011009 1135.67 0.000 1.248106 1.252422
x2 -1.499982 .0010706 -1401.10 0.000 -1.50208 -1.497884

�cons .5030227 .0023855 210.87 0.000 .4983473 .5076982

AIC = 3.586933

The foremost reason to use a maximum likelihood NB-1 model rather than
a QL-Poisson model with data rests with the fact that NB-1 estimates φ as
(1 + α), whereasφ, as a dispersion statistic, must be entered into the QL-Poisson
model as a constant. On the down side, NB-1 is rarely supported in commercial
software. As of this writing, only Stata and LIMDEP offer it as a capability.
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7.2.2 Derivation of NB-1

The NB-1, or linear negative binomial, is derived as a Poisson–gamma mixture
model; however, the manner of derivation differs from the traditional NB-2
model (see Chapter 5). As with the NB-2 model, the derivation begins with
the usual count data, or Poisson, model (again, for the most part I shall forgo
subscripts for ease of interpretation for the remainder of this section).

yi ∼ Poisson(λi ) = f (yι; λι) = e−λµy/y! (7.21)

However, in this case the mean of the Poisson is itself a random variable such
that

λi ∼ gamma(δ, µi ) (7.22)

through which covariates are introduced via µi = exp(xiβ). If an offset is
applied to the model, µi = exp(xiβ) + offset. However, unless specifically
addressed, I shall forego including the offset with the linear predictor for sim-
plification purposes.

From the definition of the Gamma distribution we know that the mean and
variance are given by

E[λi ] = µi

δ
= exp(xiβ)/δ (7.23)

V[λi ] = µi

δ2
= exp(xiβ)/δ2 (7.24)

where δ is the gamma scale parameter.
The resulting mixture is described as

f (y|x) =
∞∫

0

e−λi λ
yi

i

yi !

δµi

�(µi )
e−λi δdλi (7.25)

Solving to clear the integration, we have

f (y; µ) =
∫ ∞

0
e−µµy/y! δµ/�(µ) µµ−1e−µδdµ (7.26)

= δµ

�(µ + 1)�(µ)

∞∫
0

µ(y+µ)−1e−µ(δ+1)dµ (7.27)

= δµ

�(µ + 1)�(µ)

�(y + µ)

(δ + 1)y+µ
× C dµ (7.28)

where C reduces to the value of 1. It appears as

C =
∫ ∞

0

(δ + 1)y+µ

�(y + µ)
λ(y+µ)−1e−λ(δ+1)dλ (7.29)
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Continuing from Equation (7.28), less the value of C, we have

= �(y + µ)

�(y + 1)�(µ)
(δ/(1 + δ))µ(1/1 + δ)y (7.30)

The mean and variance of Equation (7.30), the NB-1 distribution, are

NB-1 mean = E[y] = exp(xβ)/δ (7.31)

NB-1 variance = E[y] = exp(xβ)(1 + δ)/δ2 (7.32)

The variance to mean ratio is (1 + δ)/δ2, which is constant for all observations.
This feature of the distribution results in constant overdispersion within the
model, unlike NB-2, in which δ is variable with a mean of 1. Defining α = 1/δ,
the distribution may be re-expressed in more familiar terms as

�(y + µ)

�(y + 1)�(µ)
(1/(1 + α))µ(α/1 + α)y (7.33)

As in the parameterization of NB-2, specified in Chapter 5, α = 0 is Poisson.
Standardizing the coefficients, β, by the addition of −ln(α) to the linear

predictor

E(y) = µ = exp(xβ − ln(α)) (7.34)

the NB-1 distribution (Eq. (7.33)) may be expressed as the log-likelihood

L(µ; y) = �[ln {�(µ + y)} − ln {�(y + 1)}
− ln {�(µ)} + y ln(α) − (y + µ) ln(1 + α)] (7.35)

Additional discussion regarding the derivation of the NB-1, as well as of the
logic of the standardization of the linear predictor, can be found in Hardin and
Hilbe (2001). Also see Cameron and Trivedi (1998).

7.2.3 Modeling with NB-1

Using the same German health reform data as earlier in this chapter, number of
visits is modeled as NB-1:

. nbreg numvisit reform badh educ2 educ3 age2 age3 loginc,
irr disp(constant)

Negative Binomial Type 1 Number of obs = 2227
Regression

Wald chi2(7) = 318.49
Log likelihood = -4600.3458 Prob > chi2 = 0.0000
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numvisit IRR Std. Err. z P>|z| [95% Conf. Interval]

reform .9019533 .0402234 -2.31 0.021 .8264641 .9843378
badh 2.607651 .147245 16.97 0.000 2.334453 2.912822

educ2 1.050977 .0616253 0.85 0.396 .9368752 1.178974
educ3 1.017186 .0629838 0.28 0.783 .9009369 1.148435
age2 .9936896 .0544585 -0.12 0.908 .8924856 1.10637
age3 1.050923 .0655038 0.80 0.426 .9300703 1.18748

loginc 1.135741 .0686193 2.11 0.035 1.008907 1.278519
------------------------------------------------------------
/lnalpha .9881723 .05329 18.54 0.000 .8837258 1.092619
------------------------------------------------------------

alpha 2.68632 .143154 2.419899 2.982073
------------------------------------------------------------
AIC Statistic = 4.139

The following table lists the differences in AIC and alpha for the models we have
thus far discussed. Note that the NB-2 and canonical linked model, NB-C, are
nearly identical, even though NB-C does not use a log link in its algorithm. Both
NB-2 and NB-1 employ the log link. On the other hand, parameter estimates for
each of the models are similar, and indicate the same predictors as contributory
to the model.

AIC alpha
NB-2 4.104 .998
NB-C 4.104 .998
NB-1 4.139 2.686

Of possible interest is a comparison of models based on the synthetic data cre-
ated in the first section of this chapter. Using the same parameter specifications,
synthetic data sets were created for both NB-2 and NB-1 models. Modeling
combinations of NB-1 and 2 data with NB-1 and 2 models gives us:

PARAMETERS: X1= 2.0; X2= -.5; �CONS= -1.0; delta/alpha= 1.0

MODEL: NB-1
DATA: NB-1

y1 Coef. Std. Err. z P>|z| [95% Conf. Interval]

x1 2.001738 .0035015 571.68 0.000 1.994876 2.008601
x2 -.5045447 .0034868 -144.70 0.000 -.5113788 -.4977106

�cons -1.002748 .0081231 -123.44 0.000 -1.018668 -.9868266
-------------------------------------------------------------
Delta 1.015196 .0201667 .9764294 1.055501
-------------------------------------------------------------
Likelihood-ratio test of delta=0:chibar2(01)= 9132.96 Prob>
=chibar2 = 0.000
AIC Statistic = 2.292
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MODEL: NB-1

DATA: NB-2

y2 Coef. Std. Err. z P>|z| [95% Conf. Interval]

x1 1.541805 .0078804 195.65 0.000 1.526359 1.55725
x2 -.3880394 .0062148 -62.44 0.000 -.4002201 -.3758587

�cons -.0982971 .014988 -6.56 0.000 -.1276729 -.0689212
----------------------------------------------------------------
delta 8.713806 .1342828 8.454552 8.981011
----------------------------------------------------------------
Likelihood-ratio test of delta=0: chibar2(01) = 8.4e + 04 Prob>
=chibar2 = 0.000
AIC Statistic = 2.606

MODEL: NB-2

DATA: NB-1

y1 Coef. Std. Err. z P>|z| [95% Conf. Interval]

x1 1.989207 .006577 302.45 0.000 1.976316 2.002098
x2 -.4956426 .0051694 -95.88 0.000 -.5057745 -.4855108

�cons -.9852668 .0088877 -110.86 0.000 -1.002686 -.9678472
----------------------------------------------------------------
alpha .2370104 .0074614 .2228283 .2520951
----------------------------------------------------------------
Likelihood-ratio test of alpha=0: chibar2(01) = 3761.32 Prob>
=chibar2 = 0.000
AIC Statistic = 2.408

A few observations regarding the above output: First, modeling NB-2 data with
a NB-1 model substantially alters the specified parameter estimates, as well
as the value of delta/alpha. Second, modeling NB-1 data with a NB-2 model
does not substantially alter the specified parameter estimates, but the value
of the ancillary parameter is changed. These relationships may be important in
practical applications, but only if one knows a priori how the data are generated.

7.3 NB-H: Heterogeneous negative binomial regression

The heterogeneous negative binomial extends the negative binomial model by
allowing observation-specific parameterization of the ancillary parameter, α. In
other words, the value of α is partitioned by user-specified predictors. α takes
the form exp(ziν), which, like α, is positive.

There are two uses of the heterogeneous model. First, parameterization of α

provides information regarding which predictors influence overdispersion. Sec-
ond, it is possible to determine whether overdispersion varies over the significant
predictors of α by observing the differential values of its standard errors. If the
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standard errors vary only little between parameters, then the overdispersion in
the model can be regarded as constant.

. GENERALIZED NB-2:alpha==.5
Std. [95% Conf.

Coef. Err. z P>|z| Interval]

y1
x1 -1.503948 .0049501 -303.82 0.000 -1.51365 -1.494246
x2 .7491305 .004433 168.99 0.000 .740442 .757819

�cons .9939296 .004998 198.86 0.000 .9841336 1.003725
-------------------------------------------------------------------
lnalpha

x1 .0041994 .0131544 0.32 0.750 -.0215828 .0299815
x2 -.0047799 .0110758 -0.43 0.666 -.0264881 .0169283

�cons -.6846148 .015551 -44.02 0.000 -.7150941 -.6541354
-------------------------------------------------------------------
AIC Statistic = 4.584

The above NB-2 synthetic data set is created with parameters of x1 = −1.5, x2

= 0.75, and constant = 1.0. α is specified as 0.5. Parameterization of α produces
estimates that have little variability; i.e., there is little difference in α parameter
values as well as standard errors. Of course, in setting up the data, x1 and x2

were created using the same formula. Synthetic data sets having different αs
produce similar results.

Parameterization ofα for a NB-2 model of numvisits (mdvisitsx), as displayed
in section 7.3 in this chapter, is given as:

Coef. Std. Err. z P>|z| [95% Conf. Interval]

numvisit
reform -.1331439 .0507271 -2.62 0.009 -.2325672 -.0337205
badh 1.127951 .0717968 15.71 0.000 .9872322 1.26867

educ2 .0867164 .0686798 1.26 0.207 -.0478936 .2213264
educ3 -.0267123 .070227 -0.38 0.704 -.1643548 .1109302
age2 .0429533 .0650913 0.66 0.509 -.0846232 .1705299
age3 .1742675 .0751244 2.32 0.020 .0270264 .3215087

loginc .1132818 .070934 1.60 0.110 -.0257463 .2523099
�cons -.148793 .5421144 -0.27 0.784 -1.211318 .9137316

--------------------------------------------------------------
lnalpha
reform -.009731 .0971176 -0.10 0.920 -.200078 .180616
badh -.1890283 .1238452 -1.53 0.127 -.4317604 .0537037

educ2 .0521736 .1223241 0.43 0.670 -.1875772 .2919245
educ3 -.3076519 .1383376 -2.22 0.026 -.5787886 -.0365151
age2 .2675544 .1180651 2.27 0.023 .036151 .4989577
age3 .3246583 .1284251 2.53 0.011 .0729499 .5763668

loginc -.0967873 .1338098 -0.72 0.469 -.3590498 .1654751
�cons .7203326 1.025238 0.70 0.482 -1.289097 2.729762

--------------------------------------------------------------
AIC Statistic =4.094

Having α parameterized tells us which predictors influence α. educ3, and
age (age2, age3) influence the amount of overdispersion in the data. These
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two predictors also significantly contribute to the count aspect of a negative
binomial-clog hurdle model on the same data, as shall be observed in Chapter
9. The AIC value of 4.094 is also the same value as that of the hurdle model.

Heterogeneous negative binomial regression is a valuable tool for assessing
the source of overdispersion. It can be used to differentiate sources influencing
the model parameter estimates versus sources influencing overdispersion. A
reduced model, indicating such influences, is given as

Coef. Std. Err. z P>|z| [95% Conf. Interval]

numvisit
reform -.1359128 .0508994 -2.67 0.008 -.2356739 -.0361517
badh 1.156625 .0746261 15.50 0.000 1.01036 1.302889
age3 .1775751 .0723686 2.45 0.014 .0357352 .319415

loginc .1302475 .0689939 1.89 0.059 -.0049781 .2654731
�cons -.2445701 .5329164 -0.46 0.646 -1.289067 .7999268

--------------------------------------------------------------
lnalpha

age2 .2620468 .1147147 2.28 0.022 .0372102 .4868835
age3 .3325014 .1244992 2.67 0.008 .0884876 .5765153

�cons -.1316017 .0657923 -2.00 0.045 -.2605521 -.0026512

7.4 The NB-P model

Building on the prior work of Winkelmann and Zimmermann (1995) and
Cameron & Trivedi (1998), who discussed what was termed a Generalized
Event Count [GEC(k)] model, Greene (2006) created the NB-P model to allow
more flexibility in the NB-2 variance. Recall that the form of the NB-1 and
NB-2 variance functions are, respectively

NB-1 µi + αµi or µi (1 + α)

NB-2 µi + αµ2
i or µi (1 + αµi )

Greene’s generalization takes the form

NB-P µi + αµ
Q
i or µi

(
1 + αµ

Q−1
i

)
(7.36)

where Q is a parameter to be estimated. This form of negative binomial is
a three parameter model, with µ, α, and Q as parameters. It is not a simple
reparameterization of the basic NB-2 model, but rather an entirely separate
model.

The NB-2 model may be schematized as (see Greene, 2006 (E24.3.4))

Prob(Y = yi |xi ) = �(yi + θ )

�(θ )�(yi + 1)
uθ

i (1 − ui )
yi (7.37)
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with

ui = θ/(θ + µi ) (7.38)

and

θ = 1/α (7.39)

NB-1 as

Prob(Y = yi |xi ) = �(yi + µiθ )

�(µiθ )�(yi + 1)
uµθ

i (1 − ui )
yi (7.40)

with

ui = θ/(θ + 1) (7.41)

The NB-P distribution takes the same form as NB-2, as expressed in
Equations (7.37)–(7.39). However, for each value of θ in Equations (7.37)
and (??), we substitute the value θµ2-P. For ease of interpretation, however,
Greene substitutes parameter 2-P as Q, with NB-2 having Q = 0 and NB-1 as
Q = 1. Parameterized in this manner, the NB-P distribution replaces NB-2
values of θ with the value θµQ.

The NB-P probability mass function is given by Greene (2006) as

Prob(Y = yi |xi ) = �
(
θλ

Q
i + yi

)
�

(
θλ

Q
i

)
� (yi + 1)

(
θλ

Q
i

θλ
Q
i + λi

)θλ
Q
i

(
λi

θλ
Q
i + λi

)yi

(7.42)

An example will show the value of the NB-P model. We use the same German
health data, called rwm, as used by Greene. It is taken from earlier years than
the mdvisitsx data we have used in previous examples.

The response is docvis, number of visits to the doctor, with three predictors:

age : age from 25 through 64
hh : monthly net household income in German marks/1,000. Converted

from hhninc by hh=hhninc/10
educ : years of schooling, ranging from 7 through 18(+).

First, we use a NB-2 model to estimate parameters and the value of alpha.

. gen hh = hhninc/10

. nbreg docvis age hh educ, nolog

Negative binomial regression Number of obs = 27326
LR chi2(3) = 1027.40

Dispersion = mean Prob > chi2 = 0.0000
Log likelihood = -60322.021 Pseudo R2 = 0.0084
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docvis Coef. Std. Err. z P>|z| [95% Conf. Interval]

age .0204292 .0008006 25.52 0.000 .0188601 .0219984
hh -.4768144 .0522786 -9.12 0.000 -.5792785 -.3743503

educ -.0459575 .0042257 -10.88 0.000 -.0542398 -.0376752
�cons .9132608 .0633758 14.41 0.000 .7890465 1.037475

----------------------------------------------------------------
/lnalpha .6608039 .0115374 .638191 .6834168
----------------------------------------------------------------

alpha 1.936348 .0223404 1.893053 1.980634
----------------------------------------------------------------
Likelihood-ratio test of alpha=0: chibar2(01) = 8.9e + 04 Prob>
=chibar2 = 0.000
AIC Statistic =4.415

We next model the data as NB-P, where both α as well as Q is estimated.
LIMDEP 9.0 is used to model the data.

Negative Binomial (P) Model
Maximum Likelihood Estimates
Model estimated: Mar 31, 2006 at 09:13:20PM.
Dependent variable DOCVIS
Weighting variable None
Number of observations 27326
Iterations completed 15
Log likelihood function -60258.97
Number of parameters 6
Info. Criterion: AIC = 4.41082
Finite Sample: AIC = 4.41082
Info. Criterion: BIC = 4.41262
Info. Criterion:HQIC = 4.41140
Restricted log likelihood -104814.1
McFadden Pseudo R-squared .4250871
Chi squared 89110.23
Degrees of freedom 1
Prob[ChiSqd > value] = .0000000

Standard
Variable Coefficient Error b/St.Er. P[|Z|>z] Mean of X

Constant .77029290 .05940343 12.967 .0000
AGE .02177762 .00074029 29.418 .0000 43.5256898

HHNINC -.38749687 .05121714 -7.566 .0000 .35208362
EDUC -.04127636 .00412037 -10.018 .0000 11.3206310

Dispersion parameter for count data model
Alpha 3.27757050 .14132403 23.192 .0000

Negative Binomial. General form, NegBin P
P 2.45563168 .03595933 68.289 .0000

Table 7.3 displays a comparison between NB-2 and NB-P estimates.
A likelihood ratio test between the NB-2 and NB-P models result in

−2{LL(NB-2) − LL(NB-P)}
−2{(−60322.021) − (−60268.97)}

106.10
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Table 7.3. Comparison: NB-2
and NB-P results

NB-2 NB-P

age .0204 .0218
hh -.4768 -.3875
educ -.0460 -.0413
constant .9133 .7703

alpha 1.936 3.275
power 2.000 2.456

AIC 4.415 4.411

A reverse cumulative upper tail χ2 distribution with one degree of freedom
gives us a probability value: chi2tail(1, 106.10) = 7.011e-25. The traditional
cutoff point for a 0.05 significance level is chiprob(1, 3.84) = .05004352.
Therefore, any χ2 having a value exceeding 3.84 will be significant; i.e. the
models significantly differ from one another. Greene presents a Wald t-test of
significance for comparing the two values of power: (NB-P–NB-2)/SENB-2 or
(2.456 − 2)/.036 = 12.65. Using a reverse cumulative upper tail Students’ T
distribution with one degree of freedom, we have: ttail(1,12.65) = .02511062.
A test of power gives additional evidence that the two models are significantly
different. Given the lower value of the NB-2 log-likelihood function, and a
slightly lower value of the NB-P AIC statistic, it appears that the NB-P model
may be slightly preferred over the NB-2.

NB-P models generalize the basic negative binomial model, providing more
flexibility in fitting data. The usefulness of the model has yet to be explored,
but I suspect that this fact will soon be remedied.

7.5 Generalized Poisson regression

A generalization to the basic Poisson model was developed by Consul and Jain
(1973), which they aptly termed generalized Poisson regression. It has since
undergone various modifications, with models created with names such as the
restricted generalized Poisson, three parameterizations of a Hybrid Generalized
Poisson, and so forth. Refer to Consul and Famoye (1992) for a good overview
of the base generalized Poisson model and its derivation.

Generalized Poisson is similar to the negative binomial in that it incorporates
an extra heterogeneity or dispersion parameter. However, unlike the negative
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binomial, the generalized Poisson, and its variations, allow modeling of both
underdispersed as well as overdispersed data.

The probability distribution given below is the parameterization found in
Famoye and Singh (2006), which corresponds to the manner in which we have
expressed the mean and heterogeneity parameters throughout the text. It is
given, without subscripts, as

f (y; µ; α) = (µ/(1 + αµ))2(1 + αµ)y−1/y! exp[−µ(1 + αy)/(1 + αµ)]

with α specifying the heterogeneity parameter.
The log-likelihood function can be given as

L(µi ; α, yi ) =
n∑

i=1

y ln(µi/(1 + αµi ) + (yi − 1) ln(1 + αyi )

− [µi (1 + αyi )/(1 + αµi )] − 1n�(yi + 1))

or terms of xβ as

L(β; α, yi ) =
n∑

i=1

y ln(exp(xiβ)/(1+α exp(xiβ))+(yi − 1) ln(1 + αyi )

− [exp((xiβ)(1 + αyi )/(1 + α exp(xiβ))] − ln �(yi + 1)

Like the negative binomial, as α approaches zero, the generalized Poisson
reduces to the basic Poisson. That is, a generalized Poisson having an α zero is
Poisson, and is equi-dispersed. The model is neither under-nor over-dispersed.
In most real data situations this rarely occurs. However, since α of the general-
ized Poisson model can be both positive and negative, any value close to zero
should be considered as Poisson. Tests modeled after NB-2 tests can assess if
the generalized model is statistically different from a Poisson model.

We use a generalized Poisson regression procedure based on the above
parameterization of the distribution to model the same German health care data
as in the previous sections. LIMDEP is the only commercial software package
to offer the generalized Poisson regression model to its users. However, the
software implementation used here, authored by James Hardin, is written using
Stata’s higher programming language. It was first used in Hardin and Hilbe
(2007) as well as in an unpublished manuscript authored by Yang, Hardin, and
Addy (2007). Refer to Hardin and Hilbe (2007) for more extensive discussion
of the model. In addition, an excellent overview of the various generalizations
to the Poisson model, under the rubric of generalized Poisson regression, can
be found in Drescher (2005).

We model the number of visits to the doctor with the aim of determining if
there is a change in the count from before to after health care reform (reform).
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The model is adjusted by health status, education level, age group, and the log
of patient income. The result of employing a generalized Poisson model is:

. gpoisson numvisit reform badh educ2 educ3 age2 age3
loginc, nolog

Generalized Poisson regression Number of obs = 2227
LR chi2(7) = 212.17
Prob > chi2 = 0.0000

Log likelihood = -4580.1188 Pseudo R2 = 0.0226

numvisit Coef. Std. Err. z P>|z| [95% Conf. Interval]

reform -.0989636 .0444614 -2.23 0.026 -.1861064 -.0118208
badh .9377614 .0571122 16.42 0.000 .8258236 1.049699
educ2 .0448823 .0586723 0.76 0.444 -.0701133 .159878
educ3 .026951 .0617273 0.44 0.662 -.0940324 .1479343
age2 -.0209855 .0548281 -0.38 0.702 -.1284465 .0864755
age3 .0440805 .0622676 0.71 0.479 -.0779618 .1661227

loginc .1224226 .0602443 2.03 0.042 .0043459 .2404993
�cons -.1382682 .4571795 -0.30 0.762 -1.034323 .7577872

-------------------------------------------------------------
/Zdelta .0062482 .0243254 -.0414287 .0539252
-------------------------------------------------------------

delta .5031241 .0121622 .4792975 .5269365
-------------------------------------------------------------
Likelihood-ratio test of delta=0:chibar2(1) = 2703.59 Prob>
=chibar2(1) = 0.000

. aic
AIC Statistic =4.121

The model indicates overdispersion (α = .50). We compare with the NB-1 table
of estimates.

numvisit IRR Std. Err. z P>|z| [95% Conf. Interval]

reform .9019533 .0402234 -2.31 0.021 .8264641 .9843378
badh 2.607651 .147245 16.97 0.000 2.334453 2.912822
educ2 1.050977 .0616253 0.85 0.396 .9368752 1.178974
educ3 1.017186 .0629838 0.28 0.783 .9009369 1.148435
age2 .9936896 .0544585 -0.12 0.908 .8924856 1.10637
age3 1.050923 .0655038 0.80 0.426 .9300703 1.18748

loginc 1.135741 .0686193 2.11 0.035 1.008907 1.278519
-------------------------------------------------------------
/lnalpha .9881723 .05329 18.54 0.000 .8837258 1.092619
-------------------------------------------------------------

alpha 2.68632 .143154 2.419899 2.982073
-------------------------------------------------------------
AIC Statistic =4.139
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and the NB-2 table of parameter estimates:

numvisit Coef. Std. Err. z P>|z| [95% Conf. Interval]

reform -.1376897 .0510927 -2.69 0.007 -.2378295 -.0375499
badh 1.142588 .0743937 15.36 0.000 .9967791 1.288397
educ2 .0822126 .0660359 1.24 0.213 -.0472153 .2116406
educ3 -.0303508 .070688 -0.43 0.668 -.1688968 .1081951
age2 .0484328 .0634691 0.76 0.445 -.0759644 .17283
age3 .1879573 .0719228 2.61 0.009 .0469913 .3289233

loginc .1262033 .0703792 1.79 0.073 -.0117374 .2641439
�cons -.2478272 .5364981 -0.46 0.644 -1.299344 .8036898

---------------------------------------------------------------
/lnalpha -.001789 .0476115 -.0951058 .0915279
---------------------------------------------------------------

alpha .9982126 .0475264 .9092767 1.095847
---------------------------------------------------------------
AIC Statistic =4.104

A reduced model may be developed by entering only those predictors that
significantly contribute to the model. Care must be taken to check each combi-
nation of predictors in the full model. Significant interaction effects may still
occur among predictors that appear non-contributory in the full model. In this
case, however, no such effects were identified. The “best” model based on the
full model predictors is:

. gpoisson numvisit reform badh loginc, nolog

Generalized Poisson regression Number of obs = 2227
LR chi2(3) = 210.80
Prob > chi2 = 0.0000

Log likelihood = -4580.8043 Pseudo R2 = 0.0225

numvisit Coef. Std. Err. z P<|z| [95% Conf. Interval]

reform -.0971893 .0442944 -2.19 0.028 -.1840048 -.0103739
badh .9392447 .0558072 16.83 0.000 .8298646 1.048625

loginc .1366256 .0576442 2.37 0.018 .0236451 .2496061
�cons -.2186771 .4473718 -0.49 0.625 -1.09551 .6581556

-------------------------------------------------------------
/Zdelta .0064582 .0243029 -.0411745 .0540909

-------------------------------------------------------------
delta .5032291 .0121509 .4794244 .5270191

-------------------------------------------------------------
Likelihood-ratio test of delta=0:chibar2(1) = 2748.22 Prob>
=chibar2(1) = 0.000

. aic
AIC Statistic = 4.118

The reduced model produces an AIC statistic that is less, but not significantly
so, than the full generalized Poisson model. P-values for reform and badh
are statistically identical between the full and reduced model. The p-value
for loginc improves substantially in the reduced model, especially considering
the relatively large number of observations. The heterogeneity parameter is
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statistically identical in the two models. It appears that there is no statistical
reason to prefer one model over the other.

7.6 Summary

There are two major varieties of enhancements to the negative binomial model.
One type relates to adjustments made to the basic NB-2 model in light of distri-
butional abnormalities with the data. That is, the count data to be modeled do not
always match the distributional assumptions of the negative binomial model.
Likewise, count data do not always accord with the distributional assumnptions
of the Poisson. Although NB-2 is used to adjust for Poisson overdispersion,
it does so without a knowledge of the possible reasons for the overdispersion.
However, certain distribuitional properties of the data violate both Poisson
and NB-2 assumptions, and we can identify the source of overdispersion. For
instance, both Poisson and NB-2 require that there at least be the possibility of
zero counts in the data, or, if there are, that there is not an excessive number
as compared with the assumptions of the respective distributions. When there
are no possibilities of zero counts, or there are far more than what accords with
the respective model assumptions, then one may construct zero-truncated or
zero-inflated Poisson and negative binomial models. We address these models
in the next chapter.

The second type of enhancement adjusts the Poisson variance function,
thereby creating new statistical models. Alterations in variance functions are
shown in Table 7.1. An overview of each of these models was presented in this
chapter. The following is a very brief summary of how each of these models
relates to the basic NB-2 model.

Geometric : NB-2 with α==1
NB-1 : NB-2 with no exponent
NB-H : NB-2 with α parameterized
NB-P : NB-2 with the exponent parameterized

Generalized Poisson: α can be used for both over- and underdispersion. It is not
a negative binomial model, but a Poisson with ancillary parameter not based on
gamma distribution.

Unfortunately most commercial software does not offer these models. Only
LIMDEP offers them all. Stata’s nbreg command can be used to model both
NB-2 and NB-1 by using the dispersion(mean) and dispersion(constant) options
respectively. Dispersion(mean) is the default. Stata also has the NB-H model,
but calls it generalized negative binomial instead. However, since there is a pre-
vious tradition in the literature regarding generalized negative binomial models
that differs considerably from NB-H, Stata’s usage is a misnomer. I do not
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discuss the generalized negative binomial in this text since the models that
have been developed have thus far been proved to result in rather highly biased
estimates. They are not found in any commercial software. On the other hand,
the generalized Poisson is similar to the generalized negative binomial models,
but it does not suffer from their difficulties. Stata offers it as a user authored
program. NB-P, first developed in 2006, is unique to LIMDEP and can more
properly be termed a generalized model. It will likely become a well-used model
in the future.

Exercises

1 Construct an identity-geometric model; i.e. a geometric family with an iden-
tity link. Compare output with the identity-gamma model using the cancer
data set with studytime as the response. Use age and levels of drug as explana-
tory predictors. Drug level 1 is the referent. Discuss the relationship between
the two sets of parameter estimates.

2 Parameterize the NB-2 model with the variance function defined as µ +
µ2/ν rather than the standard parameterization. What will be the limiting
value of ν for the model to be Poisson? Why?

3 Is the NB-2 model a member of the exponential family of distributions?
What are the implications for estimating the model?

4 Develop a maximum likelihood NB-P program using a higher language such
as SAS- IML, Stata, or R. How does the addition of a fractional power for the
second term in the negative binomial variance function add to the robustness
of the NB-2 binomial?

5 The NB-H model allows parameterization of the negative binomial ancil-
lary parameter. Why may predictors differ between two sets of displayed
parameter estimates? How do the results relate to model overdispersion?

6 Construct a maximum likelihood double-Poisson model for estimating
underdispersed count data. Use it on the data of Exercise 7.1. How does
it differ from the identity-Gaussian and identity-gamma models? The dou-
ble Poisson PDF can be formulated as:

f (yiµ, φ) = k(µ, φ)φ0,5 exp(−µ, φ) exp(−y)yy((eµ)/y)yφ,

where
k(µ, φ)−1 ≈ 1 + (1 − φ)/(12µφ)∗(1 + 1/(µφ).

(See Cameron and Trivedi, 1998, p. 115.)
7 Show how a Poisson regression model can duplicate the output of a log-

hazard parameterization right-censored exponential regression model. How
does modeling negative binomial instead of a Poisson affect the results?
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Problems with zero counts

I have indicated that extended negative binomial models are generally developed
to solve either a distributional or variance problem arising in the base NB-2
model. Changes to the negative binomial variance function were considered
in the last chapter. In this chapter, we address the difficulties that arise when
there are either no possible zeros in the data, or when there are an excessive
number.

8.1 Zero-truncated negative binomial

Often we are asked to model count data that structurally exclude zero counts.
Hospital length of stay data are an excellent example of count data that cannot
have a zero count. When a patient first enters the hospital, the count begins.
Upon registration the length of stay is given as 1. There can be no 0 days –
unless we are describing patients who do not enter the hospital, and this is a
different model where there may be two generating processes. This type of
model will be discussed later.

The Poisson and negative binomial distributions both include zeros. When
data structurally exclude zero counts, then the underlying probability distribu-
tion must preclude this outcome to properly model the data. This is not to say
that Poisson and negative binomial models are not commonly used to model
such data, the point is that they should not. The Poisson and negative binomial
probability functions, and their respective log-likelihood functions, need to be
amended to exclude zeros, and at the same time provide for all probabilities in
the distribution to sum to one.

With respect to the Poisson distribution, the probability of a zero count,
based on the PDF given in Equation (3.1), is exp(−µ). This value needs to

160
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be subtracted from 1 and then the remaining probabilities rescaled on this
difference. The resulting log-likelihood function, with µ = exp(xβ), is

L(µ; yi |yi > 0) =
i=1∑
i=1

{yi (xiβ) − exp(xiβ)

− ln�(yi + 1) − ln[1 − exp(−exp(xiβ))]} (8.1)

The logic of the zero-truncated negative binomial is the same. The probability
of a zero count is

(1 + αµi )
−1/a (8.2)

Subtracting from 1 and together conditioning out of the negative binomial log-
likelihood by rescaling, we have

L(µ; yi |yi > 0) =
n∑

i=1

{LLNB − ln[1 − {1 + exp(xiβ)}−1/α]} (8.3)

where LLNB is the negative binomial log-likelihood as given in Equation (5.41).
It is clear that an IRLS type estimating algorithm is not appropriate for

zero-truncated models. IRLS or GLM-type models are based on a likelihood
derived from a probability function that is a member of the exponential family
of distributions. GLM methodology allows the canonical link function to be
changed, but this does not affect the underlying probability function. In the case
of the zero-truncated models, the likelihood itself has changed. The amendment
to the PDF and log-likelihood is not a simple reparameterization, but rather an
altogether new model. As with all models based on distributional violations of
the base Poisson and negative binomial, estimation is by maximum likelihood,
whether this be carried out by a type of Newton–Raphson method, quadrature,
simulation, or similar set of estimating equations.

The effect of truncation on a negative binomial model can be substantial.
Much depends on the shape of the observed distribution of counts. If the mean
count is high, then the theoretical probability of obtaining a zero count is less
than if the mean count is low. The graphs given in Section 5.3, provide clear
evidence of the relationship of the mean count to the probability of a zero count.
Given an observed distribution having a low mean count, the difference between
using a negative binomial model and a zero-truncated model will be substantial.
In such a case a truncated model should be used with the data.

We will again generate synthetic data to demonstrate the difference between
models. We first create a 50 000 observation negative binomial data set with
pre-established parameters of

x1 = 0.75 x2 = −1.25 constant = 0.5 alpha = .75
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Table 8.1. Synthetic data distribution: counts 0−10

y1 Freq. Percent Cum.

0 19,204 38.41 38.41
1 9,110 18.22 56.63
2 4,986 9.97 66.60
3 3,300 6.60 73.20
4 2,352 4.70 77.90
5 1,671 3.34 81.25
6 1,296 2.59 83.84
7 1,038 2.08 85.91
8 752 1.50 87.42
9 678 1.36 88.77

10 564 1.13 89.90

Next the data are modeled using a negative binomial algorithm. To find the
estimated value of α, we first model the data using a maximum likelihood
algorithm; then use a GLM model with α entered into the IRLS estimating
algorithm as a constant. The results are given as:

. nbreg y1 x1 x2

Generalized linear models No. of obs = 50000
Optimization : ML Residual df = 49997

Scale parameter = 1
Deviance = 49382.34156 (1/df) Deviance = .9877061
Pearson = 50215.19709 (1/df) Pearson = 1.004364
Alpha = .7417374 AIC = 3.809767
Log likelihood = −95241.17223 BIC = −491574.1

y1 Coef. OIM Std. Err. z P>|z| [95% Conf. Interval]

x1 .7458934 .0055059 135.47 0.000 .735102 .7566849
x2 -1.250949 .0058937 -212.25 0.000 -1.262501 -1.239398

�cons .504105 .0060375 83.50 0.000 .4922717 .5159382

A tabulation of the first 11 counts, from 0 to 10, is given in Table 8.1.
The mean count of y1 is 4.8, quite low considering the large range of counts.

We would expect that there will be a marked difference in estimates, α, and
remaining goodness-of-fit statistics when the data are modeled without zeros.

Specifying α as 0.75 resulted in the excess negative binomial zeros, although
it is possible to check the observed versus theoretical negative binomial distribu-
tions as we previously did to determine the extent to which the two distributions
vary. Next we drop all zero counts from the data, then model using a maxi-
mum likelihood algorithm to obtain a revised value of α, which is submitted
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to a GLM program to obtain new parameter estimates and goodness-of fit
statistics.

. glm y1 x1 x2, nolog fam(nb.4065592)

Generalized linear models No. of obs = 30796
Optimization : ML Residual df = 30793

Scale parameter = 1
Deviance = 27520.87201 (1/df) Deviance = .8937379
Pearson = 31951.97063 (1/df) Pearson = 1.037637
Variance
function :

V(u) =
u+(.4065592)uˆ2

[Neg. Binomial]

Link function :g(u) = ln(u) [Log]
AIC = 5.064485

Log likelihood = -77979.93742 BIC = -290729.1

y1 Coef. OIM Std. Err. z P>|z| [95% Conf. Interval]

x1 .5836536 .0048454 120.45 0.000 .5741567 .5931504
x2 -.9780867 .0051875 -188.55 0.000 -.988254 -.9679193

�cons .9911068 .0060602 163.54 0.000 .9792291 1.002985

Note the changes that have occurred by deleting zero counts from the full
negative binomial distribution having those parameters.

Modeling the data sans zero counts with a zero-truncated negative binomial
results in a model appearing very much like the model when zero counts were
included. Recall, the zero-truncated model is determining parameter estimates
based on a data without zero counts.

. ztnb y1 x1 x2

Zero Truncated Negative
Binomial Regression

Number of obs = 30796

Wald chi2(2) = 31709.22
Log likelihood = -70641.048 Prob > chi2 = 0.0000

y1 Coef. Std. Err. z P>|z| [95% Conf. Interval]

x1 .7481833 .0067904 110.18 0.000 .7348743 .7614922
x2 -1.25509 .0077214 -162.55 0.000 -1.270224 -1.239956

�cons .4996702 .0096698 51.67 0.000 .4807178 .5186227
-------------------------------------------------------------
alpha .742314 .0127209 .7177955 .76767
-------------------------------------------------------------
AIC Statistic = 4.588

We shall next use the medpar data set which we have used before to model
length of stay (los) data. Noting that the mean value of los is 9.9, we should
expect that zero counts would not have as great an impact on the model as with
the synthetic data with its mean count value of 4.8.
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NEGATIVE BINOMIAL

. nbreg los white died type2 type3
Log likelihood = -4781.7268

los Coef. Std. Err. z P>|z| [95% Conf. Interval]

white -.1258405 .0677911 -1.86 0.063 -.2587085 .0070276
died -.2359093 .0404752 -5.83 0.000 -.3152393 -.1565792
type2 .2453806 .0501704 4.89 0.000 .1470485 .3437128
type3 .7388372 .0750077 9.85 0.000 .5918248 .8858496
�cons 2.365268 .0679452 34.81 0.000 2.232097 2.498438
-------------------------------------------------------------
alpha .434539 .01947 .398006 .4744253
-------------------------------------------------------------
AIC Statistic = 6.404 BIC Statistic = -9324.893
Pearson = 1690.433634 (1/df) Pearson = 1.134519

ZERO-TRUNCATED NEGATIVE BINOMIAL

. ztnb los white died type2 type3
Log likelihood = -4736.7725

los Coef. Std. Err. z P>|z| [95% Conf. Interval]

white -.131835 .0746933 -1.77 0.078 -.2782312 .0145612
died -.2511928 .0446812 -5.62 0.000 -.3387663 -.1636193
type2 .2601118 .0552939 4.70 0.000 .1517378 .3684858
type3 .7691718 .0825861 9.31 0.000 .607306 .9310376
�cons 2.333412 .0749931 31.11 0.000 2.186428 2.480395
-------------------------------------------------------------
alpha .5315121 .0292239 .4772126 .59199
-------------------------------------------------------------
AIC Statistic = 6.344 BIC Statistic = -9545.967

As expected, the two models are similar. Moreover, the AIC and BIC statistics
tend to favor the zero-truncated model, as they should in such a situation.

Zero-truncated models are subsets of the more general truncated count mod-
els we shall discuss in the next chapter. However, given the frequency of
overdispersion in count data, as well as the frequency with which count models
exclude the possibility of zero counts, zero-truncated negative binomial models
are important to modeling counts and should therefore be part of the standard
capabilities of commercial statistical packages.

8.2 Negative binomial with endogenous stratification

Negative binomial with endogenous stratification is a model that is perhaps
most noted for its application in the area of recreation research (Shaw, 1988;
Englin and Shonkwiler, 1995). The model simultaneously accommodates three
features of on-site samples dealing with count data. The first accommodation
is an overdispersion relative to the Poisson model; the second is truncation of
zero counts; the third is endogenous stratification due to over-sampling.
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Table 8.2. Recreation model: predictors

income Freq. Percent Cum.

income1 <=25000 53 13.91 13.91
income2 35000−55000 97 25.46 39.37
income3 65000−95000 87 22.83 62.20
income4 >95000 144 37.80 100.00

Total 381 100.00

travel Freq. Percent Cum.

travel1 <.25 hrs 95 25.89 25.89
travel2 .25-<4 hrs 142 38.69 64.58
travel3 >=4 hrs 130 35.42 100.00

Total 367 100.00

gender Freq. Percent Cum.

female 0 155 38.75 38.75
male 1 245 61.25 100.00

Total 400 100.00

Endogenous stratification occurs when the likelihood of sampling observa-
tions is dependent on the choice made by a subject of study which is in itself
the response or dependent variable. For example, in the field of recreational
demand analysis, one is more likely to interview subjects who visit a particular
site more frequently than those who rarely visit it. This implies over-sampling
of those who visit more frequently, and reports of more visits than are likely
the case. This is termed endogeneity. Likewise, patients who visit a doctor
more frequently are more likely to be sampled if the survey about number of
visitations is conducted at the clinic.

If the data are in fact Poisson, and therefore equi-dispersed, but nevertheless
are truncated and endogenously stratified, the model is equivalent to Poisson
with the response subtracted by one, i.e. y − 1. The resulting re-scaled log-
likelihood is expressed as

L(xβ; yi ) = yi ln(α) + (yi − 1)ln(exp(xiβ))

− (yi + 1/α)ln(1 + α(exp(xiβ)))

− ln�(yi + 1) − ln�(1/α) + ln�(yi + 1/α) + ln(yi ); yi > 0
(8.4)

The following data loomis are taken from Loomis (2003). The study relates to
a survey taken on reported frequency of visits to national parks during the year.
The survey was taken at park sites, thus incurring possible effects of endogenous
stratification. I shall model a subset of the data, with anvisits, annual count of
reported visits to parks, as the response. Predictors include gender, distance
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traveled to the closest park, and annual income. Travel and income are factored
as shown in Table 8.2.

Modeling the data with a negative binomial algorithm with endogenous
stratification ( Martinez-Espiñeira, Amoako-Tuffour, and Hilbe, 2006) produces
the following output:

. nbstrat anvisits gender travel2 travel3 income2 income3
income4

Negative Binomial with Endogenous
Stratification

Number of obs = 342

Wald chi2(6) = 519.24
Log likelihood = -1232.0184 Prob > chi2 = 0.0000

anvisits Coef. Std. Err. z P>|z| [95% Conf. Interval]

gender -.6011335 .1272006 -4.73 0.000 -.8504421 -.3518249
travel2 -.5569893 .1453207 -3.83 0.000 -.8418127 -.2721658
travel3 -3.080732 .1580607 -19.49 0.000 -3.390525 -2.770939
income2 .4045486 .1919525 2.11 0.035 .0283287 .7807686
income3 -.7505286 .1953772 -3.84 0.000 -1.133461 -.3675962
income4 -.599445 .1827182 -3.28 0.001 -.9575661 -.241324

�cons -12.10614 124.4169 -0.10 0.922 -255.9588 231.7465
-------------------------------------------------------------------
/lnalpha 16.60685 124.4169 0.13 0.894 -227.2457 260.4594
-------------------------------------------------------------------

alpha 1.63e + 07 2.03e + 09 2.03e-99 1.3e + 113
-------------------------------------------------------------------
AIC Statistic = 7.252

Modeling the same data using a zero truncated negative binomial gives us:

. ztnb anvisits gender travel2 travel3 income2 income3
income4
Zero Truncated Negative Binomial
Regression

Number of obs = 342

Wald chi2(6) = 264.39
Log likelihood = -1188.9244 Prob > chi2 = 0.0000

anvisits Coef. Std. Err. z P>|z| [95% Conf. Interval]

gender -.7376444 .208367 -3.54 0.000 -1.146036 -.3292526
travel2 -.5795156 .2498082 -2.32 0.020 -1.069131 -.0899005
travel3 -3.646618 .2709248 -13.46 0.000 -4.177621 -3.115615
income2 .7553192 .3404561 2.22 0.027 .0880375 1.422601
income3 -.8828776 .3153164 -2.80 0.005 -1.500886 -.2648688
income4 -.510249 .3077044 -1.66 0.097 -1.113339 .0928406

�cons 4.233715 .3241964 13.06 0.000 3.598301 4.869128
-----------------------------------------------------------------
/lnalpha 1.339343 .2412675 5.55 0.000 .8664672 1.812218
-----------------------------------------------------------------

alpha 3.816534 .9208055 2.378493 6.124017
-----------------------------------------------------------------
AIC Statistic = 6.994 BIC Statistic = -1749.631
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The AIC statistic of two models indicate that the zero-truncated model without
adjustment for endogenous stratification is preferred. Moreover, the value of α

for the latter model is far too high. This indicates that the model does not fit
well with the data. The first 11 counts are:

anvisits Freq. Percent Cum.

1 133 32.44 32.44
2 30 7.32 39.76
3 15 3.66 43.41
4 8 1.95 45.37
5 5 1.22 46.59
6 15 3.66 50.24
7 3 0.73 50.98
8 3 0.73 51.71
9 2 0.49 52.20

10 10 2.44 54.63

The extreme number of 1s in the data is the likely cause of the model not
fitting.

The negative binomial with endogenous stratification model has seen rela-
tively little use and is apparently fragile in the presence of ill-structured data.
However, if the data are appropriate for the model, it performs better than its
strictly zero-truncated counterpart.

8.3 Hurdle models

We have emphasized the necessity of creating models that remedy variance
and distributional problems with the data that can plague Poisson and negative
binomial NB-2 models. Zero-truncated models attempt to accommodate the
data when zeros are structurally excluded from the model. But what happens
when there are far more zero counts in the data than are allowed on the basis
of negative binomial distributional assumptions? This topic, with graphs, was
discussed earlier. But we did not attempt to address ways to deal with the
situation.

Hurdle and zero-inflated count models are the two foremost methods used
to deal with count data having excessive zero counts. Neither of these models
is well supported in current commercial software; however LIMDEP sup-
ports both and Stata incorporates zero-inflated models. User designed hur-
dle models have been created in Stata by the author and have been pub-
lished at the Boston School of Economics statistical software repository
(see: http://ideas.repec.org/s/boc/bocode.html). I discuss hurdle models first
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because of their greater intuitional sense, and ease of interpretation. Note that
hurdle models are sometimes referred to as zero altered models (Heilbron,
1989). Zero altered Poisson and negative binomial models are thus referred to,
respectively, as ZAP and ZANB.

The essential idea of a hurdle model is to partition the model into two
parts – first, a binary process generating positive counts (1) versus zero counts
(0); second, a process generating positive only counts. The binary process is
modeled using a binary model, the positive count process is modeled using
a zero-truncated count model. There have been nine commonly used hurdle
models: the binary part modeled by logit, probit, or complememtary loglog, and
the count part modeled using Poisson, geometric, or negative binomial. The first
hurdle models were designed by Mullahy (1986) and were later popularized
by Cameron and Trivedi (1986, 1998). Mullahy used logit and cloglog binary
models with Poisson and geometric count models.

Again, the notion of hurdle comes from considering the data as being gener-
ated by a process that commences generating positive counts only after crossing
a zero barrier, or hurdle. Until the hurdle is crossed, the process generates a
binary response (1/0). The nature of the hurdle is left unspecified, but may sim-
ply be considered as the data having a positive count. In this sense, the hurdle
is crossed if a count is greater than zero. In any case, the two processes are
conjoined using the following log-likelihood

LL = ln( f (0)) + {ln[1 − f (0)] + lnP(t)}

where f (0) represents the probability of the binary part of the model and P(j)
represents the probability of a positive count. For ease of interpretation I shall
forgo the use of subscripts for the remainder of this section.

In the case of a logit model, the probability of zero is

f (0) = P(y = 0; x) = 1/(1 + exp(xβb))

and 1− f (0) is

exp(xβb)/(1 + exp(xβb))

The zero-truncated negative binomial loglikelihood is

P(y|x > 0) = y∗ln(exp(xβ)/(1 + exp(xβ))) − ln(1 + exp(xβ))/α

+ ln�(y + 1/α) − ln�(y + 1) − ln�(1/α)

− ln(1 − (1 + exp(xβ))∧(−1/α))
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Putting the above together, we have the two-part NB-logit hurdle model
likelihood.

If y == 0 = 1/(1 + exp(xβb))

If y > 0 = exp(xβb)/(1 + exp(xβb)) + y∗ln(exp(xβ)/(1 + exp(xβ)))

− ln(1 + exp(xb))/α + ln�(y + 1/α) − ln�(y + 1)

− ln�(1/α) − ln(1 − (1 + exp(xb))∧(−1/α))

For the negative binomial – complementary loglog hurdle model,

If y == 0 = − exp(xβb)

If y > 0 = ln(1 − exp(− exp(xβb))) + y∗ln(exp(xβ)/(1 + exp(xβ)))

− ln(1 + exp(xβ))/α + ln�(y + 1/α) − ln�(y + 1)

− ln�(1/α) − ln(1 − (1 + exp(xβ))∧(−1/α))}
Using the German health reform data, mdvisitsx, we model numvisit using a
negative binomial – complementary loglog model.

NEGATIVE BINOMIAL − COMPLEMEMTARY LOGLOG
HURDLE MODEL

. hnbclg numvisit reform badh educ2 age3

Log Likelihood = -1331.9847

Coef. Std. Err. z P>|z| [95% Conf. Interval]

cloglog
reform -.1073391 .0543833 -1.97 0.048 -.2139284 -.0007497

badh .5771608 .0853904 6.76 0.000 .4097988 .7445228
educ3 .1123926 .0573353 1.96 0.050 .0000175 .2247678
age3 .0180807 .0742734 0.24 0.808 -.1274926 .163654

�cons .1445252 .0454318 3.18 0.001 .0554804 .2335699
-------------------------------------------------------------------
negbinomial

reform -.1182993 .0639946 -1.85 0.065 -.2437265 .0071278
badh 1.159176 .0862206 13.44 0.000 .9901863 1.328165
educ3 -.1960328 .0682512 -2.87 0.004 -.3298028 -.0622629
age3 .2372101 .084559 2.81 0.005 .0714776 .4029426

�cons .7395257 .0671674 11.01 0.000 .6078801 .8711714
alpha 1.1753772

-------------------------------------------------------------------
AIC Statistic = 4.096

The model output provides parameter estimates for both the binary complemen-
tary loglog model and the negative binomial. The joint model can be separated
into partitioned models by first creating a second response variable, which we
shall call visit, by the following logic

visit = 1 if numvisit >0, i.e. is a positive count
visit = 0 if numvisit==0.

. gen int visit = numvisit>0

. tab visit
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visit Freq. Percent Cum.

0 665 29.86 29.86
1 1,562 70.14 100.00

----------------------------------------------------------
Total 2,227 100.00

The binary part, a complementary loglog regression, is modeled as:

COMPLEMENTARY LOGLOG MODEL

. cloglog numvisit reform badh educ2 age3

Complementary log-log Number of obs = 2227
regression Zero outcomes = 665

Nonzero outcomes = 1562
LR chi2(4) = 51.55

Log likelihood = -1331.9847 Prob > chi2 = 0.0000

visit Coef. Std. Err. z P>|z| [95% Conf. Interval]

reform -.1073391 .0543833 -1.97 0.048 -.2139284 -.0007497
badh .5771608 .0853904 6.76 0.000 .4097988 .7445228
educ3 .1123926 .0573353 1.96 0.050 .0000175 .2247678
age3 .0180807 .0742734 0.24 0.808 -.1274926 .163654

�cons .1445252 .0454318 3.18 0.001 .0554805 .2335699
-------------------------------------------------------------
AIC Statistic = 1.202

The parameter estimates are identical to that of the hurdle model.
We next model the data using a zero-truncated negative binomial, making

certain to exclude zero counts from the modeling process.

ZERO TRUNCATED NEGATIVE BINOMIAL MODEL

. ztnb numvisit reform badh educ3 age3 if numvisit>0,
Zero-truncated negative binomial
regression

Number of obs = 1562

LR chi2(4) = 233.36
Dispersion = mean Prob > chi2 = 0.0000
Log likelihood = -3223.6195 Pseudo R2 = 0.0349

numvisit Coef. Std. Err. z P>|z| [95% Conf. Interval]

reform -.1182993 .0639946 -1.85 0.065 -.2437265 .0071278
badh 1.159176 .0862206 13.44 0.000 .9901863 1.328165
educ3 -.1960328 .0682512 -2.87 0.004 -.3298028 -.0622629
age3 .2372101 .084559 2.81 0.005 .0714776 .4029426

�cons .7395257 .0671674 11.01 0.000 .6078801 .8711714
------------------------------------------------------------------
/lnalpha .1615891 .1106842 -.055348 .3785262
------------------------------------------------------------------

alpha 1.175377 .1300957 .9461558 1.460131
------------------------------------------------------------------
Likelihood-ratio test of alpha=0: chibar2(01) = 1677.79 Prob>
=chibar2 = 0.000
------------------------------------------------------------------
AIC Statistic = 4.134 BIC Statistic = -10615.008
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Again, the parameter estimates are identical to the hurdle model. Notice, how-
ever, that the AIC statistic is lower for the conjoined hurdle model than for the
zero-truncated model.

The same relationship maintains for the NB-logit model. The logit model
appears as:

LOGISTIC MODEL

. logit visit reform badh educ3 age3, nolog
Logistic regression Number of obs = 2227

LR chi2(4) = 51.96
Prob > chi2 = 0.0000

Log likelihood = -1331.7768 Pseudo R2 = 0.0191

visit Coef. Std. Err. z P>|z| [95% Conf. Interval]

reform -.1879245 .0939389 -2.00 0.045 -.3720413 -.0038076
badh 1.144087 .1940181 5.90 0.000 .7638189 1.524356

educ3 .2018225 .1003517 2.01 0.044 .0051367 .3985082
age3 .0238393 .1301832 0.18 0.855 -.2313152 .2789937

�cons .7795456 .078196 9.97 0.000 .6262844 .9328069
-------------------------------------------------------------
AIC Statistic = 1.201

The zero-truncated negative binomial is the same as before. Submitting the data
of a negative binomial-logit model produces the following output.

NEGATIVE BINOMIAL − LOGIT

. hnblogit numvisit reform
badh educ3 age3, nolog

Negative Binomial-Logit Hurdle
Regression

Number of obs = 2227

Wald chi2(4) = 42.65
Log likelihood = -4555.3963 Prob > chi2 = 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

logit
reform -.1879245 .0939389 -2.00 0.045 -.3720413 -.0038076

badh 1.144088 .1940181 5.90 0.000 .7638189 1.524356
educ3 .2018225 .1003517 2.01 0.044 .0051367 .3985082
age3 .0238393 .1301832 0.18 0.855 -.2313152 .2789937

�cons .7795456 .078196 9.97 0.000 .6262844 .9328069
-----------------------------------------------------------------
negbinomial

reform -.1182993 .0639946 -1.85 0.065 -.2437264 .0071278
badh 1.159175 .0862205 13.44 0.000 .9901862 1.328164
educ3 -.1960328 .0682512 -2.87 0.004 -.3298027 -.0622629
age3 23721 .0845589 2.81 0.005 .0714776 .4029424

�cons .7395271 .0671672 11.01 0.000 .6078818 .8711725
-----------------------------------------------------------------

/lnalpha .1615866 .110684 1.46 0.144 -.0553499 .3785232
-----------------------------------------------------------------

alpha 1.175374 .1300951 .946154 1.460127
-----------------------------------------------------------------
AIC Statistic = 4.096
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The logit models are the same. All hurdle models can be partitioned or broken
apart in this fashion.

It is interesting to note that the AIC statistic for the hurdle model can be
calculated from a knowledge of the AIC statistics of both constituent models
and the percentage of response values greater than zero. Although the hurdle
model algorithm does not use this approach to calculate an AIC statistic, it can
be calculated by hand as

AIC hurdle = ((AIC zero.trunc.count ∗N (>0)/N )) + AIC binary

Calculating the AIC statistic for the hurdle model based on the above formula
provides:

. di 4.13	 (1−665/2227) + 1.20
4.096749

which is nearly the same as the AIC observed for the negative binomial–logit
model. Rounding errors will at times produce minor discrepancies between the
hand-calculated value and the model-calculated value. Regardless, we see that
the AIC statistic for the hurdle model is proportioned between both constituent
model AIC statistics, with the count model adjusted by the percentage of non-
zero counts in the response.

Interpretation is now considered. Each predictor is evaluated in terms of the
contribution it makes to each respective model. For example, with respect to the
NB-logit model, a positive significant coefficient in the negative binomial frame
indicates that the predictor increases the rate of physician visits, in the same
manner as any negative binomial model is interpreted. A positive coefficient
in the logit frame is interpreted in such a manner that a one-unit change in a
coefficient decreases the odds of no visits to the doctor by exp(β). If a logistic
coefficient is 0.2018, then the odds of no visits is decreased by exp(.2018) =
1.2236033, or about 22%.

Parameterizing the estimates in exponential form so that the counts can be
interpreted as incidence rate ratios, and the logistic model as odds ratios, we
have:

. hnblogit numvisit reform badh educ3 age3, nolog eform

Negative Binomial-Logit Hurdle
Regression

Number of obs = 2227

Wald chi2(4) = 42.65
Log likelihood = -4555.3963 Prob > chi2 = 0.0000
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exp(b) Std. Err. z P>|z| [95% Conf. Interval]

logit
reform .8286773 .077845 -2.00 0.045 .6893258 .9961997

badh 3.139575 .6091346 5.90 0.000 2.146458 4.592186
educ3 1.223631 .1227934 2.01 0.044 1.00515 1.489601
age3 1.024126 .133324 0.18 0.855 .7934893 1.321799

-----------------------------------------------------------------
negbinomial

reform .8884301 .0568547 -1.85 0.065 .783702 1.007153
badh 3.187304 .274811 13.44 0.000 2.691735 3.774109
educ3 .8219853 .0561015 -2.87 0.004 .7190656 .9396358
age3 1.267707 .1071959 2.81 0.005 1.074094 1.496221

-----------------------------------------------------------------
/lnalpha .1615866 .110684 1.46 0.144 -.0553499 .3785232

-----------------------------------------------------------------
alpha 1.175374 .1300951 .946154 1.460127

-----------------------------------------------------------------
AIC Statistic = 4.096

Predicted values, µ, may also be calculated for the count model.

. hnblogit�p mu, eq(#2) irr

. l mu numvisit reform badh educ3 age3 in 1/5

mu numvisit reform badh educ3 age3

1. 2.359472 30 1 0 0 1
2. 2.094944 25 0 0 0 0
3. 2.183009 25 0 0 1 1
4. 2.094944 25 0 0 0 0
5. 2.359472 20 1 0 0 1

To check the first fitted value

. di exp(−.1182993 +.23721 +.7395271)
2.3594718

which is consistent with the value shown on line one of the above table. Note
that the hurdle models used in this book are not part of an official commercial
package, but rather were written by the author using Stata’s higher programming
language.

Checking output displayed by software is recommended. Reviewing soft-
ware for many years has made me a bit hesitant about simply accepting all
output, especially with procedures that are seldom used. The more a procedure
is used by statisticians, the more likely mistakes are identified. No commercial
software is immune from error.

8.4 Zero-inflated count models

Zero-inflated count models were first introduced by Lambert (1992) to provide
another method of accounting for excessive zero counts. Like hurdle models,
they are two-part models, consisting of both binary and count model sections.
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Unlike hurdle models, though, zero-inflated models provide for the modeling of
zero counts using both binary and count processes. The hurdle model separates
the modeling of zeros from the modeling of counts, entailing that only one
process generates zeros. This mixture of modeling zeros is reflected in the
log-likelihood function.

Commercial software implementations typically allow the zero-inflated
binary process to be either probit or logit. Counts, including zeros, are esti-
mated using either a Poisson or negative binomial regression. The log-likelihood
functions of the NB-logit and NB-probit models are listed below, without
subscripts.

ZERO-INFLATED NEGATIVE BINOMIAL-LOGIT

If y == 0 : �{ln(1/(1 + exp(−xβ1)) + 1/(1 + exp(xβ1)))∗

× (1/(1 + α∗exp(xβ)))∧(1/α)}
If y > 0 : �{ln(1/(1 + exp(xβ1))) + ln�(1/α + y) − ln�(y + 1)

− ln�(1/α) + (1/α)∗ln(1/(1 + α∗exp(xβ)))

+ y∗ln(1 − (1/(1 + α∗exp(xβ))))}

ZERO-INFLATED NEGATIVE BINOMIAL-PROBIT

If y == 0 : �{ln(�xβ1) + (1 − �(xβ1))∗(1/(1 + α∗exp(xβ)))∧(1/α)}
If y > 0 : �{ln(1 − �(xβ1)) + ln�(1/α + y) − ln�(y + 1)

− ln�(1/α) + (1/α)∗ln(1/(1 + α∗exp(xβ)))

+ y∗ln(1 − (1/(1 + α∗exp(xβ))))}
where exp(xβ1) is the fit, or µ, from the binary process, and exp(xβ) is the
same with respect to the count process. � represents the normal or Gaussian
cumulative distribution function.

Inflation refers to the binary process. Unlike hurdle models, the binary pro-
cess may include different predictors than in the count process. The important
point is for the statistician to use the model to determine which variables or items
in the data have a direct bearing on zero counts. This is why the zero-inflated
model has its count process, unlike hurdle models, predict zeros. Note in the
first equation of the zero-inflated NB-logit model, the three terms predicting
zero counts are: (1) logistic inverse link, i.e. µ, the prediction that y==0, (2)
1− µ, and (3) the negative binomial prediction of a zero count. If the latter
formula is unfamiliar, recall that the formula has been expressed in a variety of
ways, e.g. {α−1/(α−1 + µ)}α−1.

I shall again use the German health reform data used in the previous section.
Modeled as a NB-logit, we have:



8.4 Zero-inflated count models 175

. zinb numvisit reform badh age3, nolog inflate(badh age3
loginc)

Zero-inflated negative binomial
regression

Number of obs = 2227

Nonzero obs = 1562
Zero obs = 665

Inflation model = logit LR chi2(3) = 297.48
Log likelihood = -4562.087 Prob > chi2 = 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

numvisit
reform -.1397194 .0509428 -2.74 0.006 -.2395655 -.0398733

badh 1.127971 .0733397 15.38 0.000 .9842281 1.271715
age3 .2243277 .0725813 3.09 0.002 .0820709 .3665845

�cons .7742719 .0397866 19.46 0.000 .6962916 .8522523
-----------------------------------------------------------------
inflate

badh -11.54223 775.4551 -0.01 0.988 -1531.406 1508.322
age3 2.443905 1.372909 1.78 0.075 -.2469473 5.134757

loginc -3.029019 1.255131 -2.41 0.016 -5.489031 -.5690067
�cons 17.87723 8.419252 2.12 0.034 1.375797 34.37866

-----------------------------------------------------------------
/lnalpha -.0287578 .052818 -0.54 0.586 -.1322792 .0747637
-----------------------------------------------------------------

alpha .9716518 .0513207 .8760964 1.077629
-----------------------------------------------------------------
AIC Statistic = 4.1034

Post-reform, bad health, and age from 50–60 are all predictors of positive
counts; e.g. the number of visits to the physician. Therefore, patients made
[exp(−.1397194) = .86960221] about 13% fewer visits to the doctor following
reform, which was a marked goal of reform legislation. The (log) income of
patients had an inverse relationship with not visiting their doctor. That is, the
greater the patient income, the more likely they were to visit a physician.

zinb (N=2227): Factor Change in Expected Count
Observed SD: 4.0161991

Count Equation: Factor Change in Expected Count for Those Not Always 0
------------------------------------------------------------------------
numvisit b z P>|z| eˆb eˆbStdX SDofX

reform -0.13972 -2.743 0.006 0.8696 0.9325 0.5001
badh 1.12797 15.380 0.000 3.0894 1.4305 0.3174
age3 0.22433 3.091 0.002 1.2515 1.0861 0.3682

------------------------------------------------------------------------
ln alpha -0.02876
------------------------------------------------------------------------

alpha 0.97165 SE(alpha) = 0.05132
------------------------------------------------------------------------
b = raw coefficient
z = z-score for test of b=0
P>|z| = p-value for z-test
eˆb = exp(b) = factor change in expected count for unit increase in X
eˆbStdX = exp(b	SD of X) = change in expected count for SD increase in X
SDofX = standard deviation of X
Binary Equation: Factor Change in Odds of Always 0
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Always0 b z P>|z| eˆb eˆbStdX SDofX

badh -11.54223 -0.015 0.988 0.0000 0.0256 0.3174
age3 2.44390 1.780 0.075 11.5179 2.4593 0.3682

loginc -3.02902 -2.413 0.016 0.0484 0.3178 0.3785
---------------------------------------------------------------
b = raw coefficient
z = z-score for test of b=0
P>|z| = p-value for z-test
eˆb = exp(b) = factor change in odds for unit increase in X
eˆbStdX = exp(b	SD of X) = change in odds for SD increase in X
SDofX = standard deviation of X

During the post-reform period (1998), there is a decrease in the expected rate
of visits to the doctor by a factor of .87, holding all other predictors constant.
Patients having the opportunity to visit their doctor and who are in bad health
increased visits to their doctor some three fold. The binary equation frame
describes the change in odds for always having zero visitations versus not
always having zero visitations. As such, we can interpret the output as show-
ing that a higher (log)income decreases by some 6% the odds of not having
the opportunity of visiting a doctor. An excellent discussion of the logic of
this interpretation and related probabilities can be found in Long and Freese
(2006).

Those using zero-inflated models on their data must take special care to
correctly interpret the model. It is somewhat trickier than interpreting the hurdle
model, which is fairly straightforward. A source of mistakes relates to the fact
that the model predicts zero counts in two quite different ways. First, zero counts
are predicted as usual on the basis of a standard Poisson or negative binomial
model. Secondly, within the framework of the binary process, a prediction
of success is a prediction that the response has a zero count. A response of
zero indicates a positive count – or rather, a non-zero-count. Unfolding the
relationships can be a source of confusion.

Zero inflated models may be tested to determine if they are statistically
different from their base model; that is, we may evaluate the model displayed
above using a Vuong test to determine if the data are negative binomial, or if
the excess zeros come from a different generating process. The test is valid
for both zero-inflated Poisson and zero-inflated negative binomial. The test has
been applied to generalized Poisson models as well.

The Vuong test, developed by Greene (1994), is generally formulated as
V = (sqrt(N )∗mean(m))/Sm. m symbolizes the result of ln(µ1/µ2) where µ1 is
the predicted probability of y for the zero-inflated model and µ2 is the predicted
probability of y for the base model, e.g. negative binomial. Sm is the standard



Exercises 177

deviation of m. N is the number of observations in each model. It is important
that both models handle the same observations.

The test statistic V is asymptotically normal. Referring to the zero-inflated
model as the first model, which produced the predicted probabilities, µ1, and
the base model as the second, if V > 1.96, the zero-inflated model is preferred.
If V < −1.96, the base model is preferred. Values of V between –1.96 and 1.96
indicate that neither model is preferred; that is, the excessive zeros for the model
response are not sufficient to warrant adjustment by a zero-inflated model. The
data are likely to be either Poisson or negative binomial, depending on models
involved in the test. In the case of our example zero-inflated model, V is 1.07
with a p-value of 0.1425. There is a moderate, but insignificant, preference for
the zero-inflated model over the base NB-2 negative binomial (see Long and
Freese, 2006 for a additional discussion of the Vuong statistic).

8.5 Summary

We discussed two data situations which we know give rise to overdispersion in
both Poisson and negative binomial (NB-2) models. The first relates to when
there is no possibility of a zero count in the data. Hospital length of stay is a
good example of this type of data. Zero-truncated models adjust the probability
functions of the Poisson and NB-2 models so that respective zero counts are
excluded, but the sum of probabilities is still one.

The data situation of having an excess of zero counts is probably more fre-
quent than data having no possibility of zeros. Two models have been developed
to adjust for excessive zeros, both based on different reasoning. Each differs in
how it accounts for the origin or generation of the extra zeros. This accounting
is then reflected in the estimating algorithm.

We next turn to a discussion of models involving censoring and truncation.

Exercises

1 Zero-inflated and hurdle models typically assume a non-distributional value
for the number of zero counts in the response. Does having the number of
zeros in the response being under-represented or over-represented make a
difference when selecting a zero-inflated rather than a hurdle model?

2 Using the following data edsurvey from an educational survey (amended),
model passed on suburbs and minority. Check if the number of zero counts
differs substantially from the Poisson assumption. If so, then adjust using a
zero-inflated or hurdle model. Attempt to construct a well-fitted model.
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suburbs minority passed suburbs minority passed

0 0 4 0 0 5
0 1 9 1 0 0
1 1 3 0 0 9
0 0 9 1 0 0
1 0 0 0 1 5
1 0 4 0 0 5
1 0 10 0 0 0
1 0 3 0 1 10
0 0 5 1 0 11
0 0 6 0 0 10
0 0 4 0 0 4
0 1 9 0 0 0
0 0 11 1 0 3
0 0 29 0 1 4
0 0 5 0 0 15
0 0 11 0 0 6
1 0 0 0 1 9
0 0 13 0 1 9
0 1 4 0 1 3
0 0 3 0 1 5
1 0 0 0 0 3
0 0 10 0 0 16
0 0 21 0 0 4
0 0 5 1 0 0
0 0 10 1 0 15

3 List various example situations in the fields of economics, education, health
analysis, and physical sciences where the negative binomial with endogenous
stratification model is appropriate.

4 Using the azprocedure data found on the text web site, model los on pro-
cedure, admit, sex, and age 75. There are 3589 observations in the model.
Compare results of a NB-2 model with a zero-truncated model. Then take a
random sample of 100 cases and compare the two models again. Repeat this
procedure five times. Are there significant differences between the standard
NB-2 model and the truncated model when using the entire data compared
with the 100 observation random sample? Discuss the reasons for the results
you discover.

5 Derive the zero-truncated NB-1 log-likelihood function. Do the same for the
zero-inflated NB-1 log-likelihood function.
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Negative binomial with censoring, truncation,
and sample selection

There are many times when certain data elements are lost, discarded, ignored,
or are otherwise excluded from analysis. Truncated and censored models have
been developed to deal with these types of data. Both models take two forms,
truncation or censoring from below, and truncation or censoring from above.
Count model forms take their basic logic from truncated and censored contin-
uous response data, in particular from Tobit (Amemiya, 1984) and censored
normal regression (Goldberger, 1983) respectively.

Count sample selection models also deal with data situations in which the
distribution is confounded by an external condition. We shall address sample
selection models at the end of the chapter.

The traditional parameterization used for truncated and censored count data
can be called the econometric parameterization. This is the form of model
discussed in standard econometric texts and is the form found in current econo-
metric software implementations. I distinguish this from what I term a survival
parameterization, the form of which is derived from standard survival models.
This parameterization only relates to censored Poisson and censored negative
binomial models. I shall first address the more traditional econometric param-
eterization. In addition, I shall not use subscripts for this chapter; they are
understood as presented in the earlier chapters.

9.1 Censored and truncated models – econometric
parameterization

Censored and truncated count models are related, with only a relatively minor
algorithmic difference between the two. The essential difference relates to how
response values beyond a user-defined cut point are handled. Truncated models
eliminate the values altogether; censored models revalue them to the value of
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the cut point. In both cases the probability function and log-likelihood functions
must be adjusted to account for the change in distribution of the response. We
begin by considering truncation.

9.1.1 Truncation

In order to understand the logic of truncation, we begin with the basic Poisson
probability distribution function, defined as

Prob(Y = y) = e−µµy/y! y = 0, 1, . . . (9.1)

Recall that when we discussed zero-truncated Poisson in the last chapter, we
adjusted the basic Poisson PDF to account for the structural absence of zeros.
Given the probability of a zero count as e−µ, or exp(−µ), it is subtracted
from one to obtain the probability of a non-zero positive count. The Poisson
probability distribution function is then rescaled by the resultant value, 1−
exp(−µ), to obtain the zero-truncated Poisson PDF. The same logic maintains
for zero-truncated negative binomial regression. The probability of a negative
binomial count of zero is (1 − αµ)−1/α . Subtracting this value from 1 gives the
negative binomial formula of a non-zero positive count. The negative binomial
PDF is then rescaled by 1 − (1 − αµ)−1/α to obtain the zero-truncated negative
binomial.

In the more general case, zero-truncated count models can be considered
as left- or lower-truncated count models. The lower cut point, C, is at 1. If we
wish to extend C to any lower value in the observed distribution, the value to
be divided from the basic PDF must reflect the total probability of counts up
to the cut. The smallest response value in the observed distribution is C + 1.
For example, if C is specified as 1, then both the probability of zero counts
and counts of 1 need to be calculated, summed, subtracted from 1, and used to
rescale the resulting basic count PDF. In the case of Poisson

Prob(Y = (y = 0)) = e−µ, and (9.2)

Prob(Y = (y = 1)) = µe−µ (9.3)

These values are then summed and subtracted from 1.

Prob(Y = (y = 0, 1)) = 1 − (e−µ + µe−µ), (9.4)

This value is then divided from the Poisson PDF to obtain a one-truncated
Poisson, or more accurately, a left-truncated at 1 Poisson PDF. Remaining
values in the distribution have a minimum at C + 1, or, in this case, 1 + 1 = 2.
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The same logic applies with respect to repeatedly greater left values, depend-
ing on the value of the defined cut point. A left-truncated cut at C = 3 specifies
that the response values in the model have values starting at C + 1, or 4. This
does not mean that the distribution must have a value of 4, only that no values
have non-zero probability for the distribution less than 4. The left-truncated
negative binomial follows the same reasoning.

We can formalize the left-truncated Poisson PDF as

Prob(Y = y|Y > C) = exp(−µ)µy/y!

Prob(y > C)
= exp(−µ)µy/y!

1 − ∑C
j=0 exp(−µ)µ j/j!

,

for y = C + 1, C + 2, . . . (9.5)

where C is the user defined cut point and j is the running index in the summations.
See Greene (2006) for details of derivation as well as formulae for gradients
and marginal effects.

A little algebraic manipulation allows formulation of the left-truncated
Poisson log-likelihood function as

L(β; y) =
∑ [

y ln(µ) − µ − ln�(y + 1)

−
(

1 −
∑C

j=0
j∗ ln(−µ) − µ − ln�( j + 1)

)]
(9.6)

An example may help show the differences in parameter estimates and associ-
ated model statistics for data in which the left-side numbers have been dropped
up to a specified point and a left-truncated model with a cut defined at the same
point. The first set of models will come from the mdvisitsx data. The left trun-
cation is defined with a cut of 3, meaning that the sample response, numvisit,
starts with the count value of 4. A tabulation of counts is provided in Table 9.1.

POISSON: ALL DATA

Variable Coefficient Standard Error b/St.Er. P[}Z}>z] Mean of X

Constant .83196836 .02194310 37.915 .0000
REFORM −.12911602 .02649991 −4.872 .0000 .50606197
BADH 1.15700714 .02904310 39.838 .0000 .11360575
EDUC3 −.12997795 .02892196 −4.494 .0000 .33767400

POISSON: DROPPED VALUES 1–3

Variable Coefficient Standard Error b/St.Er. P[}Z}>z] Mean of X

Constant 2.00581075 .02771067 72.384 .0000
REFORM −.05894525 .03277276 −1.799 .0721 .45154639
BADH .39973779 .03310038 12.077 .0000 .31134021
EDUC3 −.21994661 .03684811 −5.969 .0000 .31340206
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Table 9.1. MDVISITSX data, truncated at 3

numvisit Freq.

0 665
1 447
2 374
3 256

CUT
4 117
5 101
6 76
7 21
8 27
9 9
10 61
11 1
12 20
13 5
14 3
15 19
16 2
20 10
24 1
25 3
30 4
36 1
40 2
50 1
60 1
--------------------------------
Total 485

LEFT-TRUNCATED POISSON, CUT = 3

Variable Coefficient Standard Error b/St.Er. P[|Z|>z] Mean of X

Constant 1.93809303 .03189251 60.770 .0000
REFORM −.07655409 .03724341 −2.056 .0398 .45154639
BADH .48318788 .03670938 13.163 .0000 .31134021
EDUC3 −.29882651 .04462514 −6.696 .0000 .31340206

Notice that the model for which counts 0–3 were simply dropped results in a p-
value for reform that is not significant at the 0.05 level, whereas it is significant
in the left-truncated model. The reason for the difference is due to the fact
that the truncated model adjusts the log-likelihood. The models were estimated
using LIMDEP.
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Right-truncated models have a cut on the upper or right side of the distribu-
tion. The right-truncated Poisson PDF may be specified as

Prob(Y = y|Y < C) = exp(−µ)µy/y!

Prob(y < C)
= exp(−µ)µy/y!∑C−1

j=0 exp(−µ)µj/j!
,

for y = 0, 1, 2, . . . , C − 1 (9.7)

A right cut at 10 provides that values up to and including 9 will have non-zero
probabilities in the truncated model, i.e. C − 1.

The left-truncated negative binomial PDF may be expressed as

H = �(y + α−1)

�(α−1)�(y + 1)
(αµ)y(1 + αµ)−(y+1/α) (9.8)

I j = �( j+α−1)

�(α−1)�(j + 1)
(αµ) j (1 + αµ)−( j+1/a) (9.9)

Prob(Y = y|Y > C) = H

1 − ∑C
j=0 I j

(9.10)

The right-truncated negative binomial PDF is formulated in the same manner
as is the right-truncated Poisson

Prob(Y = y|Y < C) = H∑C−1
j=0 I j

(9.11)

We shall use the same mdvisitsx data for an example of a right-truncated negative
binomial model. Using a cut of 15, only values of numvisit up to 14 will be
included in the model.

RIGHT-TRUNCATED NEGATIVE BINOMIAL: CUT = 15

Variable Coefficient Standard Error b/St.Er. P[|Z|>z] Mean of X

Constant .73384757 .04065421 18.051 .0000
REFORM −.13716032 .05221156 −2.627 .0086 .50664224
BADH 1.18445765 .12792755 9.259 .0000 .10352726
EDUC3 −.01416990 .05690943 −.249 .8034 .34127348

Dispersion parameter for count data model
Alpha .87479181 .04757499 18.388 .0000

9.1.2 Censored models

Censored models have a similar form to the truncated, but there are important
differences. For left-censored models, a cut of C indicates that C is the smallest
recordable response value of the censored model. As such, all values of the
original response that are actually less than C are measured and recorded as
the value of C; thus this value in the data actually means “less than or equal
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to C.” If C = 3, the lowest measurable response is a 3, and all values of the
original response less than 3 now have a value recorded as 3. On the other hand,
a C = 3 value for truncated models specify that 4 is the lowest possible value
of the truncated response and that there are no response values under 4; if there
are, then they are dropped from a truncated analysis.

There is a like difference of interpretation for right censoring. A right cen-
sored cut at C indicates that the largest recordable value of the response is C
and that all values greater than C are recorded as C; thus this value in the data
actually means “greater than or equal to C”. If C = 15, then all response values
greater than 15 are re-valued to 15. No values are dropped from the model
analysis.

To summarize this point, censored cut points differ from truncated cuts in
two ways.

Truncated Left: If C = 3, only values >3 are supported by the underlying
distribution; lower values, if they exist, are dropped.
Right: If C = 15, only values <15 are supported by the underlying
distribution; higher values, if they exist, are dropped.

Censored Left: If C = 3, 3 is smallest observable value in the model; this
value is inexact and means only that the observation is less than
or equal to 3. Any response in the data that is less than 3 is also
considered to be less than or equal to 3.
Right: If C = 15, 15 is highest observable value in model; this
value is inexact and means only that the observation is greater than
or equal to 15. Any response in the data that is greater than 15 is
also considered to be greater than or equal to 15.

The disparity of meanings for what a cut value indicates may give rise to
considerable confusion. We must keep the difference clearly in mind when
engaging truncated and censored count models.

We shall use the mdvisitsx data used for truncated models to compare with
censored value output. We begin with respective examples of left-truncated and
left-censored negative binomial regression with a cut of 3.

LEFT-TRUNCATED NEGATIVE BINOMIAL: CUT = 3

Variable Coefficient Standard Error b/St.Er. P[|Z|>z] Mean of X

Constant −.34794507 1.76257038 −.197 .8435
REFORM −.11831607 .13485136 −.877 .3803 .45154639
BADH .90189762 .16928103 5.328 .0000 .31134021
EDUC3 −.48182675 .14780265 −3.260 .0011 .31340206

Dispersion parameter for count data model
Alpha 7.44973611 14.2858346 .521 .6020
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LEFT-CENSORED NEGATIVE BINOMIAL: CUT = 3

Variable Coefficient Standard Error b/St.Er. P[|Z|>z] Mean of X

Constant .73734541 .05285178 13.951 .0000
REFORM −.14399988 .05908096 −2.437 .0148 .50606197
BADH 1.23620067 .09635204 12.830 .0000 .11360575
EDUC3 −.15383921 .06588073 −2.335 .0195 .33767400

Dispersion parameter for count data model
Alpha 1.47560302 .11474405 12.860 .0000

The parameter estimates have the same signs, but quite different values. More-
over, reform is not contributory to the truncated model, whereas it is for the
censored model. The values of α are substantially different, i.e. 7.45 to 1.48. It
is likely that the deletion of values less than 4, which consist of 1742 out of the
original 2227 patients, or 78% of the cases, result in considerable overdisper-
sion in the remaining data. This situation does not exist for censored models.
All observations are kept; censored values are just revalued.

Modeling a right-truncated negative binomial with a cut of 15 may be com-
pared with the truncated model at the end of the previous section.

RIGHT-CENSORED NEGATIVE BINOMIAL: CUT = 15

Variable Coefficient Standard Error b/St.Er. P[|Z|>z] Mean of Xπ

Constant .79319680 .03867885 20.507 .0000
REFORM −.10697298 .04788241 −2.234 .0255 .50606197
BADH 1.13470532 .07883350 14.394 .0000 .11360575
EDUC3 −.07048948 .05299836 −1.330 .1835 .33767400

Dispersion parameter for count data model
Alpha .97148925 .04434086 21.910 .0000

Unlike the left-truncated model, the right deletes only 44 out of 2227 obser-
vations, or only 2%. The differences between the right-censored and right-
truncated models, as expected, do not substantially differ. In fact, the models
display quite similar output.

For completeness, mention should be made about the probability and log-
likelihood functions. The logic is quite simple. All four of the relevant censored
models

right-censored Poisson right-censored negative Binomial
left-censored Poisson left-censored negative Binomial

take the same form as the truncated models we discussed in the last section.
The difference is, however, in how the cuts are managed, as well as how values
beyond the cut points are handled. The values at the cut, C, are included in the
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model, unlike the case with truncation, and values beyond cut points are re-
valued to the value of C. With truncation, values of C and beyond are dropped.
The only alteration this causes in the PDF and log-likelihood functions, is at
the cut.

Formula for the above functions, together with score functions and the
observed information matrix for the left-truncated Poisson and negative bino-
mial, are discussed in Cameron and Trivedi (1998, Chapter 4.5). Overdispersion
tests based on score functions for both left- and right-truncated Poisson and
negative binomial models are discussed by Gurmu and Trivedi (1992). Greene
(2006) provides an excellent discussion of both truncated and censored Poisson
and negative binomial models.

9.2 Censored Poisson and NB-2 models – survival
parameterization

A prime motivating feature of survival models is the capability to censor cer-
tain observations. Censoring in this sense generally relates to the time when
information about the observation is part of the model. For example, suppose
we are following two groups of cancer patients for a 10-year period. Patients
are registered into the study upon diagnosis. One group is given a new type of
treatment; the other, called control, is given the standard treatment. Patients are
followed until they either die or the study closes. What happens, though, if a
study patient withdraws from the study following eight years of participation?
The patient has not died, but rather has moved away from the study area. They
have contributed a substantial amount of information to the study, and we know
that the patient has survived through eight years. Patients who withdraw in such
a fashion are said to be right censored. On the other hand, if another patient
who has been taking the treatment protocol, or who has been on the standard
treatment, enters the study well after diagnosis, they are said to be left cen-
sored. Potential contributing information is lost to the study results. In a single
study, patients can be both right and left censored, as well as not censored at
all. Moreover, they can be censored at a variety of times. This situation is vastly
different from the econometric sense of censoring in which a single cut point
defines censoring for all affected cases.

The majority of survival models have a continuous time response, as would
be the case in the example above. However, there is a separate type of model
called discrete response survival model. Rather than having the response defined
in terms of time, the response can be construed as counts. These types of
models have traditionally been modeled as piecewise models, but can in fact be
modeled using a count model that has the capability of accounting for censored
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observations. Censored Poisson and negative binomial models can be devised
for such count response data. The models may be used for any type of count
response, regardless of whether it is being used in a survival context. The only
difference is that censoring – in the survival sense – is allowed as a capability.

The essential difference between the two approaches to censoring is that
the survival parameterization considers censor points as observation defined,
whereas the econometric parameterization considers them as dataset defined.
The econometric parameterization uses cut points at specified values in the
data set, with all values above or below the cuts censored. The survival
parameterization is more general in that cut points may be defined by observa-
tions above or below an assigned or specified value, but may also be defined
for individual observations within the cuts. The econometric parameterization
defines ranges of truncated and censored values, whereas the survival parame-
terization defines only individual observations. Values are censored by virtue of
their place in the data set, or values are censored by virtue of external reasons,
e.g. lost to study, late entry, and so forth.

CENSORED POISSON LOG-LIKELIHOOD FUNCTION

L(xβ; y) = δ{− exp(xβ) + y(xβ) − ln�(y + 1)} + ζ {ln�I(y, exp(xβ))}
+ τ {ln(1 − ln�I(y + 1, exp(xβ)))} (9.13)

where

δ : 1 if observation not censored; 0 otherwise
ζ : 1 if observation is left censored; 0 otherwise
τ : 1 if observation is right censored; 0 otherwise

and ln�I is the 2 parameter incomplete gamma function.

CENSORED NEGATIVE BINOMIAL LOG-LIKELIHOOD FUNCTION

L(xβ; y, α) = δ{y ln(µ/(1 + µ)) − ln(1 + µ)/α + ln�(y + 1/α)

− ln�(y + 1) − ln�(1/α)}
+ ζ {ln(�I (y, exp(xβ))), ln(βI (y, n − y + 1, exp(xβ)))}
+ τ {ln(βI (y + 1, n − y, exp(xβ)))} (9.14)

with α = exp(α) and µ = α ∗ exp(xβ).
Other terms are n = number of observations in the data and βI = incom-

plete beta function. The three parameter βI function returns the cumulative
beta distribution, or incomplete beta function, for censored responses.
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Table 9.2. MEDPAR: censor variable

die Freq. Percent Cum.

−1 58 3.88 3.88
0 924 61.81 65.69
1 513 34.31 100.00

----------------------------------
Total 1,495 100.00

Using the medpar data used earlier in the text, we model length of hospital
stay (los) on white, being a member of an HMO (hmo), and whether the patient
is over 80 years of age (age80). A right-censor indicator, die, was created from
the variable, died, such that 1 specifies that the patient has died, 0 = patient is
alive and −1 that the patient is lost from the study. Patients lost from the study
after participating are, therefore, right censored.

Values of −1 were randomly assigned from among patients who were alive.
A censored Poisson model on the data gives the following output:

. cpoisson los white hmo age90, cen(died)

Censored Poisson Regression Number of obs = 1495
Wald chi2(3) = 193.88

Log likelihood = −4623.6239 Prob > chi2 = 0.0000

los Coef. Std. Err. z P>|z| [95% Conf. Interval]

white −.2879192 .0326395 −8.82 0.000 −.3518915 −.2239469
hmo −.1753515 .027617 −6.35 0.000 −.2294799 −.121223

age80 −.1865871 .0228685 −8.16 0.000 −.2314086 −.1417656
�cons 2.901129 .0312814 92.74 0.000 2.839819 2.962439
----------------------------------------------------------------
AIC Statistic = 6.191

Comparing the model to a standard Poisson model on the same data, we note
that the parameter estimates and standard errors are somewhat similar. However,
the Pearson Chi2 dispersion is extremely high at 7.71.

. glm los white hmo ago80, fam(poi)

Generalized linear models No. of obs = 1495
Optimization : ML Residual df = 1491

Scale parameter = 1
Deviance = 8800.483496 (1/df) Deviance = 5.902403
Pearson = 11490.80115 (1/df) Pearson = 7.706775

AIC = 9.714805
Log likelihood = −7257.816534 BIC = −2098.55

los Coef. OIM Std. Err. z P>|z| [95% Conf. Interval]

white −.1858699 .0273143 −6.80 0.000 −.2394049 −.1323349
hmo −.1448544 .023748 −6.10 0.000 −.1913997 −.0983091

age80 −.0712421 .0203222 −3.51 0.000 −.1110729 −.0314113
�cons 2.493478 .0260726 95.64 0.000 2.442377 2.544579



9.2 Censored Poisson and NB-2 models – survival parameterization 189

Generally speaking, negative binomial models tend to dampen any overdisper-
sion that may reside in a Poisson model. However, in so doing, the significance
of various model predictors may be affected. Typically the negative binomial
inflates the standard errors of overdispersed Poisson parameter estimates. This
results in one or more predictors showing a non-contributory relationship to the
model, whereas they appeared significant in the Poisson model. The same is
the case with censored models.

. censornb los white hmo age80, cen(died)

Censored Negative Binomial Regression Number of obs = 1495
Wald chi2(3) = 128.83

Log likelihood = −1981.6047 Prob > chi2 = 0.0000

los Coef. Std. Err. z P>|z| [95% Conf. Interval]

xb
white .0026736 .1153047 0.02 0.982 −.2233194 .2286667
hmo −.4839241 .1019323 −4.75 0.000 −.6837077 −.2841404

age80 −.7338938 .0814828 −9.01 0.000 −.8935971 −.5741904
�cons 4.027752 .1104592 36.46 0.000 3.811256 4.244248

------------------------------------------------------------------
lnalpha

�cons .7238855 .058532 12.37 0.000 .6091649 .8386061
------------------------------------------------------------------
alpha 2.062431 .1207182 1.838895 2.31314

------------------------------------------------------------------
AIC Statistic = 2.656

Note also the markedly reduced AIC statistic. The censored negative binomial
appears to be the preferred model of the two.

It may be of interest to compare the censored negative binomial, parameter-
ized as an econometric model, with the survival parameterization. Since there
is a substantial drop in values after LOS = 24, we shall set a cut at 24. For the
survival model we shall create a right censor variable that has a code of −1 for
los values of 24 or greater.

CENSORED NB-2: ECONOMETRIC

RIGHT Censored Data: Threshold = 24.
NegBin form 2; Psi(i) = theta

Variable Coefficient Standard Error b/St.Er. P[|Z|>z] Mean of X

Constant 2.40569591 .06564927 36.645 .0000
WHITE −.13858051 .06807046 −2.036 .0418 .91505017
HMO −.11228740 .05392468 −2.082 .0373 .15986622
AGE80 −.05182604 .04747138 −1.092 .2750 .22073579

Dispersion parameter for count data model
Alpha .42171203 .02139959 19.707 .0000

CENSORED NB-2: SURVIVAL

gen rgtc= −1 if los>=24
replace rgtc = 1 if rgtc==.
tab rgtc
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rgtc Freq. Percent Cum.

−1 74 4.95 4.95
1 1,421 95.05 100.00

----------------------------------------------------------
Total 1,495 100.00

. censornb los white hmo age80, cen(rgtc)

Censored Negative Binomial Regression Number of obs = 1495
Wald chi2(3) = 5.13

Log likelihood = −4299.2669 Prob > chi2 = 0.1627

los Coef. Std. Err. z P>|z| [95% Conf. Interval]

xb
white −.1162715 .0635172 −1.83 0.067 −.2407629 .0082199
hmo −.0340281 .0480665 −0.71 0.479 −.1282368 .0601805

age80 .0459967 .0421791 1.09 0.275 −.0366727 .1286661
�cons 2.238545 .0612939 36.52 0.000 2.118411 2.358679

------------------------------------------------------------------
lnalpha

�cons −1.116643 .0524391 −21.29 0.000 −1.219422 −1.013865
------------------------------------------------------------------
alpha .3273768 .0171673 .2954008 .3628141

------------------------------------------------------------------
AIC Statistic = 5.757

The parameter estimates, standard errors, and alpha are similar between the two
parameterizations. The difference, of course, is that the survival parameteriza-
tion has a substantially greater scope of censoring capabilities. Censoring can
be anywhere in the data, not only at the tails.

The difference between econometric and survival parameterizations of the
right-censored Poisson show the same close list of parameter estimates and
standard errors.

CENSORED POISSON: ECONOMETRIC

RIGHT Censored Data: Threshold = 24.
Overdispersion tests: g=mu(i): 6.439
Overdispersion tests: g = mu(i)∧2 : 6.537

Variable Coefficient Standard Error b/St.Er. P[|Z|>z] Mean of X

Constant 2.36486935 .02775028 85.220 .0000
WHITE −.12829066 .02897987 −4.427 .0000 .91505017
HMO −.09474473 .02406297 −3.937 .0001 .15986622
AGE80 −.02868762 .02071530 −1.385 .1661 .22073579

CENSORED POISSON: SURVIVAL

. cpoisson alos white hmo age80, cen(rgtc)

Censored Poisson Regression Number of obs = 1495
Wald chi2(3) = 20.65

Log likelihood = −5188.4209 Prob > chi2 = 0.0001
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alos Coef. Std. Err. z P>|z| [95% Conf. Interval]

white −.1173776 .0315764 −3.72 0.000 −.1792662 −.0554889
hmo −.0346934 .0249728 −1.39 0.165 −.0836391 .0142524

age80 .0477127 .0215141 2.22 0.027 .0055458 .0898795
�cons 2.239263 .0302942 73.92 0.000 2.179888 2.298639
----------------------------------------------------------------
AIC Statistic = 6.946

9.3 Sample selection models

A variety of sample selection models can be found in statistical literature.
The most common usage of sample selection has been within the domain of
continuous-response models. Heckman selection models, bivariate probit, and
normal models with censoring have been most commonly used in research.
However, as discussed in Cameron and Trivedi (1998) these models are not
appropriate for count response models.

Greene (1994) and Terza (1998) have recently developed maximum likeli-
hood and two-step algorithms for count response sample selection models. We
follow Green’s example using credit card reports to show how the model works
and how it is to be interpreted.

The data contain records of major derogatory reports about credit card hold-
ers, with the goal of predicting the probability of a default on a credit card
loan. Selection bias is inherent in the data since the reports are only gathered
on those who already have credit cards. There is no information on individuals
who have not yet been issued cards, but who would default if they had them.
Since these individuals are excluded from the sample data, the sample is not
completely random and exhibits selection bias. In order to remedy the bias it
is necessary to model both the manner in which credit cards are issued as well
as the actual counts of derogatory reports. The process of issuing cards may be
modeled using a binary response model with 1 indicating that a card has been
issued and 0 that it has not. All potential applicants are thereby made part of
the model, although individuals classified by the binary process as 0 are latent
members of the data.

The sample selection model is therefore a two-part process, somewhat in the
tradition of hurdle and zero-inflated models. Unfortunately, maximization of the
two-part likelihood is much more complex than it is with any of the models we
have thus far discussed. It must be maximized using either numerical integration
or by using by simulation. LIMDEP, authored by Greene, uses simulation.

The model is structured so that the binary part, here a probit model, provides
estimates of the probability of being issued a credit card. The count part is then
estimated, but as adjusted by the probability values from the probit model. The
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Table 9.3. Sample selection models

PROBIT
Response

cardhldr = 1: card been issued; 0: card not been
issued

Predictors
agec = age in years and twelfths of a year

when applied
income = income in $10,000s
ownrent = own or rent home (1/0)
curr�add = months residing at same address when

applied for card
POISSON/NEGATIVE BINOMIAL

Response
majordrg = number of derogatory reports

Predictors
avgexp = Average monthly expenditure
inc�per = income per dependent, in $10,000

units
major = 1/0 if applicant had another credit

card at application

count model is said to be a selection-corrected Poisson or negative binomial.
Predictors of each model are rarely identical since they are predicting different
processes.

For our example, the models are specified as shown in Table 9.3.
The probit model is entered into LIMDEP as:

probit; lhs=cardhldr; rhs=one, agec, income, ownrent,
cur�add; hold

followed by the selection-corrected Poisson:

pois; lhs=majordrg; rhs=one, avgexp, inc�per, major;
sel; mle$

The relevant models are displayed as:

SAMPLE CORRECTED POISSON

Poisson Model with Sample Selection.
Mean of LHS Variable = .12903
Restr. Log-L is Poisson+Probit (indep).
Log L for initial probit = −682.33401
Log L for initial Poisson = −430.22927
Means for Psn/Neg.Bin. use selected data.
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Variable Coefficient Standard Error b/St.Er. P[|Z|>z] Mean of X

Parameters of Poisson/Neg. Binomial Probability
Constant −3.65979959 .59816464 −6.118 .0000
AVGEXP .00078020 .00031097 2.509 .0121 238.602421
INC�PER .16237072 .07091514 2.290 .0220 2.21873662
MAJOR .22733512 .30623298 .742 .4579 .83968719

Parameters of Probit Selection Model
Constant .74148859 .15225187 4.870 .0000
AGEC −.01027791 .00485007 −2.119 .0341 33.3853297
INCOME .06174082 .02416541 2.555 .0106 3.36537604
OWNRENT .45569930 .08791258 5.184 .0000 .44048522
CUR�ADD −.00046311 .00063456 −.730 .4655 55.2676270

Standard Deviation of Heterogeneity
Sigma 1.16180092 .22171151 5.240 .0000

Correlation of Heterogeneity & Selection
Rho .39658662 1.06023875 .374 .7084

Major does not contribute to the probit model and cur�add is not contributory
to the selected corrected Poisson.

The sample corrected negative binomial model is displayed following the
command:

negb; lhs=majordrg; rhs=one, avgexp, inc�per, major;
sel; mle$

Neg.Bin.Model with Sample Selection.
Maximum Likelihood Estimates
Model estimated: May 29, 2006 at 08:18:15AM.
Dependent variable MAJORDRG
Weighting variable None
Number of observations 1319
Iterations completed 101
Log likelihood function −1081.161
Number of parameters 12
Info. Criterion: AIC = 1.65756
Finite Sample: AIC = 1.65774
Info. Criterion: BIC = 1.70473
Info. Criterion:HQIC = 1.67524
Restricted log likelihood −1112.600
McFadden Pseudo R-squared .0282573
Chi squared 62.87818
Degrees of freedom 2
Prob[ChiSqd > value] = .0000000

Neg.Bin.Model with Sample Selection.
Mean of LHS Variable = .12903
Restr. Log-L is Poisson+Probit (indep).
Log L for initial probit = −682.37037
Log L for initial Poisson = −430.22927
Means for Psn/Neg.Bin. use selected data.
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Variable Coefficient Standard Error b/St.Er. P[|Z|>z] Mean of X

Parameters of Poisson/Neg. Binomial Probability
Constant −3.07204954 .81142913 −3.786 .0002
AVGEXP .00082084 .00035875 2.288 .0221 238.602421
INC�PER .15419880 .07648030 2.016 .0438 2.21873662
MAJOR .23419460 .30789939 .761 .4469 .83968719

Parameters of Probit Selection Model
Constant .73676537 1.88621080 .391 .6961
AGEC −.01022903 .02646802 −.386 .6992 33.3853297
INCOME .06194595 .15953633 .388 .6978 3.36537604
OWNRENT .45529765 1.16379189 .391 .6956 .44048522
CUR�ADD −.00041768 .00125190 −.334 .7387 55.2676270

Overdispersion Parameter for Negative Binomial
Theta 1.60803441 1.31003489 1.227 .2196

Standard Deviation of Heterogeneity
Sigma .49395748 1.15588222 .427 .6691

Correlation of Heterogeneity & Selection
Rho .61978139 2.31339106 .268 .7888

The parameters of the probit and the Poisson/negative binomial are fit at the
same time.

The Sigma statistic that appears in both model output is the standard devi-
ation of ν in λ = exp(βx + ν). Rho is the correlation between ν and u in
Prob[d =1]=Prob(d ′z + u > 0) in the probit model. The variance of u is 1.
According to the model results, Rho is not significant in the sample selection
Poisson model, which is interpreted as meaning that selection is not an issue in
these data. The interpretation of the negative binomial model is the same.

The negative binomial selection model here is apparently only weakly iden-
tified, which is no surprise given the Poisson results (rho approx = 0). What is
going on is something like collinearity, but with the derivatives. It is likely that
this model is overspecified. The reason is that the negative binomial model as
initially constructed is the Poisson model with an additional term for hetero-
geneity. The selection model adds yet another source of latent heterogeneity to
what is already intrinsic to the negative binomial. That is, the negative binomial
is used to accommodate overdispersed Poisson models. But then selection adds
an additional layer of accommodation to overdispersion. In this case I suspect it
is too much, i.e. it is overspecified. The model may in fact not be adequate to pick
up all this latent activity. Other modeling situations may require the extra accom-
modation. But in this case, the probit selection model predictors are not signif-
icant, even though they were so when modeled alone. Thus the probit selection
criteria with the Poisson model provides no support to the selection process.

We next discuss negative binomial panel models, including fixed and random
effects models, GEE or population averaged models, and random intercept and
random parameter models. Several of these types of models have only recently
been developed, and represent some of the more interesting, as well as useful,
applications of the negative binomial to study data.
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9.4 Summary

Truncation and censoring primarily deal with how data are gathered. When
there is missing data due to late entry into a study, or because data elements at a
given point have been excluded from a study, we have truncation and censoring.

Truncation occurs when we do not have knowledge of counts at either a
point near the beginning or at the end of the counting process. In either case, the
truncated data are actually excluded from the model. The probability function
of either the Poisson or NB-2 model is adjusted to account for the missing
counts.

Censoring may be parameterized in either an econometric or a survival sense.
In the former, censoring is similar to truncation, but the censored data to the
outside of the cut point(s) are re-valued to that nearest value included in the
model. For instance, if the cut point is at 3, counts of 0, 1, and 2 are not dropped
as in truncation, but are set to 3. Censored data sets can be identified with
numerous values at either cut point.

The survival parameterization of censoring allows censoring to take place
anywhere in the data, not at cut points. This type of censoring is based on survival
models such as Cox regression and the various parametric survival models. The
survival parameterization of censored Poisson and negative binomial regression
is available only with Stata; refer to the user authored procedures cpoisson
and censornb respectively.

Sample selection models are common in econometric literature. The model
is structured as a two-part process, with one process required to be existent,
or to have occurred, before the main process occurs. The selection criterion is
typically defined as a probit model, with the main counting process consisting
of either a Poisson or negative binomial. There are many variations of sample
selection when the main process is continuous – the foremost model being the
Heckman two-step approach. However, Heckman and similar approaches are
not appropriate for use with count response models. Sample selection count
models have only recently come into fruition with the work of Greene and
Terza.

We next discuss the nature and evaluation of count models for panel data.
These models are appropriate for handling both clustered and longitudinal data.

Exercises

1 Model time on died and levels of drug, with drug level 1 as the referent.
Censoring is indicated by the variables cen1 and cenx. Observations having a
censor value of 1 are not censored. Left-censored observations are designated
by a censor value of 0, right-censored observations by a value of −1. Many
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algorithms require a censor value regardless of the censoring status of the
observations; thus the inclusion of cen1 in the data. For the modeling task,
censoring is indicated using the variable cenx.

Compare parameter estimates and AIC values for both the survival and
econometric parameterizations of censored Poisson and censored negative
binomial regression. Determine the optimal model. This data set is named
cancercen.

time died drug age cen1 cenx probit

1 1 1 65 1 0 0
1 1 1 61 1 1 0
2 1 1 59 1 1 1
3 1 1 52 1 0 1
4 1 1 67 1 0 0
4 1 1 56 1 0 1
5 1 1 58 1 1 0
5 1 1 63 1 1 1
6 0 2 65 1 1 0
6 1 3 55 1 1 0
6 1 2 67 1 1 1
7 1 2 58 1 0 1
8 0 1 58 1 1 1
8 1 1 56 1 1 1
8 1 1 49 1 1 1
8 1 1 52 1 0 1
9 0 2 56 1 0 1

10 0 2 49 1 1 0
10 1 3 54 1 1 1
11 0 2 61 1 1 0
11 1 1 55 1 −1 0
11 1 1 50 1 1 0
12 1 1 49 1 1 0
12 1 1 62 1 1 1
13 1 2 62 1 1 1
15 0 2 50 1 1 1
15 1 1 51 1 −1 1
16 1 2 67 1 −1 1
17 0 3 60 1 1 1
17 1 1 49 1 1 1
19 0 3 49 1 1 1
19 0 2 50 1 1 0
20 0 2 55 1 1 1
22 1 2 58 1 1 1
22 1 1 57 1 1 0
23 1 2 47 1 1 1
23 1 1 52 1 1 1
24 1 3 58 1 0 1
25 0 3 50 1 1 1
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time died drug age cen1 cenx probit

25 1 3 55 1 1 1
28 0 3 48 1 1 1
28 1 3 57 1 1 1
32 0 3 56 1 1 1
32 0 2 52 1 1 1
33 1 3 60 1 1 0
34 0 3 62 1 1 0
35 0 3 48 1 1 1
39 0 3 52 1 1 0

2 Use the data in Exercise 1 to develop a sample selection model with probit
as the indicator of being selected into the main model. Model both a Poisson
and negative binomial selection model of time on died, age, and levels of
drug. You may find that leveling age into three of four groups will assist in
model fit, as well as interpretation.

3 Compare the negative binomial selection model developed for Exercise 2
with a survival parameterized censored negative binomial model where pro-
bit is the censor variable. Employ probit as both a left censor, with a value of
0 indicating left censoring, and then as a right-censored variable. One must
convert all probit values of 0 to −1 prior to modeling with probit as a right
censor. Discuss differences in output.

4 Using the data from Example 1, create an indicator variable called rgtrun.
Assign values of 1 for all values of rgtrun where time is less than 30. For
values of time greater than 40, assign rgtrun a value of −1. Compare the
modeling results of a negative binomial truncated model with that of a sur-
vival parameterized censored negative binomial model. Then model the same
data using an econometric parameterized censored negative binomial. Which
model results are more likely to be similar? Discuss why.

5 Discuss the type of data that are appropriate for survival parameterized
censoring in difference to econometric parameterized censoring.

6 Model the following data using a truncated Poisson and truncated negative
binomial. What reasons are indicated to prefer the negative binomial over
the Poisson model? (data contacts from Sikkel and Jelierse, 1988, Table 1).

Contacts in months Count

0 4244
1 1719
2 3337
3 461
4 190
>4 267
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Negative binomial panel models

A basic assumption in the construction of models from likelihood theory is
that observations in the model are independent. This is a reasonable assump-
tion for perhaps the majority of studies. However, for longitudinal studies this
assumption is not feasible; nor does it hold when data are clustered. For exam-
ple, observations from a study on student drop-out can be clustered by the type
of schools sampled. If the study is related to intervention strategies, schools
in affluent suburban, middle-class suburban, middle-class urban, and below
poverty level schools have more highly correlated strategies within the school
type than between types or groups. Likewise, if we have study data taken on a
group of individual patients over time (e.g., treatment results obtained once per
month for a year), the data related to individuals in the various time periods are
likely to be more highly correlated than are treatment results between patients.
Any time the data can be grouped into clusters, or panels, of correlated groups,
we must adjust the likelihood-based model (based on independent observations)
to account for the extra-correlation.

We have previously employed robust variance estimators and bootstrapped
standard errors when faced with overdispersed count data. Overdispersed Pois-
son models were adjusted by using different types of negative binomial mod-
els, or by extending the basic Poisson model by adjusting the variance or by
designing a new log-likelihood function to account for the specific cause of the
overdispersion. Examples we have previously discussed include zero-inflated
models, zero-truncated models, hurdle models, and censored or truncated
models.

In this chapter we shall describe a group of models that:

1 add at least one extra parameter to the linear predictor, specifying how obser-
vations within panels are to be construed, and

2 derive new log-likelihoods based on panels of correlated observations.

198
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The type of parameters that are added to the linear predictor, and the manner in
which panels are treated will determine the type of panel model described. We
shall first discuss fixed effects count models, differentiating between uncondi-
tional and conditional varieties. Following an examination of fixed-effects count
models, we address random-effects models, followed by generalized estimat-
ing equations, or population-averaged models. Each of these types of panel
models has software support in several commercial packages. Our final group
of panel models has only recently found commercial software support, with
only one package providing support for negative binomial models (LIMDEP).
These regression models are commonly referred to as multilevel models. The
two foremost members of this variety of panel model are random intercept and
random coefficient or parameter models. More complex multilevel models are,
for the most part, built on their basis. With respect to multilevel negative bino-
mial models, current research has only begun in earnest within the last couple
of years. They are still in the developmental stage.

10.1 Unconditional fixed-effects negative binomial model

Fixed-effects count models may be estimated in two ways – unconditionally and
conditionally. We begin with a consideration of the unconditional fixed-effects
Poisson model since it is the basis on which we can understand the negative
binomial parameterizations.

Unconditional estimation of the fixed effects Poisson model can be obtained
using standard GLM software as well as the traditional maximum likelihood
Poisson procedure. The model is specified by including a separate fixed effect
for each defined panel in the data. The fixed effects are specified by indicator
variables, just as is done when estimating factor or categorical predictors. We
represent this relationship as

ln(µik) = exp(βxik + δi ) (10.1)

where δ is the fixed effect associated with individual, i, and subscript k indexes
the observations associated with individual i. When a panel relates observations
collected over a time period, it is customary to use the subscript t instead of
k. We shall use k throughout our discussion, but with the knowledge that t is
commonly used for longitudinal models.

The log-likelihood for the unconditional fixed effects Poisson takes the
form of

L(xβi ; yi ) ==
n∑

i=1

N∑
k=1[yik(Xikβ + δi )−exp (Xikβ + δi ) − ln � (yik + 1)]

(10.2)
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Note the similarity to that of the standard Poisson log-likelihood function
defined in Chapter 3 as

L(xβi ; yi ) =
n∑

i=1

{yi (xiβ) − exp(xiβ) − ln �(yi + 1)}

I shall use the well-known ships data set that was used in McCullagh and
Nelder (1989), Hardin and Hilbe (2003), and other sources. The dataset
contains values on the number of reported accidents for ships belonging to a
company over a given time period. The variables are defined as:

accident : number of accidents (reponse)
ship : ship identification (1−8)
op : ship operated between the years 1975 and 1979 (1/0)
co65�69 : ship was in construction between 1965 and 1969 (1/0)
co70�74 : ship was in construction between 1970 and 1974 (1/0)
co75�79 : ship was in construction between 1975 and 1979 (1/0)
service : months in service

With the natural log of the months of service specified as the offset, a basic
Poisson model of the data is given as:

. glm accident op co�65�69 − co�75�79, nolog fam(poi)
lnoffset(service)

Generalized linear models No. of obs = 34
Optimization : ML Residual df = 29

Scale parameter = 1
Deviance = 62.36534078 (1/df) Deviance = 2.150529
Pearson = 82.73714004 (1/df) Pearson = 2.853005

AIC = 5.006819
Log likelihood = -80.11591605 BIC = -39.89911

accident Coef. OIM Std. Err. z P>|z| [95% Conf. Interval]

op .3874638 .118107 3.28 0.001 .1559783 .6189494
co�65�69 .7542017 .1487697 5.07 0.000 .4626185 1.045785
co�70�74 1.05087 .15757 6.67 0.000 .7420385 1.359701
co�75�79 .7040507 .2203103 3.20 0.001 .2722504 1.135851

�cons -6.94765 .1269363 -54.73 0.000 -7.196441 -6.69886
service (exposure)

Predictors appear to be significant; however, the model is clearly overdispersed.
We have purposefully ignored the correlation of values within each panel of
ships in the above model. A negative binomial model can be used to generically
account for the overdispersion, appearing as:

. glm accident op co�65�69 − co�75�79, fam(nb.1303451)
lnoffset(service)

Generalized linear models No. of obs = 34
Optimization : ML Residual df = 29

Scale parameter = 1
Deviance = 36.84717336 (1/df) Deviance = 1.270592
Pearson = 42.24099154 (1/df) Pearson = 1.456586
Variance
function

: V(u) =
u+(.1303451)u^2

[Neg. Binomial]

AIC = 4.874952
Log likelihood = -77.87418504 BIC = -65.41728
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accident Coef. OIM Std. Err. z P>|z| [95% Conf. Interval]

op .3536459 .2347302 1.51 0.132 -.1064169 .8137087
co�65�69 1.012518 .329175 3.08 0.002 .3673472 1.65769
co�70�74 1.255125 .3086897 4.07 0.000 .6501045 1.860146
co�75�79 .7595303 .3854008 1.97 0.049 .0041585 1.514902

�cons -6.933539 .2849396 -24.33 0.000 -7.492011 -6.375068
service (exposure)

Much of the overdispersion has been accommodated by the negative binomial
model, but there is still evidence of extra correlation in the data. We also know
from the data what may be causing overdispersion – the panel-specific effect
of the individual ships.

We assign a specific indicator to each panel. Each ship will have a separate
slope. This type of model is called an unconditional fixed-effects model. As a
Poisson model we have:

. glm accident op co�65�69 − co�75�79 ship2-ship5,fam(poi)
lnoffset(service)

Generalized linear models No. of obs = 34
Optimization : ML Residual df = 25

Scale parameter = 1
Deviance = 38.69505154 (1/df) Deviance = 1.547802
Pearson = 42.27525312 (1/df) Pearson = 1.69101

AIC = 4.545928
Log likelihood = -68.28077143 BIC = -49.46396

accident Coef. OIM Std. Err. z P>|z| [95% Conf. Interval]

op .384467 .1182722 3.25 0.001 .1526578 .6162761
co�65�69 .6971404 .1496414 4.66 0.000 .4038487 .9904322
co�70�74 .8184266 .1697736 4.82 0.000 .4856763 1.151177
co�75�79 .4534266 .2331705 1.94 0.052 -.0035791 .9104324

ship2 -.5433443 .1775899 -3.06 0.002 -.8914141 -.1952745
ship3 -.6874016 .3290472 -2.09 0.037 -1.332322 -.042481
ship4 -.0759614 .2905787 -0.26 0.794 -.6454851 .4935623
ship5 .3255795 .2358794 1.38 0.168 -.1367357 .7878946
�cons -6.405902 .2174441 -29.46 0.000 -6.832084 -5.979719

service (exposure)

A substantial amount of the overdispersion present in the original Poisson model
has been accounted for. However, the negative binomial handles the overdis-
persion better than the unconditional fixed effects Poisson. We next attempt to
model an unconditional fixed-effects negative binomial.

. glm accident op co�65�69-co�75�79 ship2-ship5,
fam(nb 0.0000000253) lnoffset(service)

Generalized linear models No. of obs = 34
Optimization : ML Residual df = 25

Scale parameter = 1
Deviance = 38.69504594 (1/df) Deviance = 1.547802
Pearson = 42.27517882 (1/df) Pearson = 1.691007
Variance
function

: V(u) =
u+(0.0000000253) u^2

[Neg. Binomial]

AIC = 4.545928
Log likelihood = -68.28077281 BIC = -49.46397
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accident Coef. OIM Std. Err. z P>|z| [95% Conf. Interval]

op .384467 .1182722 3.25 0.001 .1526577 .6162762
co�65�69 .6971404 .1496415 4.66 0.000 .4038485 .9904323
co�70�74 .8184266 .1697737 4.82 0.000 .4856763 1.151177
co�75�79 .4534266 .2331705 1.94 0.052 -.0035792 .9104324

ship2 -.5433445 .1775899 -3.06 0.002 -.8914144 -.1952747
ship3 -.6873984 .3290468 -2.09 0.037 -1.332318 -.0424786
ship4 -.0759617 .2905787 -0.26 0.794 -.6454854 .493562
ship5 .3255795 .2358794 1.38 0.168 -.1367356 .7878946
�cons -6.405901 .2174441 -29.46 0.000 -6.832084 -5.979719

service (exposure)

From a previous maximum likelihood estimation of the model it is discovered
that the negative binomial value of α is approximately 0.0. This indicates that the
model is in fact Poisson, and that the extra overdispersion is likely to come from a
source other than the fixed panel effect of the individual ships. Nevertheless, the
fit, as indicated by the AIC and BIC statistics, appears to favor the unconditional
fixed-effects Poisson model over a model not accounting for the panel effect of
individual ships.

A caveat on using this form of fixed-effects regression: use it only if there are
a relatively few number of panels in the data. If there are more than 20 panels, it
is preferred to use the conditional fixed-effects model. The greater the number
of panels, the greater the possible bias in parameter estimates for the levels
or panels of the effect variable. This is called the ‘incidental parameters prob-
lem’, first defined by Neyman and Scott (1948). It is interesting that a number of
econometricians have thought that the incidental parameters problem, which we
shall refer to as the IP problem, affects the unconditional fixed-effects Poisson
model. Woutersen (2002) attempted to ameliorate the IP problem with Poisson
models by employing an integrated moment estimator. Other attempts include
Lancaster (2002) and Vadeby (2002). Most of these “solutions” are based on
separating the main model parameters from the array of fixed-effects parame-
ters. However, it has been demonstrated by Greene (2006) and others that the
IP problem is not real when applied to the Poisson model. This conclusion is
based on the observation that the Poisson conditional fixed-effects estimator is
numerically equal to the unconditional estimator, which means that there is no
IP problem. On the other hand, the IP problem does affect the unconditional
fixed-effects negative binomial. But the fixed-effects negative binomial model
has a different problem. It is intrinsically different from the Poisson. Recall that
the Poisson fixed-effects has a mean, µik, value of exp(βxik + δi ). This means
that the fixed effect is built into the Poisson mean parameter. The negative bino-
mial fixed-effects model, though, builds the fixed-effects into the distribution
of the gamma heterogeneity, α, not the mean. This makes it rather difficult
to interpret the IP problem with the negative binomial. One result is that the
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estimator is inconsistent in the presence of a large number of fixed effects. But
exactly how it is inconsistent is still a matter of debate.

There is good evidence that in the presence of a large number of fixed
effects, the unconditional negative binomial will underestimate standard errors,
resulting in insufficient coverage of the confidence intervals. That is, nega-
tive binomial predictors appear to enter the model as significant when in fact
they do not. Simulation studies (Greene, 2006) have demonstrated that scal-
ing the unconditional fixed-effects negative binomial model standard errors by
the deviance-based dispersion statistic produces standard errors that are closer
to the nominal values. This is not the case when using Pearson χ2-based dis-
persion as the basis for scaling standard errors, as is the norm for non-panel
models. On the other hand, using the deviance-based dispersion statistic for
scaling unconditional fixed effects Poisson models does not improve coverage,
and the Pearson χ2 dispersion should be used. These facts need to be kept in
mind when modeling unconditional fixed-effects count models.

10.2 Conditional fixed-effects negative binomial model

Panel data models are constructed in order to control for all of the stable predic-
tors in the model and to account for the correlation resulting from observations
being associated within groups or panels. The value of conditional fixed-effects
models is that a near infinite number of panels may be adjusted, while at the
same time being conditioned out of the actual model itself. We do not have to
deal with a host of dummy slopes.

A conditional fixed-effects model is derived by conditioning out the fixed
effects from the model estimation. Like unconditional fixed-effects models,
there is a separate fixed effect, δ, specified in the linear predictor. Hence, η =
xβ + δ. However, unlike the unconditional version, a revised log-likelihood
function is derived to affect the conditioning out of the panel effects through a
sufficient statistic.

The conditional log-likelihood function is conditioned on the sum of the
responses within each panel: ∑

yik (10.3)

Prior to defining the Poisson log-likelihood, we shall first present the Poisson
probability function.

CONDITIONAL FIXED EFFECTS POISSON PROBABILITY FUNCTION

f (yit ; xitβ)

(
ni∑

t=1

yit

)
!

ni∏
t=1

exp(xitβ)yit

yi t !
{∑

k exp(xitβ)
}yit
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CONDITIONAL FIXED EFFECTS POISSON LOG-LIKELIHOOD
FUNCTION

L(β; yit ) =
ni∑

i=1

[
ln �

(
ni∑

t=1

yit + 1

)
−

ni∑
t=1

(ln �(yit + 1))

+
ni∑

t=1

{
yit (xitβ) − yit ln

(
ni∑

l=1

(exp(xilβ))

)}]
(10.4)

or

L(µ; yit ) =
ni∑

i=1

[
ln �

(
ni∑

t=1

yit + 1

)
−

ni∑
t=1

(ln �(yit + 1))

+
ni∑

t=1

{
yit xitβ − yit ln

(
ni∑

l=1

µil

)}]

Following the derivation of the model as proposed by Hausman, Hall and
Griliches (1984), the conditional fixed-effects negative binomial probability
and log-likelihood functions are shown as:

CONDITIONAL FIXED EFFECTS NEGATIVE BINOMIAL
PROBABILITY FUNCTION

f (yit ; xitβ) =
ni∏

t=1

(
�(µi t + yit )

�(µi t )yit !

) 


�

(
ni∑

t=1
µi t

)
�

(
ni∑

t=1
yit + 1

)

�

(
ni∑

t=1
µi t +

ni∑
t=1

yit

)



CONDITIONAL FIXED EFFECTS NEGATIVE BINOMIAL
LOG-LIKELIHOOD

L(µi t ; yit ) =
ni∑

t=1

ln �

(
ni∑

t=1

µi t

)
+ ln �

(
ni∑

t=1

yit + 1

)
−

ni∑
t=1

(ln �(yit + 1))

− ln �

(
ni∑

t=1

yit +
ni∑

t=1

(µi t )+
ni∑

t=1

(ln �(µi t +yit ))−
ni∑

t=1

(ln �(µi t ))

)

(10.5)
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or

L(β; yit ) =
ni∑

t−1

ln �

[
ni∑

t−1

(exp(xitβ))

]
+ ln �

(∑
yit + 1

)

−
ni∑

t−1

(ln �(yit + 1)) − ln �

(
ni∑

t−1

yit +
ni∑

t−1

(exp(xitβ))

)

+
ni∑

t−1

(ln �(exp(xitβ) + yit )) −
ni∑

t−1

(ln �(exp(xitβ))) (10.6)

Note that the heterogeneity parameter, δ or α, does not appear in the log likeli-
hood. It does not, as a result, appear in the model output.

Another model that we should mention, but that has had very little application
and currently has no commercial software support, is the NB-1 conditional fixed
effects model. Its probability and log-likelihood functions can be derived as:

CONDITIONAL FIXED EFFECTS NB-1 PROBABILITY FUNCTION

f (yit ; β) =
nI∏

t=1

(
�(µi t + yit )

�(yit + 1)

) 


�

(
ni∑

t=1
µi t

)
�

(
ni∑

t=1
yit + 1

)

�

(
ni∑

t=1
µi t +

ni∑
t=1

yit

)

 (10.7)

CONDITIONAL FIXED EFFECTS NB-1 LOG-LIKELIHOOD

L(µi t ; yit ) =
nt∑

t=1

{ln �(µi t + yit ) − ln �(µi t ) − ln �(yit + 1)}

+ ln �

[
nt∑

t=1

(xitβ) + ln �

(
ni∑

t=1

(yit ) + 1

)

− ln �

(
ni∑

t=1

(xitβ) +
nt∑

t=1

(yitβ)

)]
(10.8)

or

L(β; yit ) =
nt∑

t=1

{ln �(exp(xitβ) + yit ) − ln �(exp(xitβ)) − ln �(yit + 1)}

+ ln �

[
nt∑

t=1

(xitβ)+ ln �

(
ni∑

i=1

(yit + 1)

)
− ln �

(
ni∑

i=1

(xitβ) +
nt∑

t=1

(yit )

)]

Complete derivations of both the Poisson and negative binomial log likelihood
functions can be found in Cameron and Trevedi (1998), and Hardin and Hilbe
(2003).
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We next model the same data using conditional fixed-effects as we did with
unconditional fixed-effects.
. xtpoisson accident op co�65�69 − co�75�79, nolog i(ship)
exposure(service) fe

Conditional fixed-effects Number of obs = 34
Poisson regression
Group variable (i) : ship Number of groups = 5

Obs per group: min = 6
avg = 6.8
max = 7

Wald chi2(4) = 48.44
Log likelihood = -54.641859 Prob > chi2 = 0.0000

accident Coef. Std. Err. z P>|z| [95% Conf. Interval]

op .384467 .1182722 3.25 0.001 .1526578 .6162761
co�65�69 .6971405 .1496414 4.66 0.000 .4038487 .9904322
co�70�74 .8184266 .1697737 4.82 0.000 .4856764 1.151177
co�75�79 .4534267 .2331705 1.94 0.052 -.0035791 .9104324
service (exposure)

The associated AIC statistic is 3.567, which is a full one unit lower in value
than the unconditional model. Compare the above list of parameter estimates
and standard errors output with that of the unconditional results:

. glm accident op co�65�69 -- co�75�79 ship2-ship5,fam(poi)

lnoffset(service)

accident Coef. OIM Std. Err. z P>|z| [95% Conf. Interval]

op .384467 .1182722 3.25 0.001 .1526577 .6162762
co�65�69 .6971404 .1496415 4.66 0.000 .4038485 .9904323
co�70�74 .8184266 .1697737 4.82 0.000 .4856763 1.151177
co�75�79 .4534266 .2331705 1.94 0.052 -.0035792 .9104324

ship2 -.5433445 .1775899 -3.06 0.002 -.8914144 -.1952747
ship3 -.6873984 .3290468 -2.09 0.037 -1.332318 -.0424786
ship4 -.0759617 .2905787 -0.26 0.794 -.6454854 .493562
ship5 .3255795 .2358794 1.38 0.168 -.1367356 .7878946
�cons -6.405901 .2174441 -29.46 0.000 -6.832084 -5.979719

service (exposure)

The first thing that can be noticed is that the parameter estimates and standard
errors for the unconditional and conditional fixed-effects Poisson models are
identical, though this equality is not an equivalence of the two approaches. The
conditional fixed-effects Poisson model does not include a constant, whereas the
unconditional does. Of interest to note as well is the fact that the respective log-
likelihoods differ (−54.64 to −68.28). We previously pointed out that the AIC
statistics differ as well (3.57 to 4.55). We may conclude from this that, although
the estimates and standard errors are the same, the two models intrinsically
differ, with the preferred fit being that of the conditional fixed-effects Poisson
model.

We now turn to modeling the same data using the conditional fixed-effects
negative binomial model. It can be displayed as:
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. xtnbreg accident op co�65�69 − co�75�79, nolog i(ship)
exposure(service) fe

Conditional FE negative Number of obs = 34
binomial regression
Group variable (i) : ship Number of groups = 5

Obs per group: min = 6
avg = 6.8
max = 7

Wald chi2(4) = 34.81
Log likelihood = -53.08425 Prob > chi2 = 0.0000

accident Coef. Std. Err. z P>|z| [95% Conf. Interval]

op .3835077 .1423269 2.69 0.007 .104552 .6624634
co�65�69 .6772064 .1769717 3.83 0.000 .3303482 1.024065
co�70�74 .8186325 .2009683 4.07 0.000 .424742 1.212523
co�75�79 .4774847 .2773654 1.72 0.085 -.0661414 1.021111

�cons -5.995012 .8205518 -7.31 0.000 -7.603264 -4.38676
service (exposure)
------------------------------------------------------------------
AIC Statistic =3.476

Compare the above with the unconditional model:

. glm accident op co�65�69-co�75�79 ship2-ship5, fam(nb
0.0000000253) lnoffset(service)

Log likelihood = -68.28077281 AIC = 4.545928

accident Coef. OIM Std. Err. z P>|z| [95% Conf. Interval]

op .384467 .1182722 3.25 0.001 .1526577 .6162762
co�65�69 .6971404 .1496415 4.66 0.000 .4038485 .9904323
co�70�74 .8184266 .1697737 4.82 0.000 .4856763 1.151177
co�75�79 .4534266 .2331705 1.94 0.052 -.0035792 .9104324

ship2 -.5433445 .1775899 -3.06 0.002 -.8914144 -.1952747
ship3 -.6873984 .3290468 -2.09 0.037 -1.332318 -.0424786
ship4 -.0759617 .2905787 -0.26 0.794 -.6454854 .493562
ship5 .3255795 .2358794 1.38 0.168 -.1367356 .7878946
�cons -6.405901 .2174441 -29.46 0.000 -6.832084 -5.979719

service (exposure)

The conditional and unconditional fixed-effects negative binomial models do
not normally have the same parameter estimates. However, in this case the data
are very close to Poisson, so the results will not be too dissimilar. Note though
that, unlike the Poisson, both the conditional and unconditional negative bino-
mial models have a constant in the model. And, as previously indicated, the
conditional version does not have a value for α. For a discussion on uncondi-
tional fixed effects constants see Greene (2003).

Unfortunately it has been discovered that the conditional fixed-effects neg-
ative binomial model is not a true fixed-effects model since it fails to control
for all of its predictors. In addition, the α parameter that is conditioned out of
the log-likelihood does not correspond to the different intercepts in the decom-
position of µ. Allison and Waterman (2002) provide a full discussion, together
with alternative models. The negative multinomial model has been suggested
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as an alternative for the conditional negative binomial. However, the negative
multinomial produces the same estimators as a conditional Poisson, so does
not provide any additional capability for handling overdispersion over what is
available with Poisson options. The other foremost alternative is to revert to
the unconditional negative binomial model. In fact, they recommend that the
unconditional negative binomial be used rather then the conditional. But, as
previously discussed, it should also be accompanied by scaling the standard
errors by the Pearson Chi2 dispersion. If this strategy is unsatisfactory, then
one should consider using other panel models; e.g. random-effects models or
GEE models.

10.3 Random-effects negative binomial

Random-effects models begin with the same notation as fixed-effects models
in that a heterogeneity parameter is added to the linear predictor. Moreover,
the fixed-effects parameter, δ, is now considered to be an iid random parameter
rather than a fixed parameter. It is derived from a known probability distribution.
In the case of Poisson, the random parameter can follow the usual Gaussian dis-
tribution, the gamma distribution, or the inverse Gaussian distribution. Gamma
is the preferred random distribution to use since it is the conjugate prior to Pois-
son. The gamma distribution also allows an analytic solution of the integral in
the likelihood. Other random distributions do not have these favorable features.

We shall use the term ν rather than δ for depicting the random parameter for
random-effects count models. In so doing we shall be consistent with common
terminology. We shall also use the standard GLM term µ rather than λ for the
Poisson and negative binomial fitted value. λ is commonly found in the literature
on count response models. But as with our choice of using ν, we shall use the
term µ to maintain consistency for all count models that in some respect emanate
from a GLM background. The framework for the random-effects Poisson is

ln(µik) = βxik + νi (10.9)

with νi = ν + εi

Following the derivation of the random gamma effects Poisson model by
Hausman, Hall, and Griliches (1984), we assume a random multiplicative effect
on µ specified as

Pr(yik ; νi , x) = {�(µikνi )
y/yik!} exp(−�µikνi )

= (
�

(
µ

y
ik

)
/yik!

)
exp(−νi�µik)ν�y (10.10)
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Summing of subject-specific observations are over panels with a mean given
for each panel of

µik = exp(xikβ) (10.11)

where each panel has separately defined means given as

νiµik = exp(xikβ + ηik) (10.12)

With ν following a gamma distribution with a mean of one and a variance of θ ,
we have the mixture

Pr(νi , µik) = θθ/�(θ )νθ−1
i exp(−θνi ) � exp(−νiµik)(νiµik)y/yik!)

(10.13)

where the terms prior to the product sign specify the gamma distributed random
component and the terms from the product sign to the right provide the Poisson
probability function. This mixture is of the same structural form as we derived
for the NB-1 probability function in Chapter 5.

Each panel is independent of one another, with their joint density combined
as the product of the individual panels. The log-likelihood for the gamma dis-
tributed Poisson random effects model can be calculated by integrating over ν i.
The result is:

RANDOM EFFECTS POISSON WITH GAMMA EFFECT

L(β; yit ) =
ni∑

i=1

{
ln �

(
θ +

nk∑
k=1

yik

)
− ln �(θ )

−
nk∑

k=1

(ln �(yik + 1) + θ ln(ui ) +
(

nk∑
k=1

yik

)
ln(1 − ui )

−
(

nk∑
k=1

yik

)
ln

(
nk∑

k=1

(exp(xikβ))

)
+

nk∑
k=1

(y∗(xikβ))

}
(10.14)

where θ = 1/ν

and ui = θ/(θ + �(exp(xikβ))

We shall use the same data that were used for examining fixed-effects models
for the examples of random-effects Poisson and negative binomial. Random
effects Poisson, with a gamma effect, is shown below as:
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. xtpoisson accident op co�65�69-co�75�79, nolog exposure(service)
i(ship) re

Random-effects Poisson regression Number of obs = 34
Group variable (i) : ship Number of groups = 5
Random effects u�i ∼ Gamma Obs per group: min = 6

avg = 6.8
max = 7

Wald chi2(4) = 50.90
Log likelihood = -74.811217 Prob > chi2 = 0.0000

accident Coef. Std. Err. z P>|z| [95% Conf. Interval]

op .3827453 .1182568 3.24 0.001 .1509662 .6145244
co�65�69 .7092879 .1496072 4.74 0.000 .4160633 1.002513
co�70�74 .8573273 .1696864 5.05 0.000 .5247481 1.189906
co�75�79 .4958618 .2321316 2.14 0.033 .0408922 .9508313

�cons -6.591175 .2179892 -30.24 0.000 -7.018426 -6.163924
service (exposure)
------------------------------------------------------------------
/lnalpha -2.368406 .8474597 -4.029397 -.7074155
------------------------------------------------------------------

alpha .0936298 .0793475 .0177851 .4929165

Likelihood-ratio test of alpha=0: chibar2(01) = 10.61
Prob>=chibar2 = 0.001

AIC Statistic = 4.754

The likelihood ratio tests whether the data are better modeled using a panel
structure or whether a pooled structure is preferred. Here we find that the ran-
dom effects (panel) parameterization is preferred over the pooled, or standard,
Poisson model.

It is interesting to compare this output with that of a NB-1 model on the
same data. Recall that mixing the gamma random parameter with the Poisson
probability function resulted in a NB-1 PDF. Of course the NB-1 PDF does not
account for the panel structure of the data as does the gamma distributed random
effects Poisson. However, because of the base similarity of the two models, we
should expect that the outputs of the respective models will be similar, but not
identical. This suspicion is indeed confirmed. Note also that the output above
specifies “alpha” as the heterogeneity parameter. It is the same as what we have
referred to as ν. Interpret δ in the same manner.

CONSTANT NEGATIVE BINOMIAL (NB-1)

. nbreg accident op co�65�69-co�75�79, exposure(service)
cluster(ship) disp(constant)

Negative binomial regression Number of obs = 34
Dispersion = constant Wald chi2(2) = .
Log pseudolikelihood = -74.801716 Prob > chi2 = .

(Std. Err. adjusted for 5 clusters in ship)
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Robust
accident Coef. Std. Err. z P>|z| [95% Conf. Interval]

op .3824838 .0903809 4.23 0.000 .2053404 .5596272
co�65�69 .7174666 .0996523 7.20 0.000 .5221517 .9127814
co�70�74 1.025627 .2156908 4.76 0.000 .602881 1.448373
co�75�79 .7266669 .1996568 3.64 0.000 .3353468 1.117987

�cons -6.924931 .0522819 -132.45 0.000 -7.027402 -6.822461
service (exposure)
------------------------------------------------------------------
/lndelta -.1042511 .4995717 -1.083394 .8748916
------------------------------------------------------------------

delta .9009991 .4501137 .338445 2.398615
------------------------------------------------------------------
AIC Statistic = 4.635

We next compare the above with the standard NB-2.

NEGATIVE BINOMIAL (NB-2)

. nbreg accident op co�65�69-co�75�79, exposure(service)
cluster(ship)

Negative binomial regression Number of obs = 34
Dispersion = mean Wald chi2(2) = .
Log pseudolikelihood = -77.874185 Prob > chi2 = .

(Std. Err. adjusted for 5 clusters in ship)

Robust
accident Coef. Std. Err. z P>|z| [95% Conf. Interval]

op .3536459 .2161704 1.64 0.102 -.0700402 .777332
co�65�69 1.012518 .6365455 1.59 0.112 -.2350879 2.260125
co�70�74 1.255125 .3774548 3.33 0.001 .5153274 1.994923
co�75�79 .7595303 .2988691 2.54 0.011 .1737576 1.345303

�cons -6.933539 .0955349 -72.58 0.000 -7.120784 -6.746294
service (exposure)
------------------------------------------------------------------
/lnalpha -2.037569 1.517455 -5.011727 .9365884
------------------------------------------------------------------

alpha .1303451 .1977929 .0066594 2.551263
------------------------------------------------------------------
AIC Statistic = 4.816

When deriving the random effects negative binomial, we begin with the same
Poisson–gamma mixture as Equation (10.13). By rearranging terms and not
integrating out ν as we did for the Poisson, we have

f (yit ; µi tνi ) =
ni∏

i=1

�(µik + yik)

�(µik)�(yik + 1)

(
1

1 + νi

)µik
(

νi

1 + νi

)yik

(10.15a)

which is the panel structure form of the NB-1 model. For the random effect we
select the beta distribution, which is the conjugate prior of the negative binomial,
as gamma was the conjugate prior of the Poisson. With the dispersion defined
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as the variance divided by the mean, or 1 + ν, it is stipulated that the inverse
dispersion is distributed following a Beta distribution. We have, therefore

νi/(1 + νi ) ∼ Beta(a, b)

which layers the random panel effect onto the negative binomial model. Deriv-
ing the probability and the log-likelihood function results in the following forms
of the function

RANDOM EFFECTS NEGATIVE BIOMIAL WITH BETA EFFECT PDF

f (yit ; xitβ, a, b) = �(a + b) + �
(
a + ∑

t exp(xitβ)
)
�

(
b + ∑

t yi t
)

�(a)�(b)�
(
a + b + ∑

t exp(xitβ) + ∑
t yi t

)
ni∏

t=1

�(exp(xitβ) + yit )

�(exp(xitβ))�(yit + 1)
(10.15b)

and

RANDOM EFFECTS NEGATIVE BINOMIAL WITH BETA EFFECT
LOG-LIKELIHOOD FUNCTION

L(β; yit , a, b) =
ni∑

i=1

ln �(a + b) + ln �

(
a +

nk∑
k=1

(exp(xikβ))

)

+ ln �

(
b +

nk∑
k=1

yik

)
− ln �(a) − ln �(b)

− ln �

(
a + b +

nk∑
k=1

(exp(xikβ)) +
nk∑

k=1

yik

)

+
nt∑

t=1

(ln �((exp(xitβ)) + yit )

− ln �(yit + 1) − ln �(exp(xitβ))) (10.16)

Derivatives of the conditional fixed-effects and random-effects Poisson and
negative binomial models are given in Greene (2006).

Output of the beta distributed random effect negative binomial is shown
below for the data we have used in this chapter.

. xtnbreg accident op co�65�69-co�75�79, exposure(service)
i(ship) re

Random-effects Negative binomial Number of obs = 34
regression
Group variable (i) : ship Number of groups = 5
Random effects u�i ∼ Beta Obs per group: min = 6

avg = 6.8
max = 7

Wald chi2(4) = 37.15
Log likelihood = -73.222498 Prob > chi2 = 0.0000
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accident Coef. Std. Err. z P>|z| [95% Conf. Interval]

op .3815599 .1426935 2.67 0.007 .1018857 .661234
co�65�69 .6935116 .1777982 3.90 0.000 .3450335 1.04199
co�70�74 .8766236 .2024878 4.33 0.000 .4797548 1.273492
co�75�79 .5452717 .277925 1.96 0.050 .0005488 1.089995

�cons -6.039451 .8228179 -7.34 0.000 -7.652145 -4.426758
service (exposure)
------------------------------------------------------------------

/ln�r 3.641897 1.097047 1.491725 5.792069
/ln�s 3.029242 1.108291 .8570312 5.201453

------------------------------------------------------------------
r 38.16417 41.86788 4.444755 327.6904
s 20.68155 22.92118 2.356155 181.5358

Likelihood-ratio test vs. pooled: chibar2(01) = 3.16
Prob>=chibar2 = 0.038
AIC Statistic = 4.660

A likelihood ratio test accompanies the output, testing the random-effects panel
estimator with the pooled NB-1, or constant dispersion, estimator. Here the
random-effects model is preferred. r and s refer to the beta distribution values
for the a and b parameters respectively. Note the extremely wide confidence
intervals.

We shall use another example of a random effects model. It is not only a
good random effects example in its own right, but it will prove useful when
discussing generalized estimating equations.

The data come from Thall and Vail (1990) and are used in Hardin and
Hilbe (2003). Called the progabide data set, the data are from a panel study of
seizures in patients with epilepsy. Four successive two-week counts of seizures
were taken for each patient. The response is seizure, with explanatory predictors
consisting of the progabide treatment (1/0), a follow-up indicator called time
(1/0), and an interaction of the two, called timeXprog. An offset, called Period,
is given for weeks in the study, which are either two or eight. Since Period
is converted by a natural log, the two values of lnPeriod are 2.079442 and
0.6931472. There are 295 observations on 59 epileptic patients (panels), with
five observations, t, each.

Results of modeling the data are:

GAMMA DISTRIBUTED RANDOM EFFECTS POISSON

. xtpoisson seizures time progabide timeXprog, nolog
offset(lnPeriod) re i(t)

Random-effects Poisson regression Number of obs = 295
Group variable (i) : t Number of groups = 5
Random effects u�i ∼ Gamma Obs per group: min = 59

avg = 59.0
max = 59

Wald chi2(3) = 4.42
Log likelihood = -2318.1938 Prob > chi2 = 0.2192
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seizures Coef. Std. Err. z P>|z| [95% Conf. Interval]

time .111836 .0634911 1.76 0.078 -.0126042 .2362763
progabide .0275345 .0466847 0.59 0.555 -.0639658 .1190348
timeXprog -.1047258 .0650304 -1.61 0.107 -.232183 .0227314

�cons 1.347609 .0512546 26.29 0.000 1.247152 1.448066
lnPeriod (offset)
------------------------------------------------------------------
/lnalpha -6.524573 1.629814 -9.71895 -3.330195
------------------------------------------------------------------

alpha .0014669 .0023908 .0000601 .0357861
------------------------------------------------------------------
Likelihood-ratio test of alpha=0: chibar2(01) = 0.62
Prob>=chibar2 = 0.216

The model does not appear to favor the panel specification of the data. Note as
well that alpha is very close to 0, indicating equi-dispersed Poisson data.

BETA DISTRIBUTED RANDOM EFFECTS NEGATIVE BINOMIAL

. xtnbreg seizures time progabide timeXprog, nolog
offset(lnPeriod) re i(t)

Random-effects Negative binomial Number of obs = 295
regression
Group variable (i) : t Number of groups = 5
Random effects u�i ∼ Beta Obs per group: min = 59

avg = 59.0
max = 59

Wald chi2(3) = 6.19
Log likelihood = -1005.9032 Prob > chi2 = 0.1026

seizures Coef. Std. Err. z P>|z| [95% Conf. Interval]

time .3111093 .1411709 2.20 0.028 .0344195 .5877992
progabide .060761 .1524915 0.40 0.690 -.2381168 .3596388
timeXprog -.2456651 .1931765 -1.27 0.203 -.6242841 .1329539

�cons -1.111632 .1432822 -7.76 0.000 -1.39246 -.8308041
lnPeriod (offset)
------------------------------------------------------------------

/ln�r 16.95649 573.0725 -1106.245 1140.158
/ln�s 19.32986 573.0725 -1103.872 1142.531

------------------------------------------------------------------
r 2.31e+07 1.33e+10 0 .
s 2.48e+08 1.42e+11 0 .

------------------------------------------------------------------
Likelihood-ratio test vs. pooled: chibar2(01) = 0.00
Prob>=chibar2 = 1.000

Again, the panel structure of the data is questionable, and not supported by the
model. However, this conclusion holds only with respect to the subject-specific
parameterization. The same is the case for the random-effects Poisson model
above. A thorough discussion of the derivation of the random-effects Poisson
and negative binomial models can be found in Frees (2004) and Greene (2006).

A disadvantage of a random-effects model is that it assumes that the subject-
specific effects are uncorrelated with other predictors. The Hausman test is
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commonly used to evaluate whether data should be modeled using a fixed- or
a random-effects model. The test is based on work done by Mundlak (1978)
who argued that the fixed-effects model is more robust than the random-effects
model to important predictors left out of the model. That the subject-specific
effects are not correlated highly with model predictors is specified as the null
hypothesis. See Frees (2004), p 247, for additional discussion.

Random effects estimators are more efficient than fixed-effects estimators
when the data come from within a larger population of observations, as well as
when there are more panels in the data. Data coming from a smaller complete
data set, with relatively few panels, prefer the fixed-effects estimator.

Random-effects models are subject-specific models in that the log-likelihood
models individual observations rather than the average of panels, or marginal
distribution. GEEs are population averaging models; care must be taken when
interpreting GEE against random effects model output, as we shall turn to next.

10.4 Generalized estimating equation

10.4.1 The GEE algorithm

Generalized estimating equation (GEE) refers to a population averaging panel
method first proposed by Liang and Zeger in 1986. It is developed as an exten-
sion to the standard generalized linear models algorithm. Unlike the random-
effects model, which is subject-specific, GEE is a population-averaged approach
in which the marginal effects of the model are averaged across individuals.
Essentially, GEE models the average response of individuals sharing the same
predictors across all of the panels.

The GEE algorithm is structured such that observations are grouped in pan-
els, in a similar manner to fixed-effects and random-effects models. At the heart
of the model specification, the variance function is factored to include an iden-
tity matrix operating as a within-panel correlation structure. This panel form of
the variance function appears as

V (µi ) = [D(V (µik))1/2 I(nxn) D(V (µik))1/2]nxn (10.17)

where V(µik) is the GLM variance function defined from the family being
modeled. For example, the variance function of the Poisson family is µ and
the variance of the NB-2 model is µ + αµ2. This structure (represented by the
identity matrix) is called the independent correlation structure.

The benefit of the GEE approach is that the identity matrix, which is sand-
wiched between the factored GLM variance functions, can be replaced by a
parameterized matrix containing values other than one and zero. The structure
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of values that are substituted into this alternative matrix define the various GEE
correlation structures. These include:

FOREMOST GEE CORRELATION STRUCTURES

1 Independent 2 Exchangeable 3 Unstructured
4 Autoregressive 5 Stationary 6 Non-stationary

The most commonly used correlation structure is the exchangeable, which we
shall later describe in more detail. All of the structures define constraints on
the values to be estimated. Those values are estimated from Pearson residuals
obtained using the regression parameters. Pearson residuals are defined, in panel
format, as

rik = �(yik − µik)2/V (µik). (10.18)

The Poisson Pearson residual is defined as �(yik − µik)2/µik . The exchange-
able correlation is then defined as, without subscripts (see Hardin and Hilbe,
2007),

α = 1

φ
�

{
��rr − �r2

n(n − 1)

}
(10.19)

The exchangeable correlation structure has also been referred to as the com-
pound symmetry matrix and the equal correlation structure. All off-diagonal
values have a single scalar constant.

Other correlation matrices are defined in different manners, depending on the
purport of the structure. However, all are inserted into the variance function as

V (µi ) = [D(V (µik))1/2 R(a)(nxn) D(V (µik))1/2]nxn (10.20)

The GEE algorithm begins by estimating a model from the member families,
e.g. Poisson. After the initial iteration, the Pearson residuals are calculated
(Equation (10.18)) and put into the formula for calculating R(a)
(Equation (10.19)). R(a) is then inserted into Equation (10.20) in place of the
identity matrix. The updated variance function is then used as such in the sec-
ond iteration. Again, another updated variance function is calculated, and so on
until the algorithm converges as does any GLM model.

Since the resulting GEE model is not based on a pure probability function,
the method is called a quasi-likelihood model. Recall that we used a similar
appellation for instance when an otherwise GLM variance function is multiplied
by either a constant, or by another non-constant variable. In either case the
working likelihood function is not based on a probability function.

An example GEE Poisson model using the Progabide data can be shown as:
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GEE POISSON (EXCHANGEABLE)

. xtpoisson seizures time progabide timeXprog, nolog
offset(lnPeriod) pa i(t)

GEE population-averaged model Number of obs = 295
Group variable: t Number of groups = 5
Link: log Obs per group: min = 59
Family: Poisson avg = 59.0
Correlation: exchangeable max = 59

Wald chi2(3) = 34.21
Scale parameter: 1 Prob > chi2 = 0.0000

seizures Coef. Std. Err. z P>|z| [95% Conf. Interval]

time .111836 .0357489 3.13 0.002 .0417694 .1819026
progabide .0275345 .047044 0.59 0.558 -.0646701 .1197391
timeXprog -.1047258 .0655263 -1.60 0.110 -.233155 .0237034

�cons 1.347609 .0259747 51.88 0.000 1.2967 1.398519
lnPeriod (offset)

If you recall from the last section, the random-effects Poisson model on the
same data resulted in identical parameter estimates to the above GEE model.
The table of estimates and related statistics are displayed below.

GAMMA DISTRIBUTED RANDOM-EFFECTS POISSON

. xtpoisson seizures time progabide timeXprog, nolog
offset(lnPeriod) re i(t)

Random-effects Poisson regression Number of obs = 295
Group variable (i) : t Number of groups = 5
Random effects u�i ∼ Gamma Obs per group: min = 59

avg = 59.0
max = 59

Wald chi2(3) = 4.42
Log likelihood = −2318.1938 Prob > chi2 = 0.2192

seizures Coef. Std. Err. z P>|z| [95% Conf. Interval]

time .111836 .0634911 1.76 0.078 −.0126042 .2362763
progabide .0275345 .0466847 0.59 0.555 −.0639658 .1190348
timeXprog -.1047258 .0650304 -1.61 0.107 -.232183 .0227314

�cons 1.347609 .0512546 26.29 0.000 1.247152 1.448066
lnPeriod (offset)
------------------------------------------------------------------
/lnalpha -6.524573 1.629814 -9.71895 -3.330195
------------------------------------------------------------------

alpha .0014669 .0023908 .0000601 .0357861
------------------------------------------------------------------
Likelihood-ratio test of alpha=0: chibar2(01) = 0.62
Prob>=chibar2 = 0.216
AIC Statistic = 15.750

Identical parameter estimate values between a gamma distributed Poisson ran-
dom effects model and the GEE Poisson with exchangeable correlation structure
do not normally occur. Note also that the standard errors of progabide and tim-
eXprog are similar, but not identical between the two models. This occurrence
happens only if both the variance of the random effect is zero and the exchange-
able correlation parameter is zero. The near zero values of alpha and its standard
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error above indicates that this situation occurs here. The values of the parameter
estimates diverge if we add another predictor.

We next model the data using a negative binomial model with an exchange-
able correlation structure.

GEE NEGATIVE BINOMIAL (EXCHANGEABLE)

. xtnbreg seizures time progabide timeXprog, nolog
offset(lnPeriod) pa i(t)

GEE population-averaged model Number of obs = 295
Group variable: t Number of groups = 5
Link: log Obs per group: min = 59
Family: negative

binomial(k=1)
avg = 59.0

Correlation: exchangeable max = 59
Wald chi2(3) = 1.52

Scale parameter: 1 Prob > chi2 = 0.6775

seizures Coef. Std. Err. z P>|z| [95% Conf. Interval]

time .111836 .1663624 0.67 0.501 -.2142283 .4379004
progabide .0275345 .266861 0.10 0.918 -.4955036 .5505725
timeXprog -.1047258 .3009084 -0.35 0.728 -.6944954 .4850439

�cons 1.347609 .1476073 9.13 0.000 1.058304 1.636914
lnPeriod (offset)

Again we find that the heterogeneity parameter is not estimated as a separate
parameter. It is apportioned across panels as was the conditional fixed-effects
negative binomial.

Note that an AIC statistic is not associated with either the Poisson or negative
binomial GEE models. Since the model is a quasi-likelihood model, the software
uses the deviance statistic as the basis of convergence. The likelihood function
is not directly calculated.

This is done for theoretical purity; a quasi-likelihood value can be calculated,
and a (quasi)-AIC statistic calculated. The majority of GEE implementations
provide the log-likelihood function as output.

We shall now summarize the various major correlation structures and provide
some insight as to when each should best be used.

10.4.2 Correlation structures

Although GEE models are robust to the use of incorrect correlation structures, it
is nevertheless preferable to select the structure most appropriate to the data or
to the goal of the study. One may check the observed correlation matrix if there
is no known reason to select a specific matrix based on previous clinical studies.
This might not provide a definitive solution as to which is the best correlation
structure for the data, but it can nevertheless inform you about which type of
structure is not appropriate.
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The QIC statistic can be used to quantitatively decide on the preferred cor-
relation structure. The statistic, created by Pan (2001), is called the quasi-
likelihood under the independence model information criterion. It is similar to
the AIC statistic, but tests correlation structures within the scope of general-
ized estimating equations. The QICu statistic, also developed by Pan (2001a),
helps the user to decide on the best subset of model predictors for a particular
correlation structure.

If two or more correlation structures result in nearly the same QIC statis-
tic, and no other factor can be used to help decide which structure to use, the
preferred choice is to employ the simplest structure – one with the least param-
eters – which fits that data. Hardin and Hilbe (2003) provide complete details
regarding the use of both statistics.

There are a few summary guidelines that may be helpful to deciding which
correlation structure to use. If the data relates to first-level clustered data, then
it is likely that either the exchangeable or unstructured correlation structure
should be used. When panel data relate to measurements over time periods,
then the autoregressive, non-stationary, and stationary or m-dependent struc-
tures are generally the most appropriate. The autoregressive structure is usually
associated with longitudinal time-series data.

A listing of the major correlation structures follows. 5×5 matrix schematics
of the respective correlation structures are displayed, together with representa-
tive negative binomial GEE models. Only the lower half of the symmetric matrix
is completed. I also provide additional guidelines on when each structure should
be used.

INDEPENDENT CORRELATION STRUCTURE

SCHEMATIC

1
0 1
0 0 1
0 0 0 1
0 0 0 0 1

. xtgee seizures time progabide timeXprog, offset(lnPeriod) i(t)
fam(nb) corr(indep)

Pearson chi2(295): 520.34 Deviance = 321.92
Dispersion (Pearson): 1.763876 Dispersion = 1.091264

seizures Coef. Std. Err. z P>|z| [95% Conf. Interval]

time .111836 .2164262 0.52 0.605 -.3123515 .5360236
progabide .0275345 .2648619 0.10 0.917 -.4915852 .5466542
timeXprog -.1047258 .2986543 -0.35 0.726 -.6900775 .4806259

�cons 1.347609 .192027 7.02 0.000 .9712432 1.723975
lnPeriod (offset)
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. xtcorr
c1 c2 c3 c4 c5 c6

r1 1.0000
r2 0.0000 1.0000
r3 0.0000 0.0000 1.0000
r4 0.0000 0.0000 0.0000 1.0000
r5 0.0000 0.0000 0.0000 0.0000 1.0000
r6 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

The independent correlation structure imposes on the GEE model the same
structure as the standard variance–covariance matrix of a generalized linear
model. The observations are considered to be independent of one another. The
use of this model is to set a base for evaluation of other GEE correlation struc-
tures. The structure assumes a zero correlation between subsequent measures
of a subject within panels.

Use this correlation structure if the size of the panels are small and if there
is evidently no panel effect in the data. Adjust standard errors by a robust or
sandwich variance estimator.

EXCHANGEABLE CORRELATION STRUCTURE

SCHEMATIC

1
a 1
a A 1
a A a 1
a A a A 1

EXAMPLE

1
.29 1
.29 .29 1
.29 .29 .29 1
.29 .29 .29 .29 1

. xtgee seizures time progabide timeXprog, offset(lnPeriod) i(t)
fam(nb) corr(exch)

GEE population-averaged model Number of obs = 295
Group variable: t Number of groups = 5
Link: log Obs per group: min = 59
Family: negative avg = 59.0

binomial(k=1)
Correlation: exchangeable max = 59

Wald chi2(3) = 1.52
Scale parameter: 1 Prob > chi2 = 0.6775
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seizures Coef. Std. Err. z P>|z| [95% Conf. Interval]

time .111836 .1663624 0.67 0.501 -.2142283 .4379004
progabide .0275345 .266861 0.10 0.918 -.4955036 .5505725
timeXprog -.1047258 .3009084 -0.35 0.728 -.6944954 .4850439

�cons 1.347609 .1476073 9.13 0.000 1.058304 1.636914
lnPeriod (offset)

. xtcorr

Error structure: exchangeable
Estimated within-t correlation: -0.0152

[correlation structure not shown. The value, -0.0152, is
displayed in each cell of the correlation matrix]

The exchangeable correlation structure is the most commonly used structure.
It is the default for several of the major commercial software implementations
and it is generally the appropriate model to use with clustered or first-level
nested data. Moreover, it is assumed that the correlations between subsequent
measurements within a panel are the same, irrespective of the time interval. The
value of a, displayed in the schematic matrix above, is a scalar. It does not vary
between panels.

Use this correlation structure when the observations are clustered and not
collected over time.

UNSTRUCTURED CORRELATION STRUCTURE

SCHEMATIC

1
C1 1
C2 C5 1
C3 C6 C8 1
C4 C7 C9 C10 1

EXAMPLE

1
.34 1
.29 .28 1
.33 .14 .24 1
.21 .07 .11 .23 1

. xtgee seizures time progabide timeXprog, offset(lnPeriod) i(t)
fam(nb) corr(unstr) t(id)

GEE population-averaged model Number of obs = 295
Group and time vars: t id Number of groups = 5
Link: log Obs per group: min = 59
Family: negative avg = 59.0

binomial(k=1)
Correlation: unstructured max = 59

Wald chi2(3) = 0.24
Scale parameter: 1 Prob > chi2 = 0.9710
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seizures Coef. Std. Err. z P>|z| [95% Conf. Interval]

time -.0037579 .1964401 -0.02 0.985 -.3887734 .3812576
progabide -.0565913 .2412008 -0.23 0.815 -.5293361 .4161535
timeXprog .0025841 .2720929 0.01 0.992 -.5307082 .5358763

�cons 1.422683 .1741719 8.17 0.000 1.081312 1.764054
lnPeriod (offset)

. xtcorr c1 c2 c3 c4 c5 c6

r1 1.0000
r2 0.1752 1.0000
r3 0.2055 0.2112 1.0000
r4 0.1919 0.1919 0.2351 1.0000
r5 -0.2380 -0.2067 -0.2014 -0.2158 1.0000
r6 0.0868 0.0783 0.0923 0.0833 -0.1237 1.0000

In the unstructured correlation structure all correlations are assumed to be
different; correlations are freely estimated from the data. This can result in the
calculation of a great many correlation coefficients for large matrices. Because
it (can have) has a different coefficient for each cell, the correlation structure
optimally fits the data. However, it loses efficiency, and hence interpretability,
when models have more than about three predictors. The number of coefficients
to be estimated is based on the size of the largest panel of observations

#coefficients = p(p − 1)/2

where p is the number of observations in the largest panel
Use this correlation structure when the size of the panels is small, there are

relatively few predictors, and there are no missing values

AUTOREGRESSIVE CORRELATION STRUCTURE

SCHEMATIC

1
C^1 1
C^2 C^1 1
C^3 C^2 C^1 1
C^4 C^3 C^2 C^1 1

EXAMPLE

1
.48 1
.23 .48 1
.11 .23 .48 1
.05 .11 .23 .48 1



10.4 Generalized estimating equation 223

. xtgee seizures time progabide timeXprog, offset(lnPeriod)
i(t) fam(nb) corr(ar2) t(id)

GEE population-averaged model Number of obs = 295
Group and time vars: t id Number of groups = 5
Link: log Obs per group: min = 59
Family: negative avg = 59.0

binomial(k=1)
Correlation: AR(2) max = 59

Wald chi2(3) = 0.69
Scale parameter: 1 Prob > chi2 = 0.8749

seizures Coef. Std. Err. z P>|z| [95% Conf. Interval]

time .1043002 .1750602 0.60 0.551 -.2388115 .4474118
progabide .0135439 .2149714 0.06 0.950 -.4077922 .4348801
timeXprog -.0895488 .2423872 -0.37 0.712 -.5646189 .3855213

�cons 1.360433 .1553269 8.76 0.000 1.055998 1.664868
lnPeriod (offset)

. xtcorr
Error structure : AR(2)
Estimated within-t correlations
lag 1 : -0.1367
lag 2 : -0.0624
lag>2 : 0

Estimated within-t correlation matrix R:

c1 c2 c3 c4 c5 c6

r1 1.0000
r2 -0.1367 1.0000
r3 -0.0624 -0.1367 1.0000
r4 0.0205 -0.0624 -0.1367 1.0000
r5 0.0021 0.0205 -0.0624 -0.1367 1.0000
r6 -0.0020 0.0021 0.0205 -0.0624 -0.1367 1.0000

The autoregressive correlation structure assumes that there is a marked decrease
in correlation coefficient values with the corresponding increase in measure-
ments within panel time intervals. Each off-diagonal from the main diago-
nal decreases by the square of the previous diagonal. One might consider the
decrease in values to be increasing powers of the first off diagonal. Large matri-
ces produce very small coefficient values. The depiction here is true for AR(1),
and it is for this example, but not for all AR levels.

Use this correlation structure when the panels are collections of data over
time for the same person.

STATIONARY OR m-DEPENDENT CORRELATION STRUCTURE

SCHEMATIC
1
C1 1
C2 C1 1
0 C2 C1 1
0 0 C2 C1 1
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EXAMPLE

1
.27 1
.18 .27 1
0 .18 .27 1
0 0 .18 .27 1

. xtgee seizures time progabide timeXprog, offset(lnPeriod)
i(t) fam(nb) corr(sta2) t(id)

GEE population-averaged model Number of obs = 295
Group and time vars: t id Number of groups = 5
Link: log Obs per group: min = 59
Family: negative avg = 59.0

binomial(k=1)
Correlation: stationary(2) max = 59

Wald chi2(3) = 0.72
Scale parameter: 1 Prob > chi2 = 0.8694

seizures Coef. Std. Err. z P>|z| [95% Conf. Interval]

time .1019404 .1698023 0.60 0.548 -.230866 .4347469
progabide .010137 .2087913 0.05 0.961 -.3990864 .4193604
timeXprog -.0845498 .2354149 -0.36 0.719 -.5459545 .376855

�cons 1.364083 .1506621 9.05 0.000 1.06879 1.659375
lnPeriod (offset)

. xtcorr
Error structure : stationary(2)
Estimated within-t correlations
lag 1 : -0.1368
lag 2 : -0.0625
lag>2 : 0

Estimated within-t correlation matrix R:
c1 c2 c3 c4 c5

r1 1.0000
r2 -0.1368 1.0000
r3 -0.0625 -0.1368 1.0000
r4 0.0000 -0.0625 -0.1368 1.0000
r5 0.0000 0.0000 -0.0625 -0.1368 1.0000

The stationary correlation structure specifies a constant correlation for each
off-diagonal. The diagonals are then interpreted as lags or measurements. Cor-
relations c lags apart are equal in value to one another, c + 1 lags apart are also
equal to one another, and so forth until a defined stop, m, is reached. Correla-
tions greater than m are defined as zero, hence the meaning of m-dependent. In
larger matrices the correlation structure appears as a band.

Use this correlation structure when the off-diagonals, or lags, are thought of
as time intervals.
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NON-STATIONARY CORRELATION STRUCTURE

SCHEMATIC
1
C1 1
C5 C2 1
0 C6 C3 1
0 0 C7 C4 1

EXAMPLE
1
.99 1
.71 .84 1
0 .78 .73 1
0 0 .56 .70 1

. xtgee seizures time progabide timeXprog, offset(lnPeriod)
i(t) fam(nb) corr(non) t(id)

GEE population-averaged model Number of obs = 295
Group and time vars: t id Number of groups = 5
Link: log Obs per group: min = 59
Family: negative avg = 59.0

binomial(k=1)
Correlation: nonst max = 59

Wald chi2(3) = 6.24
Scale parameter: 1 Prob > chi2 = 0.1007

seizures Coef. Std. Err. z P>|z| [95% Conf. Interval]

time 3740533 .2033533 1.84 0.066 -.0245119 .7726185
progabide .0234849 .2562165 0.09 0.927 -.4786902 .52566
timeXprog -.2675043 .2882112 -0.93 0.353 -.8323879 .2973793

�cons 1.446338 .1809807 7.99 0.000 1.091622 1.801053
lnPeriod (offset)

. xtcorr
Estimated within-t correlation matrix R:

c1 c2 c3 c4 c5

r1 1.0000
r2 0.3924 1.0000
r3 0.0000 0.4392 1.0000
r4 0.0000 0.0000 0.4667 1.0000
r5 0.0000 0.0000 0.0000 -0.1549 1.0000

The non-stationary correlation structure is the same as the stationary except that
the values of each lag or off-diagonal are not constant. Of course, correlation
values beyond m are all 0.

Some statisticians use the non-stationary correlation structure when they
have ruled out the others, but still have a limit to the range of measurement
error or lags in the data.

The advantage of GEE over random-effects models relates to the ability of
GEE to allow specific correlation structures to be assumed within panels. Param-
eter estimates are calculated without having to specify the joint distribution of
the repeated observations.
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In random-effects models a between-subject effect represents the difference
between subjects conditional on them having the same random effect. Such
models are thus termed conditional or subject-specific models. GEE parameter
estimates represent the average difference between subjects, and thus are known
as marginal, or population-averaged models. Which to use depends on the
context, i.e. on the goals of the study.

Our final section will discuss an emerging area of study – multilevel models.
Two of the basic multilevel models are random intercept and random coefficient
models. Since other more complex multilevel models are built on their bases,
we shall restrict our discussion to these two models.

10.5 Multilevel negative binomial models

Multilevel models are also called hierarchical models, particularly in educa-
tional and social science research. The idea behind multilevel models is to
model the dependence that exists between nested levels in the data. For instance,
we may model visits to the doctor within groups of different hospitals. Unlike
GEE models, multilevel models are not based on the framework of generalized
linear models. Rather, they are an extension to the random-effects models we
discussed in the previous section.

Until recently, nearly all discussion, and application, of multilevel mod-
els have been of continuous response models. Binary response models, espe-
cially logistic models, were introduced about ten years ago. Only in the last
few years have Poisson models been discussed within the domain of multi-
level regression. Negative binomial models have been largely ignored. As of
this writing, only LIMDEP provides the capability of modeling negative bino-
mial random coefficient models. We shall use it in this section to examine
both random intercept and random coefficient models. Random intercept mod-
els are considered to be the most elementary, and fundamental, of multilevel
models.

10.5.1 Random intercept negative binomial models

Suppose that we are studying student performance on statewide exit examina-
tions. Schools are funded, and school administrators retained, on the basis of
how their students perform on the examination. When studying such data it
is evident that student performance within schools is more highly correlated
than between schools. Likewise, average school performance within various
school districts is likely correlated. Here we have student performance nested in
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schools, which itself is nested within school districts. Correlation effects exist
for students within schools, and correlation effects exist for schools within
school districts. We may add other levels, such as types of school programs
within schools, but three levels are sufficient to see the problem. The levels of
dependency must be adjusted by the models if the resulting levels of overdis-
persion are to be accommodated.

Multilevel models handle nested levels of dependency by allowing the regres-
sion coefficients to vary within levels. Because the multilevel algorithm permits
the coefficients to vary, statisticians have come to use the more specific term,
random coefficient model, for this type of multilevel model.

The most basic random coefficient model is one in which only the regression
intercept is allowed to vary. Such a model is called a random intercept model.
It is a subset of random coefficient models.

The random intercept model may be expressed as an equation

yik = β0i + β1 X + εik (10.21)

yit is the response for individual i in group k, or at time k (which we would
change to t). β0i refers to the regression intercept, varying over the individual,
i. β1 X is the coefficient for predictor x, and εik is the error term, varying over
both individuals and groups.

The following example comes from the German Health data set. It is from
1996, prior to the later reform data that we have used in previous discussions.
Model variables include the following:

RESPONSE

docvis The number of visits to the doctor by a patient
recorded over seven time periods.

PREDICTORS INCLUDE

age Age (25−64)
female 1=Female; 0=Male
educ Years of schooling (7−18)
married 1=Married; 0 = Not married
hhninc Net monthly house income in Marks/10000 (0−30.67)
hsat Health satisfaction evaluation (0−10)
�groupti periods in which data were recorded (1−7)

The majority of LIMDEP procedures are available in a point-and-select format.
Random coefficient models, however, require the use of the command line. The
code for the model is, followed by output,
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--> Negb; lhs=docvis; rhs=one, age, female, educ, married,
hhninc, hsat; pds=�groupti; rpm; fcn=one(n); pts=20; halton $
Random Coefficients NegBnReg Model
Maximum Likelihood Estimates
Model estimated: May 29, 2006 at 05:35:36PM.
Dependent variable DOCVIS
Weighting variable None
Number of observations 6209
Iterations completed 24
Log likelihood function -12723.32
Number of parameters 9
Info. Criterion: AIC = 4.10125
Finite Sample: AIC = 4.10125
Info. Criterion: BIC = 4.11101
Info. Criterion:HQIC = 4.10463
Restricted log likelihood -46669.83
Chi squared 67893.02
Degrees of freedom 1
Prob[ChiSqd > value] = .0000000
Unbalanced panel has 887 individuals.
Negative binomial regression model
Simulation based on 20 Halton draws

Standard
Variable Coefficient Error b/St.Er. P[|Z|>z] Mean of X

Nonrandom parameters
AGE .01798893 .00163076 11.031 .0000 44.3351586
FEMALE .39665379 .03117120 12.725 .0000 .42277339
EDUC -.04380941 .00829631 -5.281 .0000 10.9408707
MARRIED .09475447 .04169113 2.273 .0230 .84538573
HHNINC -.00497977 .08748656 -.057 .9546 .34929630
HSAT -.21528106 .00596570 -36.087 .0000 6.69640844

Means for random parameters
Constant 1.52593656 .13369248 11.414 .0000

Scale parameters for dists. of random parameters
Constant .80989785 .01676004 48.323 .0000

Dispersion parameter for NegBin distribution
ScalParm 1.18747048 .02671618 44.448 .0000

Implied standard deviations of random parameters
Matrix S.D�Beta has 1 rows and 1 columns.

1

1 .80990

ScalParm is the negative binomial heterogeneity parameter. At 1.19, overdis-
persion still appears to remain in the data.

It appears that all predictors but hhninc significantly contribute to the model.

10.5.2 Random coefficient negative binomial models

We previously provided the formula for a random intercept model, where
the intercept varies over periods. The random coefficient model expands this
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analysis to allow the regression coefficients to vary. The equation for a model
in which the coefficient, β1i, varies, but not the intercept, can be expressed as

yik = β0 + β1i x + εik (10.22)

We may allow both the intercept and coefficient to vary, giving us

yik = β0i + β1i x + εik (10.23)

Both of the above models are random coefficient models. They are also referred
to as random parameter and random slope models. More complex models can
exist depending on the number of nested levels in the data.

We now use a random coefficient model on the same data, allowing the
coefficient on health satisfaction, hsat, to vary. hsat has 11 levels.

--> Negb; lhs=docvis; rhs=one, age, female, educ, married,
hhninc, hsat; pds=�groupti; rpm; fcn=one(n), hsat(n); cor;
pts=20; halton $
Random Coefficients NegBnReg Model
Maximum Likelihood Estimates
Model estimated: May 29, 2006 at 05:38:24PM.
Dependent variable DOCVIS
Weighting variable None
Number of observations 6209
Iterations completed 28
Log likelihood function -12694.26
Number of parameters 11
Info. Criterion: AIC = 4.09253
Finite Sample: AIC = 4.09254
Info. Criterion: BIC = 4.10446
Info. Criterion:HQIC = 4.09666
Restricted log likelihood -46669.83
Chi squared 67951.15
Degrees of freedom 3
Prob[ChiSqd > value] = .0000000
Unbalanced panel has 887 individuals.
Negative binomial regression model
Simulation based on 20 Halton draws

Standard
Variable Coefficient Error b/St.Er. P[|Z|>z] Mean of X

Nonrandom parameters
AGE .01680197 .00159059 10.563 .0000 44.3351586
FEMALE .37039825 .02990835 12.384 .0000 .42277339
EDUC -.03147513 .00813808 -3.868 .0001 10.9408707
MARRIED .09847528 .04141046 2.378 .0174 .84538573
HHNINC .01194585 .08915694 .134 .8934 .34929630

Means for random parameters
Constant 1.65242649 .12955696 12.754 .0000
HSAT -.24630006 .00653340 -37.699 .0000 6.69640844

Diagonal elements of Cholesky matrix
Constant .78345690 .04466106 17.542 .0000
HSAT .11609985 .00249648 46.505 .0000
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Standard
Variable Coefficient Error b/St.Er. P[|Z|>z] Mean of X

Below diagonal elements of Cholesky matrix
lHSA�ONE -.08790569 .00670183 -13.117 .0000

Dispersion parameter for NegBin distribution
ScalParm 1.24095398 .02905699 42.708 .0000

Implied covariance matrix of random parameters
Matrix Var�Beta has 2 rows and 2 columns.

1 2
1 .61380 -.06887
2 -.06887 .02121

Implied standard deviations of random parameters
Matrix S.D�Beta has 2 rows and 1 columns.

1 .78346
2 .14562
Implied correlation matrix of random parameters
Matrix Cor�Beta has 2 rows and 2 columns.

1 2
1 1.00000 -.60364
2 -.60364 1.00000

The negative binomial by construction already picks up some heterogeneity
that manifests itself in the overdispersion. The random coefficients formula-
tion is an extension that gathers together other time invariant heterogeneity
across individuals. Random coefficient models allow the randomness of the
coefficients to explain the heterogeneity across individuals as well as the het-
erogeneity across groups. This heterogeneity, in sum, results in the differences
found in the responses, yik, due to changes in the predictors. The fact that levels
of nesting, or of additional unexplained heterogeneity, can be explained by these
models, make them attractive to those who wish to model count data having
such a structure.

The only caveat to keep in mind when using negative binomial random coef-
ficient models is to be careful of over-specification; i.e., multiple adjustments
are being given to the otherwise Poisson counts. Care must be taken to assure
that our model does not make too much adjustment.

10.6 Summary

Panel data, consisting of data in clustered and longitudinal format, violate the
basic maximum likelihood assumption of the independence of observations.
Whether the data are clustered by groups or recorded by observations over
periods of time, the same methods are used to estimate the respective panel
models.

In this chapter I presented overviews of the foremost panel models: uncon-
ditional and conditional fixed effects models, random effects models, and
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generalized estimating equations. Multilevel mixed models are a compara-
tively new area of research, with multilevel count models being the most recent.
LIMDEP is the only commercial software supporting negative binomial linear
mixed models, with its initial application in 2006. The software limits use to
random intercept and the more detailed random coefficient negative binomial
models. Examples of both models are provided in this chapter.

Hierarchical GLMs, called HGLMs, and double HGLMs have recently been
developed, primarily by John Nelder and Yougjo Lee. However, they have not
employed HGLM theory to the negative binomial, and we do not discuss them
here. HGLMs are supported only by GENSTAT software.

Exercises

1 Why does a conditional fixed-effects negative binomial allow a model con-
stant, unlike fixed-effects Poisson and most other fixed-effects models?

2 It has been demonstrated that an unconditional fixed effects negative bino-
mial is statistically preferably to the conditional fixed effects negative bino-
mial, which produces biased estimates. Discuss why is this the case.

3 GEE models are population averaged models. How does this differ from
random-effects models?

4 Why is the conjugate prior the most appropriate random-effect mixing dis-
tribution for random-effects models?

5 Why do most GEE software packages set the robust variance estimator as
the default method of calculating standard errors?

6 Using the ships data set that is provided on the text web site, model accident
on the levels of construction and operation with the natural log of service
as the offset. Model as both a Poisson and negative binomial GEE using
the exchangeable correlation matrix. Which model is the preferred model?
Compare the models after the creation of interactions between predictors.
Does this make a difference?

7 Use a stationary correlation matrix to model the ship data as in Question 6.
Compare it with a random-beta effects negative binomial model. How do
the values in the correlation structure help interpret the model?

8 Using the absenteeism data set on the text web site, model days on binary
predictors aborig (is aborigine), girl (is girl), and slow (is slow learner), as
well as the four-level schoolyr (8th grade, freshman, sophomore, senior).
Attempt to determine the source of overdispersion. Model with id as a ran-
dom intercept. Compare AIC statistics to determine if there is a substantial
improvement in fit.
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9 Derive the conditional fixed-effects NB-1 log-likelihood function. Express
it in a manner similar to the formulae listed in Appendix A.

10 Use the mdvisitsx data set, employing a random coefficient negative bino-
mial model to the data. Let id be the random intercept and educ the ran-
dom coefficient. Compare the results to a random Gaussian-effects negative
binomial model. Note the differences in AIC statistic and significance of
the predictors.
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Negative binomial log-likelihood
functions

NEGATIVE BINOMIAL

y∗ln(αexp(xb)/(1+αexp(xb)) − ln(1+αexp(xb))/α+ ln�(y + 1/α)

− ln �(y + 1) − ln�(1/α)

NEGATIVE BINOMIAL TYPE 1 (NB-1)

y∗ ln(α) − (y − α exp(xb))∗ ln(1 + α)

+ ln �(y + α exp(xb)) − ln �(y + 1) − ln �(α exp(xb))

NEGATIVE BINOMIAL CANONICAL

y∗ ln({α(1/(α exp(−xb) − 1))}/(1 − {α(1/(α exp(−xb) − 1))}))
− ln(1 + {α(1/(α exp(−xb) − 1))})/a + ln �(y + 1/α) − ln �(y + 1)

− ln �(1/α)

ZERO-TRUNCATED NEGATIVE BINOMIAL

y∗ ln(α exp(xb)/(1 + α exp(xb)) − ln(1 + α exp(xb))/α + ln �(y + 1/α)

− ln �(y + 1) − ln �(1/α) − ln(1 − (1 + α exp(xb))∧(−1/α))

NEGATIVE BINOMIAL WITH ENDOGENOUS STRATIFICATION

y∗ ln(α) + (y − 1)∗xb − (y + 1/α) ln(1 + α exp(xb)) + ln �(y + 1/α)

− ln �(y + 1) − ln �(1/α) + ln �(y)

ZERO-INFLATED POISSON – logit

y ==0 : ln(1/(1 + exp(−xβb)) + 1/(1 + exp(xβb))∗ exp(− exp(xβ)))

y > 0 : ln(1/(1 + exp(−xβb))) − exp(xβ) + y(xβ) − ln �(y + 1)
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ZERO-INFLATED POISSON – probit

If y ==0 : ln(�xβb) + (1 − �(xβb)) ∗ exp(− exp(xβ)))

y > 0 : ln(1 − �(xβb)) − exp(xβ) + y(xβ) − ln �(y + 1))

ZERO-INFLATED NEGATIVE BINOMIAL – logit

cond{y ==0, ln(1/(1 + exp(−xb1)) + 1/(1 + exp(xb1))
∗(1/(1 + α∗ exp(xb)))∧(1/α),

ln(1/(1 + exp(xb1)) + ln �(1/α + y) − ln �(y + 1) − ln �(1/α)

+ (1/α)∗ ln(1/(1 + α∗ exp(xb))) + y∗ ln(1 − (1/(1 + α∗ exp(xb))))}

ZERO-INFLATED NEGATIVE BINOMIAL – probit

cond{y == 0, ln(�(xb1) + (1 − �(xb1))
∗(1/(1 + α ∗ exp(xb))) (1/α),

ln(1 − �(xb1)) + ln �(1/α + y) − ln �(y + 1) − ln �(1/α) + (1/α)
∗ ln(1/(1 + α ∗ exp(xb))) + y ∗ ln(1 − (1/(1 + α ∗ exp(xb))))}
< � = normal CDF >

GENERALIZED POISSON

y ln(exp(xβ)/(1 + α exp(xβ)) + (y − 1) ln(1 + αy)

− [exp(xβ)(1 + αy)/(1 + αexp(xβ))] − ln �(y + 1)

NEGATIVE BINOMIAL-LOGIT HURDLE

cond{y == 0, ln(1/(1 − exp(xb1)),

ln(exp(xb1)/(1 + exp(xb1))) + y ∗ ln(exp(xb)/(1 + exp(xb)))

− ln(1 + exp(xb))/α + ln �(y + 1/α) − ln �(y + 1) − ln �(1/α)

− ln(1 − (1 + exp(xb)) (−1/α))}

NEGATIVE BINOMIAL-CLOGLOG HURDLE

cond{y ==0, − exp(xb1), ln(1 − exp(− exp(xb1)))

+ y∗ ln(exp(xb)/(1 + exp(xb))) − ln(1 + exp(xb))/α

+ ln �(y + 1/α) − ln �(y + 1) − ln �(1/α) − ln(1 − (1 + exp(xb))∧(−1/α))}

CONDITIONAL FIXED EFFECTS POISSON

sum((ln �(sum(y) + 1) − sum(ln �(y + 1) + sum(y∗xb − y∗ ln(sum(exp(xb))))
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CONDITIONAL FIXED EFFECTS NEGATIVE BINOMIAL

ln �(sum(exp(xb))) + ln �(sum(y) + 1) − sum(ln �(y + 1))

− ln �(sum(y) + sum(exp(xb))) + sum(ln �(exp(xb) + y)) − sum(ln �(exp(xb)))

RANDOM EFFECTS POISSON WITH GAMMA EFFECT

ln �(1/α − �y) − ln �(1/α) − (1/α + �y)∗ ln(1 + α∗�(exp(xb)))

+ ln(α)∗�y − ln �(y + 1) + y∗xb

RANDOM EFFECTS NEGATIVE BINOMIAL WITH BETA EFFECT

ln �(a + b) + ln �(a + �(exp(xb))) + ln �(b + �y) − ln �(a) − ln �(b)

− ln �(a + b + �(exp(xb)) + �y) + �(ln �((exp(xb)) + y)

− ln �(y + 1) − ln �(exp(xb)))

GEOMETRIC

y∗xb − (1 + exp(xb)) − ln(1 + exp(xb)) or y∗xb − (1 + y) ln(1 + exp(xb))

ZERO-TRUNCATED GEOMETRIC

y∗xb − (1 + y) ln(1 + exp(xb)) − ln(1 + ln(1 + exp(xb)))

CANONICAL GEOMETRIC

y∗ ln(1/(exp(−xb) − 1)) − (1 + y) ln(1 + (1/(exp(−xb) − 1)))

GEOMETRIC-LOGIT HURDLE

cond{y ==0, ln(1/(1 + exp(xb1))),

ln(exp(xb1)/(1 + exp(xb1))) + y∗xb − (1 + y)∗ ln(1 + exp(xb))

− ln(1 + ln(1 + exp(xb)))}

GEOMETRIC-CLOGLOG HURDLE

cond{y ==0, − exp(xb1),

ln(1 − exp(− exp(xb1))) + y∗xb − (1 + y)∗ ln(1 + exp(xb))

− ln(1 + ln(1 + exp(xb)))}
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Deviance functions

Stata code for four count model deviance functions: Poisson, Geometric, NB-2, NB-1

POISSON

tempvar dev sdev
egen ‘dev’ = sum(‘y’ ∗ln(‘y’/‘mu’) – (‘y’ − ‘mu’))
local deviance = 2∗‘dev’

GEOMETRIC

tempvar y lp mu dev sdev
predict ‘lp’, xb
gen double ‘mu’ = exp(‘lp’)
gen ‘y’ = ‘lhs’
egen ‘dev’ = sum(‘y’∗ln(‘y’/‘mu’) – (1 + ‘y’)∗ln((1 + ‘y’)/(1 + ‘mu’)))
local deviance = 2∗‘dev’

NEGATIVE BINOMIAL 2

tempvar y lp mu dev sdev alpha
predict ‘lp’, xb
gen double ‘mu’ = exp(‘lp’)
gen ‘y’ = ‘lhs’
local alpha r(est)
egen ‘dev’= sum((‘y’ ∗ln(‘y’/‘mu’)) – (((1 + ‘alpha’∗‘y’)/‘alpha’) ∗ln((1 + ‘alpha’∗‘y’)/
(1 + ‘alpha’∗‘mu’))))
local deviance = 2∗‘dev’

NEGATIVE BINOMIAL 1

tempvar y lp mu dev sdev alpha
predict ‘lp’, xb
gen double ‘mu’ = exp(‘lp’)
gen ‘y’ = ‘lhs’
local alpha r(est)
egen ‘dev’ = sum((‘mu’ − ‘y’) ∗ln(1 + ‘alpha’))
local deviance = 2∗‘dev’
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Stata negative binominal – ML
algorithm

∗! Version 1.0.3
∗ NEGATIVE BINOMIAL REGRESSION: Joseph Hilbe: 8Sep2005
program jhnbin, eclass properties(svyb svyj svyr)

version 9.1
syntax [varlist] [if] [in] [fweight pweight aweight iweight] [, ///

Level(cilevel) IRr Robust noLOG ///
OFFset(passthru) EXposure(passthru) ///
CLuster(passthru) FROM(string asis) ∗]

gettoken lhs rhs: varlist
mlopts mlopts, 'options'
if (“'weight'"!= "") local weight “['weight' 'exp']"
if ('“'from'"'!= '""') local initopt '“init('from')"'

ml model lf jhnb�ll (xb: 'lhs' = 'rhs', 'offset' 'exposure') ///
/lnalpha ///

'if' 'in' 'weight', ///
'mlopts' 'robust' 'cluster' ///
title(“Negative Binomial Regression") ///
maximize 'log' 'initopt' ///
diparm(lnalpha, exp label(alpha))

ereturn scalar k�aux = 1
ml display, level('level') 'irr'

qui {
∗ AIC

tempvar aic
local nobs e(N)
local npred e(df�m)
local df = e(N) -- e(df�m) −1
local llike e(ll)
gen 'aic' = ((−2∗'llike') + 2∗('npred' + 1))/'nobs'

}

∗ DISPLAY
di in gr �col(1) “AIC Statistic =" in ye%11.3f 'aic'

end
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LOG-LIKELIHOOD FUNCTION FOR NEGATIVE BINOMIAL

∗! version 1.0.1 7Sep2005
∗ Negative binomial: log likelihood function: Joseph Hilbe
program define jhnb�ll
version 9.1
args lnf xb alpha

tempvar a mu
qui gen double 'a' = exp('alpha')
qui gen double 'mu' = exp('xb') ∗ 'a'
qui replace 'lnf' = $ML�y1 ∗ ln('mu'/(1 + 'mu')) -- ///
ln(1 + 'mu')/'a' + lngamma($ML�y1 + 1/'a') -- ///
lngamma($ML�y1 + 1) -- lngamma(1/'a')

end
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Negative binomial variance functions

Given that the negative binomial with α = 0 is Poisson, and negative binomial with
α = 1 is geometric

Poisson: V= µ

QL Poisson: V= µφ

Geometric: V= µ(1 + µ)
NB-1: V= µ(1 + α)
NB-2: V= µ(1 + αµ)
NB-H: V= µ(1 + (αν)µ)
NB-P: V= µ + αµρ

Log and canonical links are available for above models beginning with the geometric.
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Data sets

All data sets, in Stata, Excel, and ASCII format, are posted at the Cambridge University
Press web site for this text: http://www.cambridge.org/9780521857727

Below are listed the data sets used in the text, except for those that are created as
simulated data. However, I shall post the constructed simulated data sets to the text web
site for your use. Note that many of the smaller data sets have the data presented in the
text. Whether this is the case for a particular data set is indicated by a Yes in the DATA
IN BOOK column. The format of the data is also provided. Case specifies that the data
are presented in observation form; group indicates that the data are either grouped or
are frequency weighted.

DATA SETS USED IN TEXT

DATA IN
NAME BOOK FORMAT OBS

affairs No case 601 (Dict. in Table 6.5)
azprocedure No case 3589 (Sum stats in Table 6.9)
fastrak No case 5388 (Ch 3.2)
lbw No case 189 (Ch 6.2; Dict. in Table 6.3)
lbwcases No group 23 (Ch 6.2)
loomis No case 410 (Ch 8.2; Table 8.2)
medpar No case 1495 (Ch 3.1)
mdvisits No case 2227 (Dict. in Table 6.12)
mdvisitsx No case 2227 (Ch 7.3)
progabide No case 295 (Ch 10.3)
rwm No case 27326 (Ch 7.4)
ships No group 40 (Ch. 10.1)
titanic Yes group 12 (Data in Table 6.11)
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SIMULATED DATA SETS USED IN TEXT (MAJOR)

NAME OBS CHAPTER CREATED

odtest 10000 Ch 4.2
nboverex 10000 Ch 4.3.5
syn�nb 10000 Ch 6.1
geo�simul 50000 Ch 7.1
syn�nb1 50000 Ch 7.2.1

Data sets used in end-chapter examples are listed below. Some data sets are used more
than once. The chapter and question number where the data are first used is given in the
second column. Ten of the 17 exercise data sets are shown in full, either as part of the
question, or referenced to another part of the text where the data can be found.

DATA SETS USED IN EXERCISES

DATA IN
NAME 1ST USED BOOK FORMAT OBS COMMENTS

absenteeism (Ch 10, # 8) No case 146
azprocedure (Ch 8, # 4) No case 3589
cancer (Ch 7, # 1) No case 48
cancercen (Ch 9, # 1) Yes case 48 (cancer modified)
contacts (Ch 9, # 6) Yes group 6
doll (Ch 6, # 7) Yes group 10
drg112az (Ch 4, # 5) No case 1798
edsurvey (Ch 8, # 2) Yes case 50
ex2�4 (Ch 2, # 4) Yes case 10
gss2002�educ (Ch 6, # 3) No case 2500
hiv (Ch 3, # 5) Yes group 8
horsekick (Ch 3, # 7) Yes group 6
kyp (Ch 6, # 1) Yes case 24 (modified)
mdvisitsx (Ch 10, #10) No case 2227
pyears (Ch 5, # 3) Yes group 10
ships (Ch 10, # 6) No group 40
ticks (Ch 4, # 8) Yes group 26
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